
Agent-Driven Representations, Algorithms, and
Metrics for Automated Organizational Design

by

Jason Lee Sleight

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2015

Doctoral Committee:

Professor Edmund H. Durfee, Chair
Professor Satinder Singh Baveja
Associate Professor Amy E. M. Cohn
Emeritus Professor Victor R. Lesser, University of Massachusetts

© Jason Lee Sleight 2015

All Rights Reserved

For Miriam.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my adviser Ed Durfee. Throughout

my graduate studies, Ed has had enormous influence not only on my research and

professional development but on my life and personal growth more broadly. He

consistently allowed me the freedom to pursue topics that I found engaging (though

sometimes I think it was against his better judgment), and the lessons learned from

these experiences have been central in my development as a researcher. Ed’s advice

and critical feedback have immeasurably improved the quality of my research in this

dissertation, and moreover have shaped my broader approach to problem solving,

critical analysis, and effectively communicating technical information.

My work has also benefited from interactions with my other committee members,

and I would like to thank Amy Cohn, Victor Lesser, and Satinder Singh for their

efforts and feedback throughout my graduate career. Discussions with them has helped

me to analyze my research from other perspectives, and this dissertation is all the

better for it. In particular, collaborations with Victor (and others at the University of

Massachusetts mentioned below) during the early stages of my research were especially

significant in influencing the direction of this dissertation.

While many graduate students are fortunate enough to publish in passionate

research communities, I have been exceptionally fortunate in that my research bridges

several distinct research communities. The alternative perspectives afforded to me by

discussions both within and across these communities have been especially engaging.

In particular, interactions with Dan Corkill, Frans Oliehoek, Matthijis Spaan, Prashant

Doshi, Chris Amato, Shimon Whiteson, Julian Padget, Robin Cohen, Virginia Dignum,

Catholijn Jonker, Chongjie Zhang, Jie Jiang, Yoonheui Kim, and Diederik Roijers

have inspired me to deeply think about the relationships between my research, the

organizational-research community’s work, and the multiagent-sequential-reasoning

community’s work.

I have had the pleasure to work with numerous other graduate students and

alumni, especially Jim, Stefan, Johnathon, Monica, Alexander, Chris, Lynn, Bryce,

Ben, Elaine, Erik, Rob, Nan, Ananda, Shiwali, Veronica, Steve, Konstans, and Shibu;

iii

thank you for making working at Michigan interactive and enjoyable. I would also like

to say thank you to the CSE staff and administrators, including Dawn Freysinger, Dia

Moulton, Karen Liska, Rita Rendell, Kimberly Mann, Kelly Cormier, Cindy Estell,

and Cindy Watts for helping me to navigate the administrative aspects of my graduate

career.

My parents, Ron and Jan, have played a vital role in making me into who I am

today. I cannot thank you enough for providing me with opportunities to succeed and

encouraging me to pursue my scientific interests from a young age. Thank you also to

my siblings, aunts, uncles, cousins, and grandparents for continually pushing me to be

the best and inspiring me to accept nothing less than perfection from myself.

Finally, I owe an inexpressible amount of gratitude to my wife Miriam for accom-

plishing this milestone together with me. It is due to her unwavering support and

encouragement that I was able to complete this dissertation.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF ALGORITHMS . xiii

ABSTRACT . xiv

CHAPTER

1. Introduction . 1

1.1 Problem Statement . 2
1.2 Illustrating Example . 6
1.3 Solution Approach . 8
1.4 Contributions . 11

2. Background . 15

2.1 Operational Decision Making 15
2.1.1 Markov Decision Process 17
2.1.2 Partially Observable Markov Decision Process . . . 20
2.1.3 Factored Markov Decision Process 22
2.1.4 Decentralized (Partially Observable) Markov Decision

Process . 23
2.1.5 Hierarchical Abstractions 30

2.2 Organizational Decision Making 33
2.2.1 Early MAS Research 34
2.2.2 Problem-driven Approaches 36
2.2.3 Experience-driven Approaches 39
2.2.4 Mixed Approaches 41

v

2.2.5 Operational Techniques from an Organizational Per-
spective . 44

2.2.6 Human Organizations 46

3. Organizational Design Problem 48

3.1 Specification Language Formalism 49
3.1.1 Organizational Specification Language 49
3.1.2 Incorporating Organizational Influences into Local

Reasoning . 51
3.2 Language Properties . 53

3.2.1 Size of Organizational Design Space 53
3.2.2 Language Completeness and Necessity 54

3.3 Measuring Organizational Performance 55
3.4 Baseline Organization . 56
3.5 Empirical Demonstration . 59

3.5.1 Empirical Evaluation Process 59
3.5.2 Specification Language Demonstration 63
3.5.3 Isolated Impact of Specification Constructs 65

3.6 Generality of Approach . 70
3.6.1 Generality to Other Problem Domains 70
3.6.2 Generality to Other Reasoning Frameworks 70
3.6.3 Generality to Hierarchical Organizational Structures 72

3.7 Conclusion . 73

4. Selecting Organizational Influences 75

4.1 Influence Selection Heuristic 76
4.2 Automated Organizational Design 82

4.2.1 ODP Overview . 82
4.2.2 Compute Organizational Patterns 84
4.2.3 Selecting Organizational Influences 88
4.2.4 ODP Limitations and Concerns 91
4.2.5 Evaluation . 93

4.3 Metareasoning through Organizational Design 95
4.3.1 Background . 96
4.3.2 Extending the ODP 98
4.3.3 Evaluation . 105
4.3.4 Limitations and Concerns 111

4.4 Conclusion . 112

5. Abstract Organizational Influences 114

5.1 Motivations for Abstract Influences 115
5.2 Dimensions of Abstract Influences 117

vi

5.3 Incorporating Abstract Influences 118
5.4 Influence Abstraction Effects 120

5.4.1 Operational Performance 129
5.4.2 ODP’s Search Sensitivity 130
5.4.3 ODP’s Information Scope 130

5.5 Task-Delineated Abstractions 131
5.6 Evaluation With Initially Adjacent Agents 136
5.7 Evaluation with Additional Agents 142
5.8 Conclusions . 148

6. Conclusion . 150

6.1 Summary of Contributions 150
6.1.1 Organizational Specification Language 150
6.1.2 Organizational Performance Metrics 152
6.1.3 Automated Organizational Design 152
6.1.4 Influence Selection Heuristics 154

6.2 Open Questions . 154
6.2.1 Organizationally Adept Agents 155
6.2.2 Other Influence Mechanisms 158
6.2.3 Biasing the ODP’s Statistics to Encourage Patterns 160
6.2.4 Advanced Statistical Representations and Abstraction

Choice . 162
6.2.5 Relaxing the Restrictions to Organizational Influence

Mappings . 163
6.2.6 Scaling the ODP . 163
6.2.7 Open Systems . 166

APPENDIX . 167

BIBLIOGRAPHY . 174

vii

LIST OF FIGURES

Figure

1.1 Example initial states for three different problem episodes. Darker
cell shading indicates higher cell delays. 7

1.2 Example organizations that designate regions of responsibility for
each agent to focus on fighting fires within. 8

1.3 Overview of how my ODP operates and interacts with the MAS. . . 9
2.1 Example state of a 5×5 firefighting grid world. A1 designates the cell

corresponding to the location of the agent, and I = x indicates that
there is a fire in that cell with intensity x. Letters designate a (H)igh,
(M)edium, or (L)ow delay in that cell. 18

2.2 An example factoring for the single agent firefighting domain repre-
sented as a two-stage dynamic Bayesian network (2DBN). 24

2.3 Example state of a 10×5 firefighting grid world. Ai designates the
cell corresponding to the location of agent i, and I = x indicates that
there is a fire in that cell with intensity x. Letters designate a (H)igh,
(M)edium, or (L)ow delay in that cell. 27

3.1 (a): An exampleMi for the firefighting domain represented as a 2DBN.

(b): An example M|θi
i created by organizationally modifying the Mi

from (a). Shaded regions indicate factors that were organizationally
overwritten or added, while dotted regions indicate factors that were
organizationally removed. 52

3.2 Example initial state of a 10×5 firefighting grid world domain. Ai is
the position of agent i, and I = x indicates that there is a fire in that
cell with intensity x. 64

3.3 POp curves for each organization. 66
3.4 Illustration of PARs for 10 agent organizations. 67
4.1 Illustration of “easy” and “hard” firefighting episodes. An episode is

“hard” if the local baseline MAS miscoordinates. 79
4.2 Illustration of how I controlled agent expertise. 79
4.3 Overview of how my automated ODP and how it relates to the MAS. 83
4.4 Walkthrough of my ODP’s process for computing its quantitative de-

scription of organizational patterns. Darker shading in the occupancy
measure columns indicates higher occupancy measure. 89

viii

4.5 Cumulative cell occupancy measures,
∑

ai
xi(si, ai), for each agent

that the ODP calculated in response to the cell delays in (c) 94
4.6 Marginal cost estimates for adding or removing a state/edge from an

agent’s local reasoning problem. 101
4.7 Illustration of influence search (Algorithm 4.2) for agent 1’s movement

actions. The agent can move into a cell in a direction where it first
passes a dotted line, but not a solid line. The agent begins in the cell
indicated with ∗. Dashed boxes indicate the optimal influence to add
into the organization for each search iteration. 106

4.8 Movement action influences of the 1e6Org for each agent. An agent
can move into a cell in a direction where it first passes a dotted line,
but not a solid line. Agents begin in the cells indicated with ∗. . . . 109

4.9 Performance characteristics of the bOrgs created by my ODP. 110
5.1 Movement action influences in the four-fire domain for each agent

using a position abstraction. An agent can move into a cell in a
direction where it first passes a dotted line, but not a solid line.
Agents begin in the cells indicated with ∗. 115

5.2 Illustration of the Pos abstraction’s dimensions (see Table 5.1) for
agent 1’s initial position. The influence’s inclusivity is 1

50
, its unifor-

mity is 1
3
, and its (ROp,COp) variance is (4.63, 1.11× 106). Quantities

shown are for the four example ∆1s (rather than ∆̂1’s entire domain),
and are for illustrative purposes only and not from empirical data. . 119

5.3 Position clusters for the PCluster based abstractions (dashed lines
represent cell boundaries for reference). ∗ indicates the agent’s initial
location. 120

5.4 Movement action influences in the four-fire domain for each agent
using the TCluster+Pos abstraction. An agent can move into a cell
in a direction where it first passes a dotted line, but not a solid line.
Agents begin in the cells indicated with ∗. 123

5.5 POp curves for each abstraction for different amounts of ODP infor-
mation. Solid, dashed, and dotted curves correspond to organizations
constructed from perfect information, 2/3 information, and 1/3 infor-
mation respectively. 124

5.6 ROp and COp curves for organizations constructed from perfect infor-
mation. 125

5.7 ROp and COp curves for organizations constructed from 2/3 information.126
5.8 ROp and COp curves for organizations constructed from 1/3 information.127
5.9 ROp and COp curves for select organizations to permit direct visual-

ization of how information scope affects the ODP. Solid, dashed, and
dotted curves correspond to organizations constructed from perfect
information, 2/3 information, and 1/3 information respectively. . . . 128

ix

5.10 POp curves for task-delineated abstractions alongside bounding ab-
stractions (TCluster+Pos and local baseline). Solid, dashed, and
dotted curves correspond to organizations constructed from perfect
information, 2/3 information, and 1/3 information respectively. . . . 133

5.11 ROp and COp curves for task-delineated abstractions alongside bound-
ing abstractions (TCluster+Pos and local baseline). Solid, dashed, and
dotted curves correspond to organizations constructed from perfect
information, 2/3 information, and 1/3 information respectively. . . . 135

5.12 An example initial state with four fires and agents located initially
adjacent to each other. Darker cell shading indicates higher cell delays.
Ai indicates agent i’s location, and Fx indicates a fire with intensity x.136

5.13 POp curves for each abstraction for different amounts of ODP infor-
mation. Solid, dashed, and dotted curves correspond to organizations
constructed from perfect information, 2/3 information, and 1/3 infor-
mation respectively. 138

5.14 ROp and COp curves for organizations constructed from perfect infor-
mation. 139

5.15 ROp and COp curves for organizations constructed from 2/3 information.140
5.16 ROp and COp curves for organizations constructed from 1/3 information.141
5.17 Example initial state in the four agent version of firefighting domain.

Ai is the position of agent i, and I = x indicates that there is a fire
in that cell with intensity x. 143

5.18 POp curves for each abstraction for different amounts of ODP infor-
mation. Solid, dashed, and dotted curves correspond to organizations
constructed from perfect information, 2/3 information, and 1/3 infor-
mation respectively. 144

5.19 ROp and COp curves for organizations constructed from perfect infor-
mation. 145

5.20 ROp and COp curves for organizations constructed from 2/3 information.146
5.21 ROp and COp curves for organizations constructed from 1/3 information.147
6.1 Illustration of the westOrg. 156
6.2 Expected reward vs. the observational evidence decay rate. 158

x

LIST OF TABLES

Table

3.1 Results for experiments in Section 3.5.2 for ROp, COp, and expected
number of times the replanning mechanism was invoked per agent per
episode. 65

3.2 Results for experiments in Section 3.5.3 when agents initially began
spread throughout the grid for ROp, COp, and number of times the
replanning mechanism was invoked per agent per episode. 69

3.3 Results for experiments in Section 3.5.3 when agents initially began
clustered in the center of the grid for ROp, COp, and number of times
the replanning mechanism was invoked per agent per episode. . . . 69

4.1 Expected percent ROp and COp improvement of organizations com-
pared to the local baseline for all 3000 problem episodes. 80

4.2 Expected percent ROp and COp improvement of organizations com-
pared to the local baseline for the 750 problem episodes with largest
expected impact (top 25%) to ROp. The same subset of episodes is
used to calculate the COp reduction. The subset of episodes used
varies by organization as well as by number of smoothing iterations. 80

4.3 Expected percent ROp and COp improvement of organizations com-
pared to the local baseline for the 150 problem episodes with largest
expected impact (top 5%) to ROp. The same subset of episodes is
used to calculate the COp reduction. The subset of episodes used
varies by organization as well as by number of smoothing iterations. 80

4.4 Percent ROp and COp improvement compared to the baseline MAS for
experiments in Section 4.2.5. The same subsets of episodes are used
to calculate the COp reduction. The subset of episodes used varies by
organization as well as by number of smoothing iterations. 94

5.1 Descriptions of the organizational abstractions I evaluate in Section 5.4.
Uniformity for each abstraction relies on the specific Pareto charac-
terization, but typically decreases as agent computation becomes less
costly. 121

xi

5.2 Descriptions of task-delineated abstractions. Uniformity for each
abstraction relies on the specific Pareto characterization, but typically
decreases as agent computation becomes less costly. For completeness,
I included the FCount and FCountLocal abstractions despite my
framework predicting that they have poor performance characteristics.
I did not construct PCluster variants because PCluster and Pos were
qualitatively identical in the experiments in Section 5.4. 134

xii

LIST OF ALGORITHMS

Algorithm

3.1 Reachable state space enumeration via “unrolling” . . . 61
4.1 Compute Organizational Patterns 85
4.2 Action Influence Creation 107

xiii

ABSTRACT

As cooperative multiagent systems (MASs) increase in interconnectivity, complex-

ity, size, and longevity, coordinating the agents’ reasoning and behaviors becomes

increasingly difficult. One approach to address these issues is to use insights from

human organizations to design structures within which the agents can more efficiently

reason and interact. Generally speaking, an organization influences each agent such

that, by following its respective influences, an agent can make globally-useful local

decisions without having to explicitly reason about the complete joint coordination

problem. For example, an organizational influence might constrain and/or inform

which actions an agent performs. If these influences are well-constructed to be cohesive

and correlated across the agents, then each agent is influenced into reasoning about and

performing only the actions that are appropriate for its (organizationally-designated)

portion of the joint coordination problem.

In this dissertation, I develop an agent-driven approach to organizations, wherein

the foundation for representing and reasoning about an organization stems from the

needs of the agents in the MAS. I create an organizational specification language to

express the possible ways in which an organization could influence the agents’ decision

making processes, and leverage details from those decision processes to establish

quantitative, principled metrics for organizational performance based on the expected

impact that an organization will have on the agents’ reasoning and behaviors.

Building upon my agent-driven organizational representations, I identify a strategy

for automating the organizational design process (ODP), wherein my ODP computes

a quantitative description of organizational patterns and then searches through those

possible patterns to identify an (approximately) optimal set of organizational influences

for the MAS. Evaluating my ODP reveals that it can create organizations that both

influence the MAS into effective patterns of joint policies and also streamline the agents’

decision making in a coordinate manner. Finally, I use my agent-driven approach to

identify characteristics of effective abstractions over organizational influences and a

heuristic strategy for converging on a good abstraction.

xiv

CHAPTER 1

Introduction

Multiagent systems (MASs) are a promising approach for addressing many com-

plex real world problems such as: disaster response, health care management, energy

distribution, transportation management, and distributed sensing, among many oth-

ers. However, as such systems become increasingly large, interconnected, resource

constrained, and long lived, coordinating the agents’ individual actions to collectively

achieve desirable global outcomes becomes increasingly difficult. Larger MASs expand

the space of possible joint actions, increasing the number of collective decisions the

agents can consider making. More interconnected MASs limit the effectiveness of

decoupling techniques (Witwicki, 2010; Zhang et al., 2010) that exploit structure in

the ways that agents can interact to make joint decision making more efficient. Tighter

resource constraints magnify the importance of enacting coordinated joint policies.

Long lasting systems further compound these issues by making the agents account for

the long-term effects of their joint actions’ trajectory.

One approach for combating these issues in real-world, human systems (e.g.,

corporations, governments, etc.) is the use of organizations, which, broadly speaking,

attempt to instill long term coordination patterns so as to decompose the system’s

joint decision problem into more manageable components. The hope is that, if these

patterns are chosen well, people can make local decisions that contribute to effective

joint actions without having to explicitly consider the entire joint decision problem. As

a result, a well-designed organization allows humans to efficiently operate even when

scaled to many people collectively working towards a long-term objective with limited

resources. Complementarily and unsurprisingly, a poorly-designed organization can

be disastrous for the system, and result in mis-coordination (e.g., poor utilization of

shared resources or failure to realize collectively achievable objectives) and/or excessive

or insufficient coordination to make collective decisions.

1

In an effort to realize organizational benefits for computational agents, MAS

research has investigated how organizational concepts and strategies can be modeled

and utilized, and shown that organizations can increase the expected performance of

large-scale, cooperative MASs (So & Durfee, 1998; Fox et al., 1998). However, as I

describe more fully in Section 2.2, existing organizational research fails to provide

computational representations and algorithms that can explicitly identify appropriate

organizational patterns from first principles without external expert information. I

argue that such computational techniques for organizational design, which are the

focus of this dissertation, are vital if organizations are to be reliably deployed as a

beneficial technique for multiagent coordination, since a poorly-designed organization

can have adverse consequences and designing an organization by hand can be complex,

time-consuming, and error-prone.

1.1 Problem Statement

While organizations for MASs have been extensively studied, there is no consensus

as to what constitutes a well-defined organizational design problem. However, there

are several common properties in the MAS organizational design research literature

that when taken together constitute an intuitive, informal conception of what an

organization is. I begin here by characterizing these core properties, and outline how

they relate to an intuitive understanding of organizations. Then, I describe how these

properties can be more formally grounded to provide the well-defined organizational

design problem for MASs that I solve in this dissertation.

Property 1.1: Cooperative Multiagent System. Fundamentally, an organi-

zation consists of multiple agents collectively working to achieve a known, shared

objective, and carries a notion of at least some cooperation among the agents. If we

further assume the agents are constructed for the purpose of operating in the organiza-

tion, then the agents are also fully-cooperative.1 That is, there are not self-interested

notions such as personal gain (e.g., preferring actions that result in more individual

glory) or fairness (e.g., preferring actions that require less individual effort). I make

no assumptions about agent heterogeneity, and the agents may or may not have varied

capabilities.

1It is noteworthy that organizations have also been studied in semi-cooperative settings where
agents make decisions based on a balance between organizational and personal objectives (Brooks &
Durfee, 2003; Stone et al., 2010). However, in this dissertation I limit my discussion to fully-cooperative
settings.

2

Property 1.2: Interdependent Agents. Intuitively, a primary objective of any

MAS coordination mechanism, including organizations, is to facilitate good inter-

actions among the agents. This implicitly assumes a problem domain containing

inter-agent dependencies (e.g., synchronized/sequential actions and/or contention for

shared resources) that the agents must collectively resolve. In MAS research, such in-

terdependencies have been characterized as agent coupling (Witwicki & Durfee, 2011),

and several methods have been developed for efficient reasoning in loosely-coupled

MASs (Varakantham et al., 2009; Witwicki, 2010; Velagapudi et al., 2011; Oliehoek

et al., 2013). The relationship between organizational techniques and agent coupling

is complex. For loosely-coupled systems, an organization can more safely facilitate

agent interactions by imposing coordination patterns since agents can already operate

without extensive coordination, intuitively allowing for high performing organizations

in such systems. On the other hand, tightly-coupled systems present more prevalent

and/or significant opportunities for facilitating agent interactions, and thus are in-

tuitively more interesting systems for employing organizational techniques. In this

dissertation, I will not make any strong assumptions about loose versus tight coupling,

but will tend to evaluate my work in relatively tightly-coupled systems since they

present a more challenging domain for organizational design.

Property 1.3: Knowledge Limitations. Agents in an organization are often

assumed to have some degree of individual expertise about the problem domain, but

may lack knowledge of how their individual actions should (best) contribute to the

rest of the system. Complementarily, a centralized perspective of the global problem

domain exists (for the organizational design process) that models how the agents

can interact with each other; however, this perspective may be imprecise and/or

incomplete with respect to the detailed problem specifics contained in the agents’

expertise. A basic motivation for an organizational approach is to provide the agents

with a more globally aware, organizational context within which to exercise their local

expertise.

Property 1.4: Coordination Overhead. Agents are typically assumed to have

some capacity for coordinating their decisions with other agents; however, doing so

incurs overhead and thus must be performed judiciously. For example, agents might

be capable of communicating to share information about the domain, create joint

plans, or commit to agreed-upon responsibilities, however such message exchanges

consume valuable resources (e.g., power, time, or bandwidth) that could be spent on

other actions. An intuitive advantage of an organization is to decrease such overhead

by reducing the amount of explicit coordination that the agents require.

3

Property 1.5: Temporally Extended. Organizations are typically assumed to

be long-lived (i.e., persist for several similar or related problem instances that the

agents face in sequence), and moreover to change slowly (i.e., the same, or nearly

the same, organization is used for each of the instances). This serves to provide

stability and continuity for the MAS (e.g., agents can be replaced without having to

completely redesign how the other agents in the MAS should reason and behave), as

well as to reduce the effective costs for designing an organization since the costs can

be amortized. In this dissertation, I manifest this property as an episodic problem

domain (i.e., the environment is either naturally episodic or can be punctuated to

artificially create episodes), where actions executed in one episode do not impact

choice of actions or their effects in any other episode. While distinct, I assume episodes

are similar enough to each other that sufficient long-term coordination patterns exist

to warrant an organizational approach.

MASs exhibiting Properties 1.1– 1.5 can be encoded in a variety of modeling

paradigms. To ground my discussions in this dissertation, I focus on the decentralized

Markov decision process (Dec-MDP) (Bernstein et al., 2002), which I describe in more

detail in Section 2.1.4. Briefly, the Dec-MDP is a formal mathematical framework for

describing distributed, sequential decision problems in partially observable, stochastic

domains.

Collectively, Properties 1.1– 1.5 provide a high-level motivation for employing an

organization in a MAS. Namely, an organization for a MAS provides information

to each agent about the long-term patterns of organizationally-designated policies it

should typically be responsible for reasoning about and/or executing (i.e., incorporates

non-local considerations into the agents’ local decision problems), which enables agents

to make globally-useful local decisions without having to explicitly consider the entire

joint coordination problem.

This characterization leaves many questions unanswered. For example, how does

an organizational designer decide which responsibilities each agent should have? To

what extent should the organization impose policies on the agents versus leveraging

their individual expertise? To what extent should an organization specify broad

patterns that provide organizational context for agents’ local decision making versus

provide a collection of specific, narrow patterns for ensuring nuanced, coordinated

interactions at critical junctures? These questions, among others to be addressed later,

can be categorized as aspects of the organizational design problem, and fall under the

overarching question of how are (good) organizations created?

Prior organizational design approaches, which I discuss more in Section 2.2, have

4

centered either on employing a human to encode an organization using his/her expert

knowledge to identify an organization for the problem domain, or on allowing implicitly-

organized policies to emerge via experience gained by the agents repeatedly interacting

with the environment and each other. Each of these approaches has limitations, for

example human driven organizational design may be overly complex, error prone,

and/or time consuming. Emergence of implicit organizations may require extensive

interactions, have poor transient performance until the MAS’s policy converges (if ever),

and/or the resulting policy may be difficult for system administrators to comprehend

or justify. In this dissertation, I bridge these alternative approaches, and develop an

agent-driven approach for automated design of explicit organizations.

The main problem that I address in this dissertation is how to represent and design

effective organizations for MASs via an automated computational process. A solution

to this problem is an organizational design process (ODP) that satisfies the following

criteria:

Principled, mathematical foundation. Reliance on external expert information

to design organizations is ultimately unsustainable as MASs become increasingly large,

long-lived, interconnected, distant from human experience, and populated by agents

that are far from human-like, resulting in nuanced agent policies and interaction

patterns that are difficult for humans to predict and organizationally encode. As

such, a user of an ODP should not be expected to provide expert knowledge of

appropriate organizational patterns for a MAS, but rather to provide knowledge about

the MAS’s characteristics that an ODP can analyze as part of creating an organization.

In my dissertation, this means that an ODP should create organizations from the

patterns it can identify from its Dec-MDP model of the domain, and not rely on

(human-provided) domain-specific knowledge external to this model. In circumstances

where a parameterized ODP could produce alternative organizations with different,

non-Pareto dominating performance measures (e.g., imparted metareasoning regime,

organizational abstraction level, etc.), a theoretical understanding of how parameter

choices affect the resulting organization should also be provided to guide usage of the

algorithm.

Flexibility to varied domain characteristics. While an ODP undoubtedly needs

to recognize and exploit domain-specific information contained in the Dec-MDP model

of the MAS, an ODP should not be reliant on the existence of specific, specialized

domain characteristics (e.g., transition or reward independence, particular inter-agent

5

influence topologies like loose-coupling or a directed acyclic influence graph, etc.). If a

MAS is expressible as a Dec-MDP, then an ODP should be capable of designing an

organization for that system.

Yield high-quality organizations. An ODP should create organizations that do

not harm the performance of the MAS in expectation, and should typically improve

the expected performance of the system.

Scalability. As implied by Properties 1.1– 1.5, organizations are assumed to be

scalable in a multitude of dimensions including number of agents, agent coupling,

knowledge availability/accuracy, overhead, and lifetime. Moreover, the benefits of

organizations are believed to become increasingly important as these dimensions

scale up (Corkill & Lander, 1998). As such, an ODP should be able to scale up to

create organizations for MASs with interconnected agents that must interact for long

lifetimes, where coordination incurs substantial overhead, and organizations must be

created from imperfect knowledge of the domain and MAS.

1.2 Illustrating Example

To provide a more concrete example of the problems I am addressing, in this

section I describe a simplified firefighting domain that I use for illustration and

evaluation throughout this dissertation. Consider a grid world containing fires of

various intensities/importances, and fire-fighting agents that move throughout the

grid to extinguish those fires. The objective of the agents is to extinguish the fires as

quickly as possible, and let us assume that only a single agent is necessary to fight a

fire (e.g., an agent represents a fire brigade), implying the optimal joint policy is for

agents to spread out and fight fires in parallel. Additionally, suppose that grid-cell

delays cause movement throughout the grid to be non-deterministic, for example due

to traffic or debris that stochastically impedes an agent’s attempts to move into a

grid cell. Finally, the world is episodic, where the agents begin each episode at a

fixed location (e.g., their respective firehouses), then move throughout the grid and

extinguish a set of fires before returning to their initial locations. In each episode,

the agents are facing the same high-level problem (i.e., fight a set of fires), but the

specifics of each episode may differ, for example fires may be in different locations

with different intensities and the cell delays may be different. Figure 1.1 illustrates

several example problem episodes.

6

(a) (b) (c)

Figure 1.1: Example initial states for three different problem episodes. Darker cell
shading indicates higher cell delays.

If each agent had full awareness of the global state and the other agents’ capabilities,

then the agents could each determine the optimal joint policy (though this could

be prohibitively expensive to compute in some cases), and consequently also know

the respective local actions that they should perform as part of that joint policy.

However, a more practical assumption is that the agents are not inherently fully

aware of the global state or each others’ capabilities, but rather can only obtain

such non-local information if they exchange messages. Intuitively, communicating

the agents’ capabilities for the full range of possible global states and/or maintaining

global state awareness as the state stochastically changes over time could require an

extensive amount of information being exchanged between the agents, which consumes

valuable resources that could otherwise be spent fighting fires.

To see the advantages that an organization can provide for such a MAS, consider the

simple organization in Figure 1.2a that designates partitioned regions of responsibility

for each agent to fight fires within. If each agent focuses on fighting the fires in its

organizationally-designated region, then the agents no longer need to know any non-

local information or to (further) coordinate their local policies with other agents. It is

non-trivial, however, to decide if this region-partitioning organization is appropriate

for the problem domain. For example, notice that this region-partitioning organization

will tend to work well if the fires are uniformly distributed among the partitions, but

since the organization will persist across all episodes,2 could be overly restrictive in

other episodes, for example the episode in Figure 1.1b where by chance the fires are

skewed to one partition.

Stepping back, how did an ODP come up with the region-partitioning organization

2 Alternatively, a MAS could have different organizations for different episodes, alongside rules
for multiplexing these alternative organizations, and indeed this strategy makes sense in many
cases. (I revisit this notion in Section 6.2.1). Conceptually, however, such a multiplexing strategy
is semantically identical to an overarching organization with several sub-components, each with
interaction patterns tailored for sub-classes of environmental conditions. For simplicity and clarity in
my discussions, I will treat multiplexed organizations as a single, overarching organization unless
otherwise noted.

7

(a) (b) (c)

Figure 1.2: Example organizations that designate regions of responsibility for each
agent to focus on fighting fires within.

in the first place? Why not partition the grid differently (e.g., Figure 1.2b), or have

overlapping regions of responsibility to decrease the likelihood of mismatched episodes

(e.g., Figure 1.2c), or time varying regions (confusing to represent on a spatial graphic,

but see Section 5.4 for examples of these kinds of organizations), or fuzzy boundaries

to designate regions of responsibility (again confusing to represent graphically, but see

Section 3.5.3 for an example)? Indeed, each of these alternative examples could be

the best organization for some (subset of) problem episodes.

The objective of the organizational design problem laid out in Section 1.1, and the

focus of this dissertation, is to identify the (approximately) optimal organization for a

given MAS from the first principles about the expected domain (as captured in the

ODP’s Dec-MDP model).

1.3 Solution Approach

Prior approaches to explicitly solving the organizational design problem have

taken a problem-driven stance (see Section 2.2.2 for more details). That is, these

approaches begin by designing an organization (externally to any specific MAS) to

solve a problem, and then populate the organization with agents to embody that

organization. In contrast, my approach is agent-driven, where I begin by assuming

a specific MAS is already in place and then create an organization to optimize and

streamline that MAS. As we will see throughout this dissertation, the fundamental

advantage of my agent-driven approach over a problem-driven one is that decisions

about the organizational design can be grounded in the expected impact that those

decisions will have on the MAS. This mathematical basis provides opportunities for a

deeper, theoretical comprehension of how organizations relate to MASs, establishes a

basis for evaluating the effectiveness of an organization, and anchors computational

algorithms for autonomous organizational design.

My agent-driven approach has far-reaching consequences, and affects issues ranging

8

Figure 1.3: Overview of how my ODP operates and interacts with the MAS.

from the language for specifying an organization to agents in a MAS, to heuristics

for guiding organizational design (e.g., either for a human designer or for setting

parameters of an automated ODP), to how an autonomous ODP can create an

appropriate organization, among others to be discussed later. In this dissertation I

focus on three primary areas as depicted in Figure 1.3 (see Section 6.2 for a discussion

and some preliminary results of how my approach could affect other points of interest

in organizational and MAS research).

Agent Decision Making. Specifying an organization to a MAS such that the

agents can each unambiguously understand what is organizationally expected of them

is a complex problem (see Section 2.2.2 for an overview of prior work in this area).

Moreover, the agents must be capable of integrating the organizational directives

into their native, local reasoning processes. Leveraging my agent-driven approach,

however, solves these issues at a fundamental level. Rather than construct a language

by identifying important and/or useful organizational constructs and then building

up middleware that permits agents to understand and integrate their organization

into their local reasoning (as is typical in prior work), I instead begin by committing

to a particular agent reasoning framework (Dec-MDP agents in this dissertation)

and then derive the organizational constructs that are natively and unambiguously

expressible in that framework. That is, my organizational specification language is

directly derived from the agents’ internal reasoning framework, which allows agents

to naturally understand and integrate the organizational directives into their local

reasoning.

9

Organizational Search. As alluded in Section 1.1, an ODP’s objective is to create

an organization by identifying appropriate patterns of agent actions and interactions

and then encoding those patterns within the target organizational specification lan-

guage. My ODP achieves this by searching through a space of organizational influences,

which are the building blocks that comprise an organizational specification. Broadly

speaking (formal definitions follow in Chapter 3), an organizational influence is a

modification to an agent’s local reasoning process For example in Dec-MDP agents,

an organizational influence could prohibit an agent from considering an action in some

state(s), augment an agent’s reward function to incentivize organizationally-desired

policies, etc. Thus, my ODP’s objective is to identify a set of organizational influences

to specify that will guide the agents into appropriate patterns of agent actions and

interactions.

Leveraging my agent-driven approach, an ODP can measure the impact that a

(set of) influences will have on the MAS, and use these measurements to inform a

search over the organizational influence space. Intuitively, the optimal organization is

then defined as the set of organizational influences with the optimal expected impact

to the MAS; unsurprisingly however, it is computationally intractable to exhaustively

search through the combinations of organizational influences. As such, an important

part of my work in this dissertation is the identification of more efficient techniques

for identifying an approximately optimal set of organizational influences.

Compute Organizational Patterns. My organizational search process just de-

scribed relies extensively on statistical estimates of the impact that organizational

influences are expected to have on the MAS. More broadly, for a computational ODP

to make intelligent decisions about the long-term patterns it should encode as an

organization for a MAS, it must have a sense as to how well each of the agents’ various

policies are expected to perform. In principle, an ODP could acquire this information

from any of several sources, such as from a system administrator (e.g., an expert human

that has general ideas of how the MAS should act) or from the agents themselves

(e.g., if the MAS has been acting in the environment for some time already); however,

leveraging my agent-driven approach for organizational design, in this dissertation I

develop techniques by which an ODP can self-determine a quantitative description of

organizational patterns.

Given that the ODP has a Dec-MDP model of the MAS, computing a quantitative

description of organizational patterns can be done by completely solving the Dec-MDP

for the MAS’s optimal joint policy, which is a computationally intensive task, especially

10

for MASs exhibiting Properties 1.1– 1.5. To mitigate the computational intractability

of directly computing the MAS’s complete, optimal joint policy, I adopt a Monte Carlo

sampling approach to empirically estimate organizational patterns. Specifically, the

ODP samples problem episodes from its Dec-MDP model, and for each computes the

optimal joint policy for that episode’s reachable state space, before finally aggregating

across the samples to form an estimate of optimal organizational patterns. In this way,

the ODP can compute a statistically-stable, quantitative description of organizational

patterns, which the ODP can then use to inform its search of the organizational

influence space.

1.4 Contributions

Fundamentally, the overarching question of my dissertation is how is an organization

created for a MAS? In answering this question, I develop both novel representational

strategies for describing organizations in MASs and solution techniques for deciding

on an appropriate organization for a MAS. In what follows, I highlight the most

significant contributions of my work, describe how each is evaluated, and discuss the

implications of my results to further extensions by researchers and/or adoption by

practitioners.

Agent-driven Organizational Specification Languages. From my agent-driven

approach, a principled organizational specification language can be derived from the

agents’ native reasoning representations and processes. Fundamentally, the advantage

of constructing a specification language this way is that the agents can unambiguously,

directly integrate their organization into their local decision processes. Additionally,

since the agents (presumably) have a finite vocabulary of native representational

constructs (e.g., states, initial states, actions, rewards, transitions, and time horizon

constructs for MDP-based agents), an agent-driven approach allows for formal analysis

of a specification language’s necessity and completeness, and also establishes a well-

defined organizational design space.

I evaluate this methodology by demonstrating its application to Dec-MDP agents

(Chapter 3). Stepping through my methodology, I first use the Dec-MDP decision

framework to enumerate the constructs of my organizational specification language,

and then use the mathematics of the Dec-MDP framework to formally prove the

necessity and completeness of my language. While the semantics associated with

each construct of my specification language are precisely defined by the underlying

11

theory of the Dec-MDP framework, I additionally perform an empirical evaluation for

each language construct to demonstrate the practical applicability of my agent-driven

organizational specification language.

My methodology could be used by other researchers studying organizations to

construct agent-grounded specification languages for other agent reasoning frameworks.

Additionally, by demonstrating my methodology on Dec-MDP agents, I provide a

language for practitioners of Dec-MDPs to incorporate organizations into their systems

as well as a launching point for further study of organizations in Dec-MDPs.

Principled, Quantitative Metrics for Organizational Performance. A sig-

nificant advantage of my agent-driven approach is that it enables quantitative mea-

surements of organizational performance stemming from how the MAS is expected

to actually perform when using the organization. As I describe in Section 2.2.2,

prior, problem-driven approaches to organizational design do not have a systematic

way to measure organizational performance, which makes selecting an appropriate

or optimal organization rather ad hoc. From my agent-driven perspective, however,

organizational performance is directly defined by the MAS’s performance when using

the organization, thus providing a mathematically-sound foundation for reasoning

about alternative organizations. Consequently, I identify that an organization not only

impacts the quality of the MAS’s joint policy, but also the amount of computation

required for the agents to make decisions; that is, an organization can trade off between

the agents’ policy quality and their computational costs, a property often included as

part of metareasoning decisions (see Section 4.3.1 for an overview of prior research

on metareasoning). Leveraging my agent-driven approach, I quantify the effects

of such metareasoning decisions to provide parameterized metrics of organizational

performance (Section 4.3).

I evaluate the advantages of my agent-driven, quantitative performance metrics by

developing an ODP based on them, and evaluating this ODP’s effectiveness over a

space of parameters as previously described in the problem statement (Section 1.1).

My ODP evaluation shows that my organizational performance metrics are predictive

of the actual performance of the MAS using the organization, and that the ODP is

able to leverage these quantitative metrics to design effective organizations for the

MAS.

The performance metrics I identify, and my agent-driven approach for identifying

them more broadly, could be used by other researchers studying organizations to

provide a principled, quantitative foundation for further study of organizational

12

design techniques, thereby allowing for informed, rational decision-making about

organizational designs. Possible directions for future research include further study of

the ODP beyond what I describe in the scope of this dissertation (see Section 6.2), such

as organizational adaptations (e.g., in response to shifting or unexpected environmental

conditions), or hierarchical nesting of organizations.

Heuristics for Guiding Organizational Selection. Creating an organization is

a challenging task, regardless of whether the ODP is performed by a computational

algorithm or an expert human. To both broaden my results’ accessibility to problem-

driven organizational approaches, as well as guide usage of automated ODPs, I

formulate heuristic guidelines for selecting an appropriate organization for a MAS.

Specifically, I identify that an organization should focus on patterns of the agents’

joint interactions rather than how an agent should execute its local components of

those joint actions (Section 4.1), and that task-delineated abstractions are a good

mechanism to include in an ODP’s reasoning about which organizational influences to

specify (Section 5.5).

Leveraging my agent-driven approach, I analyze these heuristics to identify their

theoretical foundations. In addition, I demonstrate the heuristics’ effectiveness em-

pirically over a space of environmental parameters, and find that in expectation

they yield organizations do not harm the MAS’s performance, but that they perform

significantly better under certain environmental parameterizations, e.g., when agents

have meaningful local expertise (Property 1.3).

Beyond informing usage of my ODP algorithm, these heuristics could be used to

inform usage of existing, problem-driven organizational approaches, for example, to

delimit and/or focus a human designer’s attention to the aspects of an organization that

are most important to explicitly reason about. Additionally, MAS practitioners can

use these heuristics to identify effective ways for organizing a MAS as a less-demanding

alternative to a complete, computationally-intensive ODP.

Techniques for Automated Organizational Design. Finally, to provide a more

comprehensive solution for the organizational design problem than heuristics, I develop

representations and algorithms for an automated ODP (Chapters 4 and 5). In doing

so, I develop novel strategies for efficiently estimating an organizational influence’s

incremental impact, and embed these statistical estimates in an incremental search

algorithm of the organizational influence space. I also develop a novel framework for

analyzing how the abstraction level of the organizational influence space affects the

13

ODP’s search algorithm and the resulting performance of an organization created by

my ODP.

I evaluate my ODP using the solution criteria previously set forth in Section 1.1. I

empirically evaluate both the ODP’s effectiveness as well as the performance of the

organizations the ODP creates, and when meaningful, additionally provide theoretical

analysis of my ODP’s characteristics (e.g., computational complexity). Briefly, I find

that my ODP is able to efficiently identify an approximately optimal organization

for a MAS, where such an organization exploits structure in the domain to achieve

performance significantly better than the baseline MAS as well as better than the best

hand-tailored organizations that I create using my organizational selection heuristics.

As is, my ODP can be used to create organizations for MASs represented as Dec-

MDPs, which Dec-MDP practitioners could use to organize their systems. Moreover,

my results here serve as a springboard for further study of organizational reasoning

techniques, providing not only a starting point for further research (e.g., see Section 6.2)

but also a performance benchmark against which to compare alternative organizational

design approaches.

14

CHAPTER 2

Background

The research I present in this dissertation straddles and builds upon ideas from

multiple areas of prior work that have traditionally been pursued by disparate research

communities. It is therefore unsurprising that a comprehensive discussion of all

background work relevant for my research would fill many volumes of books and is well

beyond the scope of my dissertation. In this chapter, I overview the most pertinent

areas of prior work so that the reader can better understand how my contributions

and approach are situated with respect to the existing research literature. When

more detailed understanding is necessary for comprehending my representational and

algorithmic contributions, I delve more deeply into the necessary technical material.

The rest of this chapter is structured into two major components, operational deci-

sion making (Section 2.1) and organizational decision making (Section 2.2). Broadly

speaking, operational decision making focuses on the representations and algorithms

that agents use to reason about their local and/or joint decisions within a single

problem episode. That is, given a specific decision problem, how does an agent plan its

actions and coordinate with other agents so that the MAS can operate (approximately)

optimally for the currently encountered episode. Complementarily, organizational

decision making focuses on the representations and algorithms that the MAS and/or

ODP use to reason about the long-term coordination patterns exhibited across problem

episodes. That is, given a distribution of expected decision problems, how should the

MAS be organized so as to streamline the agents’ operational reasoning and promote

effective interactions across the space of episodes the agents are likely to encounter.

2.1 Operational Decision Making

As mentioned in Section 1.3, I ground my agent-driven approach to organizational

design by first committing to a particular agent reasoning framework. In this disser-

15

tation, I have elected to adopt the Dec-MDP modeling paradigm, which falls under

the broader class of decision-theoretic models. Decision-theoretic models are a widely

studied and commonly adopted paradigm within the research community due to

their principled mathematical foundation, and their inclusion of expressively-powerful

modeling constucts like uncertainty, utility, and sequential reasoning. In this section,

I provide a description of the decision-theoretic modeling techniques and concepts

that are necessary to understand the organizational representations and algorithms

that I develop throughout this dissertation.

I begin with the single agent decision-theoretic model my agents utilize, namely

the Markov decision process (MDP) in Section 2.1.1, and then discuss a related

model that incorporates partial observability, the partially observable Markov decision

process (POMDP) in Section 2.1.2. While the basic MDP and POMDP models

provide the formal basis for my agents’ local reasoning, my methods also make

heavy use of factoring, a concept that extends the basic models by decomposing the

representation of model components into conditionally independent factors, which

provides specification compactness and computational efficiency (Section 2.1.3). I

then turn to the cooperative multiagent case, the decentralized (partially observable)

Markov decision process (Dec-(PO)MDP) in Section 2.1.4, which provides a multiagent

foundation for decision-theoretic models. To mitigate computational intractability,

my algorithms incorporate hierarchical abstractions into the decision-theoretic models

(Section 2.1.5), which allows agents to reason about tasks to accomplish instead of

primitive actions to perform.

Formal definitions will be provided in the sections that follow, but generally

speaking, the idea behind decision-theoretic models is that there exists a problem

environment that is currently in some state. The agent obtains information about the

current state by making an observation, and must make a decision about which action

it should execute. The agent decides which action to execute based upon a function

that associates a reward with each state, where the agent’s objective is to maximize its

expected total reward.1 After the agent executes an action, the environment transitions

to a (potentially) new state according to its (stochastic) dynamics and the agent’s

action. This process (i.e., the agent making an observation, then executing an action,

and then the environment transitioning) repeats for a predetermined, finite number of

iterations.

1 In this dissertation, I only consider finite horizon models, and thus the expected total reward is
the agent’s optimization objective. More generally speaking, decision-theoretic models can be infinite
horizon, in which case there would be a discount factor instead of a time horizon, and the agent’s
objective would be to optimize the expected discounted reward.

16

2.1.1 Markov Decision Process

The Markov decision process (MDP) (Bellman, 1957) is a mathematical framework

for sequential decision making for a single agent that incorporates rewards as well as

transition uncertainty. More formally, a MDP is defined as follows.

Definition 2.1. A finite horizon MDP is given by the tupleM = 〈S, α,A, P,R, T 〉,
where:

� S is the finite set of possible states in the environment. For notational clarity, I

will sometimes use superscripts to denote the decision point at which a state is

encountered, for example, st is state s at the t-th decision point.

� α : S 7→ [0, 1] is the initial state distribution, where α(s0) specifies the probability

that the environment will initially begin in state s0 ∈ S.

� A is the finite set of possible actions. Each state may have a different (sub)set

of available actions, and Ast ⊆ A represents the actions available to the agent in

state st ∈ S. I will be notationally explicit in this initial definition, but neglect

this notational nuance in subsequent discussions to reduce notational clutter

(though the set of actions available in a state will still be a function of that state).

� P : S × AS × S 7→ [0, 1] is the transition function, where P (st+1|st, a) denotes

the probability of the environment transitioning to state st+1 ∈ S after the agent

executes action a ∈ Ast in state st ∈ S.

� R : S × AS × S 7→ R is the reward function, where R(st, a, st+1) denotes the

immediate reward the agent associates with executing action a ∈ Ast in state

st ∈ S and the environment transitioning to state st+1 ∈ S.

� T ∈ N is the finite time horizon and specifies the number of decision points,

after which the problem terminates.

An important property for computational tractability in an MDP is the Markov

property, which asserts that the transition dynamics, P (st+1|st, a), and reward,

R(st, a, st+1) are conditionally independent of any other past states, actions, transitions,

or rewards, given the current state.

Consider a single agent version of the firefighting domain from Section 1.2 (I

present a multiagent version in Section 2.1.4), where a firefighting agent and fires to

be fought exist in a grid world with C cells (Figure 2.1). The (factored) environment

state representation captures: the system time, t ∈ N; the location of the agent, ` ∈ C;

17

Figure 2.1: Example state of a 5×5 firefighting grid world. A1 designates the cell
corresponding to the location of the agent, and I = x indicates that there is a fire in
that cell with intensity x. Letters designate a (H)igh, (M)edium, or (L)ow delay in
that cell.

the fire intensity, Ic ∈ N for each cell c; and a delay, δc ∈ [0, 1] for each cell c, which

stochastically prevents movement into that cell with probability δc. Figure 2.1 shows

an example environment state, with the location of the agent, along with the intensity

of fire in the two cells with Ic > 0. For illustration, suppose (H)igh, (M)edium, and

(L)ow delay in Figure 2.1 correspond to δc equal to 0.8, 0.5, and 0.0 respectively. For

simplicity (this will be relaxed in the multiagent case), suppose the agent can precisely

observe exactly which state the environment is in. The agent has six actions: a NOOP

action that makes no change to the environment state except to increment the time

by one (the other five actions also increment the time by one); four possible movement

actions, (N)orth, (S)outh, (E)ast, and (W)est, that each stochastically move the agent

one cell in the specified direction (into cell c dest) with probability 1 − δc dest, and

equates to a NOOP with probability δc dest (or if there is no cell in that direction);

and a fight-fire (FF) action that decrements by one the intensity of the agent’s current

cell (to a minimum of zero) and otherwise behaves like a NOOP. The agent executes

actions for a predetermined number of steps, T . Suppose the reward associated with

a state is −∑c Ic.

The agent’s objective in a MDP is to maximize its expected total reward, which is

recursively defined by the Bellman equation.

Q∗(st, a) ≡
∑

st+1∈S
P (st+1|st, a)

[
R(st, a, st+1) + max

a′∈A
Q∗(st+1, a′)

]
(2.1)

Q∗(st, a) designates the expected total reward of executing action a ∈ A in state

st ∈ S and then behaving optimally (i.e., executing actions that maximize expected

18

total reward) from that point onward (i.e., the next T − t− 1 decision points).

An agent’s plan for how it will act in each state is described as a policy, π :

S × A 7→ [0, 1], where π(st, a) specifies the probability that the agent will execute

action a ∈ A in state st ∈ S. Reformulating Equation 2.1 in terms of π yields Qπ(st, a),

the expected total reward of executing action a ∈ A in state st ∈ S and then following

policy π from that point onward:

Qπ(st, a) ≡
∑

st+1∈S
P (st+1|st, a)

[
R(st, a, st+1) +

∑

a′∈A
π(st+1, a′)Qπ(st+1, a′)

]
(2.2)

With this formulation, the agent’s objective is restated as finding an optimal policy

π∗ in its policy space Π that maximizes the expected total reward.

π∗ ≡ arg max
π∈Π

∑

s0∈S
α(s0)

∑

a∈A
π(s0, a)Qπ(s0, a) (2.3)

The optimal policy is also referred to as the solution to the MDP, and similarly, solving

a MDP refers to the process of computing π∗.

Several alternative algorithms exist for solving MDPs, the best of which have

P-complete computational complexity in the number of states, actions, and representa-

tional size (Papadimitriou & Tsitsiklis, 1987). Throughout this proposal, I will refer to

the computational cost of solving for π as C(π). Notable algorithms for solving a MDP

include value and policy iteration (Russell & Norvig, 2009) which iteratively apply the

Bellman equation to gradually converge on π∗, as well as linear programming, which I

utilize throughout this dissertation. In particular, I utilize a variation of the linear

program as formulated by Kallenberg (1983), which frames the policy creation process

as a linear optimization problem:

max
x

∑
s∈S

∑
a∈A

x(s, a)
∑
s′∈S

P (s′|s, a)R(s, a, s′)
∣∣∣∣∣∣

∀s′ ∈ S, ∑
a′∈A

x(s′, a′)− ∑
s∈S

∑
a∈A

x(s, a)P (s′|s, a) = α(s′)

∀s ∈ S,∀a ∈ A, x(s, a) ≥ 0

(2.4)

where the vector of variables x is referred to as the occupation measures, and x(s, a)

denotes the total expected number of times that action a ∈ A is performed in state

s ∈ S. Further, if the state space is non-recurrent, that is, upon transitioning from

any state s ∈ S it is impossible to ever transition back to that state (e.g., in the

firefighting domain, system time is included within the state representation, and since

19

time increments with every action, the state space is non-recurrent), then x(s, a) is

equal to the probability of reaching state s ∈ S and executing action a ∈ A. Upon

solving this linear program, the optimal policy can be directly computed from the

optimal occupancy measures, x∗:

π∗(s, a) =
x∗(s, a)∑

a′∈A
x∗(s, a′)

(2.5)

Note that occupancy measures are effectively an alternative representation for a

policy, and one can easily convert between policies and occupancy measures using

Equation 2.5.

2.1.2 Partially Observable Markov Decision Process

In the MDP framework, it is assumed that the environment is fully observable to

the agent, that is, the agent makes an observation that informs it of exactly which

state the environment is in. However, in many domains, the environment is only

partially observable to the agent, that is, the agent makes an observation that might

only partially inform it of which state the environment is in. Thus the agent might

have uncertainty about the actual environment state, and the agent must reason

about its beliefs of the environment’s actual state. This type of uncertainty is formally

represented within the partially observable Markov decision process (POMDP), which

is defined as follows.

Definition 2.2. A finite horizon POMDP is defined by the tuple M = 〈S, α,A,
P,R,Ω, O, T 〉, where:

� S is the state space, α is the initial state distribution, A is the action space, P

is the transition function, R is the reward function, and T is the time horizon,

exactly as they were defined in the fully observable MDP (Definition 2.1).

� Ω is the finite set of observations the agent could receive. As with actions, each

state may have a subset of possible observations the agent could receive, Ωs ⊆ Ω.

I will be notationally explicit in this initial definition, but neglect it in subsequent

discussions to reduce notational clutter.

� O : S × AS × S × ΩS 7→ [0, 1] is the observation function, where O(o|st, a, st+1)

specifies the probability that the agent makes observation o ∈ Ωst+1 after executing

action a ∈ Ast in state st ∈ S, and the environment arriving in state st+1 ∈ S.

20

Note that the MDP is a special case of the POMDP where the agent’s observation

uniquely determines which state the environment is in, ∀o ∈ Ω,∃s ∈ S, Pr(s|o) = 1.

Although the state space for a POMDP still possesses the Markov property, the

agent is unable to fully exploit this property since it does not necessarily know the

actual state of the environment. Rather, the agent knows only observations that

inform it of which state(s) the environment could potentially be in, implying the

history vectors of past observations and actions are relevant for determining which

action the agent should execute next. Consequently, a policy for a POMDP is defined

as π : ~Ω × ~A × A 7→ [0, 1], where ~Ω and ~A are the history vector spaces of past

observations and actions respectively, and π(~o,~a, a) specifies the probability the agent

will execute action a ∈ A when its observation and action histories are ~o ∈ ~Ω and

~a ∈ ~A respectively.

The above policy definition is problematic from a computational perspective

because the policy space increases exponentially as the history of observations and

actions grows. To combat this issue, prior research has identified that the agent’s

probability distribution over states is a sufficient statistic to capture its knowledge

of which state(s) the environment might be in (Smallwood & Sondik, 1973). This

distribution over states is referred to as the agent’s belief state, and is comprised of

a vector b containing the probability of each s ∈ S being the environment’s current

state. Let b(s) = Pr(s|~a, ~o) refer to b’s estimate of the probability that state s ∈ S
is the current environment state, and let b be initialized to α to reflect the initial

uncertainty about the environment state. Smallwood & Sondik (1973) also identified

a means for an agent to update its belief state using the following update rule:

bt+1(st+1) =
O(o|st, a, st+1)

∑
st P (st+1|st, a)bt(st)

normalizing factor
(2.6)

It is important to note that constructing belief states this way makes them display

the Markov property, and moreover Equation 2.6 defines a transition function over the

belief state space. This means any POMDP to be reduced to an equivalent, belief-state

MDP, where: the state space is the belief-state space; the initial state distribution is

the singleton b initialized to the POMDP’s α; the transition function is Equation 2.6;

the reward function is the expected reward given the belief distribution; and the action

space and time horizon are identical to the respective POMDP components. The

belief-state MDP can then be analyzed and solved using any of the techniques from

Section 2.1.1.

21

2.1.3 Factored Markov Decision Process

In the formulation of MDPs given in Section 2.1.1, states are represented as atomic

objects, and then the other MDP model components are defined in terms of these

atoms. The basic MDP is thus simple and easy to describe, but has the notable

limitation that, as the size and/or complexity of the model increases, representing

the MDP becomes computationally expensive (or even infeasible). In many domains,

however, the environment consists of several state factors, which together constitute

the state of the environment, as opposed to opaque, atomic states. Moreover, these

factors often exhibit structure such as conditional independence between factors that

provides opportunities to more compactly represent the model. For example, the

firefighting domain previously described was naturally defined in terms of a factored

state representation (e.g., system time, the location of the agent, the intensity of fire

in each cell, etc.). Notice that some of these factors are conditionally independent; for

example, the intensity in a cell is conditionally independent of the cell delays given

the agent’s location.

Factored MDPs (Boutilier et al., 2000; Guestrin et al., 2003) were developed to

explicitly exploit factored structure, and are defined in what follows. While I present

only the definition for a factored MDP, an analogous factored POMDP definition also

exists by additionally factoring the observation set, Ω, and observation function, O.

Definition 2.3. A factored MDP is given by the tuple M = 〈S, α,A, P,R, T 〉 as

in an unfactored MDP (Definition 2.1), but now the components are factored to exploit

the structure of the domain:

� S = F1 × F2 × · · · × FmS where Fj is the finite domain of state factor j and

there are mS factors.

� α = α1×α2×· · ·×αmα where αj : (⊗kFk) 7→ [0, 1] is the jth factor of the initial

state distribution (out of mα factors), and {Fk} is partitioned across the αj’s.

� A is the finite set of possible actions. As before, each state may have a different

(sub)set of available actions, and Ast ⊆ A represents the actions available to the

agent in state st ∈ S. I will be notationally explicit in this initial definition, but

neglect it in subsequent discussions to reduce notational clutter.

� P = P1 × P2 × · · · × PmP where Pj : (⊗kFk)× AS × (⊗k′Fk′) 7→ [0, 1] is the jth

factor of the transition function (out of mP factors), and {Fk′} is partitioned

across the target of the Pj’s. {Fk} need not be partitioned across the source of

22

the Pj’s (i.e., a state factor may contribute to the transition dynamics of several

state factors).

� R =
∑mR

i=1Ri where Rj : (⊗kFk) × AS × (⊗k′Fk′) 7→ R is the jth factor of the

reward function (out of mR factors). Neither {Fk} nor {Fk′} need be partitioned

across their respective elements of the Rj’s (i.e., state factors may contribute to

multiple reward factors).

� T ∈ N is the finite time horizon and specifies the number of decision points,

after which the problem terminates.

Note that every unfactored MDP can be represented as a factored MDP where

each model component has a single factor. Additionally, every factored MDP can

be represented as an unfactored MDP, for example by enumerating all possible

combinations of factors; however, doing so loses information about which factors are

conditionally independent. Thus the factored MDP representation is strictly more

expressive than the unfactored representation since it explicitly captures conditional

independencies among factors.

Factored MDP’s are often depicted graphically as two-stage dynamic Bayesian

networks (2DBNs) (Guestrin et al., 2003), which allow for intuitive visualization of

the dependencies among the factors. Figure 2.2 presents an example 2DBN for the

single agent firefighting domain. The state factors are time (t), the agent’s current

position (`), the intensity of fires in each of the C cells (Ic for cell c), and the delay

conditions in each cell (δc for cell c), thus in this example, mS = 2C + 2. The agent

has six actions (mA = 6), NOOP, N, S, E, W, FF. The fire intensity factors determine

the reward factors (there are C reward factors, mR = C), each of which is the negative

intensity of the fire at that location. There are four transition factors (mP = 4),

the first (P1) increments the time every step. The second (P2) decrements a cell’s

intensity if the agent performs the fight fire action in that cell. The third (P3) changes

the agent’s position depending on the agent’s current position, action, and delay

conditions. Finally, the fourth (P4) represents that delay conditions in each cell do

not change. The agent has four initial state distribution factors (mα = 4), which are

analogous to the transition factors.

2.1.4 Decentralized (Partially Observable) Markov Decision Process

The first formal model for cooperative multiagent sequential decision making is

that of Boutilier (1996) who created the multiagent Markov decision process (MMDP).

23

s s′

R = ∑Rj

P4

P3

P2

P1

I ′1

t

I1

IC

δ1

δC δ′C

δ′1

I ′C

t′

R1

RC

` `′

a

Figure 2.2: An example factoring for the single agent firefighting domain represented
as a two-stage dynamic Bayesian network (2DBN).

While the MMDP was groundbreaking in its explicit focus on cooperative multiagent

settings, it makes the often unreasonable assumptions that every agent can fully

observe the entire state of the environment as well the actions executed by every agent.

For these reasons, the MMDP was extended to the decentralized partially observable

Markov decision process (Dec-POMDP) by Bernstein et al. (2002), which they defined

more precisely in what follows. Note that the following definition is presented in an

unfactored form, but factored versions of the Dec-POMDP have been constructed via

factoring analogous to the methods discussed in Section 2.1.3.

Definition 2.4. A finite horizon Dec-POMDP is a tuple M = 〈N , S, α,A, P,
R,Ω, O, T 〉, where:

� N is the finite set of n fully cooperative agents.

� S is the finite set of global states.

� α : S 7→ [0, 1] is the initial state distribution.

� A : A1×A2× · · · ×An is the joint action space, where Ai is the finite action set

for agent i. As with previous models, each state may have a subset of available

24

actions for each agent, Aist ⊆ Ai, and thus each state effectively may have a

subset of available joint actions Ast ⊆ A. I will be notationally explicit in this

initial definition, but neglect it in subsequent discussions to reduce notational

clutter.

� P : S × AS × S 7→ [0, 1] is the joint transition function.

� R : S × AS × S 7→ R is the joint reward function.

� Ω : Ω1 × Ω2 × · · · × Ωn is the joint observation space, where Ωi is the finite

observation set for agent i. As with actions, each state may have a subset of

possible observations for each agent, Ωist
⊆ Ωi, and thus each state effectively

may have a subset of available joint observations Ωst ⊆ Ω. I will be notationally

explicit in this initial definition, but neglect it in subsequent discussions to reduce

notational clutter.

� O : S × AS × S × ΩS 7→ [0, 1] is the joint observation function.

� T ∈ N is the finite time horizon.

Bernstein et al. (2002) also define the related model of the Dec-MDP, which is a

special case of the Dec-POMDP.

Definition 2.5. A finite horizon Dec-MDP is a Dec-POMDP in which the model

is jointly observable. That is, there exists a mapping J : Ω 7→ S such that if

O(o|st, a, st+1) 6= 0, then J(o) = st+1.

They then go on to prove that both the MDP and MMDP are subclasses of the

Dec-MDP, which is in turn a subclass of the Dec-POMDP, and finally prove that both

the Dec-MDP and Dec-POMDP have NEXP-complete complexity for two or more

agents. Due to this high complexity, both the Dec-MDP and Dec-POMDP are widely

considered computationally intractable.

Analogously to MDPs, the agents’ objective in a Dec-POMDP is to maximize

their expected total joint reward, which can be accomplished through the creation

of an optimal joint policy, π∗. Several algorithms have been proposed for solving

Dec-POMDPs and their subclasses using both centralized approaches (Boutilier, 1996;

Guestrin et al., 2001; Hansen et al., 2004; Szer et al., 2005; Bernstein et al., 2009), as well

as through distributed methods (Nair et al., 2003; Becker et al., 2004a; Varakantham

et al., 2009; Witwicki, 2010; Velagapudi et al., 2011). In centralized approaches, the

entire Dec-POMDP model is known by a single computational entity (or equivalently

25

the entire model is known by each of the agents), who searches through the joint policy

space to find the optimal joint policy, and then informs the agents of their constituent

parts within the joint solution. To execute this policy, the agents must communicate

with each other (e.g., exchanging their local observations after each action) to maintain

a joint belief about the environment state. Such approaches are ensured to yield

a globally-optimal, joint policy, but make often unreasonable assumptions about

the centralized availability of the complete model and communication capabilities

required to execute the resulting policy. Distributed approaches seek to mitigate the

weaknesses of centralized ones by exploiting structure within the Dec-POMDP. In

distributed approaches each agent i creates its own local policy πi, and the joint policy

is defined as π = 〈π1, π2, · · · , πn〉. This type of approach may or may not yield a

globally-optimal, joint policy depending on the structural properties of the problem

(see Section 2.1.4.1) and how the agents coordinate their local policies (if at all), but

makes fewer assumptions about the centralized availability of the joint model and

runtime communication capabilities.

Consider now a multiagent version of the firefighting domain. The (factored)

environment state representation captures: the system time, t ∈ N; the location of

each agent, `i ∈ C for each agent i; the fire intensity, Ic ∈ N for each cell c; and a

delay, δc ∈ [0, 1] for each cell c, which stochastically prevents movement into that cell

with probability δc. Figure 2.3 shows an example environment state, with the location

of each of two agents, along with the intensity of fire in the two cells with Ic > 0.

Suppose (H)igh, (M)edium, and (L)ow delay in Figure 2.3 correspond to δ equal to

0.8, 0.5, and 0.0 respectively. For illustration, suppose that each agent can precisely

observe the system time, the fire intensity in each cell, the delay in each cell, and its

position. That is, an agent can not observe the position of the other agent. Each

agent has the same six actions, NOOP, N, S, E, W, and FF, which behave similarly

to the single agent case. Here, however, suppose movement actions are independent

(agents can occupy the same location), but FF actions are not: the intensity of a

cell only decreases by 1 even if multiple agents simultaneously fight it. The agents

simultaneously execute actions for a predetermined number of steps, T . Suppose the

reward function is identical to the single agent case, and the joint reward associated

with a state is −∑c Ic.

2.1.4.1 Special Cases of the Dec-POMDP

While the general form Dec-POMDP is generally considered computationally

intractable, substantial progress has been made by constraining the problem to

26

Figure 2.3: Example state of a 10×5 firefighting grid world. Ai designates the cell
corresponding to the location of agent i, and I = x indicates that there is a fire in
that cell with intensity x. Letters designate a (H)igh, (M)edium, or (L)ow delay in
that cell.

subclasses of the Dec-POMDP which contain certain types of structural properties.

These subclasses are typically based upon factored versions of the Dec-POMDP

formalism (Goldman & Zilberstein, 2004; Becker et al., 2004a,b; Varakantham et al.,

2009; Witwicki, 2010; Velagapudi et al., 2011). Several definitions and properties are

useful for categorizing these subclasses, which I overview now by adapting definitions

taken from the above citations.

Definition 2.6. Given a factored state representation, agent i’s local state is defined

as the (sub)set of global state factors that agent i’s local observations are informative

about (either partially or completely). Si = ⊗kiFki, refers to agent i’s local state.

Definition 2.7. A state factor, Fk is affectable by agent i if ∃ai ∈ Ai such that ai

affects the transition dynamics for Fk. Note that a state factor that is affectable by

agent i need not be in Si, and a state factor in Si also need not be affectable by agent i.

Property 2.1. We say that a Dec-POMDP is locally fully observable if each

agent’s local observations uniquely determine its local state, ∀i∀oi∃si, P r(si|oi) = 1.

Note that in Definitions 2.6 and 2.7, and Property 2.1, global state factors need

not be partitioned across the agents, and it is possible for multiple agents to observe

and/or affect the same state factor(s). Moreover, in interesting problems, it will almost

always be the case that some state factors are observable and/or affectable by multiple

agents, since otherwise the agents cannot interact and the MAS is just n independent,

isolated agents.

Property 2.2. We say that a Dec-POMDP has transition independence (Becker

et al., 2004b) if the transitions over each agent’s local state factors are independent of

27

non-locally modeled state factors and the actions of other agents, ∀i, P (st+1
i |st, a) =

P (st+1
i |sti, ai).

Property 2.3. We say that a Dec-POMDP has observation independence (Becker

et al., 2004a) if the joint observation function is decomposable into local observation

functions. That is, O(o|st, a, st+1) =
∏

iOi(oi|sti, ai, st+1
i), where Oi(oi|sti, ai, st+1

i)

designates agent i’s local observation function.

Property 2.4. We say that a Dec-POMDP has reward independence (Becker

et al., 2004b) if the joint reward function is decomposable into a function of local

reward functions. That is, R(st, a, st+1) = f
(
R1(st1, a1, s

t+1
1), R1(st2, a2, s

t+1
2), · · · ,

Rn(stn, an, s
t+1
n)), where Ri(s

t
i, ai, s

t+1
i) is agent i’s local reward function and f(· · ·) is

monotonic (typically the summation function).

These properties can be combined together (perhaps with variants to reduce

the expressive limitations of the property) to formulate a Dec-POMDP subclass

in terms of local models (Varakantham et al., 2009; Witwicki, 2010; Velagapudi

et al., 2011). That is, rather than define the problem in terms of a joint model as

in Definition 2.4, we can instead define it in terms of a set of local models. The

problem is then modeled by M = 〈N , {Mi}〉, where N is a set of n fully cooperative

agents, and Mi = 〈Si, αi, Ai, Pi, Ri, Ti〉 is the local model for a MDP agent i, or

Mi = 〈Si, αi, Ai, Pi, Ri,Ωi, Oi, Ti〉 is the local model for a POMDP agent i (depending

on the specific structure present in the domain).

While expressing most of these local components is intuitive, expressing the transi-

tion function in terms of local models is more challenging. That is, if a local state factor

is affectable by other agents, then the transition function for that factor is dependent

on the actions of other agents (i.e., the factor contains non-local effects (Witwicki,

2010)). Prior research has identified methodologies to address this issue by calculating

a summary of the expected non-local effects and incorporating them into Pi (Varakan-

tham et al., 2009; Witwicki, 2010; Velagapudi et al., 2011). Given the set of expected

non-local effects on each agent, the agents’ local models are conditionally independent,

which allows the agents to reason in parallel without further coordination, and the

joint policy is the aggregation of the local policies. Several strategies exist to compute

expected non-local effects such as: assume (potentially incorrectly) that there are no

non-local effects; have the agents coordinate to calculate the optimal set of non-local

effects (Witwicki, 2010); or have the agents coordinate to approximate the likely

non-local effects (Varakantham et al., 2009; Velagapudi et al., 2011).

28

For illustration of representing a problem in terms of local models, consider the

multiagent version of the firefighting domain. Each agent i’s local state consists of: t,

`i, Ic for each c, and δc for each c. That is, an agent does not observe the positions of

the other agents, and thus its local state does not include the other agents’ positions.

Each agent has the same six local actions as before: NOOP, N, S, E, W, and FF.

Since movement actions are independent, Pi can precisely represent the transitions for

`i. Similarly, t, and δcs are unaffectable by other agents, and Pi can represent them

precisely as well. Ics, however, are affectable by other agents, and thus Ic transitions

contain non-local effects, which must be summarized (e.g., via one of the previously

described methods) within Pi in addition to agent i’s effects on Ic transitions. As

before, each agent executes actions for a predetermined number of steps, ∀i, Ti = T ,

and since each agent can observe the fire intensity in each cell, let the local reward of

each agent be identical to the previously described joint reward.

2.1.4.2 Approximate Techniques

Another, orthogonal approach for coping with the computational intractability of

general case Dec-POMDPs is to utilize techniques that yield approximately optimal

solutions. Intuitively, such approximation techniques have been shown to reduce

computational costs of solving the Dec-POMDP, but do not ensure that the resulting

policy is globally optimal, and may not make any solution quality guarantees at all. For

example, in the JESP algorithm (Nair et al., 2003) the agents calculate a joint policy

by iteratively revising their local policies to be the optimal best response to the other

agents’ policies on the previous iteration. The agents’ policies are ensured to converge

to a (Nash) equilibrium that must also be a local optimum in the joint policy space,

but may not be a (Pareto-efficient) global optimum. Another approximately optimal

technique is TREMOR (Varakantham et al., 2009) and the subsequent extension

D-TREMOR (Velagapudi et al., 2011). In these methods, agents again compute best

response policies, but use pre-identified coordination locales as a means to shape

each agent’s local model to estimate the non-local effects, resulting in approximate

best responses. In this way, TREMOR and D-TREMOR do not provide any bounds

on the joint policy’s quality, but have been shown to scale better than many other

Dec-POMDP subclass approaches.

One other potential caveat that can arise when the agents plan using approximate

techniques is that their local policies may not encompass every possible situation that

could arise. Namely, if an agent only creates a policy for states in its reachable state

space, it is possible that when the agent is executing its policy, it could encounter a

29

state for which it has not determined the action it should execute. This can occur,

for example, if the expected non-local effects reflected in the agent’s local model are

inaccurate. In such situations, we say the agent has fallen off policy, and requires

additional reasoning to determine an action to execute. This problem is the study

of plan repair research that attempts to reuse (Krogt, 2005; Fox et al., 2006) and/or

warp (Musliner et al., 2007) existing sub-policies as well as incremental planning

techniques (Hansen & Zilberstein, 2001a; Koenig & Likhachev, 2002; Wu & Durfee,

2007). The idea in such approaches is to reuse the agent’s existing policy as a basis

for creating a new policy, that is to “fix” the current policy rather than replan from

scratch. In this way, if the necessary changes to the agent’s policy are relatively small

(i.e., most of the current policy is still valid), the computational costs for the agent to

determine a new policy can be much less than completely replanning.

2.1.5 Hierarchical Abstractions

The just-described decision-theoretic models each assumed that the actions spec-

ified within an agent’s model are primitive actions, that is, each a ∈ A is a single,

atomic action that an agent can execute in exactly one time step. However, in many

approaches (notably in problem-driven organizational approaches like those I describe

in Section 2.2.2), it is common to identify a hierarchical task structure that defines

abstract tasks in terms of primitive actions and/or other sub-tasks. By utilizing a

hierarchical task structure, an agent can reason about its high-level behavior policy

without complicating the process with the typically larger space of low-level primitive

actions. For ease of explanation, I will assume a single agent, non-factored domain

in the descriptions that follow; however, hierarchical abstractions have also been

developed for both factored and multiagent models (Barto & Mahadevan, 2003; Stone

et al., 2005; Ghavamzadeh et al., 2006; Goldman & Zilberstein, 2008; Amato et al.,

2014) using concepts similar to those in Sections 2.1.3 and 2.1.4.

Researchers have identified several methods for incorporating hierarchical decom-

positions into decision-theoretic paradigms (Parr & Russell, 1998; Sutton et al., 1999;

Dietterich, 2000). At the core of these approaches is the formalism of the semi-Markov

decision process (SMDP), which generalizes upon the MDP by allowing the time

between one decision point and the next to be a random variable (Howard, 1971). The

modeling differences between the SMDP and MDP are centered on the addition of τ ,

which is the (positive) time until the next decision point after executing action a ∈ A
in state s ∈ S. The transition and reward functions are then extended to incorporate

τ , and yield the following definition.

30

Definition 2.8. A discrete-time SMDP model is defined as M = 〈S, α,A, P,R,
T 〉, where:

� S is the finite state space, α is the initial state distribution, A is the action

space, and T is the time horizon as in an MDP (Definition 2.1).

� P : S × AS × S 7→ [0, 1] is the transition function, where P (st+τ |st, a) specifies

the probability of the environment transitioning to state st+τ ∈ S after τ ∈ N
time steps when the agent executes action a ∈ Ast in state st ∈ S.

� R : S × AS × S 7→ R is the reward function, where R(st, a, st+τ) specifies the

immediate reward associated with executing action a ∈ Ast in state st ∈ S

yielding state st+τ ∈ S after τ ∈ N time steps.

The Bellman equation is reformulated for SMDPs as follows:

Q∗(st, a) =
∑

τ

∑

st+τ∈S
P (st+τ |st, a)

[
R(st, a, st+τ) + max

a′∈A
Q∗(st+τ , a′)

]
(2.7)

and solved using analogous methods to those in Section 2.1.1.

Using this underlying formalism, Sutton et al. (1999) define options as a means

to hierarchically decompose a task structure and represent the decomposition within

SMDPs.

Definition 2.9. An option is defined as o = 〈S , µ, β, 〉, where:

� S ⊆ S is set of states in which the option may be initiated.

� µ : S ×A 7→ [0, 1] is a policy for executing the option, where µ(s, a) specifies the

probability that the agent will decide to execute action a ∈ A in state s ∈ S.

� β : S 7→ [0, 1] is the termination condition, where β(s) specifies the probability

that the option will terminate upon reaching state s ∈ S.

Throughout this document, I will use the dot operator to refer to an option’s

components. That is, o.S , o.µ, and o.β refer to option o’s initiation set, policy, and

termination condition respectively.

An agent can decide to begin executing an option o from any s ∈ o.S . The agent

then executes actions according to o.µ, the environment transitions to subsequent

states according to the SMDP transition dynamics P , and the agent associates reward

according to R as usual. In each state s ∈ S the agent encounters, o stochastically

31

terminates with probability o.β(s), and after o terminates, the agent can select another

option o′ (assuming s ∈ o′.S). For example, in the firefighting domain, an agent could

have an option, omove(1,2) to move to the cell at coordinates (1, 2), in addition to its

primitive actions of N, S, E, W, NOOP, FF. The above option might have the following

properties: omove(1,2).S contains all states with I(1,2) > 0 (i.e., there is a fire in cell

(1, 2)); omove(1,2).µ specifies the movement actions to move the agent to cell (1, 2); and

omove(1,2).β(s) = 1 if ` = (1, 2) in s, otherwise omove(1,2).β(s) = 0.

As just illustrated, one way to view an option is as a temporally extended macro-

action. In this way, an option encodes a higher-level task, and the option’s policy

determines how that task is decomposed into subtasks. Along this line, Sutton et al.

(1999) defined options to support recursive nesting and to allow one option to be

defined in terms of other options, which are themselves composed of options, and so

on, until only primitive actions remain at the lowest level. An agent’s “action” space

in the SMDP is thus actually its option space, O, in addition to its primitive action

space A ≡ O ∪ Aprimitive.
For an agent to utilize an option, o, while solving the SMDP for its policy, models of

the option’s expected reward, R(st, o, st+τ), and transitions P (st+τ |st, o) are required.

These values are directly calculated using the SMDP’s reward/transition components

and o’s policy and termination condition, using an algorithm similar to Algorithm 3.1

that unrolls the state space for τ iterations using P and o.µ to determine the next

states at each iteration, and calculating the probability of being in each of the reachable

states after exactly τ iterations. The expected reward of o is given by the reward

accrued along the reachable trajectory while following o.µ for τ time steps.

Options have been shown to improve system performance (Sutton et al., 1999;

Barto & Mahadevan, 2003; Stone et al., 2005) assuming that options are correctly

identified and encoded. These studies found that a good heuristic for creating the

option space, O, is to associate an option with a subgoal, such that the option

terminates when the subgoal is achieved, and its policy directs the agent to accomplish

the subgoal. Subgoals can either be identified using expert knowledge and then hand

coded, or alternatively discovered by automated methods (Iba, 1989; Stolle & Precup,

2002; McGovern, 2002). These automated methods identify good subgoals as those

states/actions that the agent typically encounters/executes on successful trajectories

but not on unsuccessful ones.

In this dissertation, I use the options framework (e.g., in Section 4.2.2) as a

mechanism to both expedite computing optimal joint policies, and also to focus an

ODP’s computational efforts on the MAS’s joint interactions rather than agents’

32

primitive actions.

2.2 Organizational Decision Making

Despite a large volume of prior research, the organizational research community

has been largely unsuccessful in creating a precise, consensus definition of what an

organization or its purpose is (Butts & Carley, 2007). As alluded in Chapter 1,

however, recent approaches roughly fall into two main categories:

Problem-driven. In this perspective (discussed more in Section 2.2.2), the starting

point of an organization (and the subsequent MAS) is distribution over expected

decision problems. The purpose of forming an organization, in this context, is to

represent a strategy for decomposing and solving the problem as a MAS, where a

top-down, knowledge-based algorithm first creates an organizational design. This

design is subsequently populated with appropriate agents to enact the organization.

In prior work, it is assumed that an organization exists as an explicit, first-class

object independently of any agents that might enact it, and moreover, though the

organization itself is assumed to change very little over time, the agents enacting the

organization may change comparatively frequently. Traditionally, the problem-driven

research community has emphasized the development of languages for expressing an

organization, and given less attention to the study of how to create the organization.

In these works, an expert human usually serves as the ODP, who uses their knowledge

to identify and represent an appropriate organization for the domain.

Experience-driven. In this perspective (discussed more in Section 2.2.3), the

starting point of a MAS (and subsequent organization) is a group of cooperating

agents. These agents are already working together (or at least trying to), and the

purpose of forming an organization, in this context, is to reason over and codify

expectations about appropriate actions and interaction patterns in order to improve

and streamline cooperation. In prior work, experience-driven approaches have an

emergent, self-organization flavor, and do not explicitly represent the organization

as a first-class object. Rather, the MAS’s organization is only implicitly observable

via the agents’ policies. In contrast to problem-driven approaches, organizations in

experience-driven approaches are fluid, and adapt in response to the environment the

MAS encounters; however, the agents in the MAS are fixed and not easily replaceable

because of their local expertise (Property 1.3) that has been finely-tuned in response to

33

the agent’s experiences. Traditionally, the emphasis of experience-driven approaches

is on the process of creating coordinated polices (that are implicitly organized), and

gives less attention to the end product (i.e., how the organization is represented). The

policy adaptation algorithm serves as the ODP, and adapts agents’ policies over time

in response to problem episodes the MAS encounters.

Unsurprisingly, each of these general approach categories has advantages and

disadvantages. In an effort to achieve the benefits of both approach categories,

several mixed approaches have been proposed (my agent-driven approach is also

a mixedapproach). Like problem-driven approaches, mixed approaches represent

the organization as an explicit, first-class object, but like with experience-driven

approaches, the specific influences that the organization exerts emerge dynamically

in response to the environment. In this way, mixed approaches can leverage the

advantages of each approach. The problem-driven aspect provides explicit context

for the organization to adapt within, which helps to speed up convergence, increase

the likelihood of convergence, and/or steer the adaptations into more globally desired

organizations (as opposed to locally optimal). Meanwhile, the experience-driven

aspect provides a basis for dynamic adaptations, which tailors the organization to the

actual environment the agents encounter. I discuss such mixed approaches more in

Section 2.2.4.

The remainder of this section is structured as follows. I begin in Section 2.2.1 with a

discussion of the early MAS research that developed the foundational ideas of organizing

a MAS. Then I provide more detailed discussions of problem-driven, experience-

driven, and mixed approaches (Sections 2.2.2, 2.2.3, and 2.2.4, respectively) and their

relationships to the organizational design problem I focus on in this dissertation and

my approach towards solving it. Then, in Section 2.2.5, I discuss several operational

reasoning techniques that do not directly consider organizations, but nevertheless

yield valuable insights when viewed from an organizational perspective. Finally, I

briefly discuss the relationship between human organizations and the techniques I

develop for organizations for computational MASs in Section 2.2.6.

2.2.1 Early MAS Research

The relationship between organizations and MASs has been studied since the

1980s; however, early approaches are difficult to categorize into problem-driven or

experience-driven. Rather, early approaches are more easily viewed as precursors

that developed the foundations upon which problem-driven and experience-driven

34

approaches were subsequently investigated (e.g., established the intuitions reflected

in Properties 1.1– 1.5). Unsurprisingly, in some cases, early approaches are even

proto-versions of later research. In this section, I briefly overview some of the most

significant early MAS research as related to organizations, and discuss how it relates

my agent-driven approach.

One of the earliest MAS research lines was done at the University of Mas-

sachusetts (Corkill, 1979; Corkill & Lesser, 1983; Durfee et al., 1987). In this work,

organizational reasoning is viewed as a meta-level of operational reasoning. An im-

portant result of this research is the notion that organizational reasoning should

provide explicit, high-level guidelines that steer the agents into coordinated interaction

patterns. While an agent is planning, it then uses its local expertise to temper its

organizational guidelines. As I will show in Section 4.1, my agent-driven approach re-

inforces this result both in my empirical experiments as well as my theoretical analysis.

Additionally, later problem-driven approaches (and my agent-driven approach) built

upon the emphasis of an explicit organizational representation found in this work.

Fox also viewed organizations as a mechanism for providing high-level guidelines,

but focused on how to balance between uncertainty (e.g., in task distribution, resource

utilization, etc.) and the decentralization of a MAS (Fox, 1981). Fox & Smith (1984)

also looked at methods for decomposing and representing tasks and their associated

resource requirements as part of organizing a MAS.

Another line of MAS research viewed organizational reasoning as part of a con-

tinuum alongside operational reasoning. For example, Durfee & Montgomery (1991)

developed a framework showing how plans, schedules (i.e., a specific, applied plan),

and organizations (i.e., the abstract, long-term MAS objectives) can be unified within

a single reasoning framework. Subsequent research built on this perspective, investigat-

ing how agents can effectively coordinate over this hierarchical behavior space (Durfee,

1993; Castelfranchi, 1995). These techniques can be viewed as proto-influences (see

Section 2.2.5 for a discussion of influences) in that they provide a framework for agents

to efficiently coordinate their interactions at an abstract level.

Ishida et al. (1992) studied how organizations—in particular work-allocation and

load-balancing—can be adapted in response to the environment. Subsequent research

into experience-driven and mixed approaches builds on the intuitions of this research to

develop techniques for adapting organizational structures (see Sections 2.2.3 and 2.2.4

respectively).

Finally, Fox & Gruninger (1998) investigated how to model enterprises, and

discussed ontologies for representing concepts such as activities, resources, goals, etc.

35

Subsequent research into organizational modeling languages (OMLs) (see Section 2.2.2)

builds on the intuitions developed in this proto-OML research.

2.2.2 Problem-driven Approaches

As previously mentioned, problem-driven approaches focus on utilizing expert

knowledge of a problem domain to identify and encode an organizational strategy for

decomposing and solving the distribution of expected decision problems as a MAS.

Commonly, this knowledge is specified via an organizational modeling language (OML),

which provides syntax for expressing organizational knowledge that can later be enacted

as a MAS. The research community has proposed a large number of OMLs including:

Gaia (Wooldridge et al., 2000), SODA (Omicini, 2001), ISLANDER (Esteva et al.,

2001), OperA (Dignum, 2004), Tropos (Bresciani et al., 2004), OMNI (Vázquez-Salceda

et al., 2005), MOISE+ (Hübner et al., 2007), ODML (Horling & Lesser, 2008), and

ORG4MAS (Hübner et al., 2010) among others. While the specifics of these OMLs vary,

there are several features that the community has identified as important for encoding

organizational knowledge. In what follows, I overview the most commonly included

features to provide a greater intuition behind the types and forms of knowledge that

are encoded within a OML, but for more details please consult the papers cited above.

Throughout the following discussion, I make use of a scientific conference domain

that the research community frequently uses to illustrate knowledge-based approaches

(e.g., Vázquez-Salceda et al. (2005)).

Task Structure. Problem-driven approaches typically assume an organization cre-

ates a MAS that performs a complex task involving many interconnected subtasks

that themselves might recursively contain interconnected sub-subtasks, and so on.

For example, the TAEMS framework (Lesser et al., 2004) is a common method for

representing such a hierarchical task structure. Therefore, part of the expert knowledge

encoded in an OML is how the global task is decomposed into its respective subtasks,

and the relationships between those constituent subtasks (i.e., must the agents per-

form all subtasks to complete the parent task or only a subset of them; are there

sequentiality/simultaneity constraints; etc.). For example, in the conference domain

the global task is to hold a successful conference, and the subtasks are to collect a

set of high-quality papers, secure a venue, etc. Each of the above subtasks must be

completed to achieve the global task, although there is no strict ordering requirement

between them. Further, each subtask itself consists of multiple sub-subtasks, for

example the collect-papers subtask might include sub-subtasks to issue a call for

36

papers, gather submissions, review those submissions, make decisions to accept/reject

the submissions, etc. In this case, the sub-subtasks must be performed sequentially,

and each of them must be completed to accomplish the parent collect-papers task.

Environment Model. Related to the task structure is an environment model, which

captures information about the expected environmental parameters such as: available

resources and constraints over resources; expected resource requirements and costs for

completing tasks; expected agent capabilities; expected communication availability,

channels, bandwidth, and latency; etc. In the conference domain, environment

parameters include: a set of deadlines for the tasks; financial limitations for securing

the venue; expectations that agents can freely communicate with high bandwidth and

low latency; etc.

Roles. In each of the above OMLs, a primary mechanism for encoding expert

knowledge is through organizational roles, which are a mechanism for summarizing

the organization’s expectations about the agents’ actions and interactions. More

precisely, an organizational structure can contain multiple roles that are then adopted

by (some of) the available agents (this mapping can be many-to-one, one-to-one, many-

to-many, or one-to-many depending on the system). For example, in the conference

domain, some roles might be author, reviewer, senior-reviewer, attendee,

etc. Specific definitions of roles vary across OMLs, but typically a role is associated

with:

� Constraints about which agents can/should enact the role. These constraints can

be in terms of capabilities the agent must/should have (e.g., an agent enacting

the reviewer role should have expertise in the conference’s field) as well as in

terms of relationships between roles (e.g., an agent enacting the author role

can not also enact the reviewer role for that paper).

� Expected relationships that an adopting agent should have with other roles, along

with associated communication protocols. Continuing the scientific conference

example, the reviewer role is expected to interact with an associated senior-

reviewer role to make a decision about the paper’s acceptance to the conference.

This interaction could be communicated in the form of numerical scores of the

paper’s quality and associated text discussing thoughts on the paper.

Norms. Norms are a formal specification of required, permitted, obliged, and/or

forbidden actions expressed using deontic logic. Within OMLs, a norm can be viewed

37

as a singleton piece of organizational guidance that is independent of any one agent,

but rather associated with some organizational role(s). Additionally, a norm is

often associated with a means of enforcement and penalty for non-conformance to

the specified actions by any agent enacting the associated role. For example, the

reviewer role might have an associated norm requiring each reviewer agent to

review one paper by a pre-determined deadline, and if an agent enacting the reviewer

role fails to meet this norm it will not be allowed to adopt the reviewer role in the

future.

Unsurprisingly, there are a large number of structures that one could use to organize

a MAS (e.g., hierarchy, coalition, etc.). However, as surveyed by Horling & Lesser

(2004), several popular classes of structures account for the majority of organizations

studied in MAS research.

Given an OML specification of an organization, the next step to is to populate it

with agents to enact the various roles, which can be performed using a mechanism such

as contract net (Davis & Smith, 1983; Sandholm, 1993), STEAM (Tambe, 1997), service

oriented computing (Papazoglou, 2003; Bichier & Lin, 2006), or RETSINA (Sycara

et al., 2003), among others. The specifics of these mechanism vary, but broadly they

serve to identify, recruit, and enlist agents with the necessary expertise (as specified

by the norms of a role) to adopt the roles in the organizational specification.

Compared to my agent-driven approach described in Section 1.3, problem-driven

approaches have many similar components (e.g., norms are analogous to organizational

influences, both approaches have an environment model, etc.); indeed my agent-

driven approach intentionally builds on the problem-driven idea that an organizational

representation should exist as an explicit first-class object. Despite these similarities,

however, there are significant differences in how these ideas are manifested between my

approach and problem-driven ones. Most importantly, in problem-driven approaches,

the task structure and environment model features described above constitute the

output of a human ODP’s expert knowledge, and serve to delineate the necessary

task decompositions, agent capabilities, communication channels, etc. required for

the organized MAS to solve the expected distribution of decision problems. In stark

contrast, the task structure and environment model features constitute the input to

my agent-driven, computational ODP techniques, which my ODP analyzes to identify

organizational patterns from first principles.

As a consequence, a fundamental disadvantage of problem-driven approaches is an

absence of solid, theoretical foundations. As illustrated by the large number of OMLs

38

cited above, the research community has incrementally identified additional and/or

alternative organizational modeling techniques that provide more expressive OMLs

and/or more intuitive OMLs for human organizational designers to encode organiza-

tional expertise. However, since the OMLs lack a formal mathematical foundation,

it is impossible to determine if prior OMLs are complete, or if future research will

yield yet more evolutions. Moreover, since the OMLs are intentionally designed to be

independent of any particular agent architecture, the agents in the eventual MAS can

not be assumed to necessarily understand how to map the organizational specification

to their local reasoning processes. As a result, middleware has been developed to

allow agents to understand and integrate the organization’s influences into their local

reasoning (Pynadath & Tambe, 2003; Esteva et al., 2004; Hübner et al., 2005, 2007).

Since my agent-driven approach bases the organization’s representation on the agents’

reasoning framework, agents can natively incorporate their organizational influences

into their local reasoning, and such middleware systems are unnecessary in my research.

Complementarily, the fundamental advantage of problem-driven approaches com-

pared to my agent-driven one is that they do not commit to a particular group of

agents, which makes the methods particularly useful for open systems. In an open

system, the agents enacting an organization are allowed (and moreover assumed)

to join and leave the organization as they please, but the organization structure as

encoded in the OML remains relatively unchanged regardless of which particular

agents are currently enacting it. For example in the conference domain, the organiza-

tional structure responsible for setting up and leading the conference is practically

unchanging from year to year (although could change, for example, to add a new track

to the conference); however, the specific agents enacting the organization typically

change each year, with existing agents adopting different roles over time. In contrast,

my agent-driven approach commits to specific group of agents, which provides a

mathematical basis for organizational reasoning, but also makes it more cumbersome

for agents to come and go as in open systems (see Section 6.2.7 for brief thoughts on

extending my agent-driven approach to open systems).

2.2.3 Experience-driven Approaches

As opposed to the problem-driven approaches described in Section 2.2.2, experience-

driven approaches begin by assuming a fixed set of agents that gradually make local

adaptations to their policies as they interact with the environment and each other.

Over time, these adaptations (hopefully) converge the agents’ joint policy to de facto

organized patterns of joint interactions. However, in stark contrast to the explicit, first-

39

class organizational representations in problem-driven and my agent-driven approach,

experience-driven approaches do not explicitly represent the organization, rather the de

facto organization is only implicitly observable in the MAS’s joint behaviors. As such,

the focus of experience-driven approaches is on the process of determining appropriate

policies, with little consideration given towards representing the final organizational

product.

The research community has proposed several classes of experience-driven methods

that I summarize below; for more details, please consult the respective papers cited

below. In this section, I reuse the firefighting domain previously presented in Section 1.2

to illustrate concepts.

Swarm Intelligence. (Bonabeau et al., 1999; Dorigo et al., 2006; Gauci et al.,

2014). Fundamentally, the idea of swarm intelligence is to utilize a multitude (i.e.,

often hundreds or thousands) of simple agents that each learn and follow primitive

rules for deciding their actions rather than collectively creating policies accounting

for future effects of sequential decision trajectories. These agents then either leave

signals in the environment (e.g., pheromones that fade over episodes) to influence the

other agents’ actions (in subsequent episodes), and/or learn primitive decision rules to

directly translate environmental stimuli into actions. For example, in the firefighting

domain, each agent could leave a pheromone in each cell that it visits that fades over

time, which could signal to the other agents that the cell is already covered (and

thus the other agents should focus their efforts elsewhere). The agents’ cooperation

patterns (and thus organizational influences) are implicitly represented within these

environment-encapsulated signals and/or decision rules, and only observable indirectly

via the agents’ actions.

Multiagent Reinforcement Learning (MARL). (Hu & Wellman, 1998; Bowl-

ing & Veloso, 2002; Stone et al., 2005; Busoniu et al., 2008). In MARL, individual

agents learn local policies via reinforcement both within and across problem episodes,

where these local policies are conditional on the local policies of the other agents.

There are several strategies that the agents could employ to coordinate their local

policies (see Busoniu et al. (2008) for a more detailed survey), such as: explicitly

communicating with each other to select a joint action; implicitly cooperating by

estimating the policies of the other agents (e.g., estimated joint action learning); or

incorporating additional, organization-like constraints such that an agent can make

globally-useful local decisions (see Section 2.2.5 for more details of these techniques).

In the firefighting domain, for example, the agents could over time learn policies where

each agent tends to fight fires in a respective region of the grid.

40

A fundamental advantage of experience-driven approaches is the principled, mathe-

matical foundation that the algorithms use as a basis for adapting the agents’ policies.

That is, adaptations are made when they increase the expected performance of the

MAS, resulting in a (locally optimal) joint policy. My agent-driven approach builds

on this concept by extending these mathematical foundations to explicit organizations,

where an organization is selected if it has (approximately) optimal benefit to the MAS.

Moreover, experience-driven approaches do not require extensive domain knowledge

in order to yield an organization, thus making them particularly useful when there is

high a priori uncertainty about the environment or agent capabilities. In such cases,

the agents themselves can still converge towards an appropriate, implicitly-organized

policy through repeated adaptations, whereas a problem-driven approach might lack

sufficient initial information to create an equally effective organization. Experience-

driven approaches, however, can sometimes require extensive iterations of adaptations

before the agents’ policies converge (if ever) due to the large space of possible joint

actions and/or limited local awareness of each agent. Further, while convergence

has been theoretically proven in some cases (Bowling & Veloso, 2002), the resulting

joint policy is ensured to be only a Nash equilibrium, and thus could be suboptimal

from the global, fully-cooperative perspective. My agent-driven approach lies between

problem-driven and experience-driven approaches in this regard, requiring a model of

the domain from which to derive organizational patterns, but not for an expert to

pre-determine organizational patterns. This is an intentional choice, however, since

model based planning allows an ODP to account for rare, critical problem episodes

without needing to actually experience them.

As mentioned, a drawback of experience-driven approaches is the distinct lack of ex-

plicit organizational representation, though function approximation techniques (Sutton

et al., 2000; Whiteson & Stone, 2006; Busoniu et al., 2010) can provide a higher-level

perspective of the agents’ policies with aspects more akin to an organizational repre-

sentation. This deficit can make understanding or justifying the agents’ final policy

difficult for system administrators, and also challenging for agents to join, leave, or

change roles within the MAS (e.g., as part of an open system).

2.2.4 Mixed Approaches

The research community has proposed several mixed approaches to organiza-

tional reasoning in an attempt to achieve the advantages of both problem-driven and

experience-driven approaches. These approaches explicitly represent the organiza-

tion, which is typically initialized via top-down knowledge (like in problem-driven

41

approaches). Then, as the agents solve problem episodes, they adapt the organization

in response to the environment (like in experience-driven approaches). Thus, in many

senses, mixed approaches can be viewed as employing a problem-driven approach for

designing the components of the organization, and then utilizing a experience-driven

approach to tune and configure the details of how their organization is implemented.

By explicitly representing the organization, the agents have additional context from

which to make adaptations to their policies, which can increase the likelihood of

convergence, increase the quality of the converged upon joint policy, and/or decrease

the number of iterations until convergence (Zhang, 2011). Meanwhile, the adaptive

aspect allows the agents to overcome imperfections in the organization (e.g., brought

about by unanticipated problem episodes), and tailors the organization to the actual

execution environment.

The research community has proposed several classes of mixed approaches, which

I overview below; for more details, please consult the respective papers cited below.

Structural Configuration and Adaptation. (Sims et al., 2003; Gaston & des-

Jardins, 2005; Butts & Carley, 2007; Hoogendoorn, 2007; Horling & Lesser, 2008; Sims

et al., 2008; Kota et al., 2009). The primary idea in these techniques is to configure

and/or adapt the organization (especially the structure between roles) to be suited

for the environment that the MAS experiences. Like problem-driven approaches, the

organization is an explicit, first-class object that exists independently of any agents

that might enact it. The significant difference from problem-driven approaches, is

that after a (human) ODP initially designs the overarching organizational components

(e.g., task structure, roles, etc.), the organization is configured via a computational

optimization algorithm. The configuration algorithm (and conceptually-identical,

subsequent adaptation algorithm) is related to experience-driven concepts, since the

organization is optimized in response to expected and/or experienced problem episodes

that the MAS encounters.

Organizationally Adept Agents (OAAs). (Horling et al., 2001; Corkill et al.,

2011, 2012). The underlying principle of OAAs is that agents should be empowered

to make informed decisions about their organization in response to the environment

they are encountering. The difference between OAAs and the other mixed approaches

lies in the distinction between adaptations and adeptness, where OAAs not only

adapt their organization, but explicitly make adaptations because they are aware of

the broader context and relationship between their organization and environment.

That is, OAAs are made aware of the underlying expectations and assumptions that

the ODP has about their organization, and use this second-order information as a

42

basis for adapting their treatment of the organization. In this way, the OAAs can

adapt to an organization that is aligned with the ODP’s intent (which presumably

is appropriate even if its current configuration was not), which serves as a heuristic

to reduce and/or focus the space of possible adaptations. In the firefighting domain,

for example, the organization could designate regions of responsibility for each agent,

and the underlying expectation for this organization is that the fires are uniformly

distributed in these regions. If the OAAs observe that this expectation is not being met

in the execution environment, they could adapt the regions within the organization,

such that the fires are uniformly distributed among these revised regions.

Coalition and Team Formation. (Brooks & Durfee, 2003; Stone et al., 2010). The

premise of these techniques is for the (often self-interested) agents to dynamically form

cooperative groups, which can be thought of as (typically shorter-term) organizations.

While details vary, the group formation process is usually initiated by the agents,

who identify that cooperating with other agents would be mutually beneficial, for

example, cooperating with the group could provide expertise and/or resources that

would otherwise be unavailable to an individual. Like in experience-driven approaches,

the cooperative groups emerge via repeated interactions with other agents; however, as

in problem-driven approaches, the organizational structure and influences are explicitly

represented. This explicit representation provides context for the agents’ decisions,

which allows them to more efficiently compute effective, coordinated policies. Unlike

problem-driven approaches, however, the organization exists only within the context

of the agents enacting it, and if agents leave the organization, then it ceases to exist

(of course, agents could (re-)form a new group as necessary).

Since my agent-driven approach is also a mixed approach designed to achieve

the benefits of both problem-driven and experience-driven approaches, it shares

several significant attributes with the related works described above. Namely, mixed

approaches represent an organization as an explicit, first-class object, and utilize

computational algorithms to create, configure, and/or adapt the organization to

optimize expected MAS performance.

The distinctions between my agent-driven approach and the techniques described

above lie in where the techniques fall in the spectrum between problem-driven and

experience-driven approaches. Structural configuration/adaptation and OAA tech-

niques are closely related to problem-driven approaches, but additionally incorporate

experience-driven concepts to permit the organization to be fitted to the actual

environment. My agent-driven approach takes the experience-driven ideas a step

43

further, where rather than just configuring/adapting the organization in response

to the environment, I use expectations about the MAS’s agents (e.g., capabilities,

expected joint interactions, etc.) as the foundation for creating the organization. The

coalition/team formation techniques are yet another step closer to experience-driven

approaches; as opposed to a globally-informed ODP creating the organization (as

in my agent-driven approach and problem-driven approaches), self-interested agents

locally decide to form cooperative groups for mutual benefit.

2.2.5 Operational Techniques from an Organizational Perspective

Beyond organizational approaches, there are a number of operational reasoning

techniques that are conceptually related to organizational reasoning, despite tradition-

ally being studied in an operational context. In this section, I discuss the benefits and

limitations of these approaches when viewed from an organizational perspective.

Reward Shaping. (Ng et al., 1999; Wolpert & Tumer, 2001; Agogino & Tumer,

2005; Babes et al., 2008; Zhang, 2011). The central idea of reward shaping is to alter

the agents’ local reward functions so as to bias each agent into globally desirable local

actions, for example via a potential function, φ(s), such that

Ri shaped(s
t
i, ai, s

t+1
i) = Ri(s

t
i, ai, s

t+1
i) + φ(st+1

i)− φ(sti)

where φ(sti) estimates the expected joint value of being in sti. By doing so, reward

shaping can lead an agent to establish conditions that have no inherent local reward,

but that enable other agents to then perform actions that result in high joint reward.

Traditionally, reward shaping has been applied as part of the agents’ operational

decision making, with specialized reward shaping values (φ) developed for a single

problem episode. I build on these ideas to apply reward shaping for organizational

reasoning in Section 3.5.3, the primary difference being that the shaped reward function

must apply across problem episodes, and thus the method for shaping rewards must

account for the variability of appropriate agent actions across the episode space.

Coordination Locales. (Varakantham et al., 2009; Velagapudi et al., 2011). The

central idea in this approach is that if agents have a relatively small number of

explicitly-specified joint interaction possibilities, then they can plan independently

of each other most of the time, and in the explicitly identified coordination locales,

the agents’ local reward and transition models are shaped to bias the agents into a

good joint interaction. For example, in disaster rescue domains where agents can

detrimentally collide in narrow corridors, two agents can plan independently unless

44

they anticipate both (potentially) being in a single corridor at the same time. In these

states, the agents’ local transitions are shaped to reflect the joint transition (e.g., the

agents would be disabled due to colliding), and their local rewards are shaped so that

the agents avoid that state. Unsurprisingly, prior research has focused on leveraging

coordination locales for operational decision making within a single problem episode,

and indeed, pre-specifying all possible coordination locales for every possible problem

episode could be a daunting task. Stepping back, however, the idea of shaping the ways

in which the agents interact is similar to what an organization is trying to accomplish,

albeit at a single episode scope rather than across episodes. Tractably extending

coordination locale techniques to an organizational perspective implies constructing

more abstract coordination locales that, for example, represent interaction patterns

across episodes.

Influence Abstraction. (Witwicki, 2010; Witwicki et al., 2012; Oliehoek et al.,

2012). The central idea of this line of research is that the non-local effects on an

agent’s local model can be summarized via influences. Broadly speaking, an influence

shapes an agent’s transition model to reflect non-local effects of the other agents,

and given a statistically-sufficient set of influences, the agents’ decision problems

are conditionally independent. Put another way, an influence summarizes a joint

interaction, and the approach provides an abstraction layer upon which the MAS can

directly coordinate the agents’ interactions for a problem episode without conflating

the coordination with details about how the agents’ will execute their respective

portions of the coordinated global policy. My research extensively leverages the ideas

of influence abstraction, but generalizes on them in two primary ways. Firstly, I

adapt the idea of an influence from an operational perspective to an organizational

one, where rather than an influence representing the expected non-local effects in a

single problem episode, it represents the expected non-local effects over a space of

episodes. Secondly, I identify that in an organizational perspective, it can sometimes

be beneficial to summarize the non-local effects on other modeling components besides

transitions (e.g., states, actions, etc.), and as such, the definition of organizational

influence I develop in Section 3.1 encompasses the full set of an agent’s modeling

components.

Constrained Multiagent Reinforcement Learning. (Abdallah & Lesser, 2007;

Zhang, 2011; Lau et al., 2012). As a technique for improving the convergence properties

of multiagent reinforcement learning algorithms, research has identified that additional

constraints can be added to an agent’s local action space (both hard and soft constraints

have been considered), which serve to guide the agents’ action selections into more

45

globally desired policies. These constraints are created via a hierarchical supervisor,

who reasons using an abstracted view of the environment created from the agents’

observations as a summary of the execution environment they have experienced.

The supervisor is repeatedly invoked as the agents experience the environment, and

determines the appropriate action constraints to enforce through a process similar

to reinforcement learning (and in some of the approaches cited above is exactly

reinforcement learning). Though these techniques have been applied for operational

reasoning, from an organizational perspective, such action constraints are analogous

to organizational influences, and the supervisor is analogous to an ODP. A difference

however, is that, even viewed from an organizational reasoning perspective, they

represent a sequence of organizations that is learned rather than a single organization

created upfront via model-based planning. This is significant if the performance of

the transient organizations is relatively poor, the learning period is extensive, and/or

rare episodes occur where performance is critical.

Hierarchical Learning/Planning. (Barto & Mahadevan, 2003; Stone et al., 2005;

Ghavamzadeh et al., 2006; Goldman & Zilberstein, 2008). Recall from Section 2.1.5,

that utilizing a hierarchical task structure, an agent can reason about its high-level

behavior policy without complicating its decision process with the typically larger

space of low-level primitive actions. In decision-theoretic models, hierarchical methods

are typically utilized as part of an agent’s operational reasoning, although hierarchical

methods have been used for knowledge-based models as an aspect of organizational

reasoning as seen in Sections 2.2.2 and 2.2.4. The abstract reasoning of hierarchical

methods is essentially computing the best ways for the agents to interact in a given

problem episode. Aggregating the results of such reasoning across episodes provides

an organizational perspective of the agents’ interactions, which an ODP could use as a

basis for constructing an organizational design. Indeed, the ODP techniques I develop

in Section 4.2.2 build on exactly this notion, and use hierarchical options to construct

statistics of the expected impact to the MAS associated with an organizational

influence.

2.2.6 Human Organizations

Organizational structuring and design for human organizations has received con-

siderable attention from a managerial and operations research perspective (Galbraith,

1973; Wood & Bandura, 1989; Rivkin & Siggelkow, 2003; Bernstein, 2012). While

concepts developed for human organizations can provide useful insights in to how

one might approach organizations for computational agents, it is important to note

46

that human organizations are targeted towards a problem with inherently different

requirements. That is, human organizations must address issues such as motivation,

satisfaction, ego, personality conflicts, etc. that are not present with computational

agents. Thus, many human-organizational techniques (e.g., inserting a manager be-

tween two individuals who dislike each other but must collaborate) are unnecessary

for computational agents.

Similarly, computational agents present several challenges and opportunities for

organizational techniques that are not present with humans. For example, the ways

in which an organization can affect a human might be limited as compared to the

ways in which it can (potentially) affect a computational agent. Human organization

might be limited to providing (dis-)incentives for performing some action or reaching

some state; however, for computational agents, in addition to (dis-)incentives, an

organization might directly affect the ways in which an agent can observe the world,

or the actions an agent can even consider executing. This additional expressive

power creates opportunities for more rigid, fail-safe organizations (i.e., with provable

guarantees on the agents’ policies), but also increases search space size for creating an

appropriate organizational design.

47

CHAPTER 3

Organizational Design Problem

Intuitively, the first step in my investigation of agent-driven organizational design

is to formulate a well-defined organizational design problem. Viewing organizational

design as search, I formulate an organizational design problem via two primary steps.

First, I develop an agent-driven organizational specification language, which serves to

define and delimit the organizational design (i.e., search) space. Second, I develop

quantitative, agent-driven metrics of organizational performance, which serve to define

the objective function over the organizational design space.

Like in the problem-driven and mixed organizational reasoning approaches discussed

in Section 2.2, an important aspect of my agent-driven approach is representing a

MAS’s organization as an explicit, first-class object. The significant departure in my

approach, however, is that I do not adopt an existing organizational specification

language from the research literature or construct a new top-down knowledge-driven

language, as is typical in prior organizational design research (e.g., see Section 2.2.2).

Rather, I follow my agent-driven approach to construct a specification language that is

mathematically grounded in the agents’ reasoning framework. In Section 3.1, I describe

my agent-driven specification language for Dec-MDP-based agents, and show how

the constructs in my language are natively integrated into the agents’ local reasoning

processes. Then, I formally analyze the theoretical properties of my specification

language in Section 3.2.

Leveraging the agent-driven foundation of my specification language, I identify

quantitative metrics of organizational performance in Section 3.3, and use them to

formulate a well-defined organizational design problem. One consequence of my agent-

driven treatment of organizational specification languages is a theoretical understanding

that all MASs have some form of (perhaps implicit) organization, and that the inherent

default, baseline organization of a MAS—as well as the inherent demands on the MAS

(i.e., problem episodes are neither trivial nor insurmountable)—can have substantial

48

impact on the effectiveness of additional organizational design. In Section 3.4, I

provide a more well-defined baseline against which to compare my organizational

design techniques, derived from the premise that a MAS’s default organization should

be faithfully representative of the execution environment but should not contain further

information to distinguish effective coordination patterns beyond what is necessary

for faithful problem representation.

To demonstrate the potential for my organizational techniques to improve MAS

performance as well as to empirically validate the effects that organizational influences

in each of my language constructs has on MAS performance, in Section 3.5, I present

empirical evaluations of organizations that I hand-construct and encode using my

specification language. Finally, I briefly discuss the generality of my approach to other

agent reasoning frameworks in Section 3.6.2 before concluding with a summary of the

chapter’s contributions and results in Section 3.7.

3.1 Specification Language Formalism

To illustrate my agent-driven approach for specifying an organization (I describe

the generality of my approach more in Section 3.6), I commit to a factored Dec-

MDP agent reasoning framework (Definition 2.5) where the agents have a locally-

fully observable local state representation (Property 2.1). Consequently, this means

the problem domain is modeled by M = 〈N , {Mi}〉, where N is a set of n fully

cooperative agents, and Mi = 〈Si, αi, Ai, Pi, Ri, Ti〉 is the local MDP model for agent

i. (MDP semantics are given in Definition 2.1.) The objective of this section is to

leverage the mathematical formalism of this reasoning framework to derive a principled

organizational specification language where each of the constructs has well-defined

effects on the agent(s) local reasoning processes.

3.1.1 Organizational Specification Language

At the center of my specification language is the concept of an organizational

influence, so named because the idea is a generalization of inter-agent transition

influences (Section 2.2.5) from operational to organizational reasoning. Intuitively, an

organizational influence is an atomic piece of information that biases an agent’s local

reasoning process. Formally, I define an organizational influence as follows.1

1 From this point forward, “influence” refers to an organizational influence (Definition 3.1) unless
otherwise specifically noted.

49

Definition 3.1. An organizational influence for agent i, ∆i : (⊗jFj) × Ai ×
(⊗kFk)×R 7→ (⊗jFj)×Ai × (⊗kFk)×R is a modification to Mi at (sti ∈ Si)× (ai ∈
Ai)× (st+1

i ∈ Si).

Note that for expressive generality, Definition 3.1 defines organizational influences

in terms of modifications to a tuple of state factors, action, successor state factors,

and a real number, but as we will see, this expressive power is not always necessary.

An organization is then defined in terms of organizational influences for each agent.

Definition 3.2. An organizational design, Θ ≡ 〈θ1, · · · , θn〉, where θi ≡ {∆i} is

the set of organizational influences for agent i.

Analyzing the components of the agents’ reasoning framework allows enumeration

of the possible ways that an influence could modify Mi. I step through these now,

along with brief, high-level examples of why an organization might want to modifyMi

in each of the modeling constructs. Together, modifications to each of these modeling

components constitutes the specification language I use to express organizational

influences to agents that reason with the Dec-MDP framework I have adopted.

� State factors: (⊗jFj) ⊆ S. For example, this type of modification could inform

agent i that, given its part in the organization, a locally-observable state factor is

unimportant for deciding its local policy, or that a new, previously-unobservable

state factor is critical for deciding its policy (in which case additional ∆is are

also necessary for the agent to correctly model this new factor).

� Action space: ai ∈ Ai. For example, this type of modification could prevent

agent i from considering and executing an organizationally undesirable action,

or that previously-neglected actions are important to consider and/or execute.

Such ∆is are similar to constrained action choices in MARL (Section 2.2.5)

but summarize expectations over the expected distribution of problem episodes

rather than within a single episode.

� Transition function factors: (⊗jPj) ⊆ Pi. For example, this type of modification

could inform agent i of organizationally-determined non-local effects that other

agents are expected to have on its local state space. Such ∆is are similar to

operational transition influences (Section 2.2.5) but summarize expectations

over the expected distribution of problem episodes rather than within a single

episode.

50

� Reward function factors: (⊗jRj) ⊆ Ri. For example, this type of modification

could persuade agent i into executing actions and/or achieving states that might

look poor from a local perspective, but actually contribute positively to collective

performance (or vice versa for dissuading actions/states). Such ∆is are similar

to reward shaping (Section 2.2.5) but summarize expectations over the expected

distribution of problem episodes rather than within a single episode.

� Initial state distribution factors: (⊗jαj) ⊆ αi. For example, this type of modifi-

cation could inform agent i about the initial distribution over new, previously-

unobservable state factors.

� Time horizon: Ti. For example, this type of modification could inform agent i

that, given its part in the organization, the agent can expect its local actions to

conclude sooner, and thus it should plan for fewer decision points (or vice versa

for a longer planning horizon).

3.1.2 Incorporating Organizational Influences into Local Reasoning

Broadly, there are three classes of modifications that can be done to a model

component: adding an entirely new factor, removing an existing factor, or overwriting

an existing factor. When incorporating an organizational specification into its local

model, each agent i overlays θi onto Mi to create its augmented model, M|θi
i , by

modifying its Mi according to each ∆i ∈ θi. That is, each agent adds new factors

to its model, removes existing factors from its model, and overwrites existing factors

in its model as directed by its respective organizational influences. This overlaying

process thus resembles how, for example, coordination locales model domain dynamics

by overriding an agent’s local transition/reward models (Varakantham et al., 2009;

Velagapudi et al., 2011), and social model shaping augments those local models to

coerce coordination (Babes et al., 2008). Each agent then computes its optimal local

policy, π
∗|θi
i , from M|θi

i in exactly the same way as it did before.

To illustrate this overlaying process, consider a simple organization for the fire-

fighting domain that designates a region of responsibility for each agent to consider

fighting fires within. Suppose the organization specifies these responsibility regions

by removing fire intensity factors (Ics) from the agents’ state representation for fires

outside of the agent’s region, adding a new reward factor for being located within

its region, and overwriting the Ic-transition factor to account for Ics in its region

decreasing over time (due to other agents’ efforts). Figure 3.1a illustrates agent i’s

Mi as a two-stage dynamic Bayesian network (2DBN), and Figure 3.1b illustrates the

51

si s′i

ai

Ri =
∑Rij

Pi3

Pi2

Pi1

Pi0
I ′1

t

I1

IC

δ1

δC δ′C

δ′1

I ′C

t′

RiC

Ri1

`i `′i

(a)

si s′i

ai

Ri =
∑Rij

Pi3

Pi2

Pi1

Pi0
I ′1

t

I1

δ1

δC δ′C

δ′1

t′

Iλ

IC

I ′λ

ICRiC

Riλ

Ri1

Riλ+1 `′i`i

(b)

Figure 3.1: (a): An example Mi for the firefighting domain represented as a 2DBN.

(b): An exampleM|θi
i created by organizationally modifying theMi from (a). Shaded

regions indicate factors that were organizationally overwritten or added, while dotted
regions indicate factors that were organizationally removed.

M|θi
i obtained after incorporating the example organization, where agent i is assigned

responsibility for cells 1 through λ.

To prevent several under-defined scenarios that could occur when overlaying θi

onto Mi to create M|θi
i , I make the following restrictions on valid Θ specifications:

� The influences must be internally consistent. That is, a well-formed Θ can not

contain two contradictory ∆is. For example if one ∆i modifies a transition factor

in Mi to make Pi(f
t+1
k |sti, ai) = 0.5 for state factor Fk, then another ∆i cannot

modify that factor to Pi(f
t+1
k |sti, ai) = 0.2.

� A valid Θ must be well-formed with respect to Mi. That is, an influence in

Θ cannot modify something that does not exist in Mi, except by adding new

modeling factors. For example, ∆i cannot remove a state factor that does not

exist in Mi.

52

� A Θ must leave each agent with a well-defined MDP. Specifically, M|θi
i must

contain: a finite time horizon; at least one state factor; at least one action in

every state; at least one reward factor; transition factors that cover M|θi
i ’s state

factors; and initial state distribution factors that cover M|θi
i ’s state factors.

Note that these additional restrictions on valid Θs could potentially be relaxed

if the agent and ODP iteratively communicated with each other to resolve any

such inconsistencies; however, for simplicity, in this dissertation I will require these

restrictions to enforce that Θ is consistent with what the agents can internally model.

3.2 Language Properties

A primary advantage of my agent-driven approach for creating an organizational

specification language is that the mathematical formalism of the agents’ underlying

reasoning framework is inherited by the specification language, which provides the

necessary axioms to theoretically analyze my specification language and formally prove

several important characteristics.

3.2.1 Size of Organizational Design Space

Näıvely examining my definition of organizational influence (Definition 3.1) and

organization (Definition 3.2) reveals that a distinct organization exists for every

legal combination of modifications that could be made to the agents’ local models.

By stepping through each of the model components, one can conclude that there

are an uncountably infinite number of possible modifications than an organization

specification could possibly represent. More precisely, if one assumes a finite number

of modeling factors, the set of possible modifications has cardinality i1. This can be

seen by considering, for example, that modifications to the reward constructs include

a real number (i.e., an influence could modify a reward to be any real value), thus

the set of reward modifications alone has cardinality i1. Taking the cross product

between (a finite number of) factors with cardinality no higher than i1 yields the

final cardinality result of i1.

A more pragmatic perspective for viewing an organizational influence, however, is

that ∆i represents a constraint and/or re-prioritization of agent i’s local policy space

(brought about via a modification to Mi). The difference in perspective allows us to

see that multiple influences could have the same net effect on the agent’s reasoning

and behaviors; for example, a ∆i that modifies Ri(s
t
i, ai, s

t+1
i) = 4.3 may have the

53

same effect on agent i’s reasoning and behaviors as an alternative ∆′i that modifies

Ri(s
t
i, ai, s

t+1
i) = 4.3 + ε, where ε is some small constant. From this perspective, the

size of the pragmatically-distinct organizational design space is given by the number

of different joint policy spaces an organization could induce a MAS to consider, and

equates to the number of total orderings of every subspace of the joint policy space.

Formally, this quantity is given by
∑|π|

i=1
|π|!

(|π|−i)! = O(|π|!), where |π| is the cardinality

of the joint policy space. The above quantity is finite for the Dec-MDP framework I

have adopted; however, unsurprisingly, direct enumeration of the organizational design

space is computationally intractable. Consequently, the automated ODP techniques I

develop in later chapters only search the design space for an approximately optimal

organization.

3.2.2 Language Completeness and Necessity

Intuitively, my organizational specification language is complete since it can modify

any of the agents’ reasoning components. This idea serves as the premise for a more

formal proof.

Theorem 3.1. My organizational specification language (Section 3.1) is complete for

the Dec-MDP reasoning framework I have adopted.

Proof. By Contradiction. Assume my specification language is not complete, then

by definition there must exist an influence to the agents’ decision making processes

that is not expressible with my specification language. However, by construction, my

specification language covers the full range of information expressible to an agent in

the Dec-MDP framework I have adopted. That is, beyond state factors, initial state

distribution factors, actions, transition factors, reward factors, and time horizon, there

does not exist another mechanism that such an agent uses to make decisions. Thus,

there cannot exist an influence to the agents’ decision making processes that is not

expressible with my specification language, which is a contradiction.

Leveraging the mathematical foundations of the Dec-MDP framework I have

adopted, it is also possible to formally prove the necessity of each construct in my

organizational specification language. Broadly speaking, these proofs each construct

an example organizational influence that an ODP might want to express for various

reasons, and then formally prove by exhaustion that a particular construct in the

specification language is the only way to express that influence. In many of these

examples, a critical aspect is that an agent has local expertise that is not known

54

to the ODP (i.e., Property 1.3). I discuss a particularly evident example of when

agents possess local expertise and how this information uncertainty can be compactly

represented in an ODP (i.e., abstract organizational influences) more thoroughly in

Chapter 5. However, in order to present my formal proofs of language necessity as

clearly as possible, I have elected to utilize the associated terminology that I develop

in that chapter for discussing such issues. As such, to avoid unnecessarily confusing

readers with terminology that has yet to be presented, the formal proofs for language

necessity can be found in Appendix A.

It is worth noting that under special, more-restrictive circumstances, some of the

specification language constructs may be unnecessary (though the language will always

be complete). For example, suppose an ODP knows a specific policy π (e.g., the

optimal policy π∗) that it wants the agents to always execute for every episode—e.g., an

assembly line in a factory. In this case, the organizational specification could prevent

the agents from considering any action counter to π by modifying their action spaces,

and all the other specification language constructs are thus unnecessary. However, as

formally proven in Appendix A, all of the language constructs are necessary within

the general space of possible organizational design problems.

3.3 Measuring Organizational Performance

Building on the organizational design space defined by my agent-driven specification

language in Section 3.1, in this section I identify principled, quantitative metrics of

organizational performance to serve as an objective function over that design space.

Together, my specification language and performance metrics constitute a well-defined,

agent-driven organizational design problem (Definition 3.6 below).

Following my agent-driven approach, the performance of an organization reflects

the performance of the MAS while solving problem episodes. For the Dec-MDP model

I have adopted, the metrics of interest are the expected joint reward and expected

computational costs of the MAS, which are quantitatively defined as follows:

Definition 3.3. The operational reward under Θ, ROp(Θ), is given by the expected

joint reward of the agents’ joint policy w.r.t. their organization, π|Θ:

ROp(Θ) ≡
∑

s0∈S
α(s0)

∑

a∈A
π|Θ(s0, a)Qπ|Θ(s0, a)

Definition 3.4. Assuming agents reason in parallel, the operational reasoning

cost under Θ, COp(Θ), is given by the expected operational reasoning cost for an agent

55

to calculate its individual π
∗|θi
i , notated as C(π

∗|θi
i):

COp(Θ) ≡ Ei

[
C(π

∗|θi
i)

]

Throughout this dissertation, I compute C(π
∗|θi
i) as the agents’ actual CPU time

required to compute π
∗|θi
i .

Definition 3.5. The operational performance of Θ, POp(Θ), selects from the

Pareto front of the operational reward and operational reasoning cost:

POp(Θ) ≡ f (ROp(Θ),COp(Θ))

Naturally, the specific form of f is defined by the problem domain; however,

throughout this dissertation, I will assume that f is monotonic in each dimension such

that higher ROp and lower COp is preferable.

Given these performance metrics, it is straightforward to formulate a well-defined

organizational design problem.

Definition 3.6. The optimal organization, Θ∗ is the Θ with maximal operational

performance.

Θ∗ ≡ arg max
Θ

POp(Θ)

As just shown in Section 3.2.1, enumerating the organizational design space is

computationally intractable, and thus an important aspect of my research in future

chapters is the identification of more efficient techniques for (approximately) solving

this organizational design problem. For now, however, Definition 3.6 provides a

well-defined organizational design problem, and consequently also provides a method

for comparing alternative organizations.

3.4 Baseline Organization

As described in Section 3.1.2, an organizational design modifies the agents’ local

models by adding new factors, removing existing factors, and/or overwriting existing

factors. This approach raises an important question: Where does an agent’s (original)

local model come from? Clearly, the opportunities for an organization to impact

a MAS depends on how (dis-)organized the agents are when following their initial

local models. Consequently, one could demonstrate arbitrarily good performance

improvements from an organizational design by initializing the agents that will adopt

the design with arbitrarily bad local models to begin with.

56

Examining the following biconditional relationship M|θi
i =Mi ↔ θi = ∅, we can

see that the combination of initial local models of agents essentially do comprise an

organization. This observation is essentially an embodiment of the experience-driven

aspects of my problem-drivenapproach, where a MAS’s organization is implicitly

observable in the agents’ joint actions. Alternatively, viewed from a problem-driven

perspective, when assembling a MAS, agents might be selected based on the inherent

alignment between their local models and the (organizational) biases of whomever

is assembling the system. The actions agents are capable of, the states they can

represent, their predispositions about what states are rewarding, etc. can all factor

into decisions about which agents are included in the system.

Evaluating my agent-driven approach thus depends on defining a baseline organi-

zation. To develop as even-handed a baseline as possible, I advocate initializing local

decision models by performing an uninformed mapping of the joint Dec-MDP models

into localized versions. In this way, the local models are perforce aligned with the

global model, but they are not crafted to differentiate and/or coordinate the policies

of the agents. Essentially, the philosophy is to endow each agent with a local model

that directly makes the individual agent responsible for solving the global problem, to

the extent its awareness and capabilities allow.

Specifically, my methodology for initializing agents’ local models to provide an

experimental baseline is as follows:2

1. The subset of state features directly observable to the agent defines its local

state representation.

2. The action space of an agent is simply its component of the joint action space.

3. The local reward function is the same as the global reward function, except that

any components involving features outside of the agent’s local state representation

are dropped, since the agent does not have values for those features.

4. The local transition model corresponds to the joint transition entries where the

other agents do not affect the agent.

5. The initial local state distribution maps the global distribution into the local

state space.

6. The local finite time horizon is identical to the global value.

2 Throughout this dissertation, I use the terms “local organization”, “baseline organization”, and
“local baseline” interchangeably to refer to the baseline MAS constructed using my methodology.

57

In the firefighting domain, the baseline organization is the local model as I have

previously described in Section 2.1.4.1.

While this method for creating a baseline model is still dependent on somewhat

arbitrary decisions (e.g., which features are included in an agent’s local state), the idea

is that aspects that influence how an agent formulates a policy (what is rewarding,

what might happen in the world, etc.) are aligned with the “true” global model but

contain as little information as possible about what an agent might expect others to

do in the world. An ODP’s primary objective is to provide such information.

Despite adopting this uninformed-but-aligned baseline, other factors can also

influence the difference that an organizational design can make. A simple example

is that the initial configuration of state can greatly affect whether the baseline

organization is effective. In the firefighting domain, if we suppose that the fires

pop up across the space with uniform probability, then where should the agents

initially be located? If they are uniformly distributed in the environment, then their

local models (where they tend to prefer fighting nearby fires) inherently lead to a

good allocation of fires to agents, and results in a relatively high-performing local

baseline. If they instead all start in the same location, on the other hand, then

the local models inherently lead to agents moving around en masse and yields no

parallelism benefits (but note that if multiple firefighters on the same fire had a super-

additive effect, instead of a sub-additive effect, then initially spreading out could be

disadvantageous, while moving around in a pack might be beneficial). Even randomly

placing firefighters is not conclusive, because distributing fires and agents in the same

uniformly random way introduces its own bias. To mitigate these concerns in my later

empirical evaluations, I present results from the two extreme initial conditions: the

agents beginning uniformly distributed; and the agents beginning clustered in the

center of the grid world, which represents the best and worst case in expectation for

the baseline organization respectively.

Beyond the effects that the baseline organization can have on organizational

performance, the inherent demands on the MAS can also have substantial impact on

improvement from organizational design (Corkill et al., 2015). That is, the nature

of the domain impacts the degree to which an organization matters. For example,

in the firefighting domain, if there were only one fire per problem episode, then an

organization cannot improve joint reward because the agents can achieve the optimal

joint policy without coordination (although an organization could reduce the agents’

computational costs). Similarly, if every grid cell contained a fire, then organization also

does not improve joint reward because severe over-utilization of the agents’ capabilities

58

precludes meaningful joint interactions (though again, an organization could reduce

the agents’ computational costs). In these cases, an organization could be a significant

improvement for some POp Pareto topologies (where low computational costs are

important), but will not improve the quality of the agents’ joint policy. However,

organizations can improve the MAS’s joint reward when the agents’ capabilities are

in the middle, transient portion of domain “difficulty”. We will explicitly observe

these effects more in Chapter 4 (e.g., Figure 4.1 illustrates a manifestation of this

observation in the firefighting domain with two fires per episode).

3.5 Empirical Demonstration

While the semantics and impact of influences to each of the agents’ modeling

components is well-defined by the agents’ reasoning framework, it is nonetheless

illustrative to demonstrate that my specification language can be practically used to

specify an organization for a MAS. In this section, I describe two empirical evaluations

performed using organizations that I hand-constructed and tuned for use in the

firefighting domain. I begin next, by describing the overarching process that I use

for empirically evaluating organizations in a MAS throughout this dissertation. In

Section 3.5.2, I use my specification language to demonstrate how organizations can

be used to improve the performance of a MAS. Then, in Section 3.5.3, I investigate

the effects that encoding organizational influences in each of the model components

has on MAS performance.

3.5.1 Empirical Evaluation Process

In this section, I describe several aspects of my empirical evaluation pertaining

to simulation details. Unless otherwise explicitly noted, the details I describe in this

section hold for all of the empirical evaluations I perform in this dissertation.

Episodic performance. To test the degree to which an organization provides long-

term benefit to a MAS, I run a fixed organization over a space of randomly-generated

problem episodes, where by the luck of the draw, some episodes might be well suited

to one organization over another. I focus on expected performance over episodes

not only to smooth out the randomness of the episodes but moreover to identify

an organization’s effectiveness over the long term, since an organization should be

relatively stable over an extended period (i.e., Property 1.5). To reduce the statistical

variance of my results, each organization that I evaluate encounters exactly the same

59

problem episodes (for a given experiment) in exactly the same order (though since

the organization is fixed, episode order does not impact performance).

Agents’ Operational Reasoning. In each episode, each agent uses its M|θi
i (as

computed via the methods in Section 3.1.2) to locally compute its π
∗|θi
i . To create

its local policy, an agent uses CPLEX (IBM, 2012) to calculate the optimal local

policy for its reachable state space (see below for an overview of reachability) using

the linear program as formulated by Kallenberg (1983) (Equation 2.4). The joint

policy is then simply defined as π|Θ = 〈π∗|θ11 , π
∗|θ2
2 , ..., π

∗|θn
n 〉, which is not ensured to

be optimal with respect to Θ (i.e., π|Θ is distinct from π∗|Θ), since the agents do not

perform any explicit operational coordination. (See the “Communication” paragraph

below for a discussion of runtime coordination in my experiments.)

In the firefighting domain, it is the case that an agent i’s reachable state space

from a given initial state, which I denote as S̃i(S
0
i), for a problem episode, is several

orders of magnitude smaller than the complete state space. A state is reachable,

s̃ti ∈ S̃i(S0
i) ⊆ Si, if and only if there exists a policy, πi (note that this policy need

not be optimal), such that by beginning in some s0
i ∈ S0

i and following πi, s̃
t
i will

be reached with non-zero probability. The reachable state space can be directly

enumerated using Algorithm 3.1, which performs breadth-first search by iteratively

“unrolling” the reachable state space from S0
i forward via the transition function (Wu

& Durfee, 2007).

Reachability is important because, if |S̃i(S0
i)| � |Si| as it is here, then creating a

policy for only the reachable states can result in substantial computational savings

as compared to creating a policy for the entire state space. As such, in my empirical

evaluations the agents only create policies for their respective reachable state spaces

(w.r.t. M|θi
i). However, since an agent i is unaware of the actions of the other agents

at policy creation time, and the effects those actions have on agent i’s local state space

are also unknown, it is common for an agent to “fall off policy” during execution (i.e.,

reach a state that was thought to be unreachable). In these cases, I assume that agent

i extends its current policy to include the reachable state space from the new state

forward, and that this planning is instantaneous with respect to events in the world.

For the purposes of my experiments this assumption favors less informed organizations

(that fall off policy more frequently) more than informed ones. As my empirical results

in the next sections show, the organizations I create in my experiments are more

informed than the local baseline, and thus they typically fall off policy less frequently.

Consequently, the benefits of an organization relative to the local baseline will tend to

60

Algorithm 3.1 Reachable state space enumeration via “unrolling”

Input: The agent i’s MDP model Mi, set of possible starting states S0
i

Output: The set of states reachable from S0
i , S̃i(S

0
i)

1: S̃i(S
0
i)← ∅

2: List l← S0
i

3: while l is not empty do
4: sti ← l.pop
5: if sti /∈ S̃i(S0

i) then
6: S̃i(S

0
i)← S̃i(S

0
i) ∪ sti

7: l.add(∀st+1
i ∈ Si s.t., ∃ai ∈ Ai where P (st+1

i |sti, ai) > 0)
8: end if
9: end while

10: return S̃i(S
0
i)

be, if anything, understated.

Communication. A commonly studied aspect of many MASs is communication; for

example, in Dec-MDPs, agents could exchange messages to share non-local information

or coordinate joint actions. As described in Section 2.2.2, inter-agent communication

has also been studied within the context of organizations, where an organization

might streamline the agents’ communication by influencing when the agents initiate

communication and what information is exchanged. In the firefighting domain, it is

intuitive that runtime communication to coordinate the agents’ local policies (i.e., to

compute π∗|Θ rather than π|Θ) could increase ROp (at the expense of increased COp),

and gainfully augment an organizational approach. For example, an organization

could inform the agents that each agent should send a message to inform the others of

which fire it is currently pursuing, which would ensure the agents do not redundantly

pursue the same fire.

In my empirical experiments, however, I prevent all of the agents’ communication,

instead forcing each agent to make decisions from its local perspective, and moreover

forcing all non-local information to come from the organization. Intuitively, this

pushes the problem domain to an extreme parameterization, and presents a compelling

evaluation space that stresses the ODP to identify an organization that does not rely

on runtime coordination to facilitate the agents’ interactions. Additionally, preventing

communication eliminates a confounding factor in my results since the agents are

unable to use runtime coordination to overcome a poorly designed organization. For

example, in the firefighting domain, agents could achieve optimal coordination with a

relatively simple communication protocol (i.e., exchange information about which fire

61

each agent should pursue), and consequently only poorly designed organizations (i.e.,

that preclude the optimal joint policy) would not achieve the optimal joint reward.

In Dec-MDP frameworks, communication is often modeled as an action, albeit

communicative actions are explicitly, distinctly represented (Pynadath & Tambe, 2002;

Goldman & Zilberstein, 2003). One natural approach for incorporating communication

into my representations and algorithms would be to simply represent the agents’

various communication capabilities as actions in the agents’ action spaces. While

this simplistic approach would not theoretically require any modifications to my

organizational representations and algorithms, it is arguably an oversimplification in

many cases. That is, communicative actions have qualitatively different effects on the

MAS’s decision problem as compared to non-communicative actions. For example,

communicative actions often have delayed-effects, a distinct class of resource constraints

(e.g., bandwidth), etc.—indeed, this is a reason that communicative actions are

distinctly modeled in the prior works cited above. Thus, while it seems intuitive that the

techniques I develop in this dissertation should extend to communication, identifying

the best, practical way to incorporate communication into my representations and

algorithms is an interesting direction for future work.

One particular way that I have identified where influencing the agents’ commu-

nication could be especially significant is if the organization adds a new state factor

to the agents’ state representation. For example, a new state factor could act as

a blackboard (Corkill, 1991) for facilitating cooperation among the agents. In this

example, influences to the agents’ communication protocols could inform the agents

of when and how they should modify the blackboard.

Agent Interactions in the Firefighting Domain. In the firefighting domain, it

is intuitive that the agents could potentially interact in a variety of ways. For example,

simultaneously fighting the same fire could have: a redundant effect where multiple

agents have diminished returns or punitive effects (i.e., sub-linear scaling); an additive

effect where each agent contributes the same regardless of how many other agents

simultaneously fight a fire (i.e., linear scaling); or a bonus effect where multiple agents

as a team are better than a group of individuals (i.e., super-linear scaling). While the

linear scaling case is less interesting since joint interactions are essentially unimportant,

both the sub- and super-linear cases have joint interactions that can force the MAS

to cooperate in order to achieve high performance. Throughout this dissertation,

I somewhat arbitrarily decided between the sub- and super-linear cases, and elect

to experiment with the sub-linear case where multiple agents have the same effect

62

as a single agent when fighting a fire (i.e., simultaneously fighting a fire in a cell is

completely redundant). However, the super-linear case would have been equally valid,

and the important aspect here is that the domain has joint interactions that force the

MAS to cooperate, where failure to effectively cooperate diminishes performance.

Another intuitive way for the agents to interact is in their movement actions, where

simultaneously occupying the same grid cell could be: prevented (e.g., agents bounce

off of each other); punished (e.g., collisions cause damage to each other); positively

rewarded (e.g., allows agents to share supplies or information); ignored (i.e., no effect

for occupying the same cell); etc. In this dissertation, I elected to not associate any

special effects with simultaneously occupying the same grid cell (i.e., the ignored case

above). This choice essentially reduces the number of joint interactions in the domain,

which is arguably a drawback; however, it also delimits the space of joint interactions

to the firefighting actions, which affords me greater control of the evaluation domain.

3.5.2 Specification Language Demonstration

To provide a more concrete example of how my specification language can be used

to encode an organization, I step through specifications for several hand-designed

organizations, and then use them to illustrate how an organization can increase POp
compared to the baseline MAS. I designed the example organizations in this section

for a relatively straightforward two agent version of the firefighting domain, which

allows comparison of POp against not only the local baseline but also the optimal joint

policy, which can be computed for these small problems.

Specifically, for this set of experiments, the domain is a simple 10×5 grid world

with 2 cooperative agents and 2 fires, as illustrated in Figure 3.2. The distribution of

fires’ locations in the initial state is uniformly random (without replacement) over the

entire grid, and the initial fires’ intensities are i.i.d. uniformly random over {1, 2, 3}.
The agents always begin each episode in the same locations (those in Figure 3.2).

Note that in this set of experiments there are no cell delays—movement actions are

deterministic. To speed up the tests without pruning any viable solutions, the finite

time horizon, T , is the maximal time either agent would require to put out both fires

alone (varies per episode). Each agent’s local reward (as well as the joint reward) in a

state prior to reaching T is −∑c Ic. When T is reached, the problem episode ends,

and each agent’s local reward is −10
∑

c Ic, encouraging the agents to put all the fires

out before the deadline.

For each organization that I develop in this section, the underlying structure is that

each agent is assigned a primary area of responsibility (PAR). The first organization,

63

Figure 3.2: Example initial state of a 10×5 firefighting grid world domain. Ai is the
position of agent i, and I = x indicates that there is a fire in that cell with intensity x.

called fullOverlapOrg, assigns both agents to be responsible for all cells in the

entire grid. However, unlike the baseline organization where agents have no model

of each other, fullOverlapOrg influences the agents’ transition factors to account for

the expected non-local effects of the other agent. Specifically, the organizational

specification encodes the heuristic assumption that an agent will always move (within

its PAR) to fight the fire closest to its current location. So, the organizational influences

modify the other agent’s transition function to anticipate that some fires (typically

on the other side of the grid) will have decreasing intensities even without fighting

them itself, helping it refrain from rushing to distant high-intensity fires that will be

addressed by the other agent.

A second organization, called partitionOrg, partitions the grid cells, assigning

responsibility for fires in the western 5×5 subgrid to A1, and the eastern subgrid to

A2. This assignment is encoded by preventing the agents from considering a local

action that would move them out of their respective PARs (i.e., modifying the agents’

action spaces so those actions are no longer available in the appropriate states).

The third organization is called smallOverlapOrg, in which the 4 middle columns

of the grid are in both agents’ PAR. Like in partitionOrg, agents’ action spaces are

modified so that an agent doesn’t consider moving out of its PAR. Additionally, like

fullOverlapOrg, the smallOverlapOrg modifies each agent’s transition factors to reflect

that fire intensity state factors in its PAR (i.e., those in the overlapping PAR space)

have a chance of going out without it fighting them.

I generated 1,500 episodes with random initial states (as described above) and the

agents solved each using the 3 organizational designs (partitionOrg, smallOverlapOrg,

and fullOverlapOrg), as well as the uninformed baseline organization. I also used

CPLEX with the joint problem specification to generate the optimal joint policy for

each episode to compute the optimal attainable ROp, if the agents could afford the

computational costs to generate it.

These experiments are summarized in Table 3.1, and highlight several important

64

ROp COp Replans
Baseline -15.97 86 1.32
ParitionOrg -16.15 12 0.26
SmallOverlapOrg -14.74 27 0.16
FullOverlapOrg -14.70 70 0.14
Joint Policy -14.37 24558 0.00

Table 3.1: Results for experiments in Section 3.5.2 for ROp, COp, and expected number
of times the replanning mechanism was invoked per agent per episode.

points. Firstly, even these simple organizations can improve ROp considerably compared

to the baseline, but overly restrictive organizations (e.g., partitionOrg) can degrade

ROp because the same agent too often must fight both fires. As one would expect,

more restrictive organizations increasingly simplify agents’ local decision problems,

resulting in lower COp. Moreover, note that all of the organizations decrease COp

compared to the baseline, because in the baseline both agents solve larger problems

(plan to put out all the fires by themselves) than when they are informed (e.g., through

the transition function) that they will have help.

Note that the fullOverlapOrg provides greater global awareness to the MAS than

the other organizations, which allows that organization to achieve superior ROp at the

expense of increased COp. Unsurprisingly, Table 3.1 illustrates that ROp is inversely

correlated with COp. To provide a sense of when a system administrator should prefer

each of the organizations, I encoded a Pareto front of POp = ROp − 1
b
COp, which

is shown in Figure 3.3. Figure 3.3 confirms intuitions that when computation is

expensive (low b) paritionOrg is best due to its highly simplified decision process.

Then as computation becomes cheaper (b increases), the more flexible organizations

become superior, and finally when computation is very cheap, computing the optimal

joint policy becomes best. However, note that the local baseline is never optimal.

3.5.3 Isolated Impact of Specification Constructs

To provide an empirical perspective of the impact of specifying an organization

along different influence specification dimensions, I developed another set of hand-

designed organizations for the firefighting domain. Unlike Section 3.5.2 where I

evaluated different organizational structures (i.e., different methods for allocating

PARs), in this set of experiments, I encode a single overarching organizational structure

in a variety of ways using the different specification language constructs individually.

For this set of experiments, the domain has 10 cooperative agents and 10 fires

65

Figure 3.3: POp curves for each organization.

on a 25×10 grid. The rest of the experimental domain parameters for this set of

experiments are identical to those in Section 3.5.2.

The overarching structure for the organizations I develop in this section inherits

from the smallOverlapOrg previously described (Section 3.5.2), which leverages the

notion of organizationally-directed PARs to narrow the local policy space that each

agent respectively considers while still providing the agents with some flexibility to

load balance by encoding overlapping regions of responsibility. Specifically, the 25×10

grid is divided into 10 distinct 5×5 subgrids, one for each agent, to act as the agent’s

PAR (Figure 3.4). In each direction (where cells exist), the subgrid is expanded

by 3 cells to introduce overlap; conceptually, this is an agent’s secondary area of

responsibility (SAR). I encoded five organizations that implement this fundamental

structure in different ways:

� actionOrg modifies an agent’s action space to prevent it from moving out of

its combined PAR and SAR.

� stateOrg modifies an agent’s state factors so that it cannot model the fire

intensity state factors for cells outside of its combined PAR and SAR.

� rewardOrg modifies the agent’s reward factors to penalize the agent with

increasing severity for leaving its PAR (specifically, Manhattan distance from

the PAR squared).

� transitionOrg modifies the agent’s transition factors to model how fires in

its PAR and SAR might go out due to another agent’s actions using the same

heuristics as in the fullOverlapOrg from Section 3.5.2. Additionally, like stateOrg,

66

Figure 3.4: Illustration of PARs for 10 agent organizations.

transitionOrg modifies the agent’s state factors to prevent it from representing

fire intensity state factors for cells outside its combined PAR and SAR, which is

necessary to curb the substantial increase to an agent’s reachable state space

resulting from the richer transition model.

� fullOrg uses all of the dimensional levers just described.

Recalling from Section 3.4, the effectiveness of the local baseline can depend on

the problem domain, especially on the available opportunities to improve coordination

by organizationally differentiating agents’ policies to yield effective interactions. To

provide a general idea of these performance bounds, in these experiments, I consider

two extreme cases of initial locations for the agents (corresponding to the “best” and

“worst” case for the baseline respectively): where they are evenly spread throughout

the grid; and where they are clustered at the center of the grid. Note that these

cases do not represent formal bounds on performance (indeed the formally-provable

bounds are so loose as to be rendered practically meaningless), and it is possible to

construct domains where the local baseline would perform (arbitrarily) better/worse

than found in these cases. The point of presenting results from these two cases is

merely to demonstrate the effects that the problem domain can have on baseline

effectiveness, and to evaluate organizational effectiveness in domains indicative of

good/poor baseline performance.

I generated 100 random episodes using the initial state distribution previously

described, for each of the spread and clustered variations of agents’ initial locations.

For each episode, I evaluated each of the five organizations above, as well as the baseline

organization—computing optimal joint policies to compare against for these problems

was computationally intractable. For each episode, I recorded each organization’s ROp,

67

COp, and number of replanning invocations just as was done in Section 3.5.2.

Tables 3.2 and 3.3 present the results for these experiments, and illustrate many

of the intuitions for how each influence construct impacts an agent’s decision-making

process. As others have discovered, reward influences (aka reward shaping) can be a

powerful tool for increasing ROp; however, they do not generally reduce COp since an

agent must still consider every policy even though some turn out to have less reward.

Influencing the agents’ transition functions can also yield a large increase to ROp;

however, doing so substantially increases COp since the richer transition model increases

the size of the reachable state space. Notice that organizations with modified transition

functions invoke the replanning mechanism much less, indicating that if recovering

from falling off policy incurs non-negligible penalties (i.e., results in decreased ROp or

increased COp), then transition influences could be the implementation strategy of

choice. Note that the Baseline having no replanning invocations on Table 3.3 is because

the agents have exactly identical local policies, thus move around en masse and each

think they are the one responsible for fighting the fires. I also find that influencing

the agents’ action or state spaces can greatly simplify the agents’ decision problems

(and thus reduces COp) and can also increase ROp. Finally, with fullOrg, I identify

that despite attempting to encode the same overarching organizational structure, the

organizational influences in the components are not completely redundant, as it is

largely possible to obtain the additive benefits found in each of the other organizations.

The drop in ROp of fullOrg as compared to transitionOrg is due to the reward influences

urging agents to quickly go to their respective PARs (and stay there) rather than stop

and fight fires along the way and discouraging them from moving into their respective

SARs to fight fires. However, also note that COp is drastically reduced, indicating

that the Pareto tradeoff would be beneficial unless COp is an insignificant contribution

to POp. (Optimal organizations for different points along the Pareto front could be

determined from a figure analogous to Figure 3.3.)

Examining the results between the two different initial agent configurations high-

lights the significant impact that the problem domain can have on an organization’s

relative effectiveness as compared to the baseline MAS. When the agents initially

begin spread throughout the grid, the local baseline performs relatively well (since

agents can generally just focus on fighting the fires nearest to their current location

without coordinating those actions with other agents), and there are fewer, limited

opportunities for an organization to improve the agents’ coordination. However, when

the agents begin clustered in the center of the grid, it is important for an organization

to differentiate the agents’ policies so that they will efficiently disperse throughout the

68

ROp COp Replans
Baseline -107.40 1646 7.89
RewardOrg -91.45 1817 7.49
TransitionOrg -85.14 14606 0.86
ActionOrg -94.14 551 7.70
StateOrg -94.14 1237 2.60
FullOrg -87.51 5476 0.88

Table 3.2: Results for experiments in Section 3.5.3 when agents initially began spread
throughout the grid for ROp, COp, and number of times the replanning mechanism
was invoked per agent per episode.

ROp COp Replans
Baseline -436.7 10912 0.00
RewardOrg -242.0 11051 9.38
TransitionOrg -222.5 10859 0.55
ActionOrg -264.5 621 8.56
StateOrg -254.4 1588 1.50
FullOrg -250.4 2652 1.02

Table 3.3: Results for experiments in Section 3.5.3 when agents initially began clustered
in the center of the grid for ROp, COp, and number of times the replanning mechanism
was invoked per agent per episode.

grid (to avoid redundantly pursuing the same fire), and consequently the organizations

all perform substantially better than the baseline.

The reader may have noted that these experiments did not evaluate the impact

of influencing the initial state distribution or the time horizon. One could envision

organizations that modify Ti to give agents specific roles for planning horizons, where

some agents focus on the near-term and others on the long-term, but this kind of

organizational decomposition is obviously unsuited for the firefighting domain since

the focus is on (relatively) short time horizons. If αi summarizes the exogenously-

determined initial state, then an organization can only map this into the agent’s

modified state space, as was implicitly done for the organizational variations above.

However, as seen in the relative performance between the spread and clustered domains,

if the organization can impose initial states on agents (e.g., spreading them out in

anticipation of expected fire configurations), then this provides an additional lever for

improving collective performance.

69

3.6 Generality of Approach

In order to provide more precise discussions throughout this chapter, I have made

various restrictions on the space of problems that I considered. In this section, I briefly

describe the generality of my approach beyond the specific problems that I previously

described. Note that these discussions are by no means comprehensive, but rather are

intended to shed insight on my approach’s generality.

3.6.1 Generality to Other Problem Domains

Throughout this chapter, and indeed throughout this dissertation, my empirical

evaluations are limited to the firefighting domain, which could be viewed as a weakness

of my evaluations. It is important to recognize, however, that the problem domain

specifics are only significant insofar as they present interesting challenges for orga-

nizational design. In this regard, the firefighting domain is a nuanced testbed for

evaluating my organizational design techniques. By altering the domain parameters

(as I will do throughout this dissertation), the firefighting domain can be controlled to

pose progressively difficult organizational design challenges. Moreover, by consistently

using different parameterizations of the same problem domain, I can systematically

investigate the isolated effects of various organizational techniques, and incrementally

provide the reader with an intuitive understanding of how my techniques are affecting

the MAS.

Of course, generality to other problem domains is nevertheless important. Theo-

retically speaking, my specific techniques rely only on the existence of a well-formed

Dec-MDP model, and nowhere did my representations rely on specific domain informa-

tion. That said, one possible challenge to generalizing my discussions in this chapter

would be in hand identifying appropriate organizational influences for other domains.

In the firefighting domain, I relied heavily on my intuitions and recognition of spatial

patterns to hand design organizations, which could be difficult in other domains. A

possible solution to this concern would be to use automated organizational design

techniques like the ones I develop in Chapters 4 and 5.

3.6.2 Generality to Other Reasoning Frameworks

To delimit the scope of my discussions in this dissertation, I have elected to adopt a

Dec-MDP framework to model the agents’ reasoning processes, which subsequently pro-

vides the theoretical foundations for the specific organizational specification language I

developed (and for the ODP techniques I create in Chapters 4 and 5.). Fundamentally,

70

however, the specific representations and algorithms I develop for this Dec-MDP

framework are an illustration of my broader agent-driven approach, which could be

applied to other agent reasoning frameworks. That is, an agent-driven organizational

specification language can hypothetically be created for any well-defined reasoning

framework by enumerating the framework’s dimensions. To give a better sense of this

generality, in the remainder of this section, I briefly describe what the agent-driven

specification language would consist of for two other popular agent reasoning frame-

works. More rigorous examination (e.g., formal analysis like in Section 3.2, and/or

empirical demonstrations like in Section 3.5) for these other reasoning frameworks is

beyond the scope of this dissertation.

Factored Dec-POMDP. Closely related to the Dec-MDP model I use throughout

this dissertation, the Dec-POMDP model additionally models partial-observability

(whereas the Dec-MDP model I adopted is locally-fully observable). Recalling Defini-

tion 2.4, the Dec-POMDP model is expressed as states, an initial state distribution,

actions, a transition function, a reward function, and a finite horizon just like the Dec-

MDP model I utilized, but additionally includes an observation set and an observation

function. Intuitively, then, the agent-driven organizational specification language

would include influences that can modify any of those dimensions. An organization

might modify an agent’s observation set to reflect that certain observations are no

longer possible due to the non-local effects of the other agents’ actions. Similarly, an

organization might modify factors of an agent’s observation function to reflect the

non-local effects of the other agents’ actions.

Belief-Desire-Intention (BDI). BDI frameworks for agent decision making have

been widely studied by the research community (Rao & Georgeff, 1991; Wooldridge,

2000; Bordini et al., 2007; Dastani, 2008) but, unfortunately, there is no consensus,

formal definition of the components in a BDI-agent’s reasoning framework. Broadly

though, BDI frameworks consist of belief, desire, and intention dimensions, each of

which an organization could modify via organizational influences.

� Beliefs represent the information that the agent believes to be true, and are

analogous to (belief) states in (PO)MDP models. An organization could modify

an agent’s belief space to, for example, inform the agent that given its part in

the organization, certain aspects of the environment are unimportant for it to

model, much like influences to state factors in (PO)MDP based frameworks.

71

� Desires represent the agent’s motivations, often in terms of goals for the agent

to achieve, and are roughly analogous to rewards in (PO)MDP models. An

organization could modify an agent’s desires to, for example, influence the goals

that the agent tries to achieve to be better aligned with the MAS’s collective

needs, much like influences to reward factors in (PO)MDP based frameworks.

� Intentions represent what an agent has chosen to do, often in terms of (hierar-

chical) plans that the agent can execute, and are roughly analogous to a mix

of actions and transitions in (PO)MDP models. An organization could modify

an agent’s intentions to, for example, influence the agent into specific plans

(e.g., that contend for fewer global resources), much like influences to actions in

(PO)MDP based models.

3.6.3 Generality to Hierarchical Organizational Structures

A common attribute of previously developed organizational modeling languages

(e.g., see Section 2.2.2) is the ability to express a hierarchical organizational struc-

ture (Horling & Lesser, 2004). Hierarchical organizational structures can also be

expressed in my agent-driven approach, albeit they do not need to be explicitly

represented like in prior approaches. Whereas prior approaches are intended for

open systems and thus must explicitly represent the organizational structure to allow

agents to be recruited to enact the roles entailed in the structure, in my agent-driven

perspective, an organization is designed for a particular MAS. Consequently, an

agent only needs to be informed of how its local reasoning and behaviors fit into

the organizationally-influenced MAS, and an explicit representation of the structural

hierarchy is unnecessary.

Implicitly representing a de facto hierarchical structure in my agent-driven ap-

proach instead relies on the agents in the MAS possessing the requisite individual

capabilities (e.g., to fuse information from subordinates, accept task-delegations from

superiors, etc.). For example, an agent could be organizationally influenced into acting

as a manager in a hierarchical organization if its local model included managerial

capabilities. In the firefighting domain, managerial actions might include actions

to obtain expected response times for subordinate agents to fight a fire at a target

location, and actions to designate which fires its subordinate agents should pursue

next.

Noteworthy, however, is that in my agent-driven approach, such managerial capa-

bilities must be included in the organizational designer’s model of the environment.

72

That is, some prior research (Horling & Lesser, 2008; Sims et al., 2008) studies how

to optimize the organizational structure under the expectation that agents can be

recruited to enact the full range of possible structures. My agent-driven approach, on

the other hand, instead optimizes over the organizational structures possible within a

given MAS, and will not attempt to consider any organizations that would require

changing the population of agents in that MAS, such as injecting a new agent with

managerial capabilities into the MAS. Of course, one could circumvent this limitation

by encapsulating my agent-driven techniques with an outer loop to search through

alternative, hypothetical MASs, albeit at the expense of greatly increased computa-

tional costs. Keeping the number of hypothetical MASs tractable could require good

heuristics and/or local search techniques, such as greedily adding managers into the

MAS until performance doesn’t improve. However, further exploration of such ideas

are beyond the scope of this dissertation

3.7 Conclusion

There are two primary contributions in this chapter. Firstly, I contribute an

agent-driven approach to defining the organizational design space. The fundamental

advantage of this approach is that the design space inherits the mathematical for-

malism of the agents’ underlying reasoning framework. In Section 3.1, I defined the

concept of an organizational influence as a modification to an agent’s local decision

problem, and formulated the definition of an organization in terms of such influences.

After committing to a specific Dec-MDP based agent reasoning framework, I illus-

trated my agent-driven approach by enumerating the agents’ modeling constructs to

create a principled organizational specification language for this Dec-MDP framework.

Specifically, for the Dec-MDP framework I adopted, the specification language consists

of modifications to the agents’ state factors, initial state distribution factors, action

spaces, transition function factors, reward function factors, and finite time horizon.

Then, in Section 3.2, I demonstrated an advantage of my agent-driven approach by

leveraging the mathematical foundation of the agents’ reasoning framework to formally

analyze the theoretical properties of my organizational specification language.

As is, my specification language contributes to Dec-MDP based reasoning tech-

niques since it provides a mathematically-sound approach for incorporating organi-

zational reasoning techniques (e.g., like those I develop in later chapters) into the

agents’ operational reasoning processes. More broadly, my agent-driven definition of

the organizational design space contributes to the body of organizational reasoning

73

techniques, and provides a well-defined, systematic method for understanding how an

organization can relate to a MAS given the agents’ reasoning framework, whereas prior

research (Section 2.2) only informally understood this relationship. Moreover, my

agent-driven definition of the organizational design space establishes a mathematical

foundation for the study and development of computational representations and algo-

rithms for organizational design, in contrast to prior research that relies on implicit

organizational representations (e.g., Section 2.2.3) or human expertise to identify an

organization (e.g., Section 2.2.2).

The second primary contribution of this chapter is the development of a well-

defined, principled organizational design problem (Section 3.3), which provides a

mathematical basis for discussing the effectiveness of an organization and choosing

from among alternative organizational designs. By examining the formal, agent-driven

characterization of the organizational design space, in Section 3.4 I identified that

all MASs have an inherent local organization which can play a significant role in

determining the effectiveness of additional organizational design. I then defined a

systematic methodology for constructing a baseline MAS that is faithfully aligned

with the environment model, but does not differentiate and/or coordinate the agents’

policies. Finally, in Section 3.5, I illustrated the practical applicability of my agent-

driven approach by empirically demonstrating how hand-encoded organizations can

improve the expected performance of the MAS relative to the local baseline.

My agent-driven definition of the organizational design problem contributes to the

body of organizational reasoning techniques, and provides a formal, mathematical

foundation for selecting between alternative organizations. Moreover, my problem

formulation establishes the basis for computational ODP techniques that create an

organization from first-principles (e.g., like I develop in later chapters), in contrast to

prior research that relies on an expert human to identify appropriate organizational

constructs (e.g., Section 2.2.2) that may subsequently be configured/adapted (e.g.,

Section 2.2.4). Finally, my methodology for constructing a baseline organization

contributes a performance benchmark to the organizational research community that

can be used to evaluate the effectiveness of an ODP technique to identify beneficial

organizational influences.

74

CHAPTER 4

Selecting Organizational Influences

In Section 3.2 (and Appendix A), I formally proved that my organizational spec-

ification language is a general purpose programming language for the Dec-MDP

framework I have adopted (i.e., since it is a necessary and complete language for

modifying agents’ local models), and that the size of the influence space is intractably

large. Moreover, in Section 3.5 I illustrated that the choice of organizational influences

and encoding mechanism can have significant impact on the performance of a MAS

following an organization, even between seemingly similar organizations. For example,

the organizations in Section 3.5.3 are all intended to embody the same overarching

organizational patterns, yet have substantially different ROp and COp performance

characteristics when evaluated in the MAS.

Combining these observations, it is evident that selecting appropriate organizational

influences to specify to a MAS can be challenging. Not only is the space of possible

organizational specifications large and complex, but näıvely innocent choices (e.g.,

encoding an influence as a modification to a reward function factor versus to an

action space) can have significant impact on the MAS’s subsequent ROp and COp

performance when following the organization. This argues for techniques to focus the

organizational reasoning of an ODP (either human or computational) on the most

pertinent aspects of organizing the MAS as well as to aid an ODP in selecting and

specifying appropriate organizational influences.

In this chapter, I leverage my agent-driven approach to identify the mathematical

foundations of selecting appropriate organizational influences for a MAS. I begin in

Section 4.1 by describing a heuristic approach for restricting the space of influences

that an ODP should consider. Specifically, an ODP should focus its design efforts on

influencing the agents’ interdependencies rather than on how the agents complete their

individual aspects of a joint interaction. Empirically evaluating this heuristic shows

75

that it results in organizations that are robust to imperfections in the ODP’s infor-

mation (e.g., when agent’s have local expertise), but still increase MAS performance

relative to the local baseline.

Even with this design principle, however, designing an organization can be com-

plex, time-consuming, and error-prone if done by hand, as teasing out the pertinent

interdependencies can be difficult, which argues for automated ODP techniques. In

Section 4.2, I describe a general-purpose, agent-driven strategy for automated organi-

zational design, and formulate concrete representations and algorithms to implement

this automated ODP approach. Briefly, the underlying insight behind my automated

ODP is to apply my agent-driven approach to model and reason about the agents’ joint

policy abstractly to predict desirable patterns of joint action, and then influencing the

agents into these coordination patterns. My empirical evaluations demonstrate that my

ODP implementation is able to identify organizations that are both intuitively sensible

and also find and exploit domain structure that my hand-generated organizations

overlook.

Finally, my experiments illustrate that a single organizational design typically

cannot dominate the entire POp = f(ROp,COp) Pareto front, which argues that an

ODP should intentionally design an organization to optimize for the anticipated Pareto

parameterization. In Section 4.3, I extend my ODP techniques to explicitly reason

about the metareasoning regime (i.e., balance between ROp and COp) that the designed

organization will impart on the MAS. My evaluation of these extensions shows that

my ODP implementation can efficiently identify an organization with (approximately)

optimal POp given a provided Pareto parameterization.

4.1 Influence Selection Heuristic

In Chapter 3, one may have noticed that a syntactically correct Θ could completely

overwrite an agent i’s entire local model, Mi, and if desired could completely micro-

manage the agent by dictating exactly which action should be executed in each state.

While such micromanagement could be desirable if the ODP has perfect information

about the agents’ capabilities and the problem episodes the MAS will encounter, it is

more common to assume that the agents possess a non-negligible amount of exper-

tise that is not precisely known by the ODP (Property 1.3). Otherwise, the agents

are really just effectors for a centralized (ODP) reasoner. If the agents have local

expertise, then influences that completely micromanage an agent would override that

expertise, and likely lead to an organization with diminished effectiveness. Natural

76

questions, therefore, are whether there is a mathematically-grounded explanation for

these organizational intuitions, and how these intuitions can be formally understood

and codified for aiding an ODP. In this section, I answer these questions by proposing

and testing one such principle to guide decisions about which portions of the agents’

models an organizational design should influence.

As just mentioned, organizations should not dictate or micromanage because

individual agents might (and generally do) possess their own expertise, and leaving

them room to exercise their local expertise benefits the collective organizational

objectives. Assuming that agents are locally skilled, then, what an ODP possesses that

individual agents lack is global awareness of how the agents’ local actions assemble

into coordinated, collective interaction patterns, where if individual agents had such

awareness they could make more informed decisions. Hence, an ODP should use its

more global perspective to influence agents into acting like they would if they were

more globally aware themselves, and otherwise should allow agents to exercise their

local capabilities.

I codify this observation in the following organizational design principle:

Principle 4.1. A well-designed organizational specification should influence only the

factors of agents’ models that are associated with agent interactions.

This principle is surprisingly applicable for creating organizational designs for

Dec-MDP based agents, where factors associated with interactions are directly cap-

tured in joint reward/transition functions, and indeed where the specification of

agents’ decision models sometimes explicitly separates out the dependent factors (e.g.,

coordination locales (Varakantham et al., 2009; Velagapudi et al., 2011)) from the

independent ones. This is neatly illustrated in my specification of the firefighting

domain, where agent movements are independent (agent i’s movement actions do not

directly affect the states/rewards of another agent), but firefighting actions are not

(agent i’s states/rewards are affected by another agent fighting a fire).

To test Principle 4.1, I enumerated a space of factored organizations, each of which

draws on the same, fully-specified organization (specifically the smallOverlapOrg from

Section 3.5.1), but adopts a different subset of factors taken from that full specification.

In particular, in its factored form, the transition component for the firefighting domain

has one factor for the effects of agent movement actions, and another for firefighting

actions. (There are also transition factors for the system time and cell delays, but

these factors are unaffectable by the agents and thus omitted from my discussion

here.) I draw on my organizational design principle to combine only the factors

77

that correspond to reward/transition-dependencies (R/T-Ds). Revisiting the

smallOverlapOrg’s components, R/T-D factors include: the entire state and action

components (since these reflect the organization’s global awareness that agents can

depend on each other to fight fires in their respective PARs); and the transition factor

for Ics (summarizing expectations of when fires will be extinguished by other agents in

the overlapping PARs). On the other hand, the transition factor for agents’ movement

actions is a non-R/T-D factor, because agent movements are independent.

Principle 4.1 thus leads to the hypothesis that a specification including only

these R/T-D factors will capitalize on the global perspective of the ODP without

overstepping into micromanagement: it will perform as well or better than other

combinations of factors, especially when the agents possess significant local expertise.

To test this hypothesis, I constructed this R/T-DOrg organizational specification, as

well as an organization that includes only non-R/T-D factors, the non-R/T-DOrg.

For completeness, I also considered the full set of factors yielding the unfactore-

dOrg (identical to the unfactored smallOverlapOrg), and the empty set of factors

corresponding to the local baseline (where agents are uninfluenced by any explicit

organization).

My experiments in this section use the two agent version of the firefighting domain

previously described in Section 3.5. However, to stress that agents can have local

expertise that is imprecisely known to an ODP, the cell delays, δc, are allowed to be

non-zero, which introduces stochastic movement actions to the problem domain. In

these experiments, cells delays are i.i.d. uniformly sampled from δc ∈ {0.0, 0.5, 0.8} for

each cell c, but do not change from their initial values within a single episode. That is,

at the beginning of each episode, the cell delays are randomly selected (independently

of each other as well as any delays from past episodes), but then they are static for

the episode. Figure 4.1 shows example initial states for this domain.

I artificially controlled the relative amount of the agents’ local expertise by de-

grading the ODP’s view of the cell delays via applying a smoothing filter over the

true environment’s (M∗) delays (Figure 4.2). As the ODP’s view of the cell delays is

increasingly blurred by the smoothing filter, the agents possess comparatively more

local expertise (e.g., about the best paths to take through the grid to most efficiently

reach the fires to fight). By controlling the ODP’s information in this way, the ODP’s

model remains accurate in terms of cells’ mean delays but loses precision (about the

physical distribution of delays) as additional smoothing iterations are performed. For

example, the 100-smoothed setting had a smoothing filter iteratively applied to the

grid 100 times, leaving the ODP with what amounts to the average cell delay in each

78

(a) “Hard” firefighting episode. (b) “Easy” firefighting episode.

Figure 4.1: Illustration of “easy” and “hard” firefighting episodes. An episode is “hard”
if the local baseline MAS miscoordinates.

Figure 4.2: Illustration of how I controlled agent expertise.

cell. Comparatively, in the 0-smoothed setting the ODP’s view precisely matches the

real delays in M∗, etc. An agent’s knowledge of the cell delays (contained in Mi) is

perfect in these experiments, and thus exactly equals M∗ in this regard.

I generated 3000 episodes for the two agent firefighting domain described above,

and simulated each episode 5000 times to smooth out the effects of stochastic move-

ment actions. The procedure described in Section 3.5.1 was used to incorporate

organizational specifications into the agents’ local models and to compute their local

policies with respect to their organization. To evaluate the hypothesis that agents

in an organization should be allowed to retain and contribute their local expertise, I

evaluated each of the four organizations across a spectrum of settings where I varied

the relative quality of agent expertise compared to the ODP’s. Unfortunately, I was

unable to fully contrast the organizations against computing the optimal joint policy,

π∗, as I was computationally unable to calculate π∗ for all 3000 episodes. However,

in a small subsample of the episodes that I could complete (∼100), I observed that

computing π∗ costs approximately two orders of magnitude more COp and achieves

approximately three percent more ROp as compared to the local baseline.

Tables 4.1, 4.2, and 4.3 present results from these experiments and highlight several

important points. Firstly, observe in Table 4.1 that, in expectation over all problem

episodes, my organizations only increase ROp by 1.45% in this domain. While this

initially seems disappointing, on reflection it is unsurprising: for most episodes, an

79

ROp COp

Improvement (%) Reduction (%)
Smoothing Iterations 0 10 100 0 10 100
R/T-DOrg 1.45 1.40 1.40 34.08 33.02 33.12
unfactoredOrg 1.45 -6.24 -7.30 34.08 33.00 33.13
non-R/T-DOrg 0.01 -7.41 -8.29 0.00 0.00 0.00

Table 4.1: Expected percent ROp and COp improvement of organizations compared to
the local baseline for all 3000 problem episodes.

ROp COp

Improvement (%) Reduction (%)
Smoothing Iterations 0 10 100 0 10 100
R/T-DOrg 6.05 5.92 5.98 34.81 34.04 33.77
unfactoredOrg 6.10 -9.61 -10.70 34.84 30.83 30.90
non-R/T-DOrg 0.00 -12.26 -13.02 0.00 0.00 0.00

Table 4.2: Expected percent ROp and COp improvement of organizations compared
to the local baseline for the 750 problem episodes with largest expected impact (top
25%) to ROp. The same subset of episodes is used to calculate the COp reduction.
The subset of episodes used varies by organization as well as by number of smoothing
iterations.

ROp COp

Improvement (%) Reduction (%)
Smoothing Iterations 0 10 100 0 10 100
R/T-DOrg 23.27 23.55 23.44 27.88 27.79 27.76
unfactoredOrg 23.21 -19.48 -19.76 28.03 28.63 29.36
non-R/T-DOrg 0.00 -24.88 -24.47 0.00 0.00 0.00

Table 4.3: Expected percent ROp and COp improvement of organizations compared
to the local baseline for the 150 problem episodes with largest expected impact (top
5%) to ROp. The same subset of episodes is used to calculate the COp reduction. The
subset of episodes used varies by organization as well as by number of smoothing
iterations.

80

agent’s lack of global awareness is inconsequential, because the initial placement of

agents and fires is such that, for most cases, agents’ local decisions lead them into

complementary actions (e.g., Figure 4.1b). However, in episodes where a high-intensity

fire is located between the agents’ initial positions (e.g., Figure 4.1a), agents acting

locally often miscoordinate, providing opportunities for an organization to improve

ROp. This observation is a manifestation of how the domain inherently impacts the

potential effectiveness of an organizational design, as also observed by Corkill et al.

(2015)

Moreover, this observation suggests that the average performance hides a heavy-

tailed distribution. If we sort the episode results by the magnitude of the percent

ROp difference versus the local baseline, |baseline−org|
baseline

, and filter the sorted results

to only include the episodes where an organization has the largest impact to ROp

(either positively or negatively), then we observe in Tables 4.2 and 4.3 that when an

organization does impact performance, it has a noticeable impact. For example, R/T-

DOrg has a 23.27% expected improvement to ROp in 5% of the episodes (Table 4.3).

Note that the decrease in the COp improvement of the unfactoredOrg and R/T-DOrg

as episodes are filtered (i.e., moving from Table 4.1 to Table 4.2 to Table 4.3) is

also caused by this domain property. These R/T-D inclusive organizations (i.e.,

unfactoredOrg and R/T-DOrg) coordinate correctly when a high-intensity fire is

located between the agents due to Ic transition shaping (thus increasing ROp relative

to the baseline); however, transition shaping also increases the size of the agents’ state

spaces (thus decreasing their COp advantages).

Secondly, as shown in all three tables, the organizations that influence R/T-D

factors outperform those without R/T-D based influences, both in terms of ROp as well

as reducing COp. Moreover, the non-R/T-D based influences (i.e., in unfactoredOrg and

non-R-/T-DOrg) can severely degrade MAS performance as agents possess relatively

more local expertise, as demonstrated by the distinct ROp drops for these organizations

as the ODP’s information becomes increasingly imprecise via smoothing its view of cell

delays. This illustrates the costs of heavy-handed micromanagement that undervalues

agents’ expertise, and supports my claim that organizations that omit non-R/T-D

based influences allow agents to exercise their expertise to avoid these performance

deficiencies.

While this concludes my explicit evaluation of Principle 4.1, as we will see in

the remainder of this chapter, Principle 4.1 serves as an underlying premise of my

computational ODP techniques. As such, the subsequent experiments I perform to

evaluate my ODP techniques can also be viewed as further evidence in support of

81

Principle 4.1 This complete body of experiments, along with the theoretical deriva-

tioPrinciple 4.1 earlier in this section, suggest that Principle 4.1’s effectiveness is not

limited to the specific experiments I performed in this section, but rather it is a more

robust, generally-validated heuristic for selecting effective organizational influences.

4.2 Automated Organizational Design

Thus far, the organizations I have presented in this dissertation have been hand

created and tuned for use in the firefighting domain. Generally speaking, designing an

organization for a MAS by hand can be challenging. For example, the organizations

I hand-created in the previous sections required intricate knowledge of how the

agents should best interact as well as several iterations of careful tuning to get the

organizational influences just right. Automated techniques for organizational design

can address these challenges in two primary ways:

1. A computational ODP could serve as an alternative to hand-designing an

organization. Rather than relying on a human ODP to comprehend the MAS’s

nuanced interaction patterns and my specification language’s influence encoding

strategies, an automated ODP can determine interaction patterns itself and

search through the space of influence encodings to find the best one.

2. Computational techniques for organizational design necessitate a more formal,

explicit understanding of how to create an organization for a MAS. As such,

developing an automated ODP provides mathematically-grounded insights that

could guide a human ODP in creating organizations (e.g., as part of a problem-

driven approach).

In this section, I describe the core representations and algorithms that my auto-

mated ODP techniques utilize to create an organization for a MAS.

4.2.1 ODP Overview

As described in Section 4.1, an ODP should use its global perspective to identify

patterns of interactions that would arise when agents cooperate effectively, and then

codify these patterns into influences that agents internalize. For example, the R/T-

DOrg stops agents from even thinking about fighting fires that another agent is clearly

better positioned to fight, and focuses them on fighting nearby fires. Stepping back,

the organizational design principle I presented in Section 4.1 suggests the foundations

82

Figure 4.3: Overview of how my automated ODP and how it relates to the MAS.

of a process for automating organizational design: use the ODP’s global perspective

to identify the R/T-Ds; deduce from these a space of joint actions to seek/avoid; and

then use these patterns to select influences to agents’ local models that steer agents

to/from local decisions that lead to the good/bad interactions.

Unfortunately, identifying R/T-Ds can sometimes be difficult in models where joint

interactions are not explicitly provided as part of the model specification. For this

reason, the automated ODP I have devised exploits domain knowledge if it is provided,

but still functions (although with increased computational costs) without explicit

R/T-D specifications. Figure 4.3 illustrates a high-level overview of my automated

ODP and how it relates to the MAS. The ODP begins with a Dec-MDP model of the

global domain, and I assume that this model is accurate with respect to the global

interactions, but may be imprecise with respect to the details of how agents will

complete their respective components of a joint interaction (i.e., Property 1.3). Then,

as shown in Figure 4.3, there are three main stages to my ODP:

1. Compute organizational patterns. The ODP uses its global perspective of the

domain to compute a quantitative description of organizational patterns. This

stage of the ODP will be described in detail in Section 4.2.2.

2. Organizational search. Using the quantitative description of organizational

patterns from the previous stage, the ODP searches through the space of

organizational influences to identify the subset that comprise an organization

to specify to the MAS. This stage of the ODP will be described in detail in

Section 4.2.3.

83

3. Agent decision making. The agents then incorporate the organization into their

local reasoning processes and solve their local decision problems as previously

described in Section 3.1.2.

It is important to note that my ODP is intentionally decomposable into these

distinct stages. Not only does the stage decomposition help to conceptualize my

representations and algorithms, but moreover, it allows a user to employ a subset

of the stages. For example, suppose a system administrator has expert knowledge

consisting of a quantitative description of organizational patterns. This administrator

could use the organizational-search stage to compute an organization from those

statistics, bypassing the unnecessary compute-organizational-patterns stage.

4.2.2 Compute Organizational Patterns

The objective of this stage in my ODP approach is to compute a quantitative

description of organizational patterns. At a high level, a quantitative description

of organizational patterns corresponds to statistical information about the expected

performance of the MAS’s possible interaction patterns. A quantitative description of

organizational patterns could be represented in a variety of forms; however, in terms of

the organizational design problem I previously defined (Definition 3.6) it corresponds

to the expected operational performance (i.e., expected reward and reasoning costs)

associated with each of the agents’ interactions. For example, an action ai is expected

to increase agent i’s computational costs by some amount, and also contribute and/or

enable some amount of expected joint reward to the MAS. (Note statistics about the

expected joint reward correspond to Q-values and thus encapsulate both immediate

and future rewards.)

At a high-level, my ODP computes a quantitative description of organizational

patterns via a Monte Carlo estimation since enumerating the agents’ optimal actions

for all possible problem episodes the MAS could encounter is assumed to be computa-

tionally intractable. The ODP begins by randomly sampling a problem episode from

its global Dec-MDP perspective of the domain (e.g., using the initial state distribution

α). Then, the ODP computes the optimal joint policy for the sampled episode using a

centralized perspective. Finally, the ODP repeats this process for numerous samples,

and aggregates the joint policies across the sampled episodes to form its quantitative

description of organizational patterns. In the remainder of this section, I step through

this process in full detail.

Also, note that while my discussions in this section may suggest a sequential

84

Algorithm 4.1 Compute Organizational Patterns

Input: ODP’s domain model, M, and (optionally) a set of subgoals for task decom-
position, G.

Output: A quantitative description of organizational patterns, Φ
1: Φ← ∅
2: while ∃sample =NextSample() do
3: π ← ComputeJointPolicy(sample,M, G)
4: Φ←AggregateInformation(Φ, π)
5: end while
6: return Φ

algorithm with three stages (i.e., sample episodes, solve the episodes for joint policies,

and aggregate across samples), it is straightforward to interleave these stages to create

a more anytime-esque algorithm. Indeed, my ODP implementation (Algorithm 4.1)

interleaves these stages.

Episode Sampling. Using its Dec-MDP model of the global domain, it is straight-

forward for the ODP to sample the initial state distribution for a problem episode.

Note, however an important subtlety that must be considered in the ODP’s sam-

pling process: if the ODP does not sample a set of episodes that covers the space of

important agent interactions patterns, then the ODP’s quantitative description of

organizational patterns will not be fully informative of the interaction patterns the

ODP should influence the agents into. For example, in the firefighting domain, in

order for the ODP to recognize the value of an agent i fighting a fire in a cell c near i’s

initial location, the ODP must sample a problem episode where there is a fire in cell c.

Information inaccuracies caused by poor episode sampling could negatively impact to

the ODP’s organizational search algorithm (Section 4.2.3) that uses these statistical

estimates.

Consequently, the ODP should not simply use i.i.d. sampling of the initial state

distribution to generate problem episodes. Rather, the ODP should sample problem

episodes to provide maximal coverage of the patterns of the agents’ interactions

weighted by the importance of the interaction (e.g., interactions with inconsequential

impact on MAS performance are less important for the ODP to recognize than ones

with critical impact). Unfortunately, this optimal sampling strategy is theoretically

infeasible since the ODP cannot know how the agents should interact for an episode

without actually solving for the agents’ optimal joint policy in that episode (at which

point that data may as well be included in the ODP’s statistics). As a proxy for this

optimal strategy, for the firefighting domain my ODP generates samples in batches,

85

where the samples in a batch are biased such that the ODP is ensured to encounter a

fire in each of the grid cells. Specifically, in my experiments, the batch size is equal to

the number of grid cells, where the first fire for the kth sample in the batch is placed

into the kth cell, and then subsequent fires are selected uniformly randomly (without

replacement) from the other cells. More generally, Bayesian sampling of the initial

state distribution could be used to generate samples, although doing so implies that

different initial states lead to different agent interactions.

Computing a Joint Policy. Theoretically, the ODP could use any Dec-MDP

solution technique to solve a problem episode for the optimal joint policy (e.g., from

among the methods described in Section 2.1.4). Practically, however, the computational

intractability of computing a joint policy limits an ODP’s ability to näıvely solve the

Dec-MDP model for an episode, especially for domains with tightly interconnected

agents (Property 1.2).

As such, my ODP uses the options framework (Section 2.1.5) from the hierarchical

learning community to abstract its primitive-action Dec-MDP model into a task-level

Dec-MDP model that focuses on tasks to accomplish rather than actions to take.

Reasoning with task-level options serves two primary purposes. Firstly, reasoning with

options reduces the ODP’s computational burden since a Dec-MDP solution algorithm

can exploit structure in the action sequences an agent should typically perform (i.e.,

rather than considering primitive actions individually, sequences of primitive actions

can be considered as a whole). Secondly, task-level reasoning naturally emphasizes

the most significant interactions among agents while remaining largely agnostic about

how the agents will translate their options into detailed actions, which embodies

Principle 4.1.

As is customary, my ODP creates one option for each task in the problem episode,

where a task corresponds to achieving a particular subgoal. For simplicity, in the

experiments that follow, I informed the ODP that good subgoals are states where

Ic → 0; however, subgoal detection could be automated using techniques from the

hierarchical learning community (see Section 2.1.5). Of course, the ODP still requires

an estimate of each option’s properties (i.e., its expected reward, Ri(s
t
i, oi, st+1

i), and

transitions, Pi(s
t+1
i |sti, oi)), which my ODP computes by standard hierarchical reasoning

techniques (Section 2.1.5).

The ODP then solves the task-level Dec-MDP as a centralized process using

standard algorithms (see Section 2.1.4), which results in occupancy measures, x(st, o),

and Q-values, Q∗(st, o), for state-option pairs in the optimal task-level joint policy.

86

Finally, the ODP inverts its option abstraction using the respective policy of each

option (i.e., o.µ), which projects the task-level joint policy downward to estimate the

primitive-action joint policy, π̂. For example, the occupancy measures in the primitive-

action joint policy are the product of the task-level occupancy measures multiplied

by the occupancy measures of the options’ policies, x(st, a) =
∑

o (x(st, o) · o.µ(st, a)).

Note that while the resulting π̂ is not exactly identical to if the ODP had directly

solved the primitive-action Dec-MDP for π∗, it does have the same optimal policy

trajectory. That is, for any states that are reachable when following π∗, both π̂

and π∗ are ensured to be identical. As I discuss below, my ODP only aggregates

information from along the optimal policy trajectory, so this distinction is ultimately

inconsequential.

The particular options I created for my ODP are fairly domain-dependent—

although automated techniques exist for option creation (Iba, 1989; Stolle & Precup,

2002; McGovern, 2002). Moreover, it is important to note that the abstraction to

the task-level representation has no effect on the resulting occupancy measures and

Q-values in the detailed problem representation. Rather, the ODP would compute

exactly the same detailed policy if it did not use the options abstraction, albeit at

a significantly higher computational cost. The options abstraction serves only to

expedite the policy solving process. The issue of identifying appropriate options is

addressed further in Section 4.2.4.

Aggregating Information Across Samples. To aggregate information across the

sampled problem episodes, my ODP computes a weighted expectation. Specifically,

information (e.g., Q-values or probabilities of non-local effects) is weighted by the

occupancy measures (recall that in a non-recurrent state space, an occupancy measure

x(st, a) is equivalent to the probability of reaching state st and then performing action

a). For example, the probability of a non-local effect Pi(f
t+1
k |st, a) exerted on agent i

is weighted by the occupancy measure x(st, a).

A caveat in this method is that the linear program used to calculate occupancy

measures (Equation 2.4) only returns informed values for states along the optimal

policy trajectory. That is, state-action pairs that are not part of the optimal policy

trajectory have zero occupancy by definition (i.e., there is no probability of reaching

these states); however, x(st, a) = 0 for these types of states is not informative of

whether the MAS should perform a, only that st should not be reached. Consequently,

including these zero-valued occupancies in the expectation calculation dilutes the

ODP’s statistics without providing any actual information. This effect is especially

87

significant in domains where the optimal policy trajectory is a small subset of the state

space (like in the firefighting domain), since the informative occupancy measures will

be scarce relative to the complete set of occupancies (essentially making it incorrectly

appear as though all agent actions have no value). As such, my ODP disregards any

occupancy measures for states that are not part of the optimal policy trajectory, i.e.,

states where
∑

a x(st, a) = 0. In contrast, state-action pairs along the optimal policy

trajectory could be zero or non-zero. Obviously a non-zero occupancy is informative

of the MAS’s actions in the ODP’s statistical estimates; however, x(st, a) = 0 for these

types of states informs that a is not the optimal action, and thus should be included

in the ODP’s statistical estimates as well.

Illustrative Example. Figure 4.4 illustrates an example of how my ODP computes

its quantitative description of organizational patterns via Algorithm 4.1. On each

iteration (i.e., row of Figure 4.4), the ODP first samples a problem episode, translates

its representation of the episode into the options-level representation, and solves

for the optimal options-level joint policy, which corresponds to the first column of

Figure 4.4. Then, the ODP inverts its options to compute the occupancy measures

and Q-values (note that Q-values are not shown in Figure 4.4) in the detailed problem

representation, which corresponds to the second column of Figure 4.4. Finally, the

ODP aggregates the information from the current sample into its cumulative statistics,

which corresponds to the third column of Figure 4.4.

Stepping down the rows, one can see that, as the ODP samples problem episodes,

its statistics give it an increasingly accurate quantitative description of organizational

patterns. Looping this process until the cumulative statistics stabilize results in the

information shown at the bottom of the third column in Figure 4.4.

4.2.3 Selecting Organizational Influences

As illustrated in Figure 4.3, the second stage of my ODP is to use the quantitative

description of organizational patterns as a basis for selecting organizational influences.

Perhaps unsurprisingly, this a complex, multifaceted subject (essentially tantamount

to the organizational reasoning problem), and even limiting scope to within my agent-

driven approach there are numerous methods and orthogonal aspects of the algorithm

that could be investigated (e.g., metareasoning issues like I do in Section 4.3 or abstract

organizational influences like I do in Chapter 5). In this section, I describe a relatively

simple version of the influence selection stage in my ODP. Not only does this simple

version provide a starting point for subsequent discussions in this dissertation (and

88

Figure 4.4: Walkthrough of my ODP’s process for computing its quantitative description of organizational patterns. Darker
shading in the occupancy measure columns indicates higher occupancy measure.

89

future research beyond the scope of my dissertation), but moreover, its deficiencies

provide context for guiding my subsequent efforts. At a high level, my broader ODP

approach selects organizational influences by first computing the expected impact that

each candidate organizational influence will have on MAS performance, then searching

through the influence space to identify an (approximately) optimal set of influences,

and finally encoding these influences in my organizational specification language.

For now (this will be revisited in Section 4.3), my ODP selects influences as follows.

� Actions: For agent i, if the occupancy measure x(si, ai) = 0 then remove ai

from the set of available actions in si for agent i. For example, in the firefighting

domain, if the ODP’s statistics from computing joint policies for sample episodes

never have an agent move into certain cells (e.g., cells always serviced by closer

agents), then actions that would move the agent into those cells are removed

from consideration.

� States: If agent i’s action choice under the joint policy is invariant with respect

to state factor Fik given any values for the other state factors, then Fik can be

removed from agent i’s local state factors (since it contributes no information).

For example, in the firefighting domain, the intensity of cells distant to an agent

(always fought by someone else) do not impact the agent’s action selection and

thus are removed from the agent’s state representation.

� Transitions: For an agent, modify the transition factors for each of its remaining

state factors (after removing state factors as above) to include the probabilistic

non-local effects of the other agents. For example, in the firefighting domain, an

agent’s transition factor for an overlapping cell’s intensity would be altered to

reflect the probability that some other agent executes the FF action in that cell

at certain times.

The reader may note that influences to the agents’ reward function factors are

not included above (nor are initial state distribution and time horizon influences). I

focus on action, state, and/or transition influences over reward influences since they

provide hard constraints that can affect the agents’ computational costs (COp), e.g.,

as demonstrated in Section 3.5. However, reward influences could be useful as a

fallback mechanism when hard constraints are not possible to formulate or otherwise

undesirable. For example, if the ODP has an option-level model, but lacks knowledge

of how options translate into local actions, states, and transitions, it could influence

agents via local reward factors to induce coordinated policies. As another example,

90

reward influences could be useful if the ODP has doubt in the agents reliably adopting

organizational influences (e.g., in semi-cooperative settings beyond the scope of this

dissertation), where an agent might be unwilling to constrain its action space, but could

be influenced by providing it with additional incentives. Like in Section 3.5, influences

to an agent’s initial state distribution and time horizon are broadly inappropriate

for the firefighting domain. I revisit the issue of other influence mechanisms again in

Section 6.2.2.

4.2.4 ODP Limitations and Concerns

In this section, I describe some of the potential limitations and/or concerns of my

ODP thus far, and discuss some preliminary thoughts of how they might be addressed

(either later in this dissertation or in future work).

Heuristics for Identifying Hierarchical Options. The techniques I employ in

my ODP leverage relatively conservative assumptions about the availability of external

knowledge about the problem domain (specifically the identification of subgoals for

the ODP to translate into options); however, there are ways of generalizing my ODP

to incorporate additional knowledge, should it be available, or function without the

option abstraction, should it be unavailable. For example, if an explicit specification

of the R/T-Ds is provided, then the joint policy creation process could simply create

a policy directly from the R/T-Ds. Even stronger, if (partial) information of good

joint interactions is known (e.g., a partial-order plan), then the joint policy creation

process could be sped up by constraining the Dec-MDP solution algorithm to reflect

this knowledge. Alternatively, knowledge of the R/T-Ds could be reflected by directly

providing the ODP with an options-level model (along with properties of the options

to be used for inverting the abstraction) as opposed to the primitive-action Dec-MDP

that the ODP translates into a task-level model.

In my experiments that follow, I informed the ODP that good subgoals are

states where Ic → 0, but did not systematically validate this abstraction choice

(though intuitively, extinguishing a fire seems to be the natural task-decomposition

for the firefighting domain). I did not systematically validate this abstraction because

ultimately the options abstraction is only to expedite solving Dec-MDP problem

episodes, and has no impact on the organization that the ODP creates. As such,

optimal abstraction choice is not a core ODP problem, but rather a secondary topic

for future research.

91

Centralized ODP Limitations. My ODP algorithms throughout this dissertation

employ centralized techniques for computing a quantitative description of organiza-

tional patterns, which unsurprisingly is intractable as the problem domain scales (see

Section 2.1.4). This computational intractability inevitably limits the scale of the

problems that this aspect of my specific ODP implementation can solve (note, however,

that the other aspects of my organizational representations and algorithms are not

limited by this scaling problem). Intuitively speaking, there are several approaches

one could use to mitigate these scaling concerns, including:

� Compute an approximately optimal joint policy, for example using techniques

as described in Section 2.1.4.2.

� Use the options framework hierarchically, like I do in Section 5.7.

� Obtain a quantitative description of organizational patterns from a different

source such as a system administrator or the agents themselves.

Approximate Dec-MDP Solution Techniques. If information about pertinent

subgoals is unavailable for seeding an options abstraction (and optimally solving the

primitive-action Dec-MDP is computationally infeasible), the ODP could instead rely

on approximate solution techniques for computing an approximately optimal joint pol-

icy (e.g., see Section 2.1.4.2). Throughout this dissertation, however, I avoid using such

approximation techniques to avoid confounding factors in my results. That is, solution

techniques for solving Dec-MDPs are not the focus of this dissertation, but rather a

means for my ODP to estimate a quantitative description of organizational patterns.

If the joint policies found were only approximately optimal, then it would be difficult

to discern whether an ineffective organization were the result of the approximate

statistics, or a more fundamental deficiency of my organizational reasoning techniques.

Of course, robustness to information inaccuracies is a desirable characteristic for an

ODP, but I have elected to evaluate such robustness using more controlled methods

(e.g., degrading the ODP’s domain model like in Section 4.1) rather than the more

unpredictable information inaccuracies possible with approximate joint policy solvers.

Rigidity of Influence Selection Criteria. It is important to recognize that the

influence mechanisms in Section 4.2.3 use very strict criteria for when to remove a

factor. Essentially, the ODP finds the maximal reduction to an agent’s model that does

not decrease the expected joint reward. In principle, however, further reductions could

sacrifice some amount of reward in order to further influence the agents. For example

92

in the firefighting domain, it could be the case that agent i rarely needs to know the

intensity of a relatively distant cell, so the expected reward loss from not modeling that

state factor is very small. Thus, removing that factor from consideration has negligible

impact on the expected joint reward, but could yield significant computational savings

during agent planning. Tradeoffs like these are the focus of metareasoning research,

and I investigate this issue more deeply in Section 4.3.

4.2.5 Evaluation

To evaluate the initial ODP algorithm just described, I use the same parameteri-

zation of the firefighting domain as in Section 4.1. However, to evaluate this simple

version of the ODP, I did not perform any smoothing of the ODP’s model because I

wanted to evaluate if the ODP could exploit structure that it identifies in the domain

(this assumption will be relaxed in later experiments). In this domain, the space of

possible initial global states is exceedingly large (∼22,000), and furthermore, the total

reachable state space from the set of initial states contains millions of states. For these

reasons, the ODP is computationally unable to exactly solve for the complete, optimal

joint policy in every state, and instead relies on the sampling process described in

Section 4.2.2. To test the impact the sample size has on the resulting organizations,

I present results from two different parameter settings, 50 (0.23% of possible initial

states) and 150 (0.68%). X AutoOrg refers to the organization designed using X

∈ {50, 150} initial state samples. The effects of sampling size on the ODP will also be

revisited in Chapter 5.

I begin my evaluation by confirming that the ODP’s designs are intuitively sensible.

Figures 4.5a and 4.5b show the cumulative occupancy measures by cell (shaded

by magnitude),
∑

ai
xi(si, ai), for each agent, created in response to the delays in

Figure 4.5c, and represent a summary of the action shaping specified to each agent (i.e.,

cells with low cumulative occupancy measure typically have more tightly restricted

actions). Darker shaded cells thus represent those that the ODP expects the agent

will more likely visit. Observe in Figures 4.5a and 4.5b that the agents’ influences are

correlated, and each agent is more or less expected to be responsible for a particular

region (with some overlap in between). Further, as seen by comparing Figure 4.5c

to Figures 4.5a and 4.5b, the ODP recognized the domain structure, and tailored its

influences to skew the agents’ regions towards those cells they can efficiently reach.

I also tested the X AutoOrgs using the same empirical methodology and episodes as

in Section 4.1 to ensure that they improve ROp and COp in addition to being intuitively

sensible. Table 4.4 presents the results of these experiments as well as repeats the

93

(a) Agent 1 (b) Agent 2

(c) Cell Delays δc

Figure 4.5: Cumulative cell occupancy measures,
∑

ai
xi(si, ai), for each agent that

the ODP calculated in response to the cell delays in (c)

% Results Included 100% Top 25% Top 5%
R/T-DOrg 1.45% 6.05% 23.27%
50AutoOrg 2.06% 3.33% 4.11%
150AutoOrg 2.17% 5.25% 13.63%

(a) Expected ROp improvement.

% Results Included 100% Top 25% Top 5%
R/T-DOrg 37.07% 34.81% 30.39%
50AutoOrg 38.84% 39.29% 49.15%
150AutoOrg 19.36% 20.75% 38.91%

(b) Expected COp reduction.

Table 4.4: Percent ROp and COp improvement compared to the baseline MAS for
experiments in Section 4.2.5. The same subsets of episodes are used to calculate
the COp reduction. The subset of episodes used varies by organization as well as by
number of smoothing iterations.

94

results from the best hand-designed organization from Section 4.1. As Table 4.4

illustrates, the X AutoOrgs compare well against the hand-designed R/T-DOrg, but

make different tradeoffs as demonstrated by the top 25% and 5% columns. That is,

R/T-DOrg has little to no ROp impact in most episodes, but then has substantial ROp

gains in a few episodes, whereas the X AutoOrgs yield a slightly larger overall ROp

improvement, but accomplish this by having moderate ROp gains in many episodes.

This observation suggests that the X AutoOrgs are not over-specialized to particular

situations the ODP might have encountered, but rather provide general influences,

since their ROp gains are more uniformly distributed over the problem space relative to

R/T-DOrg. Also observe that, as the ODP gains a more complete input model, it uses

this additional information to infer more specialized organizational patterns and thus

exerts more specialized influences, as evidenced by the 150AutoOrg having statistically

significant ROp gains relative to 50AutoOrg in the 25% and 5% cases. Finally, observe

that the X AutoOrgs’ COp improvements actually increase as we filter out episodes—in

stark contrast to the R/T-DOrg. Recalling from Section 4.1, the episodes where

organizational influence are most meaningful are those where a high-intensity fire is

between the agents’ initial locations. While the R/T-DOrg approaches these cases

with Ic transition shaping, the X AutoOrgs instead address them with state/action

shaping (e.g., by delegating the northern cells to one agent and the southern to the

other), which reduces COp rather than increasing it.

4.3 Metareasoning through Organizational Design

As one may have noticed throughout my empirical results thus far, ROp and COp are

essentially inversely correlated, where an ODP can create an organization that improves

ROp by inducing the MAS to reason about additional actions, which increases COp (and

vice versa). Moreover, there is often not a single organization that Pareto dominates

the others for all operational performance, POp = f(ROp,COp), parameterizations.

For example, in Figure 3.3, computing the optimal joint policy is best when COp is

unimportant compared to ROp, but as the POp parameterization increasingly values

low COp, the fullOverlapOrg becomes best, then the smallOverlapOrg, and finally the

partitionOrg is best when ROp is relatively unimportant compared to COp. A natural

question, therefore, is whether an ODP can design an organization that optimally

selects from the POp Pareto front, given a target Pareto parameterization as input.

This question also relates to an observation from Section 4.2.4, where the mechanism

for selecting organizational influences only specified influences that were not expected

95

to decrease ROp. Even if an influence would only sacrifice a negligible amount ROp to

reduce COp by orders of magnitude, the mechanism would not include that influence

in the organizational specification. If agents have unlimited/sufficient computational

resources (i.e., COp is insignificant), then such a strategy is justified; however, commonly

(especially in Dec-MDP models where policy spaces can quickly become impractical

to solve) computational costs can exceed the time before decisions must be made. A

possible technique in response to this observation is to allow the ODP to specify an

influence that sacrifices some amount of ROp (beyond zero) in proportion to the COp

savings that the influence imparts.

Determining how much and/or which reasoning an agent should perform is the

subject of metareasoning research, which I briefly overview next in Section 4.3.1. Taking

an organizational stance to multiagent metareasoning, in Section 4.3.2, I describe

how to extend my ODP to (approximately) optimally solve the organizational design

problem (Definition 3.6) including metareasoning issues by framing it as incremental

search of the organizational influence space. Then, in Section 4.3.2.3, I illustrate an

implementation of this search process for influences to agents’ action spaces. Finally,

I evaluate my ODP in Section 4.3.3 and find that it generates organizations that

effectively impart a desired metareasoning regime upon the MAS.

4.3.1 Background

Metareasoning is typically studied in the context of real-time systems and/or

agents with bounded rationality, which each naturally emphasize the premise that

agents must make Pareto tradeoffs between exerting effort on reasoning about actions

to execute, and exerting effort on actually executing those actions. This premise

is especially true with multiagent decision-theoretic frameworks (like the Dec-MDP

framework I have adopted), where high computational complexity inevitably limits

the scale of problems that can be solved. While metareasoning comes in many forms

(see Cox & Raja (2011) for a thorough discussion of work in this field), the type that

is most relevant for this dissertation addresses the followowing question: how does an

agent decide whether the improvements to decisions from additional reasoning are

expected to outweigh the costs of delaying enacting its decisions? When metareasoning

issues are considered, an agent’s objective shifts from computing π∗ to instead striking

the optimal balance between its computational costs and the quality of the best

policy it can identify within those costs. Several approaches have been developed

towards solving the metareasoning problem, including anytime algorithms (Hansen &

Zilberstein, 2001b) and model shaping (Bratman et al., 2012).

96

Unsurprisingly, metareasoning becomes even more complicated in MASs, since

the benefits of additional reasoning might depend on the reasoning and actions of

other agents (Raja & Lesser, 2007). For example, if one agent assumes responsibility

for (reasoning about) performing a task, then there might be no additional benefit

for other agents to also reason about that task. Thus, research into multiagent

metareasoning has typically been formulated as a metacoordination problem, where

agents individually make metareasoning decisions but coordinate those decisions to

strike a good collective balance between their expected joint performance and reasoning

costs (Raja & Lesser, 2007; Alexander et al., 2007).

In the remainder of this chapter, I investigate an alternative approach to solve

the multiagent metareasoning problem through organizational design, where a good

multiagent organization should both guide agents into coordinated local policies, and

also guide them into coordinated reasoning about their individual decision problems.

Of course, this approach simplifies the multiagent metareasoning problem that the

agents face by complicating the organizational design problem to find a design that

not only leads to coordinated action in the world, but also coordinated utilization of

the agents’ distributed reasoning resources.

The idea that an organization can impact agents’ reasoning and behaviors is

well-established. For example, social laws (Shoham & Tennenholtz, 1995) affect the

reasoning that agents perform as well as the actions they execute. In prior work,

however, the impact that an organization has on the agents’ reasoning has been an

incidental side effect rather than something an ODP explicitly leveraged to intentionally

impart a specific, desired metareasoning regime upon the agents, i.e., a specific POp
parameterization. Additionally, typical metareasoning approaches try to dynamically

assess the predicted benefit of additional reasoning, whereas the fundamental idea

of my approach is to have an ODP utilize its global view of the problem domain

to identify optimally-coordinated policy patterns, and then influence the agents to

avoid even thinking about acting counter to those patterns. For example, using its

global perspective, an ODP might identify that agents should typically fight fires near

their initial locations. It might then codify this pattern by restricting an agent from

reasoning about fighting fires in distant cells, which imposes a metareasoning regime

that trades computational speedup (due to never considering fighting fires in those

distant cells) for small expected reward loss (in the rare cases that it should fight

those fires).

97

4.3.2 Extending the ODP

Extending the ODP to incorporate metareasoning issues means that it will have

to solve my organizational design problem (Definition 3.6): Θ∗ ≡ arg maxΘ POp(Θ).

Since direct enumeration of the organizational design space is infeasible (Section 3.2.1),

I focus on incremental search, and on techniques for computing the incremental impact

of an individual influence. In what follows, I formulate a simple greedy hill-climbing

search; however, other incremental search algorithms (e.g., Monte Carlo, A∗, etc.)

could be used instead (see Section 4.3.4 for further discussion).

Näıvely, a greedy algorithm computes the (j + 1)-th step of the hill climb by

determining the influence, ∆i, with maximal organizational performance improvement

(I will return to the topic of determining Θ0 later in Section 4.3.2.3):

Θj+1 = Θj + arg max
∆i

POp(Θj + ∆i) (4.1)

Notice however, that Equation 4.1 requires recomputing the performance contribution

of Θj for each POp(Θj +∆i), which could waste substantial computational effort. If the

calculation of POp(Θj + ∆i) was instead decomposed into POp(Θj) and the conditional,

incremental impact of ∆i w.r.t. Θj, then the ODP could avoid this redundant

computation. I achieve this by estimating POp(Θj + ∆i) as a linear approximation.

Assuming ROp and COp are everywhere differentiable,1 and somewhat abusing

notation, I can write the equation in standard linear approximation form:

ROp(Θ
j + ∆i) ≈ ROp(Θ

j) + ∆i ·
dROp

dΘj
(Θj)

COp(Θ
j + ∆i) ≈ COp(Θ

j) + ∆i ·
dCOp

dΘj
(Θj)

Substituting these linear approximations into the definition of POp (Definition 3.5)

yields:

POp(Θj + ∆i) = f

(
ROp(Θ

j) + ∆·
dROp

dΘj
(Θj),COp(Θ

j) + ∆·
dCOp

dΘj
(Θj)

)

Now, taking the linear approximation for POp(Θj + ∆i) (assuming it is also everywhere

1 While the everywhere differentiable assumptions for ROp and COp are theoretically required, in
practice I have not found them necessary since my ODP does not explicitly compute the derivatives
(see Sections 4.3.2.1 and 4.3.2.2).

98

differentiable2):

POp(Θj + ∆i) ≈f
(
ROp(Θ

j),COp(Θ
j)
)

+ ∆i ·
dROp

dΘj
(Θj)

δf

δROp

(Θj)

+ ∆i ·
dCOp

dΘj
(Θj)

δf

δCOp

(Θj)

Substituting into Equation 4.1:

Θj+1 = Θj + arg max
∆i

[
f
(
ROp(Θ

j),COp(Θ
j)
)

+ ∆i ·
dROp

dΘj
(Θj)

δf

δROp

(Θj)

+∆i ·
dCOp

dΘj
(Θj)

δf

δCOp

(Θj)

]

Finally, the f(ROp(Θ
j),COp(Θ

j)) term can be dropped since it is independent of ∆i,

yielding the incremental organizational design problem my ODP solves:

Θj+1 = Θj + arg max
∆i

[
∆i ·

dROp

dΘj
(Θj)

δf

δROp

(Θj) + ∆i ·
dCOp

dΘj
(Θj)

δf

δCOp

(Θj)

]
(4.2)

Significantly, Equation 4.2 avoids redundantly computing how Θj impacts the opera-

tional performance, and instead only computes the conditional operational performance

impact of ∆i w.r.t. Θj.

In Sections 4.3.2.1 and 4.3.2.2, I describe a general methodology for efficiently

computing ∆i · dCOpdΘj
(Θj) and ∆i · dROpdΘj

(Θj) respectively. Then, in Section 4.3.2.3, I

illustrate in detail how an ODP can implement this methodology for influences to the

agents’ action spaces.

4.3.2.1 Computing Incremental Reasoning Costs

In this section, I describe how an ODP can compute ∆i · dCOpdΘj
(Θj), the conditional

impact to the agents’ computational costs from adding ∆i w.r.t. Θj. A Dec-MDP

agent’s computational costs are determined by two primary factors (Littman et al.,

1995), the number of states in its decision problem and the number of edges in its

state graph. Thus, computing incremental computational costs relies on determining

the expected marginal costs of adding a new state/edge, and then calculating the

expected change to the number of states and edges caused by adding ∆i into Θj.

2 The assumption of POp’s differentiability, unlike for ROp and COp is practically required since
my ODP directly computes derivatives of POp. As a result, my ODP can only consider metareasoning
Pareto fronts that are everywhere differentiable.

99

My methodology for empirically estimating the marginal cost of a state and/or

edge is as follows. An agent first uses its local model, Mi, to compute π∗i for an

episode in a set of randomly sampled episodes. Then, for each episode, I create a

modified version of Mi, labeled as M′
i, that contains the minimal number of edges

between states such that the reachable state space from the initial states is unchanged,

and the optimal policy is unchanged. I include the latter condition so that the bias

of the estimate matches desired organizational influences that streamline the agents’

reasoning without precluding optimal policies. The agent then solves each problem

episode again, but plans using the respective M′
i for that episode instead of Mi.

Taking the relative computational difference between these experiments provides an

empirical estimate of an edge’s marginal cost. To compute an estimate of a state’s

marginal cost, I looked across the episodes at the computational differences for the

M′
i experiments (each episode typically has a different numbers of reachable states).

Since the state graph in theM′
i for each episode is “minimally” connected, the agents’

computational costs are almost completely derived from the number of states (at least

insofar as possible). Consequently, this methodology “maximally” disentangles the

cost of a state and the edges to connect it to the state space, and provides a good

estimate of a state’s marginal cost.

To demonstrate the use of my methodology, Figure 4.6 shows its application in

the firefighting domain, using 300 randomly-generated episodes, along with best fit

lines. Taking the derivative of Figure 4.6a, M′
i removes approximately 2.6 edges

for every state. Taking the derivative of Figure 4.6b shows that an edge’s marginal

computational cost is approximately 1.2ei+2000 (ns), where ei is the current number of

edges. Taking the derivative of theM′
i line in Figure 4.6c shows that a state’s marginal

computational cost is approximately 5.28si+ 3000 (ns), where si is the current number

of states. The exact values I found here are clearly only applicable for my agents’

specific policy creation implementation within the firefighting domain; however, the

methodology generalizes to any problem domain expressed as a Dec-MDP, and to any

Dec-MDP solution techniques. More broadly, the approach of enumerating the factors

that contribute to an agents’ planning costs, then computing the expected marginal

cost for each factor, is extensible to any well-defined agent reasoning framework.

It is worth noting that measuring the marginal costs of states/edges using this

methodology does have a bias. Depending on the reward and transition topologies and

on the agent’s reasoning algorithm, the agent might not consume equal computational

costs on optimal versus non-optimal actions. Since I am only removing non-optimal

actions, I am biasing the measurements towards the costs of removing non-optimal

100

(a) # of edges removed versus # of states.

(b) CPU savings vs. # of edges removed from the agent’s reasoning problem

(c) CPU time for agent vs. # of states in the agent’s reasoning problem

Figure 4.6: Marginal cost estimates for adding or removing a state/edge from an
agent’s local reasoning problem.

101

actions (as opposed to any action). However, since the ODP seeks influences that

remove non-optimal actions rather than optimal ones, the measurement is biased in

the same way that we would want an ODP to exert influences.

4.3.2.2 Computing Incremental Reward

The incremental reward, ∆i · dROpdΘj
(Θj), corresponds to the expected Q-value change

from adding ∆i into Θj. Examining Equation 2.2, a Q-value Qπ(st, a) only changes

if ∆i alters π, the immediate reward R(st, a, st+1), or the transition probabilities

P (st+1|st, a). Since alterations to R(st, a, st+1) or P (st+1|st, a) also induce changes to

π (and otherwise ∆i’s impact to Q-values is trivial to compute), I focus on how ∆i

alters the agents’ joint policy w.r.t. Θj. While the ODP could do this by calculating

π|Θ
j

for each iteration of the incremental search, such an approach is computationally

daunting given the complexity of computing optimal policies and the number of

iterations the search might require.

Instead, the insight my ODP exploits is that it can use its global view to com-

pute/estimate the optimal joint policy, π∗ (i.e., via the techniques from Section 4.2.2),

once, and then only consider candidate Θjs that preserve π∗ while steering agents

away from taking, and even considering, actions outside of π∗. So long as Θj does

not preclude π∗, then the calculation of ∆i’s impact to the agents’ joint policy is

independent of Θj , and the ODP does not need to compute π|Θ
j
. In the event that Θj

does preclude π∗ (e.g., which could be optimal in a Pareto topology where computation

is extremely prohibitive), then statistics computed from π∗ represent an optimistic

upper bound of the influences’ incremental ROp impacts (see Section 4.3.4). While

this methodology (unavoidably) requires the ODP to determine what good actions are

by calculating an optimal joint policy, the ODP only need do this costly calculation

once (rather than once for each of the O(|∆i|) search iterations), and then amortize

those costs over all of the search iterations, which results in substantial computational

savings.

4.3.2.3 Action Influences

In this section, I illustrate how an ODP can implement the general methodologies

from Sections 4.3.2.1 and 4.3.2.2 for action influences. I revisit extensions to other influ-

ence mechanisms again in Section 6.2.2. I chose to implement action influences because

they are more straightforward (as explained below) while also being a particularly

commonplace organizational mechanism in previous research (Shoham & Tennenholtz,

102

1995; Pacheco & Carmo, 2003; Horling & Lesser, 2008). Note however, that prior

work has not given explicit, quantitative consideration to how such influences affect

the agents’ metareasoning regime, which is the focus here.

As I will discuss further in Section 6.2.2, actions are also a computationally simpler

influence mechanism for which to compute the incremental impact ∆i · dCOpdΘj
(Θj) and

∆i · dROpdΘj
(Θj). That is, as I will show below, the ODP can compute the incremental

impact of an influence that prevents an agent i from considering ai in sti by examining

π∗ and Mi at sti, since the effects of the influence are so locally scoped with respect

to the agent’s reasoning process. In contrast, other influence types (i.e., states and

transitions) can have far-reaching effects, and affect the agent’s decisions process at

multiple states and at potentially different system times.

An action influence, ∆i, that removes action ai from consideration in state sti,

removes one edge for each possible successor state upon taking ai in sti, and removes

any now-unreachable states. By enumerating the successor states (via the transition

function), an ODP can calculate the expected change to the number of edges, |E∆i
i |,

and states |S∆i
i |, caused by adding ∆i to Θj. Combining those quantities with the

previous marginal cost estimates in Section 4.3.2.1 yields:

∆i ·
dCOp

dΘj
(Θj) =

(
5.28|SΘj

i |+ 3000
)
|S∆i
i |+

(
1.2|EΘj

i |+ 2000
)
|E∆i

i |

where |SΘj

i | and |EΘj

i | are the expected number of states and edges respectively for

agent i given that it conforms to Θj . |SΘj

i | and |EΘj

i | are given from the previous search

iteration, meaning this computation requires only O(|Ssuccessori |) time for enumerating

the successor state space.

The expected Q-value change associated with an action influence ∆i, that removes

action ai from consideration in state sti, is equal to the expected difference between

the Q-value of ai and the next best action. Mathematically this yields,

∆i ·
dROp

dΘj
(Θj) = Est 7→sti

[((
max

a=〈·,ai,·〉
Qπ∗(st, a)

)
−
(

max
a′ 6=〈·,ai,·,〉

Qπ∗(st, a′)

))
x(st, a)

]

This computation requires O(|A||S|) time in the worst case, but the |S| term represents

the number of states that map into sti. In expectation, this term is |S||Si| , and assuming

the agents have meaningful local observation capabilities, will typically be much less

than the total number of global states. For example, in the firefighting experiments

that follow in Section 4.3.3, 50 global states (from the typically hundreds of thousands)

map to a single local state.

103

Algorithm 4.2 shows how an ODP can embed the above computations in a greedy

hill-climbing search to create an organizational design that modifies the agents’ local

action spaces so as to impart a target metareasoning regime. The algorithm begins by

initially preventing all actions from consideration in every state for every agent (lines

1–3). For the firefighting domain, I choose to begin with an organizational design

(Θ0) that prevents everything and then the ODP adds actions back in, as opposed to

beginning by allowing consideration of everything and subtracting actions out, due

to the topologies of ∆i · dCOpdΘj
(Θj) and ∆i · dROpdΘj

(Θj) and the tradeoff function, f(·)
between them. That is, in the firefighting domain, ∆i’s with low ∆i · dROpdΘj

(Θj) tend to

also have low ∆i · dCOpdΘj
(Θj). This is because actions with low expected Q-value (over

all sampled problems as calculated within ∆i · dROpdΘj
(Θj)) tend to occur in states that

are infrequently reached, in large part since ∆i · dROpdΘj
(Θj) is based on the occupancy

measures. For example, moving to a distant cell has low Q-value both because fighting

fires there is typically the responsibility of another agent, and because few feasible

trajectories bring the agent to that cell. As such, if the algorithm begins by allowing

consideration of all actions, it begins at a point where the magnitude of the gradient

is small and thus is prone to premature halting. However, by beginning by preventing

consideration of everything, the algorithm begins at a point with a large gradient, and

is likely to find a better solution. Intuitively speaking, this pattern seems like it would

be common in many domains, since computation of ∆i · dROpdΘj
(Θj) is based on occupancy

measures, but if not, then the algorithm should ideally be initialized to a point of the

organizational design space with a high performance gradient. Other alternatives to

discourage the ODP from identifying poor local optima include standard hill-climbing

techniques like Monte Carlo, random restarts, simulated annealing, etc.

After initialization, the algorithm greedily selects local actions to add back in (lines

4–12). An important subtlety here is that I restrict the space of possible ∆is to those

actions possible in each agent’s currently reachable local state space. This is important

because efficiently utilizing the methodologies from Sections 4.3.2.1 and 4.3.2.2 relies

on the assumption that only the current increment, ∆i, to Θj impacts the performance.

For example, when calculating ∆i · dCOpdΘj
(Θj), the only information the ODP must

determine is |S∆i
i | and |E∆i

i |. If portions of the unreachable state space could already

be connected (i.e., due to adding back an action in some unreachable state in an

earlier iteration), then |S∆i
i | and |E∆i

i | could depend on the history introducing of

prior ∆is, which would greatly increase the complexity of the computation. Moreover,

influences to unreachable states by definition have zero expected impact, thus the

search algorithm can safely ignore such influences. Finally (lines 13–21), Algorithm 4.2

104

uses the noAStatesi sets to ensure that each agent will have a well-defined local

problem by forcing every reachable state to have at least one available action.

Figure 4.7 illustrates how Algorithm 4.2 searches through the influence space for

agent 1’s movement actions. (Influences to the fight fire and NOOP actions as well

as all influences for agent 2 are omitted for ease of illustration.) As the hill climbing

progresses, the ODP adds additional actions for the agent to consider, where actions

with the highest Pareto improvement are added first.

The computational complexity of Algorithm 4.2 is O(|∆i|2 · POp cost), where

POp cost is the complexity of calculating POp(Θ −∆i). From the discussions earlier

in this section, POp cost for an action influence ∆i that prevents consideration of

ai in state sti has complexity O(|Ssuccessori |+ |A||S|) corresponding to the total cost

to compute ∆i · dCOpdΘj
(Θj) and ∆i · dROpdΘj

(Θj). It is worth noting, however, that this

result hides the computational cost for calculating the optimal joint policy necessary

for computing ∆i · dROpdΘj
(Θj), which could in fact be a substantial fraction of the

ODP’s computation in practice (e.g., in my empirical evaluation in Section 4.3.3,

computing joint policies for sampled problem episodes accounts for� 99% of the ODP’s

computational costs). Thus, more precisely, the total complexity of Algorithm 4.2 is

O
(
|∆i|2 (|Ssuccessori |+ |A||S|) + |Ai||Si|n

)
. Of course, the |Ai||Si|n term is quite poor;

however, intuitively any computational ODP would require knowing a quantitative

description of organizational patterns (without which it could not decide which

interactions the MAS should pursue), and thus for a Dec-MDP based MAS, would

also include this term in its complexity analysis.

4.3.3 Evaluation

I begin my empirical evaluation by briefly describing some implementation pa-

rameters of the evaluation domain and ODP. These experiments use the firefighting

domain, where in each episode there are: two agents; two fires, each with initial

intensity independently and uniformly selected from {1, 2, 3}, and with a uniformly

random, but distinct location; delay in each cell independently and uniformly chosen

from [0, 1]; and a time horizon of 10. Agents incorporate their organizations into their

local models and solve their decision problems using the methodology developed in

Section 3.5.1.

In principle, an ODP could associate an action influence ∆i with a specific local state

(i.e., with a distinct influence for each agent-action-state combination). Section 4.1 as

well as previous research (Dignum et al., 2005), however, has shown that providing

abstract influences as opposed to detailed micromanagement can be beneficial when

105

Figure 4.7: Illustration of influence search (Algorithm 4.2) for agent 1’s movement
actions. The agent can move into a cell in a direction where it first passes a dotted
line, but not a solid line. The agent begins in the cell indicated with ∗. Dashed boxes
indicate the optimal influence to add into the organization for each search iteration.

106

Algorithm 4.2 Action Influence Creation

Input: ODP’s domain model, and the Pareto optimality function f
Output: Set of organizational influences, Θ, that modify agents’ action spaces

1: Θ← ∀i, ∀t,∀sti, Ai,sti \\initially prohibit all actions in all states

2: ∀i, S̃i ← {s0
i } \\S̃i is agent i’s reachable state space

3: ∀i, noAStatesi ← {s0
i } \\noAStatesi : ∀sti ∈ S̃i s.t. Ai,sti = ∅

4: while ∃(∆i = ai,sti) ∈ Θ s.t. POp(Θ) < POp(Θ−∆i) do

5: ∆∗i ← arg max
∆i∈{∀i,∀sti∈S̃i,ai,st

i
∈θi}
−
[
∆i · dROpdΘ

(Θ) δf
δROp

(Θ) + ∆i · dCOpdΘ
(Θ) δf

δCOp
(Θ)
]

6: θi ← θi −∆∗i
7: if ∆∗i ’s s

t
i ∈ noAStatesi then noAStatesi ← noAStatesi − sti

8: for possible successor states, st+1
i , from ∆∗i that /∈ S̃i do

9: S̃i ← S̃i ∪ st+1
i

10: noAStatesi ← noAStatesi ∪ st+1
i

11: end for
12: end while
13: while ∃i, noAStatesi 6= ∅ do

14: ∆∗i ← arg max
∆i∈{∀i,∀sti∈noAStatesi,ai,st

i
∈θi}
−
[
∆i · dROpdΘ

(Θ) δf
δROp

(Θ) + ∆i · dCOpdΘ
(Θ) δf

δCOp
(Θ)
]

15: Θ← Θ−∆∗i
16: noAStatesi ← noAStatesi − sti
17: for possible successor states, st+1

i , from ∆∗i that /∈ S̃i do
18: S̃i ← S̃i ∪ st+1

i

19: noAStatesi ← noAStatesi ∪ st+1
i

20: end for
21: end while
22: return Θ

agents possess local expertise. For now (I revisit this issue in depth in Chapter 5), I

incorporate this principle in two ways:

1. By presenting the ODP with a model where it only knows the mean cell delay

as opposed to the specific delay of each cell for an episode. This also provides

the agents with local expertise relative to the ODP (e.g., as in Section 4.1).

2. By having the ODP consider action influences for each agent i that remove

an action, ai, from an abstract (rather than specific) local state, ŝti, where

the abstraction drops all state factors excluding agent i’s location. The ODP

computes the incremental operational reward and cost associated with an ab-

stracted influence ∆̂i by taking the expectation over the set of influences, {∆i},
that map into ∆̂i (i.e., whose states map into ŝti). This abstraction was chosen

107

to prevent the ODP from micromanaging the agents, and forces an influence

to apply to a broader set of situations. Using an abstracted influence space

additionally reduces the ODP’s computational requirements, since the influence

space is smaller, and fewer samples are needed to compute stable estimates

for ∆̂i · dROpdΘj
(Θj). As we will see in Chapter 5, finer abstractions enable the

ODP to find more refined organizational designs at the expense of greater ODP

computation and/or overfitting (and vice versa for coarser abstractions).

The ODP sampled and solved training problems from its domain model until

it had stable estimates for ∆̂i · dROpdΘj
(Θj), which took 300 sample episodes in these

experiments. To test my claim that the algorithm correctly finds an organizational

design that imparts a desired metareasoning regime upon the agents, I explored a

space of environments with a range of metareasoning tradeoff demands, parameterized

by POp = ROp −COp/b for different values of the Pareto optimality parameter b ∈ Z+.

I present results across b values such that at extremely costly reasoning (low b) the

ODP designs an organization where the agents only consider executing a single action

(FF in this case), and at extremely low reasoning costs (high b) designs an organization

where every action the ODP expects an agent to ever want to execute is included. Note

that the latter, max-bOrg, will still exclude local actions that would never be sensible

(e.g., fighting fires in distant cells that are always another agent’s responsibility).

Unexpectedly, I found that the ODP was able to encode surprisingly nuanced

organizational designs despite being limited to a space of abstracted influences. For

example, the ODP frequently imposes unidirectional movements (see Figure 4.8),

where an agent is allowed to consider moving into a cell, but the action to move

back and in effect “undo” the previous action is removed from consideration. This

type of influence imparts a good metareasoning regime by forcing the agent to reason

about complete, irreversible action trajectories rather than needlessly reasoning about

reversing prior actions. These unidirectional movements also yield a coordinated joint

policy by discouraging an agent from rushing to the other side of the grid (where the

other agent is located) to fight a high-intensity fire since it would be unable to come

back and fight an initially-closer fire. Instead, the agent will prioritize fighting fires

close to its initial location before moving to the other side of the grid, by which time

another agent could have fought those fires.

To quantitatively determine the expected joint reward and agent computational

cost characteristics of each organizational design, I presented the MAS with a sequence

of 1500 test problem episodes, randomly sampled fromM∗, and had the agents utilize

each of the organizational designs (as well as a local baseline) in each of the episodes.

108

Agent 1 Agent 2

∗ ∗

Figure 4.8: Movement action influences of the 1e6Org for each agent. An agent can
move into a cell in a direction where it first passes a dotted line, but not a solid line.
Agents begin in the cells indicated with ∗.

Figures 4.9a and 4.9b show the mean ROp and COp respectively over the 1500 test

episodes for each of the bOrgs and the local baseline. These graphs show that as the

ODP faces different target metareasoning tradeoffs (i.e., values of b), the organizations

it creates have monotonically increasing performance properties in both ROp and COp.

That is, as computation becomes cheaper (b increases), the ODP creates organizations

that induce the agents to consider more actions (and thus utilize more computation),

which yields increased expected joint reward. Also observe that these bOrgs, which are

limited to influences that only remove actions from consideration, do not lead to agents

finding better policies than they otherwise would have (ROps of the bOrgs do not

surpass the local baseline), but find these policies with significantly less computation

(lower COp). In Figure 4.9c, I use the expected ROp and COp data to calculate the

metareasoning regime imparted upon the agents by each of the organizations as a

function of tradeoff parameterizations. This graph shows that, for any target tradeoff

parameterization β, the best organizational design (i.e., maximizing the y-axis) is

approximately the bOrg the ODP generates with b = β, which confirms that the ODP

designs organizations that approximately optimize the Pareto front defined by the f

function within POp.
An additional dimension for evaluation is the ODP’s computational savings gained

by my incremental search techniques. Firstly, if the ODP enumerated the organizational

design space, it would evaluate O(2|∆i|) ≈ 4.2e180 candidate organizational designs in

the firefighting domain as opposed to the O(|∆i|2) = 360, 000 candidates it considers

with my incremental search, which highlights the importance of selectively searching

the design space. Secondly, despite being only a constant factor in the theoretical

complexity, the ODP’s computational costs in these experiments are overwhelmingly

dominated by the costs to solve for optimal joint policies to determine ∆̂i · dROpdΘj
(Θj).

While calculating optimal joint policies may seem daunting, the ODP would have

109

(a) ROp(Θ) for the bOrgs and local baseline

(b) COp(Θ) for the bOrgs and local baseline

(c) Imparted metareasoning regime for the bOrgs and local baseline
as a function of Pareto optimality parameter

Figure 4.9: Performance characteristics of the bOrgs created by my ODP.

110

to solve for optimal joint policies for each candidate design, Θj + ∆̂i, if it directly

calculated the performance of each candidate instead of the (conditionally independent)

incremental impact of ∆̂i. Thus, the approximation techniques empirically result

in numerous orders of magnitude of computational savings, and allow the ODP to

efficiently compute locally optimal organizational designs.

4.3.4 Limitations and Concerns

The greedy hill-climbing algorithm my ODP utilizes (Algorithm 4.2) is but one

choice for searching the organizational influence space. While the computational

advantages of an incremental search algorithm seem crucial for regulating the ODP’s

computational complexity (Section 4.3.2), other incremental search algorithms, such

as Monte Carlo, A∗, etc., could supplant the greedy hill climb that my ODP utilized.

A particular weakness of the greedy hill-climbing approach that I have identified

is that it can sometimes mis-apply influences that are along the front of the POp
Pareto topology. Namely, the ODP’s statistical estimates are constructed from

optimally coordinated policies, and as such, the ODP calculates an influence’s “optimal”

incremental impact, i.e., the calculations for the ∆i · dCOpdΘj
(Θj) and ∆i · dROpdΘj

(Θj)

terms anticipate additional, complementary influences also being added into Θ. In

the interior of the Pareto topology, this optimistic anticipation of complementary

influences subsequently being added comes to fruition; however, at the Pareto front,

the ODP may not add more influences (since they would decrease POp). Thus, at the

Pareto front, the ODP’s estimates of ∆i · dCOpdΘj
(Θj) and ∆i · dROpdΘj

(Θj) are overestimates.

Given such overestimates, the ODP can add ∆i into the organization when it actually

shouldn’t have. Obviously, a more intelligent search algorithm (e.g., that looks forward

to consider the trajectory of influences added into Θ) could fix this inconsistency at

the expense of additional computational costs for the ODP; however, it is important

to note that the significance of these inconsistencies is small by definition (since they

can only occur on the Pareto front). It is also worth noting that unlike other greedy

hill-climbing applications where myopic reasoning can lead to halting too soon, my

ODP implementation will only mis-apply influences by adding too many influences

into Θ. That is, since ∆i · dROpdΘj
(Θj) can never be an underestimate, my ODP will

never undervalue an influence.

More broadly, other search algorithms could increase the expected POp of the Θ

found by the ODP via increasing the likelihood of better local maxima (e.g., Monte

Carlo search), or via a more comprehensive search of the organizational design space

(e.g., A∗ search). An open question is whether such improvements are worth pursuing

111

(given their higher computational costs), or if the greedy search is already identifying

an Θ that is close to the global optimum, especially if the ODP were parameterized

with an optimal abstraction (see Chapter 5).

4.4 Conclusion

In this chapter, I have made two primary contributions. Firstly, in Section 4.1,

I contributed a heuristic principle for selecting effective organizational influences

(Principle 4.1) that states that a well-designed organization should influence only the

factors of agents’ models that are associated with agent interactions. By doing so,

an organization leaves the agents room to exercise their local expertise while still

influencing how that local expertise contributes to the collective interaction patterns.

I then identified that for the Dec-MDP framework I have adopted, these types of

influences should stem from the agents’ reward-/transition-dependencies. In my

evaluation of Principle 4.1, I found that it yields robust organizations that outperform

the local baseline MAS (especially in a subset of critical problem episodes) while

avoiding micromanagement that disregards agents’ local expertise.

My identification of Principle 4.1 contributes to the body of organizational reasoning

techniques by providing a theoretically-derived, empirically-validated heuristic for

delimiting a sub-class of effective organizational influences. Principle 4.1 contributes a

design heuristic not only to problem-driven approaches (Section 2.2.2) where it guides

a human to identify effective influences, but also to experience-driven approaches

(Section 2.2.3) where it informs a MAS (and/or adaptation algorithm) of a sub-class

of patterns that are organizationally significant. Moreover, Principle 4.1 contributes

a strategy for focusing the efforts of mixed approaches to organizational reasoning

(Section 2.2.4), including my agent-driven one, on pertinent influences for an ODP to

specify, and suggests techniques for automated organizational design (e.g., like those I

developed, see below).

The second contribution of this chapter is the development of computational

representations and algorithms for automated organizational design built uponPrin-

ciple 4.1’s premise. In Section 4.2.1, I formulated a general-purpose, agent-driven

methodology for constructing a computational ODP consisting of three stages, namely:

compute organizational patterns; select organizational influences; and influence agent

decision making. In the remainder of Section 4.2, I illustrated an implementation

of these stages for the Dec-MDP framework I have adopted in this dissertation. I

described how my ODP implementation can estimate the qualities of the agents’

112

actions by: Monte Carlo sampling of the problem space; computing the optimal joint

policy for each sampled episode; and then aggregating the information computed

across the samples. My ODP implementation then selects organizational influences by

identifying patterns in the statistical estimates of the quality of the agents’ actions.

Agents assimilate these organizational influences to their local models and solve their

local reasoning processes as described in Chapter 3.1.2. My empirical evaluation of

this ODP implementation showed that it creates organizations that are intuitively

sensible and can exploit domain structure to yield MAS performance superior to that

of my best hand-crafted organizations.

In Section 4.3, I discussed how an organization can be used to impart a metarea-

soning regime upon the MAS. I extended my ODP implementation to incrementally

reason about the expected impact that candidate organizational influences would have

on the agents’ metareasoning, and developed techniques for efficiently estimating these

statistics (for influences that modify an agent’s action space). My evaluation demon-

strated my ODP implementation’s ability to identify intricate, nuanced organizations

(despite being limited to action influences) that exploit domain structure while also

following the Pareto topology between ROp and COp.

My overarching strategy for automated organizational design contributes a mathe-

matical, agent-driven approach for creating an explicit organization from first principles

to the organizational reasoning community, which previously either: relied on human-

expertise to provide an organization (e.g., Section 2.2.2); did not explicitly represent

the organization (e.g., Section 2.2.3); or focused on configuring/adapting an organiza-

tion rather than initially creating one (e.g., Section 2.2.4). Moreover, my overarching

approach to automated organizational design contributes an agent-driven framework

upon which the organizational reasoning community can further study specific aspects

of organizational reasoning (e.g., as I do in Chapter 5 with abstract organizational

influences). More narrowly, my specific ODP implementation contributes a proof of

concept that my overarching ODP strategy is well-formed, and provides a functioning

ODP implementation for the Dec-MDP community. Finally, extending my ODP to

explicitly reason about and optimize the agents’ metareasoning regime contributes

the first systematic study of multiagent metareasoning through organizational design,

which had previously been viewed as distinct issues and studied by distinct research

communities. As such, my techniques in this regard contribute to both the metarea-

soning and organizational reasoning communities, providing a new solution approach

for both metareasoning and organizational design as well as raising awareness of the

cross-cutting nature of organizational design.

113

CHAPTER 5

Abstract Organizational Influences

As identified in Section 4.3.3 and prior organizational reason techniques (e.g., see

Section 2.2.2), abstractions can play a central role in the specification of organizational

influences. Broad, encompassing influences can be advantageous if an ODP wants

to instill overarching organizational guidance for the agents’ operational decisions.

Alternatively, sets of narrow, detailed influences can be advantageous if an ODP

wants to ensure specific coordination patterns specialized for particular environmental

conditions. Recent OMLs and ODPs have recognized the significance of abstraction

choice for creating effective organizational designs (Dignum et al., 2005; Horling &

Lesser, 2008; Hübner et al., 2007; Sims et al., 2008; Sleight & Durfee, 2013, 2014),

and typically include mechanisms for an organizational designer to formulate abstract

influences. However, the field still lacks a formal understanding of how abstraction

choices impact organizational design processes and outcomes.

In this chapter, I systematically construct a formal, agent-driven theory of abstract

organizational influences. I begin in Section 5.1 by discussing the motivating factors

for abstract organizational influences. Then, I formally define abstract organizational

influences and present a mathematical framework for analyzing the dimensions of an

influence abstraction mechanism in Section 5.2. In Section 5.3, I describe how to

extend my ODP techniques developed in the previous chapters to incorporate abstract

influences. Using my framework, I empirically analyze the effects of abstract influences

on both the ODP and the performance of organizations designed with abstract

influences, and identify characteristics of effective abstractions (Sections 5.4, 5.6,

and 5.7). Given these results, in Section 5.5 I converge on task-delineated abstractions

as a general-purpose heuristic for selecting an influence abstraction mechanism, and

confirm this heuristic’s effectiveness empirically.

114

Agent 1 Agent 2

∗ ∗

Figure 5.1: Movement action influences in the four-fire domain for each agent using a
position abstraction. An agent can move into a cell in a direction where it first passes
a dotted line, but not a solid line. Agents begin in the cells indicated with ∗.

5.1 Motivations for Abstract Influences

In Section 4.3.3, the ODP utilized an abstraction that relied on only an agent’s

position to identify patterns in that agent’s reasoning and behaviors. The resulting

organizations exploited specific problem properties—especially that a problem instance

often had exactly one fire for each agent to fight—and specified influences (e.g.,

Figure 4.8) that essentially captured that, once an agent starts moving toward a fire,

it shouldn’t think about reversing its movements, and that it is not useful to (think

about) moving to places more easily reached by the other agent. The ODP discovered

that, because each agent typically fought only one fire, an organization that disallows

reverse movements and movements deep in to the other agent’s region of responsibility

performs well.

More broadly, however, this class of patterns could be overly restrictive. For

example, consider even the seemingly innocent extension of the (two-agent) firefighting

domain to have four fires per episode instead of two. Since each agent might fight

multiple fires in the extended version of the domain, an encompassing abstraction

that at all times prohibits reverse movements could stop the agents from reaching

a second fire, and as a result have poor operational performance. Alternatively, the

ODP could allow the agents to consider more actions (e.g., Figure 5.1), but at the

expense of the agents incurring additional computational costs. Either option results

in a decreased net operational performance; however, a narrower abstraction (e.g.,

that partitions time) could provide the necessary organizational expressivity for the

ODP to differentiate these coordination patterns in a more nuanced specification.

For example, this could correspond to removing and/or redirecting the influences to

prohibit reverse movements after some time has elapsed.

Stepping back, I identify two primary motivations for abstract organizational

influences in an agent-driven approach:

115

1. By generalizing where influences apply beyond just the seen instances, an appro-

priate abstraction can improve organizational performance. In the firefighting

domain, an example is where generalizing instances of purposeful movement

toward a fire to prohibit reverse movements everywhere can be fruitful.

2. By abstracting over a wider space of instances, an appropriate abstraction can

find influence patterns with greater confidence (i.e., it avoids overfitting). For

example, in the firefighting domain, this could correspond to seeing enough

instances to confidently constrain the agents to local partitions of the grid world.

Of course, these benefits can be lost if abstraction is taken too far. Overextend-

ing abstraction can misapply influences, and can conflate patterns or properties of

influences that can harm operational performance and/or confuse an ODP’s search

algorithm. Alternatively, too little abstraction can too sparsely distribute the ODP’s

limited information, yielding poor statistical estimates that make the ODP’s search

algorithm sensitive to sampling artifacts, and organizational performance reflective of

the agents’ arbitrary priors.

Beyond these fundamental motivations, abstract influences could have several

other benefits depending on the application. One intuitive example is that abstract

organizational influences can reduce organizational specification size. This can be

important when an agent queries its θi to find the influences associated with the

part of its Mi currently being considered (i.e., as described in Section 3.1.2). In my

computational agents, however, I employ hashing to provide O(1) query complexity

for organizational lookup, which makes specification size a non-issue. Nonetheless,

for other application domains, specification size could be an important attribute, for

example, with human agents or agents who must sequentially observe their local state

factors and are thus unable to easily hash their entire sti × ai × st+1
i space into an

organizational specification.

The ODP’s computational costs are another possible motivating factor for abstrac-

tion, where broader influences imply a smaller organizational design space. From

Section 4.3.2.3, Algorithm 4.2’s complexity isO
(
|∆i|2 (|Ssuccessori |+ |A||S|) + |Ai||Si|n

)
,

which does depend on the size of the organizational design space (i.e., |∆i|). However,

it is important to note that the search’s computational costs are an insignificant

portion (i.e., � 0.1%) of the ODP’s total computational costs in my experimental

implementation; rather, the bulk of the computation is sampling problem instances

and computing optimal joint policies to estimate the influences’ incremental impacts,

which is not affected by abstraction choice. Nonetheless, if a different (e.g., optimal,

116

exhaustive) search algorithm were used instead of a greedy hill climb, then the effects of

abstraction to reduce the size of the organizational design space could be an important

consequence.

Yet another possible motivation for organizational abstraction is to provide flexi-

bility for the agents to make local decisions within, while still providing organizational

guidance for that reasoning. However, counter to possible intuitions, abstract organi-

zational influences are orthogonal to the flexibility an agent retains in an organization.

For example, highly flexible organizations can be specified as an aggregation of many

fine-grained influences (e.g., in sti consider a1
i , and in sti also consider a2

i , and in sti

also consider a3
i , etc.). Thus, flexibility stems from both number of influences and

their abstraction. Of course, abstraction choice could impact the ODP’s decision of

which/how-many influences to specify, but such flexibility differences arise from ODP

decisions rather than as necessary consequences of the abstraction choice.

5.2 Dimensions of Abstract Influences

To construct a framework for analyzing abstraction in organizational designs, in

this section I provide precise, formal definitions for abstract influences and identify

dimensions of abstraction pertinent to organizational design and outcomes.

Broadly speaking, an abstract organizational influence clusters together detailed

influences and forces the ODP and agents into a monolithic treatment of the clustered

influences. Figure 5.2 illustrates this concept. On the left are examples of optimal

actions for A1 to take in its initial position, but sampled for different system times

and fire configurations. On the right is the abstract influence that, based on the

patterns seen in the samples, indicates that at this position (at any system time or

fire configuration) A1 should just consider any of the West, East, or North movement

actions. (As mentioned in Figure 5.2, this example is for illustrative purposes only,

and not from empirical data.)

Using this intuition, I formally define an abstract influence as follows.

Definition 5.1. An influence abstraction is a function G : ∆ 7→ ∆̂, where ∆̂i ∈ ∆̂ is

an abstract organizational influence.

Building from the clustering perspective, there are three primary dimensions for

characterizing abstract influences.

Definition 5.2. The inclusivity of an abstract influence, ∆̂i, corresponds to how

encompassing the influence is. Formally, the inclusivity of ∆̂i is the expected fraction

117

of agent i’s local model, sti × ai × st+1
i ∈ Si × Ai × Si, that ∆̂i modifies.1

Definition 5.3. The uniformity of an abstract influence, ∆̂i, corresponds to how

well its composing influences agree on the local model’s modification. Formally, the

uniformity of ∆̂i is the expected fraction of its composing influences that modify agent

i’s local model in the same way.

Definition 5.4. The variance of an abstract influence, ∆̂i, is the expected variance of

its composing influences’ incremental (ROp,COp) impact. This differs from uniformity

in that ∆̂i’s composing influences could all modify Mi in the same way (thus have

uniformity of 1), but have varied estimates for the incremental (ROp,COp) impact of

the modification (thus have high variance).

Figure 5.2 illustrates how the abstraction’s values along each of these dimensions

are calculated using an abstraction that drops all state factors except the agent’s

current position. I define the uniformity for an organizational design as the expected

uniformity over all of the organization’s influences (and mutatis mutandis for inclusivity

and variance).

5.3 Incorporating Abstract Influences

Incorporating abstract organizational influences into my previous ODP algorithm

(Algorithm 4.2) requires extending the calculation of an influence’s incremental impact

to an abstract influence’s incremental impact. I do this by taking the expectation over

∆̂i’s constituent influences.

∆̂i ·
dROp

dΘj
(Θj) = E∆i 7→∆̂i

[∆i ·
dROp

dΘj
(Θj)]

∆̂i ·
dCOp

dΘj
(Θj) = E∆i 7→∆̂i

[∆i ·
dCOp

dΘj
(Θj)]

Using Figure 5.2 as an example, the ODP’s estimate for ∆̂i’s incremental ROp and

COp impact is the expected impact of its constituent influences. The ODP search

algorithm uses these values exactly as it would with un-abstracted influences.

Agents incorporate abstract organizational influences into their local reasoning

in exactly the same way they incorporate un-abstracted influences (i.e., the process

1Beyond abstracting the domain of influences, one could also envision abstracting the range (i.e.,
the effect of the modification). However, such an approach often decreases uniformity, which is
typically undesirable (see Section 5.4). Still, abstracting the range could be an interesting direction
for future work (e.g., in the firefighting domain abstracting all movement actions to a single influence).

118

A1 F2

a∗1 is East
incremental ROp = 1
incremental COp = 325

Time = 7

A1

F3

F2

F1

F1

a∗1 is West
incremental ROp = 5

incremental COp = 2100

Time = 0

A1

a∗1 is North
incremental ROp = 3

incremental COp = 2600

Time = 0

F2

F1

F3

F1

A1

a∗1 is West
incremental ROp = 0.2
incremental COp = 890

Time = 3

F1

F1

A1

a1 is {West, East, North}
incremental ROp = 2.3
incremental COp = 1479

Figure 5.2: Illustration of the Pos abstraction’s dimensions (see Table 5.1) for agent 1’s
initial position. The influence’s inclusivity is 1

50
, its uniformity is 1

3
, and its (ROp,COp)

variance is (4.63, 1.11× 106). Quantities shown are for the four example ∆1s (rather
than ∆̂1’s entire domain), and are for illustrative purposes only and not from empirical
data.

described in Section 3.1.2). As each agent i is solving its local decision problem, it

queries θi to find the ∆̂i that applies to the sti × ai × st+1
i currently being considered

within itsMi, and then modifies itsMi in accordance with that ∆̂i. For simplicity in

this work, I limit my consideration to abstractions where a ∆i maps to a single ∆̂i. In

other words, G must be many-to-one, which implies the agents will only receive logically

consistent Θs that do not entail incompatible modifications for any sti × ai × st+1
i .

Investigating many-to-many abstractions could be an interesting line for future work

(see Section 6.2.5), since it provides flexibility for hierarchical organizational influences

like those found in modern organizational modeling languages (Dignum et al., 2005;

Hübner et al., 2007) and/or conflicting influences brought about by simultaneous

membership in multiple organizations.

For example, as agent 1 is solving for its organizationally optimal policy π
∗|θ1
1 , in

any state whose location is its initial position, θ1 specifies the ∆̂1 shown in Figure 5.2.

Using ∆̂1, agent 1 will modify its model to only permit consideration of the West,

East, and North movement actions in its currently considered state.

119

Figure 5.3: Position clusters for the PCluster based abstractions (dashed lines represent
cell boundaries for reference). ∗ indicates the agent’s initial location.

5.4 Influence Abstraction Effects

The research community has developed an extensive library of abstraction tech-

niques such as: state abstraction (Li et al., 2006) and finite controllers (Bernstein et al.,

2005; Poupart & Boutilier, 2003) for decision-theoretic problems; influence (Witwicki,

2010) and coordination locale (Varakantham et al., 2009) abstractions for efficient

coordination; hierarchical planning (Amato et al., 2014; Sutton et al., 1999) and task

networks (Sardina et al., 2006) for sequential reasoning; and the various abstract

modeling constructs for an organizational modeling language (Dignum et al., 2005;

Hübner et al., 2007), among many others. Two overarching commonalities within these

techniques, however, are to approach abstraction as: 1) overlooking unimportant or

irrelevant information and/or 2) clustering similar information together. Using these

as a basis for designing abstractions over various points along abstraction dimensions, I

crafted several families of abstractions for the firefighting domain that are summarized

in Table 5.1. Broadly speaking, organizations created from these abstractions map

a set of state factors (for specific mappings see Table 5.1) to the ∆̂i for that state,

where ∆̂i informs agent i of which actions it should consider for that state. Together,

these ∆̂is essentially construct regions of responsibility for each agent, which can vary

over time if system time contributes to the abstraction mechanism.

These experiments utilized the firefighting domain, where there are: 2 agents;

4 fires uniformly distributed throughout the grid (without replacement) and with

initial intensity i.i.d. uniformly sampled from {1, 2, 3}; cell delays i.i.d. uniformly

sampled from [0, 1]; and a time horizon of 12. Additionally, to provide finite maximum

durations before an agent could impact another, I introduce a cap on the maximum

number of consecutive failed movement attempts before success is ensured (two in

these experiments). I maintain the Markov property by adding a new state factor to

maintain the number of consecutive failed moves.

120

Abstraction Expected Organizational
Name Inclusivity Variance (10−3ROp, 103COp) Description of Θs Constructed from Abstraction

None 1 (2.50, 1297) Every state maps to the same ∆̂i.

Time 1
12

(35.2, 17.26) System time in a state maps to ∆̂i.

Pos 1
50

(2.08, 0.99) Agent’s position in a state maps to ∆̂i.

TCluster 1
4

(34.5, 204)
Like Time, but system time is clustered into intervals. For

example, states with times in [1, 3] map to the same ∆̂i.

PCluster 1
12

(3.00, 15.8)
Like Pos, but positions are clustered into neighborhoods as

illustrated in Figure 5.3.

Time + Pos 1
600

(18.1, 0.02)
System time and agent’s position in a state, together, map

to ∆̂i.
TCluster +

Pos
1

200
(22.0, 0.22)

Clustered system time and agent’s position in a state,
together, map to ∆̂i.

Time +
PCluster

1
144

(28.1, 0.27)
System time and clustered agent positions, together, map to

∆̂i.
TCluster +
PCluster

1
48

(37.3, 2.84)
Clustered system time and clustered agent positions,

together, map to ∆̂i.

Table 5.1: Descriptions of the organizational abstractions I evaluate in Section 5.4. Uniformity for each abstraction relies on the
specific Pareto characterization, but typically decreases as agent computation becomes less costly.

121

To observe the impact of abstract influences with respect to POp’s Pareto topology

(i.e., as agents have more or less available computational resources), I encoded the

same Pareto topology as in Section 4.3.3, POp(Θ) = ROp(Θ)− 1
b
COp(Θ) for parameter

b ∈ Z+, and for each abstraction had the ODP create organizations for different values

of b. High b values represent when the agents have abundant computational resources

relative to the pace of the environment, and vice versa for low values.

Additionally, to observe the impact of abstract influences with respect the amount

of information the ODP possesses, I had the ODP create organizations from three

different available information profiles. I controlled the amount of information available

to the ODP by artificially manipulating the problem samples from which it constructed

estimates of the ∆̂i · dROpdΘj
(Θj) and ∆̂i · dCOpdΘj

(Θj) terms used in Algorithm 4.2. At one

extreme, the ODP exactly sampled the evaluation problem set, which encodes that

the ODP has perfect information. Then, as the ODP based its estimates off of fewer

sample problems (i.e., the training set is a diminishing subset of the test problems),

the ODP possessed increasingly imperfect domain information.

As in Section 4.3.3, I evaluated each organization on 300 problem instances

to empirically compute ROp and COp for each Θ, from which I calculated POp for

various Pareto optimality parameterizations. Recall the motivating example from

Section 5.1 where the influences to prohibit reverse movements were problematic in

the four-fire domain. Figure 5.4 illustrates influences that the ODP specified using

the TCluster+Pos abstraction. Notice how as time progresses, the actions that each

agent can consider changes. Early on, each agent is forced into one-way paths, which

streamlines their computation without typically precluding optimal actions. Then as

time progresses, each agent is allowed to consider most movements in the locations

near its initial location (in case it was able to quickly fight a fire and is now pursuing

its second fire), but still is forced into one-way paths further out (in case it is still

pursuing its first fire). Continuing to the next time cluster, the agent is afforded most

movement actions on its side of the grid (in case there are still fires in this region),

but is forced into one-way paths on the side of the grid opposite its initial location

(in case there are no more fires on its initial side of the grid and it helping the other

agent). Finally, at late times, the agents’ movements are heavily restricted because

they usually have fires extinguished by this time.

Figure 5.5 shows the POp curves for each organization. Figures 5.6, 5.7, and 5.8

show the separate ROp and COp curves for the organizations constructed from perfect

information, 2/3 information, and 1/3 information respectively. To allow the reader to

more easily visualize how the ROp and COp curves change in response to the amount

122

Agent 1 Agent 2

∗

∗ ∗

∗ ∗

∗ ∗

∗Time ∈
{0, 1, 2}

Time ∈
{3, 4, 5}

Time ∈
{6, 7, 8}

Time ∈
{9, 10, 11}

Figure 5.4: Movement action influences in the four-fire domain for each agent using
the TCluster+Pos abstraction. An agent can move into a cell in a direction where it
first passes a dotted line, but not a solid line. Agents begin in the cells indicated with
∗.

of information the ODP possessed, Figure 5.9 shows the ROp and COp curves for

select organizations that are particularly susceptible to information scope effects in

Figure 5.5. In the next sections, I systematically analyze these results to develop

a framework for characterizing how abstraction dimensions impact: the operational

performance of an organization (Section 5.4.1), the sensitivity of the ODP’s search

algorithm (Section 5.4.2), and the effects of information availability on the ODP

(Section 5.4.3).

123

Figure 5.5: POp curves for each abstraction for different amounts of ODP information.
Solid, dashed, and dotted curves correspond to organizations constructed from perfect
information, 2/3 information, and 1/3 information respectively.

124

(a) (b)

Figure 5.6: ROp and COp curves for organizations constructed from perfect information.

125

(a) (b)

Figure 5.7: ROp and COp curves for organizations constructed from 2/3 information.

126

(a) (b)

Figure 5.8: ROp and COp curves for organizations constructed from 1/3 information.

127

(a) (b)

Figure 5.9: ROp and COp curves for select organizations to permit direct visualization of how information scope affects the ODP.
Solid, dashed, and dotted curves correspond to organizations constructed from perfect information, 2/3 information, and 1/3
information respectively.

128

5.4.1 Operational Performance

The POp curves in Figure 5.5 reveal two differentiating characteristics for opera-

tional performance across abstractions: a curve’s smoothness (which will be discussed

in Section 5.4.2) and a curve’s raw quality (i.e., its vertical placement on the graph).

Analysis reveals that an organization’s uniformity is strongly correlated with per-

formance quality. One exemplary case of this is the None abstraction, where the

organizations at low b (i.e., when computation is expensive) restrict all but a single

action from consideration (i.e., the same action must be taken in every state). These Θs

by definition have maximal uniformity and also obtain relatively high POp as compared

to other abstractions with similar inclusivity (e.g., Time). Then, as b increases, the

None organizations permit consideration of additional actions, eventually decreasing

uniformity to its minimal value, and these minimal-uniformity Θs obtain the worst

POp.
Considering this observation more deeply, decreased uniformity arises when al-

ternative actions could be optimal for specific instances entailed in ∆̂i’s domain, for

example like in Figure 5.2. Rather than restrict the agent from considering some subset

of Pareto-valuable actions that the ODP knows the agent might need in a specific

problem instance, the ODP instead permits consideration of all actions that could be

Pareto-valuable, and relies on the agent’s local intelligence to appropriately select from

among this set. As a result, the ODP under-constrains the agents’ reasoning, which

increases COp and thus decreases POp. However, for high-uniformity influences, the

ODP can aggressively restrict the agents’ actions to a limited set of Pareto-valuable

actions.

POp’s reliance on inclusivity is interesting in that excess inclusivity can yield poor

POp (e.g., the None and Time abstractions), and too little inclusivity can also result

in poor POp (e.g., the Time+Pos abstraction). However, abstractions with moderate

inclusivity are associated with the maximal POp curves. It is straightforward to show

that excess inclusivity increases susceptibility to the effects of decreased uniformity;

that is, additional states map into the same ∆̂i but may not have the same optimal

actions. Too little inclusivity is detrimental for the opposite reason; that is, since a

low-inclusivity ∆̂i applies to such a narrow space, there is insufficient diversity in the

ODP’s statistical estimates to generalize to unseen problem instances. Consequently,

the agents can encounter states that do not map to any of the specified influences, in

which case the agents default to their local, baseline reasoning and behaviors.

Examining the ROp and COp curves in Figures 5.6, 5.7, and 5.8 illustrates that,

broadly speaking, as the agents’ computation becomes relatively cheaper (b increases),

129

the ODP induces the agents to consider more actions, which in turn provides opera-

tional flexibility for the agents to achieve higher ROp. The Time and Time+Pos curves

deviate from this pattern due to low uniformity across all of the Pareto conditions;

that is, the specific action an agent should take is poorly correlated with system time,

meaning that time-based abstractions cluster together different actions. This biases

the ODP into permitting the agents to consider additional actions even when Pareto

conditions discourage excessive agent reasoning.

5.4.2 ODP’s Search Sensitivity

A striking feature of Figure 5.5 is the large dip in POp for some of the abstractions

as computation becomes less costly (e.g., in the None abstraction), when we would

normally expect smooth, monotonically increasing POp curves. In each of these cases,

the pre-dip organization would actually be a preferable Θ to the one created by

the ODP for these Pareto conditions, which implies that the ODP’s greedy search

algorithm performed poorly in these instances.

Notice that these dipping cases occur most significantly in the abstractions with

high variance. Recalling Definition 5.4, high variance corresponds to ∆̂is composed of

∆is with significantly different expected values for ∆i · dROpdΘj
(Θj) and ∆i · dCOpdΘj

(Θj), which

in turn makes the incremental impact of ∆̂i have high statistical variance. Utilizing

such imprecise estimates for a ∆̂i’s incremental impact naturally makes the greedy

search algorithm sensitive to initial conditions and small data errors introduced from

the ODP’s sampling process, which results in the unexpected POp performance dips.

In other words, the ODP believes from its data that certain influences will improve

POp, when in reality, the ODP is overestimating the reward and/or underestimating

the computational costs of adding the influences to the design, and experimentation in

the evaluation domain ultimately reveals that these influences are actually detrimental

to POp.

5.4.3 ODP’s Information Scope

Examining Figure 5.5, we unexpectedly observe that organizations created from

less information tend to achieve higher POp, whereas intuition would dictate that

additional information should tend to improve the quality of an organizational design.

Further analysis reveals that an abstraction’s inclusivity is a primary determining

factor for analyzing an ODP with respect to its available information. As the ODP

receives additional information, it is being exposed to increasingly-unusual problem

130

instances, analogously to how the cumulative probability of drawing a value three

standard deviations from the mean of a Gaussian increases as you draw more samples.

For abstractions with high inclusivity, the optimal actions from these unusual problem

instances inevitably get clustered together with the more common optimal actions,

essentially creating multimodal distributions for the ∆̂is’ statistical estimates. Since

my ODP computes a ∆̂i’s incremental impact as the mean of its constituent ∆is’

incremental impacts, multimodal distributions fundamentally violate the assumptions

of the ODP’s statistical representation, and result in decreased POp from the resulting

organizations. This argues that an ODP should employ more sophisticated statistical

models for representing estimates of high inclusivity influences. An interesting direction

to consider for future work would be an automated approach for correcting the ODP’s

statistical representation in response to influence inclusivity (see Section 6.2.4 for some

initial thoughts in this direction).

Figure 5.5 also demonstrates that some abstractions are more robust to the effects of

information availability than others. For example, the None abstraction is completely

immune to these effects and the TCluster abstraction is also exceptionally resilient

in this regard. While these abstractions have high inclusivity and thus should be

susceptible to information availability effects, they also have extremely low uniformity.

Thus, incorporating specialized ∆is into a ∆̂i cannot induce the ODP to permit

additional actions, because those actions are already permitted due to the common

cases.

5.5 Task-Delineated Abstractions

To summarize the key findings from my analysis in the previous section, the best

abstractions are ones that:

� Have moderate inclusivity. This provides enough leeway for an ODP to

specify nuanced influences where appropriate but is broad enough to permit

influences to generalize to the larger problem space.

� Have high uniformity. This allows the ODP to more aggressively restrict

the agents’ local models to a smaller set of actions for consideration, which

streamlines computational effort thereby improving performance.

� Have low variance. Low variance reduces sensitivity in the ODP’s search

algorithm, resulting in smoother performance curves that better match the

Pareto topology.

131

These observations lead to a high-level strategy of adopting abstractions that

segment each problem instance into maximally-sized components that agree on the

same action with (nearly) the same expected incremental computational and reward

impacts. Although such a strategy is not computationally practical as it would involve

searching through the space of clusterings, it does suggest a heuristic proxy, which is

to group together states/actions that are collectively pursuing the same outcome. I

refer to this heuristic clustering strategy as a task-delineated abstraction.

For example, in the fire-fighting domain, a task-delineated abstraction would

imply segmenting a problem episode into tasks associated with putting out a specific

fire. See Table 5.2 for the task-delineated abstractions I provided to the ODP for

the firefighting domain, where the number of active fires serves as an indicator

variable for which task an agent should currently be pursuing. It is important to

note that while the FCount+Pos and FCountLocal+Pos abstractions have identical

inclusivity and very similar variance, the FCount+Pos abstraction has much higher

uniformity, and thus my framework predicts is the more desirable abstraction. The

FCountLocal+Pos abstraction’s uniformity is lower because the ODP’s information is

unevenly distributed across the abstraction space. For example, there are relatively few

states where there are four fires on one half of the grid, causing the ODP’s information

to be concentrated in the portion of the abstraction space corresponding to 0-2 active

fires in the agent’s half of the grid, and subsequently decreasing uniformity. In contrast,

the FCount+Pos abstraction more evenly distributes the ODP’s information, resulting

in higher uniformity.

Broadly, the task-delineated heuristic has theoretical foundations suggesting that

it leads to abstract influences with moderate inclusivity, high uniformity, and low

variance. Inclusivity is moderate because the abstraction allows the ODP to restrict the

task-level behaviors of the agents while still allowing information to generalize within

the scope of a single task (i.e., provides leeway for agents to use their local expertise

to most effectively complete their organizationally designated tasks, Section 4.1).

Uniformity is high and variance is low if appropriate tasks are identified that cluster

similar actions with similar incremental impacts.

Figure 5.10 shows the POp curves of these abstractions using the same evaluation

methodology as in Section 5.4, along with the local baseline and the best abstraction

from Section 5.4 (TCluster+Pos). ROp and COp curves for these abstractions are given

in Figure 5.11. Observe that the heuristically-recommended task-delineated abstrac-

tion (FCount+Pos) achieves essentially the same POp quality as the TCluster+Pos

abstraction, which is unsurprising given that the clustered system times essentially

132

Figure 5.10: POp curves for task-delineated abstractions alongside bounding abstrac-
tions (TCluster+Pos and local baseline). Solid, dashed, and dotted curves correspond
to organizations constructed from perfect information, 2/3 information, and 1/3
information respectively.

133

Abstraction Expected Organizational
Name Inclusivity Variance (10−3ROp, 103COp) Description of Θs Constructed from Abstraction

FCount 1
4

(3.48, 120) Number of active fires in a state maps to ∆̂i.

FCountLocal 1
4

(2.26, 274)
Number of active fires on agent’s half of grid in a state maps

to ∆̂i.
FCount +

Pos
1

200
(3.46, 0.11)

Number of active fires and agent’s position in a state,
together, map to ∆̂i.

FCountLocal
+ Pos

1
200

(2.76, 0.18)
Number of active fires on agent’s half of grid and agent’s

position in a state, together, map to ∆̂i.

Table 5.2: Descriptions of task-delineated abstractions. Uniformity for each abstraction relies on the specific Pareto charac-
terization, but typically decreases as agent computation becomes less costly. For completeness, I included the FCount and
FCountLocal abstractions despite my framework predicting that they have poor performance characteristics. I did not construct
PCluster variants because PCluster and Pos were qualitatively identical in the experiments in Section 5.4.

134

(a) (b)

Figure 5.11: ROp and COp curves for task-delineated abstractions alongside bounding abstractions (TCluster+Pos and local
baseline). Solid, dashed, and dotted curves correspond to organizations constructed from perfect information, 2/3 information,
and 1/3 information respectively.

135

Figure 5.12: An example initial state with four fires and agents located initially
adjacent to each other. Darker cell shading indicates higher cell delays. Ai indicates
agent i’s location, and Fx indicates a fire with intensity x.

proxy for task-delineation. Notice, however, that because FCount+Pos has lower

variance, it is less sensitive to information availability effects (i.e., its three POp curves

for information quantities are nearly identical), and also exhibits fewer ODP search

sensitivities (i.e., the POp curves are smoother and monotonically increase over the

Pareto topology). As my framework predicts, the other abstractions’ high variance,

low uniformity, and/or high inclusivity make them suboptimal, which provides addi-

tional evidence for the framework’s effectiveness for analyzing influence abstraction

mechanisms.

Finally, it is worth recognizing that, in retrospect, my previous position-based

abstraction (Section 4.3.3) is essentially task-delineated for the version of the firefighting

domain with only two fires, and as my framework predicts, performed well. That is,

since each agent was expected to fight a single fire, there is a single task for each

agent.

5.6 Evaluation With Initially Adjacent Agents

To provide additional empirical evidence of the effectiveness of my abstract influence

techniques, in this section, I present results from a set of experiments where the agents

begin adjacent to each other in the center of the grid (those in Figure 5.12). As

described in Section 3.4 and demonstrated in Section 3.5.3, the initial configuration

of state can have significant impact on the effectiveness of the local baseline, since a

problem episode may have more or less opportunities for an organization to beneficially

influence the MAS. As such, the experiments in this section present a qualitatively-

distinct environment from the previous experiments in this chapter.

The experiments in this section follow the same parameterization and methodology

as in Section 5.4, except for the agents’ initial locations. Additionally, I did not

construct PCluster variants because PCluster and Pos were qualitatively identical in

136

the experiments in Section 5.4. Figure 5.13 shows the POp curves for the organizations

in these experiments. Figures 5.14, 5.15, and 5.16 show the separate ROp and COp

curves for the organizations constructed from perfect information, 2/3 information,

and 1/3 information respectively.

Firstly, notice that, because there are greater opportunities for an organization to

improve the agents’ coordination (i.e., by differentiating agents’ task-level behaviors),

many of the organizations are able to achieve higher ROp than the baseline MAS in

these experiments (only when computation is inexpensive enough), while still having

lower COp. This result reiterates the observations about baseline performance from

Sections 3.4 and 3.5.3, and highlights the importance of evaluating an ODP technique

in both domains where the baseline is effective (e.g., there are few opportunities

for additional organization to improve coordination) and also where the baseline is

ineffective (e.g., additional organization is required to differentiate agents’ task-level

behaviors).

Secondly, my framework for analyzing the effectiveness of an influence abstrac-

tion mechanism (Section 5.4) correctly predicts organizational performance. High-

uniformity, moderate-inclusivity, low-variance abstraction mechanisms result in high-

performing organizations that smoothly and robustly follow the Pareto topology for

all of the ODP-information profiles.

Finally, observe that my task-delineated abstraction (FCount+Pos) remains a

sound choice, and achieves the best POp for the majority of the Pareto space (and is

nearly as good as the best otherwise), while smoothly and robustly following the Pareto

topology. A notable exception to FCount+Pos’s dominance of the other abstractions is

that the FCountLocal+Pos is a superior choice when the agents’ computational costs

are inexpensive (because it has higher uniformity for these Pareto conditions). For

the FCount+Pos abstraction, there are a more actions that are only Pareto-valuable

when computation is exceptionally inexpensive (e.g., as indicated by the distinct

inflection point for the FCount+Pos curve in Figure 5.14b), which inevitably get

distributed across the abstraction space, resulting in decreased uniformity. However,

the FCountLocal+Pos abstraction does not exhibit this property (e.g., has a smoother

derivative in Figure 5.14b), meaning that the set of Pareto-valuable actions is smaller,

and already included in the organization (resulting in higher uniformity). This

occurs because the state space is unevenly distributed across the FCountLocal+Pos

abstraction (i.e., there are few states with four fires on one side of the grid). While

this unevenness was detrimental in Section 5.5 when the agents began spread out

throughout the grid (since the fires agent i should fight could be in any direction from

137

Figure 5.13: POp curves for each abstraction for different amounts of ODP information.
Solid, dashed, and dotted curves correspond to organizations constructed from perfect
information, 2/3 information, and 1/3 information respectively.

138

(a) (b)

Figure 5.14: ROp and COp curves for organizations constructed from perfect information.

139

(a) (b)

Figure 5.15: ROp and COp curves for organizations constructed from 2/3 information.

140

(a) (b)

Figure 5.16: ROp and COp curves for organizations constructed from 1/3 information.

141

the agent), when agents begin in the center of the grid, the fires agent i should fight

are typically in a single direction.

5.7 Evaluation with Additional Agents

My experiments in this section utilize a version of the firefighting domain with:

a 10× 6 grid; 4 agents who begin at the locations in Figure 5.17; 8 fires, uniformly

distributed throughout the grid (without replacement), and initial intensity i.i.d.

uniformly randomly selected from {1, 2, 3}; no cell delays (i.e., movement actions are

deterministic); and a time horizon of 8.

To compute optimal joint policies for sampled problem episodes as part of com-

puting a quantitative description of organizational patterns (Section 4.2.2), my ODP

performed an additional layer of task abstraction using the options framework. Specif-

ically, to permit the ODP to compute optimal joint policies, it constructed options

that each correspond to a pair of agents (agents 1 and 2 were grouped together, as

were agents 3 and 4). The ODP constructed three options in a state for each pair of

agents, where each option is associated with a pair of fires to fight, and I embedded a

heuristic to inform the ODP of which pairs of fires should be translated into options.

The heuristic selects three fires corresponding to the: (a) closest fire to the first agent

i, (b) closest fire to the second agent j, and (c) fire with closest mean distance to the

pair of agents. The three options the ODP constructs for a pair of agents i and j are

then simply 〈Ai→(a), Aj →(b)〉, 〈Ai→(c), Aj →(b)〉, and 〈Ai→(a), Aj →(c)〉. To

break ties between equally-distant fires, the ODP selected the fire with the largest,

min-distance to another agent, which has the effect of prioritizing fires that are far

from the other agents. While this heuristic is not theoretically ensured to retain the

optimal joint policy, I hand-validated that it does in fact allow the ODP to compute

the optimal joint policy for ten problem episodes (out of the ten that I checked),

suggesting that the heuristic is at least sensible despite lacking theoretical guarantees.

For these experiments, I used the same methodology as in Section 5.4, and con-

structed a space of organizations over the same space of Pareto optimality parameters

(POp(Θ) = ROp(Θ)− 1
b
COp(Θ)), for each abstraction (excluding the PCluster abstrac-

tions which were qualitatively identical to the Pos abstractions in prior experiments)

for the three available information profiles (300, 200, and 100 episode samples respec-

tively). Importantly, however, note that the space of possible agent interactions has

increased exponentially compared to Section 5.4, since there are additional agents

and additional fires to be fought. Thus, despite the ODP sampling the same number

142

Figure 5.17: Example initial state in the four agent version of firefighting domain. Ai
is the position of agent i, and I = x indicates that there is a fire in that cell with
intensity x.

of episodes as in those experiments, its knowledge of the MAS’s interaction space

is significantly diminished (from 1.6 × 10−3% to 1.8 × 10−9% of the initial fire

configurations), to the point that its statistical estimates are no longer stable.

Figure 5.18 shows the POp curves for the organizations in these experiments.

Figures 5.19, 5.20, and 5.21 show the separate ROp and COp curves for the organi-

zations constructed from perfect information, 2/3 information, and 1/3 information

respectively.

Firstly, notice that in contrast to the experiments in Sections 5.4, 5.5, and 5.6

where additional information from more sample problems tended to degrade POp, in

the experiments here additional information almost universally results in organizations

with increased POp. This reflects the notion that despite sampling the same number

of episodes, the ODP effectively has much less information in these experiments,

and as it obtains additional information from more samples, the performance of the

organizations can increase substantially. Interestingly, the task-delineated abstractions

are exceptionally sensitive to this information deficit, which is caused by the information

from the sampled episodes being unevenly distributed across the abstraction space.

For example, there are relatively few states in the optimal joint policy trajectory where

there are 6-7 active fires (since agents fight fires in parallel), yet those states are ones

where influencing the agents into appropriate coordination is critical (so that redundant

efforts of agents pursuing the same fire can be preempted). Consequently, the ODP

has poor statistical estimates for how the MAS should act in these critical states,

and mis-applies organizational influences, resulting in poor performance compared to

Sections 5.4, 5.5, and 5.6 (though the FCount+Pos abstraction is still the third best

abstraction).

The Time+Pos abstraction also exhibits interesting performance properties in

these experiments. In Sections 5.4, 5.5, and 5.6, the Time+Pos abstraction performed

143

Figure 5.18: POp curves for each abstraction for different amounts of ODP information.
Solid, dashed, and dotted curves correspond to organizations constructed from perfect
information, 2/3 information, and 1/3 information respectively.

144

(a) (b)

Figure 5.19: ROp and COp curves for organizations constructed from perfect information.

145

(a) (b)

Figure 5.20: ROp and COp curves for organizations constructed from 2/3 information.

146

(a) (b)

Figure 5.21: ROp and COp curves for organizations constructed from 1/3 information.

147

relatively poorly compared to the other abstraction choices (as a consequence of poor

uniformity); however, the Time+Pos abstraction is arguably the best abstraction

choice here (as a consequence of near perfect uniformity). Since the abstraction has

such low inclusivity, the ODP is essentially overfitting the organization to the episodes

that it sampled (which are identical to the test samples). In the previous experiments,

overfitting yielded poor results because of uncertainty about which action was optimal

for a specific location-time tuple (e.g., due to stochastic movement actions, and

overpopulation of the abstraction space). Here, however, overfitting evenly distributes

the information from the episode samples across the abstraction space, and comes

close to simply dictating optimal policies to the agents (which is possible because of

deterministic movements).

Finally, note that because of sub-par organizational performance, the local baseline

performs relatively well compared to the organizations my ODP creates (e.g., in

Figure 5.18). Moreover, there are many cases (when the agents’ computational costs

are not prohibitively expensive) where the MAS would be better off not using the

organization and instead fell back to its baseline model. Unfortunately, my ODP is not

designed to “realize what it doesn’t know,” so that it could (weakly-) dominate the

baseline system by not specifying detrimental influences constructed from error-prone

statistical estimates. I describe some initial thoughts for overcoming this issue more

in Section 6.2.1.

5.8 Conclusions

In this chapter, I contributed a formal, agent-driven theory of abstract organiza-

tional influences. I precisely defined abstract organizational influences, and formally

analyzed their dimensions in Section 5.2, before extending my existing automated

ODP techniques to incorporate abstract influences (that modify agents’ action spaces)

in Section 5.3. I empirically evaluated the impact that such abstract influences have on

both the ODP and resulting organizational performance in Sections 5.4, 5.6, and 5.7,

and found that abstractions with high uniformity, moderate inclusivity, and low

variance tend to reliably yield organizations that can smoothly follow the ROp, COp

Pareto topology. Finally, I identified that constructing a provably optimal abstrac-

tion is computationally infeasible, but formulated a heuristic abstraction mechanism

that decomposes the influence space into task-delineated segments, and validated the

heuristic’s effectiveness empirically (Sections 5.5, 5.6, and 5.7).

My formal definitions and framework for analyzing abstract influences contribute

148

the first precise, systematic investigation of abstract organizational influences to the or-

ganizational reasoning community, whereas the field previously lacked a mathematical

understanding of how abstraction choice could impact the ODP and resulting outcomes.

Additionally, these contributions provide the Dec-MDP research community with a

theory of organizational abstractions that informs adoption of organizational tech-

niques in Dec-MDP frameworks. My task-delineated abstraction heuristic contributes

a theoretically-derived, empirically-validated (for influences that modify agents’ action

spaces) heuristic for identifying an effective influence abstraction, which provides the

organizational reasoning and Dec-MDP communities with an overarching strategy for

selecting an influence abstraction mechanism.

149

CHAPTER 6

Conclusion

The focus of this dissertation has been on the development of an agent-driven

approach to organization, where decisions about how to design and represent an

organization for a MAS stem from how the organization is expected to impact the

agents’ reasoning and behaviors. I begin in this chapter in Section 6.1 by summarizing

the contributions of my research, and then in Section 6.2 describe some open questions

that my research raises.

6.1 Summary of Contributions

In this section, I revisit my claimed contributions from Section 1.4, and provide

specific instances of where each is realized in Chapters 3, 4, and 5.

6.1.1 Organizational Specification Language

In Chapter 3, I developed an agent-driven strategy for defining the organizational

design space.

� In Section 3.1, I defined an organizational influence as a modification to an

agent’s local decision problem, and an organization as a set of organizational

influences. After committing to a particular Dec-MDP based reasoning frame-

work for the agents’ decision processes, I then enumerated the ways in which

the agents’ models can be organizationally influenced to define the agent-driven

organizational specification language for this Dec-MDP based reasoning frame-

work. As is, my specification language contributes to Dec-MDP based reasoning

techniques since it provides a mathematically-sound approach for incorporat-

ing organizational reasoning techniques into the agents’ operational reasoning

processes.

150

� In Section 3.1, I showed how the agents can natively understand and directly in-

corporate their organizational influences into their local decision problems, rather

than requiring additional middleware to translate an organizational specification

into unambiguous information that agents can act upon. In doing so I also

defined the semantics of organizational influences associated with modifications

to each construct of the agents’ modeling representation, which systematically

defines the organizational design space for the Dec-MDP based framework I

adopted. This agent-driven definition of the organizational design space con-

tributes to the body of organizational reasoning techniques, and provides a

well-defined, systematic method for understanding how an organization can

relate to a MAS given the agents’ reasoning frameworks, whereas prior research

(Section 2.2) only informally understood this relationship.

� In Section 3.2, I leveraged the mathematical foundations of the agents’ decision

frameworks to formally analyze the theoretical properties of my organizational

specification language. I proved that the number of expressible organizational

designs in my specification language (with distinct impact on the MAS’s joint pol-

icy) is O(|π|!), where |π| is the cardinality of the joint policy space. Additionally,

I proved that my specification language is both necessary and complete for the

Dec-MDP based reasoning framework I have adopted. This analysis contributes

a mathematical characterization of the organizational design space, and pro-

vides the Dec-MDP research community with theoretically-sound, agent-driven

organizational specification language. Moreover, my analytical methodology

contributes a general, agent-driven strategy for analyzing the theoretical prop-

erties of organizational specification languages to the organizational reasoning

community.

� In Section 3.5, I empirically demonstrated the effectiveness of specifying influ-

ences in each of the constructs of my organizational specification language. In

that evaluation, I was able to hand-specify organizations that impart effective

coordination patterns on a MAS, which illustrates the practical applicability

(beyond the theoretical capability) of deploying of my agent-driven approach for

specifying an organization. These experiments (along with my other empirical

experiments throughout this dissertation) contribute evidence of my agent-driven

approach’s practical effectiveness to the organizational reasoning community,

and also contribute an illustration of the potential benefits of organizational

techniques to the Dec-MDP research community.

151

6.1.2 Organizational Performance Metrics

In Chapter 3, I used my agent-driven approach to construct principled metrics

of organizational performance based on how the MAS is expected to perform when

conforming to the organization, and used these metrics to formulate a well-defined

organizational design problem.

� In Section 3.3, I leveraged the agents’ reasoning framework to define the perfor-

mance of an organization in terms of the MAS’s joint reward and the agents’

computational costs when conforming to the organization, and framed a well-

defined organizational design problem from these metrics. My agent-driven

definition of the organizational design problem contributes to the body of organi-

zational reasoning techniques, and provides a formal, mathematical foundation

for selecting between alternative organizations. Moreover, my problem for-

mulation establishes the basis for computational ODP techniques that create

an organization from first-principles (e.g., like I develop in later chapters), in

contrast to prior research that relies on an expert human to identify appro-

priate organizational constructs (e.g., Section 2.2.2) that may subsequently be

configured/adapted (e.g., Section 2.2.4).

� In Section 3.4, I systematically formulated of a baseline MAS against which to

compare organizational performance by constructing an aligned-but-uninformed

MAS. This methodology for constructing a baseline organization contributes

a performance benchmark to the organizational research community that can

be used to evaluate the effectiveness of an ODP technique to identify beneficial

organizational influences.

6.1.3 Automated Organizational Design

In Chapter 4, I developed an agent-driven strategy for automated organizational

design, and implemented that strategy to create a computational ODP for the Dec-

MDP I have adopted throughout this dissertation. Also in Chapter 4, I discussed how

to extend my ODP implementation to explicitly consider the agents’ metareasoning

regime. Then, in Chapter 5, I constructed a formal, agent-driven theory of abstract

organizational influences, and showed how to extend my ODP techniques to abstract

influences.

� In Section 4.2.1, I contributed a general-purpose, agent-driven methodology for

constructing a computational ODP consisting of three stages, namely: com-

152

pute a quantitative description of organizational patterns; select organizational

influences; and influence agent decision making. First, the ODP computes a

quantitative description of organizational patterns, which serves to inform the

ODP of which joint interactions are worthwhile for the MAS to pursue. Second,

the ODP selects organizational influences by identifying patterns in its quantita-

tive description of organizational patterns. Third, the agent’s incorporate their

organizational influences and solve for their local policies as previously described

(Chapter 3).

� In Section 4.3, I showed how to extend my ODP representations and algorithms

to explicitly reason about and balance the Pareto tradeoff between the agents’

computational costs (COp) and the quality of their joint policy (ROp). Also in

that section, I developed techniques for efficiently estimating the incremental

impact (both to the agents’ computational costs and quality of their joint

policy) of an organizational influence, and embedded those computations in

a parameterized, incremental search algorithm to create an organization that

imparts the approximately optimal metareasoning regime upon the MAS. My

problem formulation and resulting algorithm contribute the first ODP techniques

that intentionally, explicitly optimize the metareasoning regime imparted on a

MAS by an organization.

� In Chapter 5, I formulated a framework for analyzing the effects of alternative

abstract organizational influences, and showed how to extend my agent-driven

techniques to incorporate an abstraction mechanism. This framework contributes

the first in-depth study of the effects of alternative abstraction choices both

on the organizational design process and on the MAS’s performance using

the designed organizations. Moreover, my results in this section contribute a

systematic understanding of how to design and/or choose from among influence

abstraction mechanisms, namely to employ an abstraction with high uniformity,

moderate inclusivity, and low variance.

� In Sections 4.2.5, 4.3.3, 5, and 5.7, I performed empirical evaluations of my ODP

techniques, and found that my ODP implementation is able to construct effective

organizations for the MAS that: (approximately-) optimize the metareasoning

regime imparted by the organization; utilize abstract organizational influences;

and scale to complex MASs even when the ODP’s domain information is dimin-

ished. Individually, these experiments demonstrate the effectiveness of my ODP

techniques to cope with the associated challenges of the respective sections (e.g.,

153

metareasoning, abstractions, and scaling). Moreover, together these experiments

contribute compelling evidence for the efficacy of my automated ODP techniques

as well as my agent-driven approach to organizations in MASs more broadly.

6.1.4 Influence Selection Heuristics

In Chapters 4 and 5, I identified heuristics for guiding a human in designing an

effective organization for a MAS and also for guiding usage of my automated ODP.

� In Section 4.1, I analyzed the organizational design space to identify that a

well-designed organization should influence only the factors of agents models

that are associated with agent interactions, which for the Dec-MDP-based agents

I employ corresponds to factors stemming from reward-/transition-dependencies.

My empirical evaluation of this heuristic confirms its effectiveness, especially in

MASs where the agents possess local expertise that is imprecisely modeled by the

ODP. As such, this heuristic contributes an overarching strategy for focusing an

ODP’s efforts on the aspects of organizational design where it can best contribute

to the MAS’s performance, namely on influencing the agents into coordinated

patterns of joint interactions rather than attempting to micromanage the details

of how the agents’ achieve their respective portions of those joint interactions.

� In Section 5.5, I used my influence abstraction framework to identify task-

delineated abstractions as a heuristic for selecting an effective influence abstrac-

tion for the ODP, since it tends to result in abstractions with high uniformity,

moderate inclusivity, and low variance. I empirically evaluated this heuristic,

and found that it led the ODP to robustly construct effective organizations

that smoothly follow the Pareto topology. This heuristic contributes not only a

tool for guiding selection of a significant parameter of my ODP techniques (i.e.,

choice of abstraction mechanism), but also a broader strategy for an ODP to

efficiently reason about abstracting organizational influences.

6.2 Open Questions

My work in this dissertation has focused on developing core representations and

algorithms for an agent-driven approach to organizational reasoning. Unsurprisingly,

however, there are several other challenging aspects of the organizational design

problem (both identified from prior organizational reasoning research as well as

uncovered by my work here) that could be interesting directions for further study.

154

6.2.1 Organizationally Adept Agents

Recalling from Section 2.2.4, the premise of organizationally adept agents (OAAs)

is that the agents explicitly make adaptations to their organization because they are

aware of the broader context of how their organization is expected to relate to the MAS.

This is accomplished via including annotations in the organizational specification,

where an annotation provides second-order information about the context of the

organizational influences. The agents can monitor the environment as they experience

it, and compare their actual experiences to the expected context for which their

organizational influences were designed. If there is a mismatch, then the agents can

use the annotations as a springboard from which to adapt their organization, for

example dropping influences whose expectations are not being met in the environment,

altering influences whose expectations are close but not perfect, and/or adding new

influences to better match actual environmental conditions.

Stepping back, OAAs provide an elegant solution for dealing with uncertainty

and/or information deficiencies in my agent-driven organizational reasoning techniques.

For example, in the experiments in Section 5.7 where organizations were constructed

from insufficient information, the MAS would have been better off by not using some

of the organizational influences and instead had fallen back to the local baseline. If

the agents in the MAS were organizationally adept, they could recognize that the

expectations on which their organizational influences were based were not being met,

and adapt their organization as appropriate (e.g., ignore unjustified influences).

Another perspective on these ideas is to provide the OAAs with several alternative

organizations (e.g., sub-organizations each tailored for a specific subset of problem

episodes the MAS could encounter), and empower the OAAs to multiplex among

these alternatives. This perspective could be used, for example, as a concession to

uncertainty about the distribution of problem episodes the MAS will experience.

In the remainder of this section, I perform some initial experiments to illustrate

that my agent-driven approach is amenable to OAA techniques. To perform these

experiments, I use the 10-agent firefighting domain described in Section 3.5.3 and

consider two different models of how fires arise: having an increasingly higher proba-

bility of arising toward the east end of the grid; and having an increasingly higher

probability of arising toward the west end. Note that the optimal organizational

influences are significantly different between the two environments; in the eastEnvi-

ronment the organization should designate more agents to the eastern region (and

vice versa for the westEnvironment). I hand-designed a specialized organization for

each case, which are analogous to fullOrg from Section 3.5.3 except that the primary

155

Figure 6.1: Illustration of the westOrg.

areas of responsibility (PARs) are non-uniformly sized to compensate for the biased

fire distributions. For example, in the westOrg (Figure 6.1), 3 agents are responsible

for the western 4 columns (4×3, 4×4, and 4×3 PARs). Working eastward, the PARs

get progressively larger, starting with two 4×5 PARs (stacked vertically), then two

5×5 PARs, then two 6×5 PARs. Finally, a lone agent is responsible for the eastern

edge with a 5×10 PAR. The eastOrg is a symmetric copy of the westOrg. Associated

with each organization is a set of annotations informing each agent that the ODP

(which was me in this case) expected one fire, on average, to be in its PAR (for that

organization).

I provided the agents with both of these annotated organizations, in addition to an

annotated fullOrg, which has uniformly sized and evenly distributed PARs. As such,

the fullOrg is not intended to perform well for either environmental parameterization,

but should be mediocre in both environments. The agents all initially adopt (based on

the ODP’s directives) fullOrg, to reflect the ODP’s uncertainty about the environment.

As episodes are experienced, the agents monitor the number of fires that are located

in their respective PARs. They then jointly aggregate this observational evidence, e,

and perform Bayesian inference to calculate the likelihoods that each of the possible

expected environments (as captured within the annotations) is the actual environment

being observed, which are used to estimate the expected reward of following each

available organization. The agents then collectively and greedily adopt the organization

with the highest anticipated expected reward. Formally, they adopt Θ̃ as follows:

Θ̃ = arg max
Θ

E[POp |Θ, e]− c(Θc,Θ)

156

E[POp |Θ, e] =
∑

j

Pr(Mj|e)E[POp |Θ,Mj]

where c(Θc,Θ) is the cost of switching from the current organization Θc to Θ, and

serves to temper the agents’ adaptations. I assume there is no cost for remaining in

the same organization, ∀i c(Θi,Θi) = 0. Pr(Mj|e) is the likelihood of environmental

model Mj being the actual model given e, which the agents calculate via Bayesian

inference. E[POp|Θ,Mj] is the expected performance of following organization Θ in

Mj , which I assume is provided by the ODP in the annotations. For these experiments,

I estimated E[POp |Θ,Mj] by a priori simulating Θ on a training set of episodes

created from Mj, and POp = ROp (i.e., metareasoning concerns are ignored).

My experiments present the agents with episode batches where the true environment

model, M∗, is selected uniformly randomly from the two environments every 20

episodes (all organizations face the same episodes in the same order). The agents are

allowed to collectively adopt whichever organization they deem best at the beginning

of each episode before they observe the initial state. Since M∗ is dynamic, I allow

the ODP to set a decay rate in the annotations, which the agents use to decay the

importance of their past observations of how many fires were in their PARs. I evaluated

several organizations on this problem set: statically using the east/west/fullOrg for

every episode; and several parameter settings of the OAA process described above.

OAAX refers to the OAA process above where the organizational switching cost is X.

My results are summarized in Figure 6.2, which confirms several intuitions. Firstly,

statically following either specialized organization is generally undesirable since they

perform poorly when used in the environment they were not intended for (i.e., using

the westOrg in the eastEnvironment); however, statically following fullOrg makes a

significant improvement since it is weakly suited to both environments. Secondly,

by allowing the agents to react to the shifting environment, the OAA capability (in

general) can yield a large performance gain. Finally, if the organizational switching

cost is low, the agents should maintain sufficient observational evidence history in

order to prevent the agents from switching organizations due to a transient episode,

such as when an episode from the eastEnvironment happens to “look” like an episode

from the westEnvironment due to unlikely fire locations.

These results provide an initial demonstration that my agent-driven approach is

extensible to OAAs, but leave many questions unanswered. Most significantly, how

does an ODP create annotations to accompany its organizational influences (which

was done by hand in my experiments above)? In principle, my ODP has an extensive

number of expectations about the domain and/or agents, for example, as captured

157

Figure 6.2: Expected reward vs. the observational evidence decay rate.

in its quantitative description of organizational patterns (Section 4.2.2); however,

providing this full set of expectations as annotations seems at best excessive or at worst

counterproductive (e.g., could lead agents to fixate on less significant expectations with

little practical importance). An open challenge is thus identifying a subset of (possibly

abstract) organizational annotations that summarize the significant expectations upon

which the organization is vitally dependent.

Another significant challenge is how to maintain organizational consistency across

the OAAs as they adapt their organization (I forced agents to make collective adap-

tations in my experiments above). Organizations are constructed to be utilized as a

whole (i.e., the influences to the various agents are codependent), and unilateral OAA

adaptations may result in mismatched influences with poor aggregate operational

performance. Further, it is not known under which conditions locally-motivated orga-

nizational adaptations will converge (assuming a stationary distribution of episodes),

or the speed of such a convergence (should it exist). As such a possible direction

for future research would be to develop strategies for decentralized organizational

adaptations that ensure the currently adopted organization is internally consistent.

6.2.2 Other Influence Mechanisms

My organizational specification language (Section 3.1) identifies that each of the

constructs in the agents’ decision making framework could be used as a lever for

158

influencing the agents. Throughout this dissertation, I have performed empirical

experiments with:

� Hand-identified influences to the agents’ state factors, action spaces, transition

function factors, and reward function factors in Sections 3.5 and 4.1.

� Influences identified by my automated ODP (without regard to metareasoning

and/or abstraction concerns) to the agents’ state factors, action spaces, and

transition function factors in Section 4.2.

� Influences identified by my automated ODP (accounting for metareasoning

and/or abstraction concerns) to the agents’ action spaces in Section 4.3 and

Chapter 5.

As mentioned in the respective sections, I did not evaluate influences to the

agents’ initial state distribution factors and/or time horizon because they are generally

inappropriate for the firefighting domain. An open question, in this regard, is if there

are domains where influences to these factors have practical significance.

I did not evaluate influences that modify agents’ reward function factors with my

automated ODP techniques, because as I identified in Section 3.5, reward influences

do not have the capacity to affect the agents’ computational costs (COp). Thus,

when considering the ODP in the context of metareasoning issues, reward influences

are a less interesting mechanism to study. As mentioned in Section 4.2.3, however,

reward influences could be a useful fallback mechanism if the ODP cannot formulate

hard-constraint influences (i.e., states, actions, and transitions).

A more significant open challenge is extending my automated ODP techniques to

create influences to factors other than the agents’ action spaces, while still accounting

for metareasoning and abstraction concerns. As mentioned in Section 4.3, I elected to

focus on influences to the agents action spaces because these types of influences are

well studied in prior research and have efficiently-computable impact on the agents’

local decision problems. However, as illustrated with my hand-designed influences

(Sections 3.5 and 4.1) and when the ODP neglected metareasoning/abstraction concerns

(Section 4.2), influences to the other components of the agents’ decision problems can

also be effective, and moreover provide additional expressive power for organizationally

influencing the MAS (as shown in Appendix A). The primary difficulty in creating

influences to the transition and state (accounting for metareasoning/abstraction) is

that the impact of these influences to the agents’ decision problem can be far reaching,

rather than with limited scope as in action influences. For example, an influence to

159

remove ai from consideration in sti is created because ai is not a Pareto-valuable action

for agent i to consider, and the ODP can compute the influence’s impact by directly

examining agent i’s policy at sti. In contrast, an influence to alter Pi(f
t+1
k |sti, ai) is

created because the ODP wants to change agent i’s local policy, potentially at various

states, at various decision points (e.g., at st−1
i , s0

i , etc.), and thus the ODP cannot

directly compute the influence’s impact by directly examining the i’s policy at a single

state but rather must examine the policy more broadly. As a result, computing the

∆i · dCOpdΘj
(Θj) and ∆i · dROpdΘj

(Θj) terms of Equation 4.2 is complex.

Another aspect of my specification language that I have not explored is the

ability to create new state factors within the agents’ local representations; rather, my

experiments dealt only with constraining the agents’ existing state factors. Intuitively,

however, the capability to add new state factors to an agent’s model is incredibly

powerful as an organizational influence mechanism. For example, consider an influence

that adds a new state factor to agent i’s model that represents which task (from

among a set of organizationally provided tasks) i is currently pursuing. Such a state

factor is related to my task-delineated abstraction heuristic, but because it would be

explicitly represented in i’s state representation, the agent could use it while solving

its decision problem and coordinating with other agents (as opposed to being simply

a reasoning mechanism for the ODP). As another example, consider an influence

that adds a new state factor to multiple agents’ representations to serve as a sentinel

flag for coordinating operational decisions. This type of state factor could allow the

ODP to directly inform the MAS of which non-local information is critical to joint

performance. Unsurprisingly, creating new state factors is an exceptionally challenging

problem both since the space of possible factors is intractably large (i.e., infinite) and

the expected impact of adding a new state factor is challenging to compute. As such,

developing bounds on new state factors that are worth the ODP’s consideration and/or

heuristics for selecting from among viable candidate factors would be important topics

for pursing this direction in future work.

6.2.3 Biasing the ODP’s Statistics to Encourage Patterns

A somewhat subtle artifact of my ODP methodology is that not only does my

ODP’s effectiveness depend on the existence of interaction patterns within the problem

episodes it samples (which intuitively is necessary for any ODP), but those patterns

must be consistently expressed the same way in order for the ODP to have good

statistical information. For example, in the firefighting domain, the agents’ movements

throughout the grid to a fire could arbitrarily follow any Manhattan path (assuming

160

equally restrictive cell delays). If the ODP’s policy solver arbitrarily decided among

these alternatives for each episode sample, then the ODP’s statistical estimates would

be inconsistent, and essentially devalue the ODP’s view of how important it is for the

agent to fight that fire. Another example of this is if two agents are exact replicas

(e.g., in the firefighting domain, if they begin in the same initial location with the

same local model like in the clustered variant of experiments in Section 3.5.3), where

the ODP could arbitrarily allocate a fire to either of those agents. More generally,

this effect occurs if the ODP’s policy solver arbitrarily breaks ties between equally

good policies.

I have identified four fundamental ways for overcoming this issue, which I describe

now.

� Break ties in a consistent fashion. That is, rather than break ties arbitrarily, the

ODP’s policy solving process (i.e., as part of computing a quantitative description

of organizational patterns in Section 4.2.2) can consistently break ties in the

same way. For some policy solving algorithms (e.g., value-iteration), this solution

is straightforward, but for others (e.g., the linear program representation I use,

Equation 2.4) would require comprehensive knowledge of the solution technique.

Of course, this solution also implies that the interaction patterns that the ODP

eventually identifies will be biased by whatever tie-breaking procedure is selected.

� Prevent ties by making policies distinctly valued. If ties between equally good

policies are impossible (or exceedingly unlikely), then this issue is insignificant.

Throughout this dissertation, my experiments have tended to adopt this solution

when possible to avoid confounding results. For example, stochastic cell delays

decrease the likelihood of equally viable Manhattan paths, and having the agents

begin adjacent to each other (but not stacked) differentiates the optimal joint

policy. However, naturally this solution is not generally applicable to all domains.

� Use abstractions such that the statistical information from all alternative policies

maps to the same part of the abstraction space. For example, in Chapter 5, the

issue of alternative Manhattan paths to a fire is less significant if the agent’s

location does not contribute to the abstraction mechanism (although could still

matter to an extent because of system time, for example). This solution is

broadly applicable to all domains and policy solving algorithms, but could result

in an abstraction mechanism with other undesirable characteristics (e.g., poor

uniformity).

161

� Iteratively construct an organizational design, where the organizational patterns

identified from earlier sampled episodes bias the policy solver for subsequent

samples. For example, if the agent’s policy in an earlier episode took a Manhattan

path that goes north then east, the policy solver could be biased to take

Manhattan paths that go north before east in subsequent samples. This solution

is also general purpose, and moreover has theoretical basis in experience-driven

organizational techniques (Section 2.2.3). An open challenge, however, is how to

temper the reinforcement process so that the ODP can avoid getting trapped in

local optima based on its early samples.

6.2.4 Advanced Statistical Representations and Abstraction Choice

Throughout this dissertation, I computed the impact of an organizational influ-

ence by taking the expectation, which carries an implicit assumption of a uni-modal

distribution. However, as mentioned in Section 5.4.3, with abstract influences it is

possible for an ODP to be reasoning about multimodal distributions, which funda-

mentally violates the assumptions of my primitive statistical representation, and as

a consequence, results in the ODP mis-applying influences. An open challenge is to

develop a strategy for identifying an appropriate statistical representation in response

to the information the ODP needs to model, as well as to extend the ODP’s search

algorithm to reason appropriately with the more advanced statistics.

Stepping back, the statistical representation problem above is but one manifestation

of a more fundamental question of how to best represent and compose the ODP’s

limited information. That is, the information the ODP possesses should be used to

guide both the choice of influence abstraction mechanism as well as the underlying

statistical representation. For example, in Section 5.7, I identified that my task-

delineated abstraction mechanism did not evenly distribute the ODP’s information

across the abstraction space for the four agent domain, and as a result the ODP mis-

identified influences at critical points of the agents’ decision problems. A comprehensive

solution to these issues, however, could dynamically adapt the ODP’s abstraction

mechanism in response to the information it obtains from each sampled episode, so as

to avoid over-/under-populating any portion of the abstraction space. A challenge,

however, is efficiently determining the best abstraction from among the intractably

many alternatives.

162

6.2.5 Relaxing the Restrictions to Organizational Influence Mappings

Throughout this dissertation, I limited my discussions to organizational influences

with many-to-one mappings, and the ODP specified influences using a single abstraction

mechanism for the entire organization. That is, an (abstract) organizational influence

could modify agent i’s local model at several sti × ai × st+1
i tuples, but any specific

sti × ai × st+1
i tuple could only be modified by a single organizational influence.

More generally, an organization could consist of influences with different abstrac-

tions, for example corresponding to the amount of information the ODP has about

that section of the influence space as just described in Section 6.2.4. Even more

generally, an organization could consist of hierarchical influences, where for example

the influences at the top level of the hierarchy map to every state and broadly modify

the agents’ reasoning to align with organizational objectives, and influences at the

bottom level of the hierarchy map to singular states and rigidly modify the agents’

reasoning to ensure effective coordination at critical junctures. This type of hierarchi-

cal influence specification is closely related to how organizational modeling languages

specify organizations (Section 2.2.2).

Extending the agents’ reasoning mechanisms to permit hierarchical specifications

of organizational influences seems rather straightforward (indeed abstract influences do

not provide additional expressive power in the organizational specification language),

although some edge cases merit further consideration. For example, should all the

layers in a hierarchical influence specification have their modifications applied to

the agents’ models (assuming they are compatible with each other), or just the

bottom-most layer, or perhaps just some of the layers? Additionally, how should the

agents respond if the layers contain conflicting influences (supposing such conflicts are

permitted)? Arguably, such decisions could be made by the ODP and included as part

of organizational specification (at the expense of further complicating the ODP). The

larger challenges to relaxing the restrictions of influence mappings lie on the ODP

side, where the flexibility to consider influences within the context of multiple and/or

arbitrary abstraction mechanisms could greatly increase the computational complexity

of the ODP.

6.2.6 Scaling the ODP

I have identified five dimensions, corresponding to Properties 1.1– 1.5 respectively,

that intuitively could stress the ODP techniques I have developed in this dissertation:

163

Number of Agents. Increasing the number of agents in the MAS increases the

number of possible coordination patterns that an ODP must consider. Additionally,

those patterns could contain more agents, which could make the patterns more complex.

This dimension’s impact on my ODP can be seen empirically in Section 5.7.

As previously shown in Section 4.3.2.3, the complexity of Algorithm 4.2 is

O
(
|∆i|2 (|Ssuccessori |+ |A||S|) + |Ai||Si|

n)

which depends on the number of agents (n) both directly and indirectly (since the size

of the influence space is linear in the number of agents). The |Ai||Si|n term reflects

the computational complexity for the ODP to compute the optimal joint policy for

a sampled problem instance (as described in Section 4.2.2), and presents a serious

challenge in scaling my ODP implementation. For example, state of the art Dec-

(PO)MDP research (see Section 2.1.4) often evaluates algorithms in domains with only

two or three agents and short time horizons (i.e., < 10) due to the general intractability

of the reasoning framework. As such, scaling this portion of my ODP algorithm up

beyond a few agents is theoretically intractable for Dec-MDP based agents, unless

additional assumptions about problem structure are made (e.g., coordination locales

or specific forms of inter-agent dependencies). In the experiments in Section 5.7, I

scale the firefighting domain to four agents, which is the largest system for which I

could solve a problem episode for the optimal joint policy.

Stepping back, however, computing joint policies for sampled problem episodes is

a particular implementation of my more general ODP methodology for computing a

quantitative description of organizational patterns. As mentioned in Section 4.2.1, if

a quantitative description of organizational patterns can be obtained from some other

source (e.g., an external expert or the agents themselves), then the other stages of

my ODP can use those provided statistics instead of the ODP computing them itself.

Examining the theoretical scaling capabilities of my ODP for the other stages, we

see that the ODP’s organizational search costs scale quadratically in the number of

agents, at least for the greedy hill-climbing search (Algorithm 4.2).

Beyond the ODP’s computational costs, it is also important that the ODP continue

to produce organizations that perform well, even for larger MASs. Unsurprisingly, the

quality of an organization is determined by a myriad of factors besides the number of

agents, and cannot be formally disentangled without making further (unreasonable)

assumptions about the domain (e.g., the degree and form of inter-agent dependencies).

To provide a high-level intuition, however, larger MASs present the possibility of larger

164

and/or more complex coordination patterns, which could stress an ODP’s ability to

identify appropriate organizational influences. Along these same lines, the larger space

of joint interactions also stresses the ODP’s limited information (e.g., for computing

a quantitative description of organizational patterns), since information is dispersed

across a larger space of influences, and moreover, a fixed episode sample size represents

a smaller subset of the possible coordination patterns the MAS could exhibit.

MAS Iterdependencies. Tighter coupling among agents increases the importance

of correctly identifying interaction patterns and/or makes those patterns more complex.

This dimension’s impact on my ODP can be seen, for example, in the experiments from

Section 5.6, where the agents beginning adjacent to each other increases the effective

interdependency between them. Thus, as shown in those experiments, my ODP seems

robust in this scaling dimension, and if anything creates organizations with larger

benefit to the MAS as the MAS becomes more interdependent. Recognize, however,

that these improvements could be the result of simply having more opportunities for

organizing the MAS, and my ODP is actually scaling poorly in this dimension (i.e.,

a decreasing percentage relative to the optimal organization) despite an increase in

absolute effectiveness. Thus, further investigation is necessary to definitively determine

how my ODP scales in terms of the MAS’s interdependencies.

Information Deficiencies. With less information, the ODP cannot correctly influ-

ence the MAS as aggressively, and must instead rely on the agents to appropriately

exercise their local expertise. This dimension’s impact on my ODP can be seen, for

example, in the experiments from Section 4.1 where the ODP’s model was smoothed,

and/or experiments from Section 4.3 where the ODP had fewer sample episodes from

which to compute a quantitative description of organizational patterns. As shown in

those experiments, by following my organizational design principle of only influencing

the agents’ interaction patterns, and using a task-delineated abstraction mechanism,

my ODP is relatively robust to information deficiencies. Although, as shown in

Section 5.7, the ODP becomes susceptible to mis-applying influences when it has

severely insufficient information. It is challenging to formally disentangle exactly how

information deficiencies affect the quality of the organizations the ODP creates; how-

ever, at a high level, information deficiencies degrade the ODP’s statistical estimates

of how the agents should act. At certain thresholds (that depend on the domain),

these data errors lead the ODP to mis-identify which influences are appropriate for

the MAS, and can result in an under-performing, even detrimental, organization.

165

Coordination Overhead. As the agents are increasingly unable to coordinate their

local policies operationally, an ODP must compensate by providing an organization to

influence the agents into effective coordination patterns. Recalling my experimental

methodology described in Section 3.5.1, throughout my experiments, I have forced

all coordination to stem from the organization rather than permit the agents to

coordinate their local polices with operational reasoning. As such, my empirical results

throughout this dissertation already reflect the worst case of this scaling dimension.

Temporal Scope of the Organization. To create an equally performing organi-

zation but over a more diverse set of problem episodes, the ODP must identify either

broader organizational influences or a larger set of narrow influences. This dimen-

sion’s impact on my ODP can be seen across the empirical results throughout this

dissertation; for example, as the chapters progressed, I intentionally added addition

parameters and complexity to the firefighting domain (e.g., stochastic cell delays,

additional fires, and more agents). As the results in the respective sections show, my

ODP is able to adapt to a more diverse space of problem episodes.

6.2.7 Open Systems

As discussed in Section 2.2.2, organizations (especially from a problem-driven

approach) are often viewed as part of an open system, where agents can join and

leave the organization at their will, but the organization remains comparatively static.

Since my agent-driven approach leverages the agents’ decision models as a basis for

organizational reasoning, open systems are a somewhat unnatural premise in my

approach, unless another agent with the same capabilities can be recruited to directly

substitute for an agent that leaves the organization. While that assumption could be

reasonable in some domains (e.g., with homogenous agents), in other domains (e.g.,

with heterogeneous agents and finely tuned local expertise) such direct substitutions

may not be feasible. Of course, the ODP could redesign an organization for the

new MAS every time agents come and go, but doing so could be computationally

demanding and/or excessive, especially if the net change to the organization from

different agents is small. The challenge, thus, is to develop efficient techniques for

designing an organization for a MAS, given an existing organization for a similar MAS,

and resembles the transfer learning problem (Pan & Yang, 2010). Alternatively, the

ODP could assume agents are OAAs, and so will adapt their organizational roles to

fit their local expertise, in which case the challenge is for the ODP to identify and

account for such adaptations.

166

APPENDIX

167

APPENDIX A

Formal Proofs of Specification Language Necessity

In this appendix, I provide formal proofs for the necessity of each construct in my

organizational specification language (Section 3.1) as well as briefly discuss how each

construct has been used in previous work to influence agents in a MAS.

Rewards. As discussed in Section 2.2.5, the idea of influencing reward functions is

well studied in prior operational reasoning research. By influencing an agent’s reward

function, the organization provides extra incentive for the agent to execute actions

that are expected to positively contribute to collective MAS performance (and vice

versa for disincentives). In the firefighting domain, for example, an agent could have

a reward associated with being located within a certain region of responsibility. As

another example, reward influences can be used to lead an agent to establish conditions

that have low uninfluenced local reward, but that enable other agents to then take

actions that lead to high joint reward.

Theorem A.1. Organizational influences to reward factors are a necessary specifica-

tion language construct for the Dec-MDP framework I have adopted.

Proof. By Exhaustion. Assume that agent i’s local reward function is constant for

all conditions, that is, ∀sti, st+1
i ∈ Si,∀ai ∈ Ai, Ri(s

t
i, ai, s

t+1
i) = c for some constant c.

This implies agent i’s Q-values are invariant with respect to the topology of agent i’s

transition function, and more precisely that ∀sti,∈ Si,∀ai ∈ Ai, Qπ
i (sti, ai) = c · (Ti− t).

Now suppose that an ODP wants to reprioritize agent i’s local policy space (to an

organizationally desired total-ordering) but without adding or removing any policies

from agent i’s consideration. This could occur, for example, if the ODP knows that,

given the influence abstraction mechanism it is using, agent i needs to be able to

168

consider both action ai and a′i in the set of states that ∆̂i will map to. This type

of influence cannot be expressed by modifications to agent i’s state factors, actions,

initial state distribution factors, or time horizon, because those types of modifications

will alter the space of policies agent i considers. Additionally, modifying agent i’s

transition factors will not affect its policy because its Q-values are invariant to its

transition function. The only remaining construct for expressing this influence is

modifying agent i’s reward factors, and indeed modifying agent i’s rewards will impact

its Q-values and subsequently re-prioritize its local policy space without adding or

removing any policies from consideration.

Transitions. Researchers have also identified how influences to an agent’s local

transition function can be a powerful tool for guiding agent policies (Section 2.1.4.1).

By informing an agent of the expected non-local effects on its local model, the agent

can create a local policy that accounts for the actions of the other agents. For example

in the firefighting domain, an agent could be informed that fires will (probabilistically)

be extinguished at certain times without the agent fighting them. This is due to other

agents’ efforts; however, the means of extinguishing, or even existence of other agents,

need not be specified.

Theorem A.2. Organizational influences to transition factors are a necessary specifi-

cation language construct for the Dec-MDP framework I have adopted.

Proof. By Exhaustion. Assume that, given the organization an ODP has identified,

agent j stochastically exerts a non-local effect on agent i’s local state space. As a

consequence of this non-local effect, suppose agent i should prefer local policy πi over

local policy π′i, for example, because πi establishes necessary preconditions for agent

i to capitalize on the non-local effect if it should occur. Further, assume that given

the influence abstraction mechanism the ODP is using, the ODP does not want to

use ∆̂i to directly prevent any of the actions of agent i, because those actions are

Pareto-valuable over the space of states that ∆̂i maps to. In addition to actions, this

type of influence cannot be expressed by modifications to agent i’s state factors, initial

state distribution factors, or time horizon, because those types of modifications cannot

provide agent i with information about the non-local effect’s transition dynamics. A

∆̂i that modifies agent i’s reward factors could potentially induce agent i to prefer

πi over π′i; however, if we additionally assume the ODP has imprecise knowledge of

the agent’s local rewards (Property 1.3), the ODP cannot use influences to reward

factors to ensure agent i prefers πi without overwriting i’s local expertise, which

169

I have demonstrated as undesirable (Section 4.1). The only remaining construct

for expressing this influence is modifying agent i’s transition factors, and indeed,

modifying the transition function factors can inform agent i of these non-local effects,

and lead agent i to prefer πi over π′i.

Actions. Like reward and transition influences, influences to an agent’s action space

are also a familiar approach in the literature (e.g., see Sections 2.2.2, 2.2.4, and 2.2.5).

The idea of action influences is to restrict the actions an agent can consider, for

example, an organizational designer might associate different roles with different

agents and thus induce agents to specialize in the possible actions they will exercise.

Chosen well, such restrictions not only help agents pursue complementary policies,

but simplify planning for each (Section 4.3). For example, in the firefighting domain,

an agent might be assigned a region of responsibility, and thus not need to consider

actions that would take it out of that region since other agents are responsible for

other regions. Alternatively, an action influence could ensure that an agent considers

an action that it might not have otherwise (e.g., a communicative action).

Theorem A.3. Organizational influences to actions spaces are a necessary specifica-

tion language construct for the Dec-MDP framework I have adopted.

Proof. By Exhaustion. Assume the ODP wishes to constrain agent i’s local policy

space such that a certain action, ai, can never be performed, or even considered, in

state sti, but otherwise leave i’s local policy space unchanged. Influences to the agent’s

state factors, initial state distribution factors, transition function factors, and/or time

horizon can only prevent ai from consideration in sti by preventing consideration of

sti entirely, which modifies agent i’s policy space beyond what is permitted in the

example and thus inappropriate. Influences to agent i’s reward function factors could

discourage the agent from performing ai, but do not prevent i from considering ai and

thus are inappropriate in this example. The only remaining construct for expressing

this influence is to modify agent i’s action space, and indeed, modifying the action

space can prevent agent i from performing and considering ai in sti.

States. While influences to an agent’s state representation as a means to induce

coordination has not appeared in prior work, state abstraction more generally has

received a great deal of attention (Andre & Russell, 2002; Roy et al., 2005; Li et al.,

2006). One underlying concept to organizationally influencing an agent’s state factors

is that, given the organization, there could be state factors that an agent can sense that

170

are unnecessary to represent. For example, in the firefighting domain, an agent may

not need to represent the intensity of distant fires because they are the responsibility

of other agents. In addition to restricting an agent’s local state space, an organization

might purposely augment an agent’s local state representation with new features,

where the ODP has decided that those features are crucial to distinguishing between

states that otherwise would look locally identical. Such augmentations can provide

additional information that improves operational performance, but it also falls on the

ODP to delineate the communication protocols and policies that would ensure an

agent possesses up-to-date values for those features despite not being able to directly

observe them. For instance, in the firefighting domain, to improve coordination, an

ODP might insist that each firefighter tell the others which fire it is now working

towards extinguishing.

Theorem A.4. Organizational influences to state factors are a necessary specification

language construct for the Dec-MDP framework I have adopted.

Proof. By Exhaustion. Assume there are two distinct global states that appear

locally identical to agent i, ∃st, s′t ∈ S, sti, s′ti ∈ Si, s.t. st 6= s′t, but sti = s′ti , where the

ODP has determined it is critical for agent i to perform distinct actions in those two

states. Influences to agent i’s local action space, reward function factors, transition

function factors, time horizon, and/or initial state distribution factors will not allow

agent i to distinguish between st and s′t. The only remaining construct for expressing

this influence is to modify agent i’s state factors, and indeed, modifying i’s state

representation (and the necessary accompanying transition and initial state influences)

could add another factor to agent i’s state representation that allows it to distinguish

between st and s′t.

Finite Time Horizon. Influences to an agent’s finite time horizon have not been

studied in prior research to the best of my knowledge. The central idea here is that an

ODP might determine that the improved parallelism from better coordination means

that agents can safely reason over shorter time horizons. Alternatively, the ODP

might improve coordination by increasing the time horizon for the agents, effectively

asking them to be less myopic.

Theorem A.5. Organizational influences to state factors are a necessary specification

language construct for the Dec-MDP framework I have adopted.

Proof. By Exhaustion. Assume the ODP wishes to influence the number of decision

points that agent i plans for. Influences to agent i’s rewards function factors, action

171

spaces, and/or initial state distribution factors clearly can not impact the number of

decision points that i plans for. Influences to agent i’s states and transitions, however,

could meaningfully impact the number of decision points, for example, by adding a

state factor to keep track of the number of prior decision points, and then influencing

the transitions to deterministically (independently of the action taken) go to a terminal

state when the number of decision points exceeds some threshold. This threshold,

however, is precisely what the time horizon represents, and other than using this

threshold, state and/or transition influences cannot impact the number of decision

points. The only remaining construct for expressing this influence is to modify agent

i’s time horizon, and indeed, modifying the time horizon prompts agent i to plan for

more/fewer decision points.

As just illustrated, the time horizon is unnecessary to some extent in that an

identical effect can be realized within the state and transition influences (and simply

not explicitly labeled as the time horizon). In this case, however, I would also argue

that there should not be a finite time horizon explicitly represented in the agents’ local

models either, but rather implicitly encoded within their local states and transition

functions. Since I have presented the agent’s local models as explicitly representing

the finite time horizon, I advocate that any influences to the number of decision points

that relies on a threshold should also be labeled as influences to the finite time horizon,

which leads to the time horizon being a necessary construct given my agents’ decision

models as I have presented them.

Initial State Distribution. Like time horizon influences, I am unaware of any

prior work that influences an agent’s initial state distribution. If the ODP is permitted

to impose initial states on the MAS (e.g., initially spread the agents throughout

the grid in the firefighting domain), then influencing the MAS into more desirable,

coordinated initial configurations could be a powerful organizational mechanism (e.g.,

as my experiments in Section 3.5 demonstrate). Other uses for influences to the

agents initial state distribution factors include providing the necessary initialization

information for new state factors that agent i cannot directly observe.

Theorem A.6. Organizational influences to initial state distribution factors are a

necessary specification language construct for the Dec-MDP framework I have adopted.

Proof. By Direct Proof. As proved in Theorem A.4, adding a new state factor

to agent i’s initial state distribution is a necessary construct in my specification

language. Since every state factor must be covered by an initial state distribution

172

factor (Definition 2.3), influences to an agent i’s initial state distribution factors are

also a necessary construct.

173

BIBLIOGRAPHY

174

BIBLIOGRAPHY

Abdallah, S., & Lesser, V. (2007). Multiagent reinforcement learning and self-
organization in a network of agents. In Proceedings of the 6th International Confer-
ence on Autonomous Agents and Multiagent Systems , (pp. 172–179).

Agogino, A. K., & Tumer, K. (2005). Multi-agent reward analysis for learning in noisy
domains. In Proceedings of the 4th International Conference on Autonomous Agents
and Multiagent Systems , (pp. 81–88).

Alexander, G., Raja, A., Durfee, E. H., & Musliner, D. J. (2007). Design paradigms
for meta-control in multi-agent systems. In Proceedings of AAMAS 2007 Workshop
on Metareasoning in Agent-based Systems , (pp. 92–103).

Amato, C., Konidaris, G. D., & Kaelbling, L. P. (2014). Planning with macro-actions
in decentralized POMDPs. In Proceedings of the 13th International Conference on
Autonomous Agents and Multiagent Systems , (pp. 1273–1280).

Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement
learning agents. In Proceedings of the 18th National Conference on Artificial
Intelligence, (pp. 119–125).

Babes, M., de Cote, E. M., & Littman, M. L. (2008). Social reward shaping in
the prisoner’s dilemma. In Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems , (pp. 1389–1392).

Barto, A., & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems , 13 (4), 341–379.

Becker, R., Zilberstein, S., & Lesser, V. (2004a). Decentralized Markov decision
processes with event-driven interactions. In Proceedings of the 3rd International
Joint Conference on Autonomous Agents and Multiagent Systems , (pp. 302–309).

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. (2004b). Solving transition inde-
pendent decentralized Markov decision processes. Journal of Artificial Intelligence
Research, 22 , 423–455.

Bellman, R. E. (1957). Dynamic Programming . Princeton University Press.

Bernstein, D., Amato, C., Hansen, E., & Zilberstein, S. (2009). Policy iteration for
decentralized control of Markov decision processes. Journal of Artificial Intelligence
Research, 34 , 89–132.

175

Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity
of decentralized control of Markov decision processes. Mathematics of Operations
Research, 27 (4), 819–840.

Bernstein, D. S., Hansen, E. A., & Zilberstein, S. (2005). Bounded policy iteration for
decentralized POMDPs. In Proceedings of the 19th International Joint Conferences
on Artificial Intelligence, (pp. 1287–1292).

Bernstein, E. S. (2012). The transparency paradox: A role for privacy in organizational
learning and operational control. Administrative Science Quarterly , 57 (2), 181–216.

Bichier, M., & Lin, K.-J. (2006). Service-oriented computing. Computer , 39 (3),
99–101.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural
to Artificial Systems . Oxford.

Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent
systems in AgentSpeak using Jason, vol. 8. John Wiley & Sons.

Boutilier, C. (1996). Planning, learning and coordination in multiagent decision
processes. In Proceedings of the 6th Conference on Theoretical Aspects of Rationality
and Knowledge, (pp. 195–210).

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121 , 49–107.

Bowling, M., & Veloso, M. (2002). Multiagent learning using a variable learning rate.
Artificial Intelligence, 136 (2), 215–250.

Bratman, J., Singh, S., Sorg, J., & Lewis, R. (2012). Strong mitigation: Nesting
search for good policies within search for good reward. In Proceedings of the 11th
International Joint Conference on Autonomous Agents and Multiagent Systems,
(pp. 407–414).

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multiagent Systems , 8 (3), 203–236.

Brooks, C. H., & Durfee, E. H. (2003). Congregation formation in multiagent systems.
Autonomous Agents and Multiagent Systems , 7 (1-2), 145–170.

Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multi-
agent reinforcement learning. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 38 (2), 156–172.

Busoniu, L., Babuska, R., De Schutter, B., & Ernst, D. (2010). Reinforcement learning
and dynamic programming using function approximators , vol. 39. CRC Press.

176

Butts, C. T., & Carley, K. M. (2007). Structural change and homeostasis in orga-
nizations: A decision-theoretic approach. The Journal of Mathematical Sociology ,
31 (4), 295–321.

Castelfranchi, C. (1995). Commitments: From individual intentions to groups and
organizations. In Proceedings of the 1st International Conference on Multi-Agent
Systems , vol. 95, (pp. 41–48).

Corkill, D., Durfee, E., Lesser, V., Zafar, H., & Zhang, C. (2011). Organizationally
adept agents. In Proceedings of the Coordination, Organization, Institutions and
Norms in Agent Systems 2011 Workshop at AAMAS .

Corkill, D. D. (1979). Hierarchical planning in a distributed environment. In Pro-
ceedings of the 6th International Joint Conference on Artificial Intelligence, (pp.
168–175).

Corkill, D. D. (1991). Blackboard systems. AI Expert , 6 (9), 40–47.

Corkill, D. D., Garant, D., & Lesser, V. R. (2015). Exploring the effectiveness of
agent organizations. Tech. rep., University of Massachusetts Amherst - School of
Computer Science.

Corkill, D. D., & Lander, S. E. (1998). Diversity in agent organizations. Object
Magazine, 8 (4), 41–47.

Corkill, D. D., & Lesser, V. R. (1983). The use of meta-level control for coordination
in a distributed problem solving network. In Proceedings of the 8th International
Joint Conference on Artificial Intelligence.

Corkill, D. D., Zhang, C., da Silva, B., Kim, Y., Zhang, X., & Lesser, V. R. (2012).
Using annotated guidelines to influence the behavior of organizationally adept
agents. In Proceedings of the Coordination, Organization, Institutions and Norms
in Agent Systems 2012 Workshop at AAMAS .

Cox, M. T., & Raja, A. (2011). Metareasoning: Thinking about thinking . MIT Press.

Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous
Agents and Multiagent Systems , 16 (3), 214–248.

Davis, R., & Smith, R. G. (1983). Negotiation as a metaphor for distributed problem
solving. Artificial intelligence, 20 (1), 63–109.

Dietterich, T. (2000). Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13 , 227–303.

Dignum, V. (2004). A Model for Organizational Interaction: Based on Agents, Founded
in Logic. Ph.D. thesis, Universiteit Utrecht.

177

Dignum, V., Vázquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social
structure, norms and ontologies into agent organizations. In Programming Multi-
Agent Systems , (pp. 181–198).

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. Computa-
tional Intelligence Magazine, IEEE , 1 (4), 28–39.

Durfee, E. H. (1993). Organizations, plans and schedules: An interdisciplinary
perspective on coordinating ai agents. Journal of Intelligent Systems, 3 (2-4),
157–188.

Durfee, E. H., Lesser, V. R., & Corkill, D. D. (1987). Coherent cooperation among
communicating problem solvers. Computers, IEEE Transactions on, 100 (11),
1275–1291.

Durfee, E. H., & Montgomery, T. A. (1991). Coordination as distributed search in a
hierarchical behavior space. Systems, Man and Cybernetics, IEEE Transactions on,
21 (6), 1363–1378.

Esteva, M., Padget, J. A., & Sierra, C. (2001). Formalizing a language for institutions
and norms. In Intelligent Agents VIII , vol. 2333 of Lecture Notes in Computer
Science, (pp. 348–366).

Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A., & Arcos, J. L. (2004). Ameli:
An agent-based middleware for electronic institutions. In Proceedings of the 3rd
International Joint Conference on Autonomous Agents and Multiagent Systems,
(pp. 236–243).

Fox, M., Gerevini, A., Long, D., & Serina, I. (2006). Plan stability: Replanning versus
plan repair. In Proceedings of the 16th International Conference on Automated
Planning and Scheduling , (pp. 212–221).

Fox, M. S. (1981). An organizational view of distributed systems. Systems, Man and
Cybernetics, IEEE Transactions on, 11 (1), 70–80.

Fox, M. S., Barbuceanu, M., Gruninger, M., & Lin, J. (1998). An organizational
ontology for enterprise modeling. In Simulating organizations, (pp. 131–152).
Cambridge, MA, USA: MIT Press.

Fox, M. S., & Gruninger, M. (1998). Enterprise modeling. AI Magazine, 19 (3), 109.

Fox, M. S., & Smith, S. F. (1984). ISISa knowledge-based system for factory scheduling.
Expert Systems , 1 (1), 25–49.

Galbraith, J. R. (1973). Designing Complex Organizations . Addison-Wesley.

Gaston, M., & desJardins, M. (2005). Agent-organized networks for dynamic team
formation. In Proceedings of the 4th International Joint Conference on Autonomous
Agents and Multiagent Systems , (pp. 230–237).

178

Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014). Clustering objects with
robots that do not compute. In Proceedings of the 13th International Conference
on Autonomous Agents and Multiagent Systems , (pp. 421–428).

Ghavamzadeh, M., Mahadevan, S., & Makar, R. (2006). Hierarchical multi-agent
reinforcement learning. Autonomous Agents and Multi-Agent Systems , 13 , 197–229.

Goldman, C., & Zilberstein, S. (2004). Decentralized control of cooperative systems:
Categorization and complexity analysis. Journal of Artificial Intelligence Research,
22 , 143–174.

Goldman, C. V., & Zilberstein, S. (2003). Optimizing information exchange in
cooperative multi-agent systems. In Proceedings of the 2nd International Joint
Conference on Autonomous Agents and Multiagent Systems , (pp. 137–144).

Goldman, C. V., & Zilberstein, S. (2008). Communication-based decomposition
mechanisms for decentralized MDPs. Journal of Artificial Intelligence Research, 32 ,
169–202.

Guestrin, C., Koller, D., & Parr, R. (2001). Multiagent planning with factored MDPs.
In Proceedings of the 14th Conference on Advances in Neural Information Processing
Systems , (pp. 1523–1530).

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Efficient solution
algorithms for factored MDPs. Journal of Artificial Intelligence Research, 19 ,
399–468.

Hansen, E., Bernstein, D., & Zilberstein, S. (2004). Dynamic programming for partially
observable stochastic games. In Proceedings of the the 19th National Conference on
Artificial Intelligence, (pp. 709–715).

Hansen, E. A., & Zilberstein, S. (2001a). LAO∗: A heuristic search algorithm that
finds solutions with loops. Artificial Intelligence, 129 (1), 35–62.

Hansen, E. A., & Zilberstein, S. (2001b). Monitoring and control of anytime algorithms:
A dynamic programming approach. Artificial Intelligence, 126 (1), 139–157.

Hoogendoorn, M. (2007). Adaptation of organizational models for multi-agent sys-
tems based on max flow networks. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, (pp. 1321–1326).

Horling, B., Benyo, B., & Lesser, V. (2001). Using self-diagnosis to adapt organizational
structures. In Proceedings of the 5th International Conference on Autonomous
Agents , (pp. 529–536).

Horling, B., & Lesser, V. (2004). A survey of multi-agent organizational paradigms.
The Knowledge Engineering Review , 19 (04), 281–316.

179

Horling, B., & Lesser, V. (2008). Using quantitative models to search for appropriate
organizational designs. Autonomous Agents and Multi-Agent Systems , 16 (2), 95–149.

Howard, R. (1971). Dynamic Probabilistic Systems: Semi-Markov and decision
processes , vol. 2. John Wiley & Sons.

Hu, J., & Wellman, M. (1998). Multiagent reinforcement learning: Theoretical
framework and an algorithm. In Proceedings of the Fifteenth International Conference
on Machine Learning , (pp. 242–250).

Hübner, J., Sichman, J., & Boissier, O. (2007). Developing organised multiagent
systems using the MOISE+ model: Programming issues at the system and agent
levels. International Journal of Agent-Oriented Software Engineering , 1 (3), 370–395.

Hübner, J. F., Boissier, O., Kitio, R., & Ricci, A. (2010). Instrumenting multi-agent
organisations with organisational artifacts and agents. Autonomous Agents and
Multiagent Systems , 20 (3), 369–400.

Hübner, J. F., Sichman, J. S., & Boissier, O. (2005). S-MOISE+: A middleware
for developing organised multi-agent systems. In Proceedings of the AAMAS05
Workshop on Coordination, Organizations, Institutions, and Norms in Multi-Agent
Systems , (pp. 64–77).

Iba, G. (1989). A heuristic approach to the discovery of macro-operators. Machine
Learning , 3 (4), 285–317.

IBM (2012). IBM ILOG CPLEX. See http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/.

Ishida, T., Gasser, L., & Yokoo, M. (1992). Organization self-design of distributed
production systems. Knowledge and Data Engineering, IEEE Transactions on, 4 (2),
123–134.

Kallenberg, L. C. M. (1983). Linear Programming and Finite Markovian Control .
Mathematical Centre Tracts.

Koenig, S., & Likhachev, M. (2002). D∗ Lite. In Proceedings of the 18th National
Conference on Artificial Intelligence, (pp. 476–483).

Kota, R., Gibbins, N., & Jennings, N. (2009). Self-organising agent organisations. In
Proceedings of the 8th International Joint Conference on Autonomous Agents and
Multiagent Systems , (pp. 797–804).

Krogt, R. v. d. (2005). Plan repair in single-agent and multi-agent systems. Ph.D.
thesis, Netherlands TRAIL Research School.

Lau, Q. P., Lee, M. L., & Hsu, W. (2012). Coordination guided reinforcement learning.
In Proceedings of the 11th International Joint Conference on Autonomous Agents
and Multiagent Systems , (pp. 215–222).

180

Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman,
D., Podorozhny, R., Prasad, M. N., Raja, A., et al. (2004). Evolution of the
GPGP/TAEMS domain-independent coordination framework. Autonomous Agents
and Multi-Agent Systems , 9 (1-2), 87–143.

Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state
abstraction for MDPs. In International Symposium on Artificial Intelligence and
Mathematics , (pp. 531–539).

Littman, M., Dean, T., & Kaelbling, L. (1995). On the complexity of solving Markov
decision problems. In Proceedings of the 11th Annual Conference on Uncertainty in
Artificial Intelligence, (pp. 394–402).

McGovern, E. (2002). Autonomous Discovery of Temporal Abstractions from Interac-
tion with an Environment . Ph.D. thesis, University of Massachusetts Amherst.

Musliner, D. J., Carciofini, J., Durfee, E. H., Wu, J., Goldman, R. P., & Boddy, M. S.
(2007). Flexibly integrating deliberation and execution in decision-theoretic agents.
In Proceedings of the 3rd Workshop on Planning and Plan Execution for Real-World
Systems (held in conjunction with ICAPS-07).

Nair, R., Tambe, M., Yokoo, M., Pynadath, D., & Marsella, S. (2003). Taming
decentralized POMDPs: Towards efficient policy computation for multiagent settings.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence,
vol. 18, (pp. 705–711).

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward trans-
formations: Theory and application to reward shaping. In Proceedings of the 16th
International Conference on Machine Learning , (pp. 278–287).

Oliehoek, F. A., Whiteson, S., & Spaan, M. T. J. (2013). Approximate solutions for
factored Dec-POMDPs with many agents. In Proceedings of the 12th International
Joint Conference on Autonomous Agents and Multiagent Systems , (pp. 563–570).

Oliehoek, F. A., Witwicki, S. J., & Kaelbling, L. P. (2012). Influence-based abstrac-
tion for multiagent systems. In Proceedings of the 26th Conference on Artificial
Intelligence, (pp. 1422–1428).

Omicini, A. (2001). SODA: Societies and infrastructures in the analysis and design
of agent-based systems. In Agent-Oriented Software Engineering , vol. 1957, (pp.
311–326).

Pacheco, O., & Carmo, J. (2003). A role based model for the normative specification
of organized collective agency and agents interaction. Autonomous Agents and
Multi-Agent Systems , 6 (2), 145–184.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering , 22 (10), 1345–1359.

181

Papadimitriou, C., & Tsitsiklis, J. (1987). The complexity of Markov decision processes.
Mathematics of Operations Research, 12 (3), 441–450.

Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics
and directions. In Proceedings of the Fourth International Conference on Web
Information Systems Engineering , (pp. 3–12). IEEE.

Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of machines.
Proceedings of the 11th Conference on Advances in Neural Information Processing
Systems , (pp. 1043–1049).

Poupart, P., & Boutilier, C. (2003). Bounded finite state controllers. In Proceedings
of the 16th Conference on Advances in Neural Information Processing Systems , (pp.
823–830).

Pynadath, D. V., & Tambe, M. (2002). The communicative multiagent team decision
problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research, (pp. 389–423).

Pynadath, D. V., & Tambe, M. (2003). An automated teamwork infrastructure for
heterogeneous software agents and humans. Autonomous Agents and Multi-Agent
Systems , 7 (1-2), 71–100.

Raja, A., & Lesser, V. (2007). A framework for meta-level control in multi-agent
systems. Autonomous Agents and Multi-Agent Systems , 15 (2), 147–196.

Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-
architecture. Knowledge Review , 91 , 473–484.

Rivkin, J. W., & Siggelkow, N. (2003). Balancing search and stability: Interdepen-
dencies among elements of organizational design. Management Science, 49 (3),
290–311.

Roy, N., Gordon, G. J., & Thrun, S. (2005). Finding approximate POMDP solutions
through belief compression. Journal of Artificial Intelligence Research, 23 , 1–40.

Russell, S. J., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd ed.

Sandholm, T. (1993). An implementation of the contract net protocol based on
marginal cost calculations. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, vol. 93, (pp. 256–262).

Sardina, S., de Silva, L., & Padgham, L. (2006). Hierarchical planning in BDI agent
programming languages: A formal approach. In Proceedings of the 5th International
Joint Conference on Autonomous Agents and Multiagent Systems , (pp. 1001–1008).

Shoham, Y., & Tennenholtz, M. (1995). On social laws for artificial agent societies:
Off-line design. Artificial Intelligence, 73 (1-2), 231–252.

182

Sims, M., Corkill, D., & Lesser, V. (2008). Automated organization design for
multi-agent systems. Autonomous Agents and Multi-Agent Systems , 16 (2), 151–185.

Sims, M., Goldman, C. V., & Lesser, V. (2003). Self-organization through bottom-up
coalition formation. In Proceedings of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems , (pp. 867–874).

Sleight, J., & Durfee, E. H. (2013). Organizational design principles and techniques for
decision-theoretic agents. In Proceedings of the 12th International Joint Conference
on Autonomous Agents and Multiagent Systems , (pp. 463–470).

Sleight, J., & Durfee, E. H. (2014). Multiagent metareasoning through organizational
design. In Proceedings of the 28th AAAI Conference on Artificial Intelligence.

Smallwood, R., & Sondik, E. (1973). The optimal control of partially observable
Markov processes over a finite horizon. Operations Research, 21 (5), 1071–1088.

So, Y. p., & Durfee, E. H. (1998). Designing organizations for computational agents.
In Simulating Organizations , (pp. 47–64). Cambridge, MA, USA: MIT Press.

Stolle, M., & Precup, D. (2002). Learning options in reinforcement learning. In Lecture
Notes in Computer Science, (pp. 212–223).

Stone, P., Kaminka, G., Kraus, S., & Rosenschein, J. (2010). Ad hoc autonomous
agent teams: Collaboration without pre-coordination. Proceedings of the 24th AAAI
Conference on Artificial Intelligence, (pp. 1504–1509).

Stone, P., Sutton, R., & Kuhlmann, G. (2005). Reinforcement learning for robocup
soccer keepaway. Adaptive Behavior , 13 (3), 165–188.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation. In Proceedings of
the 12th Conference on Advances in Neural Information Processing Systems , (pp.
1057–1063).

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112 , 181–211.

Sycara, K., Paolucci, M., Van Velsen, M., & Giampapa, J. (2003). The RETSINA
MAS infrastructure. Autonomous Agents and Multi-Agent Systems , 7 (1-2), 29–48.

Szer, D., Charpillet, F., & Zilberstein, S. (2005). MAA*: A heuristic search algorithm
for solving decentralized POMDPs. In Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence, (pp. 576–583).

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7 , 81–124.

183

Varakantham, P., Kwak, J., Taylor, M., Marecki, J., Scerri, P., & Tambe, M. (2009).
Exploiting coordination locales in distributed POMDPs via social model shaping.
In Proceedings of the 19th International Conference on Automated Planning and
Scheduling , (pp. 313–320).

Vázquez-Salceda, J., Dignum, V., & Dignum, F. (2005). Organizing multiagent
systems. Autonomous Agents and Multiagent Systems , 11 , 307–360.

Velagapudi, P., Varakantham, P., Sycara, K., & Scerri, P. (2011). Distributed model
shaping for scaling to decentralized POMDPs with hundreds of agents. In Proceedings
of the 10th International Joint Conference on Autonomous Agents and Multiagent
Systems , (pp. 955–962).

Whiteson, S., & Stone, P. (2006). Evolutionary function approximation for reinforce-
ment learning. Journal of Machine Learning Research, 7 , 877–917.

Witwicki, S. J. (2010). Abstracting Influences for Efficient Multiagent Coordination
Under Uncertainty . Ph.D. thesis, University of Michigan.

Witwicki, S. J., & Durfee, E. H. (2011). Towards a unifying characterization for
quantifying weak coupling in Dec-POMDPs. In Proceedings of the 10th International
Joint Conference on Autonomous Agents and Multiagent Systems , (pp. 29–36).

Witwicki, S. J., Oliehoek, F. A., & Kaelbling, L. P. (2012). Heuristic search of
multiagent influence space. In Proceedings of the 11th International Joint Conference
on Autonomous Agents and Multiagent Systems , (pp. 973–980).

Wolpert, D., & Tumer, K. (2001). Optimal payoff functions for members of collectives.
Advances in Complex Systems , 4 (2/3), 265–279.

Wood, R., & Bandura, A. (1989). Social cognitive theory of organizational management.
The Academy of Management Review , 14 (3), 361–384.

Wooldridge, M., Jennings, N., & Kinny, D. (2000). The GAIA methodology for
agent-oriented analysis and design. Autonomous Agents and Multiagent Systems ,
3 (3), 285–312.

Wooldridge, M. J. (2000). Reasoning About Rational Agents . MIT press.

Wu, J., & Durfee, E. H. (2007). Solving large TAEMS problems efficiently by selective
exploration and decomposition. In Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems , (pp. 56–64).

Zhang, C. (2011). Scaling multi-agent learning in complex environments . Ph.D. thesis,
University of Massachusetts Amherst.

Zhang, C., Lesser, V., & Abdallah, S. (2010). Self-organization for coordinating
decentralized reinforcement learning. In Proceedings of the 9th International Joint
Conference on Autonomous Agents and Multiagent Systems , (pp. 739–746).

184

	TITLE PAGE
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ABSTRACT
	Introduction
	Problem Statement
	Illustrating Example
	Solution Approach
	Contributions

	Background
	Operational Decision Making
	Markov Decision Process
	Partially Observable Markov Decision Process
	Factored Markov Decision Process
	Decentralized (Partially Observable) Markov Decision Process
	Special Cases of the Dec-POMDP
	Approximate Techniques

	Hierarchical Abstractions

	Organizational Decision Making
	Early MAS Research
	Problem-driven Approaches
	Experience-driven Approaches
	Mixed Approaches
	Operational Techniques from an Organizational Perspective
	Human Organizations

	Organizational Design Problem
	Specification Language Formalism
	Organizational Specification Language
	Incorporating Organizational Influences into Local Reasoning

	Language Properties
	Size of Organizational Design Space
	Language Completeness and Necessity

	Measuring Organizational Performance
	Baseline Organization
	Empirical Demonstration
	Empirical Evaluation Process
	Specification Language Demonstration
	Isolated Impact of Specification Constructs

	Generality of Approach
	Generality to Other Problem Domains
	Generality to Other Reasoning Frameworks
	Generality to Hierarchical Organizational Structures

	Conclusion

	Selecting Organizational Influences
	Influence Selection Heuristic
	Automated Organizational Design
	ODP Overview
	Compute Organizational Patterns
	Selecting Organizational Influences
	ODP Limitations and Concerns
	Evaluation

	Metareasoning through Organizational Design
	Background
	Extending the ODP
	Computing Incremental Reasoning Costs
	Computing Incremental Reward
	Action Influences

	Evaluation
	Limitations and Concerns

	Conclusion

	Abstract Organizational Influences
	Motivations for Abstract Influences
	Dimensions of Abstract Influences
	Incorporating Abstract Influences
	Influence Abstraction Effects
	Operational Performance
	ODP's Search Sensitivity
	ODP's Information Scope

	Task-Delineated Abstractions
	Evaluation With Initially Adjacent Agents
	Evaluation with Additional Agents
	Conclusions

	Conclusion
	Summary of Contributions
	Organizational Specification Language
	Organizational Performance Metrics
	Automated Organizational Design
	Influence Selection Heuristics

	Open Questions
	Organizationally Adept Agents
	Other Influence Mechanisms
	Biasing the ODP's Statistics to Encourage Patterns
	Advanced Statistical Representations and Abstraction Choice
	Relaxing the Restrictions to Organizational Influence Mappings
	Scaling the ODP
	Open Systems

	APPENDIX
	Formal Proofs of Specification Language Necessity

	BIBLIOGRAPHY

