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ABSTRACT

Time-Domain Analysis of Sensor-to-Sensor Transmissibility Operators with
Application to Fault Detection

by

Khaled F. Aljanaideh

Chair: Dennis S. Bernstein

In some applications, multiple measurements are available, but the driving input

that gives rise to those outputs may be unknown. This raises the question as to

whether it is possible to model the response of a subset of sensors based on the

response of the remaining sensors without knowledge of the driving input. To address

this issue, we develop time-domain sensor-to-sensor models that account for nonzero

initial conditions. The sensor-to-sensor model is in the form of a transmissibility

operator, that is, a rational function of the differentiation operator. What is essential

in defining the transmissibility operator is that it must be independent of both the

initial condition and inputs of the underlying system, which is assumed to be time-

invariant. The development is carried out for both single-input, single-output and

multi-input, multi-output transmissibility operators. These time-domain sensor-to-

sensor models can be used for diagnostics and output prediction.

We show that transmissibility operators may be unstable, noncausal, and of un-

known order. Therefore, to facilitate system identification, we consider a class of

xv



models that can approximate transmissibility operators with these properties. This

class of models consists of noncausal finite impulse response models based on a trun-

cated Laurent expansion. These models are shown to approximate the Laurent ex-

pansion inside the annulus between the asymptotically stable pole of largest modulus

and the unstable pole of smallest modulus. By delaying the measured pseudo output

relative to the measured pseudo input, the identified finite impulse response model is

a noncausal approximation of the transmissibility operator. The causal (backward-

shift) part of the Laurent expansion is asymptotically stable since all of its poles are

zero, while the noncausal (forward-shift) part of the Laurent expansion captures the

unstable and noncausal components of the transmissibility operator.

This dissertation also develops a time-domain framework for both single-input,

single-output and multi-input, multi-output transmissibilities that account for nonzero

initial conditions for both force-driven and displacement-driven structures. We show

that motion transmissibilities in force-driven and displacement-driven structures are

equal when the locations of the forces and prescribed displacements are identical.

xvi



CHAPTER 1

Introduction

The traditional concept of input-output modeling distinguishes between inputs

that evoke response and outputs that capture the response. In some applications,

multiple measurements are available, but the driving input that gives rise to those

outputs may be unknown. This raises the question as to whether it is possible to

model the response of a subset of sensors based on the response of the remaining

sensors without knowledge of the driving input. Since the “transfer function” between

sensors does not arise as the forced response of a state space model, a sensor-to-sensor

“transfer function” is not a transfer function in the usual sense. Therefore, we adopt

the terminology pseudo transfer function (PTF) and transmissibility operator to refer

to a dynamic model relating sensor signals, which are called the pseudo input and

pseudo output [1–3]. Models of this type are widely used in structural modeling

and health monitoring [4–12]. In structural vibration analysis, a transmissibility is

a relation between a pair of sensor measurements of the same type, for example,

displacements, accelerations, or forces [13].

In the most common setup, the transmissibility involves the motion of the point

at which the force is prescribed. A more general notion of transmissibility arises in

the case where neither of the displacement measurements coincides with the location

of the applied force. This situation is of interest in applications where the applied
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force is unknown. Except for the case where one of the measurements is located at

a node of a mode, the resulting transmissibility captures information about only the

zeros (anti-resonances) in the structural response, and thus information about the

modal resonances is not included in the model.

The potential usefulness of transmissibilities for applications such as damage de-

tection [14–16] has led to increased interest in their properties. In [8, 17, 18], trans-

missibilities are used to update modal models, while computation and identification

of transmissibilities is discussed in [11, 19, 20]. Transmissibilities are used in [21] to

analyze the effects of structural coupling. Multi-input, multi-output (MIMO) trans-

missibilities are considered in [22], while the effect of distributed forces is analyzed in

[20]. Finally, transmissibilities play a role in “operational modal analysis” [17, 23],

which assumes stationary excitation.

While the transmissibility literature is extensive, a common feature is that trans-

missibilities are modeled in the frequency domain [7, 8, 11, 14, 17, 18, 22, 24–26]. A

transmissibility is not a transfer function in the usual sense, however, since neither

sensor captures the input driving the system except in the special case that one of the

sensors measures the driving input. Consequently, a transmissibility does not have a

state space realization with physically meaningful states.

Transmissibility estimates are traditionally obtained using frequency-domain meth-

ods [7, 8, 11, 14, 17, 18, 22, 24–26], which are based on the assumption that the re-

sponse of the system consists entirely of the forced response and thus the free response

is zero. For asymptotically stable systems, the free response decays exponentially,

which suggests that measurements of the forced response can be obtained by using

only data obtained after the free response is approximately zero. However, as shown

in the following example, at the time at which data collection begins, a nonzero initial

condition can degrade the accuracy of frequency-domain identification.

Example 1.1. Consider the discrete-time asymptotically stable system S with
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the state-space realization

A =

 −0.5 0.2

0 0.7

 , B =

 4

1

 , C = [1.25 − 3], D = 0. (1.1)

Let x(k) ∈ R2 be the state vector and thus x(0) is the initial state. Let u0 ∈ R1×N

be a realization of a stationary white random process with the gaussian distribution

N (0, 1). Define the input u
4
= [u0 u0] ∈ R1×2N , that is, u is formed by repeating u0.

Consider zero initial conditions, that is, x(0) = 0, and define y(k)
4
= Cx(k). If we

split y ∈ R1×2N into two halves, then the first half of y is the response of S due to the

input u0 and the zero initial condition x(0), while the second half of y is the response

of S due to the input u0 and the possibly nonzero initial condition x(N). Figure 1.1

shows a plot of the difference y(k)− y(k +N), where k = 0, . . . , N − 1 and N = 500

time steps for a given realization u0. Note that despite the initial condition x(0) = 0,

the difference y(k) − y(k + N) is not zero due to the fact that x(N), which is the

initial state when data collection begins at time k = N , is not zero.

Next, define YN,L
4
= [y(N) · · · y(N+L−1)] ∈ R1×L and UN,L

4
= [u(N) · · · u(N+

L−1)] ∈ R1×L, and define ML
4
= 2p, where p is the smallest integer such that 2p ≥ L.

For all j = 1, . . . ,ML, let S(eθj) be the frequency response of S at frequency θj.

Moreover, for all j = 1, . . . ,ML, let

ŜN,L(eθj)
4
=

1

r

r∑
i=1

ŜN,L,i(e
θj), (1.2)

where r is the number of experiments and ŜN,L,i(e
θj) is the estimated value of S(eθj)

obtained from the ith experiment using either frequency-domain or time-domain iden-

tification. For frequency-domain identification, ŜN,L,i(e
θj) is obtained by finding the

ratio of the cross power spectral density of YN,L and UN,L to the power spectral density

of UN,L for the ith experiment. For time-domain identification, ŜN,L,i(e
θj) is obtained
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Figure 1.1: Plot of the difference y(k)−y(k+N) for the system S with the realization
(1.1), where k = 0, . . . , 50, N = 500, u = [u0 u0] is the input, and x(0) = 0
is the initial state. This plot shows that the difference y(k)− y(k+N) is
not zero due to the fact that x(N), which is the initial state of the system
when we start collecting data at time k = N , is not zero.

by finding the frequency response of the estimated model obtained using least squares

identification with the time-domain data UN,L and YN,L. Define the error

eN,L
4
=

(
ML∑
j=1

(
|S(eθj)| − |ŜN,L(eθj)|

)2
)1/2

. (1.3)

Figure 1.2 shows a plot of eN,L when using time-domain identification with L = 10, 000

time steps and N varies from 1 to 1000. Moreover, Figure 1.2 shows a plot of eN,L

when using frequency-domain identification with L = 10, 000 and L = 100, 000 time

steps and N varies from 1 to 1000. The initial condition is x(0) = [1000 1000]T.

Note from Figure 1.2 that the frequency response function (FRF) estimates obtained

using time-domain identification are much better than the FRF estimates obtained

using frequency-domain identification. Moreover, although we are using noise-free

data, Figure 1.2 shows that waiting for the free response to decay does not help the
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FRF estimates obtained using frequency-domain identification to converge to the true

values. This is partly due to the nonzero initial condition x(N), which occurs at the

instant that data collection begins, and thus corrupts the estimates when using finite

data sets. On the other hand, Figure 1.2 shows that the FRF estimates obtained

using time-domain identification are not affected by the nonzero initial conditions. It

can be seen that the significance of the transients depends on the magnitude of the

initial state relative to the magnitude of the state under stationary conditions. �

Another issue with frequency-domain identification techniques is leakage errors,

10
0

10
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10
2

10
3

10
−15

10
−10

10
−5

10
0

10
5

Time N [step] at which data collection begins

Time Domain Identification
(L = 10, 000)

Frequency Domain Identification
(L = 100, 000)

Frequency Domain Identification
(L = 10, 000)

e N
,L

Figure 1.2: Plot of eN,L using time-domain identification with L = 10, 000 time steps
and frequency-domain identification with L = 10, 000 and L = 100, 000
time steps, N varies from 1 to 1000, and r = 100 experiments. The initial
condition is x(0) = [1000 1000]T. Note that the FRF estimates obtained
using time-domain identification are much better than the FRF estimates
obtained using frequency-domain identification. Moreover, waiting for the
free response to decay does not help the FRF estimates obtained using
frequency-domain identification to converge to the true values, whereas
the FRF estimates obtained using time-domain identification are not af-
fected by the nonzero initial conditions.
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which are unavoidable in the case of aperiodic random excitations [27]. Theorem 2.6

in [27] shows that leakage errors decrease as the number of samples increases, but

it is not guaranteed that the leakage errors are small for finite data sets. Example

2.7 in [27] shows that leakage errors can be interpreted as a transient effect, that is,

as the effect of a nonzero initial condition. Leakage errors can be avoided by using

periodic excitation and measurements of an integer number of periods, which cannot

be achieved if the excitation signal cannot be specified.

The goal of the present dissertation is to develop sensor-to-sensor models that

account for nonzero initial conditions and thus are necessarily defined in the time

domain. These models, which we call transmissibility operators, are rational func-

tions of the differentiation operator. Accordingly, a transmissibility operator defines

a differential equation involving the sensor signals. The internal state of the under-

lying input-output system loses its meaning within the context of a transmissibility

operator. What is essential in defining the transmissibility operator, however, is that

it must be independent of both the initial condition and inputs of the underlying

system, which is assumed to be time-invariant.

The development of time-domain transmissibility models requires special attention

to the cancellation of poles in the underlying structural model as well as the role of

the initial conditions. The resulting model is not an input-output model in the usual

sense, and therefore the notions of free and forced response do not apply. These issues

were considered in [1, 28, 29] in terms of PTFs. The present dissertation goes beyond

these papers by providing a significantly more detailed and rigorous treatment of

transmissibility operators, including complete proofs.

Transmissibility operators are developed in this dissertation within the context

of continuous-time, linear, time-invariant systems. We show that a transmissibility

operator that relates sensor signals can be defined independently of the initial condi-

tion and inputs. This operator is a rational function of the differential operator, and
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thus represents a differential equation. However, the transmissibility operator cannot

be defined in terms of the Laplace variable “s,” due to the nonzero initial condition.

This observation is a key conceptual contribution of this dissertation.

Transmissibility operators contain information about the zeros of the system and

not the poles. Therefore, a nonminimum-phase zero in the pseudo-input channel of a

transmissibility operator yields an unstable transmissibility operator. Moreover, if the

pseudo-output channel of a transmissibility operator has more zeros than the pseudo-

input channel, then the transmissibility operator is improper, and thus noncausal.

However, neither instability nor causality has the usual meaning associated with

transfer functions. Nevertheless, to facilitate system identification, we consider a

class of models that can approximate transmissibility operators that may be unstable,

noncausal, and of unknown order. This class of models consists of noncausal finite

impulse response (FIR) models based on a truncated Laurent expansion. The causal

(backward-shift) part of the Laurent expansion is asymptotically stable since all of

its poles are zero, while the noncausal (forward-shift) part of the Laurent expansion

captures the unstable and noncausal components of the transmissibility operator [30].

Linear systems inside a closed loop are similar to transmissibilities in several

aspects, namely, they can be stable or unstable, of unknown order, and have bounded

input and bounded output. Therefore, noncausal FIR models can be also used to

identify linear systems inside a closed loop. A noncausal FIR model that approximates

the Laurent series of an unstable plant involves both positive and negative powers of

the Z-transform variable z. The negative powers approximate the stable part of the

plant outside of a disk (that is, inside a punctured plane), whereas the positive powers

approximate the unstable part of the plant inside a disk. Inside the common region,

which is an annulus, the Laurent series represents a noncausal model, as evidenced

by the positive powers of z.

To identify an unstable plant inside a stabilizing feedback loop, the measured
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output can be delayed relative to the measured input to obtain an FIR model that

is a noncausal approximation of the unstable plant. The transfer function of this

noncausal FIR model approximates the Laurent series of the plant inside the maximal

annulus of analyticity lying between the smallest disk containing the asymptotically

stable poles and the smallest punctured plane containing the unstable poles.

One of the contributions of the present dissertation is a fully justified treatment of

closed-loop identification of unstable plants using noncausal FIR models. This work

presents analysis and proofs that connect the Laurent series of a transfer function

and an associated noncausal FIR model. These results are developed in the context

of identifying noncausal models and are needed to establish a rigorous connection

between the estimated noncausal FIR model and the impulse response of the system.

The theoretical basis for this work is given by Theorem 2, which provides necessary

and sufficient conditions under which the coefficients of the Laurent series are square

summable. Most importantly, Theorem 2 shows that there is exactly one maximal

annulus corresponding to which the coefficients of the Laurent series are bounded.

This fact suggests that the objective of identifying the unstable system G in closed

loop by estimating the coefficients of a Laurent series of G is meaningful only for the

Laurent series corresponding to this special annulus, since otherwise the unidentified

(that is, truncated) coefficients are unbounded. For unstable plants, the Markov

parameters, which are the coefficients of the Laurent series in the maximal punctured

plane, are unbounded. For unstable plants, however, the Laurent series in the special

annulus (as opposed to the punctured plane) has terms involving positive powers of

z, which represent a noncausal model. The coefficients of the negative powers of z

are Markov parameters of the stable part of the transfer function.
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1.1 Current Fault Detection Techniques and the Proposed

Approach

Different fault detection techniques have been introduced in the literature [31–

44]. In some cases, health monitoring can be assessed by exciting the system in a

controlled manner, using a plant model and observer to predict the response, and by

comparing the measured response to the prediction [34, 35, 45–50]. This approach,

known as active fault detection, is based on residual generation. In contrast, passive

fault detection detects faults by analyzing the sensors signals alone and searching for

anomalies [51–58].

In this dissertation we focus on a technique for fault detection called sensor-to-

sensor identification (S2SID). S2SID is neither active nor passive as defined above.

Instead, S2SID takes advantage of freely available and unknown external (ambient)

excitation to identify a sensor-to-sensor model (i.e. a PTF or a transmissibility op-

erator), which is independent of the excitation signal. In the presence of subsequent

unknown external excitation, the identified PTF is used to compute sensor-to-sensor

residuals, which are used to detect and diagnose faults in sensors or systems dynam-

ics. The sensor-to-sensor residual is the discrepancy between the predicted sensor

output (based on the PTF) and the actual measurements.

The novel feature of this approach is the way external excitation is taken advantage

of to identify a PTF between sensor signals. In particular, the external excitation,

whether it is provided by the environment or by actuators, need not be measured or

precisely controlled. Consequently, freely available ambient noise (such as flow around

an aircraft wing) can play a useful role in PTF identification. Most importantly, the

identified PTF is independent of the excitation; this means that the PTF identified

using one data set can be used for fault detection with a different data set; for both

data sets, the external excitation can be completely unknown.
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The ability to take advantage of unknown external excitation along with the fact

that the PTF is independent of that excitation gives the method considerable flexi-

bility in practice by alleviating the need for a known or controlled excitation. This

feature is the key benefit of the proposed approach relative to residual-based fault-

detection methods that require known external excitation.

Excitation-free techniques for fault detection were also used in [1, 14–16, 28, 29,

59–61]. Transmissibility estimates obtained using frequency-domain methods were

used for fault detection in [14–16]. As we showed before, this approach ignores the

effect of nonzero initial conditions and requires periodic excitations to avoid leakage

errors. These issues are avoided in the present dissertation by developing a time-

domain framework for transmissibilities that accounts for nonzero initial conditions

and is independent of both the initial condition and inputs of the underlying system.

Discrete-time PTFs were developed in [1, 28, 29] and a µ-Markov model is used

to identify them. A fault is detected if a sudden change in the identified Markov

parameters of the PTF occurs. Excitation-free fault detection was also used in [59–

61], where a SISO autoregressive model with exogenous input (ARX) between a

pair of sensors is identified to detect spike faults in wireless sensor networks. The

approaches in [1, 28, 29, 59–61] do not consider the possible noncausal relationships

between different sensors. Moreover, underestimating or overestimating the order of

the µ-Markov or ARX models may yield inaccurate estimates, which can affect the

fault detection process. We show that the proposed approach circumvents the above

issues by using noncausal FIR models to identify PTFs.

1.2 Contributions

In the following, we list the major contributions of this dissertation.

• We develop a time-domain framework for MIMO transmissibilities that accounts
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for nonzero initial conditions as well as cancellation of the common factor oc-

curring in the underlying state space model. We show that transmissibility

operators are independent of both the initial condition and inputs of the under-

lying system, which is assumed to be time-invariant [62].

• We show that transmissibility operators may be unstable, noncausal, and of un-

known order. We show that noncausal FIR models can be used to approximate

transmissibility operators and unstable systems in closed loop. Noncausal FIR

models are used for closed-loop identification of unstable systems [30].

• Transmissibility operators can be effectively used for fault detection and out-

put prediction when the excitation signal is unknown. Application to health

monitoring of aircraft sensors [63], and the dynamics of acoustic systems are

considered.

• We derive continuous time-domain models for transmissibility operators in force-

driven and displacement-driven structures. We show that motion transmissi-

bilities in force-driven and displacement-driven structures are equal when the

locations of the forces and prescribed displacements are identical [64].

1.3 Dissertation Outline

The dissertation is organized as follows. We develop a time-domain framework

for transmissibilities in Chapter 2. We show that transmissibility operators are inde-

pendent of both the initial condition and inputs of the underlying system, which is

assumed to be time-invariant. The cancellation of a common factor that appears in

the numerator and denominator of the transmissibility operator is discussed. SISO

and MIMO transmissibility operators are illustrated by examples.

In Chapter 3 we use noncausal FIR models for closed-loop identification of un-

stable systems. In this chapter we first motivate the use of noncausal FIR models
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for identifying systems of unknown order. Then, we provide analysis of the Laurent

series of a rational function and the connection to noncausal FIR models. We show

the identification architecture using least squares (LS), instrumental variables (IV),

and prediction error methods (PEM). Numerical examples are presented to compare

noncausal FIR models to infinite impulse response (IIR) models for identification of

unstable systems in closed loop. A procedure to estimate the order of the system

from its identified noncausal FIR model is shown. Then we show how to construct

an IIR model of the system from its identified noncausal FIR model.

Chapter 4 shows that noncausal FIR models can be used to approximate trans-

missibility operators. A procedure to estimate the number of unknown excitations

using only output measurements is presented. Moreover, PEMs with noncausal FIR

models are used to identify transmissibility operators. The NASA Generic Trans-

port Model (GTM) [65, 66] is used to simulate the fully nonlinear aircraft dynamics

for data generation and rate-gyro measurements are used along with sideslip-angle

measurements to construct a transmissibility operator. We then use the transmissi-

bility operator for health monitoring of the aircraft gyros. The case of gyro drift and

deadzone nonlinearity are considered as illustrative examples. Next, we consider an

experimental setup consists of a drum with two speakers and four microphones. Each

speaker is an actuator, and each microphone is a sensor that measures the acoustic

response at its location. Two plastic pieces are placed inside the drum, and these can

be removed during operation to emulate changes to the system. A transmissibility

operator is constructed from the four microphones and is used for health monitoring

of the dynamics of the drum.

Chapter 5 discusses transmissibilities in force-driven and displacement-driven struc-

tures. We derive time-domain models for transmissibility operators in force-driven

and displacement-driven structures. We show the equality of motion transmissibilities

in force-driven and displacement-driven structures with identical inputs and outputs
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when the force and prescribed motion are applied to the same location. We introduce

examples for both lumped and distributed systems.

Chapter 6 considers the problem of identifying a SISO PTF for a two-output

Hammerstein system. We identify the Markov parameters of this PTF and compare

them to the Markov parameters of the PTF constructed from the same system without

the Hammerstein nonlinearities [67].

Finally, conclusions and future work are presented in Chapter 7.
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CHAPTER 2

Time-Domain Analysis of Sensor-to-Sensor

Transmissibility Operators

2.1 Introduction

Transmissibility operators are developed in the present chapter within the context

of continuous-time, linear, time-invariant systems. We show that a transmissibility

operator that relates sensor signals can be defined independently of the initial condi-

tion and inputs. This operator is a rational function of the differential operator, and

thus represents a differential equation. However, the transmissibility operator cannot

be defined in terms of the Laplace variable “s,” due to the nonzero initial condition.

This observation is a key conceptual contribution of this dissertation.

A feature of the transmissibility operator is the presence of a common factor in its

numerator and denominator. One of the main technical contributions of this disserta-

tion is a proof that this factor can be canceled; without such a proof, such cancellation

can potentially exclude solutions of the transmissibility differential equation and ren-

der it invalid. Since this proof is lengthy, several technical lemmas are sequestered

in the appendices. An earlier version of the proof was introduced in [68] in terms of

discrete-time SISO PTFs. In the present dissertation the proof is extended to cover

the continuous-time MIMO case.
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The contents of this chapter are as follows. In Section 2.2 we derive a time-

domain model for MIMO transmissibility operators. In Section 2.3 we discuss the

cancellation of a common factor that appears in the numerator and denominator of the

transmissibility operator. SISO and MIMO transmissibility operators are illustrated

in Section 2.4. Finally, we present conclusions in Section 2.5.

2.2 Time-Domain Transmissibility Operator

Consider the MIMO linear system

ẋ(t) = Ax(t) +Bu(t), (2.1)

x(0) = x0, (2.2)

y(t) = Cx(t) +Du(t), (2.3)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and p > m. No assumptions are

made about the controllability of (A,B) or the observability of (A,C). Let

C =

 Ci

Co

 , D =

 Di

Do

 , (2.4)

where Ci ∈ Rm×n, Co ∈ R(p−m)×n, Di ∈ Rm×m, and Do ∈ R(p−m)×m. Then,

yi(t)
4
= Cix(t) +Diu(t) ∈ Rm, (2.5)

yo(t)
4
= Cox(t) +Dou(t) ∈ Rp−m, (2.6)

y(t)
4
=

 yi(t)

yo(t)

 ∈ Rp. (2.7)

The goal is to obtain a transmissibility function relating yi and yo that is independent

of both the initial condition x0 and the input u. As a first attempt at obtaining such a
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function, assuming m = 1 and p = 2 and letting b ∈ Rn, ci, co ∈ R1×n, and di, do ∈ R,

we consider the system

ẋ(t) = Ax(t) + bu(t), (2.8)

yi(t) = cix(t) + diu(t), (2.9)

yo(t) = cox(t) + dou(t). (2.10)

Transforming (2.9) and (2.10) to the Laplace domain yields

ŷi(s) = ci(sI − A)−1x0 + [ci(sI − A)−1b+ di]û(s), (2.11)

ŷo(s) = co(sI − A)−1x0 + [co(sI − A)−1b+ do]û(s), (2.12)

respectively, and thus

ŷo(s)

ŷi(s)
=
co(sI − A)−1x0 + [co(sI − A)−1b+ do]û(s)

ci(sI − A)−1x0 + [ci(sI − A)−1b+ di]û(s)
. (2.13)

Note that, if x0 is zero, then û(s) can be cancelled in (2.13), and ŷo(s) and ŷi(s) are

related by a transmissibility that is independent of the input. However, if x0 is not

zero, then û(s) cannot be canceled in (2.13).

Alternatively, we consider a time-domain analysis using the differentiation opera-

tor p = d/dt instead of the Laplace variable s. Multiplying (2.5), (2.6) by det(pI−A),

where pI denotes diag(p, . . . ,p), and using the fact that

det(pI − A)In = adj(pI − A)(pI − A) (2.14)
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yields the differential equation

det(pI − A)yi(t) = Cidet(pI − A)Inx(t) +Didet(pI − A)u(t)

= Ciadj(pI − A)(pI − A)x(t) +Didet(pI − A)u(t)

= Ciadj(pI − A)(ẋ(t)− Ax(t)) +Didet(pI − A)u(t)

= [Ciadj(pI − A)B +Didet(pI − A)]u(t). (2.15)

Similarly,

det(pI − A)yo(t) = [Coadj(pI − A)B +Dodet(pI − A)]u(t). (2.16)

For convenience, we define

Gi(p)
4
= Ci(pI − A)−1B +Di ∈ Rm×m(p), (2.17)

Go(p)
4
= Co(pI − A)−1B +Do ∈ R(p−m)×m(p), (2.18)

and rewrite (2.15), (2.16) as

yi(t) = Gi(p)u(t), yo(t) = Go(p)u(t), (2.19)

respectively, which are interpreted as the differential equations (2.15), (2.16), respec-

tively. Note that (2.19) includes both the free response due to x0 and the forced

response due to u. In the subsequent analysis, we omit the argument “t” where no

ambiguity can arise.
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Defining

Γi(p)
4
= Ciadj(pI − A)B +Diδ(p) ∈ Rm×m[p], (2.20)

Γo(p)
4
= Coadj(pI − A)B +Doδ(p) ∈ R(p−m)×m[p], (2.21)

δ(p)
4
= det(pI − A), (2.22)

we can rewrite (2.15), (2.16) as

δ(p)yi = Γi(p)u, (2.23)

δ(p)yo = Γo(p)u, (2.24)

respectively. Multiplying (2.23) by adj Γi(p) from the left yields

δ(p) adj Γi(p)yi = [adj Γi(p)] Γi(p)u = det Γi(p)u. (2.25)

Next, multiplying (2.24) by det Γi(p) yields

[det Γi(p)] δ(p)yo = [det Γi(p)] Γo(p)u. (2.26)

Substituting the left hand side of (2.25) in (2.26) yields

δ(p) det Γi(p)yo = δ(p)Γo(p) adj Γi(p)yi. (2.27)

In the case m = 1 and p = 2, (2.27) becomes

δ(p)Γi(p)yo = δ(p)Γo(p)yi. (2.28)
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Definition 1. Assume that Γi(p) is nonsingular. Then, the transmissibility oper-

ator from yi to yo is the operator

T (p)
4
=

δ(p)

δ(p)det Γi(p)
Γo(p)adj Γi(p). (2.29)

Note that (2.29) is independent of the input u and the initial condition x0. Using

(2.29), the differential equation (2.27) can be written as

yo = T (p)yi. (2.30)

Since Γi(p) is nonsingular, (2.29) can be written as

T (p) =
δ(p)

δ(p)
Γo(p)Γi

−1(p). (2.31)

Unlike common factors in the complex number s, common factors in the differen-

tiation operator p cannot always be canceled. In particular, the following examples

show that canceling common factors may exclude solutions of the original differential

equation.

Example 2.2.1. Consider the signals yi(t) = t + 1 and yo(t) = t + 5. Operating

on yi(t) and yo(t) with p yields pyi(t) = ẏi(t) = 1 = ẏo(t) = pyo(t). Hence pyi = pyo.

However, yi 6= yo. �

Example 2.2.2. Consider the signals yi(t) = 1 and yo(t) = 1 + e−t. Operating

on yi(t) and yo(t) with p + 1 yields (p + 1)yi(t) = ẏi(t) + yi(t) = 1 = ẏo(t) + yo(t) =

(p + 1)yo(t). Hence (p + 1)yi = (p + 1)yo. However, yi 6= yo. �

Despite Examples 2.2.1 and 2.2.2, we show in Section 2.3 that the common factor

δ(p) in (2.29) can be canceled without excluding any solutions of (2.25).
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2.3 Cancellation of the Common Factor δ(p)

We now show that (2.27) holds if and only if (2.27) holds with the factor δ(p)

cancelled. Since sufficiency is immediate, the goal of this section is to prove necessity.

This result allows us to reduce the order of T (p) without excluding any solutions of

(2.27).

Theorem 1. yi and yo satisfy

det Γi(p)yo = Γo(p)adj Γi(p)yi. (2.32)

Proof. Let

B =

[
b1 · · · bm

]
, Ci=


ci,1

...

ci,m

 , Co=


co,1

...

co,p−m

 ,

where, for all i ∈ {1, . . . ,m}, bi ∈ Rn and ci,i ∈ R1×n, and, for all j ∈ {1, . . . , p−m},

co,j ∈ R1×n. Moreover, for all i, j ∈ {1, . . . ,m}, let

ci,iadj(pIn − A)bj +Di,i,jδ(p) =
n∑
k=0

µi,j,kp
k,
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where Di,i,j is the (i, j) entry of Di. Then, we can write

Γi(p) =



n∑
i=0

µ1,1,ip
i · · ·

n∑
i=0

µ1,m,ip
i

...
. . .

...
n∑
i=0

µm,1,ip
i · · ·

n∑
i=0

µm,m,ip
i



=


µ1,1(p) · · · µ1,m(p)

...
. . .

...

µm,1(p) · · · µm,m(p)

 , (2.33)

where, for all i, j ∈ {1, . . . ,m}, µi,j(p)
4
=
∑n

k=0 µi,j,kp
k. Then, it follows from (2.33)

that

adj Γi(p) =


T1,1(p) · · · Tm,1(p)

... · · · ...

T1,m(p) · · · Tm,m(p)

 , (2.34)

where

Ti,j(p)
4
= (−1)i+j det Γi[i,j](p),

and Γi[i,j](p) ∈ R(m−1)×(m−1)[p] denotes Γi(p) with the ith row and jth column re-

moved.

For all i ∈ {1, . . . , p−m} and j ∈ {1, . . . ,m}, let

co,iadj(pIn − A)bj +Do,i,jδ(p) =
n∑
k=0

νi,j,kp
k,
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where Do,i,j is the (i, j) entry of Do. Then, we can write

Γo(p) =



n∑
i=0

ν1,1,ip
i · · ·

n∑
i=0

ν1,m,ip
i

...
. . .

...
n∑
i=0

νp−m,1,ip
i · · ·

n∑
i=0

νp−m,m,ip
i



=


ν1,1(p) · · · ν1,m(p)

... · · · ...

νp−m,1(p) · · · νp−m,m(p)

 , (2.35)

where, for all i ∈ {1, . . . , p−m} and j ∈ {1, . . . ,m}, νi,j(p)
4
=
∑n

k=0 νi,j,kp
k.

Let u =

[
u1 · · · um

]T

. Define

yi
4
=

[
yi,1 · · · yi,m

]T

, yo
4
=

[
yo,1 · · · yo,p−m

]T

.

Multiplying (2.23) by adj Γi(p) yields

δ(p)adj Γi(p)yi = det Γi(p)u.

Therefore, for all i ∈ {1, . . . ,m}, we have

δ(p)
m∑
j=1

Tj,i(p)yi,j = det Γi(p)ui. (2.36)

Using (2.35), for all k ∈ {1, . . . , p−m}, (2.24) implies that

δ(p)yo,k =
m∑
i=1

νk,i(p)ui. (2.37)
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Note that, for all k ∈ {1, . . . , p−m} and all t ≥ 0,

yo,k,forced(t) =
m∑
i=1

yo,k,i,forced(t), (2.38)

where, for all k ∈ {1, . . . , p−m} and all i ∈ {1, . . . ,m},

yo,k,i,forced(t)
4
=

t∫
0

co,ke
A(t−τ)biui(τ)dτ +Do,k,iui(t).

Moreover, note that, for all t ≥ 0,

yo,k,free(t) = co,ke
Atx0 =

m∑
i=1

yo,k,i,free(t), (2.39)

where

yo,k,i,free(t)
4
=

1

m
co,ke

Atx0. (2.40)

For all k ∈ {1, . . . , p−m} and all i ∈ {1, . . . ,m}, define

yo,k,i
4
= yo,k,i,free + yo,k,i,forced.

Then, yo,k,i satisfies

δ(p)yo,k,i = νk,i(p)ui. (2.41)

Since

yo,k = yo,k,free + yo,k,forced, (2.42)
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it follows from (2.38), (2.39), and (2.42) that

yo,k =
m∑
i=1

yo,k,i. (2.43)

Multiplying (2.36) by νk,i(p) and multiplying (2.41) by det Γi(p) yields

δ(p)νk,i(p)
m∑
j=1

Tj,i(p)yi,j = νk,i(p) det Γi(p)ui, (2.44)

δ(p) det Γi(p)yo,k,i = νk,i(p) det Γi(p)ui. (2.45)

Comparing (2.44) and (2.45) yields

δ(p)νk,i(p)
m∑
j=1

Tj,i(p)yi,j = δ(p) det Γi(p)yo,k,i, (2.46)

which represents a SISO relationship between yo,k,i and
∑m

j=1 Tj,i(p)yi,j due to the

input ui with the free response given by (2.40). Therefore, Lemma A.5 in Appendix

A implies that

νk,i(p)
m∑
j=1

Tj,i(p)yi,j = det Γi(p)yo,k,i, (2.47)

which indicates that δ(p) can be cancelled from (2.46) without excluding any solu-

tions.

Using (2.34) and (2.35) we have

Γo(p)adj Γi(p) =



m∑
i=1

ν1,i(p)T1,i(p) · · ·
m∑
i=1

ν1,i(p)Tm,i(p)

... · · ·
...

m∑
i=1

νp−m,i(p)T1,i(p) · · ·
m∑
i=1

νp−m,i(p)Tm,i(p)


. (2.48)
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Using (2.43), (2.47), and (2.48) yields

Γo(p) [adj Γi(p)] yi =



m∑
i=1

m∑
j=1

ν1,i(p)Tj,i(p)yi,j

...
m∑
i=1

m∑
j=1

νp−m,i(p)Tj,i(p)yi,j



=



m∑
i=1

det Γi(p)yo,1,i

...
m∑
i=1

det Γi(p)yo,p−m,i


= det Γi(p)yo. 2

Theorem 1 implies that we can redefine T (p) in (2.30) as

T (p)
4
= Γo(p)Γ−1

i (p). (2.49)

Note that each entry of T (p) is a rational operator that is not necessarily proper and

whose numerator and denominator are not necessarily coprime.

Consider the case m = 1 and p = 2. Then, using (2.49), the SISO transmissibility

from yi to yo is

T (p) =
Γo(p)

Γi(p)
=
Coadj(pI − A)B +Doδ(p)

Ciadj(pI − A)B +Diδ(p)
, (2.50)

which can be interpreted as the differential equation

Γi(p)yo = Γo(p)yi. (2.51)
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2.4 Examples

Example 2.4.1. Consider the mass-spring system in Figure 2.1, where f is the

input force, q1 and q2 are the displacements of m1 and m2, respectively, and (2.1)

holds with

x
4
=

[
q1 q2 q̇1 q̇2

]T

, A
4
=

 02×2 I2

Ω 02×2

 , (2.52)

Ω
4
=

 −k1+k2
m1

k2
m1

k2
m2

− k2
m2

 , b =

[
0 0 1

m1
0

]T

. (2.53)

For the transmissibility from yi = q1 to yo = q2, we have

Ci =

[
1 0 0 0

]
, Co =

[
0 1 0 0

]
. (2.54)

Using (2.20), (2.21), and (2.22) it follows that

Γi(p) = Ciadj (pIn − A)B =
m2p

2 + k2

m1m2

, (2.55)

Γo(p) = Coadj (pIn − A)B =
k2

m1m2

, (2.56)

δ(p) = p4 +
k2m1 + (k1 + k2)m2

m1m2

p2 +
k1k2

m1m2

, (2.57)

respectively. Therefore, we have

δ(p)q1 = Γi(p)f, (2.58)

δ(p)q2 = Γo(p)f. (2.59)
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Multiplying (2.58) and (2.59) by Γo(p) and Γi(p), respectively, yields

δ(p)Γo(p)q1 = Γi(p)Γo(p)f, (2.60)

δ(p)Γi(p)q2 = Γi(p)Γo(p)f. (2.61)

Comparing (2.60) and (2.61) yields

δ(p)Γo(p)q1 = δ(p)Γi(p)q2, (2.62)

in accordance with (2.28). Moreover, Theorem 1 and (2.51) imply that

Γo(p)q1 = Γi(p)q2. (2.63)

Alternatively, note that the equation of motion for m2 is given by

m2p
2q2 + k2(q2 − q1) = 0. (2.64)

Solving (2.64) for q1 yields

q1 =
m2p

2 + k2

k2

q2. (2.65)

Hence, (2.55), (2.56), and (2.65) imply

Γo(p)yi =
k2

m1m2

q1 =
k2

m1m2

m2p
2 + k2

k2

q2

=
m2p

2 + k2

m1m2

q2 = Γi(p)yo, (2.66)
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which confirms (2.51) directly without using Theorem 1. Thus, yo = T (p)yi where

T (p) =
Γo(p)

Γi(p)
=

k2

m2p2 + k2

. �

Example 2.4.2. Consider the MIMO system

x =


x1

x2

x3

 , A =


−1 1 0

0 −1 1

0 0 −1

 , (2.67)

B =


1 0

0 1

1 1

 , C =


1 0 0

0 1 0

0 0 1

 , D =


1 0

0 0

0 0

 , (2.68)

Figure 2.1: Mass-spring system for Example 2.4.1, where f is the input force and
the outputs yi and yo are the displacements q1 and q2 of m1 and m2,
respectively.
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u = [u1 u2]T, yi = [x1 + u1 x2]T, and yo = x3. Hence, m = 2, p = 3, and

Ci =

 1 0 0

0 1 0

 , Co =

[
0 0 1

]
, (2.69)

Di =

 1 0

0 0

 , Do =

[
0 0

]
. (2.70)

It follows from (2.22) that δ(p) = p3 + 3p2 + 3p + 1. Using (2.20) we have

Γi(p) = Ciadj(pI − A)B + δ(p)Di

=

 (p + 1)2(p + 2) + 1 p + 2

p + 1 (p + 1)(p + 2)

 . (2.71)

Moreover, (2.21) implies that

Γo(p) = Coadj (pI − A)B + δ(p)Do

=

[
(p + 1)2 (p + 1)2

]
. (2.72)

Hence, using (2.49) we have

T (p) = Γo(p)Γ−1
i (p)

=
1

(p + 1)3(p + 2)2

[
(p + 1)4 (p + 1)3(p2 + 3p + 1)

]
. (2.73)

It follows from (2.30) that

(p + 1)3(p + 2)2x3 = (p + 1)4x1 + (p + 1)3(p2 + 3p + 1)x2, (2.74)
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that is,

x
(5)
3 + 7x

(4)
3 + 19x

(3)
3 + 25ẍ3 + 16ẋ3 + 4x3 = x

(4)
1 + 4x

(3)
1 + 6ẍ1 + 4ẋ1 + x1

+ x
(5)
2 + 6x

(4)
2 + 13x

(3)
2 + 13ẍ2 + 6ẋ2 + x2. (2.75)

To confirm (2.32), substituting x,A, and B from (2.67) and (2.68) and u into (2.1)

yields

px1 = −x1 + x2 + u1, (2.76)

px2 = −x2 + x3 + u2, (2.77)

px3 = −x3 + u1 + u2. (2.78)

Using (2.76)–(2.78) note that

det Γi(p)yo = (p + 1)3(p + 2)2x3

= (p + 1)3
(
(p + 2)x3 + (p + 2)(p + 1)x3

)
= (p + 1)3

(
(p + 2)x3 + (p + 2)(u1 + u2)

)
= (p + 1)3

(
(p + 2)(x3 + u2) + (p + 2)u1

)
= (p + 1)3

(
(p + 2)(p + 1)x2 + (p + 2)u1

)
= (p + 1)3

(
x2 + u1 + (p + 1)u1 + ((p + 2)(p + 1)− 1)x2

)
= (p + 1)3

(
(p + 1)(x1 + u1) + (p2 + 3p + 1)x2

)
= Γo(p)adj Γi(p)yi. (2.79)

Hence, yi and yo satisfy (2.32) in accordance with Theorem 1. Moreover, multiplying

(2.79) by δ(p) shows that yi and yo satisfy (2.27). �

Example 2.4.3. Consider the mass-spring system in Figure 2.2, where f is the

input force, q1, q2, q3 are the displacements of m1,m2,m3, respectively, and (2.1) holds
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with

x
4
=

[
q1 q2 q3 q̇1 q̇2 q̇3

]T

, A
4
=

 03×3 I3

Ω 03×3

 , (2.80)

Ω
4
=


−k01+k12+k13

m1

k12
m1

k13
m1

k12
m2

−k12+k23
m2

k23
m2

k13
m3

k23
m3

−k13+k23
m3

,

 , (2.81)

B =

[
0 0 0 1

m1
0 0

]T

. (2.82)

For i = 1, 2, 3, define

yi
4
= Cix, (2.83)

where

C1
4
= eT

1,6, C2
4
= eT

2,6, C3
4
= eT

3,6, (2.84)

Figure 2.2: Mass-spring system for Example 2.4.3, where f is the input force and the
outputs y1, y2, and y3 are the displacements q1, q2, and q3 of m1,m2, and
m3, respectively.

31



and ei,n ∈ Rn is the ith unit vector. Then,

y1 = C1x = q1, (2.85)

y2 = C2x = q2, (2.86)

y3 = C3x = q3. (2.87)

Define

Γ1(p)
4
= C1adj (pIn − A)B

=
m2m3p

4 + (m3(k12 + k23) +m2(k13 + k23)) p2 + k

m1m2m3

, (2.88)

Γ2(p)
4
= C2adj (pIn − A)B =

k12m3p
2 + k

m1m2m3

, (2.89)

Γ3(p)
4
= C3adj (pIn − A)B =

k13m2p
2 + k

m1m2m3

, (2.90)

where k
4
= k12k13 + k12k23 + k13k23. Next, let Tj,i(p) be the transmissibility whose

pseudo input is qi and whose pseudo output is qj, where i, j ∈ {1, 2, 3}. Therefore,

using (2.50)

T2,1(p) =
Γ2(p)

Γ1(p)

=
k12m3p

2 + k

m2m3p4 + (m3(k12 + k23) +m2(k13 + k23)) p2 + k
, (2.91)

T3,1(p) =
Γ3(p)

Γ1(p)

=
k13m2p

2 + k

m2m3p4 + (m3(k12 + k23) +m2(k13 + k23)) p2 + k
, (2.92)

T3,2(p) =
Γ3(p)

Γ2(p)
=
k13m2p

2 + k

k12m3p2 + k
(2.93)
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are the transmissibilities from q1 to q2, q1 to q3, and q2 to q3, respectively. Note that

q2 = T2,1(p)q1, (2.94)

q3 = T3,2(p)q2, (2.95)

and thus

q3 = T3,2(p)T2,1(p)q1 = T3,1(p)q1, (2.96)

that is,

q3 =
Γ3(p)

Γ2(p)

Γ2(p)

Γ1(p)
q1 =

Γ3(p)

Γ1(p)
q1, (2.97)

which shows that Γ2(p) can be cancelled. �

2.5 Conclusions

This chapter developed a time-domain framework for MIMO transmissibilities

that accounts for nonzero initial conditions as well as cancellation of the common

factor occurring in the underlying state space model. A natural extension of these

models is to the discrete-time case to facilitate system identification [28].
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CHAPTER 3

Closed-Loop Identification of Unstable Systems

Using Noncausal FIR Models

3.1 Introduction

Identification of a plant operating inside a closed loop is motivated by the need

to monitor plant changes without opening the loop [69–71]. This need is unavoidable

when the controlled plant is open-loop unstable, in which case opening the loop for

identification is prohibited. Even for plants that are asymptotically stable, opening

the loop for identification may not be feasible due to operational constraints. In

these cases, identification must rely on sensor-actuator data obtained under normal

operating conditions, although in some cases it may be possible to inject additional

signals to enhance persistency and signal amplitude relative to noise levels.

In addition to the fact that closed-loop identification constrains the feasible inputs,

output noise and process noise inside the feedback loop are correlated with the control

input. Although knowledge of this correlation may be useful for system identification,

this information is usually not available in practice, and decorrelation techniques are

needed [72–74]. In [75, 76] an IIR model is used with prediction error methods

(PEM) to identify unstable systems in closed loop. Assuming that the output noise

and process noise are uncorrelated with the exogenous signal, applying PEM with
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either the true system order or an overestimated system order guarantees that the

estimated transfer function converges to the true transfer function as the number of

samples used for identification tends to infinity [75]. However, for a finite data set,

overestimating the system order can yield poor transfer function estimates.

If the plant order is unknown, then an initial overestimate of the order can be

used with PEM, and a refined estimate can be obtained from Ho-Kalman realization

theory [77] and its implementation in terms of the singular value decomposition of the

Hankel matrix [78]. Although this approach, which requires estimates of the Markov

(impulse response) parameters, is sensitive to noise, heuristics can be used to improve

its accuracy [79–83].

By constructing a predictor, PEM identification minimizes the difference between

the predicted output and the measured output to obtain an estimate of the transfer

function. If the predictor is unstable, which is the case when output-error and Box-

Jenkins model structures are used to identify unstable systems in closed loop [84], the

prediction error may be large, which leads to erroneous transfer function estimates.

This issue can be mitigated by using modified output-error and Box-Jenkins models

as in [84], where the predictor is constrained to be stable. However, this constraint

complicates the search algorithm [84].

An alternative approach to PEM identification of unstable plants is discussed in

[85], where an output-error model structure is considered. In this case the predictor is

decomposed into stable and unstable parts, which correspond to causal and noncausal

filters, respectively. Since output-error models are a special type of IIR models, this

approach requires an estimate of the order of the system. However, as discussed

above, if the estimated order is incorrect, then the transfer function estimates may

have poor accuracy. In addition, identifying the noncausal part of the model requires

time-reversing the signal and thus is confined to offline identification. Moreover, the

approaches used in [85] and [84] require a priori knowledge of whether the system is
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stable or unstable.

Noncausal filtering was also used in [86] in a two-step projection method to identify

systems in closed loop with nonlinear feedback. A noncausal FIR model is first used

with linear least mean squares optimization to identify the causal closed-loop system

from the exogenous signal to the control input. Then, the identified model is used

with the exogenous signal to compute the predicted control input, which is then

compared with the output of the closed-loop system to identify the plant using an

IIR model. The role of the noncausal FIR model in [86] is restricted to approximating

the Wiener smoother, which relates the exogenous signal to the control input.

Instrumental variables can also be used to identify unstable systems in closed

loop, where the instruments consist of samples of either the exogenous signal or a

prefiltered version of the exogenous signal [72, 87]. Subspace methods can also be

used to identify linear systems in closed loop [88, 89].

The usefulness of Markov parameters for estimating the order of an IIR system

suggests consideration of a finite impulse response model structure, whose numerator

coefficients are its Markov parameters and all of whose poles are zero. Although

physical systems are rarely FIR, an FIR model can approximate an asymptotically

stable, IIR system [90–92]. An advantage of FIR models for system identification is

that the Markov parameters of an FIR model are given explicitly, and thus can be

used directly in Ho-Kalman realization to estimate the system order and construct an

IIR model. Most importantly, the FIR model structure is independent of the system

poles and zeros, and thus no prior estimate of the plant order is needed.

Noncausal FIR controllers are used for tracking problems where the command

signal is known in advance. In particular, a noncausal FIR feedforward controller is

obtained by truncating the Laurent series of the unstable inverse of a nonminimum-

phase plant; the resulting controller provides approximate plant inversion without

unstable pole-zero cancellation [93–97].
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A noncausal FIR model that approximates the Laurent series of an unstable plant

involves both positive and negative powers of the Z-transform variable z. The negative

powers approximate the asymptotically stable part of the plant outside of a disk (that

is, inside a punctured plane), whereas the positive powers approximate the unstable

part of the plant inside a disk. Inside the common region, which is an annulus, the

Laurent series represents a noncausal model, as evidenced by the positive powers of

z.

To identify an unstable plant operating inside a stabilizing feedback loop, the

measured output can be delayed relative to the measured input to obtain an FIR

model that is a noncausal approximation of the unstable plant. The transfer function

of this noncausal FIR model approximates the Laurent series of the plant inside

the maximal annulus of analyticity lying between the smallest disk containing the

asymptotically stable poles and the smallest punctured plane containing the unstable

poles.

Although advantages of noncausal filters were observed in [85] and [76], a complete

justification is lacking. One of the contributions of the present chapter is thus to use

the Laurent expansion of a rational transfer function to further justify the use of

these models in system identification. The contribution of the present chapter is thus

a detailed treatment of closed-loop identification of unstable plants using noncausal

FIR models. This work presents analysis and proofs that connect the Laurent series

of a transfer function and an associated noncausal FIR model. These results are

needed to establish a rigorous connection between the estimated noncausal FIR model

and the impulse response of the system. Unlike the noncausal output-error models

identified in [85], noncausal FIR models can be identified online. Moreover, unlike

the approaches of [85] and [84], noncausal FIR models do not require knowledge of

whether the system is stable or unstable.

37



3.2 Motivation for FIR Models in System Identification

The first challenge in identifying a linear system of unknown order using an IIR

model structure is the need to estimate the order of the system. To illustrate this

problem, we estimate the order n of the system by identifying an IIR model of order

nmod, where nmod varies from 1 to an upper bound nmod,max for n. For each value

of nmod, we use the identified IIR model of order nmod and the measured input and

output data to calculate the one-step predicted output. Then we compute the residual

between the one-step predicted output and the measured output. The estimated

order of the system is considered to be the value of nmod for which no significant

improvement in the residual occurs for values greater than nmod. As the following

example shows, this approach may fail.

Example 3.2.1. Consider the asymptotically stable transfer function

G(z) =
(z2 + 0.16)(z − 0.3)(z + 0.3)

(z + 0.8)(z + 0.7)(z + 0.6)(z − 0.7)(z − 0.6)(z2 + 0.25)
(3.1)

with input u and output y0, where u is a realization of a zero-mean, unit-variance

white random process. Let y be the output obtained by adding zero-mean white

gaussian output noise to y0 with a signal-to-noise ratio of 10.

We use PEM with an IIR model of order nmod, where 1 ≤ nmod ≤ 20, to identify

G using 100 independent realizations of 10, 000 samples of u and y. For each value of

nmod, let εy,`,nmod
, where ` is the number of samples be the averaged error in the one-

step predicted output obtained from each experiment using PEM with an IIR model

of order nmod. Figure 3.1 shows εy,`,nmod
for nmod = 1, . . . , 20. Note from Figure 3.1

that nmod = 3 gives the least value of εy,`,nmod
. Therefore, the estimated order of (3.1)

using PEM with an IIR model is 3. However, the true order is n = 7. Moreover, note

from Figure 3.1 that εy,`,nmod
increases for values of nmod > 7. That is, overestimating

n degrades εy,`,nmod
.
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Figure 3.1: Plot of εy,`,nmod
for Example 3.2.1, where nmod = 1, . . . , 20. Note that

nmod = 3 gives the least value of εy,`,nmod
. Hence, the estimated order

of (3.1) using PEM with an IIR model is 3. However, the order of G is
n = 7. Moreover, note that εy,`,nmod

increases for values of nmod > 7. That
is, overestimating n degrades εy,`,nmod

.

Next, we use PEM with an FIR model of order µ, where 1 ≤ µ ≤ 50, to identify

G using 100 independent realizations of 10, 000 samples of u and y. For each value of

µ, let εy,`,µ be the averaged error in the one-step predicted output obtained from each

experiment using PEM with an FIR model of order µ. Figure 3.2 shows that εy,`,µ

decreases monotonically as µ increases for values of µ less than 30, with no significant

improvement in εy,`,µ for larger values of µ.

We now use the coefficients of the FIR model of G to estimate the order of G.

Once the order of G is estimated, Ho-Kalman realization can be used to construct

an IIR model of G from its estimated Markov parameters. Beginning with an initial

estimate n̂ ≥ n, we construct the Markov block-Hankel matrix

H(H)
4
=


H1 · · · Hn̂

...
. . .

...

Hn̂ · · · H2n̂−1

 , (3.2)
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where H
4
=

[
H0 · · · H2n̂−1

]
is a vector of Markov parameters of G. For all n̂ ≥ n,

the rank ofH(H) is equal to the McMillan degree of G. We thus compute the singular

values of H(H) and look for a large decrease in the singular values. For noise-free

data, a large decrease in the singular values is evident. However, in the presence of

noise, the large decrease in the singular values disappears, and thus the problem of

estimating the model order becomes difficult [80].

Let Ĥ
4
=

[
Ĥ0 · · · Ĥ2n̂−1

]
be the vector of estimated Markov parameters. To

estimate the order of G using Ĥ, the nuclear-norm minimization technique given in

[79, 80] considers the optimization problem

minimize
H̄(γ)

‖H(H̄(γ))‖N (3.3)

subject to

‖H̄(γ)− Ĥ‖F ≤ γ, (3.4)
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Figure 3.2: Plot of εy,`,µ for Example 3.2.1, where µ = 1, . . . , 50. Note that εy,`,µ
decreases monotonically as µ increases for values of µ less than 30 and no
significant improvement in εy,`,µ for larger values of µ.

40



where ‖ · ‖N is the nuclear norm, which is the sum of the singular values, ‖ · ‖F is

the Frobenius norm, γ is varied over a range of small positive numbers, and H̄(γ) ∈

R1×(2n̂−1) is the optimization parameter vector. For each value of γ, we solve the

optimization problem (3.3), (3.4), and then construct the Markov block-Hankel matrix

H(H̄(γ)) and compute its singular values. The singular values of H(H̄(γ)) that are

robust to changes in γ provide an estimate of the McMillan degree of G.

Figure 3.3 shows the singular values of H(H̄(γ)) versus γ, where Ĥ in (3.4) is the

vector of Markov parameters of the identified model of (3.1) obtained using PEM

with an IIR model of order nmod = 20 averaged over 100 independent realizations.

Note from Figure 3.3 that 5 singular values of H(H̄(γ)) are robust to the change in

γ, which yields 5 as the estimated order of G. However, the order of G is n = 7.

Figure 3.4 shows the singular values of the Hankel matrixH(H̄(γ)) versus γ, where

Ĥ in (3.4) is the vector of estimated Markov parameters obtained from the identified

model using PEM with an FIR model of order µ = 50 averaged over 100 independent

realizations. Figure 3.4 shows that 7 singular values of H(H̄(γ)) are robust to the

change in γ, which correctly yields 7 as the estimated order of G.

Figure 3.5 shows the error |G(eθ) − Ĝ(eθ)| in the frequency response of the

estimated model versus frequency θ, where Ĝ is either the estimated IIR model of

order nmod = 5 or the estimated FIR model of order µ = 50, each averaged over 100

independent realizations. Note that the estimated FIR model gives a better estimate

of the frequency response than the estimated IIR model. �

Example 3.2.2. Consider the unstable transfer function

G(z) =
(z2 + 0.16)(z − 0.3)(z + 0.3)

(z + 0.6)(z − 0.7)(z2 + 0.25)(z − 1.6)(z − 1.7)(z − 1.8)
(3.5)
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with the realization

A =



0.2000 2.000 0.7200 −0.2999 −0.2088 −0.2156 −0.0941

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0



, B =



1

0

0

0

0

0

0



,

(3.6)

C =

[
0 0 1 0 0.0700 0 −0.0144

]
, D = 0, (3.7)

10
−10

10
−9

10
−8

10
−4

10
−3

10
−2

10
−1

10
0

10
1

γ

S
in
g
u
la
r
V
a
lu
es

o
f
th
e
H
a
n
ke
l
M
a
tr
ix

H
(H̄

(γ
))

Figure 3.3: Example 3.2.1. Plot of the singular values of H(H̄(γ)) versus γ, where Ĥ
in (3.4) is the vector of Markov parameters of the identified model of (3.1)
obtained using PEM with an IIR model of order nmod = 20 averaged over
100 independent realizations. This figure shows that 5 singular values of
the Hankel matrix H(H̄(γ)) are robust to the change in γ, which suggests
that the estimated order of G is 5, where the order of G is n = 7.
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stabilized by an LQR controller with Q = I7 and R = 1, where I7 is the 7×7 identity

matrix, and thus

K =

[
0.3337 1.7995 0.6122 − 0.3158 −0.2112 −0.2001 −0.0862

]
.

(3.8)

Figure 3.6 shows the closed-loop control system, where A,B,C are given by (3.6),

(3.7), x is the state vector, K is the LQR gain given by (3.8), c is the exogenous

signal, v is the process noise, and u0 and y0 are the measured input and output

signals, respectively. The plant G given by (3.5) is unstable and the closed-loop

system is internally stable.

Let the exogenous signal c of the closed-loop system shown in Figure 3.6 be a
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Figure 3.4: Example 3.2.1. Plot of the singular values of H(H̄(γ)) versus γ, where
n̂ = 20 and Ĥ in (3.4) is the vector of Markov parameters obtained using
PEM with an FIR model of order µ = 50 averaged over 100 independent
realizations. Note that 7 singular values of H(H̄(γ)) are robust to the
change in γ, which correctly yields 7 as the estimated order of G.
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realization of a zero-mean, unit-variance white random process and let the process

noise v be a white noise signal added to u0 with a signal-to-noise ratio of 10. We use

u0 and y0 to identify G.

We use PEM with an IIR model of order nmod, where 1 ≤ nmod ≤ 20, to identify

G using 100 independent realizations of 10, 000 samples of u0 and y0. For each value

10
−6

10
−4

10
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10
0

Frequency θ [rad/sample]

|G
(e

θ
)
−
Ĝ
(e

θ
)|

 

 

0 π/5 2π/5 3π/5 4π/5 π

IIR

FIR

Figure 3.5: Example 3.2.1. Error in the frequency response of the estimated IIR
model of order nmod = 5 and the estimated FIR model of order µ = 50,
each averaged over 100 independent realizations. Note that the estimated
FIR model gives a better estimate of the frequency response than the
estimated IIR model.

A,B C
c u0 u

K

x
v

y0

−

Figure 3.6: Discrete-time closed-loop control system, where A,B,C are given by
(3.6), (3.7) x is the state vector, K is the LQR gain vector, c is the
zero-mean, unit-variance white exogenous signal, v is a white noise signal
with signal-to-noise ratio of 10, and u0 and y0 are the measured input
and output, respectively. The plant G given by (3.5) is unstable and the
closed-loop system is internally stable.
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of nmod, let εy0,`,nmod
be the averaged error in the one-step predicted output obtained

from each experiment using PEM with an IIR model of order nmod. Figure 3.7 shows

that nmod = 5 gives the least value of εy0,`,nmod
. However, the order of G is n = 7.

Moreover, note from Figure 3.7 that εy0,`,nmod
increases for values of nmod > 7, that

is, overestimating n degrades the one-step prediction error.

Figure 3.8 shows the singular values of H(H̄(γ)) versus γ, where Ĥ in (3.4) is the

vector of Markov parameters of the identified model of (3.5) obtained using PEM

with an IIR model of order nmod = 20 averaged over 100 independent realizations.

Note from Figure 3.8 that 5 singular values of H(H̄(γ)) are robust to the change in

γ, which yields 5 as the estimated order of G. However, the order of G is n = 7.

Next, we use PEM with an FIR model of order µ to identify G using 100 inde-

pendent realizations of 10, 000 samples of u0 and y0. For each value of µ let εy0,`,µ be

the averaged error in the one-step predicted output obtained from each experiment

using PEM with an FIR model of order µ. Figure 3.9 shows εy0,`,µ for the estimated
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Figure 3.7: Plot of εy0,`,nmod
for Example 3.2.2, where nmod = 1, . . . , 20. Note that

nmod = 5 gives the least value of εy0,`,nmod
. Hence, the estimated order

of (3.5) using PEM with an IIR model is 5. However, the order of G
is n = 7. Note that εy0,`,nmod

increases for values of nmod > 7, that is,
overestimating n degrades the one-step prediction error.
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Figure 3.8: Example 3.2.2. Plot of the singular values of H(H̄(γ)) versus γ, where Ĥ
in (3.4) is the vector of Markov parameters of the identified model of (3.5)
obtained using PEM with an IIR model of order nmod = 20 averaged over
100 independent realizations. This figure shows that 5 singular values of
the Hankel matrix H(H̄(γ)) are robust to the change in γ, which suggests
that the estimated order of G is 5, where the order of G is n = 7.

FIR model of order µ = 1, . . . , 50, and the estimated FIR model of order µ = 2d,

where the output y0 is delayed d steps and d = 1, . . . , 25. Note that the FIR model

with delay, which is noncausal, gives significantly lower values of εy0,`,µ than the FIR

model with no delay. Moreover, note that for the FIR model with delay εy0,`,µ de-

creases monotonically as µ increases for values of µ less than 32 and no significant

improvement in εy0,`,µ for values of µ greater than 32. Moreover, increasing the FIR

model order does not degrade the one-step prediction error.

Figure 3.10 shows the error |G(eθ) − Ĝ(eθ)| in the frequency response of the

estimated model versus θ, where θ is the frequency and Ĝ is either the estimated IIR

model of order nmod = 5, the estimated FIR model of order µ = 50, or the estimated

FIR model of order µ = 50 with the output y0 delayed d = 25 steps, each averaged
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over 100 independent realizations. Note that the FIR model with delay, which is

noncausal, gives the least error in frequency response of G. �

The justification for the use of noncausal FIR models will be developed in the

following sections.

3.3 Preliminaries

For ρ > 0, let D(ρ)
4
= {z ∈ C : |z| < ρ} be the open disk in the complex plane

centered at the origin with radius ρ. Also, for ρ ≥ 0, let P(ρ)
4
= {z ∈ C : |z| > ρ} be

the open punctured plane centered at the origin with inner radius ρ. Moreover, for

0 ≤ ρ1 < ρ2, let A(ρ1, ρ2)
4
= {z ∈ C : ρ1 < |z| < ρ2} = P(ρ1) ∩ D(ρ2) be the open
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Figure 3.9: Plot of εy0,`,µ for Example 3.2.2 for the estimated FIR model of order
µ = 1, . . . , 50, and the estimated FIR model of order µ = 2d, where
the output y0 is delayed d steps and d = 1, . . . , 25. Note that the FIR
model with delay, which is noncausal, gives significantly lower values of
εy0,`,µ than the FIR model with no delay. Moreover, note that for the
FIR model with delay εy0,`,µ decreases as µ increases for values of µ less
than 32 and no significant improvement in εy0,`,µ for values of µ greater
than 32. Moreover, increasing the FIR model order does not degrade the
one-step prediction error.
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Figure 3.10: Example 3.2.2. Error in the frequency response of the estimated IIR
model of order nmod = 5, the estimated FIR model of order µ = 50, and
the estimated FIR model of order µ = 50 with the output y0 delayed
d = 25 steps, each averaged over 100 independent realizations. Note
that the FIR model with d = 25 delay steps, which is noncausal, gives
the least error in frequency response.

annulus in the complex plane centered at the origin with inner radius ρ1 and outer

radius ρ2.

Recall [98, p. 168] that if the rational function g(z) is analytic in the open annulus

A(ρ1, ρ2), then g(z) has a unique, absolutely convergent Laurent series in A(ρ1, ρ2) of

the form

g(z) =
∞∑

i=−∞

hiz
i. (3.9)

If ρ2 = ∞, then g is analytic in the punctured plane P(ρ1) and, if g is proper, then,

for all i > 0, hi = 0 in (3.9). If ρ1 = 0 and g has no pole at zero, then g is analytic in

the disk D(ρ2) and, for all i < 0, hi = 0 in (3.9). In this case, (3.9) is a power series

that converges absolutely in D(ρ2) and diverges at every point in P(ρ2) [98, p. 138].
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Definition 2. Let 0 ≤ ρ1 < ρ2 and let g be a rational function. If ρ1 > 0, then the

open annulus A(ρ1, ρ2) is maximal with respect to g if g is analytic in A(ρ1, ρ2) and,

for all ε1 ∈ [0, ρ1) and ε2 ≥ 0, not both zero, g is not analytic in A(ρ1 − ε1, ρ2 + ε2).

If ρ1 = 0, then the open disk D(ρ2) is maximal with respect to g if g is analytic in

D(ρ2) and, for all ε > 0, g is not analytic in D(ρ2 + ε).

For convenience, the term maximal open annulus may also refer to an open disk

or an open punctured plane.

Consider the system

x(k + 1) = Ax(k) +Bu(k), (3.10)

y(k) = Cx(k) +Du(k), (3.11)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m. Assume that (A,B) is controllable

and (A,C) is observable. Let G be the l × m transfer matrix corresponding to

(A,B,C,D). The ith Markov parameter Hi of G, which is given by

Hi
4
=


D, i = 0,

CAi−1B, i ≥ 1,

(3.12)

is independent of the realization (3.10), (3.11) of G. Let ρ(A) denote the spectral

radius of A.

Proposition 1. {Hi}∞i=0 are the coefficients of the Laurent series of G in P(ρ(A)),

that is, for all z ∈ P(ρ(A)),

G(z) =
∞∑
i=0

Hiz
−i. (3.13)
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Proof. For all |z| > ρ(A),

G(z) = C(zI − A)−1B +D

= C(I − z−1A)−1Bz−1 +D

= C
∞∑
i=0

z−i−1AiB +D

=
∞∑
i=1

CAi−1Bz−i +D

=
∞∑
i=0

Hiz
−i. 2

Next, we define the reflected transfer matrix Gref to be the transfer matrix ob-

tained by replacing z in G(z) by z−1, that is, Gref(z)
4
= G(z−1).

Proposition 2. Assume thatA is nonsingular. ThenGref is proper, and (A−1,−A−1B,

CA−1, D − CA−1B) is a minimal realization of Gref .

Proof. Note that

Gref(z) = C(z−1I − A)−1B +D

= C
(
A(z−1A−1 − I)

)−1
B +D

= −CA−1(zI − A−1)−1A−1B +D − CA−1B.
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Now, assume that (A,B) is controllable. Since A is nonsingular, it follows that

rank

([
−A−1B −A−2B · · · −A−nB

])
= rank

(
−A−n

[
An−1B An−2B · · · B

])
= n.

Likewise, (A,C) observable implies that (A−1, CA−1) is observable.

To prove the converse, replace (A,B,C,D) with (A−1,−A−1B,CA−1, D−CA−1B).

Definition 3. The spectral radius ρ(G) of G is the spectral radius of A.

Definition 4. Assume that A is nonsingular. Then, the inner spectral radius ρinner(A)

of A is defined as

ρinner(A)
4
=

1

ρ(A−1)
.

Furthermore, the inner spectral radius ρinner(G) of G is the inner spectral radius of

A.

Proposition 3. Assume that zero is not a pole of G. Then,

ρinner(Gref) =
1

ρ(G)
, ρ(Gref) =

1

ρinner(G)
. (3.14)

Proof. Assume that (A,B,C,D) is a minimal realization of G(z). Then A is
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nonsingular and Proposition 2 implies that (A−1,−A−1B,CA−1, D − CA−1B) is a

minimal realization of Gref . It follows that

ρinner(Gref) = ρinner(A
−1) =

1

ρ(A)
=

1

ρ(G)
.

Similarly,

ρ(Gref) = ρ(A−1) =
1

ρinner(A)
=

1

ρinner(G)
. 2

Definition 5. G is strongly unstable if it has no poles in the closed unit disk.

Proposition 4. G is strongly unstable if and only if Gref is asymptotically sta-

ble.

Proof. The result follows directly from Proposition 3. 2

3.4 Analysis of the Laurent Series

Throughout this section, let G be a proper l ×m rational function with minimal

realization (A,B,C,D). If A is nonsingular, then the Markov parameters of Gref are

given by

H̃i
4
=


D − CA−1B, i = 0,

−CA−i−1B, i ≥ 1.

(3.15)
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Therefore, if A is nonsingular, then Proposition 1 and Proposition 3 imply that the

Laurent series of Gref in P(ρ(Gref)) = P(ρ(A−1)) = P(1/ρ(A)) is given by

Gref(z) =
∞∑
i=0

H̃iz
−i. (3.16)

The following result shows that (3.15) provides the coefficients of the power series

for G in the maximal disk.

Proposition 5. Assume that zero is not a pole of G. Then, for all z ∈ D(ρinner(G)),

G(z) =
∞∑
i=0

H̃iz
i, (3.17)

where H̃i are the Markov parameters of Gref given by (3.15).

Proof. Replacing z ∈ P(ρ(Gref)) = P(1/ρinner(G)) in (3.16) by z−1 ∈ D(ρinner(G))

and using the fact that, for all z ∈ P(ρ(Gref)), Gref(1/z) = G(z) yields (3.17). 2

Using partial fractions, G can be represented as

G = Gs +Gu +D, (3.18)

where the strictly proper transfer functions Gs and Gu are asymptotically stable and

strongly unstable, respectively. Defining ρs
4
= ρ(Gs), Proposition 1 implies that Gs is

analytic in P(ρs) with the Laurent series

Gs(z) =
∞∑
i=1

Hsiz
−i, (3.19)

where, for all i ≥ 0, Hsi is the ith Markov parameter of Gs. Next, note that zero is

not a pole of Gu. Hence, defining ρu
4
= ρinner(Gu), Gu is analytic in D(ρu) with the
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power series

Gu(z) =
∞∑
i=0

Hu−iz
i, (3.20)

where, by Proposition 5, Hu−i is the ith Markov parameter of Gu,ref . Rewriting (3.20)

as

Gu(z) =
0∑

i=−∞

Huiz
−i, (3.21)

it follows from (3.18), (3.19), and (3.21) that G is analytic in the annulus A(ρs, ρu)

with the Laurent series

G(z) =
∞∑

i=−∞

Liz
−i, (3.22)

where

Li
4
=


Hui , i < 0,

Hu0 +D, i = 0,

Hsi , i > 0.

(3.23)

Note that the Laurent series of G in A(ρs, ρu) given by (3.22) is different from the

Laurent series (3.13) of G in P(ρ(G)) given by (3.13). Furthermore, both D = G(∞)

and Hu0 = Gu,ref(∞) may be nonzero as illustrated by the following examples.

Example 3.4.1. Let

G(z) =
(z − 1)(z − 0.5)

(z − 2)(z − 3)
.

Then, D = G(∞) = 1, and

Gs(z) = 0, Gu(z) =
3.5z − 5.5

(z − 2)(z − 3)
, Gu,ref(z) =

−5.5z2 + 3.5z

(1− 2z)(1− 3z)
,

and thus Hu0 = Gu,ref(∞) = −11
12
. �
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Example 3.4.2. Let

G(z) =
1

(z − 0.5)(z − 1.5)
.

Then, D = G(∞) = 0,

Gs(z) =
−1

z − 0.5
, Gu(z) =

1

z − 1.5
, Gu,ref(z) =

z

−1.5z + 1
,

and thus Hu0 = Gu,ref(∞) = −2
3
. �

Assume that G has no poles on the unit circle. Let d and r be positive integers,

and define the FIR truncations Gs,r and Gu,d of Gs(z) and Gu(z−1), respectively, by

Gs,r(z)
4
=

r∑
i=1

Hsiz
−i, Gu,d(z

−1)
4
=

d∑
i=0

Hu−iz
−i, (3.24)

where Hsi and Hu−i are defined by (3.23). Note that

Gs,r(z) =
r∑
i=1

Liz
−i, Gu,d(z) =

d∑
i=0

L−iz
i =

0∑
i=−d

Liz
−i. (3.25)

Now, define the improper rational function Gr,d(z) by

Gr,d
4
= Gs,r +Gu,d +D, (3.26)

where Gs,r(z) and Gu,d(z) are the causal and noncausal components of Gr,d, respec-

tively. Hence, for all z 6= 0,

Gr,d(z) =
r∑

i=−d

Liz
−i. (3.27)
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3.5 Necessary and Sufficient Conditions for Boundedness of

the Laurent Series Coefficients

Throughout this section, let G be an l ×m proper rational function. Let || · ||F
denote the Frobenius norm.

For asymptotically stable and strongly unstable transfer functions, the following

result, which is used in the proof of Theorem 2, concerns boundedness of the coeffi-

cients of the Laurent series of a rational function.

Lemma 1. The following statements hold:

i) Assume that zero is not a pole of G. If the coefficients (3.15) of the power series

(3.17) of G in D(ρinner(G)) are bounded, then ρinner(G) ≥ 1.

ii) If the coefficients (3.12) of the Laurent series (3.13) of G in P(ρ(G)) are bounded,

then ρ(G) ≤ 1.

Proof.

i) It follows from [98, p. 142] that the radius of convergence of the power series

(3.17) of G in D(ρinner(G)) is given by ρinner = 1
lim supi→∞ |H̃i|1/i

. Define the positive

number M
4
= supi |H̃i|. Then

ρinner(G) =
1

lim supi→∞ |H̃i|1/i
≥ 1

limi→∞M1/i
= 1.

ii) Assume that zero is not a pole of Gref . Proposition 5 implies that the power series

of Gref in D(ρinner(Gref)) is given by (3.17), where the coefficients of the power
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series of Gref in D(ρinner(Gref)) are the Markov parameters of (Gref)ref = G, which

are given by (3.12). It follows from [98, p. 142] that the radius of convergence

of the power series of Gref in D(ρinner(Gref)) is given by ρinner = 1
lim supi→∞ |Hi|1/i

.

Define the positive number M
4
= supi |Hi|. Then

1

ρ(G)
= ρinner(Gref) =

1

lim supi→∞ |Hi|1/i
≥ 1

limi→∞M1/i
= 1.

Now assume that Gref has m poles at zero. Then Gref can be written as

Gref(z) =
1

zm
Gref,0(z), (3.28)

where Gref,0 has no poles at zero. Note that the factor 1
zm

shifts the indices

of the power series coefficients of (3.28) but otherwise leaves them unchanged.

Applying the above argument for Gref,0 thus yields ρ(G) ≤ 1. 2

The following result shows that there is a unique maximal annulus for which the

coefficients of the Laurent series of G are bounded.

Theorem 2. Let ρ2 > ρ1 ≥ 0, and assume that A(ρ1, ρ2) is maximal with respect to

G. Then the following statements are equivalent:

i) The coefficients of the Laurent series of G in A(ρ1, ρ2) are square summable.

ii) The coefficients of the Laurent series of G in A(ρ1, ρ2) converge to zero.

iii) The coefficients of the Laurent series of G in A(ρ1, ρ2) are bounded.

iv) ρ1 < 1 < ρ2.
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Proof. i) implies ii) and ii) implies iii) are immediate. To show that iii) implies

iv) assume that the coefficients of the Laurent series of G in A(ρ1, ρ2) are bounded.

Decompose G as G = Gi + Go + D, where all of the poles of Gi are contained in

D(ρ1) and all of the poles of Go are contained in P(ρ2). Suppose ρ1 < ρ2 < 1 and

A(ρ1, ρ2) is maximal. Then ρinner(Go) < 1, and thus i) of Lemma 1 implies that the

coefficients of the Laurent series of Go, and thus the coefficients of the Laurent series

of G, are unbounded. Now suppose that 1 < ρ1 < ρ2 and A(ρ1, ρ2) is maximal. Then

ρ(Gi) > 1, and thus ii) of Lemma 1 implies that the coefficients of the Laurent series

of Gi, and thus G, are unbounded. Therefore, ρ1 < 1 < ρ2.

To show that iv) implies i) assume that ρ1 < 1 < ρ2 and consider the Laurent

series of G in A(ρ1, ρ2) given by (3.22), where {Li}∞i=−∞ is given by (3.23). Then,

f : [0,∞) → C defined by f(θ)
4
= G(eθ) is continuous and periodic. By Parseval’s

theorem, the coefficients of the Fourier series of f are square summable. Since, on the

unit circle, the Laurent series of G given by (3.22) is identical to the Fourier series of

f , it follows that {Li}∞i=−∞ is square summable. 2

Theorem 2 applies to rational functions that have no poles on the unit circle. If

this is not the case, let ρs < α < 1 be such that G has no poles on the circle |z| = α.

Consider the decomposition

G = Gi,α +Go,α +D, (3.29)

where all poles of Gi,α are contained in D(α), all poles of Go,α are contained in P(α),

and D = G(∞). Using (3.22), we have

Gα(z)
4
= G(αz) =

∞∑
i=−∞

Li(αz)−i =
∞∑

i=−∞

α−iLiz
−i =

∞∑
i=−∞

Lα,iz
−i, (3.30)
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where, for all i,

Lα,i
4
= α−iLi. (3.31)

Let ρs < α < 1, and assume that G has no poles on the circle |z| = α. Therefore, Gα

has no poles on the unit circle. Theorem 2 can now be applied to Gα in A(ρs
α
, ρu
α

) and

(3.31) can be used to compute the coefficients of the Laurent series of G in A(ρs, ρu).

3.6 Noncausal Closed-Loop Identification

Consider the closed-loop system in Figure 3.11 consisting of the MIMO, discrete-

time transfer functionG of order n and the discrete-time controller C. We assume that

the closed-loop system is internally asymptotically stable, although no assumptions

are made about the stability of G except that G has no poles on the unit circle.

However, this restriction can be avoided by using (3.30).

Using the Laurent series (3.22) of G in A(ρs, ρu), the output of G can be written

as

y0(k) =
k∑

j=−∞

Lju(k − j), (3.32)

where u(k) = 0 for all k < 0. Note that the terms corresponding to j < 0 represent

C G
u0 u

Gw

c
v

w0

w
ec y0 y

−

Figure 3.11: Discrete-time closed-loop control system, where C is the controller, G is
the plant, v and w0 are white noise signals, and Gw is the output noise
model. The plant G may be unstable, and the closed-loop system is
assumed to be internally stable.
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the noncausal component of the model. Thus, for all k ≥ 0, (3.32) can be represented

as

y0(k) = y0,r,d(k) + er,d(k), (3.33)

where the noncausal FIR model output y0,r,d(k) is defined as

y0,r,d(k)
4
=

min{r,k}∑
j=−d

Lju(k − j), (3.34)

and the output error at time k is defined by

er,d(k)
4
= y0(k)− y0,r,d(k), (3.35)

which is the difference between the true output and the noncausal FIR model output

at time k. Using (3.32) and (3.34) it follows that, for all k ≥ 0,

lim
r,d→∞

y0,r,d(k) =
k∑

j=−∞

Lju(k − j) = y0(k). (3.36)

Therefore, for all k ≥ 0,

lim
r,d→∞

er,d(k) = y0(k)− lim
r,d→∞

y0,r,d(k) = 0. (3.37)

It follows from (3.34) that computing the output at time k requires the inputs

u(k − r), . . . , u(k + d). That is, to identify a noncausal FIR model we delay the

measured output data by d steps and then perform identification between the input

and delayed output, as we show next.

Let c, v, and w0 be realization of the zero-mean stationary white random processes

C,V , andW0, respectively, and let w be a realization of the stationary colored random

process W . We assume that C,W0, and V are mutually independent and ergodic,

that is, their statistical properties can be determined from a single, sufficiently long
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realization.

Let u and y denote measurements of the input u0 and output y0, respectively, that

is, for all k ≥ 0,

u(k) = u0(k) + v(k), (3.38)

y(k) = y0(k) + w(k). (3.39)

Note that (3.33) can be expressed as

y0(k) = θr,dφr,d(k) + er,d(k), (3.40)

where

θr,d
4
=

[
L−d · · · Lr

]
, φr,d(k)

4
=

[
u(k + d) · · · u(k − r)

]T

.

Moreover, for all k ≥ 0

y(k) = θr,dφr,d(k) + w(k) + er,d(k). (3.41)

3.6.1 Noncausal Closed-Loop Identification Using Least Squares

The least squares (LS) estimate θ̂LS
r,d,` of θr,d is given by

θ̂LS
r,d,` = arg min

θ̄r,d

∥∥Ψy,`− θ̄r,dΦµ,`

∥∥
F
, (3.42)

where θ̄r,d ∈ Rl×µm,

Ψy,`
4
=

[
y(r) · · · y(`− d)

]
, Φµ,`

4
=

[
φr,d(r) · · · φr,d(`− d)

]
,
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µ
4
= r + d + 1, and ` is the number of samples. It follows from (3.42) that the least

squares estimate θ̂LS
r,d,` of θr,d satisfies

Ψy,`Φ
T
µ,` = θ̂LS

r,d,`Φµ,`Φ
T
µ,`. (3.43)

Note that

Ψy,` = Ψy0,` + Ψw,`, Ψy0,` = θr,dΦµ,` + Ψer,d,`, Φµ,` = Φµ0,` + Φv,`, (3.44)

where

Ψy0,`
4
=

[
y0(r) · · · y0(`− d)

]
, Ψw,`

4
=

[
w(r) · · · w(`− d)

]
,

Φµ0,`
4
=

[
φ0r,d(r) · · · φ0r,d(`− d)

]
, φ0r,d(k)

4
=

[
u0(k + d) · · · u0(k − r)

]T

,

Φv,`
4
=

[
φvr,d(r) · · · φvr,d(`− d)

]
, φvr,d(k)

4
=

[
v(k + d) · · · v(k − r)

]T

.

Then, (3.43) becomes

θr,dΦµ,`Φ
T
µ,` + Ψw,`Φ

T
µ,` + Ψer,d,`Φ

T
µ,` = θ̂LS

r,d,`Φµ,`Φ
T
µ,`, (3.45)

where

Ψer,d,`
4
=

[
er,d(r) · · · er,d(`− d)

]
.

Note from Figure 3.11 that u can be written as

u(k) = Gu,c(z)c(k) +Gu,v(z)v(k) +Gu,w0(z)w0(k), (3.46)

where Gu,c, Gu,v, and Gu,w0 are the asymptotically stable closed loop transfer functions
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from c, v, and w0 to u, respectively. It follows from (3.46) that we can write

U(k) = Gu,c(z)C(k) +Gu,v(z)V(k) +Gu,w0(z)W0(k). (3.47)

Since C, V , and W0 are ergodic processes and U is the output of a linear time-

invariance (LTI) system whose inputs are ergodic, then (3.47) implies that U is also

ergodic. Similarly, we can show that W , Y0, and Y are ergodic.

Dividing (3.45) by ` and taking the limit as ` tends to infinity yields

θr,d lim
`→∞

1

`
Φµ,`Φ

T
µ,` + lim

`→∞

1

`
Ψw,`Φ

T
µ,` + lim

`→∞

1

`
Ψer,d,`Φ

T
µ,`

wp1
= lim

`→∞

1

`
θ̂LS
r,d,`Φµ,`Φ

T
µ,`, (3.48)

where lim`→∞
1
`
Φµ,`Φ

T
µ,`, lim`→∞

1
`
Ψw,`Φ

T
µ,`, and lim`→∞

1
`
Ψer,d,`Φ

T
µ,` exist due to ergod-

icity conditions.

Define

Q
4
= lim

`→∞

1

`
Φµ,`Φ

T
µ,`. (3.49)

Therefore, (3.48) can be written as

θr,dQ+ lim
`→∞

1

`
Ψw,`Φ

T
µ,` + lim

`→∞

1

`
Ψer,d,`Φ

T
µ,`

wp1
= lim

`→∞
θ̂LS
r,d,`Q. (3.50)

Taking the limit as r and d tend to infinity, (3.50) becomes

lim
r,d→∞

θr,dQ+ lim
r,d→∞

lim
`→∞

1

`
Ψw,`Φ

T
µ,` + lim

r,d→∞
lim
`→∞

1

`
Ψer,d,`Φ

T
µ,`

wp1
= lim

r,d→∞
lim
`→∞

θ̂LS
r,d,`Q.

(3.51)

It follows from (3.37) that

lim
r,d→∞

lim
`→∞

1

`
Ψer,d,`Φ

T
µ,`

wp1
= 0l×µm. (3.52)
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Therefore, (3.51) becomes

lim
r,d→∞

lim
`→∞

1

`
Ψw,`Φ

T
µ,`

wp1
=

(
lim
r,d→∞

lim
`→∞

θ̂LS
r,d,` − lim

r,d→∞
θr,d

)
Q. (3.53)

Since w and u are realizations of correlated processes, then limr,d→∞ lim`→∞
1
`
Ψw,`Φ

T
µ,`

is not zero. Therefore, (3.53) implies that (limr,d→∞ lim`→∞ θ̂
LS
r,d,` − limr,d→∞ θr,d)Q is

not zero, which implies that limr,d→∞ lim`→∞ θ̂
LS
r,d,`− limr,d→∞ θr,d is not in the left null

space of Q, and thus is not zero. Therefore, θ̂LS
r,d,` is not a consistent estimator of θr,d.

3.6.2 Noncausal Closed-Loop Identification Using the Basic Instrumental

Variables Method

The basic instrumental variables (BIV) method [72] is used with an FIR model

to identify the transfer function G shown in Figure 3.11 by modifying (3.43) [72, 99].

A typical choice of the vector of instrumental variables for closed-loop identification

is to use samples of the exogenous signal c [87]. Let φc,r,d(k) denote the vector of

instrumental variables, that is,

φc,r,d(k)
4
=

[
c(k + d) · · · c(k − r)

]T

∈ Rµm. (3.54)

We then modify (3.43) as

Ψy,`Φ
T
c,µ,` = θ̂IV

r,d,`Φµ,`Φ
T
c,µ,`, (3.55)

where

Φc,µ,`
4
=

[
φc,r,d(r) · · · φc,r,d(`− d)

]
. (3.56)
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Then, (3.55) becomes

θr,dΦµ0,`Φ
T
c,µ,` + θr,dΦv,`Φ

T
c,µ,` + Ψw,`Φ

T
c,µ,` + Ψer,d,`Φ

T
c,µ,` = θ̂IV

r,d,`Φµ0,`Φ
T
c,µ,` + θ̂IV

r,d,`Φv,`Φ
T
c,µ,`.

(3.57)

Since C,W0, and V are ergodic processes, (3.57) implies

θr,d lim
`→∞

1

`
Φµ0,`Φ

T
c,µ,` + θr,d lim

`→∞

1

`
Φv,`Φ

T
c,µ,` + lim

`→∞

1

`
Ψw,`Φ

T
c,µ,` + lim

`→∞

1

`
Ψer,d,`Φ

T
c,µ,`

wp1
= lim

`→∞

1

`
θ̂IV
r,d,`Φµ0,`Φ

T
c,µ,` + lim

`→∞

1

`
θ̂IV
r,d,`Φv,`Φ

T
c,µ,`.

(3.58)

Using (3.58), consistency of the estimated Markov parameters holds if Φc,µ,` sat-

isfies the following assumptions

A1) lim`→∞
1
`
Φµ0,`Φ

T
c,µ,` is nonsingular.

A2) lim`→∞
1
`
Ψw,`Φ

T
c,µ,`

wp1
= 0l×µm.

A3) lim`→∞
1
`
Φv,`Φ

T
c,µ,`

wp1
= 0µm×µm.

The vector of instrumental variables is constructed from the exogenous signal data,

which is a realization of a stationary white random process and satisfies A1) [87].

Next, note that

lim
`→∞

1

`
Ψw,`Φ

T
c,µ,` = lim

`→∞

1

`

[
w(r) · · · w(`− d)

]
c(r + d) . . . c(0)

... . . .
...

c(`) . . . c(`− r − d)


= lim

`→∞

1

`

[ ∑`−d
i=r w(i)c(i+ d) · · · ∑`−d

i=r w(i)c(r − i)
]

wp1
=

[
E [W(k)C(k + d)] · · · E [W(k)C(r − k)]

]
= 0l×µm, (3.59)

65



where the last equality follows from the assumptions that W and C are independent

processes and C is zero-mean. Similarly, we can show that

lim
`→∞

1

`
Φv,`Φ

T
c,µ,` = 0µm×µm. (3.60)

Then, it follows from (3.59) and (3.60) that the choice of the instrumental variables

satisfies A2) and A3). Moreover, using (3.59) and (3.60), (3.58) becomes

θr,d

[
lim
`→∞

1

`
Φµ0,`Φ

T
c,µ,`

]
+ lim

`→∞

1

`
Ψer,d,`Φ

T
µ,`

wp1
= lim

`→∞
θ̂IV
r,d,`

[
lim
`→∞

1

`
Φµ0,`Φ

T
c,µ,`

]
. (3.61)

Taking the limit of (3.61) as r and d tend to infinity and using (3.53) and assumption

A1), (3.61) becomes

lim
r,d→∞

lim
`→∞

θ̂IV
r,d,`

wp1
= lim

r,d→∞
θr,d. (3.62)

We choose r and d to be sufficiently large such that lim`→∞
1
`
Ψer,d,`Φ

T
µ,` is negligible.

3.6.3 Noncausal Closed-Loop Identification Using the Extended Instru-

mental Variables Method

The extended instrumental variables (XIV) method generalizes the basic instru-

mental variables method by prefiltering the sampled data of the instrumental variables

[72, 87]. That is, in (3.55) we replace Φc,µ,` by

Φc̃,µ,`
4
= L(z)Φc,µ,`, (3.63)

where L(z) is an asymptotically stable filter. Using the same argument used above

to show consistency for the basic instrumental variables method, consistency of the

estimated Markov parameters of XIV denoted by θ̂XIV
r,d,`, holds if Φc̃,µ,` satisfies the

assumptions

B1) lim`→∞
1
`
Φµ0,`Φ

T
c̃,µ,` is nonsingular.
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B2) lim`→∞
1
`
Ψw,`Φ

T
c̃,µ,`

wp1
= 0l×µm.

B3) lim`→∞
1
`
Φv,`Φ

T
c̃,µ,`

wp1
= 0µm×µm.

3.6.4 Noncausal Closed-Loop Identification Using Prediction Error Meth-

ods

Let Ĝ`(q) and Ĝw,`(q) be estimates of G(q) and Gw(q), respectively, obtained

with ` samples of input and output data, and assume that Gw(q) and Ĝw,`(q) are

square and nonsingular. Note that y in Figure 3.11 can be written as

y(k) = G(q)u(k) +Gw(q)w0(k). (3.64)

Then, the one-step predictor of (3.64) is defined by [100]

y(k|Ĝ`, Ĝw,`)
4
= Ĝ−1

w,`(q)Ĝ`(q)u(k) + (1− Ĝ−1
w,`(q))y(k). (3.65)

Define the prediction error

ε(k|Ĝ`, Ĝw,`)
4
= y(k)− y(k|Ĝ`, Ĝw,`). (3.66)

Using (3.64) and (3.65), (3.66) can be written as

ε(k|Ĝ`, Ĝw,`) = y(k)− Ĝ−1
w,`(q)Ĝ`(q)u(k)− (1− Ĝ−1

w,`(q))y(k)

= Ĝ−1
w,`(q)(y(k)− Ĝ`(q)u(k))

= Ĝ−1
w,`(q)

(
(G(q)− Ĝ`(q))u(k) +Gw(q)w0(k)

)
= Ĝ−1

w,`(q)
(

(G(q)− Ĝ`(q))u(k) + (Gw(q)− Ĝw,`(q))w0(k)
)

+ w0(k).

(3.67)
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Assume that G, Gw, and G−1
w have no poles on the unit circle. Then G, Gw, and G−1

w

are analytic in the maximal annulus that contains the unit circle with the Laurent

series given by (3.22) for G and with the Laurent series

Gw(z) =
∞∑

i=−∞

Miz
−i, (3.68)

G−1
w (z) =

∞∑
i=−∞

Niz
−i, (3.69)

for Gw and G−1
w , respectively, in the maximal annulus that contains the unit circle,

where for all i, Mi, Ni ∈ Rl×l. Define

H(q, θr,d)
4
=

r∑
i=−d

Liq
−i, H(q, θM,r,d)

4
=

r∑
i=−d

Miq
−i, H(q, θN,r,d)

4
=

r∑
i=−d

Niq
−i,

(3.70)

θr,d
4
=

[
L−d · · · Lr

]
, θM,r,d

4
=

[
M−d · · · Mr

]
, θN,r,d

4
=

[
N−d · · · Nr

]
,

(3.71)

where θr,d ∈ Rl×µm, and θM,r,d, θN,r,d ∈ Rl×µl. Note from (3.34) and (3.70) that

y0,r,d(k) = H(q, θr,d)u(k). (3.72)

Therefore, (3.35) implies that

er,d(k) = y0(k)−H(q, θr,d)u(k)

= G(q)u(k)−H(q, θr,d)u(k). (3.73)
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Moreover, define

ew,r,d(k)
4
= w(k)−H(q, θM,r,d)w0(k)

= Gw(q)w0(k)−H(q, θM,r,d)w0(k). (3.74)

Therefore, (3.73) and (3.74) imply, respectively, that

G(q)u(k) = H(q, θr,d)u(k) + er,d(k), (3.75)

Gw(q)w0(k) = H(q, θM,r,d)w0(k) + ew,r,d(k). (3.76)

Let

H(q, θ̂r,d,`)
4
= Ĝ`(q) =

r∑
i=−d

L̂i,`q
−i, θ̂r,d,`

4
=

[
L̂−d,` · · · L̂r,`

]
, (3.77)

H(q, θ̂M,r,d,`)
4
= Ĝw,`(q) =

r∑
i=−d

M̂i,`q
−i, θ̂M,r,d,`

4
=

[
M̂−d,` · · · M̂r,`

]
, (3.78)

H(q, θ̂N,r,d,`)
4
= Ĝ−1

w,`(q) =
r∑

i=−d

N̂i,`q
−i, θ̂N,r,d,`

4
=

[
N̂−d,` · · · N̂r,`

]
, (3.79)

where θ̂r,d,` ∈ Rl×µm and θ̂M,r,d,`, θ̂N,r,d,` ∈ Rl×µl. Then, using (3.75)–(3.79), (3.67) can

be rewritten as

ε(k|θ̂r,d,`, θ̂M,r,d,`, θ̂N,r,d,`)
4
=H(q, θ̂N,r,d,`)

[
(H(q, θr,d)−H(q, θ̂r,d,`))u(k)

+(H(q, θM,r,d)−H(q, θ̂M,r,d,`))w0(k)+er,d(k)+ew,r,d(k)
]
+w0(k)

= H(q, θ̂N,r,d,`)
[
TT(q, θ̂r,d,`, θ̂M,r,d,`)ξ(k)+er,d(k)+ew,r,d(k)

]
+w0(k),

(3.80)
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where

T (q, θ̂r,d,`, θ̂M,r,d,`)
4
=

 H(q, θr,d)−H(q, θ̂r,d,`)

H(q, θM,r,d)−H(q, θ̂M,r,d,`)

 , ξ(k)
4
=

 u(k)

w0(k)

 . (3.81)

Define

θ̂`
4
= lim

r,d→∞
θ̂r,d,`, θ̂M,`

4
= lim

r,d→∞
θ̂M,r,d,`, θ̂N,`

4
= lim

r,d→∞
θ̂N,r,d,`, (3.82)

ε(k|θ̂`, θ̂M,`, θ̂N,`)
4
= lim

r,d→∞
ε(k|θ̂r,d,`, θ̂M,r,d,`, θ̂N,r,d,`), (3.83)

T (q, θ̂, θ̂M,`)
4
= lim

r,d→∞
T (q, θ̂r,d,`, θ̂M,r,d,`) =

 H(q, θ)−H(q, θ̂`)

H(q, θM)−H(q, θ̂M,`)

 . (3.84)

Note from (3.68) and (3.70) that

lim
r,d→∞

H(q, θM,r,d) = Gw(q), (3.85)

which implies that

lim
r,d→∞

ew,r,d(k) = Gw(q)w0(k)− lim
r,d→∞

H(q, θM,r,d)w0(k) = 0. (3.86)

Using (3.37) and (3.82)–(3.86), taking the limit of (3.80) as r and d tend to infinity

yields

ε(k|θ̂`, θ̂M,`, θ̂N,,`) = H(q, θ̂N,`)T
T(q, θ̂`, θ̂M,`)ξ(k) + w0(k). (3.87)

Next, define the cost function

V (`, θ̂`, θ̂M,`, θ̂N,`)
4
=

1

`

∑̀
k=1

‖ε(k|θ̂`, θ̂M,`, θ̂N,`)‖2
2. (3.88)
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Define

θ̂
4
= lim

`→∞
θ̂`, θ̂M

4
= lim

`→∞
θ̂M,`, θ̂N

4
= lim

`→∞
θ̂N,`, (3.89)

which are independent of the data due to ergodicity. Define

V̄ (θ̂, θ̂M , θ̂N)
4
= lim

`→∞
V (`, θ̂`, θ̂M,`, θ̂N,`). (3.90)

Using Parseval’s theorem, (3.90) becomes

V̄ (θ̂, θ̂M , θ̂N) =
1

2π

π∫
−π

Φε(ω)dω, (3.91)

where using (3.87), the spectrum of ε is given by

Φε(ω)
4
= H(eω, θ̂N)TT(eω, θ̂, θ̂M)Φξ(ω)T (e−ω, θ̂, θ̂M)HT(e−ω, θ̂N) + λw0 , (3.92)

H(eω, θ̂N) and T (eω, θ̂, θ̂M) are the discrete-time Fourier transforms of H(q, θ̂N) and

T (q, θ̂, θ̂M), respectively,

Φξ(ω)
4
=

 Φu(ω) Φu,w0(ω)

Φw0,u(ω) λw0

 (3.93)

is the spectrum of ξ, Φu is the spectrum of u, λw0 is the variance of w0, and Φu,w0

and Φw0,u are the cross-power spectra between u and w0.

Note from (3.84) and (3.92) that T (eω, θ̂, θ̂M) = T (eω, θ, θM) is the global mini-

mizer of (3.92), which implies that the PEM estimates θ̂PEM
` and θ̂PEM

M,` of θ and θM ,

respectively, converge to the true values as ` tends to infinity, that is,

lim
`→∞

θ̂PEM
` = θ, lim

`→∞
θ̂PEM
M,` = θM . (3.94)
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We choose r and d to be sufficiently large such that er,d(k) and ew,r,d(k) are negligible

for all k ≥ 1.

3.7 Numerical Examples

To identify a noncausal FIR model of a transfer function G in the closed-loop

system shown in Figure 3.11 we delay the measured output data by d steps and

then apply the identification methods discussed in the previous section using the

input data and delayed output data. A nonzero estimate of the noncausal component

of the identified FIR model indicates that G may have at least one unstable pole;

otherwise G is asymptotically stable.

We assume that the exogenous signal c in Figure 3.11 is a realization of a stationary

white random process C with the Gaussian pdf N (0, 1). Moreover, we assume that

the intermediate signal u is measured. In the first example in this section we assume

noise-free data, that is, v(k) = 0 and w(k) = 0 for all k ≥ 0 and we use least squares

to identify a baseline model. These examples illustrate the role of the noncausal terms

in the identified model. The second example in this section compares the accuracy of

the identified model obtained using least squares, instrumental variables techniques,

and prediction error methods for both IIR and noncausal FIR models in the presence

of noise.

Example 3.1. Consider the unstable MIMO system

G(z) =

 G1,1(z) G1,2(z)

G2,1(z) G2,2(z)

 4= 1

z2 − 2z + 0.35

 −z + 6.3 5z − 11.9

4z − 14 −12z + 26

 , (3.95)
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with the realization

A =

 1.5 0.2

2 0.5

 , B =

 1 −1

−1 3

 , C =

 1 2

0 −4

 , D = 02×2. (3.96)

Consider the LQR controller with Q = 2I2 and R = I2, where I2 is the 2× 2 identity

matrix, and thus

K =

 2.5446 0.4259

1.3095 0.2707

 . (3.97)

Let r = 25 and d = 25. Figure 3.12 shows the true and identified Laurent series

coefficients of G in A(ρs, ρu), where ρs ≈ 0.1938 and ρu ≈ 1.8062. Note that the

impulse response of G has both causal and noncausal components, where the causal

components are due to the stable part of G and the noncausal components are due

to the unstable part of G. �

Example 3.2. Consider the 7th-order unstable but not strongly unstable transfer

−25 −20 −15 −10 −5 0 5 10 15 20 25
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Ĝ2,2

Figure 3.12: G is the MIMO system (3.95), r = 25, and d = 25 output-delay steps.
The entries of the true impulse response of G are shown in dot markers
and the entries of the identified impulse response of G are shown in
circle markers. Note that the impulse response of G has both causal and
noncausal components.
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function

G(z) =
(z2 + 0.16)(z − 0.3)(z + 0.3)

(z + 0.7)(z + 0.6)(z2 + 0.25)(z − 1.8)(z − 1.7)(z − 1.6)
(3.98)

and the LQR controller with weighting matrices Q = I7 and R = 1, and thus

K =

[
3.5197 −3.1272 −3.0739 2.0825 1.0096 0.7134 0.4997

]
. (3.99)

We set r = 50 and d = 50. Let v in Figure 3.6 be a realization of a zero-mean white

gaussian random process with signal-to-noise ratio of 10. Let ĜLS,`, ĜIV,`, and ĜPEM,`

of order nmod be the identified IIR models using LS, IV, and PEM, respectively, where

` samples are used for identification. To perform the identification using IV and PEM

we use the Matlab functions iv4(data,‘na’,nmod,‘nb’,nmod) and pem(data,nmod),

respectively. We use (3.27) to find the noncausal FIR truncations of ĜLS,`, ĜIV,`, and

ĜPEM,`, then we compute the error in the Markov parameters estimates defined by

δ`
4
=

1

50

50∑
i=1

||θr,d − θ̂r,d,`,i||2, (3.100)

where θ̂r,d,`,i is the vector of coefficients of the noncausal FIR truncation of ĜLS,`,

ĜIV,`, or ĜPEM,` obtained from the ith experiment.

Next, we consider a noncausal FIR model with r = 50 and d = 50, and we estimate

the vector of Markov parameters for 50 independent realizations. We compute the

error in the Markov parameters estimates using (3.100), where θ̂r,d,`,i in (3.100) is the

estimate of the vector of Markov parameters obtained from the ith experiment using

LS, IV, or PEM.

Figure 3.13 shows δ` for LS, IV, and PEM with IIR and noncausal FIR models for

` = 10, 000 samples, where the order nmod of the IIR model changes between 1 and 20

and the order of the noncausal FIR model is fixed at r = 50 and d = 50. Figure 3.13
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shows that FIR models give better estimates than IIR models for all 1 ≤ nmod ≤ 20.

In the next section, we show that the estimated parameters of the noncausal FIR

model can be used to estimate the order of the system, which in turn can be used

with PEM to make the IIR estimates more accurate.

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

nmod

δ ℓ

 

 
LS with FIR

IV with FIR

PEM with FIR

LS with IIR

IV with IIR

PEM with IIR

Figure 3.13: G(z) given by (3.98) is an unstable but not strongly unstable transfer
function, r = 50, d = 50 output-delay steps, ` = 10, 000 samples, and
v in Figure 3.6 is a realization of a zero-mean white gaussian random
process with signal-to-noise ratio of 10. This plot shows that FIR models
give better coefficient estimates than IIR models for all 1 ≤ nmod ≤ 20.

3.8 Reconstructing G from its Noncausal FIR Model

In order to reconstruct G from its noncausal FIR model we reconstruct the stable

and unstable parts of G separately using the eigensystem realization algorithm (ERA)

[78]. Then, we obtain G by adding these two terms together as in (3.18). Singular

values of the Hankel matrix can be used to estimate the model orders ns of Gs and nu

of Gu. We begin with initial estimates n̂s ≥ ns and n̂u ≥ nu. For Gs, we set r = 2n̂s−1

and d = 0 and obtain the Markov parameters of Gs using the identification methods

discussed above. On the other hand, for Gu, we set r = 0 and d = 2n̂u−1 and obtain
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the Markov parameters of Gu(z−1) using the identification methods discussed above.

Then, we construct the Markov block-Hankel matrix

H(Hs)
4
=


Hs,1 · · · Hs,n̂s

...
. . .

...

Hs,n̂s · · · Hs,2n̂s−1

 , (3.101)

where

Hs
4
=

[
Hs,0 · · · Hs,2n̂s−1

]
, (3.102)

and H(·) is a linear mapping that constructs a Markov block-Hankel matrix from

the components of the vector Hs except for Hs,0. The rank of H(Hs) is equal to the

McMillan degree of Gs. Similarly, for Gu(z−1) we construct the Markov block-Hankel

matrix

H(Hu)
4
=


Hu,−2n̂u+2 · · · Hu,−n̂u+1

...
. . .

...

Hu,−n̂u+1 · · · Hu,0

 , (3.103)

where

Hu
4
=

[
Hu,−2n̂u+1 · · · Hu,0

]
. (3.104)

Note that H(·) constructs a Markov block-Hankel matrix from the components of the

vector Hu except for Hu,−2n̂u+1. The rank of H(Hu) is equal to the McMillan degree

of Gu(z−1).

We compute the singular values of H(Hs) and H(Hu) and look for a large decrease

in the singular values. For noise-free data, a large decrease in the singular values is

evident. However, even with a small amount of noise, the large decrease in the sin-

gular values disappears and thus the problem of estimating the model order becomes

difficult [80].

The nuclear-norm minimization technique given in [79, 80] provides a heuristic
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optimization approach to this problem. Let Ĥs be the vector of of estimated Markov

parameters, where

Ĥs
4
=

[
Ĥs,0 · · · Ĥs,2n̂−1

]
. (3.105)

To estimate the model order of Gs we solve the optimization problem

minimize
H̄s(γs)

‖H(H̄s(γs))‖N (3.106)

subject to

‖H̄s(γs)− Ĥs‖F ≤ γs, (3.107)

where γs is varied over a range of small positive numbers. For each value of γs, we

solve the optimization problem (3.106), (3.107), and then we construct the Markov

block-Hankel matrix H(H̄s(γs)) and compute its singular values. The singular values

of H(H̄s(γs)) that are robust to the change in γs provide an estimate of the McMillan

degree of Gs. Finally, we use ERA to construct the estimate Ĝs(z) of Gs(z).

Similarly, let Ĥu be the vector of of estimated Markov parameters, where

Ĥu
4
=

[
Ĥu,0 · · · Ĥu,2n̂−1

]
. (3.108)

To estimate the model order of Gu we solve the optimization problem

minimize
H̄u(γu)

‖H(H̄u(γu))‖N (3.109)

subject to

‖H̄u(γu)− Ĥu‖F ≤ γu, (3.110)
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where γu is varied over a range of small positive numbers. For each value of γu, we

solve the optimization problem (3.109), (3.110), and then we construct the Markov

block-Hankel matrix H(H̄u(γu)) and compute its singular values. The singular values

of H(H̄u(γu)) that are robust to the change in γu provide an estimate of the McMillan

degree of Gu. Finally, we use ERA to construct the estimate Ĝu(z−1) of Gu(z−1).

The following example illustrates this method.

Example 3.3. Consider the system (3.98). We use c in Figure 3.6 to be a realization

of the stationary white random process C with the Gaussian pdf N (0, 1). Let v be

a white noise signal with signal-to-noise ratio of 10. We set r = 25, d = 25, and

` = 5000 points and then we identify a noncausal FIR model of G. The estimated

Markov parameters are averaged over 100 experiments.

To choose the model order for Gs(z), we set n̂s = 10 and we solve the optimization

problem (3.106), (3.107) for a range of γs from 10−10 to 10−8. For each value of γs,

we find the optimal Ĥs(γs), and then we construct the Markov block-Hankel matrix

H(Ĥs(γs)) and compute its singular values.

Figure 3.14 shows the singular values of the Hankel matrix H(Ĥs(γs)) versus γs.

Figure 3.14 shows that 4 singular values of H(H̄s(γs)) are robust to the change in γs,

which correctly yields 4 as the estimated order of Gs. Using ERA we obtain

Ĝs(z) =
0.07241z3 + 0.02234z2 + 0.01606z − 0.00113

z4 + 1.3020z3 + 0.7590z2 + 0.3697z + 0.08392
. (3.111)

Similarly, for Gu(z−1), we set n̂u = 10 and we solve the optimization problem

(3.109), (3.110) for a range of γu from 10−10 to 10−8. For each value of γu, we find the

optimal Ĥu(γu), and then we construct the Markov block-Hankel matrix H(Ĥu(γu))

and compute its singular values. Figure 3.15 shows the singular values of the Hankel

matrix H(Ĥu(γs)) versus γu. Figure 3.15 shows that 3 singular values of H(H̄u(γu))

are robust to the change in γu, which correctly yields 3 as the estimated order of Gu.
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Using ERA we obtain

Ĝu(z−1) =
0.0096z3 − 0.0898z2 + 0.0147z − 0.00002

z3 − 1.7680z2 + 1.0400z − 0.2028
, (3.112)

that is,

Ĝu(z) =
0.00002z3 − 0.0147z2 + 0.0898z − 0.0096

0.2028z3 − 1.0400z2 + 1.7680z − 1
. (3.113)

It follows that the estimate Ĝ of G is

ĜERA(z) = Ĝs(z) + Ĝu(z)

=
0.0001z7−0.0001z6−0.0006z5+1.0070z4+0.0018z3+0.1573z2−0.0694z+0.0016

z7 − 3.8249z6 + 2.8011z5 + 2.8991z4 − 1.6149z3 − 0.9494z2 − 1.0912z − 0.4138
.

(3.114)

Figure 3.16 shows the difference between the bode plots of G and the estimates ĜERA,

ĜIIR obtained using PEM with an IIR model with order nmod = 5, and Ĝr,d obtained

using PEM with a noncausal FIR model with r = 25 and d = 25. Note that the

noncausal FIR estimate, Ĝr,d yields the smallest error in the estimated frequency

response of G. �

3.9 Conclusions

In this chapter we used noncausal FIR models for closed-loop identification of

open-loop-unstable plants. To identify the noncausal model we delayed the measured

output relative to the measured input. We found that the identified FIR model

approximates the Laurent series of the plant inside the annulus of analyticity lying

between the disk of stable poles and the punctured plane of unstable poles. We

presented examples to compare the accuracy of the identified model obtained using

least squares, instrumental variables methods, and prediction error methods for both

IIR and noncausal FIR models under arbitrary noise that is fed back into the loop.
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Figure 3.14: Plot of the singular values of H(H̄(γs)) versus γs, where n̂s = 10 and
Ĥs in (3.107) is the vector of Markov parameters obtained using PEM
with a noncausal FIR model of order r = 25 and d = 25, averaged over
100 independent realizations. Note that 4 singular values of H(H̄(γs))
are robust to the change in γs, which correctly yields 4 as the estimated
order of Gs.

Numerical examples showed that for systems with unknown order, using noncausal

FIR models for identification gives better estimates than using IIR models with an

overestimated or underestimated model order. We used nuclear norm minimization

technique to estimate the orders of the asymptotically stable and unstable parts of

the plant, which can be used to improve the identification accuracy for IIR systems.

Finally, we reconstructed an IIR model of the system from its stable and unstable

parts using the eigensystem realization algorithm.
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Figure 3.15: Plot of the singular values of H(H̄(γu)) versus γu, where n̂u = 10 and
H in (3.110) is the vector of Markov parameters obtained using PEM
with a noncausal FIR model of order r = 25 and d = 25 averaged over
100 independent realizations. Note that 3 singular values of H(H̄(γu))
are robust to the change in γu, which correctly yields 3 as the estimated
order of Gu.
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Figure 3.16: Bode plots of G − ĜIIR (red), G − ĜFIR (blue), and G − ĜERA (green).
Note that the noncausal FIR estimate Ĝr,d yields the smallest error in
the estimated frequency response of G.
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CHAPTER 4

Application to Health Monitoring of Aircraft

Sensors and Acoustic Systems

4.1 Introduction

In the present chapter we use noncausal FIR models with prediction error methods

to identify transmissibility operators. Then, we use the identified transmissibility

operators for rate-gyro health monitoring in aircraft and to detect changes in the

dynamics of a vibrating plate and an acoustic system.

The NASA Generic Transport Model (GTM) [65, 66] is used to simulate the fully

nonlinear aircraft dynamics for data generation. In particular, we excite the aircraft

by using the ailerons, elevator, and rudder, and we use rate-gyro measurements along

with sideslip-angle measurements to construct a 1× 3 transmissibility operator. We

then use the transmissibility operator for health monitoring by computing the result-

ing one-step residual. The case of gyro drift is considered as an illustrative example.

Next, we consider simulating a vibrating plate with clamped-free-free-free (CFFF)

boundary conditions. Three actuators and five sensors are placed on the plate. Mea-

surements from the five sensors are used to construct a 1× 1, 1× 2, 1× 3, and 1× 4

transmissibility operators. We then use these transmissibility operators to estimate

the number of excitations acting on the plate and to detect changes in the dynamics
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of the plate by computing the resulting one-step residual.

Next, we consider an experimental setup consisting of a drum with two speakers

and four microphones. Each speaker is an actuator, and each microphone is a sensor

that measures the acoustic response at its location. Two plastic pieces are placed

inside the drum, and these can be removed during operation to emulate changes to

the system. Measurements from the four microphones are used to construct a 1× 1,

1×2, and 1×3 transmissibility operators. We then use these transmissibility operators

to estimate the number of excitations acting on the system and to detect changes in

the dynamics of the system by computing the resulting one-step residual.

4.2 Noncausal FIR Approximation of Transmissibility Oper-

ators

Expression (2.49) shows that a transmissibility operator contains information

about the zeros of the system and not the poles. Therefore, a nonminimum-phase

zero in the pseudo-input channel of a transmissibility operator yields an unstable

transmissibility operator. Moreover, if the pseudo-output channel of a transmissibil-

ity operator has more zeros than the pseudo-input channel, then the transmissibility

operator is improper, and thus noncausal. However, neither instability nor causality

has the usual meaning associated with transfer functions. Nevertheless, to facilitate

system identification, we consider a class of models that can approximate transmissi-

bility operators that may be unstable, noncausal, and of unknown order. This class

of models consists of noncausal FIR models based on a truncated Laurent expansion.

The causal (backward-shift) part of the Laurent expansion is asymptotically stable

since all of its poles are zero, while the noncausal (forward-shift) part of the Laurent

expansion captures the unstable and noncausal components of the transmissibility

operator [30].
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Let T (q) be the discrete-time transmissibility operator whose pseudo input is yi

and whose pseudo output is yo, that is,

yo(k) = T (q)yi(k). (4.1)

It follows from [30] that the truncated Laurent expansion

T (q, θr,d)
4
=

r∑
i=−d

Hiq
−i (4.2)

is a noncausal FIR approximation of T (q), where r and d are positive integers,

H−d, . . . , Hr ∈ R(p−m)×m are coefficients of the Laurent expansion of the rational

function T in an annulus that contains the unit circle, and

θr,d
4
= [ H−d . . . Hr ] ∈ R(p−m)×(r+d+1)m. (4.3)

Using (4.2), the one-step predicted output is given by

yo(k|θr,d) 4= T (q, θr,d)yi(k) =
r∑

i=−d

Hiyi(k − i). (4.4)

4.3 Identification of Transmissibility Operators Using Non-

causal FIR models with Prediction Error Methods

To identify transmissibility operators that are possibly unstable, improper, and of

unknown order, we use noncausal FIR models with prediction error methods (PEM)

[75].

For each choice of transmissibility coefficients

θ̄r,d
4
= [ H̄−d · · · H̄r ] ∈ R(p−m)×(r+d+1)m, (4.5)

84



it follows that

T (q, θ̄r,d) =
r∑

i=−d

H̄iq
−i. (4.6)

The residual of the transmissibility T (q, θ̄r,d) at time k is defined to be the one-step

prediction error

e(k|θ̄r,d) 4= yo(k)− yo(k|θ̄r,d)

= yo(k)− T (q, θ̄r,d)yi(k)

= yo(k)−
r∑

i=−d

H̄iyi(k − i). (4.7)

The accuracy of θ̄r,d is measured by the performance metric

V (θ̄r,d, `)
4
=

1

`− d− r + 1

`−d∑
k=r

‖e(k|θ̄r,d)‖2
2, (4.8)

where‖ · ‖2 is the Euclidean norm and `+ 1 is the number of data samples. Then, the

PEM estimate θ̂r,d,` of θr,d is given by

θ̂r,d,`
4
= arg min

θ̄r,d

V (θ̄r,d, `), (4.9)

where

θ̂r,d,`
4
= [ Ĥ−d,` · · · Ĥr,` ] ∈ R(p−m)×(r+d+1)m. (4.10)

It follows from (4.7) that the residual of the identified transmissibility T (q, θ̂r,d,`) at
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time k is given by

e(k|θ̂r,d,`) = yo(k)− yo(k|θ̂r,d,`)

= yo(k)− T (q, θ̂r,d,`)yi(k)

= yo(k)−
r∑

i=−d

Ĥi,`yi(k − i). (4.11)

For all r ≤ k ≤ `− w − d, define

E(k|θ̂r,d,`, w)
4
=

√√√√w+k∑
i=k

e2(i|θ̂r,d,`) (4.12)

to be the norm of the residual of the rectangular data window of size w+1 starting at

time step k. Expressions (4.11) and (4.12) measure the accuracy of the transmissibility

from yi to yo for the estimate θ̂r,d,` of θr,d. The identification data set used to obtain

(4.9) is different from the validation data set used to compute (4.11) and (4.12).

Constructing a meaningful transmissibility operator requires knowledge of the

number m of independent disturbances acting on the system. Since m may be un-

known, we estimate m using the following procedure. Let m̂ ∈ {1, . . . , p − 1} and

define p̂
4
= p − m̂. We use PEM with a noncausal FIR model to identify a trans-

missibility operator with m̂ pseudo inputs and p̂ pseudo outputs. For each identified

transmissibility operator we compute the residual using (4.11). The estimated num-

ber of disturbances is the value of m̂ at which a sharp drop occurs in the norm of the

residual. If a sharp drop is not obvious, then the estimated number of disturbances

is the smallest value of m̂ for which no sizable improvement is obtained for larger

values of m̂. Redundant sensors can then be removed or retained for possible benefits

in terms of the accuracy of the identified transmissibility operators.
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4.4 Application to Aircraft Sensor Health Monitoring

To apply transmissibility operators to aircraft sensor health monitoring, we con-

sider the NASA GTM model [65, 66], which is a fully nonlinear model with aerody-

namic lookup tables. GTM includes sensor models that can be modified to emulate

sensor faults.

Let δβ denote the sideslip angle in degrees, and let ω
4
= [ωx ωy ωz]

T be the angular

velocity of the aircraft relative to the Earth resolved in the aircraft frame, where ωx,

ωy, and ωz are measured by rate gyros in degrees per second. Define T (q) to be the

1 × 3 transmissibility operator whose pseudo input is yi
4
= [ωx ωy δβ]T and whose

pseudo output is yo
4
= ωz, that is,

ωz(k) = T (q)


ωx(k)

ωy(k)

δβ(k)

 . (4.13)

We set the sampling time Ts = 0.01 sec, and we assume that sampled data is

available for t ∈ [0, 500] sec, that is, 0 ≤ k ≤ 50, 000 steps. Let δa, δe, and δr denote

the aileron, elevator, and rudder deflections, respectively. For all 0 ≤ k ≤ 50, 000

let δa = sin(ΩkTs) deg, δe = sin(ΩkTs + 45) deg, and δr = cos(ΩkTs) deg, where

Ω = 30 deg/sec. Physically, the displacements of the ailerons, elevator, and rudder

are sinusoidal with an amplitude of 1 deg and a period of 12 sec. We consider the

following initial GTM trim conditions: Level flight, altitude = 8000.00 ft, equivalent

airspeed = 89.18 kt, true airspeed = 100.58 kt, alpha = 3.00 deg, beta = 0 deg,

gamma = 0 deg, roll = 0.066 deg, pitch = 3.00 deg, yaw = 45.00 deg, ground track

= 45.00 deg, elevator = 2.70 deg, throttle = 22.84%.

To emulate sensor noise we add zero-mean white noise with SNR of 50 to all

identification and validation measurements of ωx, ωy, ωz, and δβ. We use PEM with
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a noncausal FIR model with r = 50 and d = 50, along with identification data

for 2, 500 ≤ k ≤ 20, 000 steps to obtain the identified transmissibility T (q, θ̂r,d,`)

of T (q). Figure 4.1 shows the Markov (impulse response) parameters of T (q, θ̂r,d,`)

from each pseudo input ωx, ωy, and δβ to the pseudo output ωz. Data for 20, 000 <

k ≤ 50, 000 is used for validation. Figure 4.2 shows ωz and its one-step prediction

ω̂z
4
= T (q, θ̂r,d,`)[ωx ωy δβ]T for 28, 000 ≤ k ≤ 28, 500, that is, for t ∈ [280, 285] sec.
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Figure 4.1: Entries of the estimated Markov parameters θ̂r,d,` of T (q, θr,d) from each
pseudo input ωx, ωy, and δβ to the pseudo output ωz.

Next, we consider the case where a ramp-like drift with a slope of 0.05 deg/sec2

is added to measurements of either ωx, ωy, or ωz starting at t = 300 sec. Measure-

ments of ωx, ωy, ωz, and δβ are used with the identified transmissibility operator

T (q, θ̂r,d,`) to generate the residual using (4.11). Figure 4.3 shows E(k|θ̂r,d,`, w) for

all 2, 500 ≤ k ≤ 50, 000− w − d for w = 1000 steps, where a ramp-like drift is added

to measurements of either ωx, ωy, or ωz. Figure 4.3 shows that the residual levels

increase after t = 300 sec, which indicates that, in all three cases, at least one of the

sensors is faulty. However, we cannot conclude from Figure 4.3 which sensor is faulty.
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Figure 4.2: For the aircraft example, this plot shows measurements of ωz and the
computed one-step prediction ω̂z under healthy sensor conditions with
SNR of 50 for both the pseudo inputs and the pseudo output.

Next, we consider the case where a deadzone nonlinearity is applied to measure-

ments of either ωx, ωy, or ωz starting at t = 300 sec. Measurements of ωx, ωy, ωz, and

δβ are used with the identified transmissibility operator T (q, θ̂r,d,`) to generate the

residual using (4.11). Figure 4.4 shows E(k|θ̂r,d,`, w) for all 2, 500 ≤ k ≤ 50, 000−w−d

for w = 1000 steps, where a ramp-like drift is added to measurements of either ωx,

ωy, or ωz. Figure 4.4 shows that the residual levels increase after t = 300 sec, which

indicates that, in all three cases, at least one of the sensors is faulty. However, we

cannot conclude from Figure 4.4 which sensor is faulty.

Similar results can be shown for other types of faults, such as magnitude satura-

tion, rate saturation, and jam.
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Figure 4.3: For the aircraft example, this plot shows E(k|θ̂r,d,`, w) for w = 1000 steps,
where a ramp-like drift is added to measurements of either ωx, ωy, or ωz.
Note that the residual levels increase after t = 300 sec, which indicates
that, in all three cases, at least one of the sensors is faulty. However, we
cannot conclude from Figure 4.3 which sensor is faulty.
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Figure 4.4: For the aircraft example, this plot shows E(k|θ̂r,d,`, w) for w = 1000 steps,
where a deadzone nonlinearity is applied to either ωx, ωy, or ωz. Note that
the residual levels increase after t = 300 sec, which indicates that, in all
three cases, at least one of the sensors is faulty. However, we cannot
conclude from Figure 4.4 which sensor is faulty.
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4.5 Application to a Vibrating Plate

Consider the rectangular aluminum plate shown in Figure 4.5 with length a, width

b, height h, and clamped-free-free-free (CFFF) boundary conditions. The equations

of motion are derived using a Lagrangian formulation with the kinetic energy and

potential energy expressions developed in [101, pp. 242–243]. Using Rayleigh-Ritz

discretization [101, pp. 247–253], assuming a nine-degree-of-freedom model of the

plate an approximation of the vertical displacement at (x, y) at time t is given by

w(x, y, t)
4
=

3∑
i=1

3∑
j=1

xi+1yj−1qi,j(t), (4.14)

where qi,j are generalized coordinates [102].

Let a = 5 m, b = 1 m, and h = 0.01 m. Let ui(t) be the force acting at

(xai , yai) at time t and yi(t) be the measured displacement in the vertical direction

at (xsi , ysi) at time t. Let u1(t) = 600 sin(5t) N, u2(t) = 500 sin(10t) N, and u3(t) =

300 sin(20t) N. Let (xa1 , ya1) = (0.3, 0.3), (xa2 , ya2) = (1, 1), (xa3 , ya3) = (4, 0.25),

(xs1 , ys1) = (0.5, 0.1), (xs2 , ys2) = (1, 0.5), (xs3 , ys3) = (2, 0.8), (xs4 , ys4) = (3, 0.6), and

(xs5 , ys5) = (3, 0.75) as shown in Figure 4.5.

a

b

a−→
2

a−→
1

a−→
3

Sensor

Applied Force

h

Figure 4.5: A rectangular plate with length a, width b, height h, and clamped-free-
free-free (CFFF) boundary conditions. The unit vectors a−→

1, a−→
2, and a−→

3

correspond to the x, y, and z directions, respectively.

91



For all i = 1, . . . , 5, let yi be the measurement of w(xsi , ysi , t). Moreover, for all

i = 1, . . . , 4 let Yi
4
= [y1 . . . yi]

T ∈ Ri, and Ti(p) be the transmissibility whose pseudo

input is Yi and whose pseudo output is y5. Suppose that all measurements are noise

free. We assume that data is available for 1 ≤ k ≤ 20, 000. We use PEM with a

noncausal FIR model with r = 25, d = 25, and the first ` = 2000 data points to

obtain the identified transmissibilities Ti(q−1, θ̂r,d,`) of Ti(p) for all i = 1, . . . , 4.

Figure 4.6 shows E(k|θ̂r,d,`, w) for Ti(q−1, θ̂r,d,`), where i = 1, . . . , 4 and w = 1000

steps. Note that using additional input sensors for the transmissibility reduces the

level of E(k|θ̂r,d,`, w). Moreover, note that the level of E(k|θ̂r,d,`, w) does not change

significantly when three or four pseudo inputs are used for the transmissibility oper-

ator, which implies that three disturbances are acting on the system.

Next, we add zero-mean white noise with the gaussian pdf N (0, 1) to yi for all
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Figure 4.6: For the vibrating plate shown in Figure 4.5, this plot shows E(k|θ̂r,d,`, w)

for Ti(q−1, θ̂r,d,`), where i = 1, . . . , 4 and w = 1000 steps and no noise is
added to the measurements. Note that using additional input sensors re-
duces the level of E(k|θ̂r,d,`, w). This plot implies that three disturbances
are acting on the system.
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i with the same SNR varying from 1 to 100. We assume that data is available for

1 ≤ k ≤ 20, 000. We use PEM with a noncausal FIR model with r = 25, d = 25, and

the first ` = 2000 data points to obtain the identified transmissibility Ti(q−1, θ̂r,d,`) for

all i = 1, . . . , 4. Figure 4.7 shows a plot of the norm of the residual of Ti(q−1, θ̂r,d,`) for

all i = 1, . . . , 4. Note from Figure 4.7 that using more input sensors reduces the norm

of the residual. Moreover, note that the level of the norm of the residual does not

change when three or four pseudo inputs are used for the transmissibility operator,

which implies that three disturbances are acting on the system.

To emulate changes occurring in the plate, suppose that at t = 5 sec the Young’s

modulus of the plate starts to decrease. We use PEM with a noncausal FIR model

with r = 25, d = 25, and the first ` = 2000 data points to obtain the identified

transmissibilities Ti(q−1, θ̂r,d,`) for all i = 1, . . . , 4. Figure 4.8 shows the norm of the

residual for Ti(q−1, θ̂r,d,`), where i = 1, . . . , 4 and w = 1000 steps. Note that after

t = 5 sec the residual level increases due to the change in the dynamics of the plate.
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Figure 4.7: For the vibrating plate shown in Figure 4.5, this plot shows the norm of
the residual of Ti(q−1, θ̂r,d,`) for i = 1, . . . , 4 where zero-mean white noise
with the gaussian pdf N (0, 1) is added to yi for all i with the same SNR
varying from 1 to 100. Note that using additional input sensors reduces
the norm of the residual.
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Figure 4.8: For the vibrating plate shown in Figure 4.5, this plot shows E(k|θ̂r,d,`, w)

of Ti(q−1, θ̂r,d,`) for i = 1, . . . , 4 for w = 1000 steps. Note that after t = 5
sec the residual level increases due to the change in the dynamics of the
plate.

4.6 Application to an Acoustic System

In order to investigate the ability of transmissibility operators to detect changes

in the dynamics of an acoustic system, we consider the experimental setup shown

in Figure 4.9. The setup consists of a drum with two speakers w1 and w2 and four

microphones mic1–mic4. Each speaker is an actuator, and each microphone is a sensor

that measures the acoustic response at its location. Two plastic pieces are placed

inside the drum, and these can be removed during operation to emulate changes

to the system. All actuator signals are generated using MATLAB and sent to the

speakers through a data acquisition card. The sampling rate is chosen to be 1000 Hz.

Let u1 and u2 be the measurements of the signals of the speakers w1 and w2,

respectively, and let y1–y4 be the measurements obtained by the sensors mic1–mic4,
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respectively.

For i = 1, 2, 3, let Yi
4
= [y1 . . . yi]

T ∈ Ri and let Ti be the transmissibility whose

pseudo input is Yi and whose pseudo output is y4. We assume that data is available

for 1 ≤ k ≤ 30, 000.

Suppose that the system is operating under healthy conditions, and suppose that

w1 and w2 are driven with realizations of a bandlimited white noise with bandwidth of

500 Hz. We use PEM with a noncausal FIR model with r = 25, d = 25, and the first

Figure 4.9: Experimental setup. The setup consists of a drum with two speakers w1

and w2 and four microphones mic1–mic4. Each speaker is an actuator
and each microphone is a sensor measures the acoustic response at its
location. Two plastic pieces are placed inside the drum (shown in blue)
and can be removed during operation to emulate changes to the system.
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` = 10, 000 samples to obtain the identified transmissibilities Ti(q−1, θ̂r,d,`) of Ti(p)

for i = 1, 2, 3. Figure 4.10 shows E(k|θ̂r,d,`, w) for Ti(q−1, θ̂r,d,`), where w = 1000

steps and i = 1, 2, 3. Note from Figure 4.10 that T2(q−1, θ̂r,d,`) gives significantly

lower residual than T1(q−1, θ̂r,d,`), where T3(q−1, θ̂r,d,`) produces no significant benefit

compared to T2(q−1, θ̂r,d,`). This suggests that the number of excitations acting on

the system is two. Figure 4.11 shows y4 and the computed one-step prediction ŷ4
4
=

T3(q−1, θ̂r,d,`)[y1 y2 y3]T for 15, 000 ≤ k ≤ 15, 300, that is, for t ∈ [15, 15.3] sec.
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Figure 4.10: For the acoustic system shown in Figure 4.9 operating under healthy
conditions, w1 and w2 are driven with realizations of a bandlimited
white noise with bandwidth of 500 Hz. This plot shows E(k|θ̂r,d,`, w)

for Ti(q−1, θ̂r,d,`), where w = 1000 steps and i = 1, 2, 3. Note that

T2(q−1, θ̂r,d,`) gives significantly lower residual than T1(q−1, θ̂r,d,`) and

T3(q−1, θ̂r,d,`) produces no benefit compared to T2(q−1, θ̂r,d,`). This sug-
gests that the number of excitations acting on the system is two.

Next, suppose that the system is operating under healthy conditions, and suppose

that w1 is driven with a realization of a bandlimited white noise with bandwidth of 500

Hz and w2 is not operating. We use PEM with a noncausal FIR model with r = 25,

d = 25, and the first ` = 10, 000 samples to obtain the identified transmissibilities
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Figure 4.11: For the acoustic system shown in Figure 4.9 operating under healthy
conditions, w1 and w2 are driven with realizations of a bandlimited white
noise with bandwidth of 500 Hz. This plot shows the measurements of
y4 and the computed one-step prediction ŷ4.

Ti(q−1, θ̂r,d,`) of Ti(p) for i = 1, 2, 3. Figure 4.12 shows E(k|θ̂r,d,`, w) for Ti(q−1, θ̂r,d,`),

where w = 1000 steps and i = 1, 2, 3. Note from Figure 4.12 that T2(q−1, θ̂r,d,`) gives

significantly lower residual than T1(q−1, θ̂r,d,`) and T3(q−1, θ̂r,d,`) gives slightly lower

residual than T2(q−1, θ̂r,d,`). This shows the potential benefits of sensor redundancy.

Suppose that the two speakers are operating simultaneously and suppose that

u1(t) = sin(100πt) and u2(t) = sin(120πt). We use PEM with a noncausal FIR

model with r = 25, d = 25, and the first ` = 5, 000 samples to obtain the identified

transmissibilities Ti(q−1, θ̂r,d,`) of Ti(p) for i = 1, 2, 3. At approximately t = 10 sec

and t = 21 sec the first and second plastic pieces are removed. Data for 5, 000 < k ≤

30, 000 is used for validation. Figure 4.13 shows E(k|θ̂r,d,`, w) for Ti(q−1, θ̂r,d,`), where

w = 1000 steps and i = 1, 2, 3. Note from Figure 4.13 the changes in E(k|θ̂r,d,`, w) at

approximately t = 10 sec and at t = 21 sec due to the change in the dynamics of the

drum.
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4.7 Conclusions

An estimate of the transmissibility operator between pairs or sets of sensors can

be used to detect sensor faults in the presence of unknown external excitation. The

ability to detect sensor faults by exploiting the presence of unknown external exci-

tation is the key difference between this approach and techniques based on residual

generation. In particular, the transmissibility operator is a relationship between pairs

or sets of sensors that is independent of the time history of the external excitation.

Transmissibility-based fault detection depends on various assumptions. In par-

ticular, this approach assumes that the plant itself does not change between the

identification and validation data sets and that the location of the external excita-

tion does not change. By using the estimated transmissibility operator, the residual
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Figure 4.12: For the acoustic system shown in Figure 4.9 operating under healthy
conditions, w1 is driven with a realization of a bandlimited white
noise with bandwidth of 500 Hz and w2 is not operating. This plot
shows E(k|θ̂r,d,`, w) for Ti(q−1, θ̂r,d,`), where w = 1000 steps and i =

1, 2, 3. Note that T2(q−1, θ̂r,d,`) gives significantly lower residual than

T1(q−1, θ̂r,d,`). However, T3(q−1, θ̂r,d,`) produces no benefit compared to

T2(q−1, θ̂r,d,`). This shows the potential benefits of sensor redundancy.
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between pairs or sets of sensors can be used to detect a sensor failure or a change

in the dynamics of a system. Moreover, the characteristic shape of the residual can

be used to infer the type of sensor failure. However, this approach does not identify

which sensor has failed. This problem is left for future research.
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Figure 4.13: For the acoustic system shown in Figure 4.9 with u1(t) = sin(100πt) and
u2(t) = sin(120πt), this plot shows E(k|θ̂r,d,`, w) for Ti(q−1, θ̂r,d,`), where
w = 1000 steps, i = 1, 2, 3 and at approximately t = 10 sec and t = 21
sec the first and second plastic pieces are removed. Note the changes in
E(k|θ̂r,d,`, w) at approximately t = 10 sec and at t = 21 sec due to the
change in the drum dynamics.
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CHAPTER 5

Time-Domain Analysis of Motion

Transmissibilities in Force-Driven and

Displacement-Driven Structures

5.1 Introduction

Structural vibration is most commonly modeled as the displacement, velocity,

or acceleration response to a force input. Assuming that the dynamics are linear,

lumped models of structural vibration with multiple degrees of freedom typically

have the form of matrix differential equations with inertia, damping, and stiffness

coefficients [103]. In the frequency domain, these force-driven outputs are modeled by

compliance, admittance, and inertance transfer functions, respectively. Alternatively,

a transfer function can relate displacements at different locations on a structure. The

resulting transfer function is called a motion transmissibility [24, 25]. Velocity and

acceleration signals can also be considered instead of displacements. These concepts

extend directly to rotational variables, where “torque” replaces “force.”

It is also possible to define a force transmissibility, and the relationship between

force and motion transmissibilities is discussed in [26, 104]. In the present chap-

ter, force transmissibility is not considered, and the term “transmissibility” refers to

motion transmissibility.
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Motivated by the advantages of time-domain identification techniques over frequency-

domain identification techniques, in this chapter we develop a time-domain framework

for SISO and MIMO transmissibilities that accounts for nonzero initial conditions for

both force-driven and displacement-driven structures.

The contents of the chapter are as follows. In Section 5.2 and Section 5.3 we derive

SISO and MIMO time-domain models for transmissibility operators in force-driven

structures, respectively. In Section 5.4 we consider displacement-driven structures,

while in Section 5.5 and Section 5.6 we derive SISO and MIMO time-domain models

for transmissibility operators in displacement-driven structures, respectively. In Sec-

tion 5.7 we show the equality of transmissibilities of force-driven and displacement-

driven structures with identical inputs and outputs when the force and prescribed

motion are applied to the same location. We introduce examples in Section 5.8.

Finally, we present conclusions in Section 5.9.

5.2 SISO Transmissibilities in Force-Driven Structures

Consider a lumped force-driven structure (FDS) consisting of masses m1, . . . ,mn

connected by springs modeled by

Mq̈(t) +Kq(t) = fb(t), (5.1)

where M
4
= diag(m1, . . . ,mn) ∈ Rn×n is the positive-definite mass matrix, K ∈ Rn×n

is the positive-definite stiffness matrix, q(t)
4
=

[
q1(t) · · · qn(t)

]T

∈ Rn is the

vector of mass displacements, and fb(t)
4
= bu(t) =

[
f1(t) · · · fn(t)

]T

∈ Rn is the

vector of forces, where b ∈ Rn is a nonzero vector, u(t) is a scalar force, and fi(t) is

the force applied to the ith mass. Let c ∈ R1×n be nonzero and consider the scalar

output

qc|bu
4
= cq, (5.2)
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where qc|bu denotes the output cq with the driving force bu. Note that qeTi,n|bu = eT
i,nq =

qi, where ei,n ∈ Rn is the ith unit vector.

Next, let wi, wo ∈ R1×n and define

yi
4
= qwi|bu = wiq, (5.3)

yo
4
= qwo|bu = woq. (5.4)

The goal is to obtain a transmissibility function relating yi and yo that is independent

of the initial conditions q(0) and q̇(0) as well as the input u. As a first attempt at

obtaining such a function, transforming (5.1) to the Laplace domain yields

(s2M +K)q̂(s)− sMq(0)−Mq̇(0) = bû(s), (5.5)

where q̂(s) and û(s) are the Laplace transforms of q(t) and u(t), respectively. There-

fore,

q̂(s) = (s2M +K)−1bû(s) + (s2M +K)−1M(sq(0) + q̇(0)). (5.6)

It follows from (5.3), (5.4), and (5.6) that the Laplace transforms of yi and yo are

given by

ŷi(s) = wi(s
2M +K)−1bû(s) + wi(s

2M +K)−1M(sq(0) + q̇(0)), (5.7)

ŷo(s) = wo(s2M +K)−1bû(s) + wo(s2M +K)−1M(sq(0) + q̇(0)), (5.8)

respectively, and thus

ŷo(s)

ŷi(s)
=
wo(s2M +K)−1bû(s) + wo(s2M +K)−1M(sq(0) + q̇(0))

wi(s2M +K)−1bû(s) + wi(s2M +K)−1M(sq(0) + q̇(0))
. (5.9)

Note that, if q(0) and q̇(0) are zero, then û(s) can be cancelled in (5.9), and ŷo(s)

and ŷi(s) are related by a transmissibility that is independent of the input. However,
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if either q(0) or q̇(0) is not zero, then û(s) cannot be canceled in (5.9), and an input-

independent transmissibility cannot be obtained.

Alternatively, we consider a time-domain analysis using the differentiation oper-

ator p = d/dt instead of the Laplace variable s. It follows that (5.1) can be written

as

(p2M +K)q(t) = bu(t). (5.10)

Multiplying (5.3) by the polynomial δ(p)
4
= det(p2M +K) and using the fact that

δ(p)In = adj(p2M +K)(p2M +K) (5.11)

yields the differential equation

δ(p)yi(t) = wiδ(p)Inq(t)

= wiadj(p2M +K)(p2M +K)q(t)

= wiadj(p2M +K)(Mq̈(t) +Kq(t))

= wiadj(p2M +K)bu(t). (5.12)

Similarly,

δ(p)yo(t) = woadj(p2M +K)bu(t). (5.13)

For convenience, we define the notation

Gwi,b(p)
4
= wi(p

2M +K)−1b, (5.14)

Gwo,b(p)
4
= wo(p2M +K)−1b. (5.15)
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Using (5.14), (5.15) we can rewrite (5.12), (5.13) as

yi(t) = Gwi,b(p)u(t), (5.16)

yo(t) = Gwo,b(p)u(t), (5.17)

respectively. Note that (5.16), (5.17) are interpreted as the differential equations

(5.12), (5.13), respectively.

Note that (5.7), (5.8), (5.16), and (5.17) include the free response due to q(0) and

q̇(0) as well as the forced response due to u. In the subsequent analysis, we omit the

argument “t” where no ambiguity can arise.

Define the polynomials

ηo(p) , woadj(p2M +K)b, (5.18)

ηi(p) , wiadj(p2M +K)b. (5.19)

If Gwi,b and Gwo,b are obtained from minimal state-space realizations, then δ(p) is

coprime relative to both ηi(p) and ηo(p). Moreover, it follows from (5.14)–(5.17) that

yi = Gwi,b(p)u =
ηi(p)

δ(p)
u, (5.20)

yo = Gwo,b(p)u =
ηo(p)

δ(p)
u. (5.21)

Next, it follows from (5.20) and (5.21) that

ηo(p)δ(p)yi = ηo(p)ηi(p)u,

ηi(p)δ(p)yo = ηi(p)ηo(p)u,
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and thus

ηi(p)δ(p)yo = ηo(p)δ(p)yi. (5.22)

Definition 6. The transmissibility operator from yi to yo is the operator

T F
wo,wi|b(p)

4
=
δ(p)ηo(p)

δ(p)ηi(p)
. (5.23)

Hence, (5.22) can be written as

yo = T F
wo,wi|b(p)yi. (5.24)

Note that (5.23) is independent of the input u. Because (5.23) is expressed in terms

of the differentiation operator p and not the complex number s, it is a time-domain

model of the differential equation (5.22) and thus it accounts for nonzero initial con-

ditions. However, (5.23) is not a transfer function. In the case q(0) = 0 and q̇(0) = 0,

it follows from (5.9) that p in (5.24) can be replaced by s to obtain

ŷo(s) = T F
wo,wi|b(s)ŷi(s), (5.25)

where T F
wo,wi|b(s) is a possibly improper rational function. However, if q(0) or q̇(0)

is not zero, then p cannot be replaced by s in (5.24).

Unlike common factors in the complex number s, common factors in the differ-

entiation operator p cannot always be cancelled, as shown in Examples 2.2.1 and

2.2.2.
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Despite Examples 2.2.1 and 2.2.2, the following theorem shows that the common

factor δ(p) in (5.23) can be cancelled without excluding any solutions of (5.22).

Theorem 3. yi and yo satisfy

yo =
ηo(p)

ηi(p)
yi. (5.26)

Proof. See [62]. 2

It follows from Theorem 3 that

yo = T F
wo,wi|b(p)yi, (5.27)

where the transmissibility operator in (5.23) is redefined as

T F
wo,wi|b(p)

4
=
ηo(p)

ηi(p)
=
woadj(p2M +K)b

wiadj(p2M +K)b
. (5.28)

Note that T F
wo,wi|b(p) is not necessarily proper, and the polynomials woadj(p2M+K)b

and wiadj(p2M +K)b are not necessarily coprime.

5.3 MIMO Transmissibilities in Force-Driven Structures

Consider the lumped MIMO force-driven structure

Mq̈(t) +Kq(t) = FB(t), (5.29)
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where M,K, and q are as defined in (5.1), and

FB
4
= Bu(t), (5.30)

where

B
4
=

[
b1 · · · bm

]
, u(t)

4
=

[
u1(t) · · · um(t)

]T

, (5.31)

and, for all i ∈ {1, . . . ,m}, bi ∈ Rn and ui is a scalar force.

Consider p outputs for (5.29). Let Wi ∈ Rm×n,Wo ∈ R(p−m)×n and define

yi
4
= qWi|Bu = Wiq ∈ Rm, (5.32)

yo
4
= qWo|Bu = Woq ∈ Rp−m. (5.33)

The goal is to obtain a transmissibility function relating yi and yo that is independent

of both the initial conditions q(0) and q̇(0), as well as the input u.

Multiplying (5.32), (5.33) by δ(p) and following the procedure used to derive

(5.12), (5.13) yields

δ(p)yi = Wiadj(p2M +K)Bu, (5.34)

δ(p)yo = Woadj(p2M +K)Bu. (5.35)

For convenience, we define

GWi,B(p)
4
= Wi(p

2M +K)−1B, (5.36)

GWo,B(p)
4
= Wo(p2M +K)−1B, (5.37)
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and rewrite (5.34), (5.35) as

yi = GWi,B(p)u, yo = GWo,B(p)u, (5.38)

respectively, which are interpreted as the differential equations (5.34), (5.35), respec-

tively. Note that (5.38) includes the free response due to q(0) and q̇(0) as well as the

forced response due to u.

Defining the polynomial matrices

Γi(p)
4
= Wiadj(p2M +K)B ∈ Rm×m[p], (5.39)

Γo(p)
4
= Woadj(p2M +K)B ∈ R(p−m)×m[p], (5.40)

we can rewrite (5.34), (5.35) as

δ(p)yi = Γi(p)u, (5.41)

δ(p)yo = Γo(p)u, (5.42)

respectively. Multiplying (5.41) by adj Γi(p) from the left yields

δ(p) adj Γi(p)yi = [adj Γi(p)] Γi(p)u = det Γi(p)u. (5.43)

Next, multiplying (5.42) by det Γi(p) yields

[det Γi(p)] δ(p)yo = [det Γi(p)] Γo(p)u. (5.44)

Substituting the left hand side of (5.43) in (5.44) yields

δ(p) det Γi(p)yo = δ(p)Γo(p) adj Γi(p)yi. (5.45)
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Definition 7. Assume that det Γi(p) is not the zero polynomial. Then, the trans-

missibility operator from yi to yo is the operator

T F
Wo,Wi|B(p)

4
=

δ(p)

δ(p)det Γi(p)
Γo(p)adj Γi(p) =

δ(p)

δ(p)
Γo(p)Γi

−1(p). (5.46)

Note that (5.46) is independent of the input u and the initial condition q(0) and

q̇(0). Using (5.46), the differential equation (5.45) can be written as

yo = T F
Wo,Wi|B(p)yi. (5.47)

The following theorem shows that the common factor δ(p) in (5.46) can be can-

celled without excluding any solutions of (5.45).

Theorem 4. Assume that det Γi(p) is not the zero polynomial. Then, yi and yo

satisfy

yo =
1

det Γi(p)
Γo(p)[adj Γi(p)]yi = Γo(p)Γi

−1(p)yi. (5.48)

Proof. See [62]. 2

It follows from Theorem 4 that

yo = T F
Wo,Wi|B(p)yi, (5.49)
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where the transmissibility operator (5.46) is redefined as

T F
Wo,Wi|B(p)

4
= Γo(p)Γi

−1(p). (5.50)

Note that each entry of T F
Wo,Wi|B(p) is a rational operator that is not necessarily proper

and whose numerator and denominator are not necessarily coprime.

5.4 Modeling Displacement-Driven Structures

Consider a displacement-driven structure (DDS), where mk is the driven mass,

and thus

qk(t) = qk,d(t), (5.51)

where qk,d(t) is the prescribed motion of mk. This prescribed motion requires applying

a suitable force as in (5.1). Removing the kth equation from (5.1) yields

M[k,·]q̈(t) +K[k,·]q(t) = 0, (5.52)

where M[k,·] ∈ R(n−1)×n and K[k,·] ∈ R(n−1)×n are M and K, respectively, with the kth

row removed. It follows that (5.52) can be written as

M[k,k]q̈[k] +K[k,k]q[k] = −K[k,·]ek,nqk,d, (5.53)

where M[k,k] ∈ R(n−1)×(n−1) and K[k,k] ∈ R(n−1)×(n−1) are M and K, respectively, with

both the kth row and kth column removed, and q[k] is q with the kth row removed.

Writing (5.53) in terms of the differentiation operator p yields

(
p2M[k,k] +K[k,k]

)
q[k] = −K[k,·]ek,nqk,d. (5.54)

Suppose now that d masses are displacement-driven, where 1 ≤ d ≤ n − 2, and
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let D
4
= {k1, . . . , kd} be the set of displacement-driven masses. Then, using the same

procedure used to obtain (5.53) we obtain

(
p2M[D,D] +K[D,D]

)
q[D] = −K[D,·]

[
ek1,n · · · ekd,n

]
qk1,d

...

qkd,d

 , (5.55)

where M[D,D] ∈ R(n−d)×(n−d) and K[D,D] ∈ R(n−d)×(n−d) are M and K with rows

k1, . . . , kd removed and columns k1, . . . , kd removed, K[D,·] is K with rows k1, . . . , kd

removed, and q[D] is q with rows k1, . . . , kd removed.

5.5 SISO Transmissibilities in Displacement-Driven Struc-

tures

Define the output

qd,c|ek,n
4
= cIn[·,k]q[k], (5.56)

where In[·,k] ∈ Rn×(n−1) is the identity matrix In ∈ Rn×n with the kth column removed.

Thus, qd,c|ek,n is a linear combination of all position states qi, i = 1, . . . , n, i 6= k,

assuming that the kth mass is displacement-driven. Let wi, wo ∈ R1×n and define

yi,d
4
= qd,wi|ek,n = wiIn[·,k]q[k], (5.57)

yo,d
4
= qd,wo|ek,n = woIn[·,k]q[k]. (5.58)

(5.59)
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Following the procedure used to derive (5.12), (5.13) we can show that

δd(p)yi,d = −wiIn[·,k]adj
(
p2M[k,k] +K[k,k]

)
K[k,·]ek,nqk,d, (5.60)

δd(p)yo,d = −woIn[·,k]adj
(
p2M[k,k] +K[k,k]

)
K[k,·]ek,nqk,d, (5.61)

where δd(p)
4
= det

(
p2M[k,k] +K[k,k]

)
. For convenience, we define the notation

Gd,wi,ek,n(p)
4
= −wiIn[·,k]

(
p2M[k,k] +K[k,k]

)−1
K[k,·]ek,n, (5.62)

Gd,wo,ek,n(p)
4
= −woIn[·,k]

(
p2M[k,k] +K[k,k]

)−1
K[k,·]ek,n. (5.63)

Using (5.62), (5.63) we can rewrite (5.60), (5.61) as

yi,d = Gd,wi,ek,n(p)qk,d =
ηi,d(p)

δd(p)
qk,d, (5.64)

yo,d = Gd,wo,ek,n(p)qk,d =
ηo,d(p)

δd(p)
qk,d, (5.65)

respectively, where

ηi,d(p)
4
= −wiIn[·,k]adj

(
p2M[k,k] +K[k,k]

)
K[k,·]ek,n, (5.66)

ηo,d(p)
4
= −woIn[·,k]adj

(
p2M[k,k] +K[k,k]

)
K[k,·]ek,n, (5.67)

are polynomials in p. It follows from (5.64) and (5.65) that

ηo,d(p)δd(p)yi,d = ηo,d(p)ηi,d(p)qk,d,

ηi,d(p)δd(p)yo,d = ηi,d(p)ηo,d(p)qk,d,

and thus

ηi,d(p)δd(p)yo,d = ηo,d(p)δd(p)yi,d. (5.68)
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Definition 8. The transmissibility operator from yi,d to yo,d is the operator

T D
wo,wi|ek,n(p)

4
=
δd(p)ηo,d(p)

δd(p)ηi,d(p)
.

Hence, (5.68) can be written as

yo,d = T D
wo,wi|ek,n(p)yi,d. (5.69)

As in Section 5.2, it can be shown that δd(p) can be cancelled without excluding any

solutions of (5.68), that is, T D
wo,wi|ek,n(p) in (5.69) can be redefined as

T D
wo,wi|ek,n(p)

4
=
ηo,d(p)

ηi,d(p)
=
woIn[·,k]adj

(
p2M[k,k] +K[k,k]

)
K[k,·]ek,n

wiIn[·,k]adj
(
p2M[k,k] +K[k,k]

)
K[k,·]ek,n

. (5.70)

Note that T D
wo,wi|ek,n(p) is not necessarily proper, and the polynomials ηo,d(p) and

ηi,d(p) are not necessarily coprime.

5.6 MIMO Transmissibilities in Displacement-Driven Struc-

tures

Consider a DDS, where mk1 , . . . ,mkd are the displacement-driven masses, 1 ≤ d ≤

n− 2. Define the output qd,C|eD,n ∈ Rp by

qd,C|eD,n
4
= CIn[·,k]q[D], (5.71)

where C ∈ Rp×n, D
4
= {k1, . . . , kd}, and eD,n

4
= [ek1,n . . . ekd,n]. Hence, (5.71) is a

vector whose components are linear combinations of all qi, i ∈ {1, . . . , n} \ D. Let
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Wi ∈ Rd×n,Wo ∈ R(p−d)×n and define

yi,d
4
= qd,Wi|eD,n = WiIn[·,D]

q[D], (5.72)

yo,d
4
= qd,Wo|eD,n = WoIn[·,D]

q[D]. (5.73)

Following the procedure used to derive (5.12), (5.13) yields

∆d(p)yi,d = −WiIn[·,D]
adj
(
p2M[D,D] +K[D,D]

)
K[D,·]eD,nqD,d, (5.74)

∆d(p)yo,d = −WoIn[·,D]
adj
(
p2M[D,D] +K[D,D]

)
K[D,·]eD,nqD,d, (5.75)

where ∆d(p)
4
= det

(
p2M[D,D] +K[D,D]

)
∈ R[p] and qD,d

4
= [qk1 · · · qkd ]T ∈ Rd. Using

the notation

Gd,Wi,eD,n(p)
4
= −WiIn[·,D]

(
p2M[D,D] +K[D,D]

)−1
K[D,·]eD,n, (5.76)

Gd,Wo,eD,n(p)
4
= −WoIn[·,D]

(
p2M[D,D] +K[D,D]

)−1
K[D,·]eD,n, (5.77)

we can rewrite (5.74), (5.75) as

yi,d = Gd,Wi,eD,n(p)qD,d, (5.78)

yo,d = Gd,wo,eD,n(p)qD,d, (5.79)

which are interpreted as the differential equations (5.74), (5.75), respectively. Note

that (5.78) and (5.79) include the free response due to q[D](0) and q̇[D](0) as well as

the forced response due to qD,d. Defining

Γi,d(p)
4
= −WiIn[·,D]

adj
(
p2M[D,D] +K[D,D]

)
K[D,·]eD,n ∈ Rd×d[p], (5.80)

Γo,d(p)
4
= −WoIn[·,D]

adj
(
p2M[D,D] +K[D,D]

)
K[D,·]eD,n ∈ R(p−d)×d[p], (5.81)
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we can rewrite (5.74), (5.75) as

∆d(p)yi,d = Γi,d(p)qD,d, (5.82)

∆d(p)yo,d = Γo,d(p)qD,d. (5.83)

Multiplying (5.82) by adj Γi,d(p) from the left yields

adj Γi,d(p)∆d(p)yi,d = adj Γi,d(p)Γi,d(p)qD,d = det Γi,d(p)qD,d. (5.84)

Next, multiplying (5.83) by det Γi,d(p) yields

[det Γi,d(p)] ∆d(p)yo,d = [det Γi,d(p)] Γo,d(p)qD,d. (5.85)

Substituting the left hand side of (5.84) into (5.85) yields

∆d(p) det Γi,d(p)yo,d = ∆d(p)Γo,d(p) adj Γi,d(p)yi,d. (5.86)

Definition 9. Assume that det Γi,d(p) is not the zero polynomial. The transmis-

sibility operator from yi,d to yo,d is the operator

T D
Wo,Wi|eD,n(p)

4
=

∆d(p)

∆d(p) det Γi,d(p)
Γo,d(p)adjΓi,d(p) =

∆d(p)

∆d(p)
Γo,d(p)Γ−1

i,d (p).

Hence, (5.86) can be written as

yo,d = T D
Wo,Wi|eD,n(p)yi,d. (5.87)
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As in Section 5.3, it can be shown that ∆d(p) can be cancelled without excluding any

solutions of (5.86), that is, T D
Wo,Wi|eD,n(p) in (5.87) can be redefined as

T D
Wo,Wi|eD,n(p)

4
= Γo,d(p)Γ−1

i,d (p). (5.88)

5.7 Equality of Motion Transmissibilities in Force-driven and

Displacement-Driven Structures

5.7.1 Equality of SISO Motion Transmissibilities in Force-driven and

Displacement-Driven Structures

Define wo,k and wi,k to be wo and wi, respectively, with the kth component replaced

by zero. The following result shows that the SISO transmissbilities of force-driven

and displacement-driven structures with identical inputs and outputs and with the

force and prescribed motion applied to the same location are identical. This result is

somewhat surprising since the specified displacement of a mass could be perceived as

introducing a node.

Theorem 5. The SISO force-driven and displacement-driven transmissibilities are

equal, that is,

T F
wo,k,wi,k|ek,n(p) = T D

wo,k,wi,k|ek,n(p). (5.89)

Proof. It follows from (5.70) that

T D
wo,wi|ek,n(p) =

woIn[·,k]adj
(
p2M[k,k] +K[k,k]

)
K[k,·]ek,n

wiIn[·,k]adj
(
p2M[k,k] +K[k,k]

)
K[k,·]ek,n

. (5.90)
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Using Proposition B.1 in Appendix B, we have

wo,kIn[·,k]adj
(
p2M[k,k] +K[k,k]

)
K[k,·]ek,n = −wo,kadj

(
p2M +K

)
ek,n, (5.91)

wi,kIn[·,k]adj
(
p2M[k,k] +K[k,k]

)
K[k,·]ek,n = −wi,kadj

(
p2M +K

)
ek,n. (5.92)

Using (5.91) and (5.92), (5.90) yields

T D
wo,k,wi,k|ek,n(p) =

wo,kadj (p2M +K) ek,n
wi,kadj (p2M +K) ek,n

. (5.93)

Replacing wo, wi, and b in (5.28) with wo,k, wi,k, and ek,n, respectively, yields

T F
wo,k,wi,k|ek,n(p) =

wo,kadj(p2M +K)ek,n
wi,kadj(p2M +K)ek,n

. (5.94)

Hence, (5.93) and (5.94) yield (5.89). 2

5.7.2 Equality of MIMO Motion Transmissibilities in Force-driven and

Displacement-Driven Structures

Define Wo,D and Wi,D to be Wo and Wi, respectively, with the kth
1 , . . . , k

th
d columns

replaced by zero. The following result shows that the MIMO transmissibilities of force-

driven and displacement-driven structures with identical inputs and outputs and with

the forces and prescribed motions applied to the same locations are identical.

Theorem 6. The MIMO force-driven and displacement driven transmissibilities

are equal, that is,

T F
Wo,D,Wi,D|eD,n(p) = T D

Wo,D,Wi,D|eD,n(p). (5.95)
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Proof. It follows from (5.80), (5.81), and (5.88) that

T D
Wo,D,Wi,D|eD,n(p) = Γo,d(p)Γ−1

i,d (p)

= WoIn[·,D]
adj
(
p2M[D,D] +K[D,D]

)
K[D,·]eD,n

· (WiIn[·,D]
adj
(
p2M[D,D] +K[D,D]

)
K[D,·]eD,n)−1. (5.96)

Using Proposition B.2 in Appendix B, we have

WoIn[·,D]
adj
(
p2M[D,D]+K[D,D]

)
K[D,·]eD,n(WiIn[·,D]

adj
(
p2M[D,D] +K[D,D]

)
K[D,·]eD,n)−1

= Wo,Dadj
(
p2M +K

)
eD,n(Wi,Dadj(p2M +K)eD,n)−1.

(5.97)

Therefore, (5.96) becomes

T D
Wo,D,Wi,D|eD,n(p) = Wo,Dadj

(
p2M +K

)
eD,n(Wi,Dadj(p2M +K)eD,n)−1. (5.98)

Next, replacing Wo, Wi, and B in (5.39) and (5.40) with Wo,D, Wi,D, and eD,n,

respectively, (5.50) becomes

T F
Wo,D,Wi,D|eD,n(p) = Γo(p)Γ−1

i (p)

= Wo,Dadj
(
p2M +K

)
eD,n(Wi,Dadj(p2M +K)eD,n)−1. (5.99)

Comparing (5.98) with (5.99) yields (5.95). 2
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5.8 Numerical Examples

In this section we present three examples to illustrate the equality of transmissi-

bilities in force-driven and displacement-driven structures.

Example 5.8.1. Consider the mass-spring system shown in Figure 5.1, where

m1 = m2 = m3 = m4 = m5 = m6 = 1 kg and k01 = k12 = k14 = k15 = k23 = k36 =

k45 = k46 = 1 N/m. We force-drive m2 and consider the transmissibility from q1 to

q6. Then we displacement-drive m2 and consider the transmissibility from q1 to q6.

Note that M = I6, M[2,2] = I5,

K =



4 −1 0 −1 −1 0

−1 2 −1 0 0 0

0 −1 2 0 0 −1

−1 0 0 3 −1 −1

−1 0 0 −1 2 0

0 0 −1 −1 0 2


, K[2,2] =



4 0 −1 −1 0

0 2 0 0 −1

−1 0 3 −1 −1

−1 0 −1 2 0

0 −1 −1 0 2


.

(5.100)

It follows that

adj
(
p2M +K

)
e2,6 =



p8 + 9p6 + 27p4 + 32p2 + 14

p10 + 13p8 + 61p6 + 124p4 + 102p2 + 25

p8 + 11p6 + 40p4 + 54p2 + 22

p6 + 8p4 + 21p2 + 16

p6 + 8p4 + 19p2 + 15

p6 + 10p4 + 28p2 + 19


, (5.101)

119



adj
(
p2M[2,2] +K[2,2]

)
K[2,·]e2,6 = −



p8 + 9p6 + 27p4 + 32p2 + 14

p8 + 11p6 + 40p4 + 54p2 + 22

p6 + 8p4 + 21p2 + 16

p6 + 8p4 + 19p2 + 15

p6 + 10p4 + 28p2 + 19


. (5.102)

Next, it follows from (5.28) with wo = eT
6,6, wi = eT

1,6, and b = e2,6 that

T F
eT6,6,e

T
1,6|e2,6

(p) =
p6 + 10p4 + 28p2 + 19

p8 + 9p6 + 27p4 + 32p2 + 14
. (5.103)

Similarly, it follows from (5.70) with wo = eT
6,6, wi = eT

1,6, and k = 2 that

T D
eT6,6,e

T
1,6|e2,6

(p) =
p6 + 10p4 + 28p2 + 19

p8 + 9p6 + 27p4 + 32p2 + 14
. (5.104)

Hence,

T F
eT6,6,e

T
1,6|e2,6

(p) = T D
eT6,6,e

T
1,6|e2,6

(p). �

Example 5.8.2. Consider a simply supported beam with a uniform density ρ per

unit length, modulus of elasticity E, moment of inertia I, length L, and rectangular

cross section with area A. We consider first the force-driven case by applying a

concentrated transverse force at the location xa, where 0 < xa < L. Let y(t, x) denote

the displacement of the beam from its equilibrium shape, and let δ(x−xa)f(t) denote

the external force. The beam is modeled by

∂4

∂x4
y(t, x) +

ρA

EI

∂2

∂t2
y(t, x) = δ(x− xa)f(t). (5.105)

Let

y(t, x) =
∞∑
i=1

qi(t)vi(x), (5.106)
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Figure 5.1: Mass-spring system for Example 5.8.1, where m1 = m2 = m3 = m4 =
m5 = m6 = 1 kg and k01 = k12 = k14 = k15 = k23 = k36 = k45 = k46 = 1
N/m. m2 is either force-driven by the force f or displacement-driven with
the prescribed motion qd.

where qi is the modal coordinate corresponding to the mode shape vi(x) = sin( iπx
L

).

Substituting (5.106) in (5.105) and taking the inner product of both sides of the

resulting equation with vi(xa) yields

q̈i(t) + ω2
i qi(t) = bif(t), i = 1, 2, 3, . . . , (5.107)

where ωi = i2π2

L2

√
EI
ρA

is the modal frequency corresponding to vi(x) and bi
4
= vi(xa).

Defining

q(t)
4
=

[
q1(t) · · · qr(t)

]T

, b
4
=

[
b1 · · · br

]T

, (5.108)
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it follows from (5.107) that

q̈(t) + Ω2q(t) = bf(t), (5.109)

where Ω2 4= diag(ω2
1, . . . , ω

2
r).

In the displacement-driven case we assume that the interior point xa moves with

the specified displacement qd(t, xa) =
∑r

i=1 qi(t)vi(xa). We define the coordinates

q̂(t)
4
= S−Tq(t), (5.110)

where

S
4
=

 Ir−1 0(r−1)×1

v1(xa) · · · vr(xa).


−T

, (5.111)

where to ensure nonsingularity we assume that vr(xa) 6= 0. Then, the resulting

coordinates are

q̂(t) =

[
q1(t) · · · qr−1(t) qd(t, xa)

]T

. (5.112)

Using (5.110), (5.109) yields

M̂ ¨̂q(t) + K̂q̂(t) = B̂f(t), (5.113)

where M̂
4
= SST, K̂

4
= SΩ2ST, B̂ = Sb

4
= en,n.

Driving xa with a prescribed motion requires applying a suitable force as in (5.105).

As in Section 5.4 we remove the rth equation of (5.113) and manipulate the remaining

equations to make qd(t, xa) the input. Therefore, (5.113) becomes

M̂[r,r]q̈[r] + K̂[r,r]q[r] = −K̂[r,·]ek,nqd(t, xa). (5.114)

Suppose that E = 200 GPa, L = 100 mm, h = 10 mm, w = 1 mm, xa = 83.3 mm,
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and xs = 21.1 mm. The transmissibility from xa to xs for the force-driven beam is

given by

T F
vT(xs,r),vT(xa,r)|v(xa) =

vT(xs, r)adj(p2M̂ + K̂)v(xa)

vT(xa, r)adj(p2M̂ + K̂)v(xa)

=
p6 + 156.4p4 − 1.814× 104p2 + 3.454× 106

63.38p6 + 1.426× 104p4 + 8.057× 105p2 + 9.591× 106
,

(5.115)

where vT(xs, r) and vT(xa, r) denote vT(xs) and vT(xa), respectively, after setting the

rth component of vT(xs, r) and vT(xa, r) to zero as suggested by Theorem 5. Next,

with a prescribed motion at xa, the transmissibility from xa to xs is given by

T D
vT(xs,r),vT(xa,r)|vT(xa,r)

=
vT(xs, r)I[r,·]adj(p2M̂[r,r] + K̂[r,r])K[r,·]e

T
r,r

vT(xa, r)I[r,·]adj(p2M̂[r,r] + K̂[r,r])K[r,·]eT
r,r

=
p6 + 156.4p4 − 1.814× 104p2 + 3.454× 106

63.38p6 + 1.426× 104p4 + 8.057× 105p2 + 9.591× 106
,

which is equivalent to (5.115). �

Example 5.8.3. Consider the mass-spring system shown in Figure 5.1, where

m1 = m2 = m3 = m4 = m5 = m6 = 1 kg and k01 = k12 = k14 = k15 = k23 = k36 =

k45 = k46 = 1 N/m. We force-drive m2 and m3 and consider the transmissibility

from [q1 q4]T to [q5 q6]T. Then we displacement-drive m2 and m3 and consider the

transmissibility from [q1 q4]T to [q5 q6]T. Note that D = {2, 3}, M = I6, M[D,D] = I4,
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Wo = [e5,6 e6,6]T, and Wi = [e1,6 e4,6]T. Hence, we have

K =



4 −1 0 −1 −1 0

−1 2 −1 0 0 0

0 −1 2 0 0 −1

−1 0 0 3 −1 −1

−1 0 0 −1 2 0

0 0 −1 −1 0 2


, K[D,D] =



4 −1 −1 0

−1 3 −1 −1

−1 −1 2 0

0 −1 0 2


. (5.116)

It follows that

adj
(
p2M +K

)
[e2,6 e3,6]

=



p8 + 9p6 + 27p4 + 32p2 + 14 p6 + 8p4 + 19p2 + 14

p10 + 13p8 + 61p6 + 124p4 + 102p2 + 25 p8 + 11p6 + 40p4 + 54p2 + 22

p8 + 11p6 + 40p4 + 54p2 + 22 p10 + 13p8 + 61p6 + 126p4 + 111p2 + 30

p6 + 8p4 + 21p2 + 16 p6 + 9p4 + 23p2 + 18

p6 + 8p4 + 19p2 + 15 2p4 + 13p2 + 16

p6 + 10p4 + 28p2 + 19 p8 + 11p6 + 40p4 + 55p2 + 24


.

(5.117)

Using (5.39) and (5.40) we have

Γi(p) = Wiadj
(
p2M +K

)
[e2,6 e3,6]

=

 p8 + 9p6 + 27p4 + 32p2 + 14 p6 + 8p4 + 19p2 + 14

p6 + 8p4 + 21p2 + 16 p6 + 9p4 + 23p2 + 18

 , (5.118)

Γo(p) = Woadj
(
p2M +K

)
[e2,6 e3,6]

=

 p6 + 8p4 + 19p2 + 15 2p4 + 13p2 + 16

p6 + 10p4 + 28p2 + 19 p8 + 11p6 + 40p4 + 55p2 + 24

 . (5.119)
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Moreover,

adj
(
p2M[D,D] +K[D,D]

)
K[D,·][e2,6 e3,6]

= −



p6 + 7p4 + 14p2 + 8 p2 + 3

p4 + 5p2 + 6 p4 + 6p2 + 7

p4 + 6p2 + 7 p2 + 5

p2 + 3 p6 + 9p4 + 23p2 + 13


. (5.120)

It follows from (5.80) and (5.81) that

Γi,d = −WiI[·,D]adj
(
p2M[D,D] +K[D,D]

)
K[D,·][e2,6 e3,6]

=

 p6 + 7p4 + 14p2 + 8 p2 + 3

p4 + 5p2 + 6 p4 + 6p2 + 7

 ,
Γo,d = −WoI[·,D]adj

(
p2M[D,D] +K[D,D]

)
K[D,·][e2,6 e3,6]

=

 p4 + 6p2 + 7 p2 + 5

p2 + 3 p6 + 9p4 + 23p2 + 13

 . (5.121)

Therefore,

det Γi,d(p)Γo(p)adj Γi(p) =
(
p10 + 13p8 + 62p6 + 133p4 + 125p2 + 38

)
·

 p6 + 8p4 + 19p2 + 15 2p4 + 13p2 + 16

p6 + 10p4 + 28p2 + 19 p8 + 11p6 + 40p4 + 55p2 + 24


·

 p6 + 9p4 + 23p2 + 18 −p6 − 8p4 − 19p2 − 14

−p6 − 8p4 − 21p2 − 16 p8 + 9p6 + 27p4 + 32p2 + 14


=

 A1,1(p) A1,2(p)

A2,1(p) A2,2(p)

 , (5.122)
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where

A1,1(p) = p22 + 28p20 + 342p18 + 2394p16 + 10611p14 + 31052p12 + 60672p10 + 78167p8

+ 63850p6 + 30491p4 + 7184p2 + 532, (5.123)

A1,2(p) = A1,1(p), (5.124)

A2,1(p) = −p24 − 31p22 − 426p20 − 3420p18 − 17793p16 − 62885p14 − 153828p12

− 260183p10 − 298351p8 − 222041p6 − 98657p4 − 22084p2 − 1596, (5.125)

A2,2(p) = p26 + 33p24 + 487p22 + 4244p20 + 24291p18 + 96077p16 + 268987p14

+ 536787p12 + 758045p10 + 740576p8 + 478889p6 + 188907p4 + 38580p2 + 2660.

(5.126)

Moreover,

det Γi(p)Γo,d(p)adj Γi,d(p)

=
(
p14 + 17p12 + 115p10 + 396p8 + 735p6 + 709p4 + 300p2 + 28

)
·

 p4 + 6p2 + 7 p2 + 5

p2 + 3 p6 + 9p4 + 23p2 + 13


 p4 + 6p2 + 7 −p2 − 3

−p4 − 5p2 − 6 p6 + 7p4 + 14p2 + 8


=

 Ad,1,1(p) Ad,1,2(p)

Ad,2,1(p) Ad,2,2(p)

 , (5.127)
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where

Ad,1,1(p) = p22 + 28p20 + 342p18 + 2394p16 + 10611p14 + 31052p12 + 60672p10 + 78167p8

+ 63850p6 + 30491p4 + 7184p2 + 532, (5.128)

Ad,1,2(p) = Ad,1,1(p), (5.129)

Ad,2,1(p) = −p24 − 31p22 − 426p20 − 3420p18 − 17793p16 − 62885p14 − 153828p12

− 260183p10 − 298351p8 − 222041p6 − 98657p4 − 22084p2 − 1596, (5.130)

Ad,2,2(p) = p26 + 33p24 + 487p22 + 4244p20 + 24291p18 + 96077p16 + 268987p14

+ 536787p12 + 758045p10 + 740576p8 + 478889p6 + 188907p4 + 38580p2 + 2660.

(5.131)

Comparing (5.123), (5.124), (5.125), and (5.126) with (5.128), (5.129), (5.130), and

(5.131), respectively, yields,

A1,1 = Ad,1,1, A1,2 = Ad,1,2, A2,1 = Ad,2,1, A2,2 = Ad,2,2. (5.132)

Therefore, it follows from (5.122) and (5.127) that

det Γi,d(p)Γo(p)adj Γi(p) = det Γi(p)Γo,d(p)adj Γi,d(p). (5.133)

That is,

T F
Wo,Wi|eD,n(p) = T D

Wo,Wi|eD,n(p), (5.134)

which confirms Theorem 6.
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5.9 Conclusions

We developed a time-domain framework for SISO and MIMO transmissibilities

that accounts for nonzero initial conditions for both force-driven and displacement-

driven structures. It was shown that if the locations of the forces and prescribed

displacements are identical, then the SISO and MIMO force- and displacement-driven

transmissibilities are equal. Numerical examples for a mass-spring system and a

simply supported beam were presented to illustrate the equality of transmissibilities

in force-driven and displacement-driven structures.

The time-domain transmissibility models developed in this chapter are intended

to facilitate the use of time-domain identification methods. Preliminary results in

this direction are given in [1, 28, 29].
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CHAPTER 6

Sensor-to-Sensor Identification of Hammerstein

Systems

6.1 Introduction

The usefulness of S2SID depends on the ability to estimate a transfer function

independently of the details of the excitation signal. This ability depends on the

fact that the input signal is cancelled in the construction of the PTF. As expected,

however, this cancellation does not occur in the case of nonlinear systems, which

suggests that S2SID is confined to linear systems. However, in the present chapter we

consider the case of a Hammerstein system, and we estimate the Markov parameters

of a linear PTF between the pseudo input and pseudo output despite the fact that

these signals are not linearly related. Under these conditions we show that, despite

the presence of the input nonlinearities, the estimates of the Markov parameters of

the identified PTF are semi-consistent, that is, up to a uniform scale factor, they are

asymptotically correct estimates of the Markov parameters of the corresponding PTF

of the system in the absence of the input nonlinearities. This statement holds for the

case in which both input nonlinearities are nonzero, but otherwise arbitrary.

The contents of the chapter are as follows. In Section 6.2, we formulate the

problem. In section 6.3, we define the identification architecture. In section 6.4
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we analyze the consistency of the Markov parameters obtained from the proposed

method. In section 6.5 we show the numerical examples. We give conclusions in

section 6.6.

6.2 Problem Formulation

Consider the block diagram shown in Figure 6.1, where u is the input, N1 : R→ R

and N2 : R→ R are memoryless nonlinearities, N1(u) and N2(u) are the intermediate

signals, and y1 and y2 are the output signals of the asymptotically stable, SISO,

linear, time-invariant, causal, discrete-time systems G1 of order n1 and G2 of order

n2, respectively.

Since the input u is not measured, it is not possible to identify the SISO Ham-

merstein systems (N1, G1) and (N2, G2). Furthermore, because of the presence of the

nonlinearities N1 and N2, the relationship between y1 and y2 is not linear. Neverthe-

less, for reasons explained in subsequent sections, we identify a linear model whose

input and output are the signals y1 and y2, respectively, see Figure 6.2. This linear

u

N1

N2

G1

G2

N1(u)

N2(u)

y1

y2

Figure 6.1: SIMO Hammerstein system, N1 and N2 represent memoryless nonlinear-
ities, and y1 and y2 represent outputs of the linear transfer functions G1

and G2, respectively.

G
y1 y2

Figure 6.2: The pseudo-transfer function G is a linear model that is identified based
on the input and output signals y1 and y2, respectively. This identification
does not assume that the relationship between y1 and y2 is linear.
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model has the form

G(q) =
B(q)

A(q)
, (6.1)

where G is the PTF, q is the forward shift operator, and A and B are polynomials

in q. For simplicity, we assume that G is a finite impulse response (FIR) model, and

thus A(q) = qµ and B(q) =
∑µ

i=0Hiq
i, where µ is the model order. Consequently,

the FIR PTF model G that relates the pseudo input y1 to the pseudo output y2 has

the form

y2(k) =

µ∑
j=0

Hjy1(k − j), (6.2)

where H0, . . . , Hµ−1 are the Markov parameters of (6.1).

In order for the PTF to be causal, the relative degree of G2 must be greater than

or equal to the relative degree of G1. If this is not the case then we delay the pseudo

output y2 as needed.

6.3 Least Squares Identification of the PTF

The FIR model (6.2) can be expressed as

y2(k)= θµφµ(k), (6.3)

where

θµ
4
=

[
H0 · · · Hµ−1

]
,

φµ(k)
4
=

[
y1(k) · · · y1(k − µ+ 1)

]T

.
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The least squares estimate θ̂µ,` of θµ is given by

θ̂µ,` = arg min
θ̄µ

∥∥Ψy2,`− θ̄µΦµ,`

∥∥
F
, (6.4)

where θ̄µ is a variable of appropriate size, || . ||F denotes the Frobenius norm,

Ψy2,`
4
=

[
y2(µ) · · · y2(`)

]
,

Φµ,`
4
=

[
φµ(µ) · · · φµ(`)

]
,

and ` is the number of samples. It follows from (6.4) that

Ψy2,`Φ
T
µ,` = θ̂µ,`Φµ,`Φ

T
µ,`. (6.5)

Next, consider the system in Figure 6.3, which represents the system in Figure 6.1

without the Hammerstein nonlinearities N1 and N2. Note that y′1 and y′2 represent

the outputs of G1 and G2, respectively.

Define H ′0, . . . , H
′
µ−1 to be Markov parameters of the PTF G ′ constructed by y′1

and y′2, see Figure 6.4. It follows that

Ψy′2,`
= θ′µΦ′µ,`, (6.6)

u

G1

G2

y′1

y′2

Figure 6.3: y′1 and y′2 are the outputs of the linear transfer functions G1 and G2,
respectively, with input u. This system does not exist and is used only
for analysis
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G ′
y′1 y′2

Figure 6.4: The pseudo-transfer function G ′ is a linear model that is identified based
on the input and output signals y′1 and y′2, respectively.

where

Ψy′2,`
4
=

[
y′2(µ) · · · y′2(`)

]
, (6.7)

θ′µ
4
=

[
H ′0 · · · H ′µ−1

]
, (6.8)

Φ′µ,`
4
=

[
φ′µ(µ) . . . φ′µ(`)

]
, (6.9)

φ′µ(k)
4
=

[
y′1(k) · · · y′1(k − µ+ 1)

]T

. (6.10)

Although the PTF G ′ is unknown and cannot be identified, the goal is to compare

the Markov parameters of the identified FIR PTF G relating y1 and y2 to the Markov

parameters of the PTF G ′ relating y′1 to y′2.

6.4 Consistency Analysis

Assumption 1. u is a realization of a stationary white random process U , and

y1, y2, y′1, and y′2 are realizations of stationary random processes Y1, Y2, Y ′1 , and Y ′2 ,

respectively.

Assumption 2. For all k ≥ 0,N1

(
U(k)

)
,N2

(
U(k)

)
,N 2

1

(
U(k)

)
, andN1

(
U(k)

)
N2

(
U(k)

)
have finite mean and variance.

Assumption 3. For all k ≥ 0, E
[
N1

(
U(k)

)]
= 0, E

[
N1

(
U(k)

)
N2

(
U(k)

)]
6= 0,
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and E
[
N 2

1

(
U(k)

)]
6= 0.

Assumption 4. θµ is not zero.

Definition 10. The least squares estimator θ̂µ,` of θµ is a semi-consistent estimator

of θ′µ if there exists nonzero γ ∈ R such that

lim
`→∞

θ̂µ,`
wp1
= γθ′µ.

Theorem 7. Let assumptions 1-4 hold. Then θ̂µ,` is a semi-consistent estimator

of θ′µ.

Proof. Note that,

y′1(k)=
(
u ∗ h1

)
(k)=

k∑
i=−∞

u(i)h1(k − i), (6.11)

y′2(k)=
(
u ∗ h2

)
(k)=

k∑
i=−∞

u(i)h2(k − i), (6.12)

y1(k)=
(
N1

(
u
)
∗ h1

)
(k)=

k∑
i=−∞

N1

(
u(i)

)
h1(k − i), (6.13)

y2(k)=
(
N2

(
u
)
∗ h2

)
(k)=

k∑
i=−∞

N2

(
u(i)

)
h2(k − i), (6.14)

where h1 and h2 are the impulse response sequences of G1 and G2, respectively.

Furthermore,

y2(k) =
α(k)

β(k)
y′2(k), (6.15)
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where

α(k)
4
=

(
N2(u) ∗ h2

)
(k),

β(k)
4
=

(
u ∗ h2

)
(k).

Therefore,

Ψy2,` =

[
α(µ)
β(µ)

y′2(µ) . . . α(`)
β(`)

y′2(`)

]
= Ψy′2,`

A`, (6.16)

where

A`
4
=


α(µ)
β(µ)

0

. . .

0 α(`)
β(`)

 . (6.17)

Therefore, (6.6) and (6.16) imply that

Ψy2,` = θ′µΦ′µ,`A`. (6.18)

It follows from (6.5) and (6.18) that θ̂µ,` satisfies

θ′µΦ′µ,`A`Φ
T
µ,` = θ̂µ,`Φµ,`Φ

T
µ,`. (6.19)
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Note that,

Φ′µ,`A`Φ
T
µ,`

=


y′1(µ) · · · y′1(`)

...
...

y′1(1) · · · y′1(`− µ+ 1)




y2(µ)
y′2(µ)

0

. . .

0 y2(`)
y′2(`)



y1(µ) · · · y1(`)

...
...

y1(1) · · · y1(`− µ+ 1)


T

=



∑̀
i=µ

y′1(i)y2(i)y1(i)

y′2(i)
· · ·

∑̀
i=µ

y′1(i)y2(i)y1(i− µ+ 1)

y′2(i)

...
. . .

...∑̀
i=µ

y′1(i− µ+ 1)y2(i)y1(i)

y′2(i)
· · ·

∑̀
i=µ

y′1(i− µ+ 1)y2(i)y1(i− µ+ 1)

y′2(i)


.

(6.20)

Since Y1, Y2, Y
′

1 , and Y ′2 are stationary random processes, it follows that for all

k ≥ 0 we can calculate

lim
`→∞

1

`
Φ′µ,`A`Φ

T
µ,`

wp1
= E


Y ′1(k)Y2(k)Y1(k)

Y ′2(k)
· · · Y ′1(k)Y2(k)Y1(k−µ+1)

Y ′2(k)

...
. . .

...

Y ′1(k−µ+1)Y2(k)Y1(k)

Y ′2(k)
· · · Y ′1(k−µ+1)Y2(k)Y1(k−µ+1)

Y ′2(k)

 , (6.21)
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where (6.21) is independent of k. Moreover, note that,

E
[
Y ′1(k)Y2(k)Y1(k)

Y ′2(k)

]

= E


k∑

i=−∞

U(i)h1(k − i)
k∑

j=−∞

N2

(
U(j)

)
h2(k − j)

k∑
r=−∞

N1

(
U(r)

)
h1(k − r)

k∑
q=−∞

U(q)h2(k − q)



= E


k∑

i=−∞

k∑
j=−∞

k∑
r=−∞

U(i)N2

(
U(j)

)
N1

(
U(r)

)
h1(k − i)h2(k − j)h1(k − r)

k∑
q=−∞

U(q)h2(k − q)

 .
(6.22)

Since U is a stationary white random process and N2 and N1 are memoryless nonlin-

earities, it follows that the expectation in (6.22) is nonzero when the arguments i, j,

and r are equal and zero otherwise. Therefore, (6.22) can be also written as

E
[
Y ′1(k)Y2(k)Y1(k)

Y ′2(k)

]

= E


k∑

i=−∞

U(i)h2(k − i)
k∑

j=−∞

k∑
r=−∞

N2

(
U(j)

)
N1

(
U(r)

)
h1(k − j)h1(k − r)

k∑
q=−∞

U(q)h2(k − q)


= E

[
k∑

j=−∞

k∑
r=−∞

N2

(
U(j)

)
N1

(
U(r)

)
h1(k − j)h1(k − r)

]

=
k∑

j=−∞

k∑
r=−∞

E
[
N2

(
U(j)

)
N1

(
U(r

)
)
]
h1(k − j)h1(k − r)

=
k∑

j=−∞

E
[
N2

(
U(k)

)
N1

(
U(k

)
)
]
h2

1(k − j). (6.23)

Since E
[
N2

(
U(k)

)
N1

(
U(k)

)]
is a nonzero constant for all k ≥ 0 and independent of
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j in (6.23), it follows that

E
[
Y ′1(k)Y2(k)Y1(k)

Y ′2(k)

]
= E

[
N2

(
U(k)

)
N1

(
U(k)

)] k∑
j=−∞

h2
1(k − j)

= E
[
N2

(
U(k)

)
N1

(
U(k)

)] ∞∑
i=0

h2
1(i), (6.24)

for all k ≥ 0.

Using the same procedure we obtain

lim
`→∞

1

`
Φ′µ,`A`Φ

T
µ,`

wp1
= E

[
N2

(
U(k)

)
N1

(
U(k)

)]
Γ, (6.25)

where

Γ
4
=



∞∑
i=0

h2
1(i) · · ·

∞∑
i=0

h1(i)h1(µ−1+i)

...
. . .

...
∞∑
i=0

h1(µ−1+i)h1(i) · · ·
∞∑
i=0

h2
1(i)


∈ Rµ×µ. (6.26)

Likewise,

lim
`→∞

1

`
Φµ,`Φ

T
µ,`

wp1
= E

[
N 2

1

(
U(k

)
)
]

Γ. (6.27)

Dividing (6.19) by ` and using (6.25) and (6.27) yields

E
[
N2

(
U(k)

)
N1

(
U(k)

)]
θ′µΓ

wp1
= lim

`→∞
E
[
N 2

1

(
U(k)

)]
θ̂µ,`Γ. (6.28)

That is,

(
E
[
N2

(
U(k)

)
N1

(
U(k)

)]
θ′µ − E

[
N 2

1

(
U(k)

)]
lim
`→∞

θ̂µ,`

)
Γ

wp1
= 01×µ.
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Since Γ is nonsingular, it follows that

E
[
N2

(
U(k)

)
N1

(
U(k)

)]
θ′µ

wp1
= E

[
N 2

1

(
U(k)

)]
lim
`→∞

θ̂µ,`.

Finally,

lim
`→∞

θ̂µ,`
wp1
=

E
[
N2

(
U(k)

)
N1

(
U(k)

)]
E
[
N 2

1

(
U(k)

)] θ′µ, (6.29)

for all k ≥ 0. Thus, θ̂µ,` is a semi-consistent estimator of θ′µ. 2

Example 6.4.1. Let N1(U) = U3, N2(U) = U7, and let U(k) be uniformly

distributed with the density function

p(u) =


1
2a
, |u| ≤ a,

0, |u| > a.
(6.30)

Then,

E
[
N2

(
U(k)

)
N1

(
U(k)

)]
=

1

2a

a∫
−a

U10(k) dU(k) =a10/11,

E
[
N 2

1

(
U(k)

)]
=

1

2a

a∫
−a

U6(k) dU = a6/7.

Finally, it follows from (6.29) that

lim
`→∞

θ̂µ,`
wp1
=

7a4

11
θ′µ.
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6.5 Numerical Examples

Consider the transfer functions

G1(q) =
4q + 1

(q− 0.6)(q + 0.8)(q− 0.9)
, (6.31)

G2(q) =
2q + 5

(q− 0.55)(q + 0.6)(q− 0.4)
. (6.32)

Then, the PTF is

G(q) =
G2(q)

G1(q)
,

=
(q− 0.6)(q + 0.8)(q− 0.9)(2q + 5)

(q− 0.55)(q + 0.6)(q− 0.4)(4q + 1)
. (6.33)

It follows from (6.1) that

B(q) = (q− 0.6)(q + 0.8)(q− 0.9)(2q + 5),

A(q) = (q− 0.55)(q + 0.6)(q− 0.4)(4q + 1).

Define the normalized Markov parameters of the PTF constructed from y′1 and y′2

by

H
′n
i

4
=
H ′i
H ′d

,

where H ′d is the first nonzero Markov parameter of the PTF. The estimated Markov

parameters Ĥi, obtained from θ̂µ,`, are normalized by Ĥd to obtain Ĥn
i . The least

squares estimates are computed for 200 independent realizations of U . We also define
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the error metric

ε =
1

200

200∑
i=0

|H ′ni − Ĥn
i |

|H ′ni |
. (6.34)

In the following we show five examples involving both odd, even, and neither

odd nor even nonlinearities in both cases of zero mean and nonzero mean for N2(u).

In example 6.5.2 the term M(u2) denotes the mean of the realization of the random

process U2 and in example 6.5.5 the term M(u2eu) denotes the mean of the realization

of the random process U2eU .

Example 6.5.1. N1(u) = sign(u), N2(u) = sin(u)

Consider the transfer functions G1 in (6.31) and G2 in (6.32), and let U be white

and have the uniform pdf (6.30) with a = 5. Figure 6.5 indicates that the estimates

of the Markov parameters H2, H3, H4, and H5 are semi-consistent.

Example 6.5.2. N1(u) = u2 −M(u2), N2(u) = cos(u)

Consider the transfer functions G1 in (6.31) and G2 in (6.32), and let U be white

and have the Gaussian pdf N(0, 1). Figure 6.6 indicates that the estimates of the

Markov parameters H2, H3, H4, and H5 are semi-consistent.

Example 6.5.3. N1(u) = sinh(u), N2(u) = u3

Consider the transfer functions G1 in (6.31) and G2 in (6.32), and let U be white

and have the Gaussian pdf N(0, 1). Figure 6.7 indicates that the estimates of the

Markov parameters H2, H3, H4, and H5 are semi-consistent.

Example 6.5.4. N1(u) = sign(u), N2(u) = eu

Consider the transfer functions G1 in (6.31) and G2 in (6.32), and let U be white

and have the uniform pdf (6.30) with a = 5. Figure 6.8 indicates that the estimates

of the Markov parameters H2, H3, H4, and H5 are semi-consistent.

Example 6.5.5. N1(u) = u2eu −M(u2eu), N2(u) = sin(u) + 10

Consider the transfer functions G1 in (6.31) and G2 in (6.32), and let U be white
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and have the uniform pdf (6.30) with a = 5. Figure 6.9 indicates that the estimates

of the Markov parameters H2, H3, H4, and H5 are semi-consistent.

6.6 Conclusions

We used least squares with an FIR model structure to identify a pseudo transfer

function for a two-output Hammerstein system. Only output signals of the Hammer-

stein system were used since the intermediate signals were inaccessible. Despite the

presence of the input nonlinearities, we proved that, under certain assumptions, the

least squares estimate of the Markov parameters of the PTF is semi-consistent. This

method was demonstrated on several numerical examples including odd, even, and

neither odd nor even nonlinearities in both cases of zero mean and nonzero mean for

the output channel Hammerstein nonlinearity, where the input channel Hammerstein

nonlinearity should be of zero mean.
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Figure 6.5: Semi-consistency of the estimates of the Markov parameters obtained
from the FIR model with the Hammerstein nonlinearitiesN1(u) = sign(u)
and N2(u) = sin(u).
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Figure 6.6: Semi-consistency of the estimates of the Markov parameters obtained
from the FIR model with the Hammerstein nonlinearities N1(u) = u2 −
M(u2) and N2(u) = cos(u).
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Figure 6.7: Semi-consistency of the estimates of the Markov parameters obtained
from the FIR model with the Hammerstein nonlinearitiesN1(u) = sinh(u)
and N2(u) = u3.
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Figure 6.8: Semi-consistency of the estimates of the Markov parameters obtained
from the FIR model with the Hammerstein nonlinearities N1(u) =
sign(u), N2(u) = eu.
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Figure 6.9: Semi-consistency of the estimates of the Markov parameters obtained
from the FIR model with the Hammerstein nonlinearities N1(u) = u2eu−
M(u2eu) and N2(u) = sin(u) + 10.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

Transmissibility estimates are traditionally obtained using frequency-domain meth-

ods. We showed that ignoring the initial conditions and transient effects can degrade

the transmissibility estimates in the frequency-domain. Moreover, we showed that

frequency-domain identification techniques cannot give exact estimates with finite

data sets. Therefore, we developed continuous time-domain models of transmissibil-

ity operators, which model the response of a subset of sensors based on the response

of the remaining sensors without knowledge of the driving input. We showed that

transmissibility operators account for nonzero initial conditions as well as cancellation

of the common factor occurring in the underlying state space model. Moreover, we

showed that transmissibility operators are independent of both the initial condition

and inputs of the underlying system, which is assumed to be time-invariant.

We showed that transmissibility operators may be unstable, noncausal, and of

unknown order. Therefore, to facilitate system identification, we considered a class of

models that can approximate transmissibility operators with these properties. This

class of models consists of noncausal FIR models based on a truncated Laurent expan-

sion. Connection between transmissibility operators and unstable systems in closed

loop was shown. Noncausal FIR models can be used for closed-loop identification

148



of open-loop-unstable plants. To identify the noncausal plant model we delayed the

measured output relative to the measured input. We found that the identified non-

causal FIR model approximates the Laurent series of the plant inside the annulus of

analyticity lying between the disk of stable poles and the punctured plane of unstable

poles.

An estimate of the transmissibility operator between pairs or sets of sensors was

used to detect faults in the presence of unknown external excitation. The ability

to detect faults by exploiting the presence of unknown external excitation is the

key difference between this approach and techniques based on residual generation.

Transmissibility-based fault detection depends on various assumptions. In particular,

this approach assumes that the plant itself does not change between the identification

and validation data sets and that the location of the external excitation does not

change. By using the estimated transmissibility operator, the residual between pairs

or sets of sensors can be used to detect a sensor failure or a change in the dynamics

of a system.

We developed a time-domain framework for SISO and MIMO transmissibilities

that accounts for nonzero initial conditions for both force-driven and displacement-

driven structures. It was shown that if the locations of the forces and prescribed

displacements are identical, then the SISO and MIMO force- and displacement-driven

transmissibilities are equal.

Finally, since S2SID depends on cancellation of the input, this approach does not

extend to nonlinear systems. However, we showed that for the case of a two-output

Hammerstein system, the least squares estimate of the PTF is consistent, that is,

asymptotically correct, despite the presence of the nonlinearities.
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7.2 Future Work

We showed that transmissibility operator between pairs or sets of sensors can

be used to detect sensor faults in the presence of unknown external excitation. The

characteristic shape of the residual of the transmissibility can be used to infer the type

of sensor failure. However, this approach does not identify which sensor has failed.

This problem is left for future research. Moreover, the current approach assumes that

the underlying system is linear, time invariant and that the location of the external

excitation does not change. Future research may consider the effect of nonlinearities

as well as extensions to the case of moving loads.

The research objective for S2SID is to develop a technique for obtaining the most

accurate estimate of the transmissibility operator possible in the presence of noise

on all sensors. System identification with noisy input and output data is a standard

problem in system identification known as errors-in-variables (EIV) identification.

Since S2SID is based on sensor measurements, all of which may be noisy, the EIV

problem is especially relevant. The literature on this problem is extensive [105–108].

Although the idea of a PTF may be unconventional, we have reason to believe that

there may be a deep connection between PTF’s and behavioral models developed by

J. Willems [109, 110]. Unlike traditional input-output techniques, behavioral mod-

els focus on terminals and ports, which provide the mechanism for interconnecting

physical systems without assigning the attributes of “input” or “output.”

Unlike behavioral models, the development of PTF’s begins with a causal state

space description from which an excitation-independent PTF is derived. At the same

time, behavioral models have not been used to provide a time-domain framework for

transmissibilities or for sensor fault detection and diagnosis (note that [111] is not

based on behaviors in the sense of Willems). Therefore, future research may investi-

gate connections between PTF’s and behavioral models and, in so doing, deepen the

foundations of both areas. S2SID can also benefit from system identification tech-
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niques developed within the context of behavioral models [112], including conditions

that guarantee identifiability and persistency [113, 114].
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APPENDIX A

Cancellation of the Common Factor δ(p) for SISO

Transmissibility Operators

Lemmas A.1-A.5 concern SISO transmissibility operators. Lemma A.1 is used

to prove Lemma A.2, which in turn is used to prove Lemma A.3 and Lemma A.4.

Lemmas A.3 and A.4 are used to prove Lemma A.5, which in turn is used to prove

Theorem 1.

Assume that m = 1 and p = 2 and let (2.20), (2.21), and (2.22) be written as

Γi(p) =
n∑
j=0

βi,jp
j, Γo(p) =

n∑
j=0

βo,jp
j,

δ(p) = pn +
n−1∑
j=0

αjp
j,

respectively, where βi,n = Di and βo,n = Do.
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Define

α ,

[
α0 α1 · · · αn−1

]T

,

Ac ,

 0(n−1)×1 In−1

−αT

 , Bc , eT
n ,

Cc,i ,

[
βi,0 βi,1 · · · βi,n−1

]
− βi,nα

T,

Cc,o ,

[
βo,0 βo,1 · · · βo,n−1

]
− βo,nα

T,

where ei is the ith column of In. Consider the state space representation

ẋc = Acxc +Bcu, (A.1)

yi = Cc,ixc +Diu, (A.2)

yo = Cc,oxc +Dou. (A.3)

Note that

Γi(p) = Cc,iadj(pI − Ac)Bc +Diδ(p), (A.4)

Γo(p) = Cc,oadj(pI − Ac)Bc +Doδ(p), (A.5)

δ(p) = det(pI − Ac), (A.6)

That is, (2.23) and (2.24) can be represented by (A.1), (A.2) and (A.1), (A.3), re-

spectively.

For all j = 0, . . . , n, define

χj ,

 eT
j+1, 0 ≤ j ≤ n− 1,

−αT, j = n.

154



For all i, j = 0, . . . , n, define fi,j , χiA
j
c.

Lemma A.1. For all i, j = 0, . . . , n, fi,j = fj,i.

Proof. Note that

Ajc =


In, j = 0,

Ej, 1 ≤ j ≤ n− 1,

∆n, j = n,

where,

Ej
4
=



eT
j+1

...

eT
n

∆j


∈ Rn×n, ∆j

4
=


−αT

...

−αTAj−1
c

 ∈ Rj×n.

For all i = j, the result holds. For all 0 ≤ i ≤ n − 1 and j = n, fi,n = eT
i+1A

n
c =

−αTAic = fn,i. For all 0 ≤ i ≤ n − j − 1 and 0 ≤ j ≤ n − 1, fi,j = eT
i+1Ej =

eT
i+j+1 = eT

j+1Ei = fj,i. Finally, for all n − j ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1,

fi,j = eT
i+1Ej = −αTAi+j−nc = eT

j+1Ei = fj,i. 2

Define

γi(p)
4
= Cc,iadj(pI − Ac)Bc, (A.7)

γo(p)
4
= Cc,oadj(pI − Ac)Bc. (A.8)

Then, (2.20), (2.21) can be written as

Γi(p) = γi(p) +Diδ(p), (A.9)

Γo(p) = γo(p) +Doδ(p). (A.10)
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Lemma A.2. For all t ≥ 0,

Γo(p)Cc,ie
Act = Γi(p)Cc,oe

Act, (A.11)

γo(p)Cc,ie
Act = γi(p)Cc,oe

Act. (A.12)

Proof. Using Lemma A.1 we have

Γo(p)Cc,ie
Act=

n∑
i=0

βo,ip
iCc,ie

Act

=
n∑
i=0

βo,iCc,iA
i
ce
Act

=
n∑
i=0

βo,i

[
n−1∑
j=0

(
βi,je

T
j+1

)
−βi,nα

T

]
Aice

Act

=
n∑
i=0

n∑
j=0

βo,iβi,jfj,ie
Act

=
n∑
j=0

n∑
i=0

βi,jβo,ifi,je
Act

=
n∑
j=0

βi,j

[
n−1∑
i=0

(
βo,ie

T
i+1

)
−βo,nα

T

]
Ajce

Act

=
n∑
j=0

βi,jp
jCc,oe

Act

= Γi(p)Cc,oe
Act,

which proves (A.11). To prove (A.12) note that

Γo(p)Cc,ie
Act = (γo(p) +Doδ(p))Cc,ie

Act

= γo(p)Cc,ie
Act +DoCc,iδ(Ac)e

Act

= γo(p)Cc,ie
Act, (A.13)
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where δ is the characteristic polynomial of Ac, and thus δ(Ac) = 0n×n. Similarly,

Γi(p)Cc,oe
Act = γi(p)Cc,oe

Act. (A.14)

Using (A.11), (A.13) and (A.14) yield (A.12). 2

Define

yi,free(t)
4
= Cc,ie

Actxc0 , yo,free(t)
4
= Cc,oe

Actxc0 . (A.15)

Lemma A.3. For all t ≥ 0,

Γo(p)yi,free(t) = Γi(p)yo,free(t). (A.16)

Proof. Using (A.11) of Lemma A.2 we have

Γo(p)yi,free(t) = Γo(p)Cc,ie
Actxc0

= Γi(p)Cc,oe
Actxc0 = Γi(p)yo,free(t). 2

Define

yi,forced(t)
4
=

t∫
0

Cc,ie
Ac(t−τ)Bcu(τ)dτ +Diu(t), (A.17)

yo,forced(t)
4
=

t∫
0

Cc,oe
Ac(t−τ)Bcu(τ)dτ +Dou(t). (A.18)
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Lemma A.4. For all t ≥ 0,

Γo(p)yi,forced(t) = Γi(p)yo,forced(t). (A.19)

Proof.

Γo(p)yi,forced(t) = Γo(p)

t∫
0

Cc,ie
Ac(t−τ)Bcu(τ)dτ +DiΓo(p)u(t)

= Γo(p)

t∫
0

Cc,ie
Ac(t−τ)Bcu(τ)dτ +Diδ(p)yo,forced(t)

= γo(p)

t∫
0

Cc,ie
Ac(t−τ)Bcu(τ)dτ+Doδ(p)

t∫
0

Cc,ie
Ac(t−τ)Bu(τ)dτ

+Diδ(p)

t∫
0

Cc,oe
Ac(t−τ)Bcu(τ)dτ +DiDoδ(p)u(t). (A.20)

Using (A.12) of Lemma A.2 we have

γo(p)

t∫
0

Cc,ie
Ac(t−τ)Bcu(τ)dτ = γo(p)Cc,ie

Act

t∫
0

e−AcτBcu(τ)dτ

= γi(p)Cc,oe
Act

t∫
0

e−AcτBcu(τ)dτ

= γi(p)

t∫
0

Cc,oe
Ac(t−τ)Bcu(τ)dτ. (A.21)
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Using (A.17), (A.18), and (A.21), (A.20) can be written as

Γo(p)yi,forced(t) = γi(p)

t∫
0

Cc,oe
Ac(t−τ)Bcu(τ)dτ +Doδ(p)

t∫
0

Cc,ie
Ac(t−τ)Bcu(τ)dτ

+Diδ(p)

t∫
0

Cc,oe
Ac(t−τ)Bcu(τ)dτ +DiDoδ(p)u(t)

= Γi(p)

t∫
0

Cc,oe
Ac(t−τ)Bcu(τ)dτ +Doδ(p)yi,forced(t)

= Γi(p)

t∫
0

Cc,oe
Ac(t−τ)Bcu(τ)dτ +DoΓi(p)u(t)

= Γi(p)yo,forced(t). 2

Lemma A.5. For all t ≥ 0,

Γo(p)yi(t) = Γi(p)yo(t). (A.22)

Proof. Using Lemmas A.3 and A.4

Γo(p)yi(t) = Γo(p)yi,free(t) + Γo(p)yi,forced(t)

= Γi(p)yo,free(t) + Γi(p)yo,forced(t)

= Γi(p)yo(t). 2
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APPENDIX B

Adjugate Identities

Let A ∈ Cn×n, let AA ∈ Cn×n denote the adjugate of A, and let A(i,j) ∈ C denote

the (i, j) entry of A. Let D
4
= {k1, . . . , kd} where 1 ≤ d ≤ n−2 and ki ∈ {1, . . . , n} for

all i = 1, . . . , d. Let A[D,·] ∈ C(n−d)×n denote A with rows k1, . . . , kd removed and let

A[D,D] ∈ C(n−d)×(n−d) denote A with rows k1, . . . , kd removed and columns k1, . . . , kd

removed. Finally, Let eD,n
4
= [ek1,n . . . ekd,n] ∈ Cn×d where ei,n ∈ Cn denotes the ith

unit vector. The following proposition is used in the proof of Theorem 5.

Proposition B.1. For all i ∈ {1, . . . , n},

[
(AA)[i,·] + (A[i,i])

AA[i,·]
]
ei,n = 0(n−1)×1. (B.1)

Proof. See [115]. 2

Next, let C ∈ Cd×n and define R
4
= AAeD,n ∈ Cn×d and S

4
= (A[D,D])

AA[D,·]eD,n ∈

C(n−d)×d. Let CR ∈ Cd×d and C[·,D]S ∈ Cd×d be nonsingular where C[·,D] ∈ Cd×(n−d)

denotes C with columns k1, . . . , kd removed. The following proposition is used in the

proof of Theorem 6.
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Proposition B.2.

In,[D,·]R(CR)−1 = S(C[·,D]S)−1, (B.2)

where In ∈ Cn×n is the identity matrix and In,[D,·] ∈ C(n−d)×n denotes In with rows

k1, . . . , kd removed.
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