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ABSTRACT 
 

Role of the Protein Kinase TBK1 in Insulin-Stimulated  
Glucose Transport 

 
by 

 
Maeran Uhm 

 

Chair: Alan R. Saltiel 

 

Insulin stimulates glucose uptake in muscle and fat by promoting translocation of the facilitative 

transporter GLUT4 from intracellular compartments to the plasma membrane. While the 

pathways involved in GLUT4 vesicle trafficking are not completely understood, numerous 

studies have shown that small G proteins critically integrate signaling with the trafficking 

machineries in this process. Among the targets of these G proteins is the exocyst complex, which 

facilitates the tethering of GLUT4 vesicles to the plasma membrane. GLUT4 translocation 

requires both the assembly and recognition of the exocyst for targeted exocytosis, and G proteins 

mediate both of these processes. Exocyst assembly is controlled by activation of the Rho 

subfamily G protein TC10, while exocyst recognition is mediated by the G protein RalA. 

However, how GLUT4 vesicles dissociate from the G protein after binding is unclear, and the 

sequence of events that disengage GLUT4 vesicles from the individual subunits of the exocyst 

remain uncertain.  
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Here I report that the protein kinase TBK1 is required for insulin-stimulated glucose transport 

and GLUT4 translocation in parallel with the Akt signaling pathway. Upon activation of RalA, 

TBK1 directly phosphorylates the exocyst subunit Exo84, a crucial step in insulin-stimulated 

glucose uptake. Knockdown of TBK1 blocks insulin-stimulated glucose uptake and GLUT4 

translocation, and ectopic overexpression of a kinase-inactive mutant of TBK1 reduces insulin-

stimulated glucose uptake in 3T3-L1 adipocytes. The phosphorylation of Exo84 on multiple sites 

by TBK1 reduces its affinity for RalA, and allows its release from the exocyst. Therefore, the 

interaction of TBK1/RalA/exocyst complex is dissociated upon Exo84 phosphorylation by TBK1 

but overexpression of a kinase-inactive mutant of TBK1 blocks the dissociation of the complex, 

and treatment of 3T3-L1 adipocytes with specific inhibitors of TBK1 reduces the rate of complex 

dissociation. Introduction of mutant forms of Exo84 that prevent or mimic phosphorylation 

blocks insulin-stimulated GLUT4 translocation. Thus, these data indicate that TBK1 controls 

GLUT4 vesicle engagement and disengagement from the exocyst, suggesting that the exocyst is 

more than just a tethering complex for the GLUT4 vesicle, but also a ‘gatekeeper’ controlling 

vesicle fusion at the plasma membrane. 
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Chapter 1  
 

Introduction 
 

Plasma glucose levels are tightly regulated in a narrow range in mammals (1). In the fasting state, 

serum glucose levels are maintained by hepatic glucose output, which results mainly from the 

breakdown of glycogen or de novo synthesis of glucose (gluconeogenesis). After food is ingested, 

glucose levels are elevated, which in turn leads to the secretion of insulin from glucose and 

amino acid-sensing beta cells in pancreatic islets. Insulin reduces hepatic glucose output and 

facilitates glucose uptake into muscle and adipose tissue, thus restoring glucose levels to baseline 

(2).  

 

Insulin is the most potent physiological anabolic hormone known, promoting the storage and 

synthesis of lipids, protein, and carbohydrates and inhibiting their breakdown and release into the 

circulation (3). Diabetes mellitus is a metabolic disorder typified by chronic hyperglycemia with 

dysregulation of carbohydrate, fat, and protein metabolism resulting from defects in insulin 

secretion, insulin action, or both (4). Diabetes mellitus is classified into two major types. Type 1 

diabetes results from the autoimmune destruction of the insulin-producing beta cells of the islets 

of Langerhans in the pancreas. Type 2 diabetes is more common, and results from a combination 

of defects in insulin secretion and action, and is often associated with obesity (5, 6). 
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The prevalence of obesity and Type 2 diabetes is described as a global epidemic (7). In the 

United States, Type 2 diabetes is the leading cause of blindness, end-stage renal disease, and 

nontraumatic loss of limb, with associated health care costs estimated to exceed $130 billion per 

year (8). The hallmark of Type 2 diabetes is resistance to the action of insulin, mainly resulting 

in a defect in insulin-stimulated glucose transport in peripheral metabolic tissues such as adipose 

tissue and skeletal muscle, and a failure to inhibit hepatic glucose output (9). While the 

molecular basis of insulin resistance remains unclear, the development of effective therapies will 

rely largely upon a better understanding of the underlying pathophysiology of insulin resistance 

and the molecular mechanisms of insulin action. 

 

I. Insulin-stimulated glucose uptake 

In muscle and adipose tissues, glucose uptake is the rate-limiting step by which insulin increases 

glucose storage. Insulin-stimulated glucose uptake is mainly mediated through the insulin 

responsive facilitative glucose transporter GLUT4. Insulin increases glucose uptake, not by 

changing the activity of the transporter, but rather by changing its location. In the basal state, 

GLUT4 mainly resides in intracellular compartments, and then traffics to the plasma membrane 

in response to insulin, a process that is critical for lowering blood glucose levels after feeding (3, 

10).  

 

Glucose transporter family  

 

In mammals, glucose uptake from the bloodstream is mediated by a family of highly related 

hexose transporters (GLUTs or SLC2As), containing 12 transmembrane domains with both the 



3 
 

amino and carboxyl termini exposed on the cytoplasmic side of the plasma membrane (11). As 

facilitative transporters, these proteins catalyze hexose transport across cell membranes via an 

ATP-independent, facilitative diffusion mechanism (12). The different expression patterns and 

hexose binding affinities reflect the physiological role of GLUT transporters in glucose sensing 

and utilization in different tissues. Some GLUT proteins are constitutively localized to the 

plasma membrane, while others are retained intracellularly and facilitate hexose transport by 

trafficking to the plasma membrane in response to cellular stimuli, adding an additional 

mechanism by which GLUT proteins can regulate sugar uptake and metabolism. The GLUT 

family consists of 13 members and is divided into three classes based on conserved structural 

characteristics and sequence similarities. Class I consists of GLUTs 1 – 4, which are, by far, the 

most well characterized transporters of the family. Class II is comprised of GLUT5 (a fructose-

specific transporter), and GLUTs 7, 9, and 11. Class III includes GLUTs 8, 10, 12, and the 

proton-myoinositol symporter H+-myo-inositol cotransporter (HMIT1), all of which are largely 

uncharacterized (13, 14). 

 

GLUT1 was the first glucose transporter to be cloned, and consequently is the best studied. 

GLUT1 is a widely expressed protein required for the low constitutive level of glucose transport 

that supports basal cellular processes (13, 15). GLUT2 is a low affinity transporter for glucose, 

but high affinity for glucosamine, and is expressed in the liver, kidney, intestine, pancreatic beta 

cells, and regions of the brain. The GLUT2 transporter functions as a part of the glucose sensor 

system in beta cells, and is also required for absorption of glucose by intestinal epithelial cells. 

GLUT3 is enriched in neurons, testis, and muscle. This transporter is required for glucose to 

cross the blood-brain barrier. GLUT4 is highly expressed in muscle and white/brown adipose 
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tissues and changes its localization in response to insulin (16). As the major insulin-responsive 

GLUT isoform, the study of the structure, function, and localization of GLUT4 has been a major 

focus in understanding the development of Type 2 diabetes (17-21). The crucial role of GLUT4 

in maintaining glucose homeostasis has been demonstrated in various genetically engineered 

mouse models. A global reduction in GLUT4 (as shown in mice heterozygous for GLUT4) 

results in diabetes (22). Muscle-specific GLUT4 knockout (MG4KO) mice show both decreased 

insulin- and exercise-induced glucose uptake in muscle, hyperglycemia, glucose intolerance and 

insulin resistance in the liver and adipose tissue (23). Adipose-specific GLUT4 knockout 

(AG4KO) mice show insulin resistance in liver and muscle and hyperinsulinemia (24). On the 

other hand, transgenic mice expressing high levels of GLUT4 in adipose tissue (25) or in skeletal 

muscle (26) show increased insulin sensitivity and glucose tolerance. 

 

GLUT4 compartmentalization 

 

The first evidence in support of the hypothesis that insulin causes the redistribution of what was 

then described as “glucose transport activity” from intracellular membrane compartments to the 

plasma membrane was presented from two independent groups in 1980 (27, 28). By measuring 

glucose binding and transport activity in membrane fractions isolated from rat adipocytes, they 

found that insulin decreased the number and function of glucose transporters in intracellular 

fractions, while increasing transporter function at the plasma membrane. Afterward, five 

independent groups identified and cloned the cDNA encoding GLUT4 (17-21). These early 

studies enabled the generation of isoform-specific antibodies and confirmed that the glucose 

transport activity identified in the 1980 experiments corresponded to the translocation of GLUT4 
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to the cell surface in response to insulin (13). However, in addition to the translocation 

hypothesis, several studies have also suggested that insulin may also regulate the intrinsic 

transport activity of a glucose transporter already present at the plasma membrane (29, 30) or 

insulin could stimulate gene expression of a transporter (31) inhibit its degradation, or both (32).  

 

Although the redistribution of GLUT4 to the plasma membrane in response to insulin remains 

the dominant paradigm, controversy still exists regarding the compartmentalization and cycling 

of this specialized transporter. In the basal state and after insulin stimulation, GLUT4 is 

constantly recycling between the intracellular compartments and the plasma membrane. Insulin 

increases the rates of exocytosis and endocytosis to augment the surface levels of GLUT4 

(Figure 1.1).  

 

In the basal state, 4 – 10 % of GLUT4 is located at the cell surface and > 90% at intracellular 

compartments. This steady-state distribution of GLUT4 is the balance of its fast endocytosis and 

slow recycling (33). It is widely accepted that GLUT4 is internalized from the plasma membrane 

through clathrin-mediated endocytosis and clathrin-independent endocytosis (34). Diverse 

microscopy approaches have shown that GLUT4 is localized in small vesicular structures, early 

sorting recycling endosomal compartments, and trans-golgi network (TGN) (35). Studies 

involving the chemical ablation of transferrin receptor (TfR)-containing compartments using 

peroxidase-loaded TfR consistently identified two populations of GLUT4 pools: one overlapping 

with TfR, which is an endosomal recycling compartment marker, and another separate pool that 

sorted into a specialized GLUT4 storage compartment that lacks endocytotic markers, but 
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Figure 1.1 Schematic diagram of GLUT4 trafficking itinerary.  
In the basal states, GLUT4 is sequestered in the intracellular compartments, GLUT4-storage 
vesicles (GSVs), which undergo dynamic sorting steps between early/recycling endosomes and 
the trans-golgi-network (TGN). GSVs finally sort into the insulin-responsive GLUT4 vesicles 
(IRVs). Following insulin stimulation, these IRVs translocate to the plasma membrane through 
targeted exocytosis, which process involves tethering, docking, and fusion. Insulin-stimulated 
GLUT4 translocation allows glucose uptake into cells. GLUT4 then undergoes endocytosis and 
resorting to recycle the IRVs. 
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contains markers of the TGN, such as the t-SNAREs (an acronym derived from soluble N-

ethylmaleimide-sensitive factor attachment protein receptor”) syntaxins 6, 16 and the clathrin 

adaptor AP-1 (36-38). This pool is also known as the insulin-responsive vesicles (IRVs) or 

GLUT4-storage vesicles (GSVs). 

 

Most of the IRVs rapidly undergo exocytosis to the plasma membrane in response to insulin (39). 

While how GLUT4 is retained intracellularly remains uncertain, several studies suggested that 

GLUT4 is sequestered via a futile intracellular cycle of continual budding and fusion between 

recycling endosomes, the TGN, or both (40). The tethering protein called TUG may also play a 

role in basal retention by physically interacting with components of the IRVs and preventing 

them from translocating to the plasma membrane (41). Insulin, on the other hand, permits escape 

from the futile cycle, thereby stimulating exocytosis of GLUT4 vesicles to the plasma membrane. 

Therefore, IRVs sequester GLUT4 from the generalized recycling pathway to maintain low 

surface levels of GLUT4 in the basal state, but allow for GLUT4 trafficking to the plasma 

membrane in response to insulin. Biochemical characterization of the IRV has been difficult 

because of the presence of GLUT4 in many different membrane compartments within the cell, in 

addition to a lack of IRV-specific markers that can be used to purify this vesicle population. 

However, several studies have identified GLUT4, IRAP, sortillin, VAMP2, and most recently 

LRP1 as major components of the IRVs (36, 42-49). The mechanisms that selectively recruit 

GLUT4 and other proteins into IRVs, as well as the means by which insulin stimulates the 

tethering, docking, and fusion of IRVs at the plasma membrane, remain to be further elucidated.  

 

GLUT4 exocytosis 
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Exocytosis of the IRVs involves multiple steps including translocation to the plasma membrane 

(approach to the plasma membrane), tethering at sites that contain the necessary machinery for 

vesicle fusion, and finally fusion of the vesicles with the plasma membrane (50).  

 

GLUT4 traffics to the plasma membrane along microtubule and actin cytoskeletal tracks. 

Evidence supporting the role of the cytoskeleton in GLUT4 translocation came from 

cytoskeleton-perturbing reagents such as nocodazole (for microtubules) and latrunculin (for actin 

filaments), resulting in the disruption of the integrity of the GLUT4 storage compartments (51, 

52) and impaired insulin-stimulated glucose uptake and GLUT4 translocation (52-60).  

 

Once at the plasma membrane, IRVs are targeted to specific tethering sites. The application of 

total internal reflection fluorescence (TIRF) microscopy to GLUT4 trafficking has provided 

significant advances in our understanding of insulin action in exocytosis of the IRVs. Although 

TIRF microscopy only analyzes trafficking events occurring within 150 nm of the cell surface 

(referred to as the TIRF zone) (50), these studies suggests that major sites of insulin regulation 

are at a tethering step and a step after tethering and before fusion called priming, which may 

represent SNARE complex formation (61-63). This tethering process is mediated by the exocyst, 

a large, evolutionarily conserved octameric protein complex (64). The exocyst consists of eight 

different subunits, Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84. The exocyst 

functions in tethering events in localized membrane expansion, including basolateral protein 

sorting in epithelial cells, neuronal synaptogenesis, cytokinesis, and GLUT4 exocytosis (65-69). 
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The exocyst was originally identified in budding yeast three decades ago (70). Isolation of the 

complete complex from rat neurons established a role for the exocyst in mammalian vesicle 

exocytosis (71). Deletion of exocyst components in yeast, drosophila, and mice results in 

lethality, demonstrating that this complex is essential in yeast and higher organisms (72-75). 

Early studies in budding yeast implicated Sec3 and Exo70 as landmarks for the site of exocytosis 

(76, 77). Although it is not clear whether the rest of the subunits of the exocyst arrive 

individually or already assembled together, it was proposed that exocyst subunits arriving on 

vesicles assembled with Exo70 and Sec3 at the plasma membrane (64, 77). A low-resolution 

electron microscopy (EM) structure revealed that the exocyst forms a ‘Y’-shaped structure (78). 

Structural studies further provided a model for exocyst architecture and assembly. Partial 

fragments of Exo70, Exo84, Sec15, and Sec6 were crystallized and these crystal structures of 

exocyst subunits display a common motif of tandem helical bundles that form extended rod-like 

structures, despite little sequence homology (79-83). EM studies of the mammalian brain exocyst 

and biochemical studies predict that the subunits pack together in a side-by-side manner in the 

assembled holocomplex (78). Purified exocyst fixed with glutaraldehyde takes on a ‘Y’-shaped 

structure, proposing that each tip of the ‘Y’ bridging the approaching secretory vesicle in close 

enough proximity to the plasma membrane for SNARE complexes to form (78, 79). Consistent 

with this idea, electron tomography studies of cell plate formation in Arabidopsis 

thaliana showed ‘Y-shaped’ structures linking vesicles (84).  

 

In addition to the conserved helical bundles, several exocyst subunits contain additional 

functional domains that interact with a number of small GTPases (85-88). It has been suggested 

that vesicle recognition by the exocyst and the exocyst assembly are regulated by small GTPases 
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(64, 88-91). Active Cdc42 and Rho1 bind competitively to the N-terminus of Sec3 in budding 

cells and target Sec3 to regions of the plasma membrane (92, 93). The yeast exocyst subunit 

Exo70 interacts with active Rho3 at the plasma membrane, and mutation of Rho3 disrupts 

secretory vesicle targeting and fusion (94, 95). However, the regulation of Exo70 by Rho3 is 

unclear, since yeast expressing a mutant form of the G protein that cannot bind to Exo70 failed to 

disrupt membrane recruitment of Exo70 (96). Targeting of exocytic vesicles to the plasma 

membrane not only depends on Exo70 and Sec3 binding to Rho GTPases but also binding to the 

phospholipid PI(4,5)P2 at the plasma membrane (96, 97). Genetic studies in yeast provided 

further insights on the regulation of the exocyst by small GTPases. Active Rab GTPase Sec4p on 

the secretory vesicle directly binds to Sec15, presumably for specific secretory vesicle 

recognition (89). Sec4p also bridges secretory vesicles to actin cables by interacting with the 

actin motor Myo2p (98-101). Therefore, it is likely that the coordination of the exocyst with 

small G proteins and motor proteins confers spatial and temporal specificity to secretory vesicle 

delivery. 

 

Exocyst interactions with small GTPases are conserved in higher eukaryotes as well. In both 

mammals and Drosophila, Sec15 interacts with the Rab GTPase Rab11 to regulate endocytic 

recycling (102-104). ARF6 also controls endocytic recycling through its interaction with Sec10 

(105). The interaction of RalA with two different exocyst subunits Exo84 and Sec5 recognizes 

the exocytic vesicles (106, 107). At the plasma membrane, the Rho GTPase TC10 interacts with 

Exo70 to mark the site of exocytosis (67, 108). These studies suggest that targeted exocytosis is 

regulated by various signaling inputs through interactions with this tethering complex. 
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The exocyst was first implicated in GLUT4 trafficking when Exo70 was identified as an effector 

protein for TC10 in a yeast two-hybrid screen (67). TC10 is activated downstream of the insulin 

receptor in lipid rafts (109) and Exo70 interacts with active TC10 on the plasma membrane, 

providing a site for the assembly of other exocyst proteins including Sec6 and Sec8 (67, 110). 

Disruption of the interaction between Exo70 and TC10 inhibits GLUT4 insertion into the plasma 

membrane, indicating that the exocyst functions at a step just prior to fusion (67). Studies have 

demonstrated that RalA resides on vesicles containing GLUT4 and is activated by insulin, 

resulting in its binding to the exocyst subunits, Exo84 and Sec5. RalA also interacts with the 

Calmodulin light chain of Myo1c and acts as a cargo recognition protein on the surface of 

GLUT4 vesicles for movement along actin tracks. Therefore, RalA engages with the exocyst and 

facilitates GLUT4 translocation to the plasma membrane in response to insulin (111). These 

studies identified essential roles of the exocyst and small G proteins in insulin-stimulated 

GLUT4 translocation (Figure 1.2). 

 

Fusion of vesicles with their target membranes requires SNARE proteins. These proteins are 

localized in the transport vesicle (v-SNARE) as well as on the target membrane (t-SNARE) 

(112). Direct interactions between t-SNARE and v-SNARE proteins, in combination with 

accessory proteins, determine trafficking specificity required for membrane fusion (113).  
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Figure 1.2 The exocyst in GLUT4 exocytosis.  
Insulin stimulates exocyst assembly by activation of TC10 on the plasma membrane. The 
exocyst is also recognized by GLUT4 vesicles by activation of RalA in response to insulin. RalA 
engages with the exocyst by interacting with its effectors Sec5 and Exo84 and facilitates GLUT4 
translocation to the plasma membrane.    
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Syntaxin 4 and SNAP23, which are t-SNAREs on the plasma membrane, have been implicated 

in insulin-stimulated GLUT4 vesicle trafficking in adipocytes. Synaptobrevin 2 (also known as 

VAMP2) and cellubrevin (also known as VAMP3) are two potential GLUT4 vesicle v-SNAREs 

expressed in adipocytes (114-118). Following translocation and docking of GLUT4 vesicles to 

the plasma membrane, these two v-SNAREs can form stable complexes with Syntaxin 4. 

 

While the SNARE proteins comprise the minimal machinery necessary for membrane fusion, 

additional SNARE-associated proteins regulate fusion events (13). Synip interacts with Syntaxin 

4 in the absence of insulin and prevents VAMP2 from pairing with Syntaxin 4. Insulin 

stimulation decreases the interaction between Synip and Syntaxin 4, thus permitting SNARE 

complex formation and GLUT4 fusion (119). Although insulin stimulation results in 

phosphorylation of Synip at Ser99 by the insulin-stimulated protein kinase Akt2, the importance 

of this phosphorylation event in regulating Synip binding to Sytaxin-4 is controversial (120-122). 

Moreover, several groups have shown that overexpression of Munc18c inhibits GLUT4 vesicle 

translocation, by binding to Syntaxin 4 with high affinity and blocking its ability to interact with 

VAMP2 (123-125). However, the role of Munc18c in regulating GLUT4 vesicle fusion is 

complicated and not completely understood. While initial experiments suggested that Munc18c 

dissociates from syntaxin-4 in response to insulin, follow-up reports have instead suggested that 

the interaction site between Munc18 and syntaxin-4 changes upon insulin stimulation, allowing 

SNARE complex formation and vesicle fusion (124, 126).   
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II. Insulin signaling pathways in GLUT4 translocation 

Insulin regulates energy metabolism by exerting a variety of effects on cells. It controls cell 

growth and survival as well as synthesis and storage of proteins, carbohydrates, and lipids. 

Following a meal, increased nutrients in the blood lead to secretion of insulin to maintain glucose 

homeostasis. In muscle and adipose tissues, insulin activates signaling cascades that stimulate 

glucose uptake by engaging the trafficking machineries that regulate GLUT translocation to the 

plasma membrane (1, 3, 10).  

 

Insulin receptor  

 

Insulin signaling is initiated when insulin binds to its cell surface receptor, which belongs to a 

subfamily of receptor tyrosine kinases (127, 128). The insulin receptor (IR) is heterotetrameric 

protein complex, consisting of two extacellular α subunits and two transmembrane β subunits 

with tyrosine kinase activity (13, 129). Upon binding of insulin to the α subunits, the IR 

undergoes a conformational change that brings each β subunit in close proximity to allow for 

transphosphorylation on specific tyrosine residues in the kinase domain (130-132). This results 

in the increased catalytic activity of the kinase, and increased autophosphorylation at multiple 

tyrosine residues in the juxtamembrane regions and intracellular tail (133). Once activated, the 

IR recruits and phosphorylates a number of intracellular substrates, such as insulin receptor 

substrate family (IRS1 – 4), Shc, Grb1, and APS (134-139). The phosphorylated tyrosine 

residues in these substrates serve as docking sites for proteins that contain the Src homology 2 

(SH2) domain that specifically recognize different phosphotyrosine motifs (139-141). 
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To examine the role of the IR in energy homeostasis, several genetic ablation studies were 

carried out in mice (142). Whole-body IR knockout mice are born with normal features, but 

develop early postnatal diabetes and die of ketoacidosis before reaching adulthood (143, 144). 

Mice lacking IR in specific cell types as a result of conditional mutagenesis further provided 

specific roles in insulin signaling. Conditional IR knockout in skeletal muscle (MIRKO) leads to 

impaired insulin signaling and decreased insulin-stimulated glucose transport, without systemic 

insulin resistance (145). Mice with combined ablation of IR in muscle and adipose tissue show 

impaired glucose tolerance and develop a more severe metabolic phenotype than MIRKO mice, 

suggesting that adipose tissue provides partial metabolic compensation for muscle insulin 

resistance in MIRKO mice (146). Mice with a specific knockout of the IR in both white and 

brown fat (FIRKO) are protected against obesity, and have normal glucose tolerance (147). 

Liver-specific IR knockout (LIRKO) mice exhibit dramatic insulin resistance, severe glucose 

intolerance, and a failure of insulin to suppress hepatic glucose production and to regulate 

hepatic gene expression (148). Mice lacking IR in beta cells (βIRKO) result in a selective 

impairment of glucose-dependent insulin release, and thus impaired glucose tolerance (149). 

Brown adipose tissue-specific IR knockout (BATIRKO) mice result in beta cell failure, giving 

rise to hyperglycemia (150). Neuron-specific IR knockout (NIRKO) mice result in increased 

food intake and moderate diet-dependent obesity (151). These data indicate that the insulin 

receptor plays a variety of roles in different tissues.  

 

Phosphoinositide 3-kinase (PI3K)-dependent signaling 
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Among the IR substrates, the best characterized is the IRS family (139). These proteins contain a 

pleckstrin homology (PH) domain and phosphotyrosine binding (PTB) domain at the N-terminus. 

The PTB domain binds to the NPXY motif on the IR, and PH domain mediates the interaction of 

protein with phosphatidylinositol lipids in the plasma membrane. Tyrosine-phosphorylated IRS 

serves as docking sites for the SH2 domain of the p85 regulatory subunit of class I PI3K, and 

directly activates the p110 catalytic subunits of PI3K leading to the activation of the enzyme 

(152). Active PI3K subsequently generates phosphatidylinositol-3,4,5-trisphosphate 

(PtdIns(3,4,5)P3; PIP3) from PtdIns(4,5)P2 at the plasma membrane. This conversion is reversed 

by the tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome 

ten), which is a phospholipid phosphatase that antagonizes the action of PI3K by 

dephosphorylating PIP3 (153, 154). PIP3 in turn binds to several PH domain-containing Ser/Thr 

kinases, including phosphoinositide-dependent kinase 1 (PDK1) and AKT (also known as PKB) 

(155, 156).  

 

Pharmacological inhibitors, small interfering RNA (siRNA)-mediated knockdown, and animal 

models have established the essential role of PI3K in glucose uptake and energy homeostasis. 

Treatment of cells with the PI3K inhibitors wortmannin or LY294002, or transfection with 

dominant-negative PI3K blocks insulin-stimulated glucose uptake, whereas overexpression of 

constitutively active PI3K stimulates GLUT4 translocation (157-161). In mouse models, deletion 

of the catalytic subunit of PI3K results in glucose intolerance, and deletion of PTEN in adipose 

tissue increases insulin sensitivity (162, 163).  
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Akt is a kinase belonging to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and 

shares a common domain structure with other members of this family of kinases. Akt contains a 

PH domain at its N-terminus that binds to PIP3, followed by a catalytic domain, and a regulatory 

hydrophobic motif at its C terminus. Translocation of Akt to the plasma membrane is mediated 

through the interaction between its PH domain and PIP3, which is the rate-limiting step in Akt 

activation (164). PDK1 phosphorylates Akt on Thr308 in the catalytic domain, but full activation 

of Akt also requires phosphorylation of Ser473 in the hydrophobic motif at the C-terminus by the 

Rictor/mTOR/Sin1 protein complex, called mTORC2 (165-170). Once activated, Akt 

phosphorylates multiple target proteins at a consensus RXRXXS/T motif (171, 172). 

 

Akt is a critical regulator of insulin-stimulated glucose transport. Mammals have three highly 

homologous isoforms of Akt (Akt 1 – 3). Overexpression of a constitutively active myristoylated 

Akt mutant increases insulin-stimulated glucose uptake and GLUT4 translocation (173, 174). In 

contrast, overexpression of a dominant-negative mutant of Akt, siRNA-mediated knockdown of 

Akt isoforms, or inhibitors of Akt block insulin-stimulated Glut4 translocation (175-178). 

Targeted deletion of Akt1 in mice suggests that Akt1 is required for growth but is dispensable for 

maintenance of glucose homeostasis (179). In contrast, mice lacking Akt2 develop insulin 

resistance and diabetes (180, 181). Akt3 knockout mice display normal glucose metabolism but 

Akt2 and Akt3 double knockout mice display a phenotype similar to Akt2, indicating that Akt3 

is likely not a significant player in regulating glucose homeostasis (182, 183). 

 

Akt serves as a central hub to regulate insulin-stimulated glucose uptake by connecting insulin 

signaling with downstream regulators of GLUT4 trafficking (10). Interestingly, Akt seems to 
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play a role in multiple steps during GLUT4 trafficking. Using antibodies that recognize 

phosphorylation of proteins at Akt consensus sites (RXRXXpS/pT; termed the phospho-Akt 

substrate antibody) has been a useful tool for the identification of novel Akt substrates, some of 

which play a critical role in regulating GLUT4 vesicle trafficking. The most well known targets 

of AKT are the Rab GTPase activating proteins (GAP) AS160 (also known as TBC1D4, which 

targets RAB8, RAB10 and RAB14) and the Ral-GAP complex (RGC, which is comprised of a 

regulatory subunit (RGC1) and a catalytic subunit (RGC2) and targets RalA). Akt directly 

phosphorylates AS160, containing six consensus Akt phosphorylation sites (184-187). AS160 

undergoes phosphorylation in response to insulin and this phosphorylation inhibits its GAP 

activity, and thus results in increased activity of their cognate G proteins (184, 188). However, 

the identity of these Rabs and their role in GLUT4 trafficking remain unclear. Similarly, AS250 

(Akt substrate of 250 kDa), now known as RGC2, is identified by virtue of its interaction with a 

phospho-Akt substrate antibody (189, 190). Insulin inhibits the RGC1/2 through Akt2-catalyzed 

phosphorylation of RGC2 on at least three different residues allowing RalA activation (189). 

This phosphorylation of RGC2 also mediates the interaction with 14-3-3 proteins, and this 

interaction inhibits RGC function in cells (191). Although the precise regulation of RGC1/2 and 

the role of RalA in GLUT4 trafficking remain unclear, RGC1/2 links PI3K/Akt signaling to 

RalA activation in response to insulin and RalA is required for insulin-stimulated glucose uptake. 

Akt is also known to regulate the fusion process of GLUT4 vesicles by directly targeting 

SNARE regulatory proteins, such as Synip and CDP138, a previously uncharacterized protein 

containing a Ca2+-binding C2 domain (119, 122, 192). Insulin-mediated regulation of Synip 

occurrs through Akt-catalyzed phosphorylation at Ser99, but the importance of this 

phosphorylation in GLUT4 trafficking is controversial. Overexpression of a phosphorylation-
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deficient S197A mutant or a Ca2+- and lipid binding-deficient mutant of CDP138 blocked 

GLUT4 vesicle fusion but had no effect on vesicle accumulation at the plasma membrane, 

suggesting that CDP138 positively regulates GLUT4 insertion into the plasma membrane. 

Whether Akt regulates other steps in GLUT4 trafficking remains unknown, and the search for 

additional Akt targets will probably give further insight into the specific steps of GLUT4 

trafficking that are regulated by this kinase.  

 

PI3K-independent signaling 

 

Several studies suggest that signals independent of the PI3K pathway also regulate insulin-

stimulated glucose uptake (193-195). The discovery of a pool of IR in caveolae suggests that a 

separate insulin signaling pathway exists within this microdomain of the plasma membrane (196, 

197). Caveolae are a subset of lipid rafts that are microdomains of the plasma membrane, 

enriched in cholesterol, sphingolipids, glycolipids, and lipid-modified signaling proteins (198). 

Inhibition of the PI3K pathway with pharmacological inhibitors does not affect signaling from 

lipid rafts. Furthermore, interruption of caveolae in mature adipocytes leads to defects in insulin 

receptor localization, insulin signaling, and glucose uptake, establishing that the caveolae-

localized insulin receptor is active and initiates a second signaling cascade that regulates GLUT4 

trafficking independently of PI3K (197). Mutants of the IR have been identified in which the 

stimulation of PI3K activity is intact, but which are defective in promoting GLUT4 translocation 

(199). Incubating cells with a cell-permeable analog of PIP3 does not stimulate glucose uptake in 

the absence of insulin (194). Consistent with this, overexpression of constitutively active PI3K 

mutants do not fully mimic insulin-stimulated GLUT4 translocation to the plasma membrane 
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(159). These studies indicate that the PI3K pathway is required for insulin-stimulated GLUT4 

translocation but additional parallel signaling pathways exist. 

 

The PI3K independent signaling pathway is initiated in adipocytes when activation of the IR 

promotes tyrosine phosphorylation of APS, an adaptor protein containing PH and SH2 domains. 

APS exists as a homodimer, and is recruited to the IR upon its activation and 

autophosphorylation (200, 201). Phosphorylated APS recruits a complex that comprises the 

proto-oncogene c-Cbl and CAP (c-Cbl-associated protein). The SH2 domain in c-Cbl binds to 

the pY618 residue on APS, while an SH3 domain within CAP interacts with proline-rich 

sequences in APS (202-204). CAP also interacts with an integral membrane protein that localizes 

to caveolae called flotillin through its N-terminal SoHo (Sorbin Homology) domain (205, 206). 

This recruitment triggers IR-catalyzed Tyr phosphorylation of c-Cbl (204). Phosphorylated c-Cbl 

then interacts with the adaptor protein CRK, which constitutively associates with the guanine 

nucleotide exchang factor (GEF) C3G (135, 207-209). Recruited C3G in turn catalyzes the 

activation of the small G protein TC10, a member of the Rho family of small GTPases that is 

localized in lipid rafts (109, 210). Active TC10 interacts with effector proteins that regulates 

GLUT4 vesicle exocytosis. For example, the exocyst subunit Exo70 is one of the effector 

proteins of TC10. Exo70 is required for targeting of GLUT4 vesicle to the plasma membrane, 

and targeting of Exo70 to lipid rafts is required for glucose uptake and GLUT4 docking at the 

plasma membrane in response to insulin (67). In skeletal muscle, the PI3K-dependent signaling 

pathway is absolutely required for GLUT4 exocytosis but the necessity of the PI3K-independent 

pathway is unknown (10). Disrupting individual components of the PI3K-dependent or the PI3K-

independent signaling pathways in adipocytes, either with pharmacological inhibitors or by 
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siRNA-mediated knockdown, inhibits GLUT4 exocytosis and glucose uptake (158, 160, 203, 

211-213). These studies suggest that these pathways coordinate each other to regulate insulin-

stimulated glucose uptake (Figure 1.3).  
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Figure 1.3 Insulin signaling regulates GLUT4 trafficking.  
Insulin causes GLUT4 translocation to the plasma membrane through two distinct major 
pathways. In the PI3K-dependent pathway, insulin increases the tyrosine phosphorylation of IRS 
proteins, promoting the association and activation of PI3K. PIP3 is the major phosphoinositide 
generated by PI3K. It recruits and activates PDK1, which phosphorylates and activates Akt. 
Phosphorylation of AS160 and RGC1/2 by Akt allows GLUT4 trafficking to proceed. 
Phosphorylation of Synip and CDP138 allows GLUT4 vesicles to fuse with the plasma 
membrane. In the adipose cell-specific PI3K-independent pathway, the insulin receptor 
phosphorylates Cbl, a process that requires APS and CAP. Cbl then recruits a complex 
containing the adapter protein CrkII and the guanyl nucleotide exchange factor C3G, which in 
turn activates the lipid raft-associated protein TC10. Both of these signaling cascades are 
required for insulin-stimulated GLUT4 translocation in adipocytes. 
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III. Small G proteins in insulin-stimulated glucose uptake 

The small G protein superfamily consists of more than 100 small molecular weight (20 - 25 kDa) 

proteins that bind to guanosine nucleotides. The members of this superfamily are structurally 

classified into at least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families. They regulate 

a wide variety of cell functions spatially and temporally. The Ras family regulates gene 

expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab 

and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates 

nucleocytoplasmic transport and microtubule organization (214). Insulin tightly regulates the 

activity of G proteins at distinct locations (215). G proteins integrate signals from upstream 

proteins to engage GLUT4 trafficking machineries in response to insulin.  

 

Regulation of G proteins 

 

All small G proteins have consensus amino acid sequences responsible for specific interactions 

with GDP, GTP, and for GTPase activity, which hydrolyzes bound GTP to GDP and inorganic 

phosphate (Pi) (216-218). They also have a region for interacting with downstream effectors. 

These proteins behave as “molecular switches”, and their activity changes depending on the 

nucleotide binding state, allowing these proteins to turn biological processes on or off. G proteins 

contain two enzymatic activities: a hydrolysis activity that converts GTP to GDP, and an 

exchange activity that allows the protein to release GDP and bind to GTP (216, 217). In the 

GTP-bound form (active state), G proteins bind to downstream proteins, called effectors, which 

mediate the biological effects of upstream signaling events. Some G proteins share overlapping 

effectors, while other effectors have high affinity binding for only one G protein. In the GDP-
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bound form (inactive state), the G protein does not interact with effector proteins, and thus halts 

the transmission of upstream signals. In addition, small G proteins belonging to Ras, 

Rho/Rac/Cdc42, and Rab family proteins have sequences at their C termini that undergo post-

translational modification with lipid, such as farnesyl, geranylgeranyl, palmitoyl, and methyl 

moieties, and proteolysis (217, 219-222). Therefore, the activity state and differential subcellular 

localization of G proteins provide spatial and temporal regulation of signaling events. 

 

The transition between the active and inactive state is controlled by at least three families of 

regulatory proteins. The slow intrinsic GTPase activity of G proteins is accelerated by GTPase 

activating proteins (GAPs), which promote GTP hydrolysis. Guanine nucleotide exchange 

factors (GEFs) stimulate the exchange of GDP for GTP to generate the active form. In addition, 

guanine nucleotide dissociation inhibitors (GDIs) prevent dissociation of GDP, thereby 

maintaining G proteins in an inactive state (223) (Figure 1.4). GEFs or GAPs are tightly 

regulated by changing their subcellular localization or conformation. These can be mediated 

through signaling by upstream regulators, phosphorylation, and interaction with either proteins 

or lipids (224, 225).   
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Figure 1.4 The regulation of G protein cycle by GEFs, GAPs, and GDIs.  
G proteins cycle slowly between an inactive (GDP-bound) and an active (GTP-bound) 
conformation. To ensure signaling specificity, G proteins are controlled by their regulators. 
GEFs bind with highest affinity to GDP-bound G proteins and promote exchange of GDP for 
GTP. GAPs bind with highest affinity to GTP-bound G proteins and promote GTP hydrolysis. 
GAPs and GEFs are highly regulated by upstream signals. In some cases, GDIs prevent 
dissociation of GDP, thereby maintaining G proteins in inactive state. When G proteins are 
bound to GTP, effectors are recruited to mediate the downstream effects of the GTPases.  
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Small G proteins in insulin-stimulated glucose uptake 

 

G proteins of the Ras, Rho, Rab, and Arf subfamilies have all been implicated in the regulation 

of GLUT4 translocation in multiple steps including GLUT4 compartmentalization, cytoskeletal 

rearrangements, tethering, and docking (Figure 1.5). 

 

Ras subfamily 

 

Ras is activated downstream of the IR and initiates a signaling pathway that leads to 

phosphorylation and activation of mitogen-activating protein kinase (MAPK) by the upstream 

MAPK kinase (MEK). The role of MAPK in insulin-stimulated glucose uptake is still 

controversial (226-230). Activation of the Ras/MAPK pathway by stimulation with PDGF or 

EGF, or inhibition of the pathway by treatment with the MEK inhibitor PD98059 had no effect 

on insulin-stimulated glucose uptake in 3T3-L1 adipocytes (195, 226, 228). However, treatment 

with the MEK inhibitor U-0126 or the MAPK inhibitor SB203580 blocked insulin-stimulated 

glucose uptake, without affecting translocation of GLUT4 in 3T3-L1 adipocytes (231, 232). 

Transgenic mice overexpressing Ras in adipose tissue also increase basal and insulin-stimulated 

glucose uptake by upregulating GLUT1 expression rather than affecting GLUT4 translocation 

(227, 230). 
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Figure 1.5 Small G proteins in GLUT4 trafficking.  
GLUT4 is internalized dependent upon Rab5 activity. GLUT4 is sorted from early/sorting 
endosomes into recycling endosomes or TGN. Arf6 may be involved in biogenesis of IRVs. 
Rab31 retains GLUT4 at the intracellular compartments by promoting a futile cycle between 
IRVs and endosomal compartments in the basal state. RalA is co-localized in GLUT4-containing 
vesicles and facilitates GLUT4 translocation by tethering GLUT4 vesicles at the plasma 
membrane. TC10 targets GLUT4 vesicles to sites of exocytosis on the plasma membrane.    
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Two highly related Ral GTPases, RalA and RalB are members of the Ras superfamily (233). 

Although they are 85% identical and share similar structure and effectors, they do not completely 

functionally overlap in cells. While both RalA and RalB can interact with subunits of the exocyst, 

the affinity for RalB is lower than RalA, and RalA may play a bigger role in exocyst function in 

certain physiological settings, such as basolateral membrane trafficking in epithelial cells (65). 

The exocyst subunits Exo84 and Sec5 bind competitively to active RalA and RalB (87, 106, 107). 

As discussed previously, RalA associates with the GLUT4 vesicle through engaging the exocyst 

and the myosin motor Myo1c to transport and tether GLUT4 vesicles to the plasma membrane 

(111). Interaction between RalA and the exocyst is required for insulin-stimulated GLUT4 

translocation (234). 

 

Rho subfamily 

 

Mammalian Rho GTPases comprise a family of 20 intracellular signaling molecules containing 

classically activated Rho GTPases and atypical proteins, which are not thought to be regulated 

by GEF/GAPs but regulated by gene expression, protein stability, and phosphorylation. Most 

Rho GTPases regulate a variety of processes, including morphogenesis, migration, neuronal 

development, cell division/adhesion, vesicle transport, microtubule dynamics, cell cycle 

progression, and gene expression (235). Cytoskeletal rearrangement plays an important role in 

GLUT4 vesicle trafficking (13). However, the role of Rho, Rac, and Cdc42 in insulin-stimulated 

glucose transport remains controversial. Overexpression of Rho and Rac had no effect on 

GLUT4 exocytosis, but others also showed that Rho and Rac are positive regulators in GLUT4 

translocation (109, 236-239). Furthermore, insulin activates Rac in a PI3K dependent manner 
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(240). Similarly, Cdc42 had no effect on GLUT4 translocation and glucose uptake, but others 

showed that insulin activates Cdc42 and depletion of Cdc42 decreases insulin-stimulated GLUT4 

translocation (109, 241). The reasons for these discrepancies are not clear. 

 

TC10α and TC10β are mammalian G proteins closely related to Cdc42. However, they play 

distinct roles in cells probably depending on their subcellular localization (242-245). Several 

studies suggest that TC10 plays an important role in insulin-stimulated glucose transport. TC10 

is highly expressed in insulin-responsive tissues such as muscle and fat, and is rapidly activated 

in response to insulin (109, 210). Knockdown of TC10α blocks insulin-stimulated GLUT4 

translocation and glucose uptake (213). Overexpression of dominant-negative TC10α, but not 

TC10β, also blocks insulin-stimulated GLUT4 exocytosis, suggesting TC10α primarily 

functions in adipocytes to regulate glucose uptake (210).  

 

The TC10 effectors CIP4, Par6 of the Par3/6 complex, and Exo70 have all been implicated in 

GLUT4 exocytosis (67, 246, 247). In an effort to identify downstream targets of TC10, the 

adaptor protein CIP4 (Cdc42-interacting protein 4) was identified as a TC10 effector in a yeast 

two-hybrid screen. Upon TC10 activation in response to insulin, CIP4 is recruited to the plasma 

membrane, where it binds to active TC10. Overexpression of a CIP4 mutant that cannot 

translocate to the plasma membrane or interact with TC10 results in inhibition of GLUT4 

translocation (246). CIP4 forms a stable complex with Gapex-5 through an interaction between 

CIP4’s SH3 domain and a proline-rich sequence within Gapex-5. Gapex-5 contains a RasGAP 

domain at its N-terminus and a VPS9 domain at its C-terminus that has exchange activity toward 

Rab5 family members. In the basal state, CIP4 is constitutively associated with Gapex-5, which 
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activates the Rab5 family G protein Rab31 (248, 249). Rab31 promotes the IRVs recycling back 

into the recycling endosome that results in GLUT4 retention in intracellular compartments (248). 

Translocation of CIP4 and Gapex-5 to the plasma membrane in response to insulin leads to the 

reduction of Rab31 activity, allowing exit of GLUT4 vesicles from the futile cycle, and traffic to 

the plasma membrane (248). Once recruited to the plasma membrane, Gapex-5 activates Rab5, 

which increases PIP3 formation at the plasma membrane, a phosphoinositide species that 

facilitates targeting of GLUT4 through a mechanism that may involve APPL1 (adaptor protein, 

phosphotyrosine interaction, PH domain and leucine zipper containing 1) (249-251).  

 

Atypical PKCs (PKC ζ/λ) belong to the AGC subfamily of kinases that can be phosphorylated 

by PDK1 in response to insulin. Atypical PKCs have been shown to play an important role in 

glucose transport (247, 252-255). Par3 and Par6 are scaffolding proteins that link PKC ζ/λ with 

the Rho family GTPases Cdc42 and Rac (256). Upon TC10 activation in response to insulin, 

active TC10 interacts with Par6 leading to the localization to the plasma membrane. Owing to 

the close proximity to PDK1, PDK1 phosphorylates and activates PKC ζ/λ. Therefore, Par6 

seems to be a convergent downstream target to regulate GLUT4 exocytosis between the PI3K-

dependent and PI3K-independent pathways in response to insulin (247). 

 

Another protein identified in a yeast two-hybrid screen using TC10 as bait is Exo70, a subunit of 

the exocyst (67, 96). Active TC10 recruits Exo70 to the plasma membrane by direct interaction 

and other exocyst subunits Sec6 and Sec8 undergo similar translocation. Knockdown of exocyst 

subunits or overexpression of dominant interfering mutant of Exo70, which blocks the 
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interaction with active TC10 inhibits GLUT4 fusion, indicating that assembly of the exocyst is a 

critical step in insulin-stimulated GLUT4 translocation (67, 110).  

 

 Rab subfamily 

  

Rab proteins constitute the largest family of small G proteins. Numerous studies have shown that 

Rab GTPases are critical for tethering/docking of vesicles to their target compartments, budding 

of vesicles, and movement of vesicles along the cytoskeleton (257). A number of different Rab 

proteins, including Rab4, 5, 8, 10, 11, 14 and 31 have been implicated in GLUT4 trafficking. 

These GTPases are localized to distinct subcellular compartments and influence various steps of 

GLUT4 vesicle trafficking including endocytosis, exocytosis, and intracellular retention of 

GLUT4.  

 

Rab4 localizes to the early and recycling endosomes and regulates sorting from this compartment 

(258-260). Rab 4 has also been detected in IRVs (261). Overexpression of the Rab4 dominant 

negative mutant blocks insulin-stimulated GLUT4 translocation (262). The Rab4 and Rab5 

effector Rabip4 may be involved in endosome sorting of GLUT4 into IRVs and overexpression 

of Rabip4 increases insulin-stimulated GLUT4 translocation (263). However, the exact 

molecular mechanism by which Rabip4 regulates GLUT translocation is unclear. Rab4 is also 

activated downstream of PI3K/PKCλ, and upon activation interacts with the motor protein KIF3 

to mediate microtubule movement of IRVs to the plasma membrane (264). 
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Rab5 has been implicated in GLUT4 endocytosis and exocytosis. Rab5 may regulate endocytosis 

of the vesicle due to its interaction with dynein, a motor protein that is involved in clathrin-

dependent internalization of Glut4 (265). In contrast, binding of Rab5 to its effector APPL1 

positively regulates GLUT4 exocytosis (250, 251). 

 

Rab11 regulates the traffic of recycling endosomes to the TGN as well as recycling endosomes 

back to the plasma membrane (266, 267). Rab11 is associated with GLUT4 vesicles, and these 

pools are translocated to the plasma membrane in response to insulin (268). Overexpression of a 

dominant interfering fragment of a Rab11 effector Rab11-BP blocks GLUT4 sorting into the 

IRVs (37). Similarly, overexpression of dominant negative Rab11 in muscle cells blocks insulin-

stimulated GLUT4 translocation and glucose uptake (269). 

 

Rab8, 10, and 14 were identified as AS160 targets (270). Overexpression of wild type or 

constitutively active Rab10 in 3T3-L1 adipocytes increases basal GLUT4 exocytosis without 

effecting insulin-stimulated GLUT4 exocytosis, whereas knockdown of Rab10 decreased 

insulin-stimulated GLUT4 translocation without effect on basal GLUT4 translocation (271, 272). 

However, overexpression of wild type Rab8 or Rab14 in the presence of phosphorylation-

deficient AS160 (4P-AS160) partially overcomes the inhibitory effect of 4P-AS160 on basal and 

insulin-stimulated GLUT4 exocytosis (273). Rab10 is a bona fide target of AS160 and active 

Rab10 can increase the GTP binding of RalA by recruiting the Ral GEF Rlf/Rgl2 (274). 

However, insulin-stimulated activation of Rabs 8, 10, 14 has not been shown, and the trafficking 

machineries regulated by these Rabs are still unknown. 
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ADP-ribosylation factors (Arfs) 

 

The ARF subfamily of small G proteins recruits coat proteins from the cytosol to membrane 

compartments to mediate protein sorting, membrane deformation, and vesicle budding. In the 

inactive state, ARFs are localized in the cytosol. Upon activation, these proteins recruit coat 

proteins to the site of vesicle bud formation in the membrane compartment (275, 276). In 

adipocytes, Arf proteins are thought to be involved in the formation of IRVs from the TGN 

and/or recycling endosomes. Recent studies have suggested that Arf6 forms a vesicle coat in 

coordination with clathrin, AP-1, GGAs (Golgi-localized, γ-ear-containing, Arf-binding proteins), 

and ACAP-1 to package IRV proteins into vesicles budding from the TGN/endosome. 

Expression of dominant negative GGA2 in 3T3-L1 adipocytes decreases insulin-stimulated 

glucose uptake, reduces the amount of GLUT4 in small vesicles, and increases the amount of 

GLUT4 in the TGN/recycling endosome, suggesting a defect in generation of IRV pools (277, 

278). GGAs likely mediate IRV formation by interacting with the cytoplasmic domain of 

sortillin, which recent evidence suggests is in a complex with GLUT4 and other IRV 

components, and concentrates these proteins into vesicles forming on the TGN/recycling 

endosome (277, 279). There is also evidence that Arf interacts with the clathrin adaptor protein 

AP-1 on the TGN/recycling endosome and participates in IRV biogenesis, perhaps in 

coordination with GGAs (280-282). The ArfGAP ACAP-1 interacts with both clathrin heavy 

chain (CHC) and GLUT4 during vesicle formation on the TGN/recycling endosome and ACAP-

1 and CHC is required for insulin-stimulated GLUT4 translocation (283).  
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IV. Roles of IKK-related kinases 

The IκB kinase (IKK) family of protein is composed of four members: IKKα, IKKβ, IKKε, and 

TBK1 (Tank binding kinase 1) (284). IKKα, IKKβ and IKKγ form the classical IKK complex in 

response to diverse extracellular stimuli, including bacterial/viral infection, pro-inflammatory 

cytokines, and DNA damaging agents, such as phorbol esters and ultraviolet irradiation (285, 

286). IKK-related kinases (IKKε and TBK1) were identified via sequence similarity to IKKα and 

IKKβ (287-290). Like IKKα and IKKβ, IKKε and TBK1 have a kinase domain in N-terminal, 

LZ (leucine zipper) and a potential HLH (helix-loop-helix) motif in C-terminal (Figure 1.6). 

Except IKKα, IKKβ, IKKε, and TBK1 also contain ubiquitin-like domain (ULD) whose 

function is not clear (291). IKKε and TBK1 are not components of the classical IKK complex. 

Instead, they bind to their scaffolding protein TANK to form the noncanonical IKK-related 

kinase complex. In addition, IKKε and TBK1 are activated by various stimuli such as PMA, LPS, 

and PDGF (platelet-derived growth factor) (284).  

 

In the classical IKK complex, IKKα and IKKβ are catalytic subunits and IKKγ is a regulatory 

subunit of the complex (292-294). The formation of classical IKK complex is important to 

phosphorylate IκBs, which are inhibitory proteins of NFκB transcription factors (295, 296). 

Upon phosphorylation of IκBs in N terminus, IκB proteins are polyubiquitinated and then 

degraded by the 26S proteasome (297). Therefore, phosphorylation of IκBs by IKK complex 

liberates NFκBs to enter the nucleus, where it promotes transcription of target genes encoding 

cytokines, chemokines, and regulators of apoptosis (286, 298, 299). NFκB transcription factors 

form a heterodimer composed of members of the NFκB/Rel family. There are five NFκB  
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Figure 1.6 Structural comparison of the classical and noncanonical IKKs.  
Each IKK kinase is composed of the major domains as shown with amino-acid numbers that 
correspond to the human proteins. IKK kinases contain kinase domain, leucine zipper (LZ), and 
helix-loop-helix (HLH). The kinase domain of IKKε exhibits 29% and 27% identity to IKKα 
and IKKβ respectively, and TBK1 shares 49% identity to IKKε. The classical IKKs have 
NEMO-binding domain to form the classical complex. IKKβ, IKKε, and TBK1 have ubiquitin-
like domain (ULD), whose function remains unclear. Adapted from (291, 300).     
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Subunits: NFκB1 (also called p50 and its precursor p105), NFκB2 (also called p52 and its 

precursor p100), c-Rel, RelA (p65), and RelB (286). The canonical pathway activates NFκB 

heterodimeric transcription factors composed of RelA or c-Rel, and p50. It is activated mainly 

through the catalytic activity of IKKβ, usually for the immediate response (301, 302). The non-

canonical pathway, however, activates a different NFκB heterodimer (RelB and p52) through 

activation of IKK-related kinases or the catalytic activity of IKKα. The response of the 

alternative pathway is slower and encodes different gene sets mediating different functions (285). 

 

Numerous studies have suggested a role for IKKε and TBK1 in the innate immune response, cell 

proliferation and oncogenesis (303). The differential expression of IKKε and TBK1 may reflect 

their distinct roles. IKKε expression is inducible in certain types of cells after inflammatory 

stimuli, and also induced by high fat feeding of mice, where it plays a key role in the 

development of insulin resistance, obesity, and hepatosteatosis (287, 288, 304). IKKε is 

predominantly expressed in specific tissues such as the pancreas, thymus, spleen, fat, liver and 

peripheral blood leukocytes (287, 288). In contrast, TBK1 is ubiquitously and constitutively 

expressed (305). These IKK-related kinases may enhance NFκB transcriptional activity through 

phosphorylation of p65 (RelA), a subunit of NFκB (306). Toll-like receptor (TLR) activation 

causes IKKε/TBK1 to activate NFκB (307). However, NFκB is not activated in mouse 

embryonic fibroblasts from IKKα and IKKβ double knockout mice, whereas it is activated in 

MEFS with double knock out of IKKe/TBK1, suggesting that IKKε/TBK1 are not strictly 

required for the activation of NFκB pathway, although it may signal through NFκB pathway in 

certain inflammatory stimuli by phosphorylating p65 (RelA) (308). Therefore, the role of 

IKKε/TBK1 in NFκB pathway remains incomplete. However, both IKKε and TBK1 contain 
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NFκB regulatory sites in their promoter regions, allowing them to be induced upon NFκB 

activation (309). Therefore, they are more likely downstream mediators of NFκB. Recent studies 

also have shown that there is a cross-talk between canonical IKK and IKK-related kinase 

signaling pathways. Both TLR3 and TLR4 activate the canonical IKK pathway, which 

subsequently phosphorylates Ser172 of IKK-related kinases in the activation loop. IKK-related 

kinases then negatively regulate the canonical IKK complex to dampen NFκB signaling as a 

feedback mechanism (310).  

  

IKKε and TBK1 are thought to mainly regulate transcription through the phosphorylation of the 

transcription factors, interferon regulatory factor 3 (IRF3), IRF7, or STAT1, which are critical 

for the expression of interferon (IFN)-stimulated genes (311-317). Although both IKKε and 

TBK1 have been shown to be activated downstream of PI3 kinase, and activate Akt in some 

cases in different cell types (318-320), their potential roles beyond inflammatory signaling 

pathways remain poorly defined. 

 

The activity of the canonical IKK kinases is regulated by the phosphorylation at Ser176/180 or 

Ser177/181 in the activation loop of IKKα and IKKβ, respectively (292, 293, 321). TAK1 

phosphorylates Ser177/181 of IKKβ causing a conformational change leading to IKKβ activation 

(322). Substitution of Ser177/181 to alanine dramatically reduces IKKβ activity, while 

substitution to phosphomimetic glutamate generates a constitutively active kinase (321, 323). 

Therefore, phosphorylation of the activation loop is strongly indicative of IKK family member 

activity. In contrast, the regulation of the activity of the noncanonical IKK kinases remains 

poorly understood. Phosphorylation of Ser172 on TBK1 and IKKε has been associated with 
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increased activity, and this residue is required for activity. However, substitution of Ser172 to 

either alanine or glutamate results in decreased kinase activity (324). In addition, when TBK1 

and IKKε were inhibited by their inhibitors, the phosphorylation of TBK1 and IKKε at Ser172 in 

response to their stimuli (LPS, poly (I:C), interleukin-1α, and tumor necrosis factor α) is 

enhanced rather than blocked (323). These evidences demonstrate that the phosphorylation of 

Ser172 and the activation of TBK1 and IKKε are catalyzed by an unknown distinct protein 

kinase(s), and that TBK1 and IKKε control a negative feedback loop that limits their activation 

in response to their stimuli to prevent the hyperactivation of these enzymes (310, 323). 

Furthermore, several adaptor proteins have been identified that regulate TBK1 activity. Adaptor 

proteins NAP1 (NF-κB activating kinase-associated protein-1), Sintbad (similar to 

NAP1 TBK1 adaptor), TANK (TRAF family member-associated NF-κB activator), STING 

(stimulator of interferon genes), DOK3 (downstream of kinase 3) may be required for TBK1 

activation (290, 325-328). Post-translational modifications including SUMOylation and 

ubiquitination of TBK1 and IKKε are also important for its activation (329-331). Therefore, the 

way the activity of TBK1 and IKKε is regulated needs further attention to understand its function.  

 

V. Summary 

 

Although there has been significant progress in the identification of insulin signaling pathways 

leading to the assembly and recognition of the exocyst, the mechanism by which the small 

GTPases dissociate from the tethering complex remain obscure. Glut4 vesicles must engage with, 

and subsequently disengage from the exocyst for efficient docking and fusion with the plasma 

membrane. Normally, the small G proteins disengage from their effectors by activating GAPs, 
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but RalA-exocyst dissociation does not result from RalA inactivation because RGC1/2 proteins 

are reserved for activation of RalA, as it is persistently inhibited by insulin-dependent Akt 

phosphorylation (189). Recent studies suggested that phosphorylation of Sec5 by the protein 

kinase PKC reduces its affinity for RalA. Therefore, Sec5 phosphorylation mimics a cycling 

process of increasing its intrinsic GTPase activity by GAP (234). While little is known about the 

process of disengagement of Rals from the tethering complex that ensures the continuation of 

exocytosis in insulin-stimulated Glut4 translocation, it is likely that phosphorylation of effectors 

plays a crucial role. Interestingly, recent studies showed that the constitutively active form of 

RalB induces the interaction between Sec5 and TBK1 to support cancer cell survival (332). 

Furthermore, subcellular localization of TBK1 was found in Sec5-containing perinuclear vesicles 

(327). Given the important roles of the exocyst and Ral GTPases (described above) in insulin-

stimulated glucose transport, these observations led us to examine the role of TBK1 in the 

regulation of glucose transport in 3T3-L1 adipocytes. In the following chapters I will describe 

the role of TBK1 in GLUT4 trafficking. In Chapter 2, I will discuss the role of TBK1 and its 

involvement in insulin signaling pathway to regulate insulin-stimulated glucose transport. In 

Chapter 3, I will discuss how TBK1 mediates insulin-stimulated glucose transport by directly 

phosphorylating the exocyst subunit Exo84. In Chapter 4 I will discuss how TBK1-mediated 

Exo84 phosphorylation results in disengagement of GLUT4 vesicles from the exocyst and 

disruption of the exocyst to contribute to efficient recycling of vesicles and fusion with the 

plasma membrane. Together, these studies suggest that TBK1 is a novel regulator in insulin-

stimulated glucose transport in 3T3-L1 adipocytes. 
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Chapter 2  
 

Novel function of the protein kinase TBK1 in insulin-stimulated 
glucose transport 

 

Introduction 

 

Insulin maintains glucose homeostasis by stimulating glucose uptake and storage in skeletal 

muscle and adipose tissue and reducing hepatic glucose production. Dysregulation of insulin-

stimulated glucose transport into muscle and fat cells is one of the primary defects underlying 

insulin resistance, which is a hallmark of Type 2 diabetes (1, 2). Insulin stimulates glucose 

uptake in muscle and fat cells via the translocation of the facilitative transporter Glut4 from 

intracellular sites to the plasma membrane. Although there has been significant progress in the 

identification of insulin signaling pathways leading to GLUT4 translocation and glucose uptake, 

the connections between insulin signaling pathways and the trafficking machineries involved in 

GLUT4 vesicle translocation and targeting have not been fully defined (3, 4). Previous studies 

demonstrate that the exocyst complex plays a pivotal role in insulin-stimulated GLUT4 

translocation by facilitating the docking of GLUT4 vesicles to the plasma membrane (5, 6). This 

tethering complex mediates the initial recognition between GLUT4 vesicles and the plasma 

membrane, under the control of integrated signal inputs from different insulin-sensitive small G 

proteins (4, 7-9). While the details of signaling pathways that regulate this process remain 

incomplete, a recent study suggest that the protein kinase TBK1 is found in the exocyst complex, 
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and RalB GTPases-mediated activation of TBK1 couples innate immune signaling to tumor cell 

survival (10). Given the important roles of the exocyst and Ral GTPases in insulin-stimulated 

glucose transport, these observations prompted us to examine the role of TBK1 in the regulation 

of glucose transport in 3T3-L1 adipocytes.   

 

Results and Discussion 

 

TBK1 is required for insulin-stimulated glucose uptake. 

 

While the IκB kinases (IKK), IKKα, IKKβ, IKKε and TBK1, are structurally similar, their 

physiologically relevant substrates and mode of activation appear to differ (11, 12). Recent 

studies suggest that the activation of NFκB by high fat diet induces the expression of the 

noncanonical kinases IKKε and TBK1, and further that these kinases can co-opt insulin targets, 

such as Akt and PDE3B, to counteract inflammation in adipose tissue and promote anabolic 

process in obesity (13-17). Interestingly, a recent study suggests that TBK1 is associated with the 

exocyst subunit Sec5 (10). This prompted us to examine the potential role of this kinase and its 

family members in the regulation of glucose uptake in adipocytes.  

 

We first evaluated the expression of TBK1 and related IKKs during adipogenesis of 3T3-L1 

adipocytes (Figure 2.1). TBK1 protein was expressed at low levels in 3T3-L1 preadipocytes, but 

was induced approximately 2-3 fold after differentiation of these cells into mature adipocytes, 

mirroring the increased expression of the adipogenic markers PPARγ, C/EBPα, and C/EBPδ, but 

appearing prior to GLUT4 and perilipin. Expression of the other IKK family members were less  
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Figure 2.1 Differentiation of 3T3-L1 fibroblasts under different conditions.  
3T3-L1 fibroblasts were induced to undergo differentiation with different combinations of 
dexamethasone (D), insulin (I), and isobutylmethylxanthine (M) in the culture media. Cells were 
lysed at several stages during adipogenesis. Cell lysates were subjected to immunoblot analysis 
and probed using specific antibodies as indicated. Arrows indicate the specific band 
corresponding to the expected molecular weight of the proteins. 
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dependent on differentiation state, and expression of the exocyst subunits, Sec8, Sec5, and 

Exo84 remained unchanged during adipogenesis.  

 

To evaluate the potential role of these kinases in insulin-stimulated glucose uptake, we used 

siRNA oligos to knock down TBK1, IKKε, α, and β in 3T3-L1 adipocytes, followed by 

measurement of [14C]2-deoxyglucose (DG) uptake in response to insulin (Figure 2.2). Insulin 

treatment produced an approximately 7-8 fold increase in the uptake of 2-DG; electroporation 

with scrambled control siRNA was without effect. Greater than 80% knockdown of IKKε, α, and 

β was achieved with specific siRNAs (Figure 2.2A), but there was no discernable effect on 2-

DG uptake in the basal or insulin-stimulated state. The level of TBK1 was not affected by the 

knockdown of other related kinases. However, siRNA-mediated knockdown of TBK1 produced 

an approximately 50% reduction in insulin-stimulated glucose uptake, comparable to what has 

been reported with Akt knockdown (18), without affecting basal transport activity (Figure 2.2B). 

The knockdown of TBK1 appeared to be greater than 90%, and was accompanied by a modest 

decrease in the stimulation of Akt phosphorylation by insulin, while knockdown of other kinases 

was without effect on Akt phosphorylation (Figure 2.2A).  

 

In addition to its role as a protein kinase, TBK1 can form multiple hetero- and homo-dimeric 

complexes with other signaling proteins, and thus can serve as a molecular scaffold in addition to 

its activity as a protein kinase (19-24). To explore the role of the kinase activity of TBK1 in 

insulin-stimulated glucose uptake, we overexpressed both wild type (WT) and a kinase-inactive 

mutant of TBK1 (K38A) in 3T3-L1 adipocytes, followed by measurement of [14C]2-

deoxyglucose (DG) uptake (Figure 2.3).  
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Figure 2.2 SiRNA-mediated knockdown of TBK1 inhibits insulin-stimulated glucose 
uptake.  
(A) SiRNA-mediated knockdown of IKKα, IKKβ, IKKε, and TBK1 in 3T3-L1 adipocytes. 3T3-
L1 adipocytes were electroporated with duplex siRNA against IKKα, IKKβ, IKKε, TBK1 or 
their scrambled control, and stimulated with 10 nM insulin for 30 minutes. Lysates were run on 
SDS-PAGE and immunoblotted with indicated antibodies. (B) SiRNA-mediated knockdown of 
TBK1 inhibits insulin-stimulated glucose uptake. Cells from Figure 2.2A were subjected to 2-
deoxyglucose uptake assay. Data are shown as the mean ± SEM. *p < 0.05; n=3. 
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Figure 2.3 Ectopic overexpression of a kinase-inactive mutant of TBK1 reduces insulin-
stimulated glucose uptake.  
(A) Ectopic overexpression of a kinase-inactive mutant of TBK1 reduces insulin-stimulated 
glucose uptake. 3T3-L1 adipocytes were ectopically transfected with WT TBK1 or a kinase-
inactive mutant of TBK1 (K38A) as indicated and stimulated with 10 nM insulin for 30 minutes. 
Cells were subjected to 2-deoxyglucose uptake assay. Data are shown as the mean ± SEM. *p < 
0.05; n = 3. (B) Ectopic overexpression of WT TBK1 and its kinase-inactive mutant in 3T3-L1 
adipocytes. Levels of indicated proteins in 3T3-L1 adipocytes under conditions in Figure 2.3A 
were assessed by immunoblots. 
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While overexpression of WT TBK1 was without effect on basal or insulin-stimulated glucose 

uptake, overexpression of its kinase-inactive mutant produced an approximately 40-50% 

inhibition of insulin-stimulated glucose uptake without impacting basal levels (Figure 2.3A). In 

these experiments, approximately 2-3 fold overexpression was achieved relative to endogenous 

protein levels (Figure 2.3B). In addition, overexpression of WT TBK1 increased Akt 

phosphorylation in the basal and insulin-stimulated state, consistent with previous reports that 

TBK1 is an upstream kinase of Akt (14-16). Consistent with this, expression of the catalytically 

inactive kinase partially blocked insulin-stimulated Akt phosphorylation but was without effect 

on basal activity.  

 

To test further if TBK1 kinase activity is required for insulin-stimulated glucose uptake, we 

blocked TBK1 activity with the selective, but structurally unrelated inhibitors of TBK1 and 

IKKε, Amlexanox or CAY10576 (Cay) (25, 26) (Figure 2.4). Insulin-stimulated glucose uptake 

was inhibited in a dose-dependent manner with both inhibitors. 

 

We also examined the translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes 

stably expressing a dual tagged-GLUT4, in which the exofacial loop of GLUT4 is tagged with 

MYC, while the cytoplasmic tail is tagged with enhanced green fluorescent protein (eGFP) (27). 

As previously described (9, 27, 28), insulin treatment produced a large increase in the 

translocation of the GLUT4 fusion protein to the plasma membrane, along with the appearance 

of the exofacial MYC epitope signal. Compared to cells electroporated with scrambled control 

siRNA, knockdown of TBK1 blocked the appearance of the MYC epitope signal on the plasma  
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Figure 2.4 TBK1 activity is required for insulin-stimulated glucose uptake.  
Inhibition of insulin-stimulated glucose uptake in a dose-dependent manner with TBK1 
inhibitors. Insulin-stimulated glucose uptake was performed as described in materials and 
methods in 3T3-L1 adipocytes pretreated with different doses of amlexanox or cay. Percentage 
of insulin-stimulated glucose uptake was calculated and the values of IC50 and maximal 
inhibition were produced with GraphPad Prism 6 software. Data are shown as the mean ± SEM. 
n = 3.      
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membrane in response to insulin, without affecting the localization of the GLUT4 fusion protein 

in the basal state (Figure 2.5A). Quantitation of these data revealed that knockdown of TBK1 

produced an approximate 40% reduction in the appearance of the MYC epitope signal on the 

plasma membrane in response to insulin (Figure 2.5B). Although it was difficult to assess the 

knockdown efficiency of TBK1 by immunohistochemistry due to autofluorescence (data not 

shown), the knockdown of TBK1 appeared to be approximately 50% as assessed by western 

blotting, with little effect on the stimulation of Akt phosphorylation by insulin (Figure 2.5C). 

These studies demonstrate that TBK1 is required for insulin-stimulated glucose transport and 

GLUT4 translocation in adipocytes in a cell-autonomous manner.  
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Figure 2.5 SiRNA-mediated knockdown of TBK1 inhibits insulin-stimulated GLUT4 
translocation.  
(A) SiRNA-mediated knockdown of TBK1 inhibits insulin-stimulated GLUT4 translocation. 
3T3-L1 adipocytes stably expressing MYC-GLUT4-eGFP were electroporated with duplex 
siRNA against TBK1 and stimulated with 10 nM insulin for 15 minutes. Immunostaining for 
MYC (red) in nonpermeabilized cells indicates GLUT4 translocation to the plasma membrane. 
GFP levels in cells indicate total GLUT4 expressed. A merge of GFP and MYC is shown. Bar, 
200 μm. (B) Quantification of GLUT4 translocation as shown in Figure 2.5A. Number of cells 
that show MYC staining at the rim in the total number of GFP-positive cells was counted for 
scrambled and TBK1 knockdown. Percentage of cells that undergo GLUT4 translocation is 
graphed. Error bars are indicative of at least three independent experiments. Data are shown as 
the mean ± SEM. *p < 0.05; n = 97. (C) SiRNA-mediated knockdown of TBK1 in 3T3-L1 
adipocytes. Levels of indicated proteins in 3T3-L1 adipocytes under conditions in Figure 2.5A 
were assessed by immunoblots. 
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The impact of TBK1 on insulin-stimulated glucose uptake occurs in parallel with Akt.  

 

TBK1 serves as an important component of multiple signaling pathways, including the innate 

immune response, autophagy, cell proliferation and growth, and insulin signaling (12). However, 

how TBK1 is activated, as well as the identity of its physiologically relevant substrates remain 

uncertain. The observation that knockdown of TBK1 reduced insulin-stimulated GLUT4 

translocation, with little effect on Akt phosphorylation (Figure 2.5), suggests that the kinase 

might regulate glucose uptake through a mechanism independent of Akt. To explore the relative 

role of Akt and TBK1 in insulin-stimulated glucose transport, 3T3-L1 adipocytes were pretreated 

with Akti-1/2 (Akti), an inhibitor with high specificity for Akt kinases by targeting the PH 

domain (29), the TBK1 inhibitor amlexanox, or the two inhibitors together, followed by 

measurement of [14C]2-deoxyglucose (DG) uptake (Figure 2.6). Pretreatment of 3T3-L1 

adipocytes with Akti or amlexanox produced an approximately 80% and 70% inhibition of 

insulin-stimulated glucose uptake, respectively (Figure 2.6A and Figure 2.6C). However, 

insulin-stimulated glucose uptake was completely suppressed by a combination of pretreatment 

with both inhibitors. Stimulation of Akt phosphorylation by insulin was partially inhibited by 

Akti, amlexanox, and a combination of both inhibitors, but not completely inhibited to the basal 

state (Figure 2.6B). These data indicate that complete inhibition of insulin-stimulated glucose 

uptake by the combination of Akti and amlexanox can only be partially explained by inhibition 

of Akt activation.  
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Figure 2.6 TBK1 regulates insulin-stimulated glucose uptake in parallel with Akt.  
(A) Inhibition of Akt and TBK1 blocks insulin-stimulated glucose uptake. Insulin-stimulated 
glucose uptake in 3T3-L1 adipocytes pretreated with inhibitors of Akt and TBK1. Data are 
shown as the mean ± SEM. *p < 0.05; n=3. (B) Stimulation of Akt phosphorylation by insulin 
was inhibited by Akti and amlexanox. Cells from Figure 2.6A were lysed and subjected to 
immunoblot analysis with indicated antibodies. DE and LE stand for dark exposure and light 
exposure, respectively. (C) Quantification of inhibition of insulin-stimulated glucose uptake as 
shown in Figure 2.6A. Percent inhibition of insulin-stimulated glucose uptake was calculated. 
Data are shown as the mean ± SEM. n = 3. 
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To further evaluate whether TBK1 regulates insulin-stimulated glucose uptake in parallel with 

Akt, we tested another structurally unrelated inhibitor of TBK1, Cay (Figure 2.7). Pretreatment 

of 3T3-L1 adipocytes with Akti or Cay produced an approximately 70% or 45% inhibition of 

insulin-stimulated glucose uptake, respectively (Figure 2.7A and Figure 2.7C). Stimulation of 

Akt phosphorylation by insulin was partially inhibited by Akti, Cay, and a combination of both 

inhibitors (Figure 2.7B). Similar to amlexanox, Akti and Cay synergistically blocked insulin-

stimulated glucose uptake in 3T3-L1 adipocytes, suggesting that TBK1 and Akt parallel 

pathways may be involved.  

 

We also examined the effects of these inhibitors in a GLUT4 translocation assay (Figure 2.8). 

Pretreatment of 3T3-L1 adipocytes with Akti and amlexanox had no effect on the localization of 

GLUT4 fusion protein in the basal state, but blocked the effect of insulin, since the appearance of 

the MYC epitope signal on the plasma membrane in response to insulin was significantly 

reduced. Pretreatment with Akti in combination with amlexanox synergistically blocked the 

appearance of the MYC epitope signal on the plasma membrane in response to insulin, without 

affecting the localization of the GLUT4 fusion protein under basal conditions (Figure 2.8A). 

Quantitation of these data showed that approximately 70% of the appearance of the plasma 

membrane MYC epitope signal in response to insulin was blocked by a combination of 

pretreatment with both inhibitors (Figure 2.8B). These data demonstrate that synergistic 

inhibition of insulin-stimulated glucose uptake by pretreatment of Akti in combination with 

amlexanox (or Cay) is likely due to inhibition of the translocation of GLUT4 to the plasma 

membrane (Figure 2.9). 
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Figure 2.7 TBK1 and Akt parallel pathways are required for insulin-stimulated glucose 
uptake.  
(A) Inhibition of Akt and TBK1 blocks insulin-stimulated glucose uptake. Insulin-stimulated 
glucose uptake in 3T3-L1 adipocytes pretreated with inhibitors of Akt and TBK1. Data are 
shown as the mean ± SEM. *p < 0.05; n=3. (B) Stimulation of Akt phosphorylation by insulin 
was inhibited by Akti and Cay. Cells from Figure 2.7A were lysed and subjected to immunoblot 
analysis with specific antibodies as indicated. DE and LE stand for dark exposure and light 
exposure, respectively. (C) Quantification of inhibition of insulin-stimulated glucose uptake as 
shown in Figure 2.7A. Percent inhibition of insulin-stimulated glucose uptake was calculated. 
Data are shown as the mean ± SEM. n = 3. 
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Figure 2.8 TBK1 regulates insulin-stimulated GLUT4 translocation in parallel with Akt.  
(A) Inhibition of Akt and TBK1 blocks insulin-stimulated GLUT4 translocation. 3T3-L1 
adipocytes stably expressing MYC-GLUT4-eGFP were pretreated with Akti (1 μM) and 
amlexanox (50 μM) for 1 hour and stimulated with 10 nM insulin for 15 minutes. 
Immunostaining for MYC (red) in nonpermeabilized cells indicates GLUT4 translocation to the 
plasma membrane. GFP levels in cells indicate total GLUT4 expressed. A merge of GFP and 
MYC is shown. Bar, 50 μm. (B) Quantification of GLUT4 translocation as shown in Figure 2.8A. 
Number of cells that show MYC staining at the rim in the total number of GFP-positive cells was 
counted for each condition. Percentage of cells that undergo GLUT4 translocation is graphed. 
Error bars are indicative of three independent experiments. Data are shown as the mean ± SEM. 
*p < 0.05; At least 100 cells per condition were counted for anti-MYC rim staining. 
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Figure 2.9 Hypothetical model of the role of TBK1 in insulin-stimulated GLUT4 
translocation.  
Insulin activates the PI3K/Akt pathway, which in turn phosphorylates the Ral GAP complex 
RGC1/2 and Rab GAP AS160, in the process reducing the inactivation of their cognate GTPases 
and thus increasing the activity of RalA and Rab10. Once activated, RalA and Rab10 control 
GLUT4 translocation via the interaction with its effectors involved in GLUT4 trafficking 
machineries (4). While it is not known that insulin regulates the intrinsic kinase activity of TBK1, 
TBK1 also regulates insulin-stimulated GLUT4 translocation in parallel with Akt. 
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Materials and Methods 
 

Materials and reagents 

 

All chemicals were obtained from Sigma-Aldrich unless stated otherwise. 2-deoxy-D-

[14C]glucose and [γ-32P]ATP were obtained from Perkin Elmer Life Sciences. Stealth™ duplex 

siRNAs were obtained from Life Technologies and their sequences are listed below.  

5’-AGAACAGUGUAUAAACUCCCACAGG‐3’and  

5’-CCUGUGGGAGUUUAUACACUGUUCU‐3’ in combination with 

5’-GAUAAGUCGGAAGAGUGGAUGAGAA‐3’and  

5’-UUCUCAUCCACUCUUCCGACUUAUC‐3’ against mouse Tbk1. 

5’-UGGACAUGCUGAACAGAGUUAGAGG‐3’ and  

5’-CCUCUAACUCUGUUCAGCAUGUCCA‐3’ in combination with 

5’-CAGAAGGUGCUAAUCAUGGAGUACU‐3’ and 

5’-AGUACUCCAUGAUUAGCACCUUCUG‐3’ against mouse Ikbke. 

5’-UGGCACCCAAUGAUUUGCCACUGCU‐3’ and 

5’-AGCAGUGGCAAAUCAUUGGGUGCCA‐3’ in combination with 

5’-CAGACAGCAUGAAUGUGUCUCGACU‐3’ and  

5’-AGUCGAGACACAUUCAUGCUGUCUG‐3’ against mouse Ikbkb. 

5’-CCUCUUCUGGCAAUGGAGUACUGUU‐3’ and 

5’-AACAGUACUCCAUUGCCAGAAGAGG‐3’ in combination with 

5’-CCGCUCUCUUGUAGGAUACAGUCUA‐3’ and 
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5’-UAGACUGUAUCCUACAAGAGAGCGG‐3’ against mouse Ikbka. SiRNAs together with 

their respective scrambled negative controls were designed using the Block-IT™ program from 

Life Technologies. Enhanced chemiluminescence (ECL) reagents were purchased from Thermo 

Scientific. EDTA-free protease inhibitor tablet was purchased from Roche Diagnostics. 

Amlexanox was purchased from Ontario Chemical Inc. The TBK1/IKKε inhibitor CAY10576 

(Cay) was purchased from Cayman Chemical. Akti-1/2 was purchased from EMD Millipore. 

BenchMarkTM Pre-stained protein ladder was purchased from Life Technologies. 

 

Antibodies 

 

Anti-Exo84 was obtained from Santa Cruz Biotechnology. Anti-IKKε, anti-TBK1, anti-phospho-

TBK1 (Ser172), anti-AKT, anti-phospho-AKT (Ser473), anti-IKKβ, anti-IKKα, anti-PPARγ, 

anti-C/EBPα, anti-C/EBPδ, anti-perilipin were purchased from Cell Signaling Technology. Anti-

RalA and anti-Sec8 antibodies were purchased from BD Bioscience. Anti-GLUT4 was 

purchased from Alpha Diagnostics. Anti-Sec5 was purchased from Proteintech Group.  

 

Plasmids 

 

The Flag-tagged human TBK1 WT and TBK1 K38A cDNAs were kindly provided by Dr. Tom 

Maniatis (Columbia University). 

 

Cell culture and transfection 
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3T3-L1 fibroblasts (American Type Culture Collection) were cultured and differentiated as 

described previously (30). Cells were routinely used within 10 days after completion of the 

differentiation process; only cultures in which > 90% of cells displayed adipocyte morphology 

were used. 3T3-L1 adipocytes were routinely transfected with plasmids and siRNAs by 

electroporation as described previously (31). Electroporation into mature adipocytes was done 

within 1-4 days post-differentiation at 160 kV, 950 uF. Electroporation with siRNAs to 

knockdown the gene of interest was continued for 4 days after electroportation unless specified 

otherwise. 3T3-L1 preadipocytes stably expressing MYC-GLUT4-eGFP were maintained and 

differentiated as described previously (9, 28). 3T3-L1 adipocytes were starved in reduced serum 

(0.5% FBS) medium for 12 hours. After serum starvation, cells were pretreated for 1 hour with 

amlexanox or Cay at the given concentrations and stimulated with 10 nM insulin for indicated 

time. 

 

Glucose uptake assay 

 

3T3-L1 adipocytes grown in 12-well plates were subjected to a glucose uptake assay as 

described previously (6). Briefly, siRNA-electroporated 3T3-L1 adipocytes were cultured until 8 

days post-differentiation. For overexpression experiments, 3T3-L1 adipocytes were cultured 

until 7 days post-differentiation to obtain maximal expression of WT TBK1 and its K38A mutant. 

After serum starvation, cells were incubated with or without 10 nM insulin for 30 minutes in 

Krebs-Ringer buffer (6). Glucose uptake was initiated by addition of 2-deoxy-D-[14C]glucose 

and the 14C-labeled glucose incorporation in 5 minutes was measured by scintillation counting. 
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GLUT4 translocation assay 

 

GLUT4 translocation was measured as described previously (6). Briefly, differentiated 3T3-L1 

adipocytes stably expressing MYC-GLUT4-eGFP were used at 10 days post-differentiation. 

After serum starvation, cells were pretreated with or without amlexanox or Cay and stimulated 

with or without 10 nM insulin for 15 minutes. Cells were then washed once with ice-cold PBS, 

fixed for 10 minutes in 4% paraformaldehyde (PFA; Electron Microscopy Sciences), neutralized 

with 100 mM glycine-PBS, followed by blocking in 2% bovine serum albumin (BSA) in PBS for 

1 hour at room temperature. Monoclonal anti-MYC antibodies were used at 1:300 dilution. 

GLUT4 translocation to the plasma membrane was measured by staining with MYC antibodies 

in nonpermeabilized cells. Alexa-Fluor 568 conjugated goat anti-mouse secondary antibody 

(Life Technologies) was used as indicated at 1:500 dilution. Confocal images were obtained 

using an inverted Olympus confocal microscope operated with the Fluoview300 program 

(Olympus America Inc.). Percentage of cells with insulin-stimulated GLUT4 translocation was 

calculated as the percentage of cells with MYC staining in the GFP-positive pool. 

 

Immunoblotting 

 

Cells were washed once with ice-cold PBS before lysis with SDS buffer (100 mM Tris-HCL (pH 

8.0), 130 mM NaCl, 1% Nonidet P-40 (NP-40), 0.2% Sodium deoxycholate, 0.1% SDS, 10 mM 

Sodium Pyrophosphate, 1 mM Na3VO4, 10 mM NaF) supplemented with an EDTA-free protease 

inhibitor tablet (Roche), followed by sonication. The crude lysates were centrifuged at13,000 xg 

for 15 minutes and determined the protein concentration using Protein Assay Reagent (Bio-Rad). 
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Samples were diluted in 4X SDS sample buffer and boiled for 5 minutes at 95 °C. Proteins were 

resolved by SDS-polyacrylamide gel electrophoresis (PAGE; Life Technologies) and transferred 

to nitrocellulose membranes (Bio-Rad). Individual proteins were detected with the specific 

antibodies and visualized on X-ray film using horseradish peroxidase-conjugated secondary 

antibodies (Bio-Rad) and Western Lightning Enhanced Chemiluminescence (Perkin Elmer Life 

Sciences). 

 

Statistical analyses 

 

Averaged values are presented as the mean ± standard error of the mean (s.e.m). When 

comparing two groups, we performed Student’s t-test to determine statistical significance. When 

more than two groups and two factors were investigated, we first performed a two-way analysis 

of variance (ANOVA) to establish that not all groups were equal. After a statistically significant 

ANOVA result, we performed between-group comparisons using the Tukey post hoc analysis for 

comparisons of all means and Sidak for comparisons of within factor main effect means. 

ANOVA and Tukey/Sidak tests were performed using GraphPad Prism version 6.  
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CHAPTER 3  

Exo84, a bona fide direct substrate of TBK1 

 

Introduction 

 

Our previous studies showed that the exocyst plays a pivotal role in insulin-stimulated GLUT4 

translocation in 3T3-L1 adipocytes by facilitating the docking of GLUT4 vesicles to the plasma 

membrane (1, 2). Earlier findings showed that TBK1 can be associated with the Sec5 subunit of 

the exocyst, in a manner crucial for cancer cell survival (3). In Chapter 2, our studies 

demonstrate that TBK1 is required for insulin-stimulated glucose transport and GLUT4 

translocation in adipocytes in a cell-autonomous manner. To explore the mechanism by which 

TBK1 regulates insulin-stimulated glucose uptake, we sought to identify potential downstream 

targets of TBK1. A Scansite database search (http://scansite.mit.edu/) to predict potential 

substrates of TBK1 revealed that the exocyst subunit Exo84 contains TBK1 consensus 

phosphorylation sites (4, 5). Mammalian Exo84 has a Ral binding domain (RBD) that interacts 

with the small G proteins RalA and RalB, and a putative helical domain potentially important for 

its interaction with other exocyst subunits (6-10). Since knockdown of either Sec5 or Exo84 

attenuated insulin-stimulated glucose transport (11), we examined whether TBK1 directly 

phosphorylates Exo84. 

 

http://scansite.mit.edu/
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Results and Discussion 

 

TBK1 directly phosphorylates Exo84 both in vitro and in vivo. 

 

Rat Exo84 cDNA (Figure 3.1A) was cloned into mammalian and bacterial expression vectors. 

We purified a glutathione S-transferase (GST)-tagged full-length wild type or RBD of Exo84 

(Figure 3.1B). Recombinant TBK1 was incubated in vitro with [γ-32P]ATP and the purified 

GST-tagged WT Exo84 or myelin basic protein (MBP) as a substrate (Figure 3.1C). 

Phosphorylation was assessed by SDS PAGE, followed by autoradiography. TBK1 directly 

catalyzed the phosphorylation of recombinant Exo84, as well as MBP. TBK1 

autophosphorylation was also detected. To eliminate the possibility that TBK1 phosphorylates 

GST rather than Exo84, purified GST, GST-tagged Exo84 WT, and Exo84 RBD were incubated 

in vitro with [γ-32P]ATP and recombinant TBK1 (Figure 3.1D). TBK1 directly catalyzed the 

phosphorylation of both WT Exo84 and Exo84 RBD, but not GST itself.  

 

We also made GST-free Exo84 RBD by cleaving GST from GST-tagged Exo84 RBD to use as a 

substrate in the kinase assay (Figure 3.2A). We performed an in vitro kinase assay using 

baculoviral-expressed TBK1 fused to maltose binding protein (MBP-TBK1) and either GST-

tagged Exo84 WT or GST-free Exo84 RBD, detecting phosphorylation by incorporation of [γ-

32P]ATP (Figure 3.2B). Phosphorylation was dose-dependent, suggesting that recombinant 

TBK1 was capable of stoichiometric phosphorylation of Exo84 in vitro.  
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Figure 3.1 TBK1 phosphorylates Exo84 in vitro.  
(A) Schematic representation of Rattus norvegicus (Rat) Exo84. (B) Purification of GST fusion 
proteins. GST, GST-tagged full-length Exo84 (WT) or Exo84 Ral binding domain (RBD) was 
purified from bacteria and used as a substrate for an in vitro kinase assay. (C) TBK1 
phosphorylates Exo84 in vitro. Recombinant His-tagged TBK1 WT was incubated with MBP or 
GST-Exo84 WT for an in vitro kinase assay. Lane 1: GST-Exo84 WT, Lane 2: His-TBK1 + 
GST-Exo84 with [γ-32P]-ATP, Lane 3: His-TBK1 + GST-Exo84 without [γ-32P]-ATP, Lane 4: 
MBP, Lane 5: His-TBK1 + MBP with [γ-32P]-ATP, and Lane 6: His-TBK1 + MBP without [γ-
32P]-ATP. (D) TBK1 phosphorylates Exo84 in vitro. GST-tagged full-length Exo84 (WT) or 
Exo84 Ral binding domain (RBD) was purified from bacteria and used as a substrate. 
Recombinant His-tagged TBK1 WT was used for an in vitro kinase assay. Ponceau S (top panel) 
staining shows the amount of substrates used. Lane 1: GST, Lane 2: GST-Exo84 RBD, Lane 3: 
GST-Exo84 WT, and Lane 4: none. Amount of His-TBK1 WT used for an in vitro kinase assay 
was assessed by immunoblots. Phosphorylation of proteins was observed in the autoradiograph 
(bottom panel). 
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Figure 3.2 TBK1 phosphorylates Exo84 in vitro in a dose-dependent manner.  
(A) Generation of GST-free Exo84 RBD. GST-Exo84 RBD was cleaved with thrombin. Lane 1: 
1 ug of GST-Exo84 RBD with thrombin, Lane 2: 500 ng of GST-Exo84 RBD with thrombin, 
Lane 3: 1 ug of GST-Exo84 RBD, and Lane 4: GST. (B) TBK1 phosphorylates Exo84 in vitro in 
a dose-dependent manner. GST-tagged full-length Exo84 (WT) or GST-free Exo84 RBD (GST-
Exo84 RBD cleaved with thrombin) was used as a substrate. TBK1 fused to maltose binding 
protein (MBP-TBK1) was purified from insect SF9 cells by baculovirus expression system. 
Increasing amount of MBP-TBK1 was used in Lane 1 ~ Lane 6 and 0.5 ug of MBP-TBK1 was 
used in Lane 7 ~ Lane 9. Lane 1 ~ 6: 1 ug of GST-free Exo84 RBD, Lane 7: GST-Exo84 WT, 
Lane 8: GST, and Lane 9: none. Phosphorylation of proteins was observed in the autoradiograph. 
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To determine the specificity of Exo84 phosphorylation, purified Exo84 or MBP were incubated 

with [γ-32P]ATP and various kinases in vitro (Figure 3.3). Phosphorylation of Exo84 was 

detected only with TBK1 but not the other kinases.  

 

To determine whether TBK1 can phosphorylate Exo84 in cells, we co-overexpressed increasing 

amounts of Flag-tagged WT TBK1 or its inactive K38A mutant with MYC-tagged Exo84 in 

COS-1 cells, followed by SDS PAGE (Figure 3.4A). Expression of WT TBK1 but not its 

inactive mutant reduced the electrophoretic mobility of Exo84, indicative of Exo84 

phosphorylation. This phosphorylation was specific for TBK1, as co-transfection of Exo84 with 

the related protein kinase IKKε caused little shift (Figure 3.4B, bottom panel). To determine 

whether this molecular shift was dependent on phosphorylation of Exo84, MYC-Exo84 was co-

expressed in COS-1 cells along with TBK1 and IKKε or their kinase inactive mutants, followed 

by immunoprecipitation (IP) with anti-MYC antibodies. Anti-MYC immunoprecipitates were 

then treated with or without calf intestinal phosphatase (CIP) (Figure 3.4B, top panel). 

Expression of TBK1 reduced the electrophoretic mobility of Exo84, which could be reversed by 

treatment with the phosphatase (Figure 3.4B, compare lane 3 to lane 7 in top panel). The kinase-

inactive mutant of TBK1 was without effect (Figure 3.4B, compare lane 4 to lane 8 in top panel). 

Additionally, phosphorylation of Exo84 was detected by blotting with antibodies that recognize a 

14-3-3 binding motif, as previously reported (12). Expression of WT TBK1 increased the 

phosphorylation of Exo84 as determined by immunoblotting with this antibody, and was reduced 

by treatment with the phosphatase (Figure 3.4B, compare lane 3 to lane 7 in top panel). 

Expression of WT IKKε was less effective (Figure 3.4B, compare lane 3 to lane 5 in top panel).  
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Figure 3.3 TBK1 but not other kinases phosphorylates Exo84 in vitro.  
Arrow head indicates phosphorylated GST-Exo84 WT. Various kinases were used for an in vitro 
kinase assay. Levels of myelin basic protein (MBP) phosphorylation show the activity of various 
kinases (Top panel). Amount of GST-Exo84 WT used for an in vitro kinase assay was assessed 
by immunoblots. 
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Figure 3.4 TBK1 phosphorylates Exo84 in vivo.  
(A) TBK1 phosphorylates Exo84 in COS-1 cells. Levels of indicated proteins in the whole cell 
lysates are shown. DE and LE stand for dark exposure and light exposure, respectively. (B) 
Exo84 is a substrate of TBK1. MYC-tagged Exo84 was immunoprecipitated from COS-1 cells 
co-expressing TBK1 and IKKε or their kinase-inactive mutants. Anti-MYC immunoprecipitates 
were then treated with or without calf intestinal phosphatase (CIP). Levels of indicated proteins 
in the whole cell lysates (WCL) and the immunoprecipitates are shown. DE and LE stand for 
dark exposure and light exposure, respectively. (C) Exo84 directly interacts with TBK1. HA-
tagged Exo84 was immunoprecipitated from COS-1 cells co-expressing TBK1 or its kinase-
inactive mutant. Levels of indicated proteins in WCL and the immunoprecipitates are shown. DE 
and LE stand for dark exposure and light exposure, respectively. 
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To explore whether TBK1 directly phosphorylates Exo84, anti-MYC immunoprecipitates were 

blotted with antibodies that recognize Flag, TBK1, or IKKε (Figure 3.4B, top panel). Kinase-

inactive TBK1 preferentially co-immunoprecipitated with Exo84, whereas the interaction of 

Exo84 with WT TBK1 was barely detected. Interestingly, the interaction of Exo84 with WT 

TBK1 was rescued by treatment with CIP. These data are consistent with our previous findings 

(12), demonstrating that TBK1 associates with its substrates, and subsequently dissociates upon 

phosphorylation. However, the interaction of Exo84 with IKKε was constitutive and not 

dependent upon kinase activity, further confirming that Exo84 is not a target of IKKε. It has been 

suggested that TBK1 can form a heterodimer with IKKε (13, 14). Therefore, it is possible that 

IKKε does not function as a kinase but rather as a scaffolding protein to recruit Exo84 to TBK1 

in this case. We also performed a reciprocal IP with anti-MYC antibodies in COS-1 cells co-

expressing MYC-tagged WT TBK1 and its K38A mutant with HA-tagged Exo84 (Figure 3.4C). 

We detected the interaction of Exo84 with the kinase-inactive mutant of TBK1 K38A but not the 

wild type enzyme. 

  

To test further whether the interaction between Exo84 and TBK1 is specific, we prepared several 

GST-tagged fusion proteins, including the Ral binding protein 1 (RalBP1) RBD, Exo84 RBD, 

and WT Exo84, and incubated these with lysates from COS-1 cells expressing Flag-tagged WT 

TBK1 or its kinase-inactive mutant (Figure 3.5). The inactive mutant K38A but not WT TBK1 

was preferentially pulled down by GST-Exo84 WT but not by other fusion proteins, suggesting 

that the catalytically inactive kinase TBK1 specifically interacts with its substrate Exo84.  
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Figure 3.5 The interaction between Exo84 and TBK1 is specific.  
COS-1 cell lysates overexpressing Flag-TBK1 WT and its kinase-inactive mutant were incubated 
with GST fusion proteins as indicated. Pull downs were subjected to immunoblot analysis with 
anti-Flag antibody. Amount of GST fusion proteins used in the pull down assay was visualized 
with Ponceau S. DE and LE stand for dark exposure and light exposure, respectively. 
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TBK1 is also known to phosphorylate the exocyst subunit Sec5 (3). HA-tagged Sec5 WT or its 

phospho-defective mutant S89A (15) were co-expressed in COS-1 cells along with Flag-tagged 

WT TBK1 and its K38A mutant, and HA immunoprecipitates were treated with or without CIP 

(Figure 3.6). Both Sec5 and its S89A mutant were phosphorylated by WT TBK1, as detected by 

blotting with antibodies that recognize the phospho-S89 PKC substrate motif, as well as the 14-

3-3 binding motif; phosphorylation was reduced with CIP treatment. While the kinase-inactive 

mutant of TBK1 phosphorylated neither Sec5 construct, both were preferentially co-

immunoprecipitated with the kinase-inactive TBK1, whereas the interaction of Sec5 with WT 

TBK1 was not detected, even with CIP treatment. These data suggest that both Sec5 and Exo84 

are bona fide substrates of TBK1 both in vitro and in vivo, and furthermore that TBK1 directly 

interacts with Exo84 when the kinase is inactive, and subsequently dissociates upon 

phosphorylation. 
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Figure 3.6 Sec5 is a substrate of TBK1.  
HA-tagged Sec5 was immunoprecipitated from COS-1 cells coexpressing TBK1 or its kinase-
inactive mutant. Anti-HA immunoprecipitates were then treated with or without calf intestinal 
phosphatase (CIP). Levels of indicated proteins in WCL and the immunoprecipitates are shown. 
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TBK1 directly interacts with Exo84 via the coiled-coil domain of TBK1 and helical domain 

of Exo84.  

 

In order to understand how TBK1 might control the function of the exocyst, we generated 

various mammalian Exo84 truncation mutants to identify the domain required for its interaction 

with TBK1 (Figure 3.7A). We co-expressed in COS-1 cells WT TBK1 and its K38A mutant 

with HA-tagged full-length Exo84, its RBD or the various deletion mutants, and 

immunoprecipitated the protein with anti-HA antibodies (Figure 3.7B). Kinase-inactive TBK1 

preferentially co-immunoprecipitated with Exo84 WT and its Del 1 mutant, whereas the 

interaction with Exo84 RBD was significantly reduced, suggesting that the domain of Exo84 

required for the interaction with TBK1 is located in the C-terminal region. Phosphorylation of 

Exo84 and its truncation mutants were also detected after expression with TBK1 by blotting with 

antibodies that recognize the 14-3-3 binding motif. Phosphorylation of both Exo84 truncation 

mutants by TBK1 was significantly reduced, suggesting that there are multiple sites on Exo84 

phosphorylated by TBK1. To further map out the domain of Exo84 required for the interaction 

with TBK1, we co-expressed WT TBK1 and its K38A mutant with HA-tagged Exo84 WT, 

deletion 1, 2, 3, or 4 mutants in COS-1 cells, and immunoprecipitated with anti-HA antibodies 

(Figure 3.7C). Kinase-inactive TBK1 preferentially co-immunoprecipitated with Exo84 WT and 

the Del 1 mutant, whereas the interaction of Exo84 Del 2, Del 3, and Del 4 with TBK1 K38A 

was significantly reduced, suggesting that the helical domain of Exo84 is required for the 

interaction with TBK1. 
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Figure 3.7 The helical domain of Exo84 interacts with TBK1.  
(A) Schematic representation of various domains in full-length and truncated Exo84. (B) The C-
terminal domain of Exo84 interacts with TBK1. HA-tagged various truncation mutants of Exo84 
were immunoprecipitated from COS-1 cells co-expressing TBK1 or its kinase-inactive mutant. 
Levels of indicated proteins in WCL and the immunoprecipitates are shown. Arrows refer to 
each immunoprecipitated protein as indicated. (C) The helical domain of Exo84 is required for 
its interaction with TBK1. HA-tagged various truncation mutants of Exo84 were 
immunoprecipitated from COS-1 cells co-expressing TBK1 or its kinase-inactive mutant. Levels 
of indicated proteins in WCL and the immunoprecipitates are shown. Arrows indicate Del 1, Del 
2, and Del 4, respectively. DE and LE stand for dark exposure and light exposure, respectively.   
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Several scaffolding proteins have been identified that interact with TBK1, including TANK, 

NAP1, and SINTBAD, and these appear to play important roles in the activation of the kinase in 

response to different stimuli (16-18). It is possible that the phosphorylation of Exo84 by TBK1 

might require scaffolding proteins, exocyst subunits or other associated proteins. To test whether 

the interaction of TBK1 with Exo84 is direct or indirect, we performed an in vitro protein 

interaction assay. cDNAs encoding Flag-tagged WT TBK1 or its K38A mutant, along with HA-

tagged WT Exo84, and the deletion 1, 2, 3, 4, and 5 mutants (Del 1, 2, 3, 4, and 5 as shown in 

Figure 3.7A) were translated in vitro, and the translation products were then immunoprecipitated 

with anti-HA antibodies (Figure 3.8). In vitro translated proteins were detected by SDS PAGE, 

followed by western blotting with an anti-Flag and anti-HA antibodies (Figure 3.8, bottom 

panel). In vitro translated, kinase-inactive TBK1 preferentially co-immunoprecipitated with in 

vitro translated WT Exo84, as shown in cells (Figure 3.4B, Figure 3.7B, and C). In vitro 

translated Exo84 lacking its helical domain (Del 2 and Del 4) showed a significantly reduced 

interaction with TBK1, whereas in vitro translated Exo84 helical domain (Del 5) was sufficient 

to interact with the kinase-inactive mutant. Thus, the helical domain of Exo84 is required and 

sufficient for its interaction with TBK1 in vitro.  

 

TBK1 has three structurally distinct domains: the kinase domain, the ubiquitin-like domain 

(ULD), and the scaffold and dimerization domain (coiled-coil domain) (19-21). Previous studies 

suggested that TBK1 recognizes its substrates through the ULD domain proximal to its kinase 

domain (22). To confirm that TBK1 directly interacts with Exo84, various truncation mutants of 

TBK1 were obtained as described previously (22) (Figure 3.9A). 
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Figure 3.8 TBK1 directly interacts with Exo84 via the helical domain of Exo84 in vitro.  
HA-tagged various truncation mutants of Exo84, Flag-tagged TBK1, and its kinase-inactive 
mutant were in vitro translated. As a control, HA-empty vector was used. Amount of in vitro 
translated proteins used for the immunoprecipitation are shown as input. Anti-HA 
immunoprecipitates were subjected to immunoblot analysis and probed using specific antibodies 
as indicated. Arrows indicate WT Exo84 and the Exo84 variants. Signals from 
immunoprecipitated Exo84 Del 1 and Del 2 were masked by the heavy chain of the IgG as 
shown in the squares. DE and LE stand for dark exposure and light exposure, respectively. 
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Figure 3.9 TBK1 directly interacts with Exo84 via the coiled-coil domain of TBK1 in vitro. 
(A) Schematic representation of various domains in full-length and truncated TBK1. Amount of 
in vitro translated proteins used for Figure 3.9B are shown as input. (B) TBK1 directly interacts 
with Exo84 via the coiled-coil domain of TBK1 in vitro. MYC-tagged various truncation 
mutants of TBK1, HA-tagged WT Exo84, and its Del 5 mutant were in vitro translated. As a 
control, MYC-empty vector was used. Anti-HA immunoprecipitates (top panel) or anti-MYC 
immunoprecipitates (bottom panel) were subjected to immunoblot analysis and probed using 
specific antibodies as indicated. Arrows (top panel) indicate WT TBK1 and Exo84 Del 5 mutant, 
respectively. Arrows (bottom panel) indicate each immunoprecipitated protein. Exo84 Del 5 was 
sufficient to interact with WT TBK1 as shown in the square. TBK1 1-301 (KM) was inactive as 
shown in the squares.        

 
 

 

 

 



98 
 

The plasmids containing cDNAs of MYC-tagged WT TBK1, 1-383, which contains the kinase 

domain and the ULD, its kinase domain (1-301), and the inactive kinase domain of TBK1 (1-301 

(KM)) were translated in vitro along with HA-tagged Exo84 WT and the Del 5 mutant. These in 

vitro translated proteins were then immunoprecipitated with anti-HA antibodies. Only the full-

length TBK1 (TBK1 WT) co-immunoprecipitated with in vitro translated Exo84 or the Del 5 

mutant (Figure 3.9B, top panel). Similarly, WT Exo84 and the Del 5 mutant were co-

immunoprecipitated only with the full-length TBK1 in reciprocal immunoprecipitation of in vitro 

translated proteins with anti-MYC antibodies (Figure 3.9B, bottom panel). Active TBK1, 1-383, 

and 1-301 but not the inactive kinase domain of TBK1 (1-301 (KM)) were detected in the anti-

MYC immunoprecipitation by blotting with antibodies that recognize phosphorylation of TBK1 

at S172. These data suggest that although TBK1 exists in different complexes depending on 

cellular response, the kinase directly interacts with Exo84 via binding between the helical 

domain of Exo84 and the coiled-coil domain of TBK1. TBK1 and its related kinase IKKε both 

have a kinase domain in the N terminus, and share 64% similarity in amino acid sequences (23). 

It is possible that the differential substrate specificity of these two related kinases might be 

determined through their C-terminal scaffold and dimerization domain. 
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Materials and Methods 
 

Materials and reagents 

 

Enhanced chemiluminescence (ECL) reagents were purchased from Thermo Scientific. EDTA-

free protease inhibitor tablet was purchased from Roche Diagnostics. BenchMarkTM Pre-stained 

protein ladder was purchased from Life Technologies. CIP was purchased from New England 

Biolabs Inc. ImperialTM protein stain was purchased from Pierce and SimplyBlueTM SafeStain 

was purchased from Life Technologies for gel staining. GST-tagged RalBP1 agarose beads were 

purchased from EMD Millipore. Purified recombinant His-TBK1 was purchased from Life 

Technologies. Purified recombinant GST-IKKβ, GST-PKA C-α, and GST-PKCα were 

purchased from Cell Signaling Technology. Purified recombinant His-PKBβ was purchased 

from Millipore. IKKε and TBK1 fused to MBP (maltose binding protein) were purified from 

insect SF9 cells by baculovirus expression system by Dr. Stuart J Decker (Life Sciences Institute, 

University of Michigan). 

 

Antibodies 

 

Anti-Flag antibody was obtained from Sigma, and anti-HA, anti-MYC, and anti-GST antibodies 

were obtained from Santa Cruz Biotechnology. Anti-IKKε, anti-TBK1, anti-phospho-TBK1 

(Ser172), anti-phospho-PKC substrate, and anti-phospho-(Ser) 14-3-3 binding motif (R-X-Y/F-

X-pS) antibodies were purchased from Cell Signaling Technology. Anti-RalA antibody was 

purchased from BD Bioscience. Anti-His was purchased from Life Technologies.  
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Plasmids 

 

The Flag-tagged human TBK1 WT, TBK1 K38A, IKKε WT, and IKKε K38A cDNAs were 

kindly provided by Dr. Tom Maniatis (Columbia University). The rat Exo84 cDNA was kindly 

provided by Dr. Charles Yeaman (University of Iowa) and subcloned into pKH3 and pGEX-4T-1 

vectors (GE Healthcare Life Sciences). The Myc-tagged human TBK1 WT, TBK1 1-383, TBK1 

1-301 (WT), and TBK1 1-301 (KM) cDNAs were kindly provided by Dr. Ivan Dikic (Goethe 

University, Germany). Site-directed mutagenesis (QuickChange; Agilent Technologies) was 

used to generate the phosphomimetic and phosphorylation deficient mutants of Exo84 as well as 

the truncation mutants (Exo84 Del 2 and Del 3). Del 1, Del 4, and Del 5 mutants of Exo84 was 

cloned from rat Exo84 WT cDNA by PCR and subcloned into pKH3 vector. HA-tagged Sec5 

WT and S89A cDNAs were obtained as previously described (15). 

 

Cell culture and transfection 

 

COS-1 cells were cultured in DMEM containing 10% fetal bovine serum (FBS). These cells 

were cultured to 90% confluence and transfection was carried out using Opti-MEM media and 

Lipofectamine 2000 (Life Technologies) according to manufacturer’s protocol. For 

overexpression experiments, cells were collected and lysed 18-36 hours after transfection.  

 

Immunoprecipitation and immunoblotting 
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For immunoprecipitation, cells were washed once with ice-cold PBS before lysis with IP buffer 

(100 mM Tris-HCL (pH 7.5), 130 mM NaCl, 1% Triton X-100, 1 mM EDTA, 1 mM Na3VO4, 

10 mM NaF, 5 mM MgCl2) supplemented with an EDTA-free protease inhibitor tablet (Roche). 

Lysates were cleared by centrifugation at 13,000 xg for 15 minutes and then incubated with 2 ug 

of antibody for 1 mg of protein for 4 hours to overnight at 4 °C. Immunoprecipitaes were 

adsorbed on Protein A/G plus agarose (Santa Cruz Biotechnology) for 1.5-2 hours, washed three 

times in lysis buffer, and eluted in 1.5X sodium dodecyl sulfate (SDS) sample buffer (240 mM 

Tris-HCL (pH6.8), 40% glycerol, 8% SDS, 0.04% bromophenol blue, and 5% beta-

mercaptoethanol) by boiling the samples for 5 minutes at 95 °C. For regular cell lysis, cell were 

washed once with ice-cold PBS before lysis with SDS buffer (100 mM Tris-HCL (pH 8.0), 130 

mM NaCl, 1% Nonidet P-40 (NP-40), 0.2% Sodium deoxycholate, 0.1% SDS, 10 mM Sodium 

Pyrophosphate, 1 mM Na3VO4, 10 mM NaF) supplemented with an EDTA-free protease 

inhibitor tablet (Roche), followed by sonication. The crude lysates were centrifuged at13,000 xg 

for 15 minutes and determined the protein concentration using Protein Assay Reagent (Bio-Rad). 

Samples were diluted in 4X SDS sample buffer and boiled for 5 minutes at 95 °C. Proteins were 

resolved by SDS-polyacrylamide gel electrophoresis (PAGE; Life Technologies) and transferred 

to nitrocellulose membranes (Bio-Rad). Individual proteins were detected with the specific 

antibodies and visualized on X-ray film using horseradish peroxidase-conjugated secondary 

antibodies (Bio-Rad) and Western Lightning Enhanced Chemiluminescence (Perkin Elmer Life 

Sciences). Where necessary, blots were incubated in the stripping buffer (50 mM Tris-HCL (pH 

6.8), 150 mM NaCl, 110 mM beta-mercaptoethanol, and 2% SDS) and re-probed with the 

specific antibodies. 
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Calf-intestinal phosphatase dephosphorylation  

 

Calf intestinal phosphatase (CIP) was obtained from New England Biolabs. Immunoprecipitates 

were incubated for 1 hour at 37 °C in a 100 μl reaction containing 50 mM Tris pH 7.5, 150 mM 

NaCl, 1% NP-40, EDTA-free protease inhibitor tablet, and 5 μl CIP. 

 

In vitro kinase assay  

 

In vitro kinase assays were performed by incubating purified kinase (IKKε, TBK1, IKKβ, PKA 

C-α, PKCα or PKBβ) in kinase buffer containing 25 mM Tris (pH 7.5), 10 mM MgCl2, 1 mM 

dithiothreitol (DTT), and 50 μM ATP for 30 minutes at 30 °C in the presence of 0.5 μCi γ-[32P]-

ATP and 1 μg myelin basic protein (MBP) per sample as a substrate. For PKCα, a PKC lipid 

activator (EMD Millipore) was added. Purified GST, GST-Exo84 WT, GST-Exo84 RBD, or 

Exo84 RBD were also used as a substrate. The purification of these proteins is described below. 

The kinase reaction was stopped by adding 4X SDS sample buffer and boiling for 5 minutes at 

95 °C. Supernatants were resolved by SDS-PAGE, transferred to nitrocellulose, and analyzed by 

autoradiography. 

 

Protein purification and pull-down experiment  

 

GST fusion proteins were expressed in RosettaTM (DE3)pLysS competent cells (Novagen). GST 

proteins were induced 50-100 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 16 hours at 

25 °C. Cells were pelleted by centrifugation at 4,000 xg for 10 minutes. Cells were lysed with 
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lysis buffer containing 50 mM Tris (pH 7.5), 0.5 mM EDTA, and 0.3 M NaCl supplemented 

with an EDTA-free protease inhibitor tablet (Roche). Lysates were mixed with 1:10 dilution of 

10 mg/ml lysozyme and 4 mM DTT and then incubated on ice for 15 minutes. 0.2% NP-40 were 

added to lysates and lysis was further performed by freeze-thaw cycle. To get soluble proteins, 

lysates were mixed with a buffer containing 1.5 M NaCl, 12 mM MgCl2, and 1:1000 dilution of 

10 mg/ml DNase I (Roche) supplemented with an EDTA-free protease inhibitor tablet (Roche). 

Lysates were passed through syringe with 18 gauge needle (BD Bioscience) every 10-15 minutes 

for 2 hours at 4 °C. Soluble proteins were collected by centrifugation at 15,000 xg for 20 minutes 

at 4 °C. Supernatants were incubated with glutathione sepharose beads (GE Healthcare Life 

Sciences) and washed four times with PBS (pH 8.0). Protein immobilized on beads were stored 

at -80 °C in PBS containing 10% glycerol and 10 mM DTT. Sometimes, proteins were eluted 

from glutathione beads by washing the beads with 10 mM glutathione in PBS (pH 8.0). Purified 

GST-tagged Exo84 RBD proteins were cleaved with thrombin (GE Healthcare Life Sciences) 

according to manufacturer’s protocol. For pull-down experiment, cells were washed once with 

ice-cold PBS and then lysed in pulldown buffer (100 mM Tris, pH 7.5, 130 mM NaCl, 1% NP-

40, 10% glycerol, 1 mM Na3VO4, 10 mM NaF, 5 mM MgCl2, 1 mM EDTA, 1 mM DTT) 

supplemented with a protease inhibitor tablet (Roche). Lysates were cleared by centrifuging at 

13,000 xg for 15 minutes and then were incubated with GST fusion proteins bound to glutathione 

beads (GE Healthcare Life Sciences) for 40 minutes at 4 °C. Beads were washed three times with 

1 mL of pull-down lysis buffer and then resuspended in 1.5X SDS sample buffer. 

 

In vitro translation and co-immunoprecipitation  
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1ug of vector constructs as indicated were used in the TNT® T7 or SP6 Quick Coupled 

transcription/Translation Systems (Promega) according to manufacturer’s protocol. Before co-IP, 

all in vitro translated proteins were run on SDS-PAGE, transferred to nitrocellulose. In vitro 

translation of epitope-tagged proteins was confirmed by immunoblotting with the specific 

antibodies as indicated and quantified using Image J. The same amount of proteins were 

resuspended in a buffer containing 50 mM HEPES (pH 7.5), 150 mM NaCl, 10 mM EDTA, 5 

mM DTT, 0.1% Triton X-100 supplemented with a protease inhibitor tablet and combined with 

each other for 1 hour at room temperature. The solutions were then centrifuged at 13,000 xg for 

20 minutes at 4 °C. Following centrifugation, the supernatant was incubated with anti-MYC or 

anti-HA antibodies for each IP for 4 hours at 4 °C. The resulting immunocomplexes were 

collected on Protein A/G plus agarose (Santa Cruz Biotechnology) by incubation for 1 hour at 

4 °C. The immunoprecipitates were washed three times with a buffer, and eluted in 1.5X SDS 

sample buffer by boiling the samples for 5 minutes at 95 °C. Samples were run on SDS-PAGE 

and transferred to nitrocellulose membrane. Proteins were analyzed by immunoblotting with 

appropriate antibodies as indicated. 
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CHAPTER 4  

Regulation of engagement and disengagement of GLUT4 vesicles 

from the exocyst by TBK1 

 

Introduction 

 

GLUT4 translocation requires the assembly and recognition of the exocyst. Exocyst assembly is 

controlled by activation of the Rho subfamily G protein TC10 in response to insulin via a PI3K-

independent pathway (1-3). Exocyst recognition is mediated by the G protein RalA, which is 

activated by insulin via a PI3K-dependent pathway involving the Akt-catalyzed phosphorylation 

(4, 5) and inhibition of two different GAPs (5, 6). Phosphorylation of the Rab GAP AS160 can 

ultimately target Rab10; among its effectors is the RalA GEF Rgl2, which is required for 

sustained activation of RalA (7). Akt-dependent phosphorylation and subsequent inhibition of 

the Ral GAP complex (RGC1/2) is also required for activation of RalA (5, 7-9). Once activated, 

the activation of the GLUT4 vesicle-associated small GTPase RalA leads to its engagement with 

the exocyst complex, via Sec5 and Exo84 (4). However, these complexes must also dissociate to 

permit GLUT4 vesicles to engage SNARE proteins at the plasma membrane for fusion. Recent 

studies suggest that disengagement between RalA and the exocyst requires phosphorylation of 

Sec5, thus allowing the continuation of exocytic vesicle cycling events (10). This prompted us to 

investigate the role of Exo84 phosphorylation in this process. 
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Results and Discussion 

 

Phosphorylation of Exo84 by TBK1 decreases its interaction with RalA. 

 

We first examined the interaction of Exo84, WT TBK1, and its kinase active mutant with GST-

RalA fusion proteins (Figure 4.1). We loaded GST or GST-RalA fusion proteins with guanosine 

diphosphate (GDP) or guanosine 5’-O-[γ-thio]triphosphate (GTPγS) to mimic its inactive or 

stably active state. These fusion proteins were incubated with lysates from COS-1 cells 

overexpressing MYC-tagged Exo84, WT TBK1 or its K38A mutant. Exo84 was specifically 

pulled down by GST-RalA loaded with GTPγS but not GDP, whereas GST beads alone did not 

interact, confirming that the interaction between RalA and Exo84 is specific, and further that 

TBK1 does not directly interact with RalA. 

 

To explore further the impact of phosphorylation on the interaction of Exo84 with RalA, we co-

expressed Flag-tagged WT RalA or its constitutively active (G23V/GV) mutant (11) with Exo84 

in the presence or absence of WT TBK1 or its K38A mutant in COS-1 cells, and 

immunoprecipitated with anti-Flag antibodies (Figure 4.2A). Exo84 preferentially co-

immunoprecipitated with the active mutant of RalA (GV), and WT TBK1 overexpression 

produced an approximately 50% reduction in this interaction; this reduction was not observed 

upon overexpression of the K38A kinase-inactive mutant of TBK1. Next, lysates from COS-1 

cells co-expressing increasing amounts of WT TBK1 or its K38A mutant with HA-tagged Exo84 

were subjected to pulldown with a GST-RalA GV fusion protein (Figure 4.2B). Expression of 

WT TBK1 caused a dose-dependent shift in the electrophoretic mobility of Exo84 both in the  
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Figure 4.1 TBK1 does not directly interact with RalA.  
COS-1 cell lysates overexpressing MYC-tagged Exo84, WT TBK1, and its kinase-inactive 
mutant were incubated with immobilized GST or GST-RalA bound to GDP or GTPγS as 
indicated. Pull downs were subjected to immunoblot analysis and probed using anti-MYC 
antibody. Amount of GST fusion proteins used in the pull down assay was visualized with 
Ponceau S. DE and LE stand for dark exposure and light exposure, respectively.   
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Figure 4.2 The interaction of Exo84 with RalA is impaired by WT TBK1 overexpression. 
(A) The interaction of Exo84 with RalA is impaired upon overexpression of WT TBK1. Flag-
tagged WT RalA and its constitutively active (G23V/GV) mutant were immunoprecipitated from 
COS-1 cells co-expressing TBK1 or its kinase-inactive mutant along with HA-Exo84. Levels of 
indicated proteins in WCL and the immunoprecipitates are shown. Arrow indicates 
immunoprecipitated Exo84. Quantification of the binding of Exo84 with RalA is shown. The 
levels of binding were normalized to the fourth lane. The normalized ratio is represented in 
arbitrary units. Data are shown as the mean ± SEM. *p < 0.05; n = 3. (B) The interaction of 
active RalA with Exo84 is reduced upon overexpression of WT TBK1. Cell lysates from COS-1 
cells co-expressing increasing amounts of Flag-tagged WT TBK1 and its kinase-inactive mutant 
with HA-Exo84 were incubated with immobilized GST-RalA G23V. Pull downs were subjected 
to immunoblot analysis and probed using specific antibodies as indicated. Amount of GST fusion 
proteins used in the pull down assay was visualized with Ponceau S. DE and LE stand for dark 
exposure and light exposure, respectively. Quantification of the binding of Exo84 with RalA is 
shown. The levels of binding were normalized to the sixth lane. The normalized ratio is 
represented in arbitrary units. Data are shown as the mean ± SEM. *p < 0.05; n = 3. 
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pulldown product and input lysates, although this shift was not detected when TBK1 K38A was 

expressed. WT TBK1 overexpression resulted in an approximately 50% reduction in the 

interaction of active RalA with Exo84, which was not observed after TBK1 K38A 

overexpression. Furthermore, Exo84 was pulled down with the kinase-inactive mutant of TBK1 

but not with WT TBK1 by the GST-RalA GV fusion protein, whereas the fusion protein enriched 

neither WT TBK1 nor its K38A mutant in the absence of Exo84, confirming that the catalytically 

inactive TBK1 preferentially interacts with its substrate Exo84 in the pulldown assay.  

 

To examine whether the reduction in the interaction of active RalA with Exo84 is due to changes 

in RalA activity, we evaluated the activity state of RalA by effector pulldown assay with another 

effector, RalBP1 (Figure 4.3). The Flag-RalA GV mutant preferentially co-precipitated with 

GST-RalBP1 RBD, whereas neither WT TBK1 nor its K38A mutant overexpression affected this 

interaction, indicating that TBK1 does not directly affect RalA activity. 

 

To determine whether phosphorylation of Exo84 by TBK1 disengages RalA from the exocyst, 

HA-Exo84 was co-expressed in COS-1 cells along with WT RalA, RalA GV, or a GDP-locked 

dominant-negative Ral (S28N/SN) mutant (11), in the presence of TBK1 or its kinase inactive 

mutant, followed by IP with anti-HA antibodies (Figure 4.4A). Phosphorylation of Exo84 was 

detected after expression with WT TBK1 but not its kinase-inactive mutant in cells, as detected 

by blotting with antibodies that recognize the 14-3-3 binding motif. Interestingly, Exo84 

phosphorylation was enhanced by RalA GV expression, whereas it was barely detected after 

RalA SN expression. Furthermore, the RalA GV mutant preferentially co-immunoprecipitated  
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Figure 4.3 TBK1 does not directly affect RalA activity.  
Cell lysates from COS-1 cells co-expressing MYC-tagged WT TBK1 and its kinase-inactive 
mutant with Flag-RalA WT or RalA GV were incubated with GST-RalBP1 RBD beads. Pull 
downs were subjected to immunoblot analysis and probed using anti-Flag antibody. Amount of 
GST fusion proteins used in the pull down assay was visualized with Ponceau S. DE and LE 
stand for dark exposure and light exposure, respectively. Quantification of RalA activity is 
shown. RalA activity (pull-down/total RalA) was normalized to the third lane. The normalized 
ratio is represented in arbitrary units. Data are shown as the mean ± SEM. *p < 0.05; n = 3. 
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Figure 4.4 Phosphorylation of Exo84 by TBK1 decreases its interaction with RalA.  
(A) TBK1-mediated Exo84 phosphorylation decreases the interaction between RalA and Exo84. 
HA-tagged Exo84 was immunoprecipitated from COS-1 cells co-expressing TBK1 or its kinase-
inactive mutant along with Exo84 and RalA, RalA GV, or a GDP-locked dominant-negative Ral 
(S28N/SN) mutant. Levels of indicated proteins in WCL and the immunoprecipitates are shown. 
Arrow indicates phosphorylated Exo84 and RalA, respectively. (B) The interaction of 
endogenous Exo84 and Sec5 with RalA is decreased upon overexpression of WT TBK1. Flag-
tagged WT RalA and its constitutively active (G23V/GV) mutant were immunoprecipitated from 
COS-1 cells co-expressing TBK1 or its kinase-inactive mutant. Levels of indicated proteins in 
WCL and the immunoprecipitates are shown. The interaction of endogenous Exo84 and Sec5 
with RalA GV in the presence or absence of TBK1 is shown in the square. 
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with Exo84, whereas the interaction of Exo84 with WT RalA and the RalA SN mutant was 

barely detected. As shown in Figure 4.2, the interaction of Exo84 with the RalA GV mutant was 

significantly decreased by expression of WT TBK1 but not by its inactive K38A mutant. To 

examine the interaction of endogenous Exo84 and Sec5 with RalA, we also co-expressed WT 

TBK1 or its K38A mutant along with Flag-tagged WT RalA or its constitutively active GV 

mutant, followed by IP with anti-Flag antibodies (Figure 4.4B). We confirmed that both 

endogenous Sec5 and Exo84 preferentially immunoprecipitated with RalA GV, whereas the 

interaction of Sec5 or Exo84 with WT RalA was barely detectable. We also validated that the 

interaction between active RalA and endogenous Sec5 or Exo84 was significantly decreased only 

when WT TBK1 but not its K38A mutant was overexpressed. These data confirm that TBK1-

mediated Exo84 phosphorylation decreases the interaction between RalA and Exo84 by targeting 

the effector. 

    

Previous studies suggested that RalB activates TBK1 by promoting Sec5/TBK1 complex 

assembly (12). To explore this possibility, we examined whether the activity status of RalA 

affects the interaction between TBK1 and Exo84. We co-expressed WT TBK1 and its K38A 

mutant with HA-tagged Exo84 in the presence or absence of WT RalA, the constitutively active 

GV or the dominant-negative SN RalA mutant in COS-1 cells, and immunoprecipitated the 

protein with anti-HA antibodies (Figure 4.5). Kinase-inactive TBK1 preferentially co-

immunoprecipitated with Exo84, whereas the interaction of Exo84 with WT TBK1 was barely 

detected. This effect was consistent with the observation that the association of the catalytically 

inactive TBK1 with Exo84 did not correlate with the activity state of RalA. The constitutively  
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Figure 4.5 The activity state of RalA does not affect the interaction between TBK1 and 
Exo84.  
HA-tagged Exo84 was immunoprecipitated from COS-1 cells co-expressing TBK1 or its kinase-
inactive mutant along with Exo84 and RalA, RalA GV, or Ral SN mutant. Levels of indicated 
proteins in WCL and the immunoprecipitates are shown. DE and LE stand for dark exposure and 
light exposure, respectively. 
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active RalA GV mutant also preferentially co-immunoprecipitated with Exo84, unlike the WT or 

SN RalA mutant. We also confirmed that the interaction between RalA GV and Exo84 was 

significantly decreased when WT TBK1 but not its K38A mutant was co-expressed. 

Phosphorylated Exo84 was enriched by IP with anti-HA antibodies and detected by blotting with 

antibodies that recognize the 14-3-3 binding motif. As shown in Figure 4.4A, Exo84 

phosphorylation was enhanced by RalA GV expression, whereas it was significantly decreased 

by RalA SN expression, suggesting that active RalA does not promote Exo84/TBK1 complex 

assembly but rather may change phosphorylation due to the accessibility of substrate.  

 

To explore this possibility, we generated stable cell lines in HEK293T cells expressing Aequorea 

coerulescens green fluorescent protein (AcGFP1), a dual-tagged WT TBK1, and TBK1 K38A, in 

which the N-terminus of TBK1 is tagged with MYC and the C-terminus with AcGFP1 (MYC-

TBK1 WT-AcGFP1 or MYC-TBK1 K38A-AcGFP1). HEK293T cell lines stably expressing 

dual MYC and AcGFP1-tagged WT TBK1 or its inactive mutant were overexpressed with RalA 

WT, GV, SN or a fast cycling mutant (F39L/FL) bearing increased nucleotide dissociation rates 

that quickly cycles between the GDP- and GTP-bound state of RalA (13, 14). This was followed 

by an in vitro immune complex kinase assay using anti-MYC antibodies or control mouse IgG 

antibodies, [γ-32P]ATP and MBP as a substrate (Figure 4.6). Whole cell lysates were blotted 

with antibodies that recognize phosphorylation of TBK1 at S172, revealing that WT TBK1 was 

autoactivated (15). Moreover, overexpressed TBK1 (arrow) was phosphorylated to a greater 

extent than was endogenous TBK1 (arrow head), whereas overexpression of dominant-negative 

TBK1 K38A completely abolished phosphorylation of TBK1. Overexpression of any of the 

RalA mutants was without effect on phosphorylation of TBK1 at S172 or on TBK1 activity.  
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Figure 4.6 The activity state of RalA does not affect TBK1 activity.  
MYC-tagged TBK1 or its kinase-inactive mutant was immunoprecipitated from HEK293T cell 
lines stably expressing dual MYC and AcGFP1-tagged WT TBK1 or its inactive mutant K38A 
co-expressing RalA, RalA GV, Ral SN, or a fast cycling RalA (F39L/FL) mutant. As a control, 
IgG was used. Levels of indicated proteins in WCL and the immunoprecipitates are shown. DE 
and LE stand for dark exposure and light exposure, respectively. Arrows indicate exogenous 
TBK1 and arrow heads indicate endogenous TBK1 in WCL. Arrows in the immunoprecipitates 
indicate phosphorylated proteins.  
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To measure endogenous TBK1 catalytic activity, HEK293T cells were overexpressed with Flag-

tagged RalA WT, GV, FL, or RalB WT and FL, or TBK1 WT and K38A, followed by an in vitro 

immune complex kinase assay as described above (Figure 4.7). Overexpression of WT TBK1 

caused its autophosphorylation, and increased phosphorylation of interferon regulatory factor 3 

(IRF3) as a downstream target (16-20), as well as overall phosphorylation levels detected by 

blotting of whole cell lysates with antibodies that recognize the 14-3-3 binding motif, whereas 

overexpression of TBK1 K38A was without effect. None of the RalA or RalB mutants affected 

endogenous TBK1 activity. These combined observations indicate that while  

RalA has no direct effect on either TBK1 activation or Exo84/TBK1 complex assembly, 

phosphorylation of Exo84 by TBK1 disengages RalA from the exocyst by reducing the affinity 

of Exo84 for RalA. 
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Figure 4.7 RalA or RalB do not affect TBK1 activity.  
TBK1 was immunoprecipitated from HEK293T cells expressing RalA WT, GV, FL, or RalB 
WT and FL, or TBK1 WT and K38A. As a control, IgG was used. In vitro immune complex 
kinase assay was performed as described in materials and methods. Levels of indicated proteins 
in WCL and the immunoprecipitates are shown. Arrows indicate phosphorylated proteins in the 
immunoprecipitates. 
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Exo84 interaction with RalA and other exocyst subunits is dependent upon TBK1 

phosphorylation of Exo84. 

 

To identify the phosphorylation sites on Exo84 catalyzed by TBK1, HA-Exo84 was co-

expressed in COS-1 cells with WT TBK1 or its K38A mutant, followed by IP with anti-HA 

antibodies to enrich phosphorylated Exo84. Phosphorylation sites on Exo84 were then 

determined by LC-MS/MS mass spectrometry. 11 potential phosphorylation sites were identified 

with a total coverage of 60.2% of the Exo84 amino acid sequence (Figure 4.8).  

 

To identify the importance of these phosphorylation events and further validate the mass 

spectrometry analysis, each of the 11 phosphorylation sites was mutated to alanine by site-

directed mutagenesis. The phosphorylation-defective (S/T to A) Exo84 point mutants were HA-

tagged and overexpressed in HEK293T stable cell lines expressing AcGFP1 or a dual-tagged 

WT TBK1 (MYC-TBK1 WT-AcGFP1), and levels of phosphorylation of Exo84 was assayed 

after anti-HA IP followed by blotting with anti-14-3-3 binding motif antibodies (Figure 4.9). 

While phosphorylation of most of the Exo84 point mutants was increased by WT TBK1 

overexpression, the S93A, S96A, S505A, and S670A mutants showed reduced 14-3-3 motif 

antibody binding.  
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Figure 4.8 Schematic representation of mass spectrometry analysis.  
(A) Mass spectrometry sequence coverage of affinity-purified phosphorylated HA-Exo84. 
Identified sequence from mass spectrometry analysis is shown in gray. S or T indicate amino 
acid residue modified with phosphorylation. (B) Exo84 undergoes phosphorylation on multiple 
sites. Schematic diagram of the Exo84 domains is shown. Exo84 phosphorylation sties were 
identified in two independent mass spectrometry analyses with a total coverage of 60.2% of the 
Exo84 amino acid sequence (Figure 4.8A). The major functional phosphorylation sites are 
indicated in red. Each phosphorylation sites and residues adjacent phosphorylation sites are 
shown. 
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Figure 4.9 Substitution of alanine for serine at position 93, 96, 505, and 670 inhibits 
phosphorylation of Exo84.  
HA-tagged phosphorylation-defective Exo84 point mutants were immunoprecipitated from 
HEK293T cell lines stably expressing dual MYC and AcGFP1-tagged WT TBK1 or AcGFP1-
tagged empty vector. Levels of indicated proteins in WCL and the immunoprecipitates are shown. 
DE and LE stand for dark exposure and light exposure, respectively. Arrows indicate 
phosphorylated proteins the immunoprecipitates. Solid lines indicate exogenous TBK1 and 
arrow heads indicate endogenous TBK1 in WCL. 
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To test whether these 4 sites are functionally important for Exo84, we generated compound 

mutants, in which each residue was mutated to either Alanine (4A) or Glutamic acid (4E) to 

prevent or mimic phosphorylation. Lysates from COS-1 cells co-expressing WT TBK1 or its 

K38A mutant with HA-tagged Exo84 WT, 4A, or 4E were subjected to a pulldown assay with a 

GST-RalA GV fusion protein (Figure 4.10). Replacement of these 4 phosphorylation sites on 

Exo84 with glutamate resulted in a mobility shift comparable to what was observed with WT 

Exo84 phosphorylated by TBK1. Interestingly, the RalA fusion protein precipitated 

approximately 60% less of the Exo84 4E mutant compared to the WT protein. This reduction in 

the binding of Exo84 4E with active RalA was not changed by either WT TBK1 or its K38A 

mutant overexpression, suggesting that these 4 phosphorylation sites on Exo84 reduce the 

affinity of Exo84 for RalA in response to TBK1. While WT TBK1 overexpression resulted in an 

approximately 85% reduction in the interaction of active RalA with Exo84 WT or Exo84 4A, 

this inhibitory effect was not observed after overexpression of TBK1 K38A. Together these data 

suggest that while Exo84 is phosphorylated by TBK1 on other sites, these phosphorylation sites 

are not sufficient to influence the binding of the protein to RalA.  

 

To explore the role of other phosphorylation sites, we created more compound mutants from the 

11 potential phosphorylation sites identified from the mass spectrometry analysis, including eight 

(S93, S96, T152, S276, T313, S366, S505, S670) sites that appeared to represent consensus 

phosphorylation sites (21, 22). We performed a GST pull-down assay using a GST-RalA GV 

fusion protein with lysates from COS-1 cells co-expressing WT TBK1 and its K38A mutant, 

along with HA-tagged Exo84 WT, 8A, or 8E (Figure 4.11). Similar to the Exo84 4E mutant  
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Figure 4.10 TBK1-mediated Exo84 phosphorylation at position 93, 96, 505, and 670 is 
required for RalA disengagement.  
Cell lysates from COS-1 cells co-expressing Flag-tagged WT TBK1 and its kinase-inactive 
mutant with Exo84 and its phosphorylation-defective 4A or phosphomimetic 4E mutant were 
incubated with immobilized GST-RalA G23V. Pull downs were subjected to immunoblotting 
with anti-HA antibody. Amount of GST fusion proteins used in the pull down assay was 
visualized with Ponceau S. DE and LE stand for dark exposure and light exposure, respectively. 
Quantification of the binding of Exo84 with RalA is shown. The levels of binding were 
normalized to the second lane. The normalized ratio is represented in arbitrary units. Data are 
shown as the mean ± SEM. *p < 0.05; n = 3. 
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Figure 4.11 TBK1-mediated Exo84 phosphorylation at position 93, 96, 152, 276, 313, 366, 
505, and 670 is necessary and sufficient for RalA disengagement.  
Cell lysates from COS-1 cells co-expressing Flag-tagged WT TBK1 and its kinase-inactive 
mutant with Exo84 and its phosphorylation-defective 8A or phosphomimetic 8E mutant were 
incubated with immobilized GST-RalA G23V. Pull downs were subjected to immunoblot 
analysis and probed using anti-HA antibody. Amount of GST fusion proteins used in the pull 
down assay was visualized with Ponceau S. DE and LE stand for dark exposure and light 
exposure, respectively. Quantification of the binding of Exo84 with RalA is shown. The levels of 
binding were normalized to the second lane. The normalized ratio is represented in arbitrary 
units. Data are shown as the mean ± SEM. *p < 0.05; n = 3. 
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described above, the 8E mutant displayed reduced mobility on SDS PAGE compared to wild 

type. The RalA fusion protein precipitated approximately 70% less of the Exo84 8E mutant, but 

approximately 40% more of the 8A mutant compared to the WT protein. Overexpression of 

neither WT TBK1 nor its K38A mutant reduced or enhanced the binding between RalA and the 

Exo84 mutants. Furthermore, WT TBK1 overexpression resulted in an approximately 70% 

reduction in the interaction of active RalA with Exo84 WT, which was not observed by 

phosphorylation of the Exo84 8A mutant, or when TBK1 K38A was overexpressed. These data 

suggest that TBK1-mediated Exo84 phosphorylation on these 8 sites is necessary and sufficient 

for RalA disengagement, as Exo84 8A was resistant to phosphorylation-dependent RalA 

disengagement, whereas Exo84 8E exhibited a lower affinity for RalA. 

  

To understand whether TBK1-dependent phosphorylation of Exo84 influences other interactions, 

we investigated binding to other exocyst subunits. We co-expressed WT TBK1 and its K38A 

mutant with HA-tagged Exo84 WT, 4A, or 4E in COS-1 cells, followed by IP with anti-HA 

antibodies (Figure 4.12). HA immunoprecipitates were blotted with antibodies against two other 

exocyst subunits, Sec5 and Sec8, which were previously shown to interact with Exo84 in the 

exocyst complex (23). The phosphorylation-defective Exo84 4A mutant bound more strongly to 

Sec5 and Sec8 than did the WT Exo84 or its phosphomimetic 4E mutant. WT TBK1 

overexpression reduced the binding of WT Exo84 to Sec5 and Sec8, while overexpression of the 

kinase-inactive mutant enhanced this interaction. The stronger binding of the Exo84 4A mutant  
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Figure 4.12 Phosphorylation of Exo84 by TBK1 induces its disengagement from other 
exocyst components.  
HA-tagged Exo84 WT, 4A, and 4E were immunoprecipitated from COS-1 cells co-expressing 
Flag-tagged WT TBK1 and its kinase-inactive mutant. Levels of indicated proteins in WCL and 
the immunoprecipitates are shown. DE and LE stand for dark exposure and light exposure, 
respectively. Arrows point to Sec8. 
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to Sec5 and Sec8 was not affected by WT TBK1 overexpression; however, the binding of Exo84 

4E to Sec5 and Sec8 was significantly reduced, even in the presence of the kinase-inactive 

mutant of TBK1. Anti-HA immunoprecipitation of lysates followed by blotting with antibodies 

that recognize the 14-3-3 binding motif revealed that WT Exo84 was phosphorylated upon 

TBK1 but not K38A overexpression. Exo84 mutants were less phosphorylated upon TBK1 but 

not K38A overexpression. However, the kinase-inactive mutant of TBK1 K38A and Exo84 still 

interacted with Exo84 4A and Exo84 4E.  

 

We performed similar experiments with the 8A and phosphomimetic Exo84 8E mutants (Figure 

4.13). The phosphorylation-defective Exo84 8A mutant interacted well with Sec5 and Sec8, 

whereas binding with the phosphomimetic 8E mutant was reduced. WT TBK1 overexpression 

blocked the binding of WT Exo84 but not the mutant forms of the protein to Sec5 and Sec8. 

Both Exo84 8A and 8E also underwent less phosphorylation by TBK1 overexpression. 

Interestingly, while the interaction of Exo84 with WT TBK1 was barely detected, it was easily 

visualized for the Exo84 8A mutant. Taken together, these data suggest that phosphorylation of 

Exo84 by TBK1 induces its disengagement from both RalA and other exocyst components. 

Exo84 sites S93, S96, S505, and S670 are crucial for the regulation of exocyst binding, whereas 

S93, S96, T152, S276, T313, S366, S505 and S670 appeared to negatively regulate both RalA 

and exocyst binding. These data suggest that these are independent processes mediated by TBK1 

phosphorylation on Exo84 at different amino acids. 
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Figure 4.13 Phosphorylation of Exo84 by TBK1 induces its disengagement from other 
exocyst components.  
HA-tagged Exo84 WT, 8A, and 8E were immunoprecipitated from COS-1 cells co-expressing 
Flag-tagged WT TBK1 and its kinase-inactive mutant. Levels of indicated proteins in WCL and 
the immunoprecipitates are shown. DE and LE stand for dark exposure and light exposure, 
respectively. Arrows indicate Sec8. 
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Exo84 phosphorylation by TBK1 results in disengagement of RalA and disassociation of 

the exocyst for insulin-stimulated glucose transport. 

 

We speculate that GLUT4 vesicle recognition at the plasma membrane is triggered by RalA 

activation, but once bound, the phosphorylation of Exo84 and Sec5 releases the GLUT4 vesicle 

from the exocyst to permit fusion. To examine whether this process is triggered by TBK1-

mediated Exo84 phosphorylation in 3T3-L1 adipocytes, endogenous Exo84 was 

immunoprecipitated from cell lysates of 3T3-L1 adipocytes treated with or without insulin, in the 

presence or absence of the TBK1 inhibitor amlexanox, and the interaction of Exo84 with various 

proteins was assessed by western blotting (Figure 4.14A and Figure 4.15A). Endogenous RalA 

rapidly associated with Exo84 in response to insulin. This effect was maximal 2 minutes after 

insulin stimulation and declined thereafter. Assessment of RalA activity by pull-down assay with 

a GST-RalBP1 RBD fusion protein (Figure 4.14B and Figure 4.15B) revealed that RalA was 

maximally activated by 2 minutes, and maintained throughout 30 minutes. While amlexanox 

pretreatment was without effect on RalA activity, it prevented the decline in RalA-Exo84 

binding, suggesting that inhibition of TBK1 delays the rate of dissociation of RalA-Exo84 

interaction. To examine whether the disengagement phase is due to TBK1-mediated Exo84 

phosphorylation, Exo84 immunoprecipitates were blotted with antibodies that recognize the 14-

3-3 binding motif during the time course. Phosphorylation of Exo84 reached maximal levels 2 

minutes after insulin stimulation and declined by 30 minutes. It is likely that disruption of the 

exocyst complex might also be crucial to initiate another round of vesicle fusion. To examine 

this possibility, Exo84 immunoprecipitates were blotted with anti-Sec8 and anti-Sec5 antibodies. 

The interaction of Exo84 with Sec5 and Sec8 reached maximal levels 2 minutes after insulin  
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Figure 4.14 Disengagement of TBK1, Exo84, and RalA in insulin-stimulated GLUT4 
trafficking.  
(A) Disengagement of TBK1, Exo84, and RalA in insulin-stimulated GLUT4 trafficking is due 
to TBK1-mediated Exo84 phosphorylation. Exo84 was immunoprecipitated from 3T3-L1 
adipocytes treated with or without insulin (10 nM) in the presence or absence of pretreatment 
with amlexanox (50 μM). As a control, goat serum (G.S) was used. Levels of indicated proteins 
in WCL and the immunoprecipitates are shown. (B) TBK1 does not directly affect RalA activity. 
Cell lysates from 3T3-L1 adipocytes treated with or without insulin (10 nM) in the presence or 
absence of pretreatment with amlexanox (50 μM) were incubated with GST-RalBP1 RBD beads. 
Pull downs were subjected to immunoblot analysis using anti-RalA antibody. Amount of GST 
fusion proteins used in the pull down assay was visualized with Ponceau S. DE and LE stand for 
dark exposure and light exposure, respectively. 
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Figure 4.15 Quantification of disengagement of TBK1, Exo84, and RalA in insulin-
stimulated GLUT4 trafficking.  
(A) Quantification of the binding of RalA, Sec8, Sec5, and TBK1 with Exo84 as shown in 
Figure 4.14A. Quantification of levels of Exo84 phosphorylation is also shown. The levels were 
all normalized to the basal level at 0 minute. *p < 0.05 as compared to the basal level; n = 3. (B) 
Quantification of RalA activity as shown in Figure 4.14B. RalA activity (pull-down/total RalA) 
was normalized to the second lane. The normalized ratio is represented in arbitrary units. Data 
are shown as the mean ± SEM. *p < 0.05; n = 3. 
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stimulation, but returned to basal levels by 30 minutes. Interestingly, amlexanox pretreatment 

increased the binding of Exo84 to Sec5 and Sec8 even in the absence of insulin, while the 

disassociation of the complex was blocked; suggesting that phosphorylation of the exocyst by 

TBK1 reverses the assembly of the entire complex. TBK1 also associated with Exo84, reaching 

maximal levels 30 minutes after insulin stimulation. Amlexanox pretreatment enhanced the 

interaction between TBK1 and Exo84, and these effects were also seen with the structurally 

unrelated TBK1 inhibitor Cay (Figure 4.16 and Figure 4.17).  

 

To understand the dynamics of the protein interactions of TBK1, Exo84, and RalA in insulin-

stimulated GLUT4 trafficking, we investigated whether these proteins reside in the same 

subcellular compartments. Previous studies have shown that RalA co-localizes with GLUT4 

vesicles and translocates to the plasma membrane upon insulin stimulation (4). Insulin also 

stimulates the assembly of the exocyst complex at the plasma membrane (2, 3). We performed 

subcellular fractionation on 3T3-L1 adipocytes after treatment with or without insulin, followed 

by immunoblotting, as previously described (4, 24) (Figure 4.18). GLUT4, RalA, and the 

exocyst subunits Sec6, Sec8, Sec10, Sec5, and Exo84 were enriched in the plasma membrane 

fractions upon insulin stimulation, with a concurrent loss of these proteins in the low-density 

microsome (LDM) fractions. IRAP was also enriched in the plasma membrane fractions upon 

insulin stimulation, but transferrin receptor (TfR), Rab5, and caveolin showed no significant 

movement. In untreated cells, TBK1 protein was detected in most fractions. After treatment with 

insulin, TBK1 was enriched in the plasma membrane fractions, with a concurrent loss of this 

protein in the low-density microsome (LDM), mirroring GLUT4 trafficking. Interestingly, 
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Figure 4.16 Disengagement of TBK1, Exo84, and RalA in insulin-stimulated GLUT4 
trafficking.  
(A) Disengagement of TBK1, Exo84, and RalA in insulin-stimulated GLUT4 trafficking is due 
to TBK1-mediated Exo84 phosphorylation. Exo84 was immunoprecipitated from 3T3-L1 
adipocytes treated with or without insulin (10 nM) in the presence or absence of pretreatment 
with Cay (1 μM). As a control, goat serum (G.S) was used. Levels of indicated proteins in WCL 
and the immunoprecipitates are shown. (B) TBK1 does not directly affect RalA activity. Cell 
lysates from 3T3-L1 adipocytes treated with or without insulin (10 nM) in the presence or 
absence of pretreatment with Cay (1 μM) were incubated with GST-RalBP1 RBD beads. Pull 
downs were subjected to immunoblot analysis and probed using anti-RalA antibody. Amount of 
GST fusion proteins used in the pull down assay was visualized with Ponceau S. DE and LE 
stand for dark exposure and light exposure, respectively. 
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Figure 4.17 Quantification of disengagement of TBK1, Exo84, and RalA in insulin-
stimulated GLUT4 trafficking.  
(A) Quantification of the binding of RalA, Sec8, Sec5, and TBK1 with Exo84 as shown in 
Figure 4.16A. Quantification of levels of Exo84 phosphorylation is also shown. The levels were 
all normalized to the basal level at 0 minute. *p < 0.05 as compared to the basal level; n = 3. (B) 
Quantification of RalA activity as shown in Figure 4.16B. RalA activity (pull-down/total RalA) 
was normalized to the second lane. The normalized ratio is represented in arbitrary units. Data 
are shown as the mean ± SEM. *p < 0.05; n = 3. 
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Figure 4.18 Endogenous TBK1, Exo84, and RalA translocate to the plasma membrane in 
response to insulin.  
Subcellular fractionation was performed as described in materials and methods in 3T3-L1 
adipocytes with or without insulin (10 nM) for 15 minutes. Indicated fractions were subjected to 
immunoblot analysis and probed using specific antibodies as indicated. N/M, nuclear and 
mitochondrial remnants; PM, plasma membrane; HDM, high-density microsomes; LDM, low-
density microsomes; Cyt, cytosol. DE and LE stand for dark exposure and light exposure, 
respectively. Arrow indicates TfR and Sec10, respectively. 
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phosphorylation of TBK1 at its activating residue S172 was also increased in response to insulin 

in the plasma membrane fractions, although insulin does not produce an increase in kinase 

activity, as determined by an immune kinase assay (data not shown).  

 

To further evaluate the kinetics of these insulin-induced changes in subcellular localization, we 

examined the time course (Figure 4.19). GLUT4, IRAP, TBK1, Sec8, Sec5, and RalA were 

rapidly translocated to the plasma membrane in response to insulin, detected within 5 minutes 

and reached maximal levels by 15 minutes after insulin stimulation following a decrease 

thereafter. Peak levels of IRAP and RalA translocation to the plasma membrane were detected at 

30 min after insulin stimulation. Interestingly, amlexanox pretreatment increased the 

phosphorylation of TBK1 at S172 due to the relief of feedback inhibition, as previously reported 

(25, 26). In addition, amlexanox pretreatment significantly blocked translocation of GLUT4, 

IRAP, TBK1, Sec8, Sec5, and RalA in response to insulin, confirming that TBK1 activity is 

required for insulin-stimulated GLUT4 translocation.  

 

Previous studies have shown that GLUT4 vesicles are targeted to discrete micro-domains on the 

plasma membrane, enriched in lipid rafts (3). To determine whether TBK1 is also enriched in 

lipid rafts in response to insulin, we performed sucrose density gradient fractionation of purified 

plasma membranes prepared from untreated and insulin-treated cells, followed by 

immunoblotting, as previously described (Figure 4.20) (3). Caveolin was exclusively detected in 

the lipid raft-enriched fraction 3 and 4 of the gradient and was unaffected by insulin treatment, as 

previously reported (3). In contrast, TfR was found exclusively at the bottom of the gradient in 

fractions 7-11, where it increased in response to insulin. GLUT4, IRAP, Sec5, Sec8, Exo84, and  
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Figure 4.19 Inhibition of TBK1 blocks insulin-stimulated GLUT4 translocation.  
After subcellular fractionation in 3T3-L1 adipocytes with or without insulin (10 nM) in the 
presence or absence of pretreatment with amlexanox (50 μM), only plasma membrane fractions 
were subjected to immunoblot analysis and probed using specific antibodies as indicated. DE and 
LE stand for dark exposure and light exposure, respectively. Arrow indicates GLUT4. 
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Figure 4.20 Insulin stimulates the translocation of TBK1, Exo84, and RalA to lipid rafts. 
After 15-minute insulin stimulation, 3T3-L1 adipocytes were harvested in a nondetergent buffer 
followed by sucrose density gradient fractionation as described in materials and methods. All 
fractions were subjected to immunoblot analysis with specific antibodies as indicated. Lipid raft 
(fractions 3 and 4) and nonraft fractions (fractions 10 and 11) are shown.  
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RalA were detected in both raft (fractions 3 and 4) and nonraft fractions (10 and 11) in untreated 

cells. However, these proteins were enriched only in the lipid raft fractions in cells treated with 

insulin. Interestingly, insulin-dependent changes in TBK1 localization were also observed, with a 

more pronounced effect on phosphorylation of TBK1 at S172. 

 

To evaluate the importance of Exo84 phosphorylation in insulin-stimulated glucose transport, we 

examined the effects of HA-tagged Exo84 WT, 8A, or 8E mutant expression on the  

trafficking of GLUT4 in response to insulin by performing a GLUT4 translocation assay. 3T3-L1 

adipocytes stably expressing a dual tagged-MYC-GLUT4-eGFP were treated with or without 

insulin (Figure 4.21). Overexpression of HA-tagged Exo84 WT, 8A, or 8E mutants was detected 

with anti-HA antibodies by immunohistochemistry (arrow head). In control cells and cells 

overexpressing WT Exo84, GLUT4 was detected in the intracellular compartment in the basal 

state, and translocated to the plasma membrane in response to insulin, along with the appearance 

of the exofacial MYC epitope signal. Expression of the phosphorylation-defective Exo84 8A 

mutant had no effect on the localization of GLUT4 in the basal state, but insulin-treated cells 

expressing the Exo84 8A mutant did not exhibit the exofacial MYC epitope signal. Expression of 

the phosphomimetic Exo84 8E mutant similarly blocked insulin-stimulated GLUT4 translocation. 

Quantitation of these data revealed that approximately 74% and 54% of the insulin-stimulated 

appearance of the MYC epitope signal on the plasma membrane was blocked by expression of 

phosphorylation-defective Exo84 8A and phosphomimetic Exo84 8E mutants, respectively 

(Figure 4.22A). In these experiments, the levels of overexpression of HA-tagged Exo84 WT, 8A, 

or 8E mutant were comparable to endogenous levels of Exo84, and did not affect Akt 

phosphorylation in the basal or insulin-stimulated states (Figure 4.22B). All together, these data 
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suggest that Exo84 phosphorylation by TBK1 terminates its interaction with RalA, and is thus 

important for insulin-stimulated glucose transport to control disengagement of RalA and 

disassociation of the exocyst.  
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Figure 4.21 Engagement and disengagement of RalA and Exo84 mediated by TBK1 is 
required for insulin-stimulated GLUT4 translocation.  
3T3-L1 adipocytes stably expressing MYC-GLUT4-eGFP were transfected with HA-tagged 
Exo84 WT, 8A, and 8E as indicated in the presence or absence of stimulation with 10 nM insulin 
for 15 minutes. Immunostaining for MYC (red) in nonpermeabilized cells indicates GLUT4 
translocation to the plasma membrane. Immunostaining for HA (cyan) in permeablilized cells 
indicates Exo84 overexpression. GFP levels in cells indicate total GLUT4 expressed. A merge of 
GFP, HA, and MYC is shown. Arrow head indicates cells expressing Exo84. Bar, 20 μm. 
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Figure 4.22 Exo84 phosphorylation mediated by TBK1 is required for insulin-stimulated 
GLUT4 translocation.  
(A) Quantification of GLUT4 translocation as shown in Figure 4.21. Total number of cells that 
show MYC staining at the rim in GFP/HA-positive cells were counted in each condition. 
Percentage of cells that undergo GLUT4 translocation is graphed. Error bars are indicative of at 
least three independent experiments. Data are shown as the mean ± SEM. *p < 0.05; At least 100 
cells per condition were counted for anti-MYC rim staining. (B) Ectopic overexpression of HA-
tagged Exo84 WT, 8A, and 8E in 3T3-L1 adipocytes stably expressing MYC-GLUT4-eGFP as 
shown in Figure 4.21. Levels of indicated proteins in 3T3-L1 adipocytes were assessed by 
immunoblots. 
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Materials and Methods 
 

Materials and reagents 

 

Enhanced chemiluminescence (ECL) reagents were purchased from Thermo Scientific. EDTA-

free protease inhibitor tablet was purchased from Roche Diagnostics. Amlexanox was purchased 

from Ontario Chemical Inc. The TBK1/IKKε inhibitor CAY10576 (Cay) was purchased from 

Cayman Chemical. BenchMarkTM Pre-stained protein ladder was purchased from Life 

Technologies. GST-tagged RalBP1 agarose beads were purchased from EMD Millipore. 

 

Antibodies 

 

Anti-Flag antibody was obtained from Sigma, and anti-HA, anti-MYC, anti-Exo84, and anti-

Sec10 antibodies were obtained from Santa Cruz Biotechnology. Anti-TBK1, anti-phospho-

TBK1 (Ser172), anti-AKT, anti-phospho-AKT (Ser473), anti-phospho-(Ser) 14-3-3 binding 

motif (R-X-Y/F-X-pS), anti-IRF3, anti-phospho-IRF (Ser396), anti-IRAP, anti-Histone 3, and 

Anti-Rab5 antibodies were purchased from Cell Signaling Technology. Anti-RalA, anti-Sec8, 

and anti-caveolin1 antibodies were purchased from BD Bioscience. Anti-GLUT4 was purchased 

from Alpha Diagnostics. Anti-Sec5 was purchased from Proteintech Group. Anti-TfR was 

purchased from Zymed Labs. Anti-Sec6 was purchased from Enzo Life Sciences. 

 

Plasmids 
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The Flag-tagged human TBK1 WT and TBK1 K38A cDNAs were kindly provided by Dr. Tom 

Maniatis (Columbia University). The human TBK1 WT and K38A cDNAs were subcloned into 

pLVX-AcGFP1-N1 (Clontech) to generate stable cell lines. The rat Exo84 cDNA was kindly 

provided by Dr. Charles Yeaman (University of Iowa) and subcloned into pKH3 vector. Flag-

tagged RalA constructs (WT, G23V, S28N, and F39L) have been previously described (4).  

 

Cell culture and transfection 

 

3T3-L1 fibroblasts (American Type Culture Collection) were cultured and differentiated as 

described previously (27). Cells were routinely used within 10 days after completion of the 

differentiation process; only cultures in which > 90% of cells displayed adipocyte morphology 

were used. 3T3-L1 adipocytes were routinely transfected with plasmids by electroporation as 

described previously (7). Electroporation into mature adipocytes was done within 1-4 days post-

differentiation at 160 kV, 950 uF. 3T3-L1 preadipocytes stably expressing MYC-GLUT4-eGFP 

were maintained and differentiated as described previously (4, 28). COS-1 or HEK293T cells 

were cultured in DMEM containing 10% fetal bovine serum (FBS). These cells were cultured to 

90% confluence and transfection was carried out using Opti-MEM media and Lipofectamine 

2000 (Life Technologies) according to manufacturer’s protocol. For overexpression experiments, 

cells were collected and lysed 18-36 hours after transfection. Lentiviral constructs expressing 

TBK1 WT or its K38A mutant in pLVX-AcGFP1-N1 were transfected in HEK293T cells with 

ViraPowerTM lentiviral packaging mix (Life Technologies) using Lipofectamine 2000. 

Conditioned media containing the viral particles were collected 24 and 48 hours post-transfection, 

filtered using a 0.45 um filter (Millipore) and concentrated by the University of Michigan Vector 
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Core. Infection was carried out by adding viral particles onto HEK293T cells in the presence of 8 

ug/ml polybrene and spinning plates at 1,000 xg for 30 minutes at room temperature. The media 

was replaced with fresh media after 24 hours and incubated for 3 days, then stable cells were 

selected using 2 ug/ml puromycin. Before transfection, stable cells were maintained in DMEM 

supplemented with 10% FBS and 0.5 ug/ml puromycin. 3T3-L1 adipocytes were starved in 

reduced serum (0.5% FBS) medium for 12 hours. After serum starvation, cells were pretreated 

for 1 hour with amlexanox or Cay at the given concentrations and stimulated with 10 nM insulin 

for indicated time. 

 

GLUT4 translocation assay 

 

GLUT4 translocation was measured as described previously (3). Briefly, differentiated 3T3-L1 

adipocytes stably expressing MYC-GLUT4-eGFP were used to overexpress HA-tagged Exo84 

proteins. One day after electroporation, cells were stimulated with or without 10 nM insulin for 

15 minutes and then washed once with ice-cold PBS. Cells were fixed for 10 minutes in 4% 

paraformaldehyde (PFA; Electron Microscopy Sciences), neutralized with 100 mM glycine-PBS, 

followed by blocking in 2% bovine serum albumin (BSA) in PBS for 1 hour at room temperature. 

Monoclonal anti-MYC and polyclonal anti-HA antibodies were used at 1:300 dilution. GLUT4 

translocation to the plasma membrane was measured by staining with MYC antibodies in 

nonpermeabilized cells. Overexpressed proteins were measured by staining with HA antibodies 

in permeabilized cells with 0.5% Triton X-100 for 4 minutes. Percentage of cells with insulin-

stimulated GLUT4 translocation was calculated as the percentage of cells with MYC staining in 

the GFP/HA-positive pool. Alexa-Fluor 568 conjugated goat anti-mouse and Alexa-Fluor 647 
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conjugated goat anti-rabbit secondary antibodies (Life Technologies) were used at 1:500 dilution. 

Confocal images were obtained using an inverted Olympus confocal microscope operated with 

the Fluoview300 program (Olympus America Inc.).  

 

Immunoprecipitation and immunoblotting 

 

For immunoprecipitation, cells were washed once with ice-cold PBS before lysis with IP buffer 

(100 mM Tris-HCL (pH 7.5), 130 mM NaCl, 1% Triton X-100, 1 mM EDTA, 1 mM Na3VO4, 

10 mM NaF, 5 mM MgCl2) supplemented with an EDTA-free protease inhibitor tablet (Roche). 

Lysates were cleared by centrifugation at 13,000 xg for 15 minutes and then incubated with 2 ug 

of antibody for 1 mg of protein for 4 hours to overnight at 4 °C. Immunoprecipitaes were 

adsorbed on Protein A/G plus agarose (Santa Cruz Biotechnology) for 1.5-2 hours, washed three 

times in lysis buffer, and eluted in 1.5X sodium dodecyl sulfate (SDS) sample buffer (240 mM 

Tris-HCL (pH6.8), 40% glycerol, 8% SDS, 0.04% bromophenol blue, and 5% beta-

mercaptoethanol) by boiling the samples for 5 minutes at 95 °C. For regular cell lysis, cell were 

washed once with ice-cold PBS before lysis with SDS buffer (100 mM Tris-HCL (pH 8.0), 130 

mM NaCl, 1% Nonidet P-40 (NP-40), 0.2% Sodium deoxycholate, 0.1% SDS, 10 mM Sodium 

Pyrophosphate, 1 mM Na3VO4, 10 mM NaF) supplemented with an EDTA-free protease 

inhibitor tablet (Roche), followed by sonication. The crude lysates were centrifuged at 13,000 xg 

for 15 minutes and protein concentration was determined using Protein Assay Reagent (Bio-Rad). 

Samples were diluted in 4X SDS sample buffer and boiled for 5 minutes at 95 °C. Proteins were 

resolved by SDS-polyacrylamide gel electrophoresis (PAGE; Life Technologies) and transferred 

to nitrocellulose membranes (Bio-Rad). Individual proteins were detected with specific 
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antibodies and visualized on X-ray film using horseradish peroxidase-conjugated secondary 

antibodies (Bio-Rad) and Western Lightning Enhanced Chemiluminescence (Perkin Elmer Life 

Sciences). Where necessary, blots were incubated in stripping buffer (50 mM Tris-HCL (pH 6.8), 

150 mM NaCl, 110 mM beta-mercaptoethanol, and 2% SDS) and re-probed with the specific 

antibodies. 

 

In vitro kinase assay 

 

In vitro kinase assays were performed in kinase buffer containing 25 mM Tris (pH 7.5), 10 mM 

MgCl2, 1 mM dithiothreitol (DTT), and 50 μM ATP for 30 minutes at 30 °C in the presence of 

0.5 μCi γ-[32P]-ATP and 1 μg myelin basic protein (MBP) per sample as a substrate. The kinase 

reaction was stopped by adding 4X SDS sample buffer and boiling for 5 minutes at 95 °C. 

Supernatants were resolved by SDS-PAGE, transferred to nitrocellulose, and analyzed by 

autoradiography. 

 

TBK1 immune complex kinase assay 

 

Cells were washed once with ice-cold PBS and lysed with lysis buffer containing 50 mM Tris 

(pH 7.5), 150 mM NaCl, 2 mM EDTA, 5 mM NaF, 25 mM β-glycerophosphate, 1 mM sodium 

orthovanadate, 10% glycerol, 1% Triton X-100, 1 mM DTT and 1 mM PMSF supplemented 

with an EDTA-free protease inhibitor tablet (Roche). Lysates were cleared by centrifugation at 

13,000 xg for 15 minutes. Each 1 mg of lysate was subjected to IP using 2 ug of monoclonal 

MYC, mouse IgG, rabbit IgG, or TBK1 rabbit polyclonal antibodies for 3 hours at 4 °C. The 
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immunocomplexes were harvested by incubation with Protein A/G plus agarose (Santa Cruz 

Biotechnology) for 1 hour at 4 °C. Immunoprecipitates were washed once with lysis buffer and 

three times with wash buffer containing 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES) (pH 7.4), 50 mM NaCl, 20 mM β-glycerophosphate, 1 mM Na3VO4, 5 mM NaF, 

10 mM MgCl2 and 1 mM DTT. In vitro kinase assay was performed using the 

immunoprecipitated kinases as described above. Relative amounts of MBP phosphorylation were 

detected by autoradiography. 

 

Protein purification and pull-down experiment  

 

GST fusion proteins were expressed in RosettaTM (DE3)pLysS competent cells (Novagen). GST 

proteins were induced 50-100 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 16 hours at 

25 °C. Cells were pelleted by centrifugation at 4,000 xg for 10 minutes. Cells were lysed with 

lysis buffer containing 50 mM Tris (pH 7.5), 0.5 mM EDTA, and 0.3 M NaCl supplemented 

with an EDTA-free protease inhibitor tablet (Roche). Lysates were mixed with 1:10 dilution of 

10 mg/ml lysozyme and 4 mM DTT and then incubated on ice for 15 minutes. 0.2% NP-40 were 

added to lysates and lysis was further performed by freeze-thaw cycle. To get soluble proteins, 

lysates were mixed with a buffer containing 1.5 M NaCl, 12 mM MgCl2, and 1:1000 dilution of 

10 mg/ml DNase I (Roche) supplemented with an EDTA-free protease inhibitor tablet (Roche). 

Lysates were passed through syringe with 18 gauge needle (BD Bioscience) every 10-15 minutes 

for 2 hours at 4 °C. Soluble proteins were collected by centrifugation at 15,000 xg for 20 minutes 

at 4 °C. Supernatants were incubated with glutathione sepharose beads (GE Healthcare Life 

Sciences) and washed four times with PBS (pH 8.0). Protein immobilized on beads were stored 
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at -80 °C in PBS containing 10% glycerol and 10 mM DTT. Sometimes, proteins were eluted 

from glutathione beads by washing the beads with 10 mM glutathione in PBS (pH 8.0). Purified 

GST-tagged Exo84 RBD proteins were cleaved with thrombin (GE Healthcare Life Sciences) 

according to manufacturer’s protocol. For pull-down experiment, cells were washed once with 

ice-cold PBS and then lysed in pulldown buffer (100 mM Tris, pH 7.5, 130 mM NaCl, 1% NP-

40, 10% glycerol, 1 mM Na3VO4, 10 mM NaF, 5 mM MgCl2, 1 mM EDTA, 1 mM DTT) 

supplemented with a protease inhibitor tablet (Roche). Lysates were cleared by centrifuging at 

13,000 xg for 15 minutes and then were incubated with GST fusion proteins bound to glutathione 

beads (GE Healthcare Life Sciences) for 40 minutes at 4 °C. Beads were washed three times with 

1 mL of pull-down lysis buffer and then resuspended in 1.5X SDS sample buffer. 

 

Nucleotide loading of GTPases 

 

GST alone or GST-RalA fusion proteins bound to glutathione beads were incubated for 30 

minutes at room temperature in loading buffer containing 20 mM Tris (pH 7.5), 1 mM DTT, and 

50 mM NaCl, 5% glycerol, 0.1% NP-40 with 2 mM EDTA supplemented with a protease 

inhibitor tablet. GST fusion proteins were then loaded with nucleotide by incubating in loading 

buffer supplemented with 2 mM GDP or 1 mM GTPγS for 1 hour at room temperature. To stop 

loading, 10 mM MgCl2 was added for 10 minutes at room temperature. Loaded GST or GST-

RalA beads were then added to COS-1 cells that were lysed in buffer containing 25 mM Tris (pH 

7.5), 137 mM NaCl, 10% glycerol, 1% NP-40, 5 mM MgCl2, 10 mM NaF, and 1 mM DTT 

supplemented with EDTA-free protease inhibitor tablets. The reaction was incubated for 1 hour 

at 4°C, and then beads were washed three times in wash buffer containing 50 mM Tris (pH 7.5), 
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80 mM NaCl, 60 mM MgCl2, 1% NP-40, and 1 mM DTT and once in rinse buffer containing 50 

mM Tris (pH 7.5), 80 mM NaCl, 60 mM MgCl2, 10 mM NaF, and 1 mM DTT supplemented 

with 10 μM GDP, 10 μM GTPγS, and complete EDTA-free protease inhibitor tablets. The pull 

downs were solubilized in 1.5X SDS sample buffer and subjected to SDS-PAGE, and 

immunoblotting was performed using the indicated antibodies. 

 

Mass spectrometry 

 

In-gel digestion followed by LC-MS/MS analysis was carried out by the mass spectrometry-

based proteomics resource in the Department of Pathology, University of Michigan. Briefly, 

tryptic peptides were resolved on a nano-C18 reverse phase column and sprayed directly onto 

Orbitrap mass spectrometer (LTQ-Orbitrap XL, Thermofisher). Orbitrap was operated in a data-

dependent mode to acquire one full MS spectrum (resolution of 30,000@400 m/z) followed by 

MS/MS spectra on 6 most intense ions (top 6). Proteins were identified by searching data against 

human and rat protein database (Uniprot, rel. 2010-9) using X!Tandem/TPP software suite. 

Oxidation of Met, carbamidomethylation of Cys and phosphorylation of Ser, Thr, and Tyr were 

considered as potential modifications (29).  

 

Subcellular fractionation 

 

3T3-L1 adipocytes that were 10 days postdifferentiation were stimulated as indicated, washed 

twice in ice-cold PBS (pH 7.5) and then were lysed in HES buffer (20mM HEPES (pH 7.5), 1 

mM EDTA, and 250 mM sucrose supplemented with complete EDTA-free protease inhibitor 
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tablets) on ice by scraping with cell lifters (Corning Life Sciences). Samples were transferred 

and homogenized in a glass potter homogenizer (Wheaton) for 20 strokes on ice. Fractionation 

was performed in a NVT90 rotor (Beckman Coulter) by differential centrifugation using 

ultracentrifugation with established protocols as previously described (4, 24). Equal amounts of 

proteins, as determined with Protein Assay Reagent (Bio-Rad), were subjected to SDS-PAGE, 

followed by immunoblotting analysis using various antibodies as indicated. Plasma membrane 

fractions were further fractionated by sucrose gradient centrifugation as described below. 

 

Sucrose gradient centrifugation 

 

3T3-L1 adipocytes were treated and homogenized same as where subcellular fractionation was 

performed. After homogenization, cells were centrifuged at 3,000 xg for 3 minutes to get the 

PNS and the supernatant was centrifuged at 15,700 rpm for 19 minutes to get a total plasma 

membrane fraction. This fraction was further fractionated in a sucrose gradient as previously 

described (3). Briefly, the total plasma membrane fraction was either directly subjected to 

immunoblotting analysis using various antibodies as indicated or solubilized by resuspending the 

pellet in MBS buffer (20 mM 2-(N-morpholino)ethanesulfonic acid (MES; pH 6.5) and 150 mM 

NaCl) with 0.2% Triton-X 100. Samples were homogenized in a glass potter homogenizer 

(Wheaton) for 10 strokes on ice. 0.4 ml of samples were mixed with 0.4 ml of 80% sucrose 

(wt/vol), and overlaid with 3.5 ml of 30%, 1 ml of 5% sucrose. The gradient was centrifuged at 

35,000 rpm for 19 hours in a SW55 Ti rotor (Beckman Coulter), and 440 ul fractions were 

collected from the top of each gradient. Each fraction was run on SDS-PAGE, followed by 

immunoblotting analysis using various antibodies as indicated.    
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Statistical analyses 

 

Averaged values are presented as the mean ± standard error of the mean (s.e.m). When 

comparing two groups, we performed Student’s t-test to determine statistical significance. When 

more than two groups and two factors were investigated, we first performed a two-way analysis 

of variance (ANOVA) to establish that not all groups were equal. After a statistically significant 

ANOVA result, we performed between-group comparisons using the Tukey post hoc analysis for 

comparisons of all means and Sidak for comparisons of within factor main effect means. 

ANOVA and Tukey/Sidak tests were performed using GraphPad Prism version 6. 
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Chapter 5  

Conclusions and future directions 

 

Although there has been significant progress in the identification of insulin signaling pathways 

leading to GLUT4 translocation and glucose uptake (1), our understanding of the mechanisms by 

which these upstream signaling pathways converge on intracellular GLUT4-storage vesicles for 

translocation to the plasma membrane remains incomplete. Insulin increases the activity of 

numerous protein kinases in adipocytes, and some of these are required for the actions of insulin 

on glucose transport (2, 3). We report here another protein kinase that appears to play a critical 

role in this process, TBK1, which is required for insulin-stimulated glucose transport and 

GLUT4 translocation to and insertion in the plasma membrane. 

 

As a non-canonical member of the IKK family of kinases, TBK1 was initially identified through 

its sequence homology with IKKα and IKKβ, key regulators of the NFκB transcription pathway 

(4, 5). However, numerous studies have shown that NFκB is not activated in mouse embryonic 

fibroblasts from IKKα and IKKβ double knockout mice, while TBK1 is dispensable, suggesting 

that TBK1 does not play an important role in the activation of the NFκB pathway (6-13). TBK1 

has also been implicated in regulation of the expression of type I IFNs through phosphorylation 

of IRFs (7-10, 12). Furthermore, recent reports have highlighted counter-inflammatory roles for 

TBK1, based on its effects as a negative regulator of the canonical IKKs, in the process 
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preventing the overproduction of inflammatory mediators (14, 15). In this regard, both IKKε and 

TBK1 are induced as a consequence of chronic, low-grade inflammation that is associated with 

obesity (16, 17). Because both kinases contain NFκB regulatory sites in their promoter regions, it 

is thought that they are induced upon NFκB activation, and in turn play a part in a counter-

inflammatory program that attenuates the extent to which inflammatory signals are effective (17, 

18). At the same time, TBK1 can promote energy storage by co-opting insulin targets to repress 

lipolysis and thermogenesis while increasing lipogenesis (15, 19-21). Other alternative roles for 

TBK1 have been described outside inflammatory signaling pathways, including interaction with 

Rab8b to direct maturation of autophagosomes into lytic bactericidal organelles (22); 

phosphorylation of the autophagic adaptor protein, optineurin, allowing specific recruitment of 

cargo molecules for the autophagic clearance of pathogens (23); and regulation of recycling 

endosome distribution via phosphorylation of Rab11 effector proteins (24, 25).  

 

Data presented here suggest a new, specific substrate for TBK1 that also indicates a novel 

anabolic role for the kinase in insulin-stimulated glucose transport and GLUT4 translocation. 

Experiments with inhibitors or siRNA knockdown indicate that although TBK1 is a known 

upstream kinase for Akt (19, 20), its effect on glucose uptake is not regulated solely through Akt. 

Here we present evidence that direct phosphorylation of the exocyst subunit Exo84 by TBK1 

disassociates the effector protein from RalA and the rest of the exocyst subunits, in the process 

ensuring that GLUT4 trafficking is not arrested at the plasma membrane.  

 

The regulation of GLUT4 by insulin involves a complicated process of regulated recycling by 

coordinating the sorting, trafficking, tethering, docking and fusion of exocytotic vesicles (1). In 
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untreated cells, GLUT4 resides in specialized storage vesicles in intracellular compartments, 

which are transported along cytoskeletal tracks to the plasma membrane. While GLUT4 vesicle 

fusion is catalyzed by SNARE proteins present on the vesicle and target membranes, efficient 

control of the process requires that the vesicle is first targeted to discrete microdomains in the 

plasma membrane that are enriched in SNARE proteins (26). This targeting step is carried out by 

tethering to the exocyst complex (27, 28). Both the assembly and recognition of the exocyst are 

required for efficient GLUT4 vesicle delivery to the plasma membrane preceding SNARE-

mediated vesicle fusion. However, the size and architecture of the exocyst also indicate that once 

bound to the vesicle, it may serve as a barrier for fusion, and thus a disengagement step is needed 

(29, 30). While little is known about the mechanisms controlling the disengagement of the 

exocyst from the vesicle, previous studies indicate that effector phosphorylation may represent a 

critical step (30). 

 

Data presented here lead us to propose that after activation of RalA by insulin, the G protein 

binds to both Sec5 and Exo84, thus directing GLUT4 vesicles to regions on the plasma 

membrane where fusion machineries are enriched. Although the requirement for two RalA 

effector proteins remains unexplained, we speculate that RalA undergoes sequential interactions 

with these proteins during vesicle trafficking, in which Exo84 first escorts the vesicle to the 

plasma membrane, where the remainder of the exocyst, including Sec5, is partially assembled 

(31). Because the Ral GAP is reserved for activation of the G protein, as it is persistently 

inhibited by insulin-dependent phosphorylation via Akt (32), we further propose that effector 

switching from Exo84 to Sec5 requires a specific release of RalA from Exo84, accomplished by 

phosphorylation of Exo84 by TBK1, which may be relocalized to the plasma membrane with the 
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exocyst complex in response to insulin. Upon phosphorylation, Exo84 is further disrupted from 

the rest of the exocyst subunits, enabling active recycling of the complex to continuously provide 

tethering machineries for next round of exocytosis. While there is no evidence that insulin 

acutely increases the intrinsic kinase activity of TBK1, we speculate that the unification of the 

exocyst complex brings it into proximity with its substrate to control GLUT4 vesicle 

disengagement from the exocyst (Figure 5.1). Thus, these data suggest that the exocyst is more 

than just a tethering complex for the GLUT4 vesicle, but also a gatekeeper controlling access of 

the vesicle to control fusion at the plasma membrane. 

 

While it is somewhat unexpected that a protein kinase generally associated with an inflammatory 

response is utilized for an anabolic program such as insulin-stimulated glucose uptake, the idea is 

not unprecedented. Previous studies indicate that TBK1 induction in obesity is associated with 

continuous energy storage (16, 21). Along with IKKε, the kinase has been shown to 

phosphorylate and activate PDE3B, leading to decreased lipolysis and thermogenesis (15). 

Moreover, cells in which TBK1 has been inhibited or knocked out are hypersensitive to 

inflammatory signals (14, 21, 33), suggesting that the kinase may also play a feedback role in 

countering catabolic stimuli. Future studies will explore the physiological role of the kinase in 

the regulation of energy homeostasis. 
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Figure 5.1 Proposed model for the role of TBK1-mediated Exo84 phosphorylation in 
insulin-stimulated GLUT4 translocation.  
Insulin activates RalA as the RalGAP complex RGC1/2 is persistently turned off by insulin-
dependent phosphorylation via Akt (32). After activation of RalA by insulin, the G protein binds 
to both Sec5 and Exo84, thus engaging and directing Glut4 vesicles to sites on the plasma 
membrane where fusion machineries are enriched (34). In addition, direct phosphorylation of the 
exocyst subunit Exo84 by TBK1 disengages the effector protein from RalA and the rest of the 
exocyst subunits, in the process ensuring that Glut4 trafficking is not arrested at the plasma 
membrane.  

 

 

 

 

 

 

 



161 
 

References 

 
1. D. Leto, A. R. Saltiel, Regulation of glucose transport by insulin: traffic control of 

GLUT4. Nature reviews. Molecular cell biology 13, 383 (Jun, 2012). 
2. R. T. Watson, M. Kanzaki, J. E. Pessin, Regulated membrane trafficking of the insulin-

responsive glucose transporter 4 in adipocytes. Endocrine reviews 25, 177 (Apr, 2004). 
3. L. Chang, S. H. Chiang, A. R. Saltiel, Insulin signaling and the regulation of glucose 

transport. Mol Med 10, 65 (Jul-Dec, 2004). 
4. J. L. Pomerantz, D. Baltimore, NF-kappaB activation by a signaling complex containing 

TRAF2, TANK and TBK1, a novel IKK-related kinase. The EMBO journal 18, 6694 
(Dec 1, 1999). 

5. Y. Tojima et al., NAK is an IkappaB kinase-activating kinase. Nature 404, 778 (Apr 13, 
2000). 

6. Q. Li, G. Estepa, S. Memet, A. Israel, I. M. Verma, Complete lack of NF-kappaB activity 
in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes & 
development 14, 1729 (Jul 15, 2000). 

7. S. Sharma et al., Triggering the interferon antiviral response through an IKK-related 
pathway. Science 300, 1148 (May 16, 2003). 

8. K. A. Fitzgerald et al., IKKepsilon and TBK1 are essential components of the IRF3 
signaling pathway. Nature immunology 4, 491 (May, 2003). 

9. H. Hemmi et al., The roles of two IkappaB kinase-related kinases in lipopolysaccharide 
and double stranded RNA signaling and viral infection. The Journal of experimental 
medicine 199, 1641 (Jun 21, 2004). 

10. S. M. McWhirter et al., IFN-regulatory factor 3-dependent gene expression is defective in 
Tbk1-deficient mouse embryonic fibroblasts. Proceedings of the National Academy of 
Sciences of the United States of America 101, 233 (Jan 6, 2004). 

11. A. K. Perry, E. K. Chow, J. B. Goodnough, W. C. Yeh, G. Cheng, Differential 
requirement for TANK-binding kinase-1 in type I interferon responses to toll-like 
receptor activation and viral infection. The Journal of experimental medicine 199, 1651 
(Jun 21, 2004). 

12. A. K. Miyahira, A. Shahangian, S. Hwang, R. Sun, G. Cheng, TANK-binding kinase-1 
plays an important role during in vitro and in vivo type I IFN responses to DNA virus 
infections. Journal of immunology 182, 2248 (Feb 15, 2009). 

13. H. Chen et al., Activation of STAT6 by STING is critical for antiviral innate immunity. 
Cell 147, 436 (Oct 14, 2011). 

14. K. Clark et al., Novel cross-talk within the IKK family controls innate immunity. The 
Biochemical journal 434, 93 (Feb 15, 2011). 

15. J. Mowers et al., Inflammation produces catecholamine resistance in obesity via 
activation of PDE3B by the protein kinases IKKepsilon and TBK1. eLife 2, e01119 
(2013). 

16. S. H. Chiang et al., The protein kinase IKKepsilon regulates energy balance in obese 
mice. Cell 138, 961 (Sep 4, 2009). 

17. A. R. Saltiel, Insulin resistance in the defense against obesity. Cell metabolism 15, 798 
(Jun 6, 2012). 



162 
 

18. V. V. Kravchenko, J. C. Mathison, K. Schwamborn, F. Mercurio, R. J. Ulevitch, 
IKKi/IKKepsilon plays a key role in integrating signals induced by pro-inflammatory 
stimuli. The Journal of biological chemistry 278, 26612 (Jul 18, 2003). 

19. Y. H. Ou et al., TBK1 directly engages Akt/PKB survival signaling to support oncogenic 
transformation. Molecular cell 41, 458 (Feb 18, 2011). 

20. X. Xie et al., IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct 
phosphorylation. Proceedings of the National Academy of Sciences of the United States 
of America 108, 6474 (Apr 19, 2011). 

21. S. M. Reilly et al., An inhibitor of the protein kinases TBK1 and IKK-varepsilon 
improves obesity-related metabolic dysfunctions in mice. Nature medicine 19, 313 (Mar, 
2013). 

22. M. Pilli et al., TBK-1 promotes autophagy-mediated antimicrobial defense by controlling 
autophagosome maturation. Immunity 37, 223 (Aug 24, 2012). 

23. P. Wild et al., Phosphorylation of the autophagy receptor optineurin restricts Salmonella 
growth. Science 333, 228 (Jul 8, 2011). 

24. E. K. Jo, J. M. Yuk, D. M. Shin, C. Sasakawa, Roles of autophagy in elimination of 
intracellular bacterial pathogens. Frontiers in immunology 4, 97 (2013). 

25. T. Otani et al., IKKepsilon regulates cell elongation through recycling endosome 
shuttling. Developmental cell 20, 219 (Feb 15, 2011). 

26. J. Stockli, D. J. Fazakerley, D. E. James, GLUT4 exocytosis. Journal of cell science 124, 
4147 (Dec 15, 2011). 

27. M. Inoue, L. Chang, J. Hwang, S. H. Chiang, A. R. Saltiel, The exocyst complex is 
required for targeting of Glut4 to the plasma membrane by insulin. Nature 422, 629 (Apr 
10, 2003). 

28. M. Inoue, S. H. Chiang, L. Chang, X. W. Chen, A. R. Saltiel, Compartmentalization of 
the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol Biol Cell 17, 2303 
(May, 2006). 

29. M. R. Heider, M. Munson, Exorcising the exocyst complex. Traffic 13, 898 (Jul, 2012). 
30. X. W. Chen et al., Exocyst function is regulated by effector phosphorylation. Nature cell 

biology 13, 580 (May, 2011). 
31. S. Moskalenko et al., Ral GTPases regulate exocyst assembly through dual subunit 

interactions. The Journal of biological chemistry 278, 51743 (Dec 19, 2003). 
32. X. W. Chen et al., A Ral GAP complex links PI 3-kinase/Akt signaling to RalA 

activation in insulin action. Molecular biology of the cell 22, 141 (Jan 1, 2011). 
33. M. Bonnard et al., Deficiency of T2K leads to apoptotic liver degeneration and impaired 

NF-kappaB-dependent gene transcription. The EMBO journal 19, 4976 (Sep 15, 2000). 
34. X. W. Chen, D. Leto, S. H. Chiang, Q. Wang, A. R. Saltiel, Activation of RalA is 

required for insulin-stimulated Glut4 trafficking to the plasma membrane via the exocyst 
and the motor protein Myo1c. Dev Cell 13, 391 (Sep, 2007). 

 

 

 


	Role of the Protein Kinase TBK1 in Insulin-Stimulated Glucose Transport
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Chapter 1   Introduction
	I. Insulin-stimulated glucose uptake
	II. Insulin signaling pathways in GLUT4 translocation
	III. Small G proteins in insulin-stimulated glucose uptake
	IV. Roles of IKK-related kinases
	V. Summary
	References

	Chapter 2   Novel function of the protein kinase TBK1 in insulin-stimulated glucose transport
	Introduction
	Results and Discussion
	Materials and Methods
	References

	CHAPTER 3  Exo84, a bona fide direct substrate of TBK1
	Introduction
	Results and Discussion
	Materials and Methods
	References

	CHAPTER 4  Regulation of engagement and disengagement of GLUT4 vesicles from the exocyst by TBK1
	Introduction
	Results and Discussion
	Materials and Methods
	References

	Chapter 5  Conclusions and future directions
	References


