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5.1 MMWR and NOVS data. (a) MMWR data, polio cases per
100000 population in the contiguous US from January 1933–December
1969. (b) Births per 1000 population over the same time period. (c)
NOVS data, polio cases for which symptomatology was classified as
paralytic or non-paralytic; this is a subset of the cases in MMWR,
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(a) Cumulative distribution of IPV in the US. Data are quarterly from
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of OPV monovalent type I, II, and II, and trivalent OPV. . . . . . . 127

5.5 Polio cases in the USSR. Monthly polio cases reported in (a)
Lithuania, (b) Estonia, (c) RSFSR, and (d) Ukraine, along with the
percent of the population vaccinated with OPV (white points). OPV
was first introduced in Lithuania and Estonia, where vaccine coverage
reached > 60% in the second year of vaccination. As of December
1959, only 2.8% of population was vaccinated in the RSFSR and 5.6%
in Ukraine. However, by December 1960, the reported vaccination
coverage in the RSFSR was 36% and 33% in Ukraine. . . . . . . . . 128

5.6 Vaccine era polio transmission model. (a) Schematic model of
polio transmission and vaccination. The model has two vaccinated
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OPV in each country. In the US, monovalent OPVs were licensed
and used for epidemic response before the switch from IPV to OPV
for immunization in April 1963 when trivalent OPV was licensed. . 129
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5.7 Polio observation models for the US and USSR. The obser-
vation models detail how symptomatic infections from the process
model (turquoise and orange ovals) were reported in the (a) US via
cases in the MMWR, NOVS, and PSU data sets, (b) Estonia and
Lithuania, and (c) the RSFSR and Ukraine. In the US, the process
model state variables that fed into the observation model were par-
alytic and non-paralytic infections broken down by vaccine status,
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were the monthly number of paralytic polio infections by OPV sta-
tus. Subscripts indicate individuals with IPV3+ or OPV3 doses, lack
of subscripts indicate unvaccinated/under-vaccinated individuals. . . 133
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5.9 US pre-vaccine data and one-month-ahead predictions from
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5.12 IPV efficacy. (a) Tradeoff in IPV efficacy parameters observed dur-
ing the inference process. The parameters measured the susceptibility
to infection of IPV3+ individuals, relative to unvaccinated individu-
als, and the infectiousness of IPV3+ individuals, relative to unvacci-
nated infected individuals. The tradeoff is such that there is ridge in
the likelihood surface and the product of the IPV parameters is well
identified. (b) Due to the tradeoff between the IPV efficacy parame-
ters we fixed the susceptibility to infection of IPV3+ individuals to ∼
1 (meaning IPV does not reduce susceptibility) and estimated the in-
fectiousness of IPV3+ individuals. We used the MMWR and NOVS
data from the IPV era for profiling because it became computation-
ally infeasible to use the PSU data (see Appendix). We estimated
IPV infectiousness to be 0.31. Thus, IPV reduces transmission by
69% (95% CI 67–74%). In (a) we indicate the IPV efficacy ridge
tracing the MLE at 0.31 (turquoise dashed line). . . . . . . . . . . . 142

5.13 IPV efficacy, one year ahead predictions for the US. IPV efficacy

parameters were fit to the MMWR and NOVS data up to December 1962.

Using the MLE for IPV efficacy, a particle filter was run to December

of each year and use to simulate forward through the next year to pre-

dict epidemic trajectories. The December-to-December predictions were

done simultaneously for (a) MMWR data, (b) paralytic polio reported

to NOVS, and (c) non-paralytic polio reported to NOVS. December-to-

December predictions tested the ability of the model to predict the next

year’s epidemic. In general, the model under-predicted the number of

cases, suggesting that we are nearby, but have not yet reached the true

MLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.14 OPV efficacy 2D profiles. The RSFSR was used to estimate OPV
efficacy parameters. Two dimensional likelihood profiles of (top) the
reduction in infectiousness caused by the full 3 dose series of OPV, rel-
ative to unvaccinated individuals, and the reduction in the paralytic
probability. Top profile assumes that OPV does not reduce suscepti-
bility. (bottom) The reduction in susceptibility to infection and the
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we cannot assume OPV does not reduce infectiousness. . . . . . . . 146
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5.15 OPV efficacy 3D profile. The RSFSR was used to estimate OPV
efficacy parameters. A three dimensional 50x50x50 likelihood profile
of the reduction in infectiousness caused OPV, the reduction in sus-
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ABSTRACT

The Drivers of Acute Seasonal Infectious Diseases

by
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Seasonality is a feature of all ecological systems. Earth’s terrestrial and pelagic life

has evolved in a highly seasonal abiotic environment with intra-annual variation in

photoperiod, temperature, and precipitation, among many other abiotic and biotic

factors. Seasonal aspects of mammals and birds include seasonally varying birth

rates, seasonal changes in endocrine hormones, and seasonal variation in immunity.

One area where seasonal biology is particularly salient is disease ecology. The mech-

anisms underlying the seasonality of communicable diseases are poorly understood.

I propose that much of the unexplained seasonality observed in infectious disease

dynamics could be attributed to seasonal biology, including (1) birth seasonality, (2)

seasonal variation in immunity, and (3) seasonal cycles in parasite traits and para-

site population parameters. In my dissertation, I present work on various aspects of

seasonality. In Chapter II, I explored the seasonality of births in human populations

and quantified the effects of birth seasonality on measles epidemics. In Chapter III,

I reviewed circadian and circannual rhythms in host and parasite populations, and

proposed both ecological and evolutionary models for integrating biological rhythms

into the study of infectious diseases. In Chapters IV–V, I presented my in-depth

xxiv



ecological studies of poliovirus, a notoriously seasonal summertime infection. I ex-

plored geographical variation in polio’s seasonality and tested whether human birth

seasonality or transmission seasonality drove epidemics of this disease. In addition

to studying polio seasonality, I revealed the connection between (i) polio’s emergence

and human demography, (ii) the geographical distribution of poliovirus and its per-

sistence, and (iii) polio symptomatology and silent chains of transmission. Lastly, I

highlighted the public health implications of seasonal transmission by measuring the

efficacy of the two polio vaccines and discussing how seasonality can be utilized for

vaccine interventions.
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CHAPTER I

Introduction

A unifying feature of infectious diseases is periodicity [1]. Periodicity is observed

in infectious disease dynamics at both the population and within-host level. As

illustrated by London and Yorke in Fig 1.1, at the population level, infectious dis-

ease incidence displays seasonal—and often multiannual—periodicities [2, 3]. At the

within-host level, periodicities occur at shorter time scales, such as daily cycles of

symptoms and/or parasite abundance [4]. In my dissertation I focused on identifying

the drivers of (a) seasonal disease incidence at the population-level, and (b) circa-

dian cycles of infections within-hosts. The systems I studied were polio, measles, and

other acute infections. My research on disease seasonality can be categorized into (1)

host phenology (i.e., seasonal cycles) and biological rhythms, (2) the ecological role of

transmission seasonality, and (3) the public-health implications of transmission sea-

sonality. Given widespread seasonal structuring of host-pathogen interactions, there

is much to be gained by exploring the influence of seasonal abiotic and biotic factors

on disease dynamics and measuring the relative importance of interconnected sea-

sonal ecological factors. Much attention has been given to seasonal drivers external

to host biology, such as temperature, rainfall, humidity, and host aggregation. How-

ever, I aimed to elucidate the role of seasonal fluctuations in host biology (i.e. human

phenology and biological rhythms) as a driver of disease periodicity.
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Figure 1.1: Periodicity of Childhood Diseases. Time series (top to bottom) of
measles, chicken pox, and mumps in New York City, along with measles
in Baltimore. Each disease had a seasonal window when epidemics oc-
curred. Epidemics occurred either annually or at multi-annual intervals
[5]. Figure reproduced from Wayne P. London, James A. Yorke, Recur-
rent Outbreaks of Measles, Chickenpox and Mumps: I. Seasonal Variation
in Contact Rates, American Journal of Epidemiology, 1973, volume 98,
issue 6, 453–468, by permission of Oxford University Press.
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1.1 Human Birth Seasonality & Disease

In order to understand the impact of human phenology on seasonal infectious

diseases, I studied the influence of human birth seasonality on measles epidemic dy-

namics. I hypothesized, since fully immunizing childhood diseases, such as measles,

rely on births for susceptible recruitment, birth seasonality plays an important role

in temporally structuring childhood disease epidemics. Using measles transmission

models, I found in Chapter II that high amplitude seasonal fluctuations in births are

capable of altering the magnitude and periodicity of measles epidemics. My models

predicted that birth seasonality is consequential for measles epidemics in populations

with high amplitude birth seasonality, such as populations in Africa. I also found that

the phase relationship between the birth pulse and the seasonal peak in transmission

is important for determining epidemic size.

Overall, birth seasonality has the effect of shifting the distribution of infections

between years. Therefore, birth seasonality does not simply make epidemics “bigger”

or “smaller”; rather, birth seasonality can redistribute infections, which has practical

implications for epidemic response. In particular, it would be beneficial if public

health officials could anticipate the between-year distribution of clinical cases. Models

that explicitly account for birth seasonality can facilitate such predictions. Due to

(a) the nuanced relationship between birth seasonality and seasonal transmission, and

(b) the large amount of regional variation in the timing of birth pulses around the

world, I concluded that birth seasonality should be considered for disease control at a

regional level. Ideally, birth seasonality would be used to plan vaccination campaigns

because birth seasonality is a reliable indicator of the susceptible pool growth rate.

Since vaccination initiatives manage the size of the susceptible pool, knowledge of

birth seasonality may prove invaluable.

Although my work demonstrated that birth seasonality is relevant for disease

dynamics, it is unknown why human births are seasonal. Seasonal reproduction “is
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Figure 1.2: Seasonality of Human Births. Time series of births in Spain show-
ing consistent seasonality relating to a springtime peak in conception.
Societal events, such as wars, altered the amplitude of birth seasonal-
ity and introduced irregularities; however, birth seasonality persisted [6].
Reprinted from Current Biology, Vol 18 issue 17, Russell G. Foster, Till
Roenneberg, Human Responses to the Geophysical Daily, Annual and
Lunar Cycles, Pages R784–R794, Copyright (2008), with permission from
Elsevier.
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the general rule for the majority of mammals” [7], so it is perhaps not surprising

that birth seasonality is a feature of all human populations, both historically and in

the modern day. The presence of birth seasonality in populations across geographic

regions, cultures, economic regimes, and time periods [8], suggests birth seasonality

is a life-history trait, rather than an artifact of culturally motivated human behavior.

The persistent seasonality of births is illustrated in Fig 1.2, which shows monthly

births in Spain spanning decades [6]. Patterns of birth seasonality are somewhat

complex, some populations have biannual cycles of births (i.e., two peaks per year)

[9], and as I will discuss in depth in Chapter II, there is a large amount of regional

variation in the amplitude and timing of birth seasonality. For instance, within a

country the seasonal characteristics of births can vary among populations and shift

over time [10].

Using data from the US, Canada, UK, Germany, Greece, Japan, New Zealand,

Sweden, South Africa, and Switzerland, Moos & Randall [11] found that each coun-

try had a temporally-stable annual conception minimum. The month of minimum-

conception had a strong correlation with latitude (correlation coefficient of r =

−0.7678). The latitudinal pattern of births is highly suggestive that environmen-

tal conditions play a role in determining the timing of the conception minimum and

the birth pulse. There are various highly debated and rarely agreed upon hypotheses

regarding the underlying mechanism of seasonal births in humans. The hypotheses

can be broadly summarized as attributing birth seasonality to either behavioral or

physiological factors linked to environmental conditions.

Environmental drivers of birth seasonality, proposed by demographers and phys-

iologists, often focus on the effects of temperature or photoperiod on the ability to

conceive. Temperature is hypothesized to have a direct effect on conception via its

impact on reproductive factors such as sperm count and motility [8]. Whereas, pho-

toperiod, is hypothesized to modulate endogenous physiological rhythms–specifically
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in ovarian and androgen activity—that are important for conception in other mam-

mals but are not well characterized in humans [10]. Since it is difficult, or perhaps

not plausible, to investigate the mechanisms of birth seasonality using laboratory ex-

periments, studies that have attempted to establish mechanism have been correlative

and inconclusive. Importantly, despite underlying mechanisms, the annual variation

in human reproduction has implications for susceptible recruitment in childhood dis-

ease systems. My work has provided some of the first indication of the public-health

importance of human birth seasonality, although the mechanisms of birth seasonality

remain nebulous.

1.2 Biological Rhythms & Infection

My research on birth seasonality in humans provided indication that seasonal life

history plays an important role in the dynamics of acute infections. I wanted to

expand on this and investigate host biological cycles in Chapter III, specifically en-

dogenous biological rhythms, and identify which biological cycles contribute to the

ecology of disease. I analyzed the ways in which circadian (i.e., daily) and circannual

(i.e., seasonal) rhythms could influence disease transmission and affect within-host

dynamics of infection and pathology. The literature on rhythms in the immune sys-

tem is rapidly expanding. Circadian rhythms have now been implicated in within-

host infection dynamics [12] and circannual rhythms in pathogen killing ability have

been documented in wild species [13]. Using a transmission model and data from

Siberian stonechats, a migratory bird with strong seasonal life history, I illustrated

that seasonality in reproduction, migration, and immunity can interact to generate

seasonality in acute infections. Interestingly, my model demonstrated that multiple

non-sinusoidal out-of-phase seasonal drivers that differ in their epidemiological link

to infection dynamics could result in “simple” patterns of seasonal disease incidence.

This led me to conclude that the complicated seasonal structure of host behavior and
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Figure 1.3: Seasonal Gene Expression in the Human Immune System. Over
5000 genes (∼ 23%) of the human immune system were identified as
seasonal. Plot shows fitted cosine curves for seasonal genes. Seasonal
genes were binned into groups of summertime-expressed and wintertime-
expressed genes, with the exception of a single gene that didn’t fall into
either category. Figure reproduced from [14], licensed under a Creative
Commons Attribution 4.0 International License.

life history can constrain parasite transmission to particular windows in the annual

cycle, which I refer to as the construction of a parasite temporal niche.

Wild species display seasonal life history and circadian clocks occur in all eu-

karyotes (including eukaryote parasites) and some prokaryotes [15, 16]. The ubiquity

of biological rhythms, and the unsolved mystery of rhythmicity in infections, makes

the study of biological rhythms an exciting area in disease ecology. In fact, coinci-

dent with the publication of my work on biological rhythms, it was discovered that

the human immune system displays functional seasonal variation in gene expression

[14]. I anticipate as circannual rhythms in humans and other animals continue to

be characterized, it will be discovered that biological rhythms are important drivers
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of infectious disease periodicity. S.F. Dowell first presented this hypothesis in 2001

[17], and the evidence that has accumulated over the past 14 years supports his idea.

In addition to the role of biological rhythms in disease ecology, biological clocks are

ancient in origin. In Chapter III, I propose ways in which host and parasite biological

rhythms could impose selective pressure upon one another and affect the evolutionary

trajectory of rhythms. In order to build scaffolding for future studies of rhythms and

infection, I have developed both evolutionary and ecological models addressing the

influence of biological rhythms on host-parasite interactions.

1.3 The Ecology of Polio

There are two avenues of inquiry for addressing seasonality in infectious disease

systems. First, if seasonal drivers are known, they can be incorporated into trans-

mission models or manipulated in the lab to quantify their effect on disease. Sec-

ond, if seasonal drivers are unknown, transmission models can be fit to disease data

to quantify seasonal epidemiological parameters, but the mechanism(s) will remain

unidentified. Quantification of seasonal epidemiological parameters can provide in-

sight into the ecology of infection and disease periodicity, even if seasonal mechanisms

are obscure. My work on birth seasonality and biological rhythms emerged from the

first avenue of inquiry. I identified birth seasonality and biological rhythms as having

the potential to drive disease seasonality. I then incorporated them into transmis-

sion models to test whether they were viable mechanisms. In contrast, I followed

the second avenue to study the transmission ecology of poliovirus. Polio has a long

list of potential seasonal drivers, I therefore investigated the implications of seasonal

transmission without knowledge of the mechanism.

Using extensive historical data, I confirmed earlier studies that described polio

as a summertime disease [18]. Polio epidemics occur during summer and autumn.

I demonstrated that, not only do polio epidemics occur in a fixed seasonal window,
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but there is also latitudinal variation in polio’s seasonal timing. As shown in Fig 1.4,

polio’s latitudinal variation was first documented in the 1932 [19], but it was unknown

until now whether the latitudinal gradient was a persistent feature of polio’s ecology,

which it was. The latitudinal gradient suggests that polio seasonality is driven by a

mechanism that also varies with latitude. Unfortunately, since many environmental

and host factors vary with latitude, I was unable to identify a seasonal driver. How-

ever, I characterized the underlying transmission seasonality of poliovirus and the

ecological implications of transmission seasonality.

I found that the polio transmission rate undergoes large seasonal shifts. In some

regions, seasonal variation in transmission was so extreme that it caused poliovirus

extinction during the wintertime low season. Importantly, despite local extinction,

due to regional variation in host demography and transmission seasonality, poliovirus

was able to persist via sources-sink dynamics. Transmission seasonality, which is a

determinant of the reproductive number, is a key parameter for designing vaccination

campaigns because it influences the vaccine coverage needed for pathogen extinction

[20]. Unfortunately, seasonal fluctuations in transmission are often ignored in cam-

paigns against polio and other vaccine-preventable diseases. Exceptions to this have

proven useful; for instance, poliovirus was eradicated in areas of Mexico with rela-

tively low, <82%, oral polio vaccine coverage by launching vaccination campaigns

during the low season [21]. Armed with the quantification of seasonal transmission,

eradication campaigns could drive pathogens to extinction with relatively low vaccine

coverage (low relative to the coverage needed to achieve the same result outside the

low season).

With new knowledge of polio transmission, I was able to study the practical im-

plications of transmission seasonality for polio eradication. I collected historical data

from the US and the USSR that represented the transitional period during which po-

liovirus went from being epidemic to rare, and eventually extinct. Using these data,
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Figure 1.4: Summertime Polio Epidemics. The distribution of polio cases in the
US, Australia, and New Zealand. Polio epidemics peaked in the summer:
Feb–Mar in Australia and New Zealand, and Jun–Oct in the US. US
states displayed south-to-north variation in epidemic timing, with south-
ern states having the earliest epidemics, followed by intermediate latitude
states. Northern states had the latest epidemics. Figure reproduced from
[19].
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I estimated the efficacy of the inactive polio vaccine (IPV) and the oral polio vaccine

(OPV). I confirmed that OPV is more effective than IPV at reducing poliovirus trans-

mission; a conclusion in line with clinical trials and the experience of the global polio

eradication initiative. My key finding was, although IPV is inferior to OPV, IPV ef-

fectively reduces poliovirus transmission. I estimated that IPV reduces infectiousness

by 69%. This result is a large step forward, not only for polio eradication, but also

for the evaluation of vaccines. Vaccine trials are able measure the extent to which

vaccines reduce susceptibility to infection. However, trials are logistically incapable

of measuring vaccine-induced reductions in infectiousness. For most diseases, it is im-

practical to trace all secondary infections arising from vaccinated and unvaccinated

individuals, which is required to measure realized relative infectiousness.

IPV’s 69% reduction in infectiousness is hopeful indication that the future with-

drawal of OPV and introduction of IPV is a practical eradication strategy. Although

IPV is effective at reducing transmission, my work suggests IPV can only be used

to eradicate polio in regions (and in seasons) when the reproductive number is ≤

3. This would require ≥ 96% IPV coverage for populations that do not have pre-

existing OPV- or naturally-derived immunity. Based on my work on polio in the US

and the USSR, polio’s reproductive number falls below 3 in many populations during

the low season. If this is the case for today’s endemic countries, IPV could be used

to eradicate polio.

As a collection, my work demonstrates that seasonal ecology is undeniably impor-

tant for the control and eradication of diseases, including polio. I have exclusively

focused on the seasonality of acute infectious diseases. The seasonal factors that

influence chronic infections largely overlap with those of acute infections, including

birth seasonality and environmental conditions [22]; however, the seasonality of some

chronic infections, such as nematode infections, is complicated by environmental life

stages of the parasites [23]. In future work, I hope to apply the knowledge gained

11



in my dissertation to a broader class of infectious diseases and explicitly account for

rhythms in host immunity. This will require cross-disciplinary integration of data

and experiments from disease ecology, chronobiology (i.e., the study of biological

rhythms), immunology, and parasitology.
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CHAPTER II

Human Birth Seasonality: Latitudinal Gradient

and Interplay with Childhood Disease Dynamics

Preamble. This chapter is our published manuscript provided verbatim. The cita-

tion for this manuscript is:

Martinez-Bakker, M., Bakker, K. M., King, A. A., & Rohani, P. (2014). Human

Birth Seasonality: Latitudinal Gradient and Interplay with Childhood Disease Dynam-

ics. Proceedings of the Royal Society B: Biological Sciences, 281(1783), 20132438.

The authors retain the copyright to this work.

My (Micaela Martinez-Bakker) contribution to the work was the integration of human

birth seasonality into the models of childhood disease. I also worked with my co-

authors to design the study and write the manuscript. Specifically, I conducted all

the analyses that went into Fig 2.4–2.6 and Appendix A Figures A.7 and A.8. The

collection, digitization, and analyses of human birth data were conducted by Kevin

M. Bakker (co-author).

Abstract. More than a century of ecological studies have demonstrated the impor-

tance of demography in shaping spatial and temporal variation in population dynam-

ics. Surprisingly, the impact of seasonal recruitment on infectious disease systems has

received much less attention. Here, we present data encompassing 78 years of monthly

natality in the United States, and reveal pronounced seasonality in birth rates, with
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geographic and temporal variation in both the peak birth timing and amplitude. The

timing of annual birth pulses followed a latitudinal gradient, with northern states

exhibiting spring/summer peaks and southern states exhibiting fall peaks, a pattern

we also observed throughout the northern hemisphere. Additionally, the amplitude of

US birth seasonality was more than two-fold greater in southern states versus those in

the north. Next, we examined the dynamical impact of birth seasonality on childhood

disease incidence using a mechanistic model of measles. Birth seasonality was found

to have the potential to alter the magnitude and periodicity of epidemics, with the

effect dependent on both birth peak timing and amplitude. In a simulation study,

we fitted an SEIR model to simulated data, and demonstrated that ignoring birth

seasonality can bias the estimation of critical epidemiological parameters. Finally,

we carried out statistical inference using historical measles incidence data from New

York City. Our analyses did not identify the predicted systematic biases in parame-

ter estimates. This may be due to the well-known frequency-locking between measles

epidemics and seasonal transmission rates or may arise from substantial uncertainty

in multiple model parameters and estimation stochasticity.

The ubiquity of seasonal variation in the incidence of infectious diseases has driven

much epidemiological research focused on understanding the responsible underlying

mechanisms [1, 2, 3, 4, 5]. Surprisingly, there remains much uncertainty regarding

the drivers of seasonal incidence for numerous infections including polio, pertussis,

scarlet fever, diphtheria, rotavirus, among others [5, 6, 7, 8]. Early work on diphtheria

and measles implicated elevated contact rates among children in school as the driver

of pulsed transmission [9, 1], leading to much emphasis on school-term forcing [2, 3,

5, 10, 11]. More recently, additional mechanisms of seasonal transmission have been

identified, including climatic drivers of pathogen survival [12], transmission [13, 14],

and vector activity [15, 16], seasonal host migration [17], and seasonal fluctuations
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in host immunity [18, 19]. Here, we propose that seasonality in host recruitment

rates may also shape epidemiology. This is a possiblity that has been appreciated

in studies of wildelife diseases [20, 21, 22, 11, 23]. For instance, studying cowpox

virus in voles, Begon et al. found that susceptible recruitment is seasonal, and higher

breeding-season birth rates delayed epidemic peaks [24]. However, despite evidence

demonstrating the importance of host demography in recurrent epidemics [25, 26, 27,

28], and the ubiquitous appreciation of seasonal reproduction in broader ecology and

evolution [29], we submit that a deep understanding of the dynamical impact of birth

seasonality on infectious diseases of humans is currently lacking.

To explore this phenomenon, we first characterize the landscape of birth seasonality

in modern human populations, and second determine if/how it can impact epidemic

dynamics, particularly for immunizing childhood infections. Some precedent has been

set in the field of demography, with seasonal variation in human births first docu-

mented in the early 1800s [30, 31] and currently recognized as a global characteristic

of humans [32, 33, 34, 35, 36]. Early studies of vital statistics in various US regions

established a national-level seasonal pattern of births with troughs in the spring and

peaks in autumn [35, 37]. Subsequent research has focused on either a few locations

over long time periods, or many locations over short time periods. Collectively, these

studies showed that northern and southern states have differences in their seasonal

birth amplitude [32, 33, 34, 38, 35, 37] and birth/conception minima [38, 39, 32, 40].

Studies of births in Africa and Asia have been sparse, but seasonal peak-trough dif-

ferences in conception ranging from 11–64% have been documented in Africa and

8–58% in Asia [36]. To date there has been no long term, large scale, spatiotemporal

analysis of births in either the US or worldwide.

We have compiled the most extensive spatiotemporal data set on human births to

date, and explored the effect of birth seasonality on childhood disease incidence using
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simulated and empirical data. Measles was chosen because it is the paradigmatic

example of a childhood disease, with two key features: (i) a low mean age of infection

during the pre-vaccine era, with infections occurring in the youngest age group, the

size of which is tightly linked to the birth rate, and (ii) seasonal transmission, which

is a feature of many childhood diseases. We focus on birth seasonality in the presence

of seasonal transmission to explore the interplay between these two forces. Our novel

demographic data set is comprised of birth records across the globe, consisting of 7.3

× 108 births. Specifically, these data consist of monthly births spanning a 78-year

period (1931–2008) for each state in the continental US along with over 200 additional

time series from countries spanning the Northern Hemisphere. We have analyzed

these data in combination with a transmission model and statistical inference tools

to examine the dynamic implications of birth seasonality on childhood infection.

Data

Monthly state-level time series of live births from 1931–2008 were downloaded from

US Vital Statistics [41] and digitized. Annual state-level population size data were

collected from the US Census Bureau [42] and used to construct monthly time series of

birth rates per 1000 individuals per month. Worldwide monthly births were retrieved

from the United Nations database [43] and filtered for countries containing at least 5

years of consecutive data.

The US data were split into three eras, to account for the baby boom: (i) Jan 1931–

Dec 1945, which we term the Pre-Baby Boom Era, (ii) Jan 1946–Dec 1964, the Baby

Boom Era, and (iii) Jan 1965–Dec 2008, the Modern Era. To test for periodicity, a

wavelet spectral analysis [44] was performed independently for each US state in each

era and for each country in the global data set. The significance of each period was

tested by comparing the power of each period against a noise background, using a
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Figure 2.1: Birth Data from the US. Temporal patterns of birth rates (per 1000 in-
dividuals per month) in the US organized by geographic region, separated
into three eras: Pre-Baby Boom (1931–1945), Baby Boom (1946–1965),
and Modern Era (1965–2008). The time series for Louisiana is plotted at
the top as an example.

lag–1 autocorrelation test. For each data series significant at a 1 year period, phase

angle time series were constructed to determine the timing of birth peaks occurring

at 11–13 month intervals. Independently, seasonal decomposition was run on all data

series to filter out noise, and the seasonal amplitude was calculated by taking one-half

the difference between the maxima and minima, measured as a percent of the annual

mean (refer to Equations in Appendix A). Inter-annual variation was examined by

analyzing the percent change in mean birth rates from one year to the next.

Measles models

We used a discrete-time SEIR model of measles adapted from Earn et al. [25],

with school-term forcing based on the England & Wales school year (Table S1; [11]).
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We incorporated seasonality in births using a sine function with varying amplitude

and phase. The equations describing the model and parameter values are provided

in Appendix A.

We conducted statistical inference on both simulated and empirical measles in-

cidence data to test for the effect of birth seasonality on epidemic dynamics and

parameter estimation. This work aimed to answer the question: how does the omis-

sion of birth seasonality affect the precision and bias of estimated parameters? Using

a Markovian analogue of our SEIR model (Equations in Appendix A), three time

series were generated assuming the following parameterizations: a birth peak day

of either 162, 295, or 351 and a 28% birth amplitude (see Table S3 for parameter

values). For each simulated time series, our stochastic SEIR model was fit assuming

constant births (birth amplitude set to 0%) and an unknown mean transmission rate.

All other parameters were assumed known. Thus, the only free parameter was the

mean transmission rate, which is directly proportional to R0. The transmission rate

was profiled and the likelihood was calculated using a particle filter (Appendix A

Materials & Methods) [45].

In order to test for bias in parameter estimation using real world data, we utilized

historical measles case reports from New York City. These data are from the Baby

Boom Era, when the birth amplitude was low, approximately 7% for the state of New

York. To account for maternal antibodies, we fit models which lagged births 3, 6,

or 9 months (see Appendix A for methods). We used both maximum likelihood via

iterated filtering [45] and the TSIR methodology of Finkenstadt & Grenfell [46, 47]

to quantify the impact of seasonal births on parameter estimates (Fig 5).
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Figure 2.2: Latitudinal Gradients in US Births. Spatiotemporal patterns of sea-
sonal birth peak timing and amplitude in the US. (Top panels) Pre-Baby
Boom (1931–1945), (Middle panels) Baby Boom (1946–1964), and (Bot-
tom panels) Modern Era (1965–2008). Maps depict the latitudinal gradi-
ent in the timing of the birth peak. Colors indicate the mean timing of
the birth peak for each state. Hatched regions represent states in which
a significant bi-annual peaks were discernible and are color coded based
on the timing of their primary annual birth pulse (also see Figs S1 & S2).
States shown in white did not exhibit a significant periodicity. Regres-
sions show the latitudinal variation in seasonal amplitude, with the colors
representing the peak birth timing for the respective period.

The seasonal timing of births

Figs 1 and S3 provide an overview of birth rates in the US. Most states had sig-

nificant seasonal (1 year) birth pulses in the Pre-Baby Boom Era, while all states

showed significant birth seasonality in the Baby Boom and Modern Eras. Of the 210

time series analyzed outside the US, 132 (63%) had significant birth seasonality. Most

of the locations for which seasonality was not significant were short time series (5–7

years) or countries with less than 100 births per month.
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We observed a latitudinal gradient in the timing of the birth peak across the US;

this same gradient was observed throughout the Northern Hemisphere (Figs 2 & 3).

In general, the birth peak occurs earlier in the year in locations further from the

equator. For example, in the Pre-Baby Boom Era the birth peak occurred as early

as June in the northern states of Oregon and Maine, whereas the peak occurred as

late as November in Florida. The variation in birth peak timing was largest during

the Pre-Baby Boom Era, when the most out-of-phase states differed by more than 5

months.

During the Baby Boom Era, most states had birth peaks that occurred in August

or later. The only peaks which occurred prior to August were in seven northern

states and this pattern continued during the Modern Era. The earliest birth peaks

always occurred in northern states, followed by mid-latitude states, and the latest

peaks occurred in southern states. Across all eras, the latest peak was consistently

in Florida, where the peak timing ranged from early October in the Modern Era, to

early November in the Pre-Baby Boom Era.

The latitudinal gradient in peak birth timing seen in the US was reflective of a

worldwide pattern. The worldwide timing also followed a latitudinal gradient with

birth peaks occurring earlier at higher latitudes and later for countries closer to the

equator (Fig 3). However, at any given latitude there was a large amount of variation

in the timing of the birth peak. In the highest latitude countries (> 50◦ N), birth

peaks occurred between April and July. While there were two outlying mid-latitude

countries with birth peaks in March and April (Italy, 1970–1985 and Tajikstan, 1989–

1994), typical mid-latitude locations (20–50◦ N) had peaks between May and Novem-

ber. Countries in the vicinity of the equator (0–20◦ N) displayed the least amount of

variation in timing. The equatorial countries, such as those in the Caribbean, consis-

tently had birth peaks between September and November, with the latest birth peak
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Figure 2.3: Northern Hemisphere Latitudinal Gradient in Birth Seasonality.
Northern Hemisphere patterns of seasonal birth pulses color coded by
region. Birth pulses occurred earlier in the year at northern latitudes.
Table S5 provides the details for each country, including the time frame
of the data which ranges from the 1960s to 2011.

occurring in Saint Vincent and the Grenadines during the period 1992–2005.

In addition to the annual birth peaks, in the US a significant bi-annual (6 month)

birth pulse was detected in 24 states. In the Pre-Baby Boom Era, all states with

bi-annual periodicity were clustered in the lower midwest, deep south, and southeast

(Figs 2, S1, & S2). In the Baby Boom Era, only 13 states continued to exhibit a

bi-annual period. Arkansas is the only state where this bi-annual birth pulse persists

in the Modern Era.

The amplitude of seasonal births

Birth amplitude was measured for each time series, each year, as the one-half peak-

trough difference with noise removed. Amplitudes are represented as a percent of the

mean annual birth rate (Appendix A Materials & Methods). As with the seasonal
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timing, in the US the amplitude of birth seasonality displays a latitudinal gradient.

Fig 2 depicts the negative relationship between birth amplitude and latitude. We

found that 29–53% of the variation in birth amplitude can be explained by latitude (p

< 4.6e-5). However, the amount of variation in birth amplitude explained by latitude

decreased through time, perhaps due to the decline in birth amplitude throughout

southern states during the Modern Era (Figs 2 & S4). We did not observe a latitudinal

gradient in birth amplitude outside of the US (Fig S5).

As expected, the mean combined amplitude across all states was found to be com-

parable to the national level amplitude reported in the literature [48] and was 9.0%,

9.8%, and 8.5% for the Pre-Baby Boom, Baby Boom, and Modern Eras, respectively.

Interestingly, due to the geographical variation in birth peak timing, state-level births

are out of phase. Thus, aggregated US birth data has a deceptively low amplitude

that is not reflective of individual states. Birth amplitudes > 15% were observed in

many southern states throughout the time series (Fig S4).

Prior work has shown that the levels of inter-annual variation in births observed

in the US can have a dynamical impact on disease incidence [25]. It would follow

logically that variability of this same magnitude over a shorter time period may also

be important. Thus, we sought to compare the magnitude of the seasonal variation

in births with inter-annual variation. Inter-annual variation was measured for each

state as the percent change in mean birth rate from one year to the next. We found

that in almost every instance, seasonal variation exceeded inter-annual variation, with

seasonal variation in the Modern Era being 2–3 times larger than the variation from

year to year (Fig S6).
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The effects of birth seasonality on epidemic dynamics

We investigated the impact of birth seasonality on epidemics of childhood disease by

employing models of measles transmission. As shown in Fig 4A, birth seasonality can

have the effect of amplifying or dampening incidence during epidemic years. Crucially,

the impact of birth seasonality depends on the amplitude and phase relationship

between susceptible recruitment and transmission seasonality. In our simulation study

we did not account for maternal antibodies, thus the peak in susceptible recruitment

was equivalent to the birth peak. However, inclusion of maternal antibodies would

translate into a lag between the peak in births and the peak in susceptible recruitment.

We found that if the peak in susceptible recruitment occurs at the beginning of the

year, when children are in school and measles transmission is elevated, the epidemic is

amplified due to the availability of susceptibles. In contrast, if the peak in susceptible

recruitment occurs at the end of the school year, when children are entering summer

break, the epidemic is dampened (Fig 4A).

Independent of the timing of the birth peak, the effect of birth seasonality on

measles epidemics depends on the birth amplitude (Figs 4B & S7). The larger the

birth amplitude the greater the change in measles incidence. Not only does the am-

plitude affect incidence, but birth rates with high amplitude fluctuations (> 40%) can

alter incidence to such an extent that they can drive dynamical transitions (Fig 4B).

Statistical inference on simulated data led to small biases in the estimate of R0

for measles (Fig 4C). For the time series in which the birth peak occurred in mid-

December, day 351, a time at which susceptible recruitment increases epidemic year

incidence, omitting birth seasonality resulted in over-estimating R0 in order to capture

the elevated epidemic year incidence. In contrast, when the birth peak was set to

either early June (day 162) or late October (day 295), times at which susceptible
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Figure 2.4: Impact of Birth Seasonality on Childhood Disease. (A) Epidemic
and skip-year incidence varies with birth peak timing along the x-axis.
Solid curve shows the change in epidemic year incidence when birth sea-
sonality is added to the measles model. Dashed curve shows the change in
the skip-year. The phase relationship between seasonal births and trans-
mission determines whether birth seasonality has an effect on incidence.
The greatest increase in epidemic year incidence is when the birth peak
occurs after children return from winter holiday (orange points). A de-
crease in epidemic year incidence occurs when births peak prior to summer
vacation (green points). School terms are noted and vertical arrows mark
the timing of incidence peaks during the epidemic year. (Inset) Time se-
ries from the constant birth model (black), and time series corresponding
to the color-matched points on the main graph. (B) Bifurcation diagram
showing the change in epidemic and skip-year peak incidence with in-
creasing birth amplitude. In the absence of birth seasonality, epidemics
are biennial. As birth amplitude increases, skip-year incidence increases
and epidemic year incidence decreases. When birth amplitude reaches
∼40% epidemics become annual. Time series in the inset correspond to
the points in the main graph; blue time series are biennial, and golden
are annual. Arrows denote the birth amplitude observed in Switzerland,
Cuba, Egypt, Nigeria, Guinea, and Sierra Leone, left to right. Amplitudes
for Nigeria, Guinea, and Sierra Leone are from [49].
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lished form of this manuscript, this is panel C, and is combined with the
two panels from the previous figure.

recruitment dampens epidemic year incidence and elevates skip-year incidence, we

under-estimated R0. However the bias in R0 was small, approximately ≤0.4–1.3%.

We found that models with seasonal births effectively capture measles dynamics in

New York City (Fig 5A). In contrast to our simulation study, however, when multiple

unknown parameters were estimated simultaneously, the small predicted bias in R0

was masked by uncertainty in parameters and Monte Carlo error (Fig 5). Hence, the

maximum likelihood parameter estimates (MLEs) for models with and without birth

seasonality were nearly identical. The MLEs of the basic reproductive number, R0,

ranged from 19.3–20.3. Thus, the incorporation of birth seasonality into the model

did not substantially change parameter estimates, and the dynamics of baby-boom

era measles in New York City can be captured by the model without birth seasonality

(Fig 5A).
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Figure 2.6: Measles Cases in New York City. (A) Measles incidence (black) and
a stochastic realization using the MLE for each type of birth covariate:
seasonal births with a 3 month lag (blue), seasonal births with a 6 month
lag (green), seasonal births with a 9 month lag (yellow), and births with
no seasonality (maroon). Legend applies to all of Fig 5. (B) The shape
of the likelihood surface with respect to R0. The MLE R0s are indicated
by points and the standard errors are represented by horizontal lines.
(C) MLE transmission splines for each model. (D) Transmission splines
estimated using TSIR [46, 47] for each type of birth covariate. The MLEs
differed with and without birth seasonality, but the differences in the
point estimates were overwhelmed by uncertainty in parameter estimates
(Figs 5B & 5C). No difference in transmission parameters was observed
using the TSIR method.
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Discussion

Seasonal fluctuations in human births are observed throughout the world. The tim-

ing of the birth peak displayed a marked latitudinal gradient throughout the Northern

Hemisphere. The latitudinal gradient in peak birth timing was observed in the US

for the entirety of our data, and was reflective of a much broader geographic pat-

tern. National level birth data from Asia, Europe, the Americas, and the Caribbean

also exhibited this latitudinal gradient with birth peaks occurring months earlier at

locations further from the equator.

Contemporary seasonal birth amplitudes are substantial with a range of 7–12% in

the US and 6–35% in other Northern Hemispheric countries. Along with the latitudi-

nal gradient in peak birth timing, in the US we also observed a latitudinal gradient in

birth amplitude. States in the southern US have larger seasonal fluctuations in births

than northern states. This negative relationship between latitude and amplitude was

more pronounced in the Pre-Baby Boom and Baby Boom Eras, relative to the Mod-

ern Era. However, this pattern was not observed outside of the US, suggesting this

may either be a localized phenomenon or strongly correlated with social, economic,

and/or cultural factors in the US.

In addition to the striking geographical variation in timing and amplitude of the

annual birth peak, these data displayed additional complexity with the occurrence of

bi-annual peaks across the lower midwest, deep south, and southeastern US in the

Pre-Baby Boom Era. This bi-annual pulse was lost over time, with only Arkansas

exhibiting bi-annual periodicity in the Modern Era. Bi-annual fluctuations in births

have been documented in previous studies [38], but our data suggests that bi-annual

birth pulses in the US are a relic of the past, lost to societal changes [38, 39], yet may

still exist in other countries. Given the robustness of birth seasonality as a global
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phenomenon of contemporary human populations, it is surprising that mechanisms

driving these patterns remain poorly understood. Demographers have implicated a

host of social, environmental, and physiological factors that may interact to drive

birth seasonality. While a consensus has yet to be reached, and mechanisms vary

geographically, hypothesized drivers include income, culture, race, holidays, rainfall,

cold winters, and seasonally variable sperm quality[50, 51, 52, 53, 54, 38, 55, 56].

Although we focused on characterizing the variation in birth seasonality, rather than

the mechanisms underlying this variation, it is our hope that the latitudinal gradient

in peak birth timing and amplitude observed here will help elucidate the primary

drivers of birth seasonality.

Despite our high resolution birth data for the Northern Hemisphere, Southern

Hemispheric data proved difficult to obtain. Our analysis focused solely on the US

and countries where birth data were readily available. Unfortunately this leaves out

many South American and African countries where vaccine preventable childhood

diseases are most prevalent. Southern Hemispheric birth data may help us under-

stand the variation observed in the seasonality of childhood infections. For instance,

historical work in Africa has shown that measles incidence peaks in April in Uganda,

Kenya, and Tanzania, but earlier (November–January) in their southern neighbors

Zambia, Zimbabwe, and Malawi [57]. Knowing the seasonal birth peak timing and

amplitude in these locations may allow us to better understand this variation. We

anticipate the latitudinal gradient in peak birth timing will also be found in the

Southern Hemisphere.

The impacts of birth seasonality on epidemic dynamics were explored here in the

context of childhood diseases. Our theoretical predictions indicate birth seasonality

has the potential to influence the dynamics of fully immunizing infections of child-

hood – for which susceptible recruitment most heavily relies on births [25, 11]. We
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demonstrated that birth amplitude and the timing of the birth peak relative to peak

transmission determine whether, and to what extent, birth seasonality affects disease

incidence patterns. In our inference study using simulated data, we found that ig-

noring birth seasonality can bias parameter estimation. As a proof of concept study,

we tested for these biases using New York City measles data from the pre-vaccine

era. However, we did not detect any systematic biases. There may be a number

of reasons for this finding. First, during the time span of these data, the seasonal

birth amplitude was low in New York City. Second, the short infectious period of

measles is known to lead to pronounced frequency-locking with forcing in transmission

[7, 58, 11], which may swamp any dynamical impacts of weakly seasonal susceptible

recruitment. Finally, the combination of process- and measurement-noise in the data,

combined with uncertainty in parameter estimates and Monte Carlo error may have

made it impossible to detect the predicted estimation bias.

Our simulation studies demonstrated that high amplitude birth seasonality, cur-

rently observed in many African and Asian countries (Table S5 and [36, 49]), can affect

disease periodicity and epidemic magnitude. In these settings, our findings have the

potential to explain some of the spatial and temporal variation observed in the pe-

riodicity of diseases such as measles, rotavirus, and polio; and present a promising

avenue for future research. Indeed, a recent study of birth seasonality across devel-

oping countries found that the timing of the birth peak influences epidemic timing,

and a high birth rate magnifies the effect of birth seasonality on measles epidemics

[59]. Although our study—focused exclusively on measles epidemiology—suggests

that high amplitude birth seasonality is required to alter disease incidence, we pre-

dict that lower birth amplitudes may have a dynamical effect when coupled with a

higher mean birth rate or for childhood diseases with longer infectious periods that

may exhibit less frequency-locking with seasonal transmission [7]. Ultimately, our
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experience with these systems indicate that the impact of seasonal births on epidemi-

ology will likely be determined by multiple factors, including: the age-distribution

of infections, age-specific pattern of contacts, differences in R0, and the demographic

context.

Dynamical consequences of birth seasonality aside, we emphasize that the spatial

variation in birth seasonality documented here is pertinent when developing time-

specific vaccination campaigns. For example, the World Health Organization imple-

ments time-specific vaccination campaigns to supplement routine immunization for

the control of measles and polio in Africa, the Eastern Mediterranean, and South-East

Asia. Clearly, if these infant immunization campaigns occur prior to the birth pulse,

they will be inefficient. Thus, it is our hope that future studies aimed at mitigating

childhood diseases will utilize birth seasonality to reduce the burden of disease and

tackle some of the unanswered questions in disease ecology.
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CHAPTER III

The Influence of Biological Rhythms on

Host-Parasite Interactions

Preamble. This chapter is our published manuscript provided verbatim. Reprinted

from Publication Trends in Ecology & Evolution, Vol 30 issue 6, Micaela Martinez-

Bakker, Barbara Helm, The influence of biological rhythms on host-parasite interac-

tions, Pages 314–326, Copyright (2015), with permission from Elsevier.

Abstract. Biological rhythms—from circadian control of cellular processes to annual

cycles in life history—are a main structural element of biology. Biological rhythms are

considered adaptive because they allow organisms to partition activities to cope with,

and take advantage of, predictable fluctuations in environmental conditions. A flour-

ishing area of immunology is uncovering rhythms in the immune system of animals,

including humans. Given the temporal structure of immunity, and rhythms in parasite

activity and disease incidence, we propose that the intersection of Chronobiology, Dis-

ease Ecology and Evolutionary Biology holds the key to understanding host-parasite

interactions. We review host-parasite interactions while explicitly considering biolog-

ical rhythms, and propose that (1) rhythms influence within-host infection dynamics

and transmission between hosts, (2) rhythms might account for diel and annual pe-

riodicity in host-parasite systems, and (3) rhythms can lead to a host-parasite arms

race in the temporal domain.
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Biological Timekeeping

Environmental rhythms are a ubiquitous feature of our planet. Many rhythms

are caused by geophysical cycles, including diel, tidal, lunar, and annual rhythms.

These rhythms are highly predictable and have resulted in the evolution of biological

clocks throughout the tree of life [1]. Most biological activities have rhythmic time

structure, which scales from gene expression to life history events such as breeding

and hibernation. Rhythmic time structure allows organisms to partition and pri-

oritize life history activities—whether they are molecular or behavioral—relative to

predictable fluctuations in environmental conditions. For example, for cyanobacteria,

which are an ancient lineage, sunlight provides both energy and risk. Cyanobacteria

have adapted to this challenge by temporally partitioning photosynthesis from UV-

sensitive DNA replication [2]. Likewise, throughout the year, organisms must meet

survival needs, while seasonally requiring further resources for reproduction and other

activities. This leads to annual cycles of life history, when animals alternate between

reproductively active states and inactive states such as dormancy, hibernation, or

migration, a retreat to wintering grounds that buffer against resource scarcity [1].

Over evolutionary time, organisms have adapted to environmental fluctuations by

an internal representation of time—endogenous biological clocks—that perpetuate

biological rhythms even when environmental conditions are kept constant. These

rhythms are characteristically innate, evidenced by the observation that individuals

who have never experienced environmental fluctuations display rhythmicity [1]. En-

dogenous biological rhythms oscillate with period lengths that approximate those of

geophysical cycles, and are accordingly called circadian, circatidal, circalunar, and

circannual. Circadian rhythms, which are most heavily studied, are driven by cell-

specific transcription-translation feedback loops that are integrated across the organ-

ism. The evolutionary origin of internal clocks is ancient, with circadian clocks being
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a unifying feature of eukaryotes and cyanobacteria [3], and a new area of research

in other bacterial lineages [4]. The endogenous circannual clock underlying seasonal

rhythms is also thought to be evolutionarily conserved, since circannual clocks are

found in organisms ranging from dinoflagellates [5] to mammals and birds [6, 7].

An internal representation of time enables the anticipation of favorable environmen-

tal conditions, ensuring that activities are initiated in advance to match the opportune

time. For example, to rear offspring at the time of maximal food abundance, many

species activate their reproductive system and copulate far in advance, potentially un-

der harsh conditions. If individuals initiated breeding activities when food abundance

was maximal, offspring would be reared outside the optimal environmental window

[6]. Endogenous biological clocks function in concert with the geophysical cycles to

which they synchronize [8, 9]. Synchronizing cues (also called zeitgebers) include diel

and annual changes in light, temperature, and other factors. Jetlag, the overturning

of rhythms resulting from changing time zones, and the subsequent re-synchronization

of the circadian clock, is familiar to many of us. Species and even populations vary

greatly in the way their clocks interact with the environment. They assume differ-

ent phases, e.g., of activity or reproduction, relative to the environmental cycle, and

also differ in the use of synchronizing cues. To varying degrees, organisms retain the

ability to adjust their rhythms to respond to current, less predictable, conditions.

While some species’ rhythms show considerable phenotypic plasticity (e.g., the repro-

ductive rhythm of Great tits, Parus major), other species have rigid rhythms that

impose fitness costs under rapid environmental change (e.g., the seasonal phenology

of Snowshoe hare coat color, Lepus americanus) [10, 11, 8]. In addition to phenotypic

plasticity, evolutionary malleability of biological rhythms is supported by directional

evolution of time adjustments in multiple species, which include heritable shifts in the

seasonal timing of life history events such as reproduction, dormancy, and migration
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[12, 13].

Biological rhythms are observed across biological processes. In addition to substan-

tial diel and annual fluctuations in activity, reproduction, and metabolism, there is

also overwhelming evidence for temporal structuring of immunity. Importantly, such

fluctuations cannot be comprehensively characterized as changes in overall immu-

nity; rather, they are a selective re-organization of structural and functional aspects

of the immune system [14, 15, 16]. Differentiated temporal structuring of immune

defenses can arise from heterogeneous requirements and costs of specific defenses, in-

vestment in self-maintenance versus immunity, or the integration of immunity with

other aspects of physiology [17, 18]. In light of this, we review biological rhythms

pertinent to host-parasite interactions, and propose that rhythms of hosts, parasites,

and the environment impose temporal structure on epidemiological and evolutionary

dynamics.
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Figure 3.1: Rhythms and Temporal Niche. (A) The timing of host and parasite activities falls
in the intersection of environmental rhythms, host life history, host immunity rhythms, and parasite
rhythms. This intersection is embedded within geophysical rhythms, diel and annual cycles. (B)
Biological and environmental rhythms can enter into epidemiological models in multiple ways. The
schematic shows a Susceptible-Infected-Recovered model, SIR, with natural and disease-induced
deaths, D. The model distinguishes between infections, I, and the subset of infections that are
observed as symptomatic cases, C. The model is parameterized using the life history of Siberian
stonechats. Four seasonal rhythms enter into the model (births, temperature, immunity, and migra-
tion). Host births, Bt, are seasonal. The transmission rate, βt, is a function of (1) an environmental
rhythm (i.e., temperature) that influences parasite transmissibility, and (2) the seasonal immune sta-
tus of hosts. We assume seasonal immunity also influences the recovery rate, γt, and the probability
of symptoms, ρt. We also assume infected individuals suffer disease-induced mortality, κt, associated
with the autumn migration (i.e., migratory culling), which multiplies the (here constant) rate of nat-
ural mortality δ. (C) Annual fluctuations in temperature and birth seasonality in Siberian stonechats
[95]. (D) Annual host immunity is based on bacterial killing activity [53], elevated mortality during
autumn migration is inferred from natural migratory timing. (E) Incidence of symptomatic cases
assuming: temperature has a positive correlation with transmission, bacterial killing activity reduces
transmission, reduces the probability of symptoms, and increases the recovery rate. The four seasonal
rhythms act collectively to determine the parasite’s temporal niche, the time of year when the parasite
is abundant and disease outbreaks occur.
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Timekeeping in the Host-Parasite Context

Interactions between hosts and parasites (i.e., microparasites and macroparasites)

are embedded within environmental rhythms (Figure 1A). In addition to the environ-

ment, host immunity imposes selective pressure on parasites, whilst parasite-driven

morbidity and mortality reduces host fitness. These multiple selective forces make

optimal timing of allocation of limited resources to survival and reproduction par-

ticularly tricky. For hosts, massive investment into parasite resistance, for instance,

might only be energetically feasible during a resource pulse (i.e., opportunity) also fa-

vorable for reproduction, resulting in an optimization problem for resource allocation

to survival versus reproduction [19]. Yet hosts also undoubtedly face the challenge of

mitigating the deleterious effects of parasites when resources are scarce, a situation

that might favor investment into parasite tolerance versus resistance. For parasites,

not only does the host immune response impose risk, additional risks can be in-

troduced by environmental regimes during transmission [20] or environmental life

stages [21]; which has led to parasite risk avoidance strategies such as climate-driven

arrested development [22]. For both hosts and parasites, therefore, external environ-

mental conditions impose selective pressure by providing fluctuating opportunity for

reproduction and risk of mortality. These exogenous factors need not be identical

for hosts and parasites, although they co-occur in the same physical environment.

For example, we need not expect that rhythms in parasite reproduction, host repro-

duction, and host immune investment be synchronized. An empirical case of this is

the seasonal influence of temperature and humidity on development of the free-living

nematode parasite (Trichostrongylus) of rabbits, which results in an autumn peak in

the force of infection; whereas, the rhythm in host immunocompetence has a peak in

the springtime [23].
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The temporal structure of host immunity and parasite success suggests that con-

straints (1) preclude hosts from maintaining high levels of parasite resistance, and (2)

prevent parasites from sustaining high reproductive output (fitness). Such constraints

would result in trade-offs between investments in opportunity versus risk avoidance

[24, 19]. Consequently, we hypothesize that both hosts and parasites time their bio-

logical processes with reference to both the external environment and each other, and

that therefore in many cases periodic incidence of infectious disease is a consequence

of biological rhythms, as has been suggested elsewhere (e.g., [25]). Below, we first lay

out empirical evidence for the role of rhythms in host-parasite interactions. In order

to inspire quantitative study of biological rhythms in host-parasite systems, we uti-

lize a transmission model to illustrate the epidemiological consequences of rhythms.

We then formulate a conceptual evolutionary model for understanding host-parasite

dynamics embedded within the rhythmic context in which they are evolving.

Biological Rhythms in Host and Parasite Traits

The incidence of many infectious diseases displays substantial seasonality [26, 27,

28]. Seasonally structured disease incidence can be discussed from the viewpoint of

hosts or parasites. From a host’s perspective, parasite exposure can be influenced by

host behavior, such as seasonal aggregation; a contemporary example being epidemic

seasonality of mycoplasmal conjunctivitis in house finches [29]. However, physiologi-

cal factors influencing host susceptibility to infection and symptomatic disease, such

as seasonal changes in immunity, can also drive disease seasonality [28, 23, 30]. Table

1 summarizes some known diel and annual rhythms in host immunity and parasite

traits (see [31, 32, 33, 16, 34] for extensive reviews). Although rhythms in immunity

are observed across a broad array of taxa, including plants [35, 36] and animals, we

focus on mammalian and avian hosts to enhance the link to human health. A very

active area of biomedical research is characterizing temporal structure in both innate
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and adaptive immunity, and correspondingly, in disease susceptibility [33, 32]. For

now, biomedical studies use model organisms; but in the future should include non-

model organisms [37], which are either directly relevant for understanding natural

host-parasite systems, or enable a broader understanding of within-host dynamics of

infection. Longitudinal studies of wild or captive animals compare immune parame-

ters during active versus resting phases and are typically combined with experimental

approaches. In the wild these may include repeated immune challenges [38, 39, 40],

and in captivity may involve constant conditions, shifted environmental rhythmic-

ity, or biological clock disruption. Studies of rhythms in immunity under natural

conditions—wild immunology—are important for understanding how non-model or-

ganisms deal with exposure to multiple co-occurring parasites [41]. Studies of wild

systems allow us to test, for instance, how seasonal allocation into defense against one

parasite can result in enhanced susceptibility to another [42], and whether temporal

variation in immune status covaries with other physiological traits and is influenced

by nutritional status and parasite exposure [43, 18, 44]. Laboratory studies, in turn,

are necessary for distinguishing between endogenous rhythms in immunity versus

variation that occurs as a result of patterns of infection or other biotic factors.

By profiling the response to infection across time, much progress has been made

in characterizing biological rhythms in immunity. For example, in mice, the circa-

dian rhythmicity of a receptor that recognizes pathogens substantially influences the

inflammatory response and survival prospects (for details, see Box 1). The health im-

plications of circadian rhythms in immunity have also been demonstrated using hosts

entrained to different light-dark cycles, and mice with genetically modified circadian

clocks. Such recent studies have revealed that the immune system is fundamentally

circadian in nature [33, 45, 46, 47, 48, 49], which is highlighted by the local circadian

clock of macrophages [46], and the feedback between immunity and molecular, cel-
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lular, and behavioral rhythms. The emerging picture is that the immune system is

an active component of integrated whole-body circadian rhythms in animals [50] and

plants [35, 36], lending support to the idea that sophisticated mechanisms of immune

defense were also present in their common ancestor [51].

Annual cycles in immunity are not as well characterized as circadian cycles because

of the time scale of experimentation [31, 16] but are epidemiologically relevant [28].

Longitudinal studies under controlled captive conditions have revealed substantial

annual changes in immune parameters (Table 1). These included a down-regulation

of key aspects of immunity during the time of reproductive activation, induced solely

by photoperiodic simulation [52, 34, 14, 16]. Such rhythms might have evolved from a

trade-off between immune defense and demanding life-cycle stages, and can underlie

annual patterns of disease incidence, as suggested, for example, by rhythms of bac-

tericidal capacity of whole blood (Box 1; Figure 1D [53]). It is important to note,

however, based on the existing evidence for both circadian and annual immunomodu-

lation, that temporal patterns can differ between innate and adaptive immunity and

among traits even within the same immune cell subset [16, 33].

In addition to immunomodulation, several other aspects of host rhythmicity can

have population-scale consequences for host-parasite dynamics. Relevant host annual

cycles include aggregation [29, 54, 55], sexual contacts (with regard to STDs), habitat

use, migration [56, 57, 58], and birth pulses that (1) act to replenish the pool of

susceptible individuals, (2) can influence the critical community size required for

parasite persistence, and (3) can determine the geographic synchrony of outbreaks

[59, 60, 61, 62, 63]. The sweeping effects of annual cycles in host physiology on disease

incidence are exemplified by White-Nose Syndrome (WNS), which is drawing many

North American bat species near extinction. A new longitudinal study indicated

that neither birth pulses nor social behavior affected transmission and intensity of
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WNS. Instead, WNS is associated with hibernation [30], which in mammals that

have been studied in captivity, is a programmed circannual rhythm [6]. We speculate

the link between WNS and hibernation is mediated by hibernation-associated changes

in immunity. Evidence thus far suggests that there are large adjustments in immunity

in hibernating mammals, including a 90% decrease in circulating white blood cells

[64], down-regulation of the acute-phase response to LPS [65], and modifications of

intestinal immunity [66, 64].

Migration is another host rhythmicity receiving attention in infectious disease ecol-

ogy. In monarch butterflies, the protozoan parasite Ophryocystis elektroscirrha dis-

plays a seasonal pattern of prevalence and a spatial gradient along the monarchs’

migratory flyway. Parasite prevalence declines as monarchs migrate, which is likely

due to migratory culling [57]. In migratory culling, the coupled energetic demands of

migration and fighting infection result in increased mortality of infected individuals

during fall and spring migrations. The uninfected are most likely to survive the jour-

ney to the breeding or wintering grounds, allowing the destination to be relatively

parasite-free. Thus, migratory culling is a direct intersection of host seasonal rhythms

and disease prevalence [56], and anthropogenically-driven disruption of this rhythm

results in elevated disease burden [58].

Taking the parasite’s perspective, rhythmic patterns in parasite dissemination can

be influenced by fluctuating abiotic and biotic conditions that affect parasite survival

and transmission. Clear examples of abiotic influences are (1) the role of temperature

and humidity in transmission of influenza [67], which might be responsible for lati-

tudinal clines observed in influenza incidence [68, 69], and (2) the UV sensitivity of

sporulation in Isospora, which might have driven the remarkably robust diel pattern

of oocyst outputs [21]. In addition to abiotic effects, biotic influences can stem from

rhythms of vectors [70] and other parasites [71]. Effects of vector circadian rhyth-
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micity have been studied in the malaria vector Anopheles gambiae, whose rhythmic

gene expression persists under constant conditions. Rhythmically expressed genes

include those implicated in the melanization immune response, which encapsulates

the Plasmodium parasites, and can thereby affect mosquito to human transmission.

Vectors can also temporally structure parasite transmission via their diel patterns of

feeding [72] and their phenology [73]. Interspecific influence of parasites on one an-

other’s rhythm, to our knowledge, has only been described for Drosophila parasitoids,

which gain a fitness advantage by temporally segregating circadian rhythms in egg

oviposition [71], hypothesized to alleviate competition.

Perhaps then unsurprisingly, parasites—faced with rhythms in their abiotic envi-

ronment, hosts, and vectors—display what seem to be biological rhythms. Docu-

mentation of parasite rhythms dates back over 100 years, long before the discovery

of biological clocks. In fact, the early observation that both malaria parasites and

microfilariae are abundant in the blood of hosts at night was instrumental to the

discovery of mosquitoes as the malaria vector [74]. Experimental studies of parasites

report diel and annual rhythms, as measured by fluctuations in parasite burden and

infectivity (Table 1), but disentangling the contributions of host and parasite to these

rhythms is difficult [75]. To our knowledge, the only described example of a parasite

life history event that depends on a host rhythm is reproduction in the ectoparasitic

rabbit flea, a vector of myxoma virus. To reproduce, rabbit fleas must undergo mat-

uration on a pregnant or newborn nestling host, and flea maturation is controlled by

host hormone cues associated with pregnancy and parturition, thereby synchronizing

parasite and host life cycles [76, 77, 78]. There is solid evidence for adjustment of

diel parasite rhythms to those of the host, for example from trematodes like Schisto-

soma mansoni—an agent of schistosomiasis in humans—whose emergence from snail

hosts is initiated by light [79, 80]. These parasites display diel cycles that shift to
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match perturbations in their hosts’ circadian rhythm [81]. Similar results were found

in rodent-infecting Trypanosomes. Rats infected with T. lewisi and housed under

a normal light-dark cycle (LD 12:12 h) experienced a peak in circulating T. lewisi

during the early part of night and a trough in the early morning. However, when

the host photoperiod was inverted, the parasite rhythm was also reversed [82]. In

Isospora, the characteristic diel pattern of oocyst output persisted under continuous

light in the high Arctic, although feeding and activity rhythmicity of their avian hosts

was greatly diminished, suggesting synchronization to subtle host rhythms or possibly

self-sustained parasite rhythms [21].

Experimental studies give clear evidence that synchronization to host rhythms im-

pacts parasite fitness. For example, murine host rhythms were experimentally mis-

matched to that of their malaria parasite (Plasmodium chabaudi). This mismatch

resulted in a 50 per cent reduction in both parasite replication and production of

transmissible life-stages [83]. Follow up experiments have now revealed additional

complexities, with the effect of mismatch manifesting differently between parasite

life stages, and downstream effects on host disease severity. Mismatch can confer a

substantial cost to the parasite, and this cost is experienced at the onset of infec-

tion, rather than acquired throughout infection [84, 85]. This suggests there can be

intense selective pressure on parasites to maintain a specific phase position relative

to their host rhythms, or to vector rhythms, since parasite ability to infect vectors

is also time-of-day dependent [72]. Fortunately, the amassing knowledge of biological

clocks might help identify host cues used for entrainment of parasite rhythms. For

example, the nocturnally-peaking hormone melatonin is a core circadian feature of

many vertebrates, and applying this knowledge produced indication that parasites

might be using melatonin to synchronize their circadian cell cycle [86, 21].
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While we still lack unambiguous evidence for endogenous circadian or circannual

rhythms of parasites, recent research suggests the intriguing possibility that parasites

can actively manipulate host and vector rhythms to their advantage. For exam-

ple, various parasites interrupt host diel activity at specific times of day to enhance

transmission [87, 88]. The diel timing and synchrony of host behavioral manipula-

tion, along with candidate molecular mechanisms of manipulation, strongly implicate

circadian clock pathways [87, 89]. By integrating chronobiology with infectious dis-

ease ecology, we might be able to identify, for example, the mechanism by which

the trematode Dicrocoelium manipulates diel host behavior, inducing suicide, and

facilitating trophic transmission [90], and how the notoriously manipulative fungus

(Ophiocordyceps unilateralis s.l.) seemingly breaks the host circadian clock to per-

petuate transmission [87]. Transkingdom cross-regulation between prokaryotic and

eukaryotic rhythms is plausible because it has already been documented for other

systems (e.g., in bioluminescent squid light organ symbionts and in mammalian gut

microbiota) [4, 91].

Despite our knowledge of (1) rhythmic host immunity and physiology, (2) rhythms

in parasite reproduction and transmission, and (3) enticing evidence that host rhythms

can impact parasite fitness and be exploited by parasites, the effects of biological

rhythms on host-parasite dynamical processes remain poorly understood. We sur-

mise that careful consideration of biological rhythms in infectious disease ecology and

evolution will provide a better understanding of (1) daily and annual patterns of

diseases, (2) within-host parasite dynamics, and (3) parasite transmission.
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Models for Investigating Host-Parasite Contributions to Rhythms

in Infectious Disease

In order to determine how biological rhythms impose temporal structure on host-

parasite dynamical processes, we can integrate empirical data on host and/or parasite

rhythms into epidemiological and evolutionary models. Biological rhythms research

has great potential for feedback between laboratory studies, field ecology, and dynam-

ical systems modeling. First, rhythms in immunity characterized under laboratory

or field conditions can be used in transmission models to make predictions about

the epidemiological consequences of those rhythms in nature. Second, observations

of diel and annual cycles in infection—characterized via disease incidence, parasite

abundance, or host serological markers of infection history—can be used to make

predictions regarding rhythms generating such patterns. A new study of the first

type [92] explores the effect of annual and biannual rhythms in births (in bats) on

the persistence of filoviruses (i.e., Marburgvirus and Ebolavirus). Transmission mod-

els predict that filoviruses can persist in species with biannual birth pulses—making

them potential reservoirs of infection—and this prediction is supported by serology

data showing that species with biannual birth pulses are more likely to be seropositive

for filoviruses; demonstrating that explicit consideration of host rhythms can inform

targeted surveillance and control of emerging zoonotic diseases. A study of the second

type is that of [23], in which long-term field data on nematode infections in Euro-

pean rabbits were used to discriminate among multiple potential seasonal rhythms

in the host-parasite system. This led to identification of epidemiologically relevant

seasonality in host immunity; the endogenous nature of which can be tested in the

lab.

Building upon the examples above, as well as other transmission models that in-

corporate reproductive rhythms [93, 94, 59, 60, 61], here we provide a Susceptible-
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Infected-Recovered (SIR) model of a directly transmitted hypothetical bacterial in-

fection in the Siberian stonechat to illustrate the numerous entry points for biological

rhythms into epidemiological processes (Figure 1B). We narrate our model with sea-

sonal rhythms in mind; however, this can be extended to circadian rhythms. The

model incorporates ambient temperature as a covariate influencing parasite transmis-

sion as well as empirical data on host circannual cycles in reproduction, immunity

and migration (Figure 1CD; cf. Box 1) [95, 53]. For migration, the timing is de-

fined empirically, while the model assumes migratory culling of infected individuals

only during the autumn migration, when host bacterial killing activity is lowest [53].

Importantly, we propose that circannual cycles in host immunity can influence (1)

the transmission rate, (2) the recovery rate, and (3) the pathological consequences

of infection, which manifests as symptomatology and enters the model as the report

rate. The multiple rhythms: temperature, births, bacterial killing activity, and mi-

gratory culling act collectively to shape the observed incidence of disease, which is

the model output shown in Figure 1E. We define the resulting seasonal window of ele-

vated disease incidence as the parasite’s temporal niche. The seasonal incidence that

arises from this model matches the expectations from the underlying data. How-

ever, in contrast to most models of seasonal infectious diseases, which only place

sinusoidal seasonality in the transmission rate, it contains multiple axes of seasonal

forcing. Thus, we provide this model to encourage the inclusion of empirically char-

acterized rhythms into models as covariates. Such models can be used to explore the

epidemiological consequences of host and parasite rhythms, although for simplicity

the parasite is not explicitly modeled here. Host-parasite systems where modeling

parasite rhythms is particularly compelling include nematodes with seasonal arrested

development [96, 22], microfilariae which display both circadian and seasonal cycles

[97], and Plasmodium within-host circadian cycles [75]. Major challenges of incor-

porating biological rhythms into epidemiological or within-host models, will be (1)
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recognizing which host and/or parasite rhythms are epidemiologically relevant, and

(2) identifying the functional relationships between rhythms and epidemiological pa-

rameters, including: transmission, recovery, and symptomatology.

In addition to the epidemiological consequences of rhythms, we can benefit from un-

derstanding the feedback between host and parasite rhythms and the multiple axes

that shape their temporal structure. Thus, we provide a conceptual evolutionary

model for understanding how hosts and parasites time their biological processes with

reference to each other while being embedded in environments with temporally struc-

tured risk and opportunity. We pose this model in evolutionary terms, but depending

on the varying degrees of plasticity of biological rhythms, individuals may also adjust

their rhythms during their life.

Our evolutionary model illustrates three idealized scenarios of how host immune

defense varies seasonally, relative to fluctuating environmental conditions (Figure 2A–

C). These scenarios are motivated by life history theory and by empirical observations

of seasonal immunity in mammals and birds (Table 1). The scenarios assume that

immune defense, specifically, parasite resistance, either parallels the availability of

resources (A, “resource-driven”), or is reduced when resources are used for reproduc-

tion (B, “traded-off”). The third is an extension of the “resource-driven” scenario

with modulation related to life history events that can lead to complicated, but po-

tentially important, annual patterns. In our example of migration (C) we assume

down-regulation of immune defense during migration (see Figure 1; this could also

occur during other vulnerable times such as molting or hibernation [65]), and a shal-

low trough under favorable conditions in the wintering grounds. We then (D) switch

to the parasite’s perspective and illustrate how parasites are subject to two axes of

seasonal fluctuations: (i) seasonal environmental conditions outside the host and, (ii)

seasonal immune defense of the host. We propose that together the two seasonal
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axes shape parasite transmission (i.e., parasite fitness; which is captured by the basic

reproductive number).

The last and crucial component of our model is the evolutionary feedback between

host and parasite rhythms. We propose that due to parasite-induced host morbidity

and mortality, selection can drive changes in host seasonal immune defense. Subse-

quently, since host immune defense is one of the seasonal axes influencing parasites,

selection will favor changes in the parasite rhythm. This interplay can continue, driv-

ing hosts and parasites to sequentially alter their seasonal rhythms while working

within the constraints of environmental conditions. Figure 2E shows these steps.

We suggest that under certain conditions this can escalate into an evolutionary

arms race. In this framework, the prerequisite for an arms race is that parasite fit-

ness is sufficiently impacted by the temporal structure of the host immune response,

and that the host immune response is predictably rhythmic. To be clear, when con-

sidering the temporal structure of immune defense, reference to “low” host immune

defense pertains to the parasite in question. However, it must be appreciated that

a time of diminished resistance to one parasite (e.g., a helminth) can be a time of

high investment into fighting another (e.g., a virus). Furthermore, infection with one

parasite can seasonally elevate host susceptibility to another, as is exemplified by

concomitant infections of myxoma virus and nematodes [98] and increased suscepti-

bility to bovine TB resulting from helminth coinfection [18]. The arms race itself has

two requirements. First, hosts must be able to shift their immune defense to counter

exploitation by parasites (host changes in Figure 2E). Changes in host rhythms then

translate into a new landscape of time-structured risk and opportunity for parasites.

Upon experiencing a new temporal landscape, a dynamic host-parasite arms race can

arise only if the second requirement is met: parasites shift their rhythm by changing

reproduction within hosts, or release from hosts (parasite changes in Figure 2E). As
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Figure 3.2: Conceptual model for investigating host-parasite contributions
to rhythms in infectious disease. (A) Host immune defense is resource-driven and
tracks the host’s environmental conditions (i.e., host resource availability). (B) Host immune defense
has an inverse relationship with environmental conditions; this could occur due to a trade-off against
investment into reproduction during high resource availability. (C) Resource-driven immune defense
in a migrating species that has reduced immune defense during migration. Migrations (indicated
by black points) result in shallower environmental troughs since individuals migrate to regions with
higher resource availability. For all scenarios, we consider immune defense to be resistance to the
parasite in question, although we acknowledge that this simplifies the complexity of the immune
system (e.g., independent immunomodulation of innate or adaptive immune parameters). For the
resource-driven host immune defense strategy, in (D) we show seasonal parasite fitness shaped by
both environmental conditions and seasonal host immune defense. Although host and parasite co-
occur in the same physical environment, the environmental rhythms pertinent to the parasite need
not be identical to the environmental rhythms pertinent to the host, which is why we distinguish host
versus parasite environmental rhythms. (E) Arms race between host and parasite. For illustrative
purposes, the arms race is initiated with resource-driven host immune defense and parasite seasonality.
The host changes the seasonal timing of peak immune defense to coincide with peak parasite fitness.
We then switch to the parasite perspective to consider the parasite’s environment. In response to
the new host seasonality, the parasite changes its timing of peak reproductive output. These cycles
can continue, with both host and parasite seasonality shifting within the bounds of their respective
environmental constraints.
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with other host-parasite arms races, an arms race in the temporal domain is subject to

tradeoffs for both the host and the parasite that might constrain the extent to which

their rhythms can be altered. Host tradeoffs can include an immunity-reproduction

tradeoff [99]; whereas, tradeoffs for the parasite can include a transmission-virulence

or transmission-recovery tradeoff [100, 99, 101]. Also, due to the rapid generation

time of parasites, relative to hosts, evolution of host rhythm shifts might be slow

relative to the evolution of parasite rhythms, but this would not preclude an arms

race from occurring.

Conclusion

There is enticing evidence that biological rhythms are structuring elements of host-

parasite interactions, both in within-host processes and in epidemiological dynamics.

Host circadian rhythms in the immune system influence the progression of infec-

tion and parasite burden, and annual rhythms might have similar effects [23, 30].

The existing evidence leads us to conclude that the effects of biological rhythms on

the perpetuation of parasites, and on host reactions during infection, can generate

population-level rhythms in infectious disease incidence [25], which we here define as

the parasite’s temporal niche. To formalize temporal niches across parasite taxa and

life history strategies, we will need novel integration of epidemiological, immunologi-

cal, and life history data of both hosts and parasites.

Importantly, circadian rhythms in immunity have direct implications for trans-

mission, and practical application for (i) timing of antibiotic, antiviral, and an-

thelmintic treatment, and (ii) managing immunopathology, such as cytokine storms.

The rhythms of parasites themselves can drive patterns of exposure and illness, as

is evident in malaria and filarial infections. Similarly, rhythms in parasitemia and

parasite release from hosts can impose temporal structure on transmission, which can
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be leveraged for interventions such as deworming campaigns.

We believe that a multi-disciplinary approach at the intersection of Chronobiology,

Disease Ecology and Evolutionary Biology holds the key to understanding how bio-

logical rhythms influence host-parasite interactions. We have outlined open questions

that will bring us closer to understanding the underlying biological interactions in the

temporal domain (refer to Outstanding Questions Box). We hope that this Opinion

will generate discussion on how to leverage rhythms for translational medicine, for

instance to counter the evolution of resistance; and we hope the insights provided

here inspire new avenues for interrogating transmission models with host-parasite

data from the laboratory and the field, ultimately, to better understand the forces

structuring disease incidence and the immunology of non-model organisms.

Finally, although it is beyond the scope of this Opinion, the importance of account-

ing for biological rhythms is accentuated by the accumulating data on anthropogenically-

driven disruptions and mismatches of biological rhythms that are occurring across

taxa. Circadian disruption due to light-at-night [102] and altered environmental sea-

sonality due to climate change [13] are challenging the plasticity of rhythms and

modifying the fitness advantages of their endogenous basis. For example, the ad-

verse effects of circadian disruption have already been seen in human health and gut

microbiota [91]. Given the pervasiveness of rhythms in host immunity, vectors and

parasites, we might soon be faced with palpable effects of rhythm disruptions on

infectious diseases [103, 104, 73].
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Table 3.1: Rhythms in Hosts and Parasites. Diel (circadian) and annual (cir-

cannual/seasonal) rhythms in host immunity, parasite reproduction, and par-

asite release.

Type Period Host Trait

or Parasite Description

Organism/

Species

Rhythm Citation

Immunity Diel Macrophages (detection and restric-

tion of parasite invasion)

Mice 8% of transcripts are circadian; au-

tonomous macrophage circadian clock

controls rhythm

[46]

Immunity Diel Natural Killer Cells (early defense

against viruses and intracellular bac-

teria)

Humans Circadian trafficking between the

blood and organ compartments;

inverse trafficking compared to T-

lymphocytes

[105]

Immunity Diel Toll-like receptor 9 (evolutionarily con-

served receptor that recognizes bacte-

ria and viruses)

Mice Expression and function controlled by

circadian clock

[47]

Immunity Diel T-lymphocytes (surveillance for in-

fected cells)

Humans Cytokine production [106, 107]

Immunity Diel Leukocytes Humans Abundance in the blood follows a cir-

cadian rhythm for neutrophils, lym-

phocytes, monocytes, and eosinophils

[108]

Immunity Diel Whole blood response to LPS stimula-

tion

Humans Cytokine and chemokine production is

circadian in an environment free of

time cues

[109]

Immunity Diel Salmonella colonization and host cy-

tokine response to infection

Mice Mice have a different immunological

response to infection depending on

whether infection challenge occurs at

day or night; infection during the day

results in more inflammation; this ef-

fect is due to clock-controlled gene ex-

pression

[49]

Immunity Diel Clock genes and pro-inflammatory cy-

tokines in spleen; inflammatory re-

sponse

Birds

(captive)

mRNA of cytokines and clock genes

are rhythmic under LD cycles and

constant conditions; inflammation is

rhythmic under LD cycles

[110]

Immunity Diel Cellular (PHA) and humoral immune

response

Birds

(captive)

PHA response and antibody produc-

tion depend on time of challenge, but

their peaks are phase-inversed

[17]

Continued on next page
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Type Period Host Trait

or Parasite Description

Organism/

Species

Rhythm Citation

Immunity Annual Bacterial killing activity Birds

(captive),

turtles

(wild),

humans

Lower bactericidal activity during mi-

gration, especially in autumn (birds);

Higher bactericidal activity during

breeding season (turtles); Higher bac-

terial killing by neutrophils in summer

(humans)

[53, 111, 112,

113]

Immunity Annual Leukocytes Birds

(captive)

Annual cycles in several immune traits,

no effect of Coccidia on annual cycle of

immune measures

[114]

Immunity Annual Lysis Birds (wild) Lower ability of plasma to lyse foreign

cells during migration and winter

[38]

Immunity Annual Sickness behavior in response to LPS Birds

(captive and

wild),

hamsters

Repression of sickness behavior dur-

ing reproduction in summer (birds);

repression of sickness behavior during

winter (hamsters)

[39, 115]

Immunity Annual Acquired Immunity Rabbits

(wild)

Resistance against nematodes [23]

Immunity Annual Spleen size (spleen is important for

both innate and adaptive immunity)

Birds

(wild)

Regression of spleen during migration [116]

Immunity Annual Cytokine production stimulated by

bacterial endotoxin

Humans,

rats,

hamsters

Seasonal differences in pro- and

anti-inflammatory cytokine pro-

duction (humans); Summertime

photoperiod increases production of

pro-inflammatory cytokine TNF-α and

extends (rats) or elevates (hamsters)

disease symptoms

[117, 118, 119]

Immunity Annual Vaccine response Humans Seasonal variation in symptoms follow-

ing live influenza vaccine

[120]

Immunity Annual Intestinal immunity Ground

squirrels

(captive)

Increase in intestinal leukocytes, pro-

and anti-inflammatory cytokines dur-

ing hibernation

[66]

Continued on next page
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Type Period Host Trait

or Parasite Description

Organism/

Species

Rhythm Citation

Susceptibility Diel Bacterial burden, pathogenesis,

and/or virulence of infection

Mice Timing of infection can affect: (a) bac-

terial burden due to circadian variation

in monocyte trafficking and/or gene

expression at site of infection, (b) dis-

ease severity from sepsis due to circa-

dian TLR9 expression, and (c) viru-

lence

[45, 49, 47, 121,

122]

Susceptibility Annual Susceptibility to fungal growth Bats (wild) Hibernating bats have temperatures

that match that of hibernacula, allow-

ing explosive growth of WNS fungal

pathogen Pseudogymnoascus destruc-

tans

[30]

Parasite

reproduction

Diel Plasmodium species (Malaria parasite)

asexual reproduction

Various

mammalian

hosts

Parasite cohorts of millions of indi-

viduals synchronously burst from red

blood cells at a particular time in LD

cycle

[75]

Parasite

reproduction

Annual Microfilariae (heartworm) Dogs Strong seasonal rhythm in microfilaria

abundance in dogs infected in the lab

[97]

Parasite

development

Annual Nematodes (parasitic roundworms) Domestic

mammals

Parasites engage in seasonal hypobio-

sis, arrested development within hosts

that allows for persistence when envi-

ronmental conditions are unfavorable

for transmission between hosts

[96]

Parasite

discharge

Diel Coccidia Birds (wild

and captive)

Oocyte release is strictly circadian; al-

though parasites are vulnerable to sun

exposure the rhythmic pattern persists

under continuous light during the Arc-

tic summer

[123, 21]

Parasite

discharge

Diel Echinostoma (parasitic flatworms),

Pinworms, Schistosoma

Echinostoma

in mice,

Pinworms

and

Schistosomes

in humans

The release of Echinostoma eggs by

hosts occurs during night when mice

are active. Human pinworms migrate

out of anus during the night to lay

eggs. In contrast, Schistosoma eggs

are discharged in urine during the day.

[124, 74]

Parasite

discharge

Annual Nematodes (roundworms) Dall’s Sheep

(wild)

Seasonal variation in intensity of para-

site larvae shed in feces

[125]

Continued on next page
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Type Period Host Trait

or Parasite Description

Organism/

Species

Rhythm Citation

Parasite

manipulation

of host

behavior

Diel Dicrocoelium trematode Ants

(intermediate

host)

In the evening infected ants affix them-

selves to the top of blades of grass and

enter torpor until the next morning,

allowing them to be eaten by grazing

mammals (definitive hosts)

[90]

Parasite

manipulation

of host

behavior

Diel Manipulating fungus Ophiocordyceps Ants Ophiocordyceps manipulates host be-

havior and causes host death at char-

acteristic times of day

[87]

Box 1. Circadian and Seasonal (circannual) Modulation of

Host Immune Defense.

Circadian Immune Cycles. In order for hosts to mount an immune response

against an infecting pathogen, the immune system must first detect the presence of

the pathogen. One way that animals detect pathogens is by immune surveillance for

pathogen-associated molecular patterns (PAMPs), which are shared across groups of

pathogens. Host cells express pattern recognition receptors (PRRs) that recognize

PAMPs. Toll-Like Receptor 9 (TLR9) is an important PRR that can recognize both

viruses and bacteria, and is highly evolutionarily conserved. In 2012 Silver et al. dis-

covered that the expression of TLR9 by macrophages and B cells follows a circadian

rhythm. Importantly, the circadian rhythm of TLR9 has a significant effect on the

immune response and disease severity because the rhythm of TLR9 also produces

a rhythm in inflammatory cytokines. The implications were experimentally demon-

strated by inducing sepsis. Sepsis can occur during bacterial infections when a severe

inflammatory immune response causes damage to the host. Bacterial infection was

induced in laboratory mice using a puncture that allowed commensal bacteria to enter
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the body cavity from the intestine. Mice were entrained to a light-dark cycle (LD

12:12 h), and infection was induced either at the midpoint of the light period or of

the dark period. Mice that were infected during the night, when the TLR9 inflamma-

tory response was elevated, had higher bacterial burdens, earlier mortality, and worse

disease scores, hypothermia, and tissue damage than mice that were infected during

the day. This study demonstrated that the functional response of the immune sys-

tem varies according to a circadian rhythm, and this variation is biologically relevant

because it can have a significant effect on the dynamics of infection [47].

Annual Immune Cycles. Faced with stark annual fluctuations in environmental

conditions and resources, many avian and mammalian species partition life history

events such as reproduction, growth, and hibernation into distinct times of year, and

their immune system also undergoes seasonal changes. Versteegh et al. 2014 set out

to investigate whether annual variation in immunity is due to seasonal adjustments

directly driven by environmental or physiological conditions, or originates from a

genetically-based circannual rhythm that allows organisms to prepare for changes in

the environment. They looked at 5 different immune measures, including bactericidal

competence of whole blood as a proxy for functional implications.

To determine whether seasonal immunity is a genetically encoded circannual rhythm,

genetically distinct subgroups of a widespread songbird, the stonechat (Saxicola

torquata), were bred and raised in a common garden experiment. The subgroups

chosen for this experiment differ in their seasonal life history and traits. They in-

cluded a (i) long-distance migrant, (ii) short-distance migrant, and (iii) a non-migrant,

along with hybrids. The prediction was that if seasonal immunity is a direct response

to seasonal environmental conditions and energy demands, then by raising birds in an

environment where (a) they have ample food, (b) they are not allowed to migrate or

breed, and (c) the only fluctuation to which they are exposed is changing day length,
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their annual rhythms in immunity would be lost.

The authors found that not only did the annual rhythm in immunity persist un-

der these controlled conditions but also that the subgroups and hybrids of the birds

showed specific patterns. The long-distance migrants displayed seasonality in 4 im-

munity parameters, which included bacterial killing ability (Figure 1D). The short-

distance migrants displayed seasonality in only 3 immunity parameters, and the non-

migrants displayed seasonality in only 2 parameters. Furthermore, the amplitude of

the annual fluctuation was greatest in the long-distance migrants. The inheritance

of the rhythm in hemolysis (the ability of antibodies and their compliment system to

lyse foreign cells) was also quite striking. Both the long- and short-distance migrants

showed reduced hemolysis during the time of the natural autumn migration. The

reduction in hemolysis in the long-distance migrants was much more extreme than

that of the short-distance migrant, and intermediate in F1- hybrids. Together, this

work demonstrates that an inherited, biological clock controls seasonal immunity in

stonechats, and these rhythms vary across groups that differ in their seasonal life

history [53]. Related avian studies generally confirm annual cycles in immune param-

eters, and although species differ, there is a common tendency for greater seasonal

immunomodulation with increasing migratory lifestyle.

Outstanding Questions.

1. Are rhythms in the immune system adaptive for fighting infection?

2. Are parasite rhythms adaptive for dealing with host rhythms or environmental

conditions?

3. Are observed parasite rhythms truly endogenous?

4. If parasite rhythms are endogenous, are they entrained by host rhythms?
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5. Are host circannual rhythms in immunity an adaptive response to (a) seasonal

parasite exposure or (b) resource limitations and life history trade-offs?

Glossary.

Adaptive immune system - cells of the adaptive immune system include B cells

and T cells. The initiation of the adaptive immune response occurs after the

initiation of the innate immune response. Receptors of adaptive immune cells

require genetic recombination and alteration to generate, resulting in antigen

specificity and immunological memory [126, 127].

Annual cycle - cycle with a length of approximately 1 year, with phases occurring

consistently at a particular time every year, on an annual/seasonal basis

Circadian - cycle that occurs with an approximate 24-hour period, used in reference

to endogenous rhythms

Circannual - cycle that occurs with a period of approximately 1 year, used in ref-

erence to endogenous rhythms

Diel cycle - cycle with a length of approximately 1 day, with phases occurring con-

sistently at a particular time during the day-night cycle

Immune defense - immune defense includes (1) resistance against the establish-

ment of infection and the reproduction of parasites, and (2) parasite tolerance,

in which the host mitigates the pathological consequences of infection, but tol-

erates infection

Innate immune system - cells of the innate immune system include macrophages

and neutrophils. Innate immune cells are immediate responders to infection.

A fundamental distinction between innate and adaptive immune cells is that

68



innate immune cell receptors responsible for immune recognition are encoded

in the germline; whereas, receptors of adaptive immune cells require genetic

recombination and alteration to be generated. It was previously thought that

the innate immune response is not parasite-specific and lacks memory, but that

characterization is now considered incorrect [127].

LD-cycle - cycle in which light and darkness alternate, and each last for a given

duration, for example in LD 12:12 h, light and darkness both last for 12 hours

LPS - Lipopolysaccharide is a component of the outer membrane of Gram-negative

bacteria that is used in experiments to elicit an anti-bacterial immune response

Macroparasites - parasites that are large and typically metazoans (e.g., helminths)

Microparasites - parasites that are small and often unicellular (e.g., pathogenic

viruses, bacteria, and fungi)

Macrophage - phagocytes, often referred to as “big eaters” because they engulf

invading bacteria and are responsible for clearance of dead (apoptotic) cells.

Macrophages are one of the cells responsible for detection and restriction of

parasite invasion.

Parasite Resistance - The ability of the host’s immune response to prevent infec-

tion from establishing or limit parasite replication. Parasite resistance has a

negative impact on parasite fitness [128].

Parasite Tolerance - The ability of the host to mitigate the pathological conse-

quences of infection, rather than mitigate infection itself. Parasite tolerance

does not necessarily have a negative impact on parasite fitness [128].
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CHAPTER IV

Unraveling the Transmission Ecology of Polio

Preamble. This chapter is our published manuscript provided verbatim. The cita-

tion for this manuscript is:

Martinez-Bakker, M., King, A. A., & Rohani, P. (2015). Unraveling the Trans-

mission Ecology of Polio. PLoS Biology, Volume 13, Issue 6, June 2015, e1002172.

This manuscript was published under the Creative Commons Attribution (CC BY)

license. Anyone may copy, distribute or reuse this article, as long as the author and

original source are properly cited.

Abstract. Sustained and coordinated vaccination efforts have brought polio eradi-

cation within reach. Anticipating the eradication of wild poliovirus (WPV), and the

subsequent challenges in preventing its re-emergence, we look to the past to identify

why polio rose to epidemic levels in the mid-20th century and how WPV persisted

over large geographic scales. We analyzed an extensive epidemiological dataset, span-

ning the 1930s to the 1950s and spatially replicated across each US state, to glean

insights into the drivers of polio’s historical expansion and the ecological mode of

its persistence prior to vaccine introduction. We document a latitudinal gradient in

polio’s seasonality. Additionally, we fitted and validated mechanistic transmission

models to data from each state independently. The fitted models revealed that: (1)

polio persistence was the product of a dynamic mosaic of source and sink popula-
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tions; (2) geographic heterogeneity of seasonal transmission conditions account for

the latitudinal structure of polio epidemics; (3) contrary to the prevailing “disease of

development” hypothesis, our analyses demonstrate that polio’s historical expansion

was straightforwardly explained by demographic trends rather than improvements

in sanitation and hygiene; and (4) the absence of clinical disease is not a reliable

indicator of polio transmission because widespread polio transmission was likely in

the multi-year absence of clinical disease. As the world edges closer to global polio

eradication and continues the strategic withdrawal of the Oral Polio Vaccine (OPV),

the regular identification of, and rapid response to, these silent chains of transmission

is of the utmost importance.

Introduction

Poliovirus, like other members of Picornaviridae, usually generates mildly symp-

tomatic infection. However, the clinical manifestation of polio, Acute Flaccid Paral-

ysis (AFP), can result when the virus invades the central nervous system [1]. WPV

is transmitted fecal-orally, and in the Northern Hemisphere exhibits seasonal epi-

demics in late summer and autumn [1, 2, 3]. Polio outbreaks continue today within

this narrow seasonal window in Pakistan and Afghanistan [4, 5], but the seasonal

transmission structure of polio remains unexplored.

Propelled by public support, the race for the polio vaccine during the post-World

War II era led to the development of the Inactive Polio Vaccine (IPV) and the Oral

Polio Vaccine (OPV) which reduced the global incidence to less than 0.1% of pre-

vaccine levels [6]. Missing the 2014 goal of globally stopping WPV transmission has

left eradication elusive, primarily due to political and social obstacles for effective

vaccine distribution, including vaccine hesitancy and mistrust. In light of this—and

the call for innovative solutions [7]—an understanding of polio’s ecology can help

guide alternative strategies. Looking toward eradication and beyond, a polio-free

87



world requires an understanding of the mode by which polio originally emerged and

historically persisted. We contend that a retrospective study of the ecology of WPV

in the absence of vaccine interventions can inform future planning, and may pinpoint

vulnerabilities in WPV’s epidemiology that could be leveraged for eradication.

Ironically, because of the success of polio vaccination, critical features of WPV

transmission remain obscure. The low global incidence of polio (due to high vaccine

coverage), in combination with the relative rarity of symptomatic infections, limits the

amount of epidemiological data with which to study transmission. Furthermore, data

limitations regarding vaccine coverage in developing countries confound transmission

studies, making it difficult to disentangle the effects of the vaccines, demography, and

transmission. Therefore, we took advantage of a dataset of unprecedented size and

resolution in both space and time to gain insights into the drivers of polio’s historical

expansion and the ecological mode of its persistence in the pre-vaccine period.

We present analyses of spatially-replicated incidence reports from the pre-vaccine

era in the US, and built mechanistic transmission models which incorporate these

data to reconstruct the unobservable infection dynamics. Our analyses allow us to

dissect three axes of polio epidemiology: (i) geographical and seasonal variation in

transmission, (ii) the role of demography in determining incidence, and (iii) the mode

by which polio persists.

Methods

Data.

We examined monthly polio case reports (January 1931–December 1954) from

the US Public Health Service Morbidity and Mortality Weekly Reports as compiled

by [8] and the CDC for each of the 48 contiguous US states and the District of

Columbia (Fig 4.1A–B). Prior to 1945, paralytic polio cases were primarily reported
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in the US [3, 1]; however, during the later period of this study, non-paralytic cases

comprised ≥ 40% of reported cases in populous cities such as New York, Detroit,

Kansas City, and Sacramento [9]. In addition to polio case data, we obtained state-

level births from 1931 onward from US Vital Statistics, and state population sizes

from the Population Distribution Branch of the US Census Bureau. Data from US

Vital Statistics are housed in the CDC online repository: National Center for Health

Statistics, Products, Vital Statistics. The US Census Bureau data were obtained

from their Population Estimates Repository, historical data Pre-1980. The polio

data set—with cases detailed weekly—has now been independently digitized and is

freely available and maintained online through the University of Pittsburgh Project

TYCHO. Birth data were not available for Texas and South Dakota beginning in 1931,

but began in 1932 and 1933, respectively. For exploratory analyses, we quantified the

relationship between disease fadeouts and population size. A threshold of 3 months

without a reported infection was chosen to define a fadeout [10]. The portion of

fadeout months was taken as the ratio of fadeout months to total months in Fig 4.1C.

To estimate spatial synchrony, we used the nonparametric spatial correlation function

[11, 12]. To measure the relative timing of polio epidemic peaks for each state and

each year, the 1 yr wavelet band phase angle was computed [13] and used to rank

states earliest to latest based on their epidemic peak timing.

Models.

We constructed a dynamic stochastic model with components incorporating polio

transmission, immunity, seasonality, and symptomatology along with empirical pop-

ulation sizes and birth rates. Birth rates displayed prominent seasonal, secular, and

geographical trends (Appendix B)[14]. We utilized Partially Observed Markov Pro-

cess (POMP) models which are suited for dealing with epidemiological data where

the state variables (susceptible, infected, and recovered individuals) were not observed
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in the data; rather the infected individuals were partially observed through clinical

case reports. For our process models, we used seasonally-forced stochastic monthly

discrete-time SIR models where transitions followed a Poisson process. The infectious

period was fixed at 1 month, because multiple studies have found the duration of shed-

ding to be 3–4 weeks [15]. Infection-derived immunity was assumed to be life-long

[16, 17]. The models contained 6 classes of infants susceptible (SBi ) to infection. These

infant classes contained 0–1 month olds, 1–2 month olds, etc. up to 6 month olds.

Models had a single infected class for infants (IB). The older age class which con-

tained individuals > 6 months of age, had its own susceptible (SO) and infected class

(IO). The onset of polio symptoms ranges from 5–35 days post-exposure, with a mean

of 12 days [18]; therefore, we assumed reporting of symptomatic infections occurred

within the 1 month infectious period. We modeled polio reporting explicitly and

consistent with clinical evidence, assumed that maternal antibodies protected from

severe disease and resulted in unreported infant infections[19, 20, 21, 22, 23]. Thus,

we assumed that infections in individuals under 6 months of age were asymptomatic,

and only individuals over 6 months of age could be symptomatic and reported as a

clinical case. See model schematic in Fig 4.2A. The force of infection was modeled

as,

λt =

(
βt
IOt + IBt
Nt

+ ψ

)
εt. (4.1)

The first term of the force of infection, βt
IOt +IBt
Nt

, represents transmission that occurred

locally by individuals infected in the state at time t. Whereas, the second term,

ψ, encompasses WPV that arose in the population from external sources that were

divorced from the local infection dynamics. ψ placed a lower bound on the force of

infection, allowing WPV to rebound in the face of local extinction. We interpret ψ

as indicating virus imported from other geographic regions; however, it could also

be interpreted as representing a small number of individuals in the population that

shed WPV for an extended period, or environmental sources helping WPV persist
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over the winter. The transmission parameter, βt, was parameterized using a B-spline,

providing it the flexibility to have a constant or seasonal transmission rate. There

was seasonality, but no interannual variation, in the transmission rate,

βt = exp
6∑
i=1

βiξit . (4.2)

Here, each ξit is a periodic B-spline basis with a 1 year period. The process noise,

εt, was gamma distributed with mean 1 and variance that scaled to account for both

environmental and demographic stochasticity; refer to Appendix B for further details).

We assumed cases were drawn from a rounded, left censored normal distribution with

a mean report rate of ρt, and dispersion parameter τ ,

casest = round(xt), xt ∼ normal(ρtI
O
t , τI

O
t ). (4.3)

For calculating the likelihood, we used a binned-normal probability density. Full

model details are found in Appendix.

We fitted SIR models (one for each US state) to data independently using Maxi-

mization by Iterated particle Filtering (MIF) in the R package pomp [24, 25, 26]. For

each US state, we estimated 14–15 parameters. The parameters estimated were: 6

seasonal transmission parameters (βi), 3 parameters accounting for process and mea-

surement noise, 3 initial conditions for the older age class, the external contribution

to the force of infection (ψ), and 1–2 report rates (ρt). MIF is a simulation-based

likelihood method for parameter estimation. The basis of MIF is particle filtering,

which integrates state variables of a stochastic system and estimates the likelihood for

fixed parameters. Instead of fixing parameters, MIF varies them throughout the fil-

tering process and selectively propagates particles (i.e., parameter sets) that have the

highest likelihoods. By initializing MIF throughout parameter space we estimated

the shape of the likelihood surface for each US state and identified the Maximum
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Likelihood parameter Estimates (MLEs). MIF was initialized from 1 million param-

eter sets for a global search, followed by additional phases of increasingly localized

searches, which included profiling. In total, for each US state, MIF was initialized

from > 10000 locations in parameter space to estimate the shape of the likelihood

surface and identify the MLEs.

Prior to 1945, non-paralytic polio cases were rarely included in our data, but the

reporting of non-paralytic polio became increasingly common [3, 1]. Thus, we tested

an optional parameter to account for increased representation of non-paralytic polio

in clinical cases data. We estimated two report rates, one for the pre-baby boom

era and another for the baby boom era, and discriminated between models with and

without time-varying reporting using Akaike Information Criterion (AIC). Profiles

were constructed for the two versions of the model, one in which the report rate was

constant through the entire time-period, and one in which the report rate increased

during the baby boom era. For each state AIC was used to discriminate between

constant and time-varying reporting, and the maximum likelihood estimates (MLEs)

were drawn from the appropriate two dimensional profile. Inference was performed

using the data from May 1932 to January 1953, with the exception of South Dakota

and Texas, whose inference began in May 1933 and 1934, respectively. Inference was

initiated in May of the year following the first full year of available data to allow us to

construct the infant initial conditions directly from birth data. For model validation,

the last two epidemic years were set aside for forecasting. Full details are provided in

Appendix B. Likelihood profiles were constructed for each state (example in Fig 4.2B,

all others in Appendix B).

To quantify model-data agreement, we evaluated the accuracy of one-step-ahead

predictions for all 49 states, both for data used in model parameterization (Fig 4.3B)

and for out-of-fit data (Fig 4.3C). Because of correlations between states (which vary

significantly in size) and mean incidence, simple linear regression is not appropriate
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for accessing model-data agreement; therefore, generalized R2 was calculated to quan-

tify the proportion of the variance explained by the model relative to that explained

by state alone. We calculated the generalized R2 for the one-step-ahead predictions

and out-of-fit predictions (See Appendix B for details). For Fig 4.4A–B, infections

were reconstructed using particle filtering means, and the reconstruction was limited

to data beginning in Jan 1935, because 1935 is the first full year for which we have

the models parameterized for all US states. Following model validation and infection

reconstruction, the fitted models were used as simulation tools to explore polio in-

fection dynamics. In Fig 4.4D–E, we used 500 simulations for each state from 1935

through 1954. In Fig 4.4D, we present the state-specific probability of extinction by

examining 500 realizations of the fitted models. Specifically, we calculated the an-

nual probability of polio extirpation during the off-season (Dec-May), and averaged

across years. Similarly, in Fig 4.4E the minimum number of infections during each

off-season was based on 500 simulations. For each simulation, the annual minimum

number of infections was identified, the median was taken across the 500 simulations,

and averaged across years. In order to identify the covariates and epidemiological

parameters that influenced the the number of trough infections—a measure of WPV

persistence—we regressed trough infections with various covariates and parameters;

results shown in Fig 4.5. In Fig 4.6B–D, distributions were generated by characteriz-

ing observations across 500 simulations per state. All simulations and data used for

producing the figures in this manuscript are available in Appendix B.

Results

Polio’s Seasonality & Latitudinal Gradient.

In the mid-20th century, polio outbreaks in the US were strongly seasonal. Epi-

demic peaks typically occurred between August–October (Appendix B); but the mag-
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nitude was highly variable among states. In the transition from the pre-baby boom era

(1931–1945) to the baby boom (1946–1954), epidemics increased in size and became

more regular (Fig 4.1A–B). Winter troughs were frequently marked by consecutive

months without reported cases. During the baby boom, the frequency of these lo-

cal fadeouts diminished (Fig 4.1C) while epidemics became more tightly synchronized

(Fig 4.1D). There was a striking latitudinal gradient in the timing of epidemics across

the entire US (Fig 4.1E–F, Appendix B). Two broad classes of mechanisms can give

rise to such a pattern. Seasonal movement of pathogen from southern populations

can generate a traveling wave, which has previously been observed in measles [27],

dengue [28], influenza [29, 30], and pertussis [31]. Alternatively, the pattern may

indicate latitudinal gradients in demographic (e.g., birth rates [14, 32]) and/or envi-

ronmental factors associated with transmission.

Model fit.

Our extensive search of parameter space resulted in the MLEs for each param-

eter. To quantify the shape of likelihood surface along two parameter dimensions

we identified as important (i.e., the report rate, ρt, and the external contribution to

the force of infection, ψ), we constructed two dimensional likelihood profiles for each

state. Two-dimensional profiles by definition have fixed parameter values along two

dimensions of parameter space, while the likelihood is maximized along all other pa-

rameter dimensions. There were 12 states that had constant reporting (i.e., the same

report rate during the pre-baby boom and baby boom era). Fig 4.3A illustrates that

the fitted models generate epidemic trajectories that display (1) the seasonal charac-

teristics of polio, and (2) the large amount of interannual variation in epidemic size.

Importantly, the fitted models faithfully reproduce observed dynamics. In particular,

the seasonality, epidemic shape, interannual variability in epidemic magnitude, and

the increase in incidence during the baby boom are captured by the models. Model
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Figure 4.1: Spatiotemporal patterns in US polio incidence. (A) Total monthly case
reports, 1931–1954, color-coded by per-capita incidence. (B) Log-transformed
per-capita incidence by state, ranked top-to-bottom by population size. (C)
Disease fadeout frequency as a function of state population size, during the pre-
baby boom and the baby boom. The lines represent fitted negative exponential
curves, which tended toward zero. (D) Pairwise epidemic synchrony between
states during the pre-baby boom and the baby boom. Mean and 95% bootstrap
confidence envelope shown. (E, F) Relative timing of polio epidemic peaks
during the (E) pre-baby boom and (F) baby boom eras. Color indicates mean
rank of each state across years; lower rank indicates earlier epidemic peak.
Below each map, relative timing is regressed on latitude. Lower latitude states
had significantly earlier epidemic peaks.

95



fit was formally validated using one-step-ahead predictions for all 49 states (Fig 4.3B)

and out-of-fit predictions (Fig 4.3C), which indicate good agreement between models

and data. Furthermore, geographical structure in the timing of observed epidemics is

captured by the fitted models (Fig 4.3D). State-specific examples of one-step-ahead

predictions and out-of-fit predictions are shown in Fig S2–S3.

Explaining the Latitudinal Gradient.

We hypothesized that the latitudinal gradient in epidemic timing was driven by

either: (1) geographic variation in transmission due to environmental factors that

modulated transmission, (2) the geographic trend in birth seasonality in the US (de-

tailed in [14]), or (3) the movement of pathogen from south to north.

In support of hypothesis 1 (i.e., environmental factors), we identified a spatial

pattern in the phase of seasonal transmission (Fig 4.3E–G, Appendix B). States with

earlier epidemics had an earlier peak in the seasonal transmission rate in the fitted

models. Interestingly, due to polio’s long infectious period, peaks in transmission

preceded incidence peaks by 1–2 months. States not only varied geographically in

the timing of the transmission peak, but also in the wintertime transmission trough

depth and trough duration (Fig 4.3G).

Epidemiological theory indicates that birth seasonality can have important dy-

namical consequences for childhood diseases [33, 14, 34]. To test hypothesis 2 (i.e.,

birth seasonality), we carried out a comparison of the fitted models with and with-

out birth seasonality. Simulations of both models expressed the latitudinal gradient

(Fig S5). Therefore, birth seasonality is not necessary to explain the polio gradient

because geographic variation in transmission is sufficient. We attribute the negligible

effect of birth seasonality on polio incidence to the low amplitude of birth seasonality,

which was ∼ 10% in the US at this time.

We suggest that hypothesis 3 (i.e., pathogen movement) is an unlikely explanation
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Figure 4.2: Model schematic and example likelihood profile. (A) Births enter the
first susceptible infant class, SB1 . Susceptible infants of age 0–6 months, SB1−6,
are susceptible to infection, but are protected from symptomatic disease by
maternal antibodies. Susceptible individuals over 6 months of age are in the SO

class. Infected infants and non-infant infections are in IB and IO, respectively.
Infected individuals over 6 month of age, IO, can have symptomatic illness
and subsequently be reported as a clinical case with mean probability ρt. ρt
is a composite parameter that represents the probability of symptoms and
reporting. (B) Likelihood profile for the report rate, ρt, of non-infant infections
and the immigration rate, ψ, for the state of Wisconsin. MLE indicated by
green asterisk. The report rate for Wisconsin was constant through time.

of the latitudinal gradient. If the latitudinal gradient were a wave of pathogen move-

ment, it would require a high wave speed, which we see as incompatible with transport
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Figure 4.3: Fitted Model and Seasonality. (A) Observed data (black, shown for Wisconsin) and three stochas-
tic simulations from the MLE (blue/green) highlight that both observed and simulated polio epidemics
have a large amount of interannual variation in size, but a narrow seasonal window. Fitted and out-of-
fit data regions are indicated by blue and green, respectively. (B) Model validation showing observed
log10(cases) versus expected log10(cases) for fitted data and (C) out-out-fit predictions for all 49
states. Expected cases are one-step-ahead predictions from the fitted models. Insets show observed
cases (black) and expected cases (blue/green) for Wisconsin. Fitted data include May 1932–Jan 1953
for all states except South Dakota and Texas, whose covariate data limited our inference to begin
in May 1933 and 1934, respectively; out-of-fit data spanned Jan 1953–Dec 1954. The generalized
R2 = 0.76 for the fitted data and R2 = 0.61 for out-of-fit data, calculated on the natural scale,
while data are plotted on a log-scale for visualization. (D) Observed vs. simulated mean rank of
epidemic timing based on 10 realizations of the fitted models. Inset shows the latitudinal gradient
from one simulation; colors match Fig 4.1E–F. (E) Monthly polio cases in Texas and Wisconsin, and
(F) the MLE transmission rates. Epidemics occured earlier in southern states than northern states
because the seasonal peak in transmission occured earlier at lower latitudes. (G) MLEs of the sea-
sonal transmission rate for each state organized by geographic region; in our models this represents
the reproductive ratio. The reproductive ratio varies both seasonally and geographically, with some
states having a reproductive ratio < 1 during the wintertime off-season.
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of pathogen across the landscape. The pattern in Fig 4.1E–F corresponds to a wave

traveling approximately 1200 km/mo. For comparison, waves in pertussis have been

estimated to travel 110–320 km/mo [31]; waves in dengue appear to move 150 km/mo

[28]; and the measles wave-speed in the UK was estimated at 20 km/mo [27]. A polio

wave that is 10-fold faster than pertussis in the US is difficult to justify, and unnec-

essary because our fitted models support hypothesis 1. Thus, we have identified that

polio’s latitudinal gradient is driven by geographic variation in transmission, and we

are left with an unidentified seasonal driver that modulates transmission.

While geographical variation in birth seasonality was insufficient to explain the

latitudinal gradient seen in epidemic timing, birth seasonality had a small but observ-

able effect on the simulated incidence of infant infections. To quantify the influence

of birth seasonality on infant infections, we compared simulations of the fitted models

to simulations for which seasonal fluctuations in births were removed. In the presence

of birth seasonality, infant infection incidence was often higher (Fig S6); however, this

did not affect the incidence of disease directly, and no indirect effect was observed.

Symptomatology.

It is well known that AFP incidence represents a small fraction of true WPV

prevalence [35, 36]. Reassuringly, our independent estimates from the incidence data

agree: our MLEs indicate that typically < 1% of polio infections were reported.

We assumed that infected infants under 6 months of age were asymptomatic, due

to protection by polio-specific maternal antibodies. The report rate for individuals

not maternally-protected was 0.75% (averaged across states) in the pre-baby boom

era, and rose to 1.4% in the baby-boom era, with considerable variation across states

(Appendix B). Overall, we estimate that there were often 1+ million annual infections

in the US; though only 2000–57000 cases were reported every year (Fig 4.4A). Our

results are in line with a 1948 serology-based study in North Carolina, which estimated
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62–175 subclinical polio infections per paralytic case [37].

Spatiotemporal Heterogeneity in the Reproductive Ratio.

The fitted models revealed vast seasonal and spatial heterogeneity in WPV’s re-

productive ratio. Fig 4.3G shows large seasonal fluctuations in the reproductive ratio

within each US state. Several states maintained a reproductive ratio > 1 throughout

the year. In contrast, 28 states had reproductive ratios that fell < 1 for 4–5 months

from Dec–Apr.

States in the Northeast and Midwest had extreme seasonal variation in their re-

productive ratio. Deep winter troughs in transmission in the Northeast and Midwest

often had several consecutive months with a reproductive ratio < 1. In contrast, at

the peak of transmission in June and July, these same states had a reproductive ratio

> 20. Interestingly, each geographic region other than the Midwest, had at least one

state that maintained a reproductive number > 1 throughout the year. Southern

states typically maintained an intermediate transmission rate throughout the year.

Epidemic Emergence.

Our analyses provide a new perspective on polio’s historical emergence. Com-

monly described as a “disease of development”, polio’s emergence has been ascribed

to improved hygiene that reduced transmission and pushed the burden of infection

onto children more susceptible to paralytic polio. This explanation requires that re-

duced transmission raised the mean age of infection and therefore the risk of AFP

[1]. Our results suggest the marked increase in polio incidence from the 1930s to

the 1950s was a straightforward consequence of increased birth rates (Fig 4.4B–C)

and that hygiene effects on transmission are not required to explain polio’s rise to

epidemic levels. Since polio’s epidemic emergence was captured in the models due

to the changing birth rate, we did not explicitly test reductions in the transmission
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rate as an additional contributor to epidemic size and we cannot completely rule out

trends in transmission as a contributing factor. While the disease-of-development

explanation has also been questioned on other grounds [22], changes in hygiene and

sanitation could have contributed to the initial emergence of polio, which occurred

from the late 1800s to the early 20th century.

WPV Persistence.

Polio cases were consistently observed throughout the US during the period of

this study. We hypothesized: (a) WPV persisted locally in each state, or alterna-

tively, (b) WPV regularly went locally extinct and re-invaded from elsewhere. Due

to polio’s high asymptomatic infection ratio, distinguishing between these two mech-

anisms of persistence cannot be done using reported cases alone, since WPV may

be present during the off-season even in the absence of clinical cases. In order to

determine which of these two persistence mechanisms was the likely explanation of

continued infection, we simulated the fitted models and characterized the dynamics

of the process models (i.e., the unobserved infection dynamics rather than the ob-

servable disease dynamics). We focused on determining whether infections persisted

during the wintertime off-season, or if extinction and re-invasion occurred. In par-

ticular, we assessed (i) the average annual probability of an extinction event in each

state, which results from diminished local transmission and (ii) the annual minimum

number of infections. Fig 4.4D–E depicts the geographic variation in these quantities.

Some states experienced frequent local extinction during the off-season, followed by

re-colonization: we consider these “sink” populations. In contrast to sink states, a

few states maintained infections year-round: these we define as “source” populations.

The majority of states, however, were neither consistently sources nor sinks, because

even sink states had frequent overwintering of WPV. The fitted models suggest that

WPV underwent extinction and re-colonization in the classic metapopulation sense.

101



Figure 4.4: Epidemic Emergence and Source-Sink Dynamics. (A) Annual number
of infected individuals in the US in contrast to the small number of reported
cases. Annual infections were reconstructed for the US using particle filtering
means. The particle filtering mean is the expected value at time t, given the
data up to time t: E(Xt | casest). (B) Annual infections in the US represented
as the percent of the population. Reconstructed infections show an increase
in infection incidence that accompanies (C) the increase in the birth rate. (D)
Simulated WPV extinction probability. The probability of extinction measured
as the mean annual probability of observing an extinction during the off-season
(Dec–May). “sink” populations are those states with a high extinction prob-
ability. (E) Simulated trough infections. Trough infections indicate the mini-
mum number of infections during off-seasons. For each state, the median was
taken across simulations and averaged across years. “source” populations are
those that maintain a high number of infections. Panels D–E were constructed
using the 500 stochastic simulations for each state.

Source-Sink Population Predictors.

We explored characteristics that contributed to states having been WPV sources

versus sinks. We used simulated trough infections, shown in Fig 4.4E, as the indi-

cator of a source versus a sink. States that maintained a high number of trough
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infections enabled WPV to persist through the off-season; whereas, states with a low

number of trough infections were likely to have experienced regular WPV extinction.

State population size accounted for 65% of the variation in the number of trough

infections, Fig 4.5A. We used multiple regression models to determine whether the

(i) mean birth rate, (ii) amplitude of birth seasonality, (iii) immigration rate, (iv)

seasonal minimum reproductive ratio, and/or (v) seasonal amplitude of the repro-

ductive ratio explained the residual variation in trough infections, after controlling

for population size. The mean birth rate and amplitude of birth seasonality had a

negligible impact on the residual variation in trough infections; therefore, they were

removed from the multiple regression model. A multiple regression model with the

immigration rate, seasonal minimum reproductive ratio, and the seasonal amplitude

of the reproductive ratio explained 56% of the residual variation in trough infections,

Fig 4.5B. Interestingly, even though there were no clear geographic patters of source-

versus-sink localization, Fig 4.4D–E, there was strong geographic clustering in the

minimum reproductive ratio, Fig 4.5C, demonstrating that even though source-sink

predictors display geographic clustering, the combination of predictors can generate

a source-sink mosaic. We found that after accounting for population size, states with

a higher immigration rate had more trough infections, Fig 4.5D–E. States with a

higher transmission amplitude, however, had fewer trough infections; we interpret

this as being due to susceptible depletion followed by deep infection troughs in states

with a high transmission amplitude, Fig 4.5D. The minimum reproductive ratio had

a positive relationship with tough infections; states that maintained a reproductive

ratio > 1 during the off-season tended to have more trough infections during the

off-season, Fig 4.5E.
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Figure 4.5: Source-Sink Population Predictors. (A) Linear regression of state popu-
lation size versus simulated trough infections, both on a log10 scale. Trough
infections are those shown in Fig 4.4E. (B) Residuals from the regression of
population size versus trough infections were used as the dependent variable in
the multiple regression model, where the predictors were: the state’s seasonal
minimum reproductive ratio, the immigration rate, and the seasonal ampli-
tude of the reproductive ratio, measured as half the peak-tough difference in
the reproductive ratio. Plot shows on the y-axis, the residuals, ri, from panel
A, along with the prediction of the residuals based on the multiple regression

ri = b0 + b1min(Rit) + b2
max(Ri

t)−min(Ri
t)

2 + b3ψi, where Rit is the reproductive
ratio, ψi is the immigration rate, and i indicates the state. Taken together,
panels A and B demonstrate that the predictors of a source versus sink are:
the population size, the minimum reproductive ratio, the amplitude of the
reproductive ratio, and the immigration rate. (C) Map of the seasonal mini-
mum reproductive ratio showing geographic clustering. (D) The residuals, ri,
versus the seasonal amplitude of the reproductive ratio (i.e., the transmission
amplitude), point size and color indicate the immigration rate, ψi. (E) The
residuals, ri, versus the seasonal minimum reproductive ratio, point size and
color indicate the immigration rate, ψi.
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Silent Infections.

Disease eradication programs face the significant challenge of verifying success

in the presence of asymptomatic infections. Typically, a criterion for success is the

absence of disease for an extended period; however, the utility of this criterion is ques-

tioned when the symptomatic cases reported are only the tip of the iceberg in terms of

infection. Using our fitted models, we explored the reliability of absence-of-disease as

an indicator of WPV extinction. Due to widespread subclinical infections, there was

a stark contrast between the simulated number of polio infections and clinical cases

(Fig 4.4A). This contrast (i.e., the disconnect between infections and clinical cases),

can lead to epidemiological scenarios where absence-of-disease is uninformative. In

our models, WPV persistence was achieved by one of two mechanisms (1) local unbro-

ken chains of transmission, or (2) local extinction followed by rapid reintroduction.

For each of these two mechanisms, we found that clinical case data can be misleading,

as outlined in Table 4.1. For instance, if WPV circulated at low levels of infection,

extended absence of clinical cases could lead to the conclusion that WPV was locally

eradicated. Similarly, if local extinction of WPV occurred, and was quickly followed

by reintroduction and clinical cases, local extinction could go unrecognized, poten-

tially misdirecting targets for control (e.g., to focus on sink populations rather than

source populations).

By simulating our fitted models we identified extended periods absent of disease

and used these periods to quantify the number of silent infections (Fig 4.6B–C). We

observed that if infections were maintained at relatively low numbers (i.e., under 100

infections per month), then WPV could circulate silently for > 30 months (Fig 4.6B).

The silent circulation of WPV can result in thousands of infections before a single re-

ported case is observed (Fig 4.6C). Our models assumed homogeneous mixing within

each state, and it is important to recognize that different mixing patterns could in-

crease or decrease the duration of silent infections. Due to the silent circulation of
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polio, it is difficult—and perhaps indefensible—to use clinical case data (i.e., with-

out fitted models) to evaluate WPV persistence. We simulated the fitted models

to quantify the distribution of cases observed during periods with WPV extinction

(Fig 4.6D). The distribution of cases surrounding WPV extinctions is fairly symmet-

ric due to the reintroduction of WPV following extinction. Therefore, we conclude

that, in the face of rapid reintroduction following WPV extinction, case data cannot

be used to identify extinction events. Though it is desirable to use fitted models to

identify signals of extinction, and apply this knowledge to case data, it would require

extensive evaluation of silent circulation.

Local Persistence of WPV Local Extinction & Reintro-
duction

Extended
absence of
disease

Disease data are uninformative,
and potentially misleading, be-
cause WPV is circulating silently
via subclinical infections

Disease data reflect that WPV
goes extinct and is reintroduced

Disease
observed
regularly

Disease data reflect that WPV
persists and transmission is on-
going

Disease data are uninformative
because they mask that WPV
goes extinct and is reintroduced

Table 4.1: Four scenarios for the relationship between WPV infections and clin-
ical disease. Local persistence of polio—within a state, region, or country—
occurs when WPV overwinters during the off-season and the transmission chain
is unbroken year-round. In contrast, local extinction and reintroduction occurs
when WPV goes extinct during the off-season, breaking the chain of transmis-
sion; a new transmission chain begins when WPV is reintroduced from else-
where. Discriminating among these scenarios is necessary for planning eradica-
tion strategies in endemic regions.
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Figure 4.6: Persistence Mechanisms. (A) Example of simulated infections and cases
for Wisconsin. Months absent of reported cases are indicated in green. During
periods when the disease is absent, WPV infections are often silently transmit-
ted in the population. In this simulation, there were two instances (indicated
by arrows) when the local chain of transmission was broken and WPV went
locally extinct, but quickly rebounded due to reintroduction. This example
illustrates the two polio persistence mechanisms observed throughout the US,
which are (i) local WPV persistence via unbroken chains of transmission, and
(ii) WPV extinction and reintroduction. (B) Distributions of mean monthly
silent infections during periods absent of reported disease. (C) Distributions
of cumulative silent infections during periods absent of disease. Distributions
in B and C are 10–90% quantiles and the median based on 500 simulations
per US state. Silent infections are those that occur in the absence of reported
cases, and highlight the unobservable dynamics of polio. (D) Simulated cases
surrounding WPV extinction events. Distributions show 10–90% quantiles and
the median number of cases observed up to 6 months preceding and 6 months
following an extinction event. Generally, fewer than 5 cases per month are re-
ported two months to either side of an extinction event. However, it is unclear
whether 5 months with < 5 cases is a reliable signal of extinction.
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Discussion

This work sheds light on the fundamental ecology of WPV. Latitudinal gradients

have been identified in several acute viral infections: including influenza, RSV, ro-

tavirus, and now polio [39, 40]. Our results indicate that the observed latitudinal

gradient in the timing of polio epidemics is driven by a latitudinal gradient in de-

mographic and/or environmental factors associated with transmission. Determining

which mechanism is responsible has implications for control and surveillance efforts.

Specifically, knowledge of the seasonal driver could allow for regionally-timed national

immunization campaigns or the ability to forecast changes in epidemic seasonality.

Our identification of birth rate as a driver of polio’s epidemic emergence during

the baby boom of the 1940s and 1950s, is yet another demonstration [41, 42] of the

need for full integration of demography into the study of childhood infectious disease

epidemiology. The rate of susceptible recruitment has long been known to control the

magnitude and frequency of epidemics of fully-immunizing childhood diseases [41, 43].

Today, in an era of human population expansion and emerging infectious diseases, we

are reminded of the importance of characterizing changes in host population ecology.

Due to limits of our demographic data, we were unable to address the early emergence

phase of polio from the late 1800s through the 1920s. Rather, we focused on the later

phase of emergence in the US, as the disease transitioned from small epidemics in the

1930s and early 1940s to large epidemics during the baby boom era. Though there

were increases in the report rate, which contributed to the trend in observed cases,

we also discovered an increase in the incidence of infection. Importantly, the increase

in infection incidence closely tracked birth rates in the mid-1900s.

To the extent that our results bear on contemporary polio ecology, the identifi-

cation of source-sink dynamics in the US suggests that successful local elimination

of polio in a sink population is inconsequential in the presence of a source pop-

ulation. This prediction has unfortunately been repeatedly borne out in current
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epidemics. Regional elimination of polio has been followed by reintroduction from

endemic countries, such as the 2013 outbreak in Somalia, Ethiopia, and Kenya with

WPV introduced from Nigeria, and repeat reinfection of Afghanistan from Pakistan

[38]. Moreover, the metapopulation structure of WPV demonstrates that preventing

emigration of WPV from source populations—which may be highly localized—is a

requirement for efficient control.

We estimate that > 99% of infections were subclinical, with the reporting of to-

tal infections regularly below 1%. Importantly, subclinical infections are likely more

common today than in our fitted models. This is because, first, both non-paralytic

and AFP cases were reported in the US, whilst only AFP cases are currently reported.

Second, our models were fit to data during the vaccine-free period of polio endemic-

ity; therefore, infection incidence was elevated each summer, allowing the number

of infections to grow sufficiently large to result in a high probability of clinical in-

fections. In contrast, today, as polio’s reproductive number approaches Rt = 1 in

highly vaccinated endemic countries, WPV can circulate at levels below that needed

for likely clinical observation. The recovery of environmental WPV isolates in Israel

in the complete absence of AFP cases supports this expectation [38]. Furthermore,

Fig 4.6B demonstrates that polio may circulate silently for extended periods (i.e., > 3

years) if the number of infections remains below the threshold for likely detection.

Two years of silent WPV circulation has been confirmed. The outbreak in Central

Africa detected in October 2013 was traced back to WPV circulation in Chad during

2011 [44]. Populations expected to have a small number of monthly infections in the

presence of WPV—due to their demography or because they are highly vaccinated—

would therefore be desirable targets for intense environmental surveillance. In terms

of information gained, environmental surveillance is a powerful tool for identifying

silent transmission in locations where polio would otherwise go undetected. In Pak-

istan the level of environmental surveillance has increased since 2011, and WPV has
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consistently been detected, even in the absence of AFP cases [45].

In the absence of validated transmission models, case data are relied upon to

determine whether a pathogen has gone locally extinct and estimate the critical com-

munity size required for pathogen persistence. In light of polio’s propensity for silent

circulation, we conclude that AFP data can be misleading; this conclusion extends to

any communicable disease in which clinical cases represent a small fraction of infec-

tions. Extended periods absent of reported cases can mask infections circulating at

levels below the threshold for likely reporting. We therefore advocate fitting trans-

mission models to contemporary data to draw inference regarding extinction. Since

infection can persist even in the extended absence of reported cases, knowledge of the

local infection dynamics could reveal invaluable epidemiological information. Trans-

mission models fit to endemic countries (i.e., Pakistan, Afghanistan, and Nigeria)

could be used to identify how demographic and environmental factors interact with

vaccine coverage to determine regional WPV persistence. In addition to coupling case

data with transmission models for endemic countries, another useful extension would

be to combine genetic data from WPV isolates with transmission models to further

distinguish between sustained local transmission and imported infection. Genetic

studies have found reductions in WPV genetic diversity in Afghanistan, suggesting

local extinction of some WPV strains [6].

Vaccination campaigns might take further advantage of the seasonality and geo-

graphic clustering of WPV’s reproductive ratio. Low transmission season vaccination

campaigns have been utilized by the GPEI [6]. We found that the “low season” repro-

ductive ratio can have geographic clusters where the reproductive ratio is > 1, which,

if identified in the contemporary setting, might be useful targets for intense low season

vaccination campaigns. Additionally, if the (1) seasonal reproductive ratio, (2) birth

seasonality, and (3) vaccine coverage are quantified for endemic countries, vaccination

campaigns could use this information to determine the regionally-optimal timing for
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national vaccination days. These three quantities could be used to estimate the sea-

sonal effective reproductive number, and evaluate alternative vaccination strategies.

For instance, one strategy might be to extend the duration of the wintertime trough

(i.e., by generating or extending the window during which the effective reproductive

number is < 1), which may push WPV to extinction. Alternative strategies might be

to vaccinate in the months prior to the seasonal peak in transmission or six months

following the peak in births. In the past, mass OPV campaigns held during the

low transmission season were deemed “most effective” [46], but it is unclear to what

extent this strategy is used today.

Historical data, particularly in pre-vaccine periods, offer a unique glimpse into the

ecology of infection, in the relative absence of human intervention. Historical data

offer several advantages. First, reporting rates from historical eras are informative

because they are reflective of (a) the symptomatology of infection, and (b) clinical

diagnosis of symptomatic infection. Second, it can be difficult to infer unobserved

infection dynamics using data for diseases that are near their eradication or elimi-

nation threshold. This is because the parameterization of transmission models with

data containing few cases—and lacking recurrent epidemics—can result in ambiguous

parameter estimates. The recurrent nature of historical epidemics gives us the unique

opportunity to unravel disease-specific transmission ecology. Once the baseline trans-

mission ecology is known, it can be coupled with data from contemporary periods to

test hypotheses regarding modern-day epidemics and their geographic coupling.

Our analyses demonstrate the power of an approach focused on coupling mecha-

nistic transmission models with long-term, spatially replicated longitudinal incidence

data. Specifically, we document intriguing continental-scale gradients in polio sea-

sonality, which we suggest are explained by latitudinal gradients in local transmission

rates. We also show that the historical emergence of epidemic polio was largely a

consequence of demographic trends rather than improvements in hygiene. Impor-
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tantly, we demonstrate that historical polio persistence in the US was driven by an

ever changing arrangement of source-sink populations. Finally, we found that even

protracted AFP-free periods do not reliably indicate WPV extinction. Because of

the difficulty in establishing fundamental aspects of WPV transmission in heavily

vaccinated populations, it is our hope that these insights will act as a baseline for

understanding modern polio transmission and disentangling vaccine effects from the

natural ecology of the disease.
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CHAPTER V

Both Salk and Sabin Vaccines Effectively Reduce

Polio Transmission in Epidemic Settings

Abstract. Wild poliovirus (WPV) is on the brink of eradication worldwide. There

are two vaccines against polio, the Salk Inactive Polio vaccine (IPV) and the Sabin live

Oral Polio vaccine (OPV). OPV is the primary weapon of the Global Polio Eradication

Initiative (GPEI) and is employed throughout the developing world. Unfortunately,

OPV has a serious drawback: reversion of the live attenuated virus to a pathological

form that can result in circulating vaccine derived poliovirus [1, 2]. In this way, OPV

acts as a source of poliovirus, and although OPV has been able to push WPV near

the eradication threshold, it cannot be used for complete eradication. For this reason,

OPV will be withdrawn and IPV re-introduced. The GPEI is now faced with deciding

where and when to withdraw OPV and introduce IPV. However, this decision is being

made in the face of great uncertainty regarding the efficacy of IPV at reducing polio

transmission [3, 1]. If IPV fails to induce herd immunity in endemic countries, the

premature withdrawal of OPV could lead to the resurgence of polio. Here, we use

the initial launch of IPV and OPV in the US and the USSR to measure the extent

that IPV and OPV reduce WPV transmission. We conclude, relative to unvaccinated

individuals, infected OPV and IPV vaccinated individuals transmit WPV 96% and

69% less, respectively; suggesting that IPV could be used to eradicate polio in regions
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with an off-season WPV reproductive number ≤ 3.

Polio from Past to Present

WPV is enigmatic for causing paralytic polio in a small fraction of infected indi-

viduals. Due to intense global vaccination efforts, WPV is on the brink of eradication

worldwide with only three remaining endemic countries (Pakistan, Afghanistan, and

Nigeria). There are two polio vaccines that were licensed in the 1950s and 1960s,

IPV and OPV, also known as the Salk and Sabin Vaccines, respectively. Most coun-

tries have eradicated polio using OPV, with the exception of Scandinavia and the

Netherlands, which used IPV [4]. OPV is the primary eradication tool for several

reasons: (1) OPV stimulates intestinal immunity by mimicking a natural infection

and generating a secretory IgA response that reduces viral shedding, (2) OPV con-

tains attenuated live virus that replicates in vaccinated individuals who then shed

attenuated virus and indirectly vaccinate others, and (3) OPV is inexpensive and

easily administered as oral drops or candy [3, 5]. IPV, on the other hand, is an in-

jectable vaccine that contains inactive virus killed using formalin [6]. The killed virus

in IPV does not establish infection within vaccinated individuals. A recent trial of

OPV vaccination followed by an IPV dose demonstrated that IPV can boost mucosal

immunity [5]; however, it is unknown whether IPV alone can stimulate enteric mu-

cosal immunity and reduce transmission, or if it merely stimulates humoral immunity

and protects from paralytic polio [3, 5]. It is widely recognized that OPV provides

superior protection from WPV infection and reduces transmission; however, OPV has

a serious drawback. The attenuated virus in OPV can undergo recombination with

other enteroviruses or can acquire point mutations and revert back to a pathologi-

cal form, known as vaccine-derived poliovirus [7, 8]. Estimates of the frequency of

vaccine-derived poliovirus vary. Generally, it is estimated that 1–2 cases of paralytic

polio arise per million primary OPV immunizations administered [2]. In these rare
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cases, the vaccinated individual acquires a paralytic vaccine-derived poliovirus infec-

tion that can be transmitted [1]. In this way, OPV acts as a source of poliovirus, and

although OPV has been able to push WPV near the global eradication threshold,

it cannot be used for complete eradication. For this reason, the 2013–2018 GPEI

action plan calls for the complete withdrawal of trivalent OPV, and subsequently, a

gradual withdrawal of bivalent OPV and introduction of IPV [9]. The GPEI is faced

with deciding where and when to withdraw OPV and introduce IPV while WPV

continues to circulate. It is unknown whether IPV has the ability to push WPV to

extinction in endemic regions because there is a lack of information on the extent to

which IPV reduces WPV transmission. Here, we utilize extensive longitudinal data

on poliomyelitis incidence and vaccination status of the population of the US and the

USSR in the 1950s and 1960s to estimate the population-level impact of IPV and

OPV on transmission of WPV.

Early in the 1900s polio became an epidemic disease in industrialized nations.

In the US, the incidence of polio increased steadily throughout the 1900s until the

sequential development of IPV and OPV. In the US alone, the unprecedented magni-

tude of polio epidemics in the 1950s resulted in > 10000 clinical cases and millions of

subclinical infections annually [10]. The majority of clinical cases were concentrated

in school-aged children [2]. Due to this age-structure, when the polio vaccines were

introduced, which first occurred in the US (for IPV) and USSR (for OPV), preference

was given to school-aged children and individuals under 20 years old [11, 12, 13]. In

order to gauge the safety and success of the massive polio immunization campaigns in

the US and USSR, the US launched the Poliomyelitis Surveillance Unit (PSU) at the

Centers for Disease Control and Prevention (CDC) [14]; at the same time, the USSR

Poliomyelitis Research Laboratory tracked the USSR’s intense OPV vaccination cam-

paigns and clinical cases. Detailed data from these surveillance units provided the

unique opportunity to study the population-level effects of IPV and OPV on epi-
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Figure 5.1: MMWR and NOVS data. (a) MMWR data, polio cases per 100000
population in the contiguous US from January 1933–December 1969. (b)
Births per 1000 population over the same time period. (c) NOVS data,
polio cases for which symptomatology was classified as paralytic or non-
paralytic; this is a subset of the cases in MMWR, all others were unspec-
ified.

demic polio. Here for the first time, we curated data detailing the roll-out of IPV

and OPV in the US and USSR, combined it with clinical case data and mathematical

transmission models, and measured the efficacy of IPV and OPV at the population

level.

The race to develop a polio vaccine resulted in the development of IPV by Jonas

Salk and OPV by Albert Sabin. Placebo-controlled IPV trials were run by the Univer-

sity of Michigan and included the vaccination of over 700000 children [15], resulting

in IPV licensing in April 1955. Once licensed, IPV was quickly launched throughout

the US. Initially IPV was given to 2nd grade children but the program was rapidly

expanded to include all children and young-adults [16, 17]. OPV followed at the
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heels of IPV. The vaccine trials for OPV were held in the USSR. In September 1958

Albert Sabin provided the USSR with virus seeds for the three attenuated poliovirus

serotypes. The USSR used these seeds to culture the viruses in monolayer monkey

kidney cells. The USSR immediately cultured enough of each serotype to vaccinated

10 million people. The first cycles of immunization were conducted January–March

1959. The USSR held the first mass immunization campaigns with OPV in Estonia

and Lithuania. On December 16, 1959 the USSR approved widespread vaccination

with OPV, and vaccinated individuals 2 month olds to 20 years old. This involved

vaccinating 35% of total population, 77 million people, between January and June

1960. OPV was administered via Pomadka-Candy, which allowed for easy dissem-

ination [11, 12]. The US sequentially licensed each monovalent OPV and licensed

trivalent OPV in 1963. After the World Health Organization reviewed the details

and design of the USSR’s OPV trials and confirmed their success, OPV became the

vaccine of choice in the 1960s [18]. By 1969 OPV was more widely used in the US

than IPV. In order to estimate IPV and OPV efficacy, we focused on data detailing

the introduction of IPV in the US and the introduction of OPV in three regions of

the USSR: Estonia, Lithuania, Ukraine, and the Russian Soviet Federative Socialist

Data

Since the early 1900s, polio cases were regularly recorded in the US Weekly Public

Health Reports and the CDC Morbidity and Mortality Weekly Reports. We obtained

monthly reported polio cases in the US from January 1933–December 1969 from the

US CDC. We refer the reader to [10] for our baseline analyses of polio transmission

ecology in the US. We will refer to the US monthly polio data as the “MMWR

data” (Fig 5.1a). Beginning in 1951, the National Office of Vital Statistics (NOVS),

which collected the MMWR data, allowed symptomatology to be classified in case

reports. Cases could be reported as paralytic or non-paralytic polio, but many cases
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were unspecified. We obtained the subset of cases for which symptomatology was

provided, which we will refer to as the “NOVS data” (Fig 5.1c). The NOVS data are

annual from 1951–1965.

In addition to the MMWR and NOVS data, we digitized independent polio case

data collected by the CDC PSU and housed at the CDC library. The PSU was a

task force commissioned to gather detailed data on polio cases following the launch

of IPV in 1955 [14]. PSU data were collected independent of the MMWR and NOVS

data; because of this, not all cases represented in MMWR were included in PSU

data, and vice versa. The PSU data are annual from 1958–1965 and detail polio cases

by age, vaccine status, and symptomatology (Fig 5.2). The NOVS and PSU data

both classify cases as either paralytic or non-paralytic. The interpretation of non-

paralytic polio cases has always been problematic due to the lack of a consistency

in the clinical definition. There are two broad clinical definitions that have been

used to classify non-paralytic polio. Some authors define non-paralytic polio as a

symptomatic infection that lacks signs of central nervous system (CNS) involvement;

others define non-paralytic polio as an infection with CNS involvement that does not

result in paralysis. Those that use the latter definition generally place symptomatic

infections lacking CNS involvement into another category known as abortive polio

[19]. Inconsistency in the definition of non-paralytic polio requires acknowledgement

when interpreting polio case reports. We acknowledge that although paralytic polio

is a well-defined clinical manifestation of infection, non-paralytic polio is more of a

“catch-all” category for clinical WPV infections that do not manifest as acute flaccid

paralysis (AFP). All together, we have obtained three polio data sets from the US

(i.e., monthly MMWR data, annual NOVS data, and annual PSU data), which we

couple with complementary vaccination and demography data.

The PSU not only collected polio case data, but—along with the newly formed

National Immunization Survey—also collected data on the distribution of polio vac-
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Figure 5.2: PSU Data. Cases reported to the Poliomyelitis Surveillance Unit de-
tailed by vaccine status and symptomatology. Individuals with the full
3+ dose series of IPV or OPV are indicated by IPV3+ and OPV3; un-
vaccinated and under-vaccinated individuals are indicated as IPV3- or
OPV3-; “ukn” indicates unknown vaccine status. Symptomatology is di-
vided into two categories: (a) paralytic or (b) non-paralytic polio.

cines and age-structured vaccine coverage with IPV and OPV. We digitized PSU

vaccine data which included quarterly shipments of IPV in the US, annual shipments

of monovalent and trivalent OPVs, and the annual percent of individuals in five-year

age groups that have 0, 1, 2, 3, or 4+ doses of IPV, OPV, or combined IPV and

OPV (Figs 5.3 & 5.4). In addition to the disease and vaccine data, we also gathered

demography data for the US that included monthly births (Fig 5.1b), which were an

important determinant of polio incidence [10], and annual population size estimates

from the US Census Bureau.

For the USSR, we digitized monthly polio cases reported in Lithuania and Esto-

nia from January 1955–December 1960. The data were digitized from the Institute

for Poliomyelitis Research, Academy of Medical Sciences, Moscow, USSR. Data re-

ported in the Bulletin of the World Health Organization 1961, vol 25, pp 79–91 [13].

Mass immunization with OPV in Lithuania and Estonia occurred in the early part of

1959 and was repeated in the second quarter of 1960. The population sizes were ∼
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Figure 5.3: Age structured population size and polio vaccine coverage in the
US. (a) Annual size of childhood age classes. (b) Percent of children in
each age group with 3+ doses of IPV. (c) Percent of children with 3 doses
of OPV.

2700000 for Lithuania, and ∼ 1200000 for Estonia. By December 1959, the estimated

number of persons vaccinated in Lithuania and Estonia was 547000 (20% of popu-

lation) and 695000 (58%), respectively. By December 1960, the estimated number

of persons vaccinated in Lithuania was 1760000 (65%), and Estonia 827240 (69%).

Monthly paralytic polio cases reported in the RSFSR and Ukraine were obtained

from a shorter time period, January 1957–December 1960. The data were originally

reported as incidence per 100000. The population size was ∼ 119603000 for the RS-

FSR, and ∼ 42606000 for Ukraine. By December 1959, only 3310000 people (2.8% of

the population) were vaccinated in the RSFSR and 2378000 (5.6%) in Ukraine. How-

ever, by December 1960, the estimated number of persons vaccinated in RSFSR was

42604150 (36%), and 14152778 in Ukraine (33%). In the RSFSR monovalent OPVs
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Figure 5.4: Distribution of IPV and OPV during the roll-out in the US.
(a) Cumulative distribution of IPV in the US. Data are quarterly from
1955–1961, after which they are annual. (b) Cumulative distribution of
OPV monovalent type I, II, and II, and trivalent OPV.

were given three times in 1960 and subsequently trivalent OPV was used for revacci-

nation. In some regions of Ukraine, trivalent vaccine was administered twice; and in

the remaining regions of Ukraine, monovalent vaccines were administered separately

and trivalent was used for revaccination.

Transmission Model

We constructed a stochastic discrete-time Susceptible-Infected-Recovered polio

transmission model that explicitly accounted for vaccine status. A pre-vaccine version

of this transmission model was previously validated for studying polio transmission

[10]. The model includes classes to track individuals with 3+ doses of IPV and/or

3 doses of OPV. In the PSU data we observed polio cases in vaccinated individuals

(Fig 5.2); therefore, we allowed for infection of, and transmission by, vaccinated indi-

viduals. For vaccinated individuals, we estimated their (i) susceptibility to infection
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Figure 5.5: Polio cases in the USSR. Monthly polio cases reported in (a) Lithua-
nia, (b) Estonia, (c) RSFSR, and (d) Ukraine, along with the percent of
the population vaccinated with OPV (white points). OPV was first intro-
duced in Lithuania and Estonia, where vaccine coverage reached > 60%
in the second year of vaccination. As of December 1959, only 2.8% of
population was vaccinated in the RSFSR and 5.6% in Ukraine. However,
by December 1960, the reported vaccination coverage in the RSFSR was
36% and 33% in Ukraine.

(a measure of vaccine leakiness), and (ii) infectiousness, relative to unvaccinated in-

dividuals. The model was constructed in order to infer (a) the mode of vaccine action

(i.e., whether each vaccine reduces susceptibility to infection, reduces infectiousness,

and/or protects against pathology), and (b) vaccine efficacy (i.e., the total amount

that each vaccine reduces transmission). Fig 5.6 shows the structure of the transmis-
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Figure 5.6: Vaccine era polio transmission model. (a) Schematic model of polio
transmission and vaccination. The model has two vaccinated categories,
IPV and OPV, which include individuals with 3+ doses of IPV and 3 doses
of OPV, respectively. The model categorizes infections by vaccine status
and symptomatology (i.e., paralytic and non-paralytic polio). (b) The
timeline of polio in the US and USSR, epidemic periods are indicated
along with the roll-out of IPV and OPV in each country. In the US,
monovalent OPVs were licensed and used for epidemic response before the
switch from IPV to OPV for immunization in April 1963 when trivalent
OPV was licensed.
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sion model. In the absence of IPV and/or OPV in a country or region, the IPV and

OPV classes and their downstream classes are empty. In addition to the epidemiolog-

ical process model, we also included a parallel model to track the vaccine coverage in

the US and each of the four regions in the USSR. This was necessary because ∼ 99%

of polio infections are subclinical [10]; therefore, individuals vaccinated may already

have naturally-derived immunity, making it tenuous to directly use the susceptible

class from the epidemiological model to infer vaccine uptake rates from the vaccine

coverage data. The vaccine tracker model for the US tracked entry and exit from the

under 15 age group via births, deaths, and aging, and it is in this pure demography

model that we account for IPV and OPV vaccination. By fitting the vaccine tracker

model to the IPV and OPV coverage data, we obtained per capita vaccination rates

for the under 15 year age group, which we then applied to our susceptible class in

the epidemiological process model. We used a similar vaccine tracker model for each

region of the USSR, but in the USSR we tracked OPV coverage for all age groups.

All statistical inference was done using maximum likelihood by iterated particle

filtering (mif) in the R package pomp [20]. Our statistical inference pipeline is dis-

cussed in detail in the Appendix. For the US and each region in the USSR, we fit

the data independently and sequentially in the following order: we (1) fit polio trans-

mission parameters and report rates to the pre-vaccine era case data, (2) fit the per

capita vaccine uptake rates to the vaccine coverage data, and (3) fixed the maximum

likelihood estimate (MLE) transmission parameters, report rates, and vaccine uptake

rates in the model and fit the vaccine efficacy parameters to the vaccine era data.

The NOVS data from the US allowed us to estimate the probability of paralytic

and non-paralytic polio pathology. We estimated the probability of unvaccinated

individuals having paralytic or non-paralytic polio upon infection, and we assumed

these parameters are determined by host-pathogen biology and hold in both the US

and USSR. For each region in the USSR (i.e., Estonia, Lithuania, Ukraine, and the
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RSFSR), transmission parameters were fit to the USSR pre-vaccine era data, the

paralytic and non-paralytic probabilities were taken from our US estimates, but the

report rates of symptomatic polio infections were estimated for each region in the

USSR.

We fit IPV efficacy parameters by simultaneously fitting the model to the US

MMWR data and the NOVS data from January 1955–December 1962, the end of

the IPV era in the US. One difficulty of studying vaccine efficacy in the US is that

by the time OPV was fully rolled-out in the US in 1963, the incidence of polio was

already low because IPV had been in use for 8 years. Additionally, as the vaccine era

progressed in the US, the breakdown of reported cases in the PSU data signaled a

reduction in reporting of non-paralytic polio, reducing the reported cases even further.

The small number of reported cases during the OPV era in the US, and uncertainty

regarding the stationarity of reporting, left us with little data with which to estimate

OPV parameters; therefore, we took advantage of the OPV roll-out in the USSR to

study OPV efficacy.

We fit OPV efficacy parameters to the paralytic polio data from the RSFSR.

The RSFSR was specifically chosen because it reported only paralytic polio cases.

The PSU data from the US reported paralytic polio in OPV vaccinated individuals,

but never reported a non-paralytic case in an OPV vaccinated individual; we do not

know if this is because OPV protects from the non-paralytic polio or if this is due to

reporting bias. With no way of knowing whether the former or the latter was the case,

we left non-paralytic infections in OPV-vaccinated individuals out of the model and

used only paralytic polio cases when fitting OPV efficacy parameters. The observation

model for each country/region is schematically depicted in Fig 5.7. The process

model state variables that fed into the observation models included paralytic and

non-paralytic polio infections in (1) unvaccinated or under-vaccinated individuals, (2)

individuals fully vaccinated with 3+ doses of IPV, and (3) individuals fully vaccinated
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with 3 doses of monovalent OPVs or trivalent OPV. The observation models linked

observable state variables with the data from each country/region. In the US, the

full observation model allowed for observations in the MMWR, NOVS, and PSU data

as depicted in Fig 5.7. However, due to computational limits on calculating joint

likelihoods for 3+ time series simultaneously, a nested observation model for the US

that only included the MMWR and NOVS data was used for fitting IPV efficacy.
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Figure 5.7: Polio observation models for the US and USSR. The observa-
tion models detail how symptomatic infections from the process model
(turquoise and orange ovals) were reported in the (a) US via cases in the
MMWR, NOVS, and PSU data sets, (b) Estonia and Lithuania, and (c)
the RSFSR and Ukraine. In the US, the process model state variables
that fed into the observation model were paralytic and non-paralytic in-
fections broken down by vaccine status, either on a monthly or annual
basis. The full US observation model is shown in (a); however, a nested
version that includes only the MMWR and NOVS data was used for fit-
ting IPV efficacy parameters. For Lithuania and Estonia, the observable
state variables were the monthly number of non-paralytic and paralytic
infections broken down by OPV status, assuming OPV protects from
non-paralytic polio. For the RSFSR and Ukraine, the observable state
variables were the monthly number of paralytic polio infections by OPV
status. Subscripts indicate individuals with IPV3+ or OPV3 doses, lack
of subscripts indicate unvaccinated/under-vaccinated individuals.
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Results

Patterns in the US

The incidence of polio in the US displayed strong seasonality, with epidemics

occurring in the late summer and autumn (Fig 5.1). The transmission rate MLEs

for the US were 1.1 during the seasonal trough and 7.5 during the peak (Fig 5.8).

There is a great deal of geographic variation in transmission seasonality in the US

[10]; thus, the MLEs from the national data represent an aggregate estimate. The

seasonality persisted during the IPV era, but dissipated after the introduction of OPV

(Fig 5.1). Figures 5.1 & 5.2 show the dramatic decline in polio incidence following the

introduction of IPV and OPV. In the 8 years preceding the introduction of IPV, April

1947–March 1955, there were 274719 reported polio cases in the MMWR, as compared

to the 69608 reported cases during the 8 year IPV era, April 1955–March 1963.

Although the incidence of polio had already declined substantially when trivalent

OPV was introduced in April 1963, during the first 5 years of the OPV era, the

number of reported cases was 645, which was 3.3% of the number reported in the

previous 5 years, and 0.3% of those reported the last 5 years of the pre-vaccine

period. The NOVS data demonstrate that paralytic polio comprised more of the

reported cases than non-paralytic polio, this is likely due to the high report rate of

paralytic polio, which other studies estimated to be 60–80% in the US at this time

[21]. The breakdown of reported cases by vaccine status in the PSU data revealed

that paralytic polio was regularly reported in individuals with 3+ doses of IPV, but

unvaccinated and under-vaccinated individuals (i.e., IPV3- and OPV3-) represented

the largest number of paralytic polio cases.
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Patterns in the USSR

The USSR displayed epidemic seasonality similar to that in the US. Epidemics

occurred in the summer and autumn (Fig 5.5). However, with the exception of

Estonia, one noticeable difference between the epidemics in the US and those of the

USSR is that the off-season trough in cases is shallow in the USSR relative to the US

cases. This suggests the USSR maintained WPV infections at a higher level during

the wintertime off-season. This is supported by the estimates of the transmission

seasonality in the USSR (Fig 5.8). The seasonal minimum reproductive number was

estimated to be 21, 3, 3, and 2 for Lithuania, Estonia, the RSFSF, and Ukraine,

respectively. The seasonal maximum reproductive numbers were 63, 53, 8, and 7.

The seasonal peak reproductive numbers for Lithuania and Estonia > 50 are on

the level of that observed in the US Midwest, where explosive epidemic dynamics

occurred. However, the shallow trough in Lithuania, with a reproductive number of

21 is far above that estimated in any other location to date [10]. Interestingly, the

transmission rates for Ukraine and the RSFSR are similar to US estimates, with the

exception that the RSFSR and Ukraine both had a shoulder in the transmission rate

at the turn of the year.

Vaccine-induced reduction in polio incidence was observed across the USSR. Fig 5.5

shows monthly cases of polio in the USSR before and after the introduction of OPV.

Vaccine coverage in Lithuania and Estonia was >60% within the first two years of

OPV introduction. Seasonal epidemics were observed in both Lithuania and Estonia

prior to OPV introduction, and these epidemics were lost immediately following the

introduction of OPV. In the RSFSR and Ukraine, the widespread introduction of

OPV was delayed a year after its roll-out in Estonia and Lithuania. Because OPV

was introduced later, vaccine coverage in the RSFSR and Ukraine was lower as of

December 1960, 36% and 33%, respectively. Based on the data obtained from the

RSFSR and Ukraine, the incidence of paralytic polio declined during the first 2 years

135



of OPV vaccination, but not as dramatically as in Lithuania and Estonia.
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Figure 5.8: MLEs of the seasonal transmission rate. Rates for the (a) US, (b)
Lithuania and Estonia, and (c) RSFSR and Ukraine. The transmission
rate parameters were estimated using the pre-vaccine era data. For the
USSR, the transmission rate equates to the reproductive number.

We used one-month-ahead predictions to validate our MLEs of polio transmission

parameters. Fig 5.9 shows one-month-ahead predictions for the US, and Fig 5.10

shows the predictions for each region of the USSR. We used data from the pre-

vaccine era for fitting and validating transmission parameters. In the US, the com-

bined MMWR and NOVS data were used to estimate the probability of paralytic and

non-paralytic polio in unvaccinated infected individuals, as opposed to subclinical

symptoms or silent infection. Under the assumption that the report rate of paralytic

polio was between 60–80% [21], we estimated that the probability that an unvacci-

nated infected individual was paralyzed by poliovirus was 0.008 and the probability

of non-paralytic polio was 0.05. Taken together with the ambiguity in the clinical
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definition of non-paralytic polio, these estimates suggest that ≤ 5.7% of individuals

infected with WPV have CNS involvement.
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Figure 5.9: US pre-vaccine data and one-month-ahead predictions from the
MLE. (a) Monthly MMWR polio cases and model predictions. (b) An-
nual NOVS polio cases that were classified as paralytic or non-paralytic
polio, along with model predictions. One-month-ahead predictions are
particle filtering prediction means.
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Figure 5.10: USSR pre-vaccine data and one-month-ahead predictions from
the MLE. Monthly polio cases and one-month-ahead predictions for
(a) Lithuania and (b) Estonia. Paralytic polio cases and one-month-
ahead predictions for (c) the RSFSR and (d) Ukraine. One-month-ahead
predictions are particle filtering prediction means.
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IPV Mode of Action & Efficacy

In order to fit IPV efficacy parameters, we first estimated monthly per capita

vaccine uptake rates for the US population under 15 years of age. Fig 5.11 shows

the MLE vaccine coverage fit simultaneously to four time series of vaccine coverage:

IPV3+ coverage, OPV3 coverage, dual IPV3+ and OPV3 coverage, and the percent

of the under 15 age group with less than 3 doses of each vaccine. In accordance with

the cumulative vaccine distribution data in Fig 5.4, we assumed a linear increase

in IPV coverage from 1955–1958, years for which we lacked vaccine coverage data.

We expected trends in cumulative vaccine distribution to be a good proxy for trends

in vaccine coverage, because vaccine coverage is the cumulative percent of children

vaccinated. Using the IPV era data from April 1955–December 1962, the MLE vaccine

uptake rates, and the MLE transmission parameters, we estimated the mode of action

and efficacy of IPV.

The IPV modes of action we tested were reductions in (1) susceptibility to WPV

infection, (2) transmission by infected vaccinated individuals (i.e., infectiousness),

(3) the probability of paralytic polio, and (4) the probability of non-paralytic po-

lio. Modes 1 and 2 act by reducing WPV transmission in the population and could

generate herd immunity. In contrast, modes 3 and 4 are effects on the pathological

consequences of infection, which would protect the individual vaccinated, and reduce

the observation of polio as a disease, but would not reduce transmission of WPV.

The efficacy of IPV was taken as the overall reduction in WPV transmission by IPV,

which we measured as the product of IPV’s effect on susceptibility and infectiousness.

All IPV parameters were estimated using the IPV era data from the US.

Our results indicate that IPV reduces polio transmission at the population-level

by reducing susceptibility and infectiousness, either alone or in combination. Due to

tradeoffs between parameter estimates for susceptibility and infectiousness (Fig 5.12a),

we were unable to distinguish whether IPV acts primarily by reducing susceptibility

139



●
●●●●

●
●

●
●

1935 1945 1955 1965

0
20

40
60

80
10

0
IP

V
 c

ov
er

ag
e

●
●●●●

●
●

●
●

(a) US

● data
MLE

●

●

●
●

●●

1935 1945 1955 1965

0
20

40
60

80
10

0
O

P
V

 c
ov

er
ag

e

●

●

●
●

●●

(b) US

●●●

1935 1945 1955 1965

0
20

40
60

80
10

0

year

un
de

rv
ac

ci
na

te
d 

pe
rc

en
t

●●●

(c) US

●

●
●

1935 1945 1955 1965

0
20

40
60

80
10

0
year

du
al

 IP
V

 &
 O

P
V

 c
ov

er
ag

e

●

●
●

(d) US

Figure 5.11: US MLE vaccine coverage. Vaccine coverage based on MLE vaccine
uptake rates fit to the vaccine coverage data for the 1–14 year old age
group.

(i.e., by preventing the establishment of infection) or by reducing infectiousness (i.e.,

by reducing the duration or amount of viral shedding). To deal with this tradeoff,

we assumed that IPV effectively acts by reducing infectiousness, rather than suscep-

tibility. This assumption is supported by clinical data which suggest IPV does not

reduce the odds of the establishment of infection upon poliovirus challenge, but IPV

can reduce the quantity of virus shed and the duration of shedding [3]. Under this

assumption, we profiled IPV efficacy and estimated that IPV efficacy is 69% (95%

CI 67–74%), meaning that IPV reduces transmission to 31% of the natural level

(Fig 5.12b). We also estimated that IPV reduces the probability of paralytic polio

by 75% and reduces the probability of non-paralytic polio by 99%. However, we have

not measured the level of uncertainty in the latter two parameters. Taken together,

these results suggest that IPV acts via multiple modes to reduce both transmission

and pathology.
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We used hindcasting to validate our estimate of IPV efficacy. Specifically, we

used the fitted model to conduct December-to-December predictions of the MMWR

and NOVS data. The December-to-December predictions tested the power of the

model to predict “the next year’s epidemic”. The December-to-December predictions

(Fig 5.13) demonstrated that the model predicts the decline in polio cases driven by

the roll-out of IPV. However, the predictions usually underestimate the number of

cases in both the MMWR and NOVS data, suggesting that our estimates are nearby,

but are not, the true MLEs. We speculate that the under-predictions are due to

overestimating the reduction in the paralytic and non-paralytic probabilities. If this

is the case, profiling the reduction in the paralytic and non-paralytic probability will

improve model fit.
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Figure 5.12: IPV efficacy. (a) Tradeoff in IPV efficacy parameters observed dur-
ing the inference process. The parameters measured the susceptibility
to infection of IPV3+ individuals, relative to unvaccinated individuals,
and the infectiousness of IPV3+ individuals, relative to unvaccinated
infected individuals. The tradeoff is such that there is ridge in the like-
lihood surface and the product of the IPV parameters is well identified.
(b) Due to the tradeoff between the IPV efficacy parameters we fixed
the susceptibility to infection of IPV3+ individuals to ∼ 1 (meaning
IPV does not reduce susceptibility) and estimated the infectiousness of
IPV3+ individuals. We used the MMWR and NOVS data from the IPV
era for profiling because it became computationally infeasible to use the
PSU data (see Appendix). We estimated IPV infectiousness to be 0.31.
Thus, IPV reduces transmission by 69% (95% CI 67–74%). In (a) we in-
dicate the IPV efficacy ridge tracing the MLE at 0.31 (turquoise dashed
line).
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Figure 5.13: IPV efficacy, one year ahead predictions for the US. IPV efficacy pa-
rameters were fit to the MMWR and NOVS data up to December 1962. Using
the MLE for IPV efficacy, a particle filter was run to December of each year
and use to simulate forward through the next year to predict epidemic tra-
jectories. The December-to-December predictions were done simultaneously
for (a) MMWR data, (b) paralytic polio reported to NOVS, and (c) non-
paralytic polio reported to NOVS. December-to-December predictions tested
the ability of the model to predict the next year’s epidemic. In general, the
model under-predicted the number of cases, suggesting that we are nearby,
but have not yet reached the true MLE.
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OPV Mode of Action & Efficacy

The modes of action tested for OPV were reduction in (1) susceptibility to WPV

infection, (2) transmission by infected OPV vaccinated individuals, and (3) the prob-

ability of paralytic polio. All OPV parameters were inferred using paralytic polio data

from the RSFSR and then were independently validated by predicting the reduction

in polio cases in Lithuania, Estonia, and Ukraine following the introduction of OPV.

Since we anticipated a tradeoff in estimates of OPV efficacy parameters, as was the

case for IPV, we first profiled relative susceptibility, assuming full infectiousness, and

vice versa. We then profiled along all three modes of action.

In the RSFSR, we created a two-dimensional likelihood profile of OPV3 rela-

tive infectiousness and OPV3 relative paralytic probability (Fig 5.14 top), and a

two-dimensional likelihood profile of OPV3 relative susceptibility and OPV3 rela-

tive paralytic probability (Fig 5.14 bottom). For both profiles we let mif estimate

the OPV vaccine uptake rate. Using the MLE vaccine uptake rate from the two-

dimensional profiles, we then produced a 50x50x50 three-dimensional profile of OPV

relative susceptibility, infectiousness, and paralytic probability, by calculating likeli-

hoods at all 125000 profile points. We identified the MLE OPV efficacy from the

three-dimensional profile (Fig 5.15a). The MLE OPV efficacy was 0.04, indicating

that OPV reduces polio transmission by 96%. Interestingly, the MLE for OPV rel-

ative susceptibility was 1, and infectiousness was 0.04, indicating that OPV acts by

reducing infectiousness, rather than susceptibility. The OPV relative paralytic prob-

ability was 0.67, suggesting that OPV does reduce the probability of paralysis. We

used one-step-ahead predictions in the RSFSR to validate OPV efficacy (Fig 5.15b).

The one-step-ahead predictions captured the reduction in paralytic polio following

the introduction of OPV; however, the model tended to overestimate the number

of cases. We anticipate that higher resolution profiling will result in a MLE with a

reduced OPV paralytic probability and a better fit to the vaccine era data.
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We conducted independent validation of OPV efficacy by deploying the OPV

efficacy MLE in the models for Lithuania, Estonia, and Ukraine. The independent

validation was able to predict the decline in polio incidence in Lithuania, Estonia,

and Ukraine (Fig 5.16). Once again the model often over-predicted the number of

polio cases in the presence of OPV. We believe this discrepancy can be overcome with

higher resolution profiling of OPV efficacy and the reduction in paralytic probability.
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Figure 5.14: OPV efficacy 2D profiles. The RSFSR was used to estimate OPV
efficacy parameters. Two dimensional likelihood profiles of (top) the re-
duction in infectiousness caused by the full 3 dose series of OPV, relative
to unvaccinated individuals, and the reduction in the paralytic proba-
bility. Top profile assumes that OPV does not reduce susceptibility.
(bottom) The reduction in susceptibility to infection and the reduction
in the paralytic probability. The bottom profile assumes OPV does not
reduce infectiousness. The relative infectiousness of OPV individuals
seems to be well identified in the top profile, but the bottom profile
is relatively flat, and low likelihood, suggesting that we cannot assume
OPV does not reduce infectiousness.

146



Figure 5.15: OPV efficacy 3D profile. The RSFSR was used to estimate OPV
efficacy parameters. A three dimensional 50x50x50 likelihood profile of
the reduction in infectiousness caused OPV, the reduction in susceptibil-
ity, and the reduction in the paralytic probability was created. Plotted
in (a) the log likelihood of OPV efficacy across the profiled range. We
measured efficacy by taking the combined effect of OPV on susceptibil-
ity and infectiousness. The MLE efficacy of 96% is indicated in green.
The OPV efficacy MLE was then validated using (b) one-month-ahead
predictions. The white line is the vaccine coverage based on the MLE
uptake rate.
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Figure 5.16: Independent validation of OPV efficacy. The OPV efficacy MLE
from the RSFSR was used to predict out-of-fit, the cases in (a) Lithuania,
(b) Ukraine, and (c) Estonia.
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Discussion

Using detailed data on polio incidence and the roll-out of IPV and OPV in the

US and USSR, we estimated the efficacy of IPV and OPV. In line with clinical trial

data and the eradication experience [3, 4], we found that OPV is superior to IPV in

reducing polio transmission. Our fitted models indicate the full 3+ dose series of IPV

reduces WPV transmission by 69%, relative to unvaccinated individuals. OPV, on

the other hand, reduces transmission by 96%. We found that IPV reduces transmis-

sion by either reducing susceptibility to infection or by reducing the infectiousness

of vaccinated individuals. Due to uncertainty regarding IPV’s mode of action, we

assumed IPV reduces infectiousness, rather than susceptibility. The basis for this

assumption is that multiple clinical studies have found that IPV does not reduce the

odds of infection and shedding, but reduces the quantity of virus shed in stool by

63–91%. Our estimated 69% reduction in transmission suggests that viral shedding

is an indicator of infectiousness. Clinical data also indicate that IPV decreases the

infectious period; however, due to the monthly structure of our model we were unable

to test shorter infectious periods.

The infectiousness of OPV vaccinated individuals was 0.04, relative to unvac-

cinated individuals. Importantly, the 96% reduction in transmission we estimated

matches clinical trials that found that the odds of OPV individuals shedding virus

after infection challenge was 0.13 [3]. The consistency between our IPV and OPV

efficacy estimates and the clinical trial data suggests that the individual-level efficacy

trials directly translated to reductions in transmission measured at the population-

level. In addition to effects on transmission, we also have an indication that IPV

reduces the probability of paralytic polio by 75% and the probability of non-paralytic

polio by 99%. Given the lack of reported non-paralytic polio in OPV3 individuals, we

assumed the full series of OPV offers complete protection from non-paralytic polio,

an assumption that requires further testing. As for paralytic polio, our MLE indi-
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cates that OPV reduces the probability of paralysis in infected individuals by 33%.

However, this is likely to change with refinement of the MLEs.

An important consideration for vaccine evaluation is how efficacy changes through

time. Mucosal immunity provided by OPV is known to wane over time [22]. Since our

inference was done using data from the initial roll-out of IPV and OPV, we did not

have the longer-term data necessary to evaluate waning vaccine-derived immunity.

However, if eradication is the goal, the waning of immunity over the course of several

years would be inconsequential if mass immunization raised “recent” vaccine coverage

high enough to hit the eradication target, and waning occurred post-eradication. In

other words, in the face of imperfect vaccines, globally-synchronized mass immuniza-

tion can be used to boost age groups, creating a honeymoon period with high levels

of immunity that could drive WPV to extinction.

Our profiles of IPV and OPV efficacy indicated that the reduction in transmission

provided by each vaccine was well identified. As previously mentioned, for IPV we

were unable to distinguish whether the mode of action was reduction in susceptibility

to infection, reduction in infectiousness, or both. The next step would be to fix the

infectiousness and estimate the susceptibility of vaccinated individuals. Due to the

strict tradeoff observed between IPV susceptibility and infectiousness in Fig 5.12, we

predict that the MLE for IPV efficacy will be ∼ 0.31, regardless of the mode of action.

We believe there is one parameter with the potential to affect our estimate of

IPV efficacy, and that is the immigration rate of infection. The immigration rate

was a parameter that accounted for introduction of WPV from regions outside the

US. Since the majority of WPV infections are silent or subclinical, the immigration

rate was included in the model to account for WPV introduction into the population

by the movement of people with subclinical infections. Given the large amount of

international travel into the US in the post-World War II era, we decided to include

immigration into the force of infection. The immigration rate was estimated along

150



with the other epidemiological parameters in the pre-vaccine era. By profiling the

immigration rate (see Appendix), we found that the MLE was at the lower range

of our profile. Although immigration had a large impact on local polio epidemics

[10], it did not seem to have a substantial impact on the national-level epidemics

in the US. If we set immigration to zero, the pre-vaccine trajectories changed very

little. However, as WPV circulation decreased after years of vaccination with IPV,

we believe the immigration rate had a large effect on infection dynamics. This is

because, as the number of locally-derived WPV infections decreased, the relative

effect of the immigration rate on the force of infection increased. The immigration

rate is important because, if we had estimated a lower immigration rate, we would

have a lower baseline transmission rate, and therefore would require less efficacious

IPV to see the same reduction in cases. A very important follow up will be to more

precisely estimate the immigration rate in the US and then refit IPV efficacy. The

confidence intervals for IPV efficacy could also be calculated to account for uncertainty

in the immigration rate.

Other improvements to the US model include better estimates of IPV uptake.

The model currently captures vaccine coverage well, but the decline in IPV coverage

during the transition to the OPV era could be improved. With improved estimates

of IPV uptake and efficacy in the US, we believe we will be capable of fitting the

full observation model with the PSU data. As previously mentioned, the fitted IPV

model underestimated the number of cases in MMWR and NOVS (Fig 5.13). We

believe this was due to overestimating the reduction in the IPV paralytic probability

and the non-paralytic probability. Simulations from the fitted model had too few

IPV paralytic and non-paralytic cases reported to PSU. We suspect that this is why

we hit the limits of floating-point number representation when trying to calculate the

joint likelihood of the MMWR, NOVS, and PSU data.

As for OPV efficacy, the fitted OPV efficacy in the RSFSR and independent val-
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idation in Lithuania, Estonia, and Ukraine make a strong case for the accuracy of

our estimate. Although the estimate of OPV efficacy may be accurate, finer scale

profiling is warranted. The fitted models over-predicted the cases in the USSR, sug-

gesting that the true MLE has either a higher OPV efficacy (i.e., a greater reduction

in infectiousness or susceptibility) or a reduction in the OPV paralytic probability. It

was unexpected that the relative OPV susceptibility was 1, meaning OPV does not

reduce susceptibility. However, we assume further profiling in the neighborhood of

the OPV efficacy MLE will result in a lower estimate of this value and a better fit to

the data. An exciting extension to the independent validation of OPV efficacy will be

to deploy the MLE OPV efficacy to predict the OPV era data from the US. Similarly,

the IPV efficacy estimated in the US could be independently validated using data

from another country that relied on IPV, such as the Netherlands.

In conclusion, we found that OPV reduces WPV transmission on the popula-

tion level by reducing the infectiousness of vaccinated individuals by 96%. More

importantly, we demonstrated that IPV acts either by reducing the susceptibility to

infection or infectiousness by 69%. Although the MLE indicates IPV efficacy is 69%,

the efficacy may be higher because we used data from the 1950s and 1960s. The

regulations for vaccine licensure changed in 1968 and required higher potency IPV

[23]. Thus, IPV licensed and used today may have higher efficacy than the original

rolled-out in the US.

Clinical IPV efficacy studies— that simulated WPV challenge using OPV—suggested

that IPV does not protect from the establishment of infection, but reduces the quan-

tity of WPV shed in stool and the duration of shedding [3]. Our results indicate that

this individual-level estimate scales up to the population-level and IPV does in fact

reduce transmission. This is a hopeful indication that, if maintained at high levels

of vaccine coverage, IPV could significantly reduce polio transmission and result in

herd immunity. Given an IPV efficacy of > 69%, a “back of the envelope calculation”
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suggests that IPV could be used to lower the reproductive number of WPV < 1 in

regions with an off-season WPV reproductive number ≤ 3. If this is the case, WPV

could be driven to local extinction with high IPV coverage. Based on studies of im-

perfect vaccines [24], we estimate that with an off-season reproductive number ≤ 3,

96% vaccine coverage with IPV alone, or 69% vaccine coverage with OPV alone, could

eradicate polio. Given, that much of the world has OPV-derived immunity, and some

older individuals have naturally-acquired immunity, eradication might potentially be

achieved with a switch to IPV and coverage < 96%.

Our results eliminate much of the uncertainty that surrounded IPV efficacy, and

give a hopeful outlook for the successful withdrawal of OPV and reliance on IPV.

However, aside from questions regarding efficacy, another reason that IPV has limited

use is due to the difficulty of administering the 3 dose injection of IPV in mass

immunization campaigns. Fortunately, this year a new microneedle technology was

developed for administering IPV, which can be done cheaply, with limited training,

and simple transport [25]. In light of our results, new technology for administering

IPV, and the drawbacks of OPV, we suggest that the cautious withdrawal of OPV be

fully considered under (1) the explicit knowledge of an IPV efficacy of ∼ 69% and (2)

the dramatic seasonal fluctuations in WPV’s reproductive number and the limited

seasonal “window” for eradication.

Epilogue

Before publication of this work there are several extensions that must be com-

pleted. The list below contains some of the primary extensions.

• We will profile the IPV uptake rate to improve the fit to IPV coverage data in

the US

• We will test whether infection immigration is necessary in the US transmission
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model and we will refit IPV efficacy parameters under a “no immigration”

assumption.

• Using the US data, we will profile IPV efficacy along the IPV-efficacy-ridge

shown in Fig 5.12. The profiling will be along 3 parameter dimensions: IPV

efficacy, IPV relative paralytic probability, and IPV relative non-paralytic prob-

ability.

• For the USSR, we will be expanding the data both in the pre-vaccine era and

the vaccine era. With the expanded data, we will refit the WPV transmission

parameters in each region in the USSR

• Using expanded data from the USSR, we will once again simultaneously pro-

file OPV relative susceptibility, OPV relative infectiousness, and OPV relative

paralytic probability.
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CHAPTER VI

Conclusion

An open challenge in disease ecology is to reveal the mechanisms and implications

of infectious disease seasonality [1, 2, 3, 4, 5]. My dissertation research was a starting

point for addressing disease seasonality in what will likely be a career-long endeavor.

I will now generally discuss disease seasonality and present ideas for extending my

dissertation research. Seasonal drivers of disease can be separated into four intercon-

nected categories: (1) environmental drivers, (2) host behavior, (3) host phenology,

and (4) exogenous biotic drivers. I will briefly discuss each of these four categories

and frame research approaches for studying seasonal cycles.

6.1 Environmental Drivers

Environmental drivers are abiotic conditions that influence transmission via their

effects on hosts and/or parasites. Such drivers include quantitative features of the en-

vironment; classical examples are temperature and rainfall, which influence a variety

of infectious diseases [2]. Environmental drivers can impact pathogen survival dur-

ing transitions between hosts. Transitions can take place during short time windows

(e.g., for droplet transmitted infections) or long time windows (e.g., for parasites with

environmental life stages). In addition to their impact on pathogens, environmental

drivers can also influence host susceptibility to infection. For example, environmental
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conditions can moderate the host immune response and increase the susceptibility

of cells to infection [6] or pose seasonal challenges (such as food limitations) that

leave hosts vulnerable to infection or pathology [7]. Environmental drivers, along

with host behavior, are the seasonal drivers that have received the most attention

from the scientific community. Presumably, environmental drivers have been a main

focus because they strongly covary with seasonal disease incidence. Associations be-

tween environmental conditions and disease incidence are causal in some cases, with

influenza transmission being the most notable example [8]. However, covariation is

expected between seasonal phenomena and we should also consider seasonal features

of the biotic environment in addition to the abiotic.

6.2 Host Behavior

Transmission seasonality is sometimes due to seasonal host behavior, most com-

monly fluctuations in host contact rates throughout the year. School-term trans-

mission of measles is an excellent example of seasonal contact rates [9]. Studies of

human diseases have been enlightening in this area; however, I would argue that wild

animal systems offer a richer arena for studying seasonal host behavior and disease

transmission. In the case of measles, children contact other children year-around, and

school-terms increase this rate; whereas, in non-human systems, risky contacts could

be seasonally isolated in time.

Let us consider sexually transmitted diseases in seasonally breeding mammals.

Seasonal transmission would not simply modulate a pre-existing non-zero contact

rate, but there is a complete absence of sexual contacts (and thus transmission)

outside of the breeding season. I propose that isolation in time is the most extreme

form of seasonal transmission, and it is an important area for future research. I predict

seasonally isolated transmission exists for STDs in wildlife, but may also occur for

parasites with other transmission modes. Discrete windows of transmission are likely
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to have evolutionary consequences for parasite life history. Cattadori et al. [10]

pointed out that, when transmission is restricted to a short seasonal window, natural

selection will favor parasites with “long-lived infective stages”. I further speculate

that transmission isolated in time will have dynamical consequences that make these

disease systems unique from those with year-around transmission.

Sexual contacts are not the only seasonal “risky” behavior. Seasonal engagement

in risky behavior may also occur in other disease contexts, including for infections

transmitted during bouts of fighting. For example, the Tasmanian devil contact net-

work varies between the mating and non-mating season and could influence transmis-

sion of devil face tumor disease, the transmission of which is facilitated by aggressive

behavior [11, 12]. Mating and aggression can elevate disease risk, but it is impor-

tant to acknowledge that some behaviors mitigate disease risk. Disease mitigation

behaviors include grooming to remove ectoparasites [13] and self-medicating [14], but

to my knowledge there are few studies of seasonality in risky behavior and disease

mitigation behavior. In the very least, disease ecology would benefit from a compre-

hensive review of the ways in which animal behaviors affect disease transmission and

how influential behaviors are structured in space (i.e., across populations), through

time (i.e., seasonally), and how they vary with age. By bringing a disease ecology

focus to analyzing observational studies of animal behavior and the growing amount

of telemetry data collected from wild animals we could form hypotheses regarding

how the ecology of infection and behavior overlap.

6.3 Host Phenology

Host behavior can also seasonally structure disease risk via the geographical local-

ization of hosts. Hosts seasonally engage with different aspects of their environment.

For hosts that migrate or hibernate, contact with risky environments can be seasonal

[15]. Migration and hibernation are part of host phenology, which includes host life
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history, annual cycles, and endogenous circannual rhythms. As discussed in Chapter

III, in disease ecology, relevant host phenology includes, but is not limited to, birth

seasonality, seasonal re-structuring of immunity, cycles of nutrition and body condi-

tion, hibernation, and migration. Unlike environmental drivers and host behavior,

host phenology can affect diseases dynamics by means other than transmission. In

SIR-type models of disease transmission, host phenology can generate seasonality in

(1) susceptible recruitment, (2) host susceptibility to infection, (3) host infectious-

ness, (4) the recovery rate, (5) the mortality rate (both natural and disease-induced),

and (6) symptomatology. An import extension to my dissertation research is to

test whether is it possible to determine which of these six seasonal mechanisms is

acting in specific infectious disease systems. The six mechanisms presumably have

different dynamical effects and would therefore leave imprints in long-term incidence

data. Extensive simulation studies are required to identify the dynamical effects of

these seasonal mechanisms acting in isolation and in combination. Simulation studies

will provide a foundation for determining the types of data required for distinguish-

ing among seasonal mechanisms. This challenge becomes greater when considering

chronic infection with parasites that have complex life histories and phenology of their

own.

6.4 Exogenous Biotic Drivers

In addition to abiotic, behavioral, and phenological features of host-parasite sys-

tems, hosts and their parasites are embedded in ecological networks that have addi-

tional seasonal aspects. I refer to interactions within ecological networks as exogenous

biotic drivers because they are exogenous to the host-parasite dyad. Exogenous biotic

drivers include parasite-parasite interactions and host community ecology. I did not

include exogenous biotic drivers in my dissertation research. In recent years, how-

ever, studies highlighting the importance of immune mediated parasite interactions
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and host heterogeneity in multi-host systems have demonstrated the need to con-

sider community ecology of hosts and their parasites [16, 17]. Interactions between

hosts/parasites and members outside of the dyad undoubtedly display seasonality, as

do nearly all aspects of ecology. Since seasonality is an inherent feature of ecologi-

cal systems, and seasonal incidence is a feature of infectious diseases, I propose that

progress can be made if we (the scientific community) embrace the assumption that

“everything is seasonal”. Working under this assumption would prevent us from fu-

tilely establishing correlative relationships among seasonal phenomena ad nauseam.

Instead, we can focus our attention on building theory that will provide a deeper

understanding of seasonal mechanisms, and we can learn how to identify imprints

of seasonal drivers in disease data. My general conclusion is, since “everything is

seasonal”, then everything will covary (usually with some phase shifts). Therefore,

seasonal covariance alone is not useful for establishing seasonal drivers. Long-term

parallel data of potential seasonal drivers and disease incidence could be used to es-

tablish causality or suggest causal mechanisms if we look beyond seasonal covariance.

I predict that the information contained in interannual variation and anomalous years

holds the key to establishing causality.

6.5 Understanding Seasonality

Let us do a thought experiment to illustrate how anomalous years and interannual

variation could be used establish the causal mechanism of disease seasonality. Con-

sider a human disease with seasonal peak incidence in the summer, since incidence

peaks in summer, it would have a strong positive relationship with temperature,

photoperiod, and many other summer-related features of the environment and host

population. To highlight how strongly non-causal seasonal factors correlate with dis-

ease incidence, we could quantify the positive relationship between disease incidence

and the sales of bathing suits or the frequency of back-yard barbecues, both of which

163



presumably go up in summer. Now imagine we build transmission models for this

infection and test the four potential seasonal drivers (i.e., temperature, photoperiod,

swim suite sales, and barbecues) as modulators of host susceptibility to infection. If

the disease displays either interannual variation in epidemic size or anomalous years

with differences in epidemic timing, then only the data from the causal driver would

aid us in predicting the variation observed across years, assuming the causal driver is

responsible for some of the variation.

In this thought experiment, photoperiod might be ruled out as the causal driver

because there is no interannual variation in photoperiod for any given latitude. There-

fore, we need to consider a better metric of light conditions, such as sunlight hours

calculated using data on photoperiod and cloud cover. After correcting the sunlight

metric, we find that all four models capture the seasonal structure of epidemics, be-

cause they all covary with disease incidence. However, only the model with sunlight

hours accurately predicts the between-year variation in epidemic size and the anoma-

lous years. This suggests that sunlight is the primary (causal) seasonal driver, and

the model indicates that sunlight acts by modulating host susceptibility. As is the

case with any scientific endeavor, we would be left with a new problem: to identify

the mechanism of action on a biological level. We would need to address whether sun-

light is modulating host susceptibility by modifying host immunity, or if it is instead

influencing the transmission rate by affecting the pathogen or some other feature of

the host-pathogen system. The effects of seasonal drivers are multi-layered. Thus, in

order to better understand seasonality we must work at multiple organizational levels

of science. Geophysical factors, host population ecology, and within-host biology will

need to be integrated in the practice of studying seasonality. In my own work, I have

identified several new avenues for exploration that would require interdisciplinary

research.
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6.6 Expanding on Birth Seasonality

My work on birth seasonality had one major downfall, the lack of an empirical

example demonstrating the effect of birth seasonality in real-world epidemics. In

Chapter II, I studied the effect of birth seasonality on New York City measles epi-

demics. In hindsight, the data from New York were unlikely to prove insightful.

Based on my simulation studies, the birth amplitude needed to be fairly high in a

population (i.e., > 20%) in order to have an observable effect on measles incidence.

However, New York City had a birth amplitude well below 20% during the time pe-

riod I studied. I did not observe an effect of birth seasonality on estimates of measles

transmission in New York City, and I attributed this to the low amplitude of birth

seasonality.

I chose to investigate measles for two reasons. First, measles was the focus of foun-

dational studies in disease ecology [9, 18, 19, 20, 21, 22] making it familiar to many

disease ecologists. Second, the data were readily available for New York City. How-

ever, I recognize that my study of birth seasonality and disease needs to be repeated

using data from populations with higher amplitude birth seasonality. Furthermore, it

is likely that birth seasonality plays a larger role in disease systems with an infant age

of first infection, such as rotavirus or hand foot and mouth disease, but this remains

to be tested.

The difficulty of studying the impact of birth seasonality on childhood diseases—

which I will now refer to as early-life infections to include wildlife diseases—is that

births do not directly enter the susceptible pool. My work on measles and polio re-

quired me to grapple with the presence of maternal immunity in infants. In mammals,

maternal immunity is transferred from mothers to their offspring during pregnancy

and lactation. Females transfer maternal antibodies and leukocytes (i.e., immune

cells) that help fight early-life infections in their infants [23, 24]. The exciting next

step in the study of birth seasonality is to determine how it interfaces with the evo-
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lutionary ecology of maternal immunity.

Maternal immunity is short-lived, usually lasting weeks to several months [23].

In seasonally breeding mammals, maternal immunity is present in the population at

the same time as the birth pulse. Since birth pulses replenish the susceptible pool,

and can fuel outbreaks, I hypothesize that maternal immunity is an evolutionary

response for mitigating the dynamical consequences of birth seasonality. Furthermore,

there is evidence that the interaction between maternal immunity and infection is

not a one-way effect, but a feedback. A study of leukocytes in breastmilk found

that the abundance of leukocytes increased if either the mother or the infant was

infected [24]. This suggests there are dynamical feedbacks between infection and

maternal immunity. Transmission models that bridge the population-level and the

individual-level could be used to study the interaction between, and evolution of, birth

seasonality, maternal immunity, and disease seasonality. This work would require an

interdisciplinary group of disease ecologists, immunologists, and clinicians. The study

of maternal immunity and seasonal cycles of reproduction should not be studied

in isolation; additional seasonal features of host life history, including rhythms in

immunity and nutrition, would also require consideration.

6.7 Exploring Biological Rhythms

My work on biological rhythms and infection raised more questions than it an-

swered. Seasonal cycles of gene expression in the human immune system, which I

discussed in the introduction, are suggestive that the human immune system has

endogenous circannual cycles. In order for rhythms to be endogenous, they must

persist under constant environmental conditions. The test of this requires long-term

experiments where subjects are kept in an environment absent of seasonality, which

is one of the reasons laboratory studies of circannual rhythms are rare. In my view,

though unconventional, if desired it would be possible to test if seasonal rhythms in
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immunity are endogenous by studying crews working on the international space sta-

tion. NASA is currently conducting its first 1-year mission, which would encompass

a full circannual cycle. Astronauts are particularly promising for studies of immunity

rhythms because (a) they live in a relatively constant environment, and (b) they are

not exposed to pathogens that would stimulate an immune response and bias results.

The study of biological rhythms in space is promising, NASA is currently conduct-

ing studies on circadian rhythms; therefore, the opportunities space flight present for

chronobiology have been acknowledged [25].

Switching to the parasite perspective, F. Hawking extensively documented the

circadian and seasonal cycles of parasites in the 1970s [26], but the field has progressed

little since. Endoparasites pose a difficult problem for studying rhythms because

they live within other organisms. It is unclear how parasite rhythms are entrained.

Are parasite rhythms entrained to the rhythms of their host? If parasites rhythms

entrain to host rhythms, then parasites can be placed in a “constant” environment

by infecting hosts lacking functioning biological clocks. Fortunately, knockouts of

circadian clock genes (e.g., Per2 and Bmal1 ) exist in mouse models and are often

used in circadian clock studies. Regardless of whether parasite rhythms or seasonal

host immunity rhythms are endogenous, it is important to determine whether they

have consequences for disease.

The next step for studying biological rhythms and infection will be to expand

upon the pre-existing work on circadian rhythms. Circadian studies are data rich be-

cause they are short in period, and the circadian clock is well understood. Whereas,

the mechanistic underpinnings of the circannual clock remain a mystery. There are

several research groups studying circadian rhythms in malaria parasites. Over the

next several years, the rodent malaria system will undoubtedly progress the study of

rhythms and infection. As a complement to experimental studies, an open research

area is to develop dynamic models of the multi-oscillator system that includes host
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rhythms, parasite rhythms, and the environmental cycles to which these rhythms

entrain. Models of adaptive dynamics could be used to investigate the evolution-

ary trajectories of interacting host-parasite rhythms; whereas, within host models of

infection dynamics could be used to explore the effect of rhythms on parasite popula-

tions and pathology. Theory could also be developed to study circannual rhythms in

hosts and parasites. However, since data are limited for circannual rhythms, it would

be difficult to ground the theory with data.

6.8 Polio’s Temporal Niche

Polio’s temporal niche is the summer and autumn. Poliovirus transmission is lim-

ited during the wintertime low season but the mechanism responsible for this remains

unknown. Together with previous studies of polio seasonality [27, 28, 29, 4], my re-

sults narrowed the list of potential mechanisms to an environmental or host factor

that displayed latitudinal variation in its amplitude and phase. I propose temper-

ature, relative humidity, sunlight hours, and seasonal immunity as viable seasonal

drivers. Temperature, humidity, and sunlight hours (i.e., photoperiod taken together

with cloud cover) vary seasonally and latitudinally. Temperature and humidity have

been shown to have a strong relationship with polio cases, with the rise in temper-

ature and humidity preceding the rise in cases by 2–3 months [29, 28]. My fitted

transmission models from the US estimated the peak in poliovirus transmission to

precede the incidence peak by ∼ 2 months. Since temperature and humidity have

strong seasonal covariance with poliovirus transmission, they meet the minimum cri-

teria for potential seasonal drivers. Temperature and humidity also have an effect on

poliovirus survival in aerosol, with poliovirus surviving best in conditions reflective

of northern hemisphere summers, conditions opposite those that favor influenza virus

survival [30].

As shown in the introduction, human immunity is seasonally structured with
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distinct summertime and wintertime gene expression profiles [31]. If the seasonal

structure of immunity varies with latitude, it could account for polio’s spatiotemporal

transmission structure. Polio transmission models could be used to test whether

temperature, humidity, sunlight, or immunity affect transmission. The models I used

in Chapter IV could be extended to include seasonal drivers as covariates. Based

on my one-step ahead-predictions, which moderately over- or under-predicted peak

cases each year, the model-data fit could be improved for polio in the US. If the model

contained the correct seasonal driver, it could better fit the data by predicting the

size of the epidemic peak, which varies significantly from year to year. As previously

discussed, I anticipate that the information contained in interannual variation in

epidemic size and anomalous years holds the key to establishing seasonal causality.

It is important to identify polio’s seasonal driver because knowledge of the driver

would allow transmission models to be extended to contemporary studies of polio

in endemic countries. By using historical data with recurrent epidemics, I had data

sufficient to estimate the seasonal transmission rate. Today, due to widespread vac-

cination, polio cases are rare and contemporary data are depauperate of information

needed to estimate transmission seasonality. If historical data were used to estab-

lish the relationship between environmental conditions and polio transmission, then

environmental conditions from polio endemic countries could be used in models of cur-

rent outbreaks. Polio’s environmental driver is the biggest knowledge gap in polio’s

ecology. Non-polio enteroviruses, such as coxsackievirus and echovirus, also display

elevated incidence in the summer [32]. I am therefore optimistic that uncovering the

mechanisms of poliovirus seasonality will result in a better understanding of the en-

teroviruses in general. This sentiment was shared in 1949 by the epidemiologist H.

Gear, who wrote: “It must be admitted that the reasons for the seasonal incidence of

poliomyelitis remain obscure. When they have been elucidated perhaps much of the

epidemiology of this disease will be solved” [33].
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APPENDIX A

Human Birth Seasonality: Latitudinal Gradient

and Interplay with Childhood Disease Dynamics

A.1 Human Birth Seasonality: Materials & Methods

A.1.1 Birth Timing and Amplitude

In our analyses we followed the work of Rosenberg, who stated that adjusting for

the differing number of days in each month had little effect on analyses of birth

seasonality [1] . Thus, we did not make any adjustments of our time series to account

for the different number of days in each month.

In the wavelet spectral analysis we tested for birth periodicity with periods ranging

from 2 months to one-third the length of each data series. Since a significant 1 year

period was observed, we constructed monthly phase angle time series for each data

series using an 11-13 month period. The phase angle time series were subsequently

used to determine the timing of the annual birth peak for each location. Peak-

birth months were then averaged for each individual data series, with the U.S. states

mapped to visualize the geographical variation in the timing of the annual birth
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peak. When biannual peak-births occurred in the U.S., they were separated into two

6 month periods: summer (May-Oct) and winter (Nov-April) (Supp. Figs. A.1 &

A.2).

The analysis of seasonal birth amplitude, or percent deviation from the annual

mean, was done using seasonally decomposed time series. The stl function in the

stats package in R was used to decompose the data into seasonal (S), trend (T ), and

noise (N ) components for each data series. The noise free time series were constructed

as:

F = S + T (A.1)

The deviation from the mean during the birth peak was calcualted for each year,

i, as:

x = max(Fi)−mean(Ti) (A.2)

The deviation from the mean during the birth trough was calculated for each year,

i, as:

y = min(Fi)−mean(Ti) (A.3)

Thus, the one-half peak-trough difference is:

z =
x− y

2
(A.4)

The seasonal amplitude, measured as a percent deviation from the mean, was

calculated as:

amplitude =
z

mean(Ti)
(A.5)
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A.1.2 Simulation study

For the simulation study we used a daily discrete-time SEIR model of measles

adopted from Earn et al. 2000 [2]. The model has a daily time step and uses school-

term forcing of seasonal transmission based on the school terms of England & Wales.

The models assume transition probabilities follow a Poisson process. The difference

equations are as follows:

St+1 = µtNt + Ste
−(βtIt+δ) (A.6)

Et+1 = St
(
1− e−(βtIt+δ)

) βtIt
βtIt + δ

+ Ete
−(φ+δ) (A.7)

It+1 = Et
(
1− e−(φ+δ)

) φ

φ+ δ
+ Ite

−(γ+δ) (A.8)

Rt+1 = It
(
1− e−(γ+δ)

) γ

γ + δ
+Rte

−δ (A.9)

Nt = St + Et + It +Rt (A.10)

Incidencet = Et
(
1− e−(φ+δ)

) φ

φ+ δ
(A.11)

µt =
ν + A sin(ωt+ σ)

30
(A.12)

βt =
B0

1
365

((1 + b1)273 + (1− b1)92)
(1 + b1Termt) (A.13)
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Termt is based off the the school term schedule. When school is in session Termt =

1 and when students are on holiday Termt = −1. See Table A.1 for the school term

schedule. The parameter values used for the simulation study can be found in Table

A.2. All simulations were run for 100 - 150 yrs. to ensure that the trajectories were

past the transient phase.

Holiday Model Days Calendar Days

Christmas 356 - 6 Dec 21 - Jan 6

Easter 100 - 115 Apr 10 - 25

Summer 200 - 251 Jul 19 - Sept 8

Autumn Half Term 300 - 307 Oct 27 - Nov 3

Table A.1: School term schedule. When students are on holiday Termt = −1 other-

wise 1.
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Parameter Value Parameter Value

R0 16 (basic reproductive no.) b1 0.25

D 1 - 365 (birth peak day) µ0
1

18250
day−1

δ 1
18250

day−1 (50 yr life span) β0
R0

5
day−1

φ 1
8

day−1

(8 day latent period)

S0 0.06

γ 1
5

day−1

(5 day infectious period)

E0 0.001

ν 30
18250

month−1 (balances δ) I0 0.001

A 0 - 0.0009208 month−1

(0 - 56% birth amp.)

R0 0.938

ω 2π
365

radians
day

N0 S0 + E0 + I0 +R0

σ π
2
− 2π

365
D Incidence0 0

B0
R0

5

Table A.2: Parameters used in simulation study, main text Figures 2.4A & 2.4B.
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A.1.3 Inference study using simulated data

For the inference study we coupled our SEIR model (Eqs. A.6 - A.13) with a

stochastic measurement model. The measurement model is as follows:

casest ∼ normal(ρIncidencet, ρτ) (A.14)

In order to test whether the seasonality in births influences parameter estimation,

we simulated case data using three parameterizations of our model, each differing in

the timing of the birth peak. The parameters used to generate the data are given in

Table A.3. Simulations were run to year 50 to ensure the transient phase had passed.
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Parameter Value Parameter Value

R0
6250
365

(basic reproductive no.) b1 0.25

D 162, 295, or 351

(birth peak day)

µ0
1

18250
day−1

δ 1
18250

day−1 (50 yr life span) β0
R0

5
day−1

φ 1
8

day−1

(8 day latent period)

S0 0.06

γ 1
5

day−1

(5 day infectious period)

E0 0.001

ν 30
18250

month−1 (balances δ) I0 0.001

A 0.000456 month−1

(∼ 28% birth amp.)

R0 0.938

ω 2π
365

radians
day

N0 1

σ π
2
− 2π

365
D Incidence0 0

B0
R0

5

Table A.3: Parameters used to generate data for study, main text Figure 2.4C.
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The three time series generated using the stochastic SEIR model were then fit to

the SEIR model with a 0% birth amplitude, i.e. A = 0. The mean transmission

rate, B0, was the only free parameter. All other parameters, aside from A and B0,

were fixed at the values used to generate the data. Only the last 6 years of the time

series were used for fitting, thus, the initial conditions were set to match those at the

beginning of data used for inference.

For each time series B0 was profiled and the likelihoods of the parameter sets with

varying values of B0 were calculated using a particle filtering in the R package pomp

[3]. A particle filter (a.k.a. Sequential Monte Carlo) is a method of integrating state

variables of a stochastic system and estimating the likelihood of the model for a fixed

parameter set, given the data. However, since our model lacked process noise, we

were able to obtain the exact likelihood for each parameter set.

A.1.4 Inference study using New York City measles data

For the New York inference study we utilized a Partially Observed Markov Process

(POMP) model which are suited for dealing with epidemiological data where the state

variables (susceptible, infected, recovered individuals) are not observed in the data,

rather the infected individuals are partially observed through case reports [3]. For

our process model we used a stochastic biweekly discrete-time SIR model. Similar to

the model used for the simulation study, transitions were modeled using a Poisson

process. The process model is as follows:

λt =

(
βt
It
Nt

+ ψ

)
εt (A.15)

%t = e−dt(λt+δ) (A.16)
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St+1 = dtBt + %tSt (A.17)

It+1 = (1− %t)St
λt

λt + δ
(A.18)

The transmission rate βt was modeled using a periodic B-spline with 6 bases, a

degree of 2, and a period of 1 year. The process noise εt was modeled as εt ∼

normal(1, βsd). The covariates Bt, monthly number of individuals entering the sus-

ceptible class, and Nt, population size, were taken from data. All parameters were

estimated using iterated particle filtering [3] (discussed later), with the exception

of the death rate which was fixed at δ = 1
600

month−1, i.e. 50 yr. life span, and

dt = 1
2

fixing the time step to biweekly. In order to couple our model with measles

case data we overlaid the process model with a stochastic measurement model. The

measurement model is as follows:

casest ∼ normal(ρIt, τIt) (A.19)

The case data, gathered from [2], consisted of monthly measles cases for New York

City from January 1949 - December 1962. Although we did not have birth data for

New York City we did have per capita monthly births for the state of New York.

Thus, we assumed the per capita monthly birth rate for New York City was equal to

the per capita monthly birth rate for New York state. The population size of New

York City was taken from the decadal census and the population size was interpolated

for non-census years. Taking the New York City population size together with the

time series of per capita monthly births we constructed a time series of the number

of monthly births, Bt, in New York City (not to be confused with Bt in Eqn. A.17,

which will be explained in the next section).
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In order to test whether the seasonality in births influences model parameterization,

we used four variants of our model (Eqn. A.15-A.18), each differing in the susceptible

recruitment covariate, Bt. The first three models contain birth seasonality and ac-

count for the existence of maternal antibodies for 3-9 months. Whereas, in the fourth

model we removed the birth seasonality. The first model variant lags the births by 3

months to account for a scenario where maternal antibodies confer protection from

measles for the first 3 months of life:

Bt = Bt−3 (A.20)

In the second model variant we lag births by 6 months.

Bt = Bt−6 (A.21)

In the third model variant we lag births by 9 months.

Bt = Bt−9 (A.22)

In the fourth model variant we removed the seasonality of births by making the

monthly births constant within each year by setting them equal to the mean monthly

births for the year:

Bt =

∑12
i=1 Bi,j
12

; j ∈ [1948 : 1962], (A.23)

where i is the month and j is the year.
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Each of the four model variants were independently fit to the data using Maxi-

mization by Iterated particle Filtering (MIF) using the R package POMP. MIF is

a state-of-the-art simulation based method for parameter estimation that uses likeli-

hood as the objective function. The basis of MIF is particle filtering (a.k.a. Sequential

Monte Carlo), which is a method of integrating state variables of a stochastic system

and estimating the likelihood of the model for a fixed parameter set, given the data.

Unlike particle filtering, which uses fixed parameter values, MIF varies parameter

values throughout the filtering process and selectively propagates particles (in the

simplest sense, parameter sets) that have the highest likelihood. Thus, by initializ-

ing MIF throughout parameter space one can get a picture of the likelihood surface

and identify the maximum likelihood parameter combinations within that space. For

each of our models, MIF was initialized with 80000 parameter sets generated using a

Sobol design, which pseudo-randomly samples parameters across parameter space in

order to evenly sample the space. After this initial phase of MIF, parameter sets were

passed through 15 successive stages of MIF, which included profiling. In total, for each

model MIF was initialized at over 424000+ locations in parameter space to estimate

the shape of the likelihood surface and identify the maximum likelihood parameter

set(s). Table A.4 provides the maximum likelihood estimate (MLE) parameter set

for each model.

A.2 Human Birth Seasonality: Results.

A.2.1 Detailed Results

Biannual birth pulses. During the pre-baby boom and baby boom eras, we found

that some states had two birth pulses per year, i.e. they had a significant biannual

period. All states significant for the biannual period were clustered together in the

lower-midwest, deep south, and southeast (Figs. A.1 & A.2). In the baby boom era,
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some of the states lost their significant biannual period and transitioned to having

only a single seasonal birth pulse (Figs. A.1, & A.2). In the modern era, Arkansas

remained the only state with a biannual period. The clustering of the states with

a significant 6 month period in the southeastern U.S. may have been due to now

defunct cultural factors (Figs. A.1 & A.2).

(a)

(b)

Jan 28th

Feb 15th

March 4th

(c)

Figure A.1: Bi-annual winter (November-April) birth peak timing by period. (a)
pre-baby boom (1931-1945), (b) baby boom (1946-1965), and (c) present
period (1965-2008). States shown in white were not significant.
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(a)

(b)

July 15th

Aug 11th

Sept 8th

(c)

Figure A.2: Bi-annual summer (May-October) birth peak timing by period. (a) pre-
baby boom (1931-1945), (b) baby boom (1946-1965), and (c) present
period (1965-2008). States shown in white were not significant.

Birth rates. Raw birth rates in the pre-baby boom era ranged from 0.89/1000/month

in Nevada (February, 1936) to 2.80/1000/month in New Mexico (May, 1932), with

the mean and median both approximately 1.60/1000/month; while in the baby boom

era Maryland had the lowest birth rate at 1.13/1000/month (April, 1950), New Mex-

ico with the highest birth rates at 3.36/1000/month (October, 1946), and the mean

and median both approximately 2.04/1000/month. In the present period Vermont
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had the lowest birth rate at 0.67/1000/month (July, 2005), and Utah had the high-

est at 2.61/1000/month (July, 1977) with the mean and median falling in around

1.27/1000/month. Worldwide birth rates were not calculated, because we did not

have population size data for our 200+ countries, rather raw birth values per month

were used for wavelet spectral analysis. See Figure A.3 for maps of the mean birth

rates in each state and each era.

The seasonal birth pulse. Examining the phase angle time series at a period

ranging from 11-13 months, the U.S. data had twenty four states significant in the

pre-baby boom era, whereas all were significant in the baby boom and present eras.

Of the 210 worldwide data series analyzed, 132 (63%) were significant at an 11-13

month period. Many of those found insignificant were shorter time series (5-7 years)

or countries with extremely low birth values (<100 individuals/month). Those states

and countries found to be significant were then analyzed for the timing of the peak

birth month using a wavelet spectral analysis.

U.S. timing of the seasonal birth peak. During the pre-baby boom era, of the

states with a significant 1 year period, Oregon (June 12th) and Maine (June 10th) had

the earliest peak birth timing —excluding New Mexico, which is an outlier because

it has an early peak in all eras yet is located in the southern U.S. Florida (Nov 10th)

had the latest peak birth timing in early November. The median peak birth timing

was July 3rd, and the mean was July 26th. The range of peak birth timing was

at a maximum in the pre-baby boom era with a length of 156 days, approximately

5 months. In this era there was a subtle pattern in the birth peak timing, with

the northeast and northwest having earlier peaks than that of the deep south, the

southeast and California.
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Average birth rate: Pre−Baby Boom Era (1931−1945)

Average birth rate: Baby Boom Era (1946−1964)

1.12

2.14

3.16

B
ir

th
 r

at
e 

pe
r 

10
00

Average birth rate: Present Period Era (1965−2008)

Figure A.3: Maps of mean birth rates for each state, in each era. Top to bottom: pre-
baby boom, baby boom, and present era. No geographic pattern could
be easily discerned.

In the baby boom era, when all states were significant at the 1 year period, there

was a clear latitudinal gradient in birth amplitude and peak birth timing. Northern

states saw an earlier peak birth timing; Utah beginning with a peak birth timing in
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Figure A.4: Seasonal amplitude of births in U.S. states during each era. Note the
high amplitude in the southern states (far right in all panels).

mid-July (July 13th), followed by Washington with a peak birth timing a few days

later (July 18th) with no other peak birth timing occurring for at least another week

after that. Again, Florida had the latest peak birth timing 3 months later in mid-

October (Oct 21st). The mean (Sept 4th) and median (Sept 8th) both occurred in

early September. In the baby boom era, other than Maine and those states already

mentioned, the only states to have a peak prior to August 1st were also located in

the northwestern U.S. (Idaho, Montana, North Dakota, and Oregon).

In the modern era, the spatial pattern of peak births was further elucidated with

the mid-latitude states acting as a gradient for the northern and southern states.

Utah again had the earliest peak birth timing in late June (June 26th), while Florida

had the latest peak birth timing in early October (Oct 5th). The mean (Aug 11th)

and median (Aug 7th) in this era both occurred in early August. Maine and Vermont

also had peak birth timing prior to July 15th, which were the earliest peaks east of the

Rocky Mountains. As with the baby boom era, many of the northwest states (Utah,
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Idaho, Montana, Oregon, Washington, and Wyoming) had peaks prior to July 15th

in the present era. Over all eras, Florida consistently had the latest peak ranging

from early October in the present period, to early-November in the pre-baby boom

era.

Worldwide timing of the seasonal birth peak. The worldwide birth peak tim-

ing followed a similar pattern as observed in the U.S., with countries at higher lati-

tudes having an earlier birth peak than those closer to the equator. The earliest peak

was in Italy during the period 1970-1985 (March 22nd) followed closely by Tajikstan

in the period 1989-1994 (April 15th). The latest birth peak occurred in Saint Vincent

and the Grenadines during the period 1992-2005 (November 17th). The mean world-

wide peak (U.S. states not included) was mid-August (August 17th). The overall

pattern is clear, with Europe (high latitude) having an earlier birth peak, and the

Caribbean having a later peak. Both the Asian/Middle Eastern and Non-U.S. data

are difficult to categorize as they span broad geographical ranges.

Seasonal birth amplitude. In the U.S., the largest seasonal amplitude in the

pre-baby boom era was 20% from the mean (Louisiana, 1945), and the minimum

was 4.2% from the mean in 1931 South Dakota (Fig. A.4 top panel). These values

increased during the baby boom era with a maximum 21.3% variation from the mean

(Louisiana, 1954), and a minimum of 5.5% (Connecticut, 1957) (Fig. A.4 middle). In

the modern era, the maximum variation from the mean dropped to 17.4% (Louisiana,

1965) with the minimum staying relatively similar 5.4% (Delaware, 2004) (Fig. A.4

bottom). The mean percent deviation from the mean in all states during the pre-baby

boom era was 9.0%, 9.8% during the baby boom, and 8.5% in the modern era.

As shown in the main text Figure 2.2, we observed a latitudinal gradient in the

seasonal birth amplitude in each era in the U.S. However, the latitudinal gradient in
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Figure A.5: Seasonal (intra-annual) amplitude of northern hemispheric data plotted
vs latitude.

birth amplitude was not observed outside of the U.S. (Fig. A.5). European seasonal

amplitudes tended to be low, with a mean of 10.3%. Non-U.S. Americas had an

approx. 9.8% amplitude, Asian/Middle Eastern countries having approx. 12.6%, and

Caribbean countries approx. 17.2% (Fig. A.5). However, due to the high variation

in countries grouped into regions it is difficult to draw any conclusions from this.
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Figure A.6: The seasonal (intra-annual) amplitude vs the annual (inter-annual) am-
plitude. In both the pre-baby boom and baby boom most states had
a stronger seasonal component, whereas in the present period all states
have a stronger seasonal component.

Intra- vs. inter-annual variation in birth rates. We examined the seasonal

(intra-annual) variation in births and compare that to the inter-annual variation (per-

cent change from one year to the next) for each state in every era. We found that the

seasonal (intra-annual) variation is generally larger (Fig. A.6), with the intra-annual

variation in the modern era 2-3 times larger than the inter-annual value.
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A.2.2 Simulation study

Fig. A.7 shows the effect of increasing birth amplitude on measles incidence with

the birth peak occurring at various times of the year. The difference in incidence

resulting from measles models with either constant births or seasonal births increases

with birth amplitude. However, depending on the phase relationship between peak

susceptible recruitment (i.e. the birth peak) and the peak in seasonal transmission,

birth seasonality can have the effect of either enhancing or dampening the epidemic

year incidence.

Fig. A.8 shows the effect of birth seasonality for various values of R0. Birth

seasonality in this range of amplitude, < 28%, has a pronounced effect on incidence

when epidemics are biennial or triennial, as opposed to annual.
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Figure A.7: Effect of increasing seasonal birth amplitude on measles incidence. The
main graph show the change in epidemic and skip year incidence as a
function of birth amplitude for 5 different phases of births seasonality.
Phases were set such that the birth peak occurred in either Jan, Jun,
Aug, Oct, or Dec. The turquoise and the fuschia points in the main
graph correspond to the turquoise and fuchsia time series in the inset.
HereR0 = 17 and the birth amplitude ranged from 0-28%, all parameters
are those from Table A.2.
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Figure A.8: The effect of birth seasonality on diseases with varying basic reproduc-
tive numbers (R0). This is a bifurcation diagram our SEIR model with
varying R0 and varying seasonal birth amplitude. The black lines are the
incidence for the model with no birth seasonality (i.e. birth amplitude =
0%). The solid shaded intervals indicate the regions containing the inci-
dence of the model with seasonal births, where the birth peak is in early
June and the amplitude ranges from 1.4 - 27.7%. Birth seasonality in this
range of amplitude has a pronounced effect on incidence when epidemics
are biennial or triennial, as opposed to annual. Here R0 ∈ [2 : 20], and
S0 = 1/R0, otherwise all other parameters are those in Table A.2.
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A.2.3 Inference study using New York City measles data

Maximum likelihood parameter estimates were obtained for each of our four

measles models: seasonal births with a lag of 3 months from birth to susceptible

to account for maternal antibodies, seasonal births with a lag of 6 months, seasonal

births with a lag of 9 months, and constant births throughout the year.

Parameter Model
Seas-3

Model
Seas-6

Model
Seas-9

Model No
Seas

LogLikelihood -1080.99 ±
0.20

-1080.86 ±
0.12

-1081.14 ±
0.12

-1080.95 ±
0.14

R0 19.3 19.5 20.3 19.7
βcoef1 55.4 55.6 58.9 56.5
βcoef2 45.8 47.2 48.6 46.8
βcoef3 45.6 45.5 48.5 47.8
βcoef4 44.0 44.2 46.8 45.3
βcoef5 17.5 18.5 18.7 18.3
βcoef6 28.7 27.6 28.3 27.7
ψ 3.4× 10−4 3.8× 10−4 4.2× 10−4 4.1× 10−4

βsd 0.121 0.118 0.121 0.124
dt 1/2 1/2 1/2 1/2
δ 1/600 1/600 1/600 1/600
ρ 0.238 0.236 0.239 0.238
τ 3.8× 10−2 3.8× 10−2 3.9× 10−2 3.8× 10−2

S0 819214 947306 937014 1719583
I0 16602 22758 17265 27629
R0 6238289 6104041 6119826 5326893

Table A.4: Maximum likelihood parameter estimates for each model. Rates are given
in units of month−1. All parameters were estimated using MIF with the
exception of δ and dt, which were fixed. Note, R0 is the basic reproductive
number and R0 is the initial number of recovered individuals.
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Country Years No. Years Latitude Mean peak month Significant Group Amplitude

Albania 1981-2007 27 41.17 6.15 Yes Europe 19.37%
Algeria 1998-2002 5 33.10 8.80 No Africa 10.11%
American Samoa 1984-1988 5 -14.30 5.20 Yes Asia 14.77%
American Samoa 1996-2006 11 -14.30 4.45 Yes Asia 14.81%
Antigua and Barbuda 1979-1986 8 17.05 10.50 Yes Caribbean 16.62%
Armenia 1987-1999 13 40.29 7.31 No Europe 15.81%
Aruba 2002-2007 6 12.52 9.17 Yes Caribbean 14.60%
Australia 1973-2008 36 -32.35 6.56 No Asia 6.06%
Austria 1973-2011 38 47.77 6.50 Yes Europe 6.33%
Azerbaijan 1992-2004 13 40.18 2.31 No Asia 13.81%
Bahamas 1972-1979 8 24.32 10.50 Yes Caribbean 13.95%
Bahrain 1975-1985 11 26.03 6.09 No Asia 15.33%
Bahrain 1986-2002 17 26.03 10.35 Yes Asia 13.26%
Barbados 1969-1976 7 13.16 7.86 No Caribbean 23.73%
Barbados 1982-1991 10 13.16 11.00 Yes Caribbean 19.78%
Belarus 1987-1999 13 53.33 5.31 Yes Europe 11.52%
Belgium 1971-1995 25 50.84 6.08 Yes Europe 7.18%
Belgium 1998-2008 11 50.84 7.64 No Europe 6.54%
Belgium-Bruxelles 1998-2008 11 50.84 8.09 No Europe 7.35%
Belgium-Flamande 1998-2008 11 50.84 6.73 No Europe 6.54%
Belgium-Anvers 1998-2008 11 50.84 6.64 No Europe 7.33%
Belgium-Limbourg 1998-2008 11 50.84 6.45 No Europe 7.96%
Belgium-Flandreorientale 1998-2008 11 50.84 7.18 No Europe 6.25%
Belgium-Brabantflamand 1998-2008 11 50.84 6.91 Yes Europe 7.47%
Belgium-Flandreoccidentale 1998-2008 11 50.84 5.64 No Europe 7.17%
Belgium-Wallonne 1998-2008 11 50.84 8.55 Yes Europe 6.73%
Belgium-Germanophone 1998-2008 11 50.84 5.18 No Europe 15.34%
Belgium-Brabantwallon 1998-2008 11 50.84 6.91 Yes Europe 7.86%
Belgium-Hainaut 1998-2008 11 50.84 9.09 Yes Europe 6.20%
Belgium-Liege 1998-2008 11 50.84 8.27 No Europe 7.08%
Belgium-Luxembourg 1998-2008 11 50.84 8.55 Yes Europe 8.38%
Belgium-Namur 1998-2008 11 50.84 8.91 Yes Europe 7.27%
Bermuda 1984-1991 8 32.30 9.38 Yes Caribbean 17.48%
Bermuda 1995-2001 7 32.30 9.00 Yes Caribbean 16.45%
BVI 1980-1986 7 18.43 10.43 Yes Caribbean 23.23%
Brunei Darussalam 1972-1976 5 4.82 8.00 No Asia 12.46%
Brunei Darussalam 1980-1992 13 4.82 9.31 No Asia 10.75%
Brunei Darussalam 1996-2002 7 4.82 9.71 Yes Asia 8.26%
Bulgaria 1973-1978 6 42.75 4.83 No Europe 8.01%
Bulgaria 1980-1990 11 42.75 6.18 Yes Europe 8.87%
Canada 1973-1990 18 56.76 6.06 Yes Americas 7.49%
Canada 1992-1997 6 56.76 6.00 Yes Americas 8.82%
Canada 1999-2008 10 56.76 6.80 Yes Americas 8.03%
Cape Verde 1968-1975 8 15.11 3.63 No Africa 12.94%
Cape Verde 1980-1985 6 15.11 11.50 No Africa 17.40%
Caymen Islands 1986-1995 10 5.36 10.20 Yes Caribbean 24.20%
Chile 1967-2008 42 -35.12 9.29 Yes Americas 7.83%
China-Hong Kong 1973-1977 5 22.30 10.00 Yes Asia 14.66%
China-Hong Kong 1979-2009 31 22.30 10.00 Yes Asia 14.85%
China-Macao 1971-1975 5 22.17 9.60 Yes Asia 16.52%
China-Macao 1984-1989 6 22.17 9.83 Yes Asia 17.67%
China-Macao 1991-2010 20 22.17 9.70 Yes Asia 16.06%
Cook Islands 1983-1988 6 -21.20 6.50 No Asia 19.36%
Costa Rica 1987-1991 5 9.92 10.40 Yes Americas 9.59%
Costa Rica 2003-2010 8 9.92 9.88 Yes Americas 10.90%
Croatia 1988-2004 17 45.32 8.18 No Europe 7.36%
Cuba 1976-1988 13 22.03 10.00 Yes Caribbean 16.68%
Cuba 1990-2009 20 22.03 10.20 Yes Caribbean 19.93%
Cyprus 1973-2009 37 34.97 8.49 Yes Asia 11.88%
Czech Republic 1991-2010 14 49.82 5.36 Yes Europe 10.15%
Denmark 1972-2005 34 55.85 6.03 Yes Europe 9.57%
Egypt 1972-1982 11 28.80 7.00 Yes Africa 30.08%
Egypt 1987-1999 13 28.80 10.85 No Africa 35.30%
Egypt 2003-2009 7 28.80 9.29 No Africa 12.60%
El Salvador 1973-2007 35 13.72 10.46 Yes Americas 12.48%
Estonia 1989-1997 9 58.96 4.89 Yes Europe 12.05%
Estonia 1999-2005 6 58.96 5.67 Yes Europe 8.67%
Estonia 2007-2011 5 58.96 6.40 Yes Europe 9.82%
Faeroe Islands 1972-1987 16 62.09 7.25 No Europe 11.90%

Table A.5: Data used in national-level analyses of birth seasonality. Significance
refers to the annual period. Mean birth peak timing and amplitude were
estimated from the data.
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Country Years No. Years Latitude Mean peak month Significant Group Amplitude

Finland 1972-1988 17 61.76 4.94 Yes Europe 10.55%
Finland 1994-2004 14 61.76 5.93 Yes Europe 7.86%
France 1974-1989 16 47.14 5.75 Yes Europe 10.02%
France 1991-1997 7 47.14 7.00 Yes Europe 8.69%
France 1999-2004 6 47.14 7.83 Yes Europe 8.06%
French Guiana 1977-1986 10 5.09 10.10 No Americas 13.00%
French Guiana 1997-2003 7 5.09 10.71 No Americas 12.35%
French Polynesia 1985-1992 8 -17.53 4.63 Yes Asia 9.81%
Germany 1991-1997 7 50.86 7.14 Yes Europe 7.72%
Germany 2004-2010 7 50.86 8.00 Yes Europe 9.30%
Gibraltar 1973-1988 16 36.14 7.50 No Europe 14.75%
Gibraltar 2002-2008 7 36.14 10.00 No Europe 18.51%
Greece 1974-1985 12 38.69 6.00 Yes Europe 10.53%
Greece 1990-2001 12 38.69 7.67 Yes Europe 11.05%
Greenland 1972-1987 16 67.10 7.63 No Europe 12.57%
Greenland 1992-2010 19 67.10 6.95 No Europe 11.90%
Guadeloupe 1975-1980 6 16.27 9.33 No Caribbean 10.58%
Guadeloupe 1982-1986 5 16.27 11.00 Yes Caribbean 13.27%
Guadeloupe 1997-2003 7 16.27 10.57 Yes Caribbean 16.23%
Guam 1973-1982 10 13.45 10.10 No Asia 8.43%
Guam 1988-1992 5 13.45 9.80 No Asia 9.40%
Guatemala 1972-1979 8 14.72 7.38 No Americas 7.12%
Guatemala 1981-1999 19 14.72 10.79 No Americas 9.54%
Guernsey 1973-1979 7 49.48 2.71 No Europe 12.37%
Guernsey 1992-2000 9 49.48 8.22 No Europe 11.49%
Guyana 1967-1971 5 6.35 9.60 Yes Americas 10.04%
Hungary 1973-1992 20 47.29 6.40 Yes Europe 8.74%
Hungary 1994-2004 11 47.29 7.73 No Europe 7.90%
Iceland 1972-1980 9 64.37 5.67 Yes Europe 10.39%
Iceland 1982-2004 22 64.37 6.77 Yes Europe 10.23%
Iran 1999-2004 6 33.68 2.83 No Asia 7.95%
Ireland 1972-2004 33 53.11 5.94 Yes Europe 8.33%
Isle of Man 1973-1988 16 54.19 7.38 No Europe 12.52%
Israel 1973-1981 9 31.78 9.33 Yes Asia 9.58%
Israel 1983-1988 6 31.78 9.00 Yes Asia 9.60%
Israel 1990-2009 20 31.78 9.60 Yes Asia 8.97%
Italy 1970-1985 15 42.87 3.20 Yes Europe 10.01%
Italy 1988-2009 22 42.87 8.14 Yes Europe 11.01%
Jamaica 1999-2007 9 18.13 10.78 Yes Caribbean 18.60%
Japan 1972-1992 21 35.41 7.48 Yes Asia 7.59%
Japan 1994-2010 17 35.41 8.24 Yes Asia 7.01%
Jersey 1973-1989 17 49.22 6.59 No Europe 11.64%
Kazakhstan 1987-2008 22 43.35 6.27 No Asia 10.11%
Korea Republic 1996-2009 24 36.47 4.83 No Asia 7.75%
Kuwait 1975-1987 13 29.33 10.23 No Asia 9.06%
Kuwait 1991-2008 18 29.33 9.44 No Asia 10.68%
Kyrgyzstan 1985-2004 20 41.76 4.85 No Asia 11.06%
Kyrgyzstan 2005-2009 5 41.76 7.40 Yes Asia 12.02%
Latvia 1989-2005 17 56.83 5.12 Yes Europe 11.12%
Lebanon 2003-2010 8 33.93 8.88 No Asia 11.44%
Libya 1972-1981 10 29.96 1.00 Yes Africa 12.01%
Libya 1989-1996 8 29.96 7.00 No Africa 10.04%
Liechtenstein 1978-1987 10 47.15 6.80 No Europe 13.16%
Liechtenstein 2000-2005 6 47.15 5.83 No Europe 18.31%
Lithuania 1987-2011 25 55.22 5.72 Yes Europe 13.11%
Luxembourg 1973-1989 17 49.64 6.47 No Europe 9.22%
Luxembourg 1998-2010 13 49.64 6.23 Yes Europe 10.08%
Malaysia 1994-2008 15 4.19 7.67 No Asia 8.71%
Maldives 1978-2009 32 4.17 7.31 No Europe 13.36%
Moldova Republic 1987-1992 6 47.17 5.67 No Europe 7.60%
Moldova Republic 1998-2010 13 47.17 8.62 No Europe 8.86%
Malta 1973-1988 16 35.90 9.06 Yes Europe 11.41%
Malta 1992-2004 13 35.90 9.85 No Europe 9.17%
Martinique 1975-1992 18 14.67 10.94 Yes Caribbean 15.60%
Martinique 1998-2003 6 14.67 11.00 Yes Caribbean 18.29%
Mauritius 1994-2010 17 -20.16 5.76 Yes Africa 11.34%
Mongolia 1994-2003 10 47.77 5.10 No Asia 8.24%
Netherlands 1973-1988 16 52.07 6.06 Yes Europe 7.46%
Netherlands 1990-2010 21 52.07 7.62 Yes Europe 6.63%
New Caledonia 1970-1977 8 -21.50 5.63 Yes Asia 11.36%
New Caledonia 1982-2007 26 -21.50 5.54 Yes Asia 12.12%
New Zealand 1972-2009 39 -41.44 7.46 Yes Asia 23.52%
Niue 1982-1987 6 -19.06 7.83 No Asia 45.89%
Norway 1976-1987 12 61.13 5.00 Yes Europe 11.51%
Norway 1995-2004 10 61.13 5.50 Yes Europe 9.64%
Occ. Palestinian Territory 1997-2007 11 31.88 10.64 Yes Asia 10.81%
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Country Years No. Years Latitude Mean birth month Significant Group Amplitude

Palau 1997-2003 7 7.35 7.29 No Asia 16.08%
Panama 1973-1999 27 8.75 10.78 Yes Americas 8.35%
Panama 2005-2009 5 8.75 10.00 Yes Americas 10.60%
Phillipines 1997-2007 11 11.87 10.00 Yes Asia 13.93%
Poland 1978-2005 28 51.71 5.43 Yes Europe 9.95%
Portugal 1973-1993 21 39.75 6.67 No Europe 8.42%
Portugal 1999-2009 11 39.75 8.64 Yes Europe 9.11%
Puerto Rico 1967-1985 19 18.26 10.05 Yes Caribbean 11.33%
Puerto Rico 1987-1992 6 18.26 10.00 Yes Caribbean 12.49%
Puerto Rico 1996-2000 5 18.26 10.00 Yes Caribbean 11.71%
Puerto Rico 2002-2008 7 18.26 10.00 Yes Caribbean 11.12%
Qatar 1985-1990 6 25.30 9.50 No Asia 11.93%
Qatar 1999-2009 11 25.30 10.18 No Asia 9.78%
Reunion 1977-1986 10 -21.11 6.40 Yes Africa 7.53%
Reunion 1998-2003 6 -21.11 4.33 No Africa 6.77%
Romania 1986-1992 7 45.69 6.29 Yes Europe 9.60%
Romania 1994-2010 16 45.69 6.25 Yes Europe 10.66%
Saint Helena ex dep 1981-1986 6 -15.93 6.83 No Africa 31.44%
Saint Lucia 1976-1986 11 13.90 10.82 Yes Caribbean 15.27%
Saint Lucia 1994-2002 9 13.90 11.00 Yes Caribbean 20.24%
Saint Vincent and the Grenadines 1992-2005 14 13.20 11.07 Yes Caribbean 23.24%
San Marino 1973-1978 6 43.94 7.33 No Europe 21.85%
San Marino 1984-1989 6 43.94 9.50 No Europe 29.63%
San Marino 2000-2004 5 43.94 7.60 No Europe 21.12%
Sao Tome and Princepe 1967-1971 5 0.32 4.20 No Africa 13.27%
Seychelles 1973-1993 21 -4.63 6.24 Yes Africa 14.81%
Seychelles 1995-2010 16 -4.63 5.94 Yes Africa 18.63%
Singapore 1973-2009 36 1.37 9.36 Yes Asia 12.77%
Slovakia 1988-1995 8 48.66 5.75 Yes Europe 10.10%
Slovakia 1998-2002 5 48.66 6.20 Yes Europe 10.16%
Slovenia 1988-1996 9 46.17 6.67 No Europe 7.17%
Slovenia 1998-2005 8 46.17 7.38 Yes Europe 7.97%
Spain 1970-1985 16 39.72 6.38 Yes Europe 8.40%
Spain 1991-2005 15 39.72 7.87 No Europe 6.53%
Sri Lanka 1973-1986 14 7.57 9.14 No Asia 7.64%
Sri Lanka 2005-2010 6 7.57 10.00 Yes Asia 8.98%
Suriname 1989-2009 21 5.06 11.05 Yes Americas 15.05%
Sweden 1973-1990 18 58.91 4.56 Yes Europe 15.25%
Sweden 1992-2002 11 58.91 4.91 Yes Europe 13.90%
Sweden 2004-2010 7 58.91 5.71 Yes Europe 11.19%
Switzerland 1973-1982 10 47.03 5.00 Yes Europe 10.33%
Switzerland 1984-1990 7 47.03 5.86 Yes Europe 6.26%
Switzerland 1998-2002 5 47.03 6.80 No Europe 5.78%
Tajikstan 1989-1994 6 38.70 4.00 Yes Asia 23.24%
Macedonia 1989-1993 5 41.74 8.20 No Europe 9.54%
Macedonia 1999-2010 12 41.74 7.83 Yes Europe 10.20%
Tonga 1993-2000 8 -19.70 4.25 Yes Asia 16.00%
Trinidad and Tobago 1972-1995 24 10.55 10.83 Yes Caribbean 14.04%
Tunisia 1971-1976 6 35.42 2.83 Yes Africa 16.04%
Tunisia 1978-1982 5 35.42 4.00 Yes Africa 13.83%
Tunisia 1985-1995 11 35.42 5.18 No Africa 13.40%
Tunisia 2001-2007 7 35.42 7.00 Yes Africa 16.75%
Turks and Caicos Islands 1997-2005 9 21.51 9.56 No Caribbean 25.43%
Ukraine 1980-1986 7 48.81 6.00 Yes Europe 9.52%
Ukraine 1989-1996 8 48.81 5.75 Yes Europe 9.77%
Ukraine 2003-2010 8 48.81 8.25 Yes Europe 10.28%
UK + NI 1982-1988 7 52.75 6.71 Yes Europe 6.85%
UK + NI 1990-2006 15 52.75 7.47 Yes Europe 6.61%
USA 1969-1975 7 40.42 8.86 Yes Americas 7.21%
USA 1978-2006 29 40.42 8.07 Yes Americas 7.95%
USVI 1969-1973 5 18.33 10.80 Yes Caribbean 19.68%
USVI 1980-1997 18 18.33 10.61 Yes Caribbean 16.64%
Uruguay 1980-1988 9 -33.00 8.33 No Americas 5.55%
Uzbekistan 1993-1997 5 40.68 5.80 No Asia 8.36%
Venezuela 1972-2001 30 9.39 9.40 Yes Americas 9.41%
Wallis and Futuna Islands 1973-1978 6 -13.30 4.00 No Asia 10.72%
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APPENDIX B

Unraveling the Transmission Ecology of Polio

B.1 Polio Transmission Ecology: Materials & Methods

B.1.1 Data

Our data consisted of monthly cases reported in the weekly US Public Health

Reports and the CDC Morbidity and Mortality Weekly Report from January 1931–

December 1954 for each US state and the District of Columbia. The data were first

published in [1], which includes discussion of data quality during this period. Data

are included in CSV files as Supporting Information. Estimates of paralytic polio

reporting during this time period are 60–80%, while the reporting of non-paralytic

cases varied city-to-city. Monthly state–level time series of live births from 1931–1954

were downloaded from the Vital Statistics of the United States [2]. Annual state–level

population size data were collected from the Population Distribution Branch of the

US Census Bureau [3].

202



B.1.2 Data Analysis

An epidemic fadeout was defined as three consecutive months without reported

cases. The portion of fadeout months was calculated for each state and each year as

the number of months that were part of a fadeout, divided by the total months in the

era. The relationship between the portion of fadeout months and state population

size (taken as the mean population size for the era) was fit using a negative exponen-

tial to the fadeout data. A negative exponential was fit to each era independently

using Nonlinear Least Squares, nls, in R. The following is the equation used to relate

fadeouts to population size:

portion of fadeout months = be−aN , (B.1)

where N is log10(population size). The pairwise epidemic synchrony between states

was measured using the spatial nonparametric covariance function in the R package

ncf [4]. The distance between states was measured as the distance between the pop-

ulation center of each state. Population centers were gathered from the US Census

Bureau from the 2000 US Census. Data from https://www.census.gov. Population

centers were used from the year 2000 because, at the time of this project, mid-20th

century estimates of population centers were not available. However, the US Census

has now made historical population centers available.

In order to test for periodicity in epidemics, a wavelet spectral analysis was con-

ducted for each state using the R package biwavelet [5]. Significance of the 1 year

period was tested using the lag-1 autocorrelation, with state-specific lag-1 autocor-

relation calculated for each time series. Since the 1 year period was significant for

each state, phase angle time series were constructed for the 1 year period in order to

measure the seasonal timing of epidemics. For each year, the states were ranked 1 –

49, with 1 being the state for which the epidemic peaked earliest in the year, and 49
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being the state with the latest epidemic peak. The states were ranked according to

their phase angle in the month of August. The phase angle is zero at the epidemic

peak, negative before the peak, and positive after the peak. Thus, the state with the

largest positive phase angle was ranked 1. The epidemic timing was regressed with

latitude and mapped in order to test for spatial patterns.

B.1.3 Model

To mechanistically model polio epidemiology we utilized a Partially Observed Markov

Process (POMP) model which is suited for dealing with epidemiological data where

the state variables (susceptible, infected, recovered individuals) are not observed in

the data; rather the infected individuals are partially observed through case reports.

For our process model we used a seasonally-forced stochastic monthly discrete-time

SIR model where transitions followed a Poisson process. The model has a single re-

covered class that accounts for life-long immunity. The model contains 6 classes (SBi )

of infants susceptible to infection but protected from clinical illness by maternally

antibodies. The 6 susceptible infant classes contain 0–1 month olds, 1–2 month olds,

etc., up to 6 month olds. The model had a single infected class for infants (IB).

The older age class contains individuals > 6 months of age, and these individuals

have their own susceptible (SO) and infected class (IO). The measurement model

translated infections to clinical reported cases. We assume that infections in indi-

viduals under 6 months of age are asymptomatic, and only individuals over 6 month

of age can be symptomatic and reported as a clinical case. Refer to the main text

for model schematic, which was made with the R program diagrammeR (http://rich-

iannone.github.io/DiagrammeR/) [6].
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B.1.3.1 Process Model

The force of infection, also referred to as the risk of infection, was

λt =

(
βt
IOt + IBt
Nt

+ ψ

)
εt, (B.2)

with the following condition imposed,

λt =


λt, if λt ≥ 0

0, otherwise

. (B.3)

The first term of the force of infection represents transmission that occurs locally by

individuals infected in the state at time t. Whereas, the second term, ψ, encompasses

WPV that arises in the population in a way that is divorced from the local infection

dynamics. These infections can include immigration of infected individuals from

other geographic locations, environmental sources of WPV, and individuals shedding

with an infectious period longer than a month. The transmission parameter βt was

parameterized using a B-spline, giving it the flexibility to have either a constant

transmission rate or a seasonal transmission rate,

βt = exp
6∑
i=1

βiξit , (B.4)

where each ξit is a periodic B-spline basis with a 1 year period. The periodic.bspline.basis()

function in the pomp package was used to construct the B-spline bases. The process

noise, εt, was gamma distributed.

εt ∼ Γ

(
1

Θ
,Θ

)
(B.5)
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where the scale parameter, Θ, of the gamma distribution accounts for both environ-

mental and demographic stochasticity.

Θ =

 βsd1

2

√
βt

IOt +IBt
Nt

+ ψ
+ βsd2

2

(B.6)

The first term of Θ represents demographic stochasticity that is modulated by the

force of infection, λt. Whereas, the second term represents environmental stochastic-

ity. Formulating the process noise in this way gives us some useful properties,

E [εt] = 1 (B.7)

Var [εt] = Θ. (B.8)

Thus, the variance can capture purely environmental stochasticity, under the following

parameterization:

Var [εt] = β2
sd2

, if βsd1 = 0 (B.9)

and, it can represent purely demographic stochasticity under alternate parameteriza-

tion:

Var [εt] =
β2
sd1

βt
IOt +IBt
Nt

+ ψ
, if βsd2 = 0 (B.10)

Due to the computational intensity of this project, we used a discrete time model

with a 1 month time step to speed-up simulation. We implemented the model as a

poisson process. There is one probability governing the movement of individuals out

of their susceptible class: pSt , which is the probability that a susceptible individual

remains susceptible,

pSt = e−(δ+λt). (B.11)
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One minus the probability of remaining susceptible is the probability of either being

infected or dying. The parameter δ is the natural death rate. The superscripts B and

O will indicate infants (i.e., babies) and older individuals, respectively. The equations

for the first infant class is:

SB1t+1
= Bt+1, (B.12)

where Bt+1 are the births in month t + 1. Similarly, the other five infant classes are

tracked using the following equations:

SBjt+1
= SBj−1tpSt ; for j ∈ 2 : 6. (B.13)

The equation above describes that infants in the j−1 susceptible infant class at time

t move into infant class j at time t+ 1 if they are not infected or die of natural death.

The equation for the susceptible non-infant age group is:

SOt+1 =
(
SB6t + SOt

)
pSt . (B.14)

The first term of the SO equation represents the movement of infants from the oldest

infant class SB6 to the susceptible non-infant class. Whereas, the second term repre-

sents susceptible non-infants from time t remaining susceptible at time t + 1. The

infected infant class is tracked using the following equation:

IBt+1 =
6∑
j=1

SBjt (1− pSt)
λt

δ + λt
. (B.15)

Infants from each of the six susceptible infant classes have a probability of being

infected or dying, 1− pSt . The probability that an individual is infected, rather than

death is λt
δ+λt

. The equation for infected non-infants is similar in structure,

IOt+1 = SOt (1− pSt)
λt

δ + λt
. (B.16)
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Note, infected individuals are infected for exactly 1 month, which is the typical dura-

tion of shedding [7]. There was one rounding condition imposed on infections in the

process model. If IBt or IOt were values between 0 and 1, they were rounded to 0 or

1. This was in order to prevent fractions of infected individuals.

B.1.3.2 Measurement Model

In order to model the stochastic process of infected individuals becoming symp-

tomatic and subsequently being reported as a case, we drew cases from a normal

distribution.

casest ∼ normal(ρtI
O
t , τI

O
t ), (B.17)

with the following condition imposed,

casest =


round(casest), if casest ≥ 0

0, otherwise

(B.18)

For calculating likelihood we used a binned-normal probability density.

If casest > 0,

Likelihoodt = pnormal(casest+0.5, ρtI
O
t , τI

O
t )−pnormal(casest−0.5, ρtI

O
t , τI

O
t )+1e−18.

(B.19)

If casest = 0,

Likelihoodt = pnormal(casest + 0.5, ρtI
O
t , τI

O
t ) + 1e−18. (B.20)

The report rate, ρt, was estimated for the Pre-Baby Boom era and the Baby Boom

era, with the change in report rate occurring in January 1946, the start of the Baby
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Boom. The parameter τ captures the variation in the process of observing infections

via reported cases. The scaler 1e−18 was used for practical purposes to put a lower

bound on the likelihood in order to ensure finite log-likelihood values. Initially we

tried using a continuous normal measurement model, however, we discovered that a

continuous normal model over-inflated the likelihood of parameter sets that produced

zero cases in trough months, making it difficult to identify parameter regimes that

could capture both the epidemic cases and the trough cases. Thus, we used the

binned-normal distribution.

B.1.4 Statistical Inference

We fit our SIR model to the data from each state independently using Maximiza-

tion by Iterated particle Filtering (MIF) in the R package pomp [8, 9]. pomp tu-

torials and vignettes may be found at http://pomp.r-forge.r-project.org/. MIF is a

simulation-based likelihood method for parameter estimation. The basis of MIF is

particle filtering, which integrates state variables of a stochastic system and estimates

the likelihood for fixed parameters. Instead of fixing parameters, MIF varies them

throughout the filtering process and selectively propagates particles (parameter sets)

that have the highest likelihood. By initializing MIF throughout parameter space we

estimated the shape of the likelihood surface for each US state and identified the Max-

imum Likelihood parameter Estimates (MLEs). MIF was initialized from 1 million

parameter sets for a global search, followed by additional phases of increasingly local-

ized searches, which included profiling. In total, for each US state, MIF was initialized

from tens-of-thousands of locations in parameter space to estimate the shape of the

likelihood surface and identify the MLEs. We characterized seasonal transmission

using a B-spline with six bases. Although the transmission rate fluctuated seasonally,

there was no inter–annual variation in transmission in our model. In order to account

for improved reporting brought about by the Foundation for Infantile Paralysis, we
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estimated two report rates, one for the Pre-Baby Boom Era and another for the Baby

Boom Era. Inference was done using the data from May 1932 to January 1953, with

the exception of South Dakota and Texas, whose inference started in May 1933 and

1934, respectively.

For each state inference was initiated in May of the year following the first full year

of available data on polio cases and births. This was done in order to construct the

infant initial conditions directly from the birth data. The month of May is the tail-end

of the polio off-season. Thus, the 0-6 month old infants in May were born between

November and April, when polio transmission was low and they were unlikely to be

infected. Based on this, we assumed that the initial number of susceptible infants in

the 6th infant class was the number of individuals born in November of the previous

year, individuals born in December were in the 5th infant class, January births were

in the the 4th infant class, February births in the 3rd infant class, March births in the

2nd infant class, and April births in the the 1st infant class. We set the initial number

of infected infants to zero. Constructing the infant initial conditions prevented us from

having to estimate an addition seven parameters.

B.1.4.1 Phase I: Global Search

To initialize a global search of parameter space, 1 million parameter combinations,

with initial conditions reflecting a low incidence month, were generated to cover the

range of parameter values given in Table B.1. For each parameter set, ten replicate

particle filters were run, each with 2000 particles, to estimate the likelihood of the data

from the state of Illinois. Illinois was chosen because of the high incidence of polio

in Illinois and because Illinois had an increase in incidence following the World War

II baby boom, which was a characteristic feature of most US states. The reporting

transition was fixed to January 1946, the start of the Baby Boom era and about the

time when non-paralytic polio cases started being reported. Each parameter set was
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placed in combination with an increase in report rate of 0% and 1%. The 1 million

likelihoods were used to provide a rough estimate of the global shape of the likelihood

surface and identify regions of parameter space with high likelihood. Of the 1 million

parameter sets, the 50000 with the highest likelihoods were used to initialize Phase

II. It is important to note that the particle filter gives an unbiased estimate of the

likelihood, but some extra algebra needs to be done to get the estimates of the log-

likelihood from replicate particle filters. We calculated the unbiased estimate of the

log-likelihood using the following equations,

log ~L(Θ) = ~x. (B.21)

Given the vector of log-likelihoods, ~x, produced from n replicate particle filters under

the parameter set Θ (not to be confused with Θ in earlier equations), we find the

mean:

y = mean(~x) (B.22)

then we use the mean to estimate of the log-likelihood:

logL = y + log(mean(e~x−y)) (B.23)

and we can also calculate the standard error of the estimate of the log-likelihood:

logLse =
sd(e~x−y)√

n

1

elogL−y (B.24)

where sd is the standard deviation.

B.1.4.2 Phase II: Initial Condition Improvement

Each of the 50000 parameter sets obtained from Phase I was taken in pairwise

combination with the data from each of the 49 continental US states. For each
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parameter interpretation lower bound upper bound search scale

ρ report rate 0.0001074816 0.9999401 logit
∆ρ increase in report rate 0 0.01 logit
τ measurement stochasticity 1.024683e-06 2390.506 log
ψ external source of infection 1.843172e-07 114.648 log
δ natural death rate 0.001388889 NA NA
βsd1 demographic stochasticity 1.835635e-07 21.59023 log
βsd2 environmental stochasticity 1.217956e-07 15.25643 log
βi B-spline basis coefficients 9.152956e-12 770910.8 log

Table B.1: Parameter Bounds used in Global Search. Values in the table are on
the natural scale, rates are given in months. ρ is the report rate for
the Pre-Baby Boom era, and ∆ρ is the increase in report rate during
the Baby Boom. The natural death rate δ was fixed. The search scale
indicates whether parameters were transformed into the log or logit scale
for searching parameter space. The transformation ensured the breadth
of the search. Note, that parameter searches were not restricted to these
bounds, rather these bounds were used to initialize searches for parameter
space.

parameter set and US state combination, maximization by iterated particle filtering

(MIF) was used to improve the estimates of the initial conditions using the first 12

months of data. Each initial condition had a random walk standard deviation of

0.02. Each MIF had 45 iterations, 2000 particles, hyperbolic cooling with a variance

factor of 2, and a cooling fraction of 0.5. This resulted in 50000 parameter sets for

each state, each with unique initial conditions. For each parameter set, ten replicate

particle filters were run, each with 2000 particles, to estimate the likelihood of the

full time series (i.e., the fitted region of the data) from the state. All searches of

parameter space were done on the log or logit scale. The log scale was used to enforce

parameter values > 0 and the logit scale was used to bound parameters, such as the

report rate, between 0 and 1. See Equations below for expit and logit functions.

logit(p) = log

(
p

1− p

)
(B.25)
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expit(x) =
1

1 + e−x
(B.26)

B.1.4.3 Phase III–V: Local Searches of Parameter Space

In Phase III, for each US state, the top 25000 likelihood parameter sets from Phase

II were carried forward into Phase III. Therefore, in Phase III, MIF was initiated

from a total of 1225000 parameter sets. Each initial condition and all other estimated

parameter were allowed to vary in MIF with a random walk standard deviation of

0.02, with the exception of ∆ρ which was given a random walk standard deviation

of 0.03. It is important to note that the random walk standard deviations for ρ and

∆ρ were time-varying. ρ was estimated using the data up through December 1945,

and ∆ρ was estimated using the data beginning in January 1946. Thus, the random

walk standard deviation for ρ was zero from Jan 1946 onward. Likewise, the random

walk standard deviation for ∆ρ was zero up until January 1946. In order to define

time-varying random walk standard deviations, the MIF2 method was used in the

developer version of pomp, version 0.44-1. Refer to Table B.1 for a list of estimated

parameters. Each MIF run had 45 iterations, 2000 particles, hyperbolic cooling with

a variance factor of 2, and a cooling fraction of 0.5. Here the reporting transition

remained fixed at January 1946, although ∆ρ was allowed to vary. Once again, for

each parameter set, ten replicate particle filters were run, each with 2000 particles,

to estimate the likelihood of the data from the state.

In Phase IV, the 1225000 parameter sets from Phase III were culled to remove

all parameter combinations that had a likelihood 20 log-likelihood units below the

maximum for that state. Using the culled parameter sets, MIF was run with 45

iterations, 2000 particles, hyperbolic cooling with a variance factor of 2, and a cooling

fraction of 0.5. Random walk standard deviations were the same as Phase III. To

estimate the likelihood, ten replicate particle filters were run, each with 2000 particles.
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In Phase V, 49000 parameter sets were chosen using the 1000 top likelihood pa-

rameter sets for each US state from Phase IV. In Phase V, MIF was run with 45

iterations for each parameter set using the same MIF settings as Phase IV, with the

exception of the ∆ρ random walk standard deviation, which was 0.02.

B.1.4.4 Phase VI & VII: Profiling Report Rate and Immigration

In Phase VI, we found the range of ρ and ψ in the top parameter sets for each

state. For profiling, ρ and ψ values were generated to span the range. The ranges

were [0.001, 0.1] and [6e-6, 2.5e-3], for ρ and ψ, respectively. There were 37 values of

ρ, (ρ1, ρ2, ..., ρ37), with 0.001 interval sampling in the range of [0.001,0.03] and 0.01

interval sampling in the range of [0.04,0.1]. There were 50 values of ψ, (ψ1, ψ2, ..., ψ50)

evenly sampled across the range. In order to make the profiles two dimensional, we

took every pairwise combination of ρ and ψ, which resulted in 1850 profile points,

each being a unique combination of ρ and ψ. Next, we needed to identify the other

parameters to join with our 1850 combinations of ρ and ψ. At each of the 1850 profile

points we used four parameter set variants for each US state. The first variant was

the ρi and ψj combination substituted into the maximum likelihood parameter set

from Phase V (US state-specific maximum). The second variant was the ρi and ψj

combination substituted into the highest likelihood parameter set for which ρi−1 ≤

ρ ≤ ρi+1. The third was the ρi and ψj combination substituted into the highest

likelihood parameter set for which ψj−1 ≤ ψ ≤ ψj+1. The fourth was the ρi and ψj

combination substituted into the parameter set with the minimum Euclidean distance

from ρi and ψj.

With four parameter set variants at each of the 1850 profile values, there were a total

of 7400 parameter sets used to initialize the 2-D profile for each state. ρ and ψ were

fixed at the given profile values, and MIF was used to maximize the likelihood along
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the other parameter and initial condition dimensions. Starting at each of the 7400

parameter set variants, two replicates of MIF were run. Each estimated parameter

and initial condition had a random walk standard deviation of 0.02. Once again,

the random walk standard deviations for ρ and ∆ρ were time-varying. There were

45 iterations of MIF per replicate, with 2000 particles, hyperbolic cooling with a

variance factor of 2, and a cooling fraction of 0.5. The reporting transition remained

fixed at January 1946. This resulted in 14800 parameter sets for each state, and

725200 parameter sets across all US states. For each state, the likelihood of the

14800 parameter sets was estimated by running 10 replicate particle filters, each with

2000 particles.

In Phase VII, we found the highest likelihood parameter set at each state’s 1850

profile points. The ρ and ψ values remained fixed at each profile point and two repli-

cate MIF runs were preformed. Now each estimated parameter and initial condition

had a random walk standard deviation of 0.01.There were 60 iterations of MIF per

replicate, with 4000 particles, hyperbolic cooling with a variance factor of 2, and

a cooling fraction of 0.5. This resulted in 3700 parameter sets for each state, and

181300 parameter sets across all US states. For each state, the likelihood of the 3700

parameter sets was estimated by running 10 replicate particle filters, each with 4000

particles.

B.1.4.5 Phase VIII: Profiling Report Rate and Immigration with Con-

stant Reporting Assumption

In order to test whether the increased report rate during the Baby Boom Era,

represented by ∆ρ, is necessary to account for the increased incidence during the

Baby Boom Era, we repeated the profiling in Phase VII, with ∆ρ = 0. For each US

state we then used AIC to determine which model best fit the data, the model with
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∆ρ = 0 or the model with ∆ρ > 0. For each state, the MLE was taken from the

model with the lower AIC.

B.2 Polio Transmission Ecology: Results

B.2.1 Patterns in the Data

The negative exponential functions representing the relationship between fadeouts

and population size for the Pre-Baby Boom and Baby Boom are given as,

portion of fadeout months Pre-Baby Boom = 9195e−1.8N | N is log10(population size),

(B.27)

portion of fadeout months Baby Boom = 10230e−2N . (B.28)

B.2.2 Inference Results

Model Validation. In order to test the fit of the model for each state we first

used the MLE for each state to calculate the expected number of infected non-infants

for each month of the fitted data, May 1932–January 1953 for all states except South

Dakota and Texas whose inference started in May 1933 and 1934, respectively. The

expected number of infections was obtained by running a particle filter with 2000

particles and taking the prediction mean of the particles at each time point. The

prediction mean is the expected state value at time t, given the data and the state

values up to time t− 1.

E(Xt | Xt−1, casest−1) (B.29)

In order to get the expected number of cases, we took the expected number of non-

infant infections and multiplied it by the state- and time-specific report rate.

E(casest) = ρtE(IOt | Xt−1, casest−1) (B.30)
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For model validation, the r-squared was quantified for the model as the reduction

in the sum-of-squared deviations obtained when using the expected cases from the

state-specific MLE versus a state-specific null model of the mean number of cases.

R2 = 1−
∑

t [E(casest)− casest]
2∑

t [mean(cases)− casest]
2 (B.31)

The generalized r-squared was quantified for the model as the reduction in the sum-

of-squared deviations across all US states obtained when using the expected cases

from the state-specific MLE versus a state-specific null model of the mean number of

cases.

R2
generalized = 1−

∑49
i=1

∑
t [E(casest)− casest]

2∑49
i=1

∑
t [mean(cases)− casest]

2 . (B.32)

The out-of-fit predictions were done using the same procedure as was used for the

fitted data region. The out-of-fit predictions were done using the data from the last

two epidemic years, January 1953–December 1954.

Predicated Latitudinal Gradient. In order to determine whether or not the

model reproduces the latitudinal gradient in the timing of polio epidemics, 10 stochas-

tic simulations were run using the MLE for each state. For these 10 simulations, we

used the inference time period inclusive to all states, May 1934–January 1953. The

simulations were taken together to test for a gradient in the simulated data. A wavelet

analysis was run on the simulated time series and the phase angles associated with

the 1 year period were used to rank the states 1-49, 1 being the earliest epidemic

peak and 49 being the latest epidemic peak. We found that the model reproduces

the latitudinal gradient in the timing of polio epidemics (main text Fig 4.3) with

epidemics peaking earlier in the southern US and later in the northern US (observed

gradient shown in Fig B.1). In order to determine whether the latitudinal gradient in

the timing of polio epidemics is driven by the latitudinal gradient in birth peak tim-
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ing, and/or seasonal birth amplitude, we simulated the model with birth seasonality

removed. We did this by decomposing the birth time series using the stl function in R

and using the trend in births as a model covariate, rather than using the actual births.

We found that the model without birth seasonality (Fig B.4) also displays a latitu-

dinal gradient (Fig B.5). The latitudinal gradient in the timing of polio epidemics is

largely driven by the latitudinal variation in the timing of peak polio transmission.

Fig B.7 shows that the peak transmission rate for polio occurs between May and July

in the US. The peak transmission rate in southern states typically occurs in May and

the peak transmission rate in northern states occurs in July, a couple months earlier

than their respective peak in incidence. In order to test whether the predicted timing

of peak polio incidence matches the observed timing, we compared the mean rank

calculated from the data and the mean rank based off simulation. See main text Fig

4.3D, showing the correlation between the observed and predicted mean rank. You

will also see in Fig B.5C–D that the simulated slope and R2 values of latitude vs.

mean rank reflect a latitudinal gradient.

While geographical variation in birth seasonality was insufficient to explain the lat-

itudinal gradient seen in epidemic timing, birth seasonality played a role in shaping

seasonal incidence of polio. Epidemiological theory indicates that birth seasonality

can have important dynamical consequences for childhood diseases [10, 11, 12]. To

quantify the influence of birth seasonality (Fig B.4) on infant infections, we com-

pared simulations of the fitted models to simulations for which seasonal fluctuations

in births were removed. In the presence of birth seasonality, infant infection incidence

was generally higher during the epidemic peak (Fig B.6); however, since infant infec-

tions were assumed to be asymptomatic, this did not affect the incidence of disease

directly, and no indirect effect was observed. We attribute the negligible effect of

birth seasonality on disease incidence to the low amplitude of birth seasonality, which
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was ∼ 10% in the US at this time[11].
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Figure B.1: Probability densities of the timing of the epidemic peak for each state
during the pre-baby boom and baby boom eras. For each state, the
timing of the epidemic peak was determined for each year with 20+ polio
cases. The probability was measured as the portion of years (in each era)
for which the peak occurred between July/Aug, Aug/Sept, Sept/Oct,
and Oct/Nov. Peak timing was measured using the 1 yr wavelet band
phase angle.
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Figure B.2: One-step-ahead predictions based on the MLE model for each of four
states. Observed and expected cases are shown on the natural scale, in
contrast to Fig 4.3B in the main text, which is on the log10 scale.
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Figure B.3: Out-of-fit predictions based on the MLE model for each of four states.
Observed and expected cases are shown on the natural scale, in contrast
to Fig 4.3C in the main text, which is on the log10 scale. A negative R2

value indicates that the null model had a lower sum of squared deviations
than the fitted model for the out-of-fit predictions, which was the case
for 3 of the 49 states (Alabama, Connecticut, and Delaware). Alabama
was shown as an example of one of the “worst-fit” states.
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are shown.
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Figure B.5: Latitudinal gradient predicted from model simulations using maximum
likelihood parameter estimates for each state. (A) Latitudinal gradient
in simulations of the fitted models with seasonal births. (B) Latitudi-
nal gradient in simulations with birth seasonality removed (i.e., trend in
births was used). (C) The distribution of the latitudinal gradient slopes
for 10 simulations for each US state for the model with birth seasonal-
ity (i.e. using the raw birth data) and the model with birth seasonality
removed (i.e. using the trend in births). (D) The R2 for the latitudinal
gradient for the 10 simulations with and without birth seasonality.
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Figure B.6: Mean monthly incidence of infant-infections per 1000 infants, with and
without birth seasonality. Model with birth seasonality is shown in black,
model without birth seasonality in fuchsia. 500 simulation were run for
each state and model combination. Points indicate annual peak incidence.
The model with birth seasonality generally displayed higher peak infant-
infections. Four states from different geographic regions are shown.
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Figure B.8: MLE report rates. The report rate is a composite parameter that encom-
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Figure B.9:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt) and
the immigration rate (ψ). MLE indicated by pink asterisk. Profile color
indicates whether the report rate was increased during the baby boom
(purple profiles) or if the report rate was constant through time (green
profiles).
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Figure B.10:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt)
and the immigration rate (ψ). MLE indicated by pink asterisk. Profile
color indicates the whether the report rate was increased during the
baby boom (purple) or if the report rate was constant through time
(green).
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Figure B.11:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt)
and the immigration rate (ψ). MLE indicated by pink asterisk. Profile
color indicates the whether the report rate was increased during the
baby boom (purple) or if the report rate was constant through time
(green).
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Figure B.12:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt)
and the immigration rate (ψ). MLE indicated by pink asterisk. Profile
color indicates the whether the report rate was increased during the
baby boom (purple) or if the report rate was constant through time
(green).
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Figure B.13:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt)
and the immigration rate (ψ). MLE indicated by pink asterisk. Profile
color indicates the whether the report rate was increased during the
baby boom (purple) or if the report rate was constant through time
(green).
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Figure B.14:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt)
and the immigration rate (ψ). MLE indicated by pink asterisk. Profile
color indicates the whether the report rate was increased during the
baby boom (purple) or if the report rate was constant through time
(green).
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Figure B.15:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt)
and the immigration rate (ψ). MLE indicated by pink asterisk. Profile
color indicates the whether the report rate was increased during the
baby boom (purple) or if the report rate was constant through time
(green).
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Figure B.16:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt)
and the immigration rate (ψ). MLE indicated by pink asterisk. Profile
color indicates the whether the report rate was increased during the
baby boom (purple) or if the report rate was constant through time
(green).
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Figure B.17:
Likelihood profiles for the pre-baby boom non-infant report rate (ρt)
and the immigration rate (ψ). MLE indicated by pink asterisk. Profile
color indicates the whether the report rate was increased during the
baby boom (purple) or if the report rate was constant through time
(green).
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APPENDIX C

Both Salk and Sabin Vaccines Effectively Reduce

Polio Transmission in Epidemic Settings

C.1 Salk and Sabin Vaccines: Data from the US

Polio case data from the US were separated among 3 data sets, (1) the US Mor-

bidity and Mortality Weekly Report (MMWR) monthly polio case data, (2) the US

National Office of Vital Statistics (NOVS) annual polio case data, and (3) the Cen-

ters for Disease Control and Prevention Poliomyelitis Surveillance Unit (PSU) annual

polio case data. There were 2 demographic data sets, (1) monthly births from the US

National Office of Vital Statistics, and (2) annual population sizes from the US Census

Bureau. There were 6 sets of data regarding the vaccines: the Inactive polio vaccine

(IPV), also known as the Salk Vaccine, and the Oral polio vaccine (OPV), also known

as the Sabin Vaccine. The 6 vaccine data sets were (1) annual age-structured IPV

coverage in the US, by dose of IPV, (2) quarterly or annual shipments of IPV in the

US, (3) annual age-structured OPV coverage in the US, by dose of OPV, (4) annual

shipments of OPV in the US, (5) annual-age structured coverage of dual vaccination

with IPV and OPV, and (6) annual age-structured percent of the population unvac-
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cinated or under-vaccinated with both IPV and OPV. The data sets are discussed in

more detail in the following sections.

C.1.1 MMWR Polio Data.

The MMWR data consisted of monthly polio cases reported in the weekly US

Public Health Reports and the CDC Morbidity and Mortality Weekly Report from

1931–1968 for each US state and the District of Columbia. The data were first

published in [1], which includes discussion of data quality during this period. The

data for the contiguous US states and the District of Columbia were aggregated to

construct a single time series of “national” data, which is used for the entirety of this

project. For details on the state-level data please refer to our previous study [2]. The

MMWR case data were aggregated on the national-level because our vaccine data

were national-level data.

C.1.2 NOVS Polio Data.

The NOVS data contained the number of reported polio cases in the US each year

from 1951–1965. These annual cases were broken down by symptomatology (i.e.,

paralytic, non-paralytic, and unspecified). These data were digitized from the Com-

municable Disease Center Poliomyelitis Surveillance Report Number 268, September

21, 1962, Supplement: The Association of Cases of Poliomyelitis with the use of Type

III Oral Poliomyelitis Vaccines: A Technical Report by Luther L. Terry, Surgeon

General, Public Health Service, US Department of Health, Education, and Welfare,

September 20 1962. The data from 1951–1954 and 1962–1965 came from Public

Health Reports volume 82, Number 5, May 1967 titled “Surveillance of Poliomyelitis

in the United States, 1962–1965” by Morris, Witte, Gardner, Miller, and Henderson.

The data in the aforementioned reports were compiled by the Poliomyelitis Surveil-

lance Unit, Communicable Disease Center, Public Health Service, US Department of
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Health, Education, and Welfare. The NOVS polio case data and the MMWR polio

case data are not completely independent. It is the National Office of Vital Statistics

that provided the polio case data reported in the MMWR. The NOVS data are an

annual breakdown of the MMWR data by symptomatology.

C.1.3 PSU Polio Data.

The PSU data were digitized from the US Centers for Disease Control and Preven-

tion Poliomyelitis Surveillance Unit Reports, these reports were bound as periodicals

and are housed at the Centers for Disease Control and Prevention Library in the

Clifton Landmark Collection, with the call number WC 555 C397p. Each table from

the PSU reports from 1955 onward was evaluated for data. The earliest reports from

which we digitized data were from 1959. The latest reports from which we digitized

data were from the late 1970s. The PSU polio case data contained an annual break-

down of polio cases by age, symptomatology, and vaccine status. The Poliomyelitis

Surveillance Unit was tasked with gathering the details on every polio case in the US

and ensuring vaccine safety following the Cutter incident. Therefore, the Poliomyelitis

Surveillance Unit collected their own case data, independent of the National Office

of Vital Statistics, and the number of cases reported differed among the PSU and

NOVS data.

C.1.4 Demography Data.

Monthly state–level time series of live births from 1931–1954 were downloaded

from the Vital Statistics of the United States [3]. Annual state–level population

size data were collected from the Population Distribution Branch of the U.S. Census

Bureau [4]. The state-level population size and birth data for the contiguous US were

aggregated to form national-level demography time series.
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C.1.5 Vaccine Data.

Vaccination data were also gathered from the Poliomyelitis Surveillance Unit Re-

ports housed at the CDC Library, Clifton Landmark Collection. The main text shows

the raw vaccine coverage data, which are age-stratified vaccine coverage for the age

classes: under 1 year old, 1–4 years old, 5–9, 10–14 years old. Data for these age

classes were used to construct the vaccine coverage for the 1–14 year old age group

as a whole (Figure S1). The under 1 year old age class was excluded due to the lack

of data for this age class from 1962 onward, and because vaccination efforts were

concentrated on the school-aged children. Age-structured population size and vac-

cine coverage data for the 1–14 year old age group constructed from the population

size and coverage data for the 1–4, 5–9, and 10–14 year old age classes. The annual

vaccine coverage data for the 1–14 year old age group was used for statistical infer-

ence. Interpolations are shown for visualization. We lacked IPV coverage data from

1955-1958; however, the cumulative distribution of IPV suggests a linear increase in

vaccine coverage from this time period. Therefore, we fit a single IPV per capita

vaccine uptake rate for the US from April 1955–December 1959.

C.2 Data from the USSR

In order to track the success of the massive polio immunization campaign, the

USSR’s Poliomyelitis Research Laboratory tracked vaccine coverage and clinical cases.

Polio case data and OPV data from the USSR were digitized from Some Results on

the Work on Mass Immunization in the Soviet Union with Live Poliovirus Vaccine

prepared from Sabin Strains in Bulletin of the World Health Organization,

1961, 25, 79-91. Demography data for the USSR was obtained from the United

Nations Demography database. We downloaded crude birth rates (per 1000 people)

for the RSFSR, Ukraine, Estonia, and Lithuania. The crude birth rate indicates the
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Figure C.1: Age-structured population size and vaccine coverage data for the 1–14
year old age group constructed from the population size and coverage
data for the 1–4, 5–9, and 10–14 year old age classes. The annual vaccine
coverage data for the 1–14 year old age group was used for statistical
inference. Interpolations are shown for visualization.

number of live births occurring during the year, per 1000 population estimated at

midyear. Data available online at https://data.un.org. Population data were also

downloaded for each region in the USSR. Population data are available online at

https://data.un.org.

242



0e
+

00
2e

+
08

4e
+

08

cu
m

ul
at

iv
e 

IP
V

 d
is

tr
ib

ut
ed

 (
C

cs
) United States

0
20

40
60

80
IP

V
 c

ov
er

ag
e 

(%
 1

−
14

 y
r 

ol
ds

)

IPV distribution
IPV coverage
IPV coverage based on distribution

0.
0e

+
00

4.
0e

+
07

8.
0e

+
07

1.
2e

+
08

year

cu
m

ul
at

iv
e 

O
P

V
 d

is
tr

ib
ut

ed
 (

do
se

s)

1956 1962 1968

mOPV−I distribution
mOPV−II distribution
mOPV−III distribution
tOPV distribution
OPV coverage

0
20

40
60

80
O

P
V

 c
ov

er
ag

e 
(%

 1
−

14
 y

r 
ol

ds
)

(a)

(b)

Figure C.2: IPV coverage and distribution in the US. We lacked IPV coverage data
from 1955-1958; however, the cumulative distribution of IPV suggests a
linear increase in vaccine coverage from this time period. Therefore, we
fit a single IPV per capita vaccine uptake rate for the US from April
1955–December 1959.
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C.3 Modeling Vaccine Uptake Rate

In order to capture the vaccine coverage in the population of each country/region,

we estimated the per capita monthly vaccine uptake rates using the vaccine coverage

data. In the pre-vaccine era, the vaccine uptake rate was set to zero and it was

estimated beginning with the introduction of IPV/OPV in the US and USSR.

C.3.1 US

In the US, the vaccine uptake rates were tracked as state variable in our process

model. The IPV uptake rate was

IPV uptake ratet = (IPV 1
uptakeIPV

1
covar)+(IPV 2

uptakeIPV
2
covar)−(IPV 3

uptakeIPV
3
covart),

(C.1)

where the first term represents the IPV uptake rate from 1955–1959, the second

term represents the IPV uptake rate from 1960–1962, and the last term represents

the gradual decline of the IPV uptake rate during the OPV era, 1963 onward. The

covariates, IPV i
cover, are time-varying and take on the value of either 0 or 1, allowing

us to shut off or turn on each component of the uptake rate. Similarly, for the OPV

uptake rate in the US, we used the equation:

OPV uptake ratet = (OPV 1
uptakeOPV

1
covar)− (OPV 2

uptakeOPV
2
covart). (C.2)

However, since individuals with 3+ doses of IPV were also vaccinated with OPV, we

had an IPV to OPV uptake rate of:
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IPV to OPV uptake ratet = (IPV to OPVuptakeOPV
1
covar)− (OPV 2

uptakeOPV
2
covart).

(C.3)

Once again, the covariates OPV i
covar allow us to shut off or turn on each term in the

equation. OPV 1
covar was turned on at the onset of licensing of all monovalent OPVs,

and OPV 2
covar allowed us to account for the decline in the OPV uptake rate toward

the end of the OPV era. We constrained the uptake rates such that they had a value

≥ 0.

C.3.2 USSR

Modeling vaccine uptake in the USSR was much more simple than the US, because

only OPV was in use. The uptake rate for OPV in the USSR was either zero (before

OPV was launched) or it was a fixed value estimated form the data. For each region

in the USSR, OPV uptake was modeled as:

OPV uptake ratet = OPVuptakeOPVcovar, (C.4)

where, OPVuptake was estimated from the data and OPVcovar was zero before the use

of OPV in the USSR, and was 1 after the launch of OPV.

C.4 Transmission Models

To mechanistically model polio epidemiology we utilized Partially Observed Markov

Process (POMP) models which are suited for dealing with epidemiological data where

the state variables (susceptible, infected, recovered individuals) are not observed in

the data; rather the symptomatic infected individuals are partially observed through

case reports. For our process models we used seasonally-forced stochastic monthly
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discrete-time SIR models where transitions followed a Poisson process. The models

had a single recovered class that accounts for life-long immunity. The models con-

tained 6 classes (SBi ) of infants susceptible to infection but protected from clinical

illness by maternally antibodies. The 6 susceptible infant classes contained 0–1 month

olds, 1–2 month olds, etc. up to 6 month olds. The models had a single infected class

for unvaccinated or under-vaccinated infants (IB). The older age class contained indi-

viduals > 6 months of age, and these individuals had their own unvaccinated/under-

vaccinated susceptible (SO) and infected class (IO). Infected individuals > 6 months

of age, that were no longer protected from disease by maternal antibodies, had a

probability of having paralytic polio or non-paralytic polio. Each process model had

a measurement model that translated symptomatic (i.e., paralytic and non-paralytic)

infections to clinical reported cases. Based on clinical data, we assumed that infec-

tions in individuals under 6 months of age are asymptomatic, and only individuals

over 6 month of age can be symptomatic and reported as a case.

C.5 Epidemiological Process Model

A similar version of this model was originally validated in our previous study to

understand the state-level transmission dynamics of polio [2]. The difference between

this model and our previous model is now we explicitly accounted for symptoms in

the process model (i.e., paralytic and non-paralytic polio), and we now included IPV

and OPV vaccination in the population. In our model, the force of infection, also

referred to as the risk of infection, was:

λt =

(
βt

(
IOt + IBt + ζ1IIPVt + ζ2IOPVt

Nt

)α
+ ψ

)
εt (C.5)

The first term of the force of infection represents transmission that occurs locally

by individuals infected in the country/regions at time t. Whereas, the second term,
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ψ, encompasses WPV that arises in the population in a way that is divorced from

the local infection dynamics. These infections can include immigration of infected

individuals from other geographic locations, environmental sources of WPV, and in-

dividuals shedding with an infectious period longer than a month. The parameters

ζ1 and ζ2 are the relative infectiousness of individuals vaccinated with IPV or OPV,

respectively. Therefore, if ζ = 1 the vaccine does not reduce infectiousness. The

parameter α was used in the model of the US to account for deviations from homoge-

nous mixing due to the board geographic scale. A value of α ≤ 1 saturates the force

of infection as the number of infected individuals in the population increases. For

the USSR, we fixed α = 1. The transmission parameter βt was parameterized using

a B-spline, giving it the flexibility to have either a constant transmission rate or a

seasonal transmission rate.

βt = exp
6∑
i=1

βiξit , (C.6)

where each ξit is a periodic B-spline basis with a 1 year period. Although the trans-

mission rate was able to fluctuate seasonally, there was no inter–annual variation in

transmission in our model.The process noise, εt, was gamma distributed.

εt ∼ Γ

(
1

Θ
,Θ

)
, (C.7)

where the scale parameter, Θ, of the gamma distribution accounts for both environ-

mental and demographic stochasticity.

Θ =

 βsd1

2

√
βt

(
IOt+IBt+ζ1IIPVt+ζ2IOPVt

Nt

)α
+ ψ

+ βsd2


2

(C.8)
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The first term of Θ represents demographic stochasticity that is modulated by the

force of infection, λt. Whereas, the second term represents environmental stochastic-

ity. Formulating the process noise in this way gives us some useful properties:

E [εt] = 1, (C.9)

Var [εt] = Θ. (C.10)

Thus, the variance can capture purely environmental stochasticity, under the following

parameterization:

Var [εt] = β2
sd2

, if βsd1 = 0, (C.11)

and, it can represent purely demographic stochasticity under alternate parameteriza-

tion:

Var [εt] =
β2
sd1

βt

(
IOt+IBt+ζ1IIPVt+ζ2IOPVt

Nt

)α
+ ψ

, if βsd2 = 0. (C.12)

Due to the computational intensity of this project, we used a discrete time model

with a 1 month time step to speed-up simulation. We implemented the model as a

poisson process. There is one probability governing the movement of individuals out

of susceptible infant classes, pBt , which is the probability that a susceptible infant

remains susceptible,

pBt = e−(δ+λt). (C.13)

The parameter δ is the natural death rate. One minus the probability of remaining

susceptible is the probability of either being infected or dying. The equations for the

first infant class is:

SB1t+1
= Bt+1, (C.14)
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where Bt+1 are the births in month t + 1. Similarly, the other five infant classes are

tracked using the following equations:

SBjt+1
= SBj−1t

pBt ; for j ∈ 2 : 6 (C.15)

The equation for SBjt+1
states that infants in the j−1 susceptible infant class at time

t move into infant class j at time t+ 1 if they are not infected or die of natural death.

Similarly, there is one probability governing the movement of individuals out of the

susceptible non-infant class, pOt , which is the probability that a susceptible remains

susceptible. One minus the probability of remaining susceptible is the probability of

either being infected, vaccinated, or dying.

pOt = e−(δ+λt+IPV uptake ratet+OPV uptake ratet), (C.16)

where “IPV uptake ratet” and “OPV uptake ratet” are monthly per capita vaccine

uptake rates that account for vaccine roll-out. See earlier section for calculation of

vaccine uptake rates. The equation for the susceptible non-infant age group is:

SOt+1 = SB6t
pBt + pOtSOt (C.17)

The first term of the SO equation represents the movement of infants from the oldest

infant class SB6 to the susceptible non-infant class. Whereas, the second term repre-

sents susceptible non-infants from time t remaining susceptible for time t+1. For the

vaccinated classes, the probability that an individual remains in the IPV class, pIPVt ,

is dependent on the force of infection and the OPV uptake rate of IPV-vaccinated

individuals, i.e., the “IPV to OPV uptake ratet”. Thus,

pIPVt = e−(δ+ζ3λt+IPV to OPV uptake ratet). (C.18)
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Here, ζ3 is the susceptibility to infection of IPV-vaccinated individuals, relative to

unvaccinated individuals. The equation for the IPV class is:

IPVt+1 = SOt(1− pOt)
IPV uptake ratet

δ + λt + IPV uptake ratet + OPV uptake ratet
+ pIPVtIPVt.

(C.19)

Similarly, the probability that an individual remains in the OPV class is dependent

on the force of infection,

pOPVt = e−(δ+ζ4λt) (C.20)

The equation for the OPV class is,

OPVt+1 = SOt(1− pOt)
OPV uptake ratet

δ + λt + IPV uptake ratet + OPV uptake ratet

+IPVt(1− pIPVt)
IPV to OPV uptake ratet

δ + ζ3λt + IPV to OPV uptake ratet
+ pOPVtOPVt;

(C.21)

As for infections, the infected infant class is tracked using the following equation:

IBt+1 =
6∑
j=1

SBjt
(1− pBt)

λt
δ + λt

. (C.22)

Infants from each of the six susceptible infant classes have a probability of being

infected or dying, 1 − pBt . The probability that an infant is infected, rather than

death is λt
δ+λt

. The equation for infected non-infants is similar in structure,

IOt+1 = SOt(1− pOt)
λt

δ + λt + IPV uptake ratet + OPV uptake ratet
. (C.23)

Vaccinated individuals are also able to be infected, according to the reports of par-

alytic and non-paralytic polio in IPV and OPV vaccinated individuals in the PSU

data. The infected IPV class was modeled as:

IIPVt+1 = IPVt(1− pIPVt)
ζ3λt

δ + ζ3λt + IPV to OPV uptake ratet
. (C.24)
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Similarly, the infected OPV class is:

IOPVt+1 = OPVt(1− pOPVt)
ζ4λt

δ + ζ4λt
. (C.25)

Note, infected individuals are infected for exactly 1 month, which is the typical dura-

tion of shedding [5]. The infections were then broken down based on symptomatology.

The majority of polio infections are asymptomatic, but some will manifest as para-

lytic or non-paralytic polio. We modeled paralytic polio for the unvaccinated/under-

vaccinated individuals as,

ParalyticUt
= ppIOt ; (C.26)

and for non-paralytic polio as,

NParalyticUt
= pnpIOt , (C.27)

where pp and pnp are the probability of paralytic and non-paralytic polio, respectively,

in an unvaccinated infected individual. Paralytic and non-paralytic infections were

also tracked for IPV individuals. Paralytic IPV infections are:

ParalyticIPVt = ζ5ppIIPVt , (C.28)

while, non-paralytic IPV was,

NParalyticIPVt = ζ6pnpIIPVt , (C.29)

where ζ5 and ζ6 are the reduction in the paralytic and non-paralytic probability

provided by IPV. Since the PSU reports no cases of non-paralytic polio in OPV
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individuals, we only tracked paralytic polio in OPV individuals,

ParalyticOPVt = ζ7ppIOPVt . (C.30)

There was one rounding condition imposed in the model of infections. If the number

of individuals in IBt , IOt , IIPVt , IOPVt , paralytic, or non-paralytic infection classes were

values between 0 and 1, they were rounded to 0 or 1. This was in order to prevent

fractions of infected individuals. Since the MMWR data reports both paralytic and

non-paralytic infections, we also had a symptomatic class,

Symptomatict = ParalyticUt
+NParalyticUt

+ParalyticIPVt+NParalyticIPVt+ParalyticOPVt .

(C.31)

The NOVS data had the breakdown of cases by paralytic and non-paralytic symptoms,

so we also tracked those classes for NOVS,

Paralytict = ParalyticUt
+ ParalyticIPVt + ParalyticOPVt , (C.32)

and,

NParalytict = NParalyticUt
+ NParalyticIPVt . (C.33)

For data sets where cases were reported annually (i.e., NOVS and PSU), in the model

the cases were accumulated from January–December and reported in December.

C.6 Vaccine Tracker Model

Since the majority of polio infections are asymptomatic, when the vaccines were

rolled-out, naturally-immune individuals (i.e., individuals in the recovered class) were

undoubtedly vaccinated and counted in the vaccine coverage data. Therefore, in order

to estimate the vaccine uptake rates from the vaccine coverage data, we needed to
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track vaccine coverage in the population, not just the susceptible individuals. To do

so we constructed what we refer to as vaccine tracker classes, these classes tracked

the demography of each country/region and are similar to the epidemiological process

model states, with the exception that they do not include the infection process. For

the US, the vaccine tracker classes tracked the individuals >6 months old and <15

years old; this is because our vaccine data for the US were based on the 1–14 year age

group. In contrast, in the USSR, the vaccine tracker classes tracked all individuals >6

months old, because vaccine coverage data in the USSR were for the entire population.

In the vaccine tracker model, the probability that an individual remained in the

unvaccinated class, pU , was:

pUt = e−(Λ+δ+IPV uptake ratet+OPV uptake ratet); (C.34)

where, the new parameter Λ is the rate of aging out of the vaccine tracker class.

In the US the rate of aging out was 14 yrs−1, because we were tracking the vaccine

coverage in the population under 15. The unvaccinated/under-vaccinated class was

tracked as:

Ut+1 = SB6t
pBt + UtpUt . (C.35)

The first term represents 6 month olds entering the unvaccinated class after their

material antibodies have waned, and the second term represents individuals from

time t remaining in the class at time t+ 1. For individuals vaccinated with IPV, the

probability of them remaining in the vaccine tracker IPV class was,

pSalkt = e−(Λ+δ+IPV to OPV uptake ratet); (C.36)
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and the probability of individuals remaining in the OPV or the dual-vaccine IPV &

OPV vaccine tracker class was,

pSabint = e−(Λ+δ). (C.37)

The IPV vaccine tracker class was,

Salkt+1 = Ut(1− pUt)
IPV uptake ratet

Λ + δ + IPV uptake ratet + OPV uptake ratet
+ pSalktSalkt.

(C.38)

The OPV vaccine tracker class was,

Sabint+1 = Ut(1− pUt)
OPV uptake ratet

Λ + δ + IPV uptake ratet + OPV uptake ratet
+ pSabintSabint.

(C.39)

The final vaccine tracker class contained individuals with dual vaccine coverage with

both IPV & OPV,

IPVOPVt+1 = Salkt(1− pSalkt)
IPV to OPV uptake ratet

Λ + δ + IPV to OPV uptake ratet
+ pSabintIPVOPVt;

(C.40)

For measuring vaccine coverage, we were interested in the fraction of individuals

vaccinated with IPV, OPV, or dual vaccinated. Therefore, we tracked the fraction of

individuals in the vaccine tracker classes. The fraction of individuals in the IPV class

was,

IPVfract =
Salkt + IPVOPVt

Ut + Salkt + Sabint + IPVOPVt

. (C.41)

The OPV fraction was,

OPVfract =
Sabint + IPVOPVt

Ut + Salkt + Sabint + IPVOPVt

; (C.42)
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the dual vaccine fraction was,

IPVOPVfract =
IPVOPVt

Ut + Salkt + Sabint + IPVOPVt

; (C.43)

and the unvaccinated/under-vaccinated fraction was,

Ufract =
Ut

Ut + Salkt + Sabint + IPVOPVt

. (C.44)

C.6.1 Observation Models

In order to model the stochastic process of symptomatic infected individuals being

reported as a case, we drew cases from a normal distribution. In the US, Lithuania,

and Estonia symptomatic cases were reported monthly. In the RSFSR and Ukraine

paralytic cases were reported monthly. In addition to the monthly cases reported

in the US in the MMWR, non-paralytic and paralytic cases were reported annually

in NOVS and PSU. To represent observations in each data set, the reporting of the

appropriate state variable X i
t was drawn from a normal distribution with a report

rate ρit and dispersion parameter τ i,

casest ∼ normal(ρitX
i
t , τ

iX i
t), (C.45)

with the following condition imposed,

casest =


round(casest), if casest ≥ 0

0, otherwise

(C.46)

For calculating the likelihood for each case data set, we used a binned-normal proba-

bility density and used the lower tail of the cumulative density function to discretize

the density.
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If casest > 0,

Likelihoodit = pnormal(casest + 0.5, ρitX
i
t , τ

iX i
t)− pnormal(casest − 0.5, ρitX

i
t , τ

iX i
t)

(C.47)

If casest = 0,

Likelihoodit = pnormal(casest + 0.5, ρitX
i
t , τ

iX i
t). (C.48)

For all data sets, with the exception of the US MMWR data, the report rate, ρit, was

constant. For the MMWR data, there was a report rate for the pre-baby boom era in

the US (May 1934–Dec 1945), when mostly paralytic polio was reported; and there

was a higher report rate in the baby boom era (1946 onward), with the increase in

report rate occurring in January 1946. The elevated report rate accounted for the

reporting of non-paralytic polio cases that began sometime in 1945. The parameter

τ i captures the variation in the process of observing infections via reported cases. In

addition to the observation models for disease, we also had observation models for

vaccine coverage.

To represent vaccine coverage in each country/region, the reporting of the appro-

priate vaccine tracker state variable V i
t was drawn from a normal distribution with a

dispersion parameter τ i,

coveraget ∼ normal(100V i
t , τ

iV i
t ). (C.49)

The vaccine tracker state variables, V i
t , are fractions, but we were fitting to vaccine

coverage as the percent of the population; therefore we multiplied by 100. We also
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imposed the following condition,

coveraget =


round(coveraget), if 0 ≤ coveraget ≤ 100

0, if coveraget < 0

100, if coveraget > 100

(C.50)

For calculating the likelihood for each vaccine coverage data set, we used a binned-

normal probability density.

If 0 < coveraget < 100, we used the lower tail of the cumulative density function

to discretize the density,

Likelihoodit = pnormal(coveraget+0.5, ρitV
i
t , τ

iV i
t )−pnormal(coveraget−0.5, ρitV

i
t , τ

iV i
t )

(C.51)

If coveraget = 0, we once again used the lower tail of the cumulative density function

to discretize the density,

Likelihoodit = pnormal(coveraget + 0.5, ρitV
i
t , τ

iV i
t ). (C.52)

In contrast, if coveraget = 100, we used the upper tail of the cumulative density

function to discretize the density,

Likelihoodit = pnormal(coveraget − 0.5, ρitV
i
t , τ

iV i
t ). (C.53)

Because we were fitting the data to multiple data sets, the likelihood was taken as the

product of the likelihood of each individual data set. Therefore the joint likelihood
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was,

Likelihoodt =

(
n∏
i=1

Likelihoodit

)
+ 1e−18, (C.54)

where n is the appropriate number of data sets for that country/region. The scaler

1e−18 was used for practical purposes to put a lower bound on the likelihood in order

to prevent arithmetic underflow. In the US, we fit the vaccine uptake rates to the four

time series of vaccine coverage (IPV, OPV, dual vaccinated, and unvaccinated/under-

vaccinated). In the US we also fit to the two NOVS time series and the MMWR time

series. The state variables used to report to NOVS were the paralytic and non-

paralytic infections. Whereas, the symptomatic infections were reported in the US

MMWR, and in Lithuania, and Estonia. The paralytic infections were reported in

the RSFSR and Ukraine.

C.7 Pre-Vaccine Era Statistical Inference

We fit our SIR models to the data using maximization by iterated particle filtering

(mif) in the R package pomp [6]. mif is a simulation-based likelihood method for

parameter estimation. The basis of mif is particle filtering, also known as Sequential

Monte Carlo, which integrates state variables of a stochastic system and estimates

the likelihood for a fixed parameter set. Instead of fixing parameters, mif varies

the parameters throughout the filtering process using a random walk and selectively

propagates particles (parameter sets) that have high likelihood. By initializing mif

throughout parameter space, we identified regions of high likelihood and identified the

maximum likelihood parameter estimates. We estimated parameters independently

for the US and the four regions of the USSR. The inference conducted in this study was

an extension to model fitting that was done in a previous study of WPV transmission

in the US [2]. In our baseline study, in order to get a handle on WPV epidemiological

parameters in the pre-vaccine era, mif was initialized from 1 million parameter sets
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for a global search, followed by additional phases of increasingly localized searches,

which included profiling.

To estimate WPV epidemiological parameters for the US, inference was done

using the data from May 1934 to December 1954, the pre-vaccine era. Inference was

initiated in May of the year following the first full year of available data on polio cases

and births. This was done in order to construct the infant initial conditions directly

from the birth data. The month of May is the tail-end of the polio off-season. Thus,

the 0–6 month old infants in May were born between November and April, when

polio transmission was low and they were unlikely to be infected. Based on this,

we assumed that the initial number of susceptible infants in the 6th infant class was

the number of individuals born in November of the previous year, individuals born in

December were in the 5th infant class, January births were in the the 4th infant class,

February births in the 3rd infant class, March births in the 2nd infant class, and April

births in the the 1st infant class. We set the initial number of infected infants to zero.

Constructing the infant initial conditions prevented us from having to estimate an

addition seven parameters. We used a similar procedure for the USSR. We initialized

inference in January of the first year of available data. Once again, we assumed all

infants were susceptible. Unlike the US where we had monthly birth data, for the

USSR we had birth data on the annual basis. Therefore, we had to assume births

were distributed evenly throughout the year in the USSR. We know that births are

in fact seasonal, as shown in the US birth data in the main text. However, without

monthly birth data for the USSR we had no way to constructing the birth seasonality

in the USSR.

C.7.1 WPV Global Search

In our original study of WPV transmission [2], to initialize a global search of

parameter space, 1 million parameter combinations, with initial conditions reflecting
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a low incidence month, were generated to cover a broad range of parameter values.

For each parameter set, ten replicate particle filters were run, each with 2000 parti-

cles, to estimate the likelihood of the data from the state of Illinois. Although the

state of Illinois was used to initially search the global space for WPV epidemiolog-

ical parameters, the US national-level data and the USSR regional-level data were

used to find the country/region specific MLEs. Illinois was chosen in our previous

study because of the high incidence of polio in Illinois and because Illinois had an

increase in incidence following the World War II baby boom, which was a charac-

teristic feature of many US states. The 1 million likelihoods were used to provide a

rough estimate of the global shape of the WPV likelihood surface and identify regions

of parameter space with high likelihood. Of the 1 million parameter sets, the 50000

with the highest likelihoods were used to initialize local searches of parameter space

using mif. It is important to note that the particle filter gives an unbiased estimate

of the likelihood, but some extra algebra needs to be done to get the estimates of the

log-likelihood from replicate particle filters. We calculated the unbiased estimate of

the log-likelihood using the following equations,

log ~L(Θ) = ~x. (C.55)

Given the vector of log-likelihoods, ~x, produced from n replicate particle filters using

the parameter set Θ, we find the mean:

y = mean(~x), (C.56)

then we use the mean to estimate of the log-likelihood:

logL = y + log(mean(e~x−y)); (C.57)

260



and we can also calculate the standard error of the estimate of the log-likelihood:

logLse =
sd(e~x−y)√

n

1

elogL−y , (C.58)

where sd is the standard deviation.

C.7.2 Local Searches of Parameter Space

Each of the 50000 “best” likelihood parameter sets obtained from the Global

search were used to initiate local searches of WPV transmission parameter space. mif

was used for local searches of parameter space. In general, for each run of mif, we

used a random walk standard deviation of 0.02, 45+ iterations of mif, 2000+ particles,

hyperbolic cooling with a variance factor of 2, and a cooling fraction of 0.5. Monte

Carlo replicate mif runs were also used in local searches. All searches of parameter

space were done on the log or logit scale. The log scale was used to enforce parameter

values >0 and the logit scale was used to bound parameters, such as the report rate

between 0 and 1. See Equations below for expit and logit functions.

logit(p) = log

(
p

1− p

)
(C.59)

expit(x) =
1

1 + e−x
(C.60)

It is important to note that the random walk standard deviations for some parameters

were time-varying, such as for the pre-baby boom report rate for the US MMWR data.

This is because, if the parameter was only relevant to a particular time period (e.g.,

the pre-baby boom), then that parameter was only allowed to vary via the random

walk during the time points for which the parameter was relevant. This was done

in order to align the inference procedure with the data containing information to

guide the estimation of each parameter. In order to define time-varying random walk
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standard deviations, the mif2 method was used in the developer version of the package

pomp. As parameters passed through our multiphase inference pipeline, the number

of parameter sets expanded and contracted. This is because the use of Monte Carol

mif replicates expanded the parameter sets, but we would also cull parameter sets to

remove all parameter combinations that had a likelihood >> 20 log-likelihood units

below the current maximum.

C.7.3 US Profiling Report Rate and Immigration

In the US, we identified that the MMWR report rate of infections (i.e., not broken

down by symptoms, IOt), in the pre-baby boom era, ρmmwr, to be important; along

with the immigration into the force of infection, ψ. Therefore, we decided to profile

ρmmwr and ψ. The profile values spanned the ranges [0.001, 0.1] and [6e-6, 2.5e-3], for

ρmmwr and ψ, respectively. There were 37 values of ρmmwr, (ρ1, ρ2, ..., ρ37), with 0.001

interval sampling in the range of [0.001,0.03] and 0.01 interval sampling in the range of

[0.04, 0.1]. There were 50 values of ψ, (ψ1, ψ2, ..., ψ50) evenly sampled across the range.

In order to make the profiles two dimensional, we took every pairwise combination,

which resulted in 1850 profile points, each being a unique combination. Monte Carlo

replicate mif runs were used to maximize the likelihood along the other parameter

and initial condition dimensions. We found the highest likelihood parameter set at

each of the 1850 profile points and profiling was repeated to refine the parameter

estimates. Fig C.3 shows the resulting likelihood profile for the MMWR report rate

during the pre-baby boom and the the immigration term. The MLE from this profile

was used as the MLE for the WPV epidemiological parameters in the US. Therefore,

these MLEs remained fixed from here out in order to do inference on symptomatology

and vaccine efficacy in the US.
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Figure C.3:
US national MMWR data likelihood profile. Profile contains the
pre-baby boom non-infant report rate (ρmmwr) and the immigration rate
(ψ). MLE indicated by pink asterisk.
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C.7.4 US Profiling Paralytic and Non-paralytic Probabilities.

Using the monthly MMWR data from May 1934–December 1954 and the NOVS

data from 1951–1954, we conducted 2-dimensional profiling of the probability of par-

alytic symptoms, pp, and the probability of non-paralytic symptoms, pnp, in infected

unvaccinated individuals. The profile values ranged from 0.001–0.04 for the para-

lytic probability and 0.008–0.15 for the non-paralytic probability. For pairwise profile

combinations, we used the constraint that the the combined probability of paralytic

or non-paralytic polio upon infection was ≥ ρmmwr. This is because ρmmwr was the

combined probability of symptoms and reporting. Therefore, the probability of ei-

ther a paralytic or non-paralytic infection (i.e., the probability of symptoms) must be

greater than or equal to the joint probability of symptoms and subsequent reporting.

Since we fixed all epidemiological parameters based on the profile of ρmmwr and ψ,

we estimated 7 parameters while profiling pp and pnp. The new parameters estimated

were the report rate of symptomatic infections (now infections are being distinguished

by symptoms) in the MMWR data (during the pre-baby boom and baby boom eras),

the associated dispersion parameter, the report rate of paralytic polio in NOVS, the

reporting of non-paralytic polio in NOVS, and the associated dispersion parameters

for NOVS reports. The NOVS parameters had non-zero random walks from January

1951 onward, and zero otherwise. mif2 was initiated from each of the 22451 profile

points for the paralytic probability versus the non-paralytic probability. We used

Monte Carlo replicate runs for each profile point. Each mif2 run had 60 iterations,

8000 particles, a variance factor of 2, hyperbolic cooling, and a cooling fraction of 0.5.

We took the highest likelihood parameter set from each profile point and initiated

the profiles multiple times.

The profiles of the paralytic and non-paralytic probability were fairly flat across

a large region of parameter space. We discovered that this was due to a tradeoff

between the probability of symptoms and the probability of reporting to MMWR and
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NOVS. The combined probability of symptoms and reporting was well identified (see

Fig C.4). This tradeoff results in a “ridge” in the likelihood surface (see Fig C.5) along

6 dimensions of parameter space (i.e., paralytic probability, non-paralytic probability,

pre-baby boom reporting to the MMWR, the increase in MMWR reporting in the

baby boom, reporting of paralytic cases to NOVS, and reporting of non-paralytic

polio to NOVS). In order to deal with this tradeoff, we assumed that the report rate

of paralytic polio was 60–80% as taken from the literature [1], and we then profiled

intensely within the region of parameter space that fit this assumption. We specifically

profiled along the likelihood ridges because we knew they were areas of high likelihood.

We then drew the MLE from this final profile. The profile shown in Fig C.6 is the

combination of the top parameter sets from all of the profiles done on the paralytic

and non-paralytic probability. The densely profiled area in the forward left corner is

the profile region for which the report rate for paralytic polio was 60–80%.
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Figure C.4: Symptoms and Subsequent Reporting. In the US pre-vaccine
era, the combined probability of symptoms and subsequent reporting to
MMWR and NOVS were well identified, but the individual probabilities
of symptoms versus reporting traded off with one another. Shown here
are quasi-profiles.
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Figure C.5: In the US pre-vaccine era, the combined probability of symptoms and re-
porting to MMWR and NOVS were well identified. However, there are 6
parameters that combined to results in the 4 well-identified symptomatic
and reporting probabilities in the previous figure. The tradeoffs between
these parameters result in a “ridge” along 6 dimensions of the likelihood
surface. Components of this ridge are shown here. The parameters sets
from the quasi-profiles in the previous figure are plotted and fall along
the ridges.
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Figure C.6: Multi-phase profiles of the unvaccinated paralytic probability and non-
paralytic probability. The blue asterisk indicates the MLE, the yellow
dots indicate parameter sets within 2 log-likelihood units of the MLE,
demonstrating that a broad range of parameter combinations could ex-
plain these dynamics due to the tradeoffs between the probability of
symptoms and the probability of reporting. Therefore, we did high res-
olution profiling in the region with the reporting of paralytic polio to
MMWR between 60–80% and the MLE was drawn from there. The high
resolution profiling can be seen in the forward left corner of the profile.
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C.7.5 USSR Pre-Vaccine Era Statistical Inference

Using MLEs from each US state provided in [2], we initialized mif2 for the pre-

vaccine era in each of the USSR regions. The data from Estonia and Lithuania from

January 1955–December 1958 were used to estimate the epidemiological parameters.

The data from the RSFSR and Ukraine did not begin until January 1957. Due to

the similarity in the epidemiological dynamics in the US and the USSR, and the

limited size of the USSR data sets, we were quickly able to identify parameter sets

that captured the USSR pre-vaccine dynamics. We did not do any pre-vaccine era

profiling in the USSR or convergence diagnostics. However, no tradeoffs in the pre-

vaccine parameters were observed when fitting this model to US states. Therefore,

we assumed our pre-vaccine MLEs for the USSR are in the neighborhood of the true

MLEs. We decided to wait to do pre-vaccine profiling in USSR until we have extended

our pre-vaccine data for the USSR.

C.8 Vaccine Efficacy Statistical Inference

C.8.1 US Vaccine Phase 1: Sobol Design

Importantly, all epidemiological parameters (i.e., transmission parameters, MMWR

and NOVS report rates, symptomatic probabilities, noise terms, etc.) were fixed based

on the pre-vaccine era MLEs. In order to get a broad overview of the shape of the

likelihood surface under various parameter combinations of vaccine efficacy, a Sobol

design with > 4 million parameter sets was generated. The Sobol design included

both IPV and OPV efficacy parameters. The likelihood of the full vaccine era model

was estimated for each parameter set. The full likelihood was a joint likelihood based

on the MMWR, NOVS, PSU, IPV coverage, and OPV coverage data. The parameter

sets within 100 log likelihood units of the top parameter set, were carried forward into

Phase 2 (there were 2914 parameter sets carried forward). The parameters used in
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the Sobol design were: the IPV and OPV parameters measuring efficacy and effects

on pathology, ζ1−7, as well as the two reporting (i.e., paralytic and non-paralytic) and

two dispersion parameters for PSU. We used rough estimates of the vaccine uptake

rates for calculating the likelihoods in the Sobol design.

C.8.2 US Vaccine Phase 2: MIF

We were unable to reliably run mif using the full vaccine era likelihood model

because the joint likelihood calculation for all 12 time series resulted in numerics below

that computationally possible. Therefore we ran what we will refer to as a mif cascade,

which involved using the same process model but fitting non-overlapping parameters

to various data set combinations sequentially. We (1) improved the fit of the vaccine

uptake rates using the vaccine coverage data, (2) fit the IPV efficacy parameters

using the MMWR and NOVS data, and (3) fit the report rate and the reporting

standard deviation of the paralytic cases to PSU using the paralytic cases in the PSU

data. We continued to hit the limits of floating point number representation when

incorporating the PSU data. When hitting the floating point number representation

limit, the likelihood returned was the tolerance level, 1e-18, in C.54. Without a way to

calculate the PSU likelihoods reliably, we decided not to particle filter using the PSU

data. Therefore, we did all subsequent fitting using the MMWR and NOVS data and

we focused our attention on the estimation of IPV efficacy in the US. By exploring the

results from our Sobol design and running mif to estimate IPV efficacy parameters,

we identified a tradeoff between estimates of IPV’s reduction in susceptibility to

infection, ζ3, and IPV’s reduction in infectiousness, ζ1. Fig C.7 shows high likelihood

parameter sets resulting from the Sobol design and the tradeoff between susceptibility

and infectiousness. This tradeoff persisted after running mif using the MMWR and

NOVS data, as shown in the main text.
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Figure C.7: Tradeoff observed between IPV efficacy parameters. The relative
infectiousness of IPV-vaccinated individuals, relative to unvaccinated in-
dividuals, and the relative susceptibility to infection of IPV individuals,
as compared to fully susceptible individuals.

C.8.3 US Vaccine Phase 3: Profiling IPV Efficacy

Due to the tradeoff between IPV efficacy parameters, we decided to fix the suscep-

tibility to infection in IPV individuals. We assumed that IPV individuals are equally

susceptible to infection as unvaccinated individuals, an assumption supported by clin-

ical data [7]. Under this assumption, we profiled the reduction in infectiousness in

IPV individuals, ζ1. The profile results are shown in the main text. We profiled ζ1

in the range [0.1,0.7] by units of 0.01. For all parameters with the exception of ζ1,

we used the highest likelihood parameter combination from Phase 2 at each profile

point, as well as the highest likelihood parameter sets from Phase 2 that fell within

each profile slice, to initialize the profiling. Each profile parameter set was run with

25 Monte Carlo replicates, each with 60 mif2 iterations, and 2000 particles.
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C.8.4 USSR Vaccine Efficacy Statistical Inference

We fit parameters relating OPV efficacy and the reduction in the paralytic prob-

ability to the data from the RSFSR. We did 2-dimensional profiling of the reduction

in infectiousness, ζ2, and the reduction in the paralytic probability, ζ7. Both ζ2 and

ζ7 were profiled in the range of [0.001,0.999] in a 50x50 profile. All epidemiological

and reporting parameters were fixed at the MLEs estimated using the pre-vaccine

data. The parameters maximized during profiling were the OPV uptake rate and

the dispersion parameter for reporting the OPV coverage. We also did 2-dimensional

profiling of the reduction in susceptibility, ζ4, and the reduction in the paralytic prob-

ability, ζ7. ζ4 was profiled in the range of [0.001,0.5] and ζ7 was profiled in the range

of [0.001,0.999] in a 50x50 profile. All epidemiological and reporting parameters were

fixed at the MLEs estimated using the pre-vaccine data. Once again, the parameters

maximized during profiling were the OPV uptake rate and the dispersion parame-

ter for reporting the OPV coverage. We used the MLE OPV uptake rate from the

2-dimensional profiles and constructed a 3-dimensional 50x50x50 profile of reduction

in infectiousness, reduction in susceptibility, and reduction in paralytic probability.

Particle filters were run to calculate the likelihood at each of the 125000 profile points

and the MLE was taken from the 3-dimensional profile. For independent validation of

the OPV parameters, we then took the MLEs of ζ2, ζ4, and ζ7 from the RSFSR and

used them to predict the vaccine era cases in Ukraine, Lithuania, and Estonia. Be-

fore doing independent validation, we fit the OPV uptake rate and the OPV coverage

dispersion parameter for Ukraine, Lithuania, and Estonia.
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