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Enteric Glia Express Proteolipid Protein 1
and Are a Transcriptionally Unique

Population of Glia in the Mammalian
Nervous System

Meenakshi Rao,1,2,3 Bradlee D. Nelms,2 Lauren Dong,3 Viviana Salinas-Rios,1

Michael Rutlin,4 Michael D. Gershon,5 and Gabriel Corfas1,6,7

In the enteric nervous system (ENS), glia outnumber neurons by 4-fold and form an extensive network throughout the gastro-
intestinal tract. Growing evidence for the essential role of enteric glia in bowel function makes it imperative to understand
better their molecular marker expression and how they relate to glia in the rest of the nervous system. We analyzed expres-
sion of markers of astrocytes and oligodendrocytes in the ENS and found, unexpectedly, that proteolipid protein 1 (PLP1) is
specifically expressed by glia in adult mouse intestine. PLP1 and S100b are the markers most widely expressed by enteric
glia, while glial fibrillary acidic protein expression is more restricted. Marker expression in addition to cellular location and
morphology distinguishes a specific subpopulation of intramuscular enteric glia, suggesting that a combinatorial code of
molecular markers can be used to identify distinct subtypes. To assess the similarity between enteric and extraenteric glia, we
performed RNA sequencing analysis on PLP1-expressing cells in the mouse intestine and compared their gene expression
pattern to that of other types of glia. This analysis shows that enteric glia are transcriptionally unique and distinct from other
cell types in the nervous system. Enteric glia express many genes characteristic of the myelinating glia, Schwann cells and oli-
godendrocytes, although there is no evidence of myelination in the murine ENS.
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Introduction

Glial cells play critical roles in the development, function,

and plasticity of the nervous system. The diverse roles of

glia are matched by a diversity of glial subtypes with distinct

locations, functions, morphologies, and molecular markers.

The enteric nervous system (ENS) is a major autonomic divi-

sion that can independently regulate gastrointestinal functions

including motility, secretion, mucosal maintenance, and

immunity (Furness, 2006). It is organized into two intercon-

nected networks of ganglia, the myenteric and submucosal

plexuses, where enteric neuronal perikarya are located. Enteric

glia outnumber neurons by several fold, and are more widely

distributed throughout the intestine (Gulbransen and Sharkey,

2012). Enteric glia are known to be essential for normal gas-

trointestinal function (Aube et al., 2006; Bush et al., 1998;

Savidge et al., 2007); yet, the degree of their similarity to glia

in the rest of the nervous system remains unclear.

Enteric glia were initially considered to be the Schwann

cells of the gut because they too are neural crest derivatives.

As electron microscopy studies began to reveal differences

between Schwann cells in peripheral nerves and glia in the

bowel, this classification began to change. Gabella described
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the ultrastructure of glia in the myenteric plexus as a small,

central perikaryon from which numerous processes extended,

and was the first to suggest that this stellate morphology as

well as their relationship to neurons was more similar to that

of astrocytes than to Schwann cells (Gabella, 1971). Jessen

and Mirsky later showed that the astrocytic marker, glial

fibrillary acidic protein (GFAP), was expressed within enteric

ganglia (1980), fueling the idea, which has long prevailed,

that glia in the ENS are analogous to CNS astrocytes (Ger-

shon and Rothman, 1991; Jessen and Mirsky, 2005). To date,

GFAP and S100b remain the most commonly used markers

to identify enteric glia. More recent work has added the tran-

scription factor, Sox10, as another marker of glia in the

mouse intestine (Hoff et al., 2008; Laranjeira et al., 2011;

Young et al., 2003).

Although molecular markers have often been used inter-

changeably, growing evidence of morphologic differences

among enteric glia suggests underlying diversity. Hanani and

Reichenbach (1994) first identified distinct morphological

types of glia within the guinea pig myenteric plexus and pro-

posed a classification scheme based on their findings. Gul-

bransen and Sharkey (2012) later suggested expanding this

morphologic classification, or alternatively, grouping enteric

glia based on their location along the serosa-to-lumen axis.

Morphological analysis of Sox10-expressing cells using the

mosaic analysis with double markers system has since con-

firmed the existence of at least 4 distinct glial morphologies

within the muscular layers of the mouse intestine (Boesmans

et al., 2015). This work also showed that GFAP, Sox10, and

S100b are differentially expressed by cells in the myenteric

plexus (Boesmans et al., 2015). Differences in dye filling, cal-

cium transients and receptor expression, even among glia in a

single myenteric ganglion, further hint that enteric glia are

functionally diverse (Boesmans et al., 2015; Maudlej and

Hanani, 1992; Nasser et al., 2006b). With a growing number

of studies implicating enteric glia in digestive and neurologic

disorders (Clairembault et al., 2014; Neunlist et al., 2013), it

is becoming essential to understand better the normal distri-

bution and diversity of glial cells in the ENS.

To date, much of the work investigating enteric glial

diversity has relied on preparations of longitudinal muscle

with adherent myenteric plexus (LMMP), in which the

mucosa, submucosa, and circular muscle are discarded (Boes-

mans et al., 2015; Hanani and Reichenbach, 1994). LMMP

preparations thus exclude many enteric glia, including muco-

sal glia, which populate one of the most unique microenvir-

onments in the nervous system. To ascertain more fully

enteric glial distribution, diversity, and similarity to CNS and

PNS glial subtypes, we analyzed expression of glial markers

throughout the length and breadth of the mouse intestine

and identified a new molecular marker of enteric glia, PLP1.

We then isolated PLP1-expressing cells from the small and

large intestine, performed transcriptional profiling and com-

pared enteric glial gene expression to that of extraintestinal

glia. Our data show that enteric glia are a distinct, heteroge-

neous, and unique class of mammalian glial cells. This work

provides new insights into enteric glia and identifies novel

molecular tools to manipulate these cells in vivo, facilitating

further analysis of glial function in the bowel.

Methods

Mouse Lines
PLP1-eGFP hemizygous mice (Mallon et al., 2002), PLPCreERT

mice (Doerflinger et al., 2003) and Rosa26-lox-stop-lox-TdTomato

(LSLTdTomato) mice have been previously described (Madisen

et al., 2010). Male and female mice were used in all experiments,

and FVBN mice were utilized for wildtypes. For morphological

studies, mice hemizygous for PLPCreERT and heterozygous for

LSLTdTomato were administered 0.1 lg tamoxifen by oral gavage

and analyzed 7 days later. Mice were handled and housed in accord-

ance with the IACUC guidelines of Boston Children’s Hospital and

Columbia University Medical Center.

Immunocytochemistry
For immunostaining cryosections, intestinal segments were fixed in

4% PFA/PBS at 48C for 2 h, equilibrated in 30% sucrose/PBS

overnight at 48C, and embedded in OCT; 14 mm sections were

obtained, incubated for 1 h in blocking solution [PBS 1 0.1%

Triton 1 1% heat-inactivated goat serum (HINGS)] and then over-

night at 48C in primary antibody diluted in blocking solution.

Slides were washed 3 times with PBS, incubated for 1 h at room

temperature (RT) in secondary antibody diluted 1:500, washed 3

times with PBS, and then mounted in Vectashield containing

DAPI (Vector Labs H-1200). For whole mount immunostaining,

intestinal segments were dissected, trimmed into 1.5 cm cylinders,

opened along the mesenteric border, pinned flat onto Sylgard

plates, and fixed in 4% PFA/PBS for 75 min at 48C. Samples were

rinsed twice in PBS, and processed in a modified version of the

protocol described by Li et al. (2011). Samples were unpinned,

washed 6 3 20 min with PBST (PBS 1 0.5% Triton), incubated in

primary antibody diluted in blocking solution (PBST 1 20%

DMSO 1 5% HINGS) at RT for 48–72 h, washed 6 3 20 min

with PBST, incubated in secondary antibody at RT for 24 h,

washed 6 3 20 min with PBST, taken through a graded methanol

series, equilibrated with 1:1 methanol: BABB solution (BABB 5 1

part benzyl alcohol to 2 parts benzyl benzoate) for 2 h and then incu-

bated overnight in BABB for optical clearing. PLP1-eGFP signal in

Figs. 1, 2, and 4 represents endogenous GFP fluorescence. Primary

antibodies used: Rat anti-PLP1 1:500 (gift from W. Macklin), Rabbit

anti-S100b 1:500 (DAKO Z0311), Rabbit anti-GFAP 1:1000 (Sigma

G9269), Chicken anti-GFAP 1:1000 (Millipore AB5541), Goat anti-

Sox10 1:50 (Santa Cruz sc-17342), Chicken anti-GFP 1:1000 (Aves

GFP-1020), Rabbit anti-GFP 1:1000 (Invitrogen A11122), and Rab-

bit anti-DsRed 1:500 (Clontech 632496). Secondary antibodies used
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were Alexa-Fluor 594, 568, or 488 conjugates generated in either

Goat or Donkey (Invitrogen).

Imaging and Quantification
Single planar images of cryosections and whole mounts were

obtained on either LSM710 or Nikon A1R confocal microscopes for

all figures except Supporting Information Figures S1 and S2 (voxel

size 0.31–0.50 3 0.31–0.50 3 1 mm3, resolution 2–3 pixels/mm).

Images in Supporting Information Figures S1 and S2 represent maxi-

mum intensity projections of 16 mm stacks (voxel size 0.31 3 0.31 3

2 mm3, resolution 3.2 pixels/mm). Decomposition into individual

channels was done using ImageJ software (Schneider et al., 2012).

Quantification of Plp11, S100b1, and GFAP1 cells in cryosections

was performed using CellProfiler (Carpenter et al., 2006) followed by

manual analysis. Images of 10 fields per intestinal segment (duode-

num, ileum, and colon) were obtained from each of 3 PLP1-eGFP

FIGURE 1: PLP1 is expressed in the mouse intestine and colocalizes with eGFP expressed under the control of the PLP1 promoter. (A,
D) Immunostaining for PLP1 protein in intestinal cross-sections from PLP1-eGFP transgenic mouse at P28. B, E: eGFP fluorescence with
DAPI nuclear stain in blue. C, F: Merged images. Boxed areas are displayed at higher magnification below respective images. Scale bar
represents 50 lm (panels A–F) or 20 lm (panels A’–F’).
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mice immunostained for S100b or GFAP (minimum of 1200 cells

analyzed per each marker in each intestinal segment). All thresholds

were calculated using the Otsu Global method with two-class thresh-

olding, using intensity to distinguish objects with the following crite-

ria: DAPI1 nuclei (threshold correction factor 4, diameter 6–40 pixel

units), S100b1 cells (threshold correction factor 10, diameter 14–100

FIGURE 2: PLP1 and S100b are coexpressed in the adult mouse intestine. A, D, G: eGFP fluorescence in PLP1-eGFP transgenic mouse
intestine at P56, with DAPI nuclear stain in blue. B, E, H: S100b immunostaining. C, F, I: Merged images. Boxed areas displayed at
higher magnification below respective images show that most PLP1-expressing glia coexpress S100b, but there are rare GFP1 cells that
are S100b2 (*). Scale bar represents 50 lm (panels A–I) or 14 lm (panels G’–I’).
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pixel units), Plp11 cells (threshold correction factor 7, diameter 14–

100 pixel units), and GFAP1 cells (threshold correction factor 14,

diameter 14–100 pixel units). For each image, the myenteric ganglia,

the muscular layer (longitudinal and circular muscle), and nonmuscu-

lar layers were then manually outlined using nuclear staining for refer-

ence, and the CellProfiler-identified cells were further screened to

eliminate those outside the tissue area (i.e., in intestinal lumen) or

without an associated cell nucleus. The number of cells that were

Plp11/GFAP1, Plp11/S100b1, only Plp11, only S100b1 and only

GFAP1 in each layer were then quantified, and the percentages of

cells in each category were calculated per animal. Percentages for

S100b and GFAP were then compared for each intestinal segment by

unpaired t-test. Sox10-PLP1 colocalization was quantified using the

ImageJ Cell Counter macro to analyze 300 3 300 mm2 regions of

interest in 6 images per intestinal segment (n 5 4 animals).

Isolation of Enteric Glia and RNA Sequencing
Four centimeter segments of ileum and colon were dissected from

PLP1-eGFP mice between P20 and P27, cut into 1 mm fragments,

and then incubated in digestion medium (13 HEPES, Collagenase

A 1 mg/mL, Dispase II 2.9 mg/ml) for 1 h at 378C. After tritura-

tion, samples were spun down at 600g for 8 min, and incubated in

0.25% Trypsin-EDTA at 378C for 5 min. FBS was added, cells were

spun down at 600g for 8 min, resuspended in HBSS, triturated with

a series of flame polished pipets, and then filtered through a 70 lm

cell strainer. Cells were spun down again and resuspended in HBSS

with propidium iodide (1 lg/ml). FACS was performed on a BD

Aria Flow Sorter and cells were collected in Trizol. Gates used for

collection are illustrated on representative FACS plots in Supporting

Information Figure S2. Cells were homogenized in Trizol, lysates

from three animals were pooled per each of four samples (Ileum

GFP1 and 2, Colon GFP1 and 2), and then total RNA was puri-

fied using the Qiagen RNEasy Micro kit. Bioanalyzer PicoChip mea-

surement of RNA quality showed RIN> 8.0. Total RNA (10 ng)

was then reverse transcribed for library construction, using the Total

RNA sequencing analysis (RNA-Seq) IntegenX-Low Input kit. One

microgram of DNA from each sample was sheared to generate the

library and then sequenced by Illumina HiSeq 2000 to obtain

100bp paired-end reads.

Mapping and Analysis of RNA Sequencing Data
Approximately 80–100 million 100bp reads were obtained for each

of the 4 samples, and mapped to the mouse genome using Bowtie

and Tophat (Trapnell et al., 2012). The mitochondrial ribosome and

nuclear ribosome accounted for 52–79% of all reads. Unmapped

reads represented 4–9%, and were composed primarily of long

polyA and polyT stretches that likely correspond to 3’ mRNA. Of

the remaining reads, �60% uniquely mapped within annotated

genes. Assuming an mRNA abundance of 5 3 105 total mRNAs

per cell (Galau et al., 1977), this sequencing depth corresponds to

an average of 10–20 mapped fragments for an mRNA expressed at 1

copy per cell. To prevent bias due to mitochondrial overrepresenta-

tion, we followed a two-stage mapping strategy. Reads were first

mapped to a “contamination library” containing the mitochondrial

chromosome and nuclear ribosome sequences using Bowtie2 (Lang-

mead and Salzberg, 2012). If either read in a pair mapped to the

contamination library, both reads were excluded from further analy-

sis. This “trimmed” library (containing 18–40 million reads, 20–

50% of the total) was then aligned to the M. musculus genome

(UCSC version mm10) using TopHat2 (Trapnell et al., 2012). Reads

were aligned to annotated transcripts before mapping to the remain-

der of the genome (option -G). Mapped reads were next assembled

into transcripts with CuffLinks (Trapnell et al., 2012) using the

annotated mouse transcriptome to guide assembly. Transcript abun-

dance estimates were corrected using the upper-quartile normaliza-

tion, fragment bias correction, and multi-read correction options in

CuffLinks. Finally, differential expression was tested with Cuffdiff

(Trapnell et al. 2012), treating GFP1 and GFP2 samples from ileum

and colon as biological replicates. Loci with <10 alignments were

excluded from hypothesis testing.

Quantitative PCR (qPCR)
For qPCR validation, RNA was obtained from PLP1-eGFP animals

as described above (each set generated from FACS-sorted cells from

1 animal for n 5 3 biological replicates), reverse transcribed with

iScript (BioRad), and then used as template for qPCR with SYBR

Green Select (Applied Biosystems) on a 7500 Fast Real-Time PCR

System (Applied Biosystems). The standard 7500 Fast Protocol fol-

lowed by the thermal denaturing step was used. All reactions were

performed in duplicate with GAPDH run in parallel. Data were ana-

lyzed with 7500 Fast System SDS software version 2.0.6 (Applied

Biosystems) and the thresholds of each gene were standardized

between experiments. All primers utilized had efficiency� 97% on

positive control cDNA and resulting PCR products were confirmed

by sequencing. The effect of tissues (colon vs. ileum) was not signifi-

cant for the five genes tested (P 5 0.7, two way ANOVA excluding

samples where no signal was detected), and therefore results were

pooled for comparison of GFP1 to GFP2. P values for differences

in expression between GFP1 and GFP2 samples were estimated

with the Mann-Whitney U test, and corrected for multiple hypothe-

ses using Holm’s method.

Global Comparisons of Gene Expression
To compare gene expression between enteric glia and other cell types

(Supp. Info. Table S1), every gene was first ranked according to its

differential expression in each cell type. For cell types in Cahoy et al.

(2008) and Zhang et al. (2014), differential expression was calcu-

lated according to the methods used in these articles. For Schwann

cells, we used a large meta-analysis of mouse microarrays (Zheng-

Bradley et al., 2010) that contained data from purified Schwann cells

(Buchstaller et al., 2004) and data from many other studies, to serve

as negative controls. The expression of each gene in the Buchstaller

P0 Schwann cell dataset was compared to the same gene’s expression

in every other sample, using a one-sided Mann-Whitney U test, and

genes were then ranked according to their p value. Cell type

enriched genes were also predicted using the “gene-driven” cell type

differential expression algorithm, CellMapper (Nelms et al., in

review). CellMapper searches for genes that have a similar expression

profile to an established set of cell type-specific markers, ranking

every gene based on its tendency to be expressed at a similar level to
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the marker genes in a given dataset. For CellMapper searches, micro-

array data was gathered from two large meta-analyses of human gene

expression (Engreitz et al., 2010; Lukk et al., 2010). These meta-

analyses were divided into “intestine” and “nonintestine” samples

based on the presence or absence of the terms “colon,” “intestin*,”

“gut,” “enteric,” “mucosa,” and “bowel” within the sample titles or

descriptions using the R package GEOmetadb (Zhu et al., 2008).

Enteric glial genes were predicted by searching the “intestine” sample

subset for genes with similar expression to PLP1. Schwann cell genes

were predicted by searching the “nonintestine” sample subset for

genes with similar expression to myelin protein zero (MPZ) and P0.

Finally, genes for CNS cell types were predicted by searching the

Allen Brain Atlas human microarray dataset (Hawrylycz et al., 2012)

for genes with similar expression to L1CAM (Neurons), ALDH1L1

(Astrocytes), or MOG (Oligodendrocytes). After ranking genes based

on their differential expression in each cell type, the rank lists were

compared. A similarity score (Yang et al., 2006) was calculated using

the R package OrderedList (Lottaz et al., 2006). This score assesses

how often the same genes appear at the top of two ordered genes

lists, assigning greater weight to genes ranked at the top of both lists

than genes in the middle. A free parameter, alpha, controls how

quickly the weights fall off with gene rank; alpha was set to 0.01 for

all calculations (results were similar for alpha between 0.005 and

0.1). To assess the variance explained by cell type combination, each

similarity score was assigned to a group depending on the set of cell

types being compared. Then the within-group variance and between

group variance were calculated (g2), and the statistical significance of

the variance explained was estimated using a permutation test in

which the cell type assigned to each individual rank list was

scrambled and then the variance explained was recalculated. Similar-

ity of enteric glia to CNS cell types was also examined by looking

for enrichment of cell type markers from Cahoy et al. (2008), using

the top 50 ranked genes for astrocytes, neurons, and oligodendro-

cytes from Cahoy et al. (2008) as “established markers” for these cell

types. Then the position of these markers within the ranked lists for

enteric glia were plotted graphically, or an unweighted (P 5 0) gene

set enrichment analysis (GSEA) enrichment statistic was calculated

(Subramanian et al., 2005).

Results

PLP1 Is Widely Expressed by Enteric Glia
While surveying expression of glial markers in the GI tract,

we unexpectedly discovered that PLP1 is widely expressed in

the adult mouse small and large intestine (Fig. 1A,D). To

determine the identity of PLP1-expressing cells, we examined

the co-localization of PLP1 with established markers of

enteric glia and other intestinal cell types in tissues from a

PLP1-eGFP transgenic mouse line (Mallon et al., 2002). In

this line, PLP1-expressing cells in the CNS are marked by

expression of green fluorescent protein (GFP) (Mallon et al.,

2002). We found that GFP expression mirrored PLP1 immu-

noreactivity in the intestine of PLP1-eGFP mice (Fig. 1B,E),

and co-localized with S100b throughout the bowel (Fig. 2).

PLP1 did not colocalize with the neuronal marker, ANNA-1,

the smooth muscle marker, alpha smooth muscle actin, or the

pericyte marker NG2 (data not shown), suggesting that

enteric PLP1 expression is limited to glia.

To assess the extent of overlap in expression between

PLP1 and known enteric glial markers, we immunostained

S100b and GFAP in serial sections of proximal small intes-

tine (duodenum), distal small intestine (ileum), and large

intestine (colon) from adult PLP1-eGFP animals. S100b and

PLP1 were largely coexpressed throughout the intestine (Fig.

2). S100b was expressed by 84.5 6 2.7% of GFP1 cells in

the duodenum, 83 6 5.2% in the ileum, and 76 6 2.4% in

the colon (mean 6 S.E.M.; Fig. 3). In contrast, GFAP coex-

pression with PLP1 was much more restricted (35-54%; Figs.

3 and 4). GFP1/GFAP2 cells could readily be identified

throughout the intestine, and were most numerous in the

colon (Fig. 4). In the colon, where the largest difference was

observed, 65% of PLP1-expressing cells did not express

GFAP, highlighting the observation that GFAP is not a

marker for all enteric glia (Boesmans et al., 2015; Jessen and

Mirsky, 1983).

The ENS is organized into two sets of ganglia: myen-

teric ganglia, located in between the longitudinal and circular

muscle layers, and a smaller set of submucosal ganglia located

closer to the luminal epithelium. Enteric neuronal cell bodies

are restricted to these ganglia, while enteric glia are not.

Given the widespread distribution of glia within the laminar

organization of the bowel, one proposed classification of

enteric glia is based on their location along the radial (serosa-

to-lumen) axis (Gulbransen and Sharkey, 2012). To determine

whether marker expression varies based on glial position along

this axis, we quantified expression of PLP1 and GFAP based

on segregation of glia into 2 locations: myenteric (glia within

myenteric ganglia and extraganglionic glia dispersed in the

FIGURE 3: S100b is expressed by the majority of PLP1-
expressing cells while GFAP expression is more limited. Serial
intestinal cross-sections from PLP1-eGFP mice at P56 were
immunostained for either S100b or GFAP. The number of cells
expressing eGFP and/or either S100b or GFAP was then counted
from 10 cross-sections per intestinal segment per animal (n 5 3
mice; mean 6 s.e.m; P values obtained by unpaired t-test).
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muscular layers), or extra-myenteric (submucosal and mucosal

glia). We elected to group submucosal and mucosal glia

because these two subtypes could not be reliably distinguished

in our automated quantitation approach. Patterns of marker

expression were similar in myenteric glia from proximal to

distal intestine (Fig. 5). Extra-myenteric glia, in contrast,

exhibited a larger fraction of PLP11/GFAP2 cells as well as

greater differences in marker expression from one intestinal

FIGURE 4: GFAP is expressed in a subset of PLP1-expressing cells. A, D, G: eGFP fluorescence in the PLP1-eGFP transgenic mouse at
P56, with DAPI nuclear stain in blue. B, E, H: GFAP immunostaining. C, F, I: Merged images. Boxed areas displayed at higher magnifica-
tion below respective images show that many extraganglionic PLP1-expressing glia in the circular muscle exhibit low (*) or no detectable
(arrowhead) GFAP immunoreactivity. Scale bar represents 50 lm (panels A–I) or 14 lm (panels G’–I’).
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segment to another, consistent with the markedly different lumi-

nal and epithelial environments in the various parts of the intes-

tine (Fig. 5). Mucosal glia within the lamina propria of villi, for

example, were typically PLP11/GFAP1 in the duodenum but

variably expressed GFAP in the ileum (Fig. 4, Supp. Info. Fig.

S1). Many colonic mucosal glia were also GFAP- (Supp. Info.

Fig. S2). To determine if intraganglionic glia exhibit different

marker expression from extraganglionic glia, we focused on

myenteric glia, where we could easily assess the localization of

cells. Intraganglionic myenteric glia exhibited similar patterns of

marker expression throughout the intestine, with the majority

expressing both PLP1 and GFAP (Fig. 5). In contrast, extragan-

glionic intramuscular glia were overwhelmingly GFAP negative

in all 3 intestinal locations examined (Fig. 5). These observa-

tions suggest that glial expression of molecular markers varies

along both the proximal-distal and radial axes of the intestine,

and that a specific subset of enteric glia located in the muscular

layers outside of ganglia expresses PLP1 but not GFAP.

FIGURE 5: PLP1 and GFAP expression vary based on glial position along the proximal-distal and radial axes of the digestive tract. Analy-
sis of PLP1 and GFAP expression in PLP-eGFP mice at P56 shows that “myenteric” glia (those within myenteric ganglia and extragan-
glionic glia distributed within the muscular layers) exhibit similar patterns of marker expression along the length of the intestine with
the majority expressing GFAP; in contrast, >50% of “extramyenteric” glia (mucosal and submucosal glia) express PLP1 but not GFAP.
Segregating myenteric glia into intraganglionic and extraganglionic compartments reveals that the majority of extraganglionic intramus-
cular glia also expresses PLP1 but not GFAP. All cells expressing one or both markers were counted from 10 cross-sections per intestinal
segment from each of 3 PLP1-eGFP mice at P56 (mean 6 s.e.m). Kruskal-Wallis test was used to compare the distribution of medians
across the six groups for each intestinal segment for all enteric glia (P 5 0.025, 0.022, and 0.0097 for duodenum, ileum, and colon,
respectively), and for myenteric glia either within or outside ganglia (p=0.01, 0.04, and 0.0096 for duodenum, ileum and colon, respec-
tively). “Total glia” refers to sum of all cells expressing PLP1 only, GFAP only, or both markers.
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Since GFAP is an intermediate filament protein, we

considered the possibility that PLP11/GFAP2 glia outside of

myenteric ganglia on cross-sections might reflect undetected

colocalization of molecular markers with different subcellular

distributions. We thus used whole mount immunostaining to

compare PLP1, GFAP, S100b, and Sox10 expression in

myenteric intraganglionic and intramuscular glia of the small

and large intestine. S100b expression overlapped with PLP1,

consistent with quantitation of sections (Fig. 6A–C). Simi-

larly, 99.5% of Sox101 myenteric and intramuscular glia in

FIGURE 6: Extraganglionic intramuscular glia with Type IV morphology express PLP1 and S100b, but not GFAP. A–C: S100b immuno-
staining and PLP1-eGFP fluorescence in mouse colon at P56 shows high degree of S100b and PLP1 colocalization in intramuscular and
intraganglionic myenteric glia. D–F: GFAP immunostaining and PLP1-eGFP fluorescence in mouse colon at P56 shows that PLP1 and
GFAP expression overlap within myenteric ganglia, but extraganglionic intramuscular glia express PLP1 but not GFAP. G–I: Immunostain-
ing for GFAP in colonic segments from PLPCreERT:: LSLTdTomato mice treated with low dose tamoxifen to induce sparse labeling of
PLP1-expressing cells. Td Tomato expression is detected in enteric glia with Type I (arrowheads), Type II (1), Type III (arrow), and Type
IV (*) morphology. See Supporting Information Figure S3 for higher magnification images of morphological types. Scale bar 5 50 lm. All
images acquired at a single z plane at the level of the myenteric plexus from whole mount immunostained colonic segments.
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the duodenum, ileum and colon expressed PLP1

(P< 0.0001), supporting the idea that PLP1, S100b, and

Sox10 are coexpressed by most enteric glia. Within myenteric

ganglia, most of the PLP11/S100b1 cells were also GFAP1

(Fig. 6D–F). There was variation in levels of GFAP expres-

sion within myenteric ganglia, consistent with previous

reports (Boesmans et al., 2015; Jessen and Mirsky, 1983).

Interestingly, whole mount imaging confirmed that the

majority of PLP11 glia interspersed in the muscular layers

outside of myenteric ganglia did not express GFAP (Fig. 6D–

F). These GFAP-negative extraganglionic glia therefore repre-

sent a distinct subset of enteric glia that can be clearly distin-

guished by molecular marker expression (PLP11, S100b1,

Sox101, and GFAP2) and location (extraganglionic,

intramuscular).

Previous work exploring the morphological heterogene-

ity of enteric glia suggests that there are at least 4 types: star-

shaped “protoplasmic gliocytes” within myenteric ganglia

(Type I), elongated “fibrous gliocytes” within fiber tracts

(Type II), subepithelial glia with long processes (Type III)

and elongated intramuscular gliocytes (Type IV; Gulbransen

and Sharkey, 2012; Hanani and Reichenbach 1994). Recently,

Boesmans et al., (2015) showed that extraganglionic, intra-

muscular glia with 4 primary processes could also be distin-

guished and proposed that they be grouped within Type III.

To investigate whether the PLP1 promoter is active in all

these morphological subtypes, we crossed PLPCreERT trans-

genic mice with Rosa26-lox-stop-lox-TdTomato (LSLTdTo-

mato) animals to generate mice in which enteric glia can be

induced to express the fluorescent reporter TdTomato. By

inducing reporter expression with low doses of tamoxifen, we

sparsely labeled enteric glia for morphological analysis and

found that that TdTomato1 cells exhibited all four reported

morphologies (Fig. 6G–I; Supp. Info. Fig. S3). TdTomato-

expressing glia types I–III within and adjacent to the

myenteric plexus exhibited varying degrees of GFAP co-

localization. In contrast, none of the examined TdTomato1

Type IV intramuscular glia expressed GFAP (Fig. 6G–I).

Taken together, our data show that PLP1 is among the most

widely expressed markers of enteric glia and that genetic tools

employing the PLP1 promoter to isolate enteric glia can be

used to gain a better understanding of these cells.

Transcriptional Profiling of Enteric Glia
Enteric glia are neural crest-derived; however, the nature of

their relationship with enteric neurons as well as their loca-

tion in an environment filled with an abundance of cell types,

such as fibrocytes, macrophages, smooth muscle, lymphocytes,

enterocytes, and enteroendocrine cells makes them unique

among glia in the mammalian PNS and CNS (Bohorquez

et al., 2014; Liu et al., 2013). To gain insight into the func-

tions of glia in the gastrointestinal tract, we determined the

transcriptional profile of PLP11 cells by RNA-Seq. We

focused on acutely isolated GFP1 glial cells from ileum and

colon of PLP1-eGFP mice between the ages of P21-P28.

Since the gastrointestinal epithelium undergoes major changes

around the time of weaning (Henning, 1981), we reasoned

that enteric glia at this age might upregulate genes that are

important for their functions in the mature ENS. Ileum and

colon were chosen because they are physically proximate seg-

ments of the GI tract with different functions, microbiota,

and epithelial surfaces. A protocol was developed to make sin-

gle cell suspensions from segments of mouse intestine and

optimized to achieve at least 75% cell survival by trypan blue

exclusion. GFP1 enteric glial cells were then isolated by Fluo-

rescence Activated Cell Sorting (FACS; Supp. Info. Fig. 4),

and represented 0.8% of live cells in the ileum and 2% of

live cells in the colon. RT-PCR revealed that S100b expres-

sion was limited to GFP1 cells, suggesting that enteric glial

cells were successfully depleted from the GFP2 sample (Fig.

7A). In contrast, villin1, a gene uniquely expressed by epithe-

lial cells in the intestine (el Marjou et al., 2004), was detected

in both samples (Fig. 7A). Since this suggested that epithelial

cells were not completely eliminated from the GFP1 prepara-

tion, we analyzed gene expression in both GFP1 and GFP2

cells to identify transcripts enriched in GFP1 enteric glia.

Total RNA obtained from GFP1 and GFP2 cells from ileum

and colon of PLP1-eGFP animals was sequenced, and differ-

ential expression of transcripts was assessed. GFP1 samples

from colon and ileum were treated as biological replicates

and compared with GFP2 samples, which represents a con-

servative strategy that should highlight genes selectively

expressed in enteric glia across the intestine.

To validate our RNA-Seq results, we checked the meas-

ured expression of established marker genes for several intesti-

nal cell types. The enteric glial genes S100b, Gfap, Plp1, and

Sox10 were strongly enriched in GFP1 samples, while

markers of epithelial cells, smooth muscle, and endothelia

were all depleted (Fig. 7B). Despite the suspected presence of

some epithelial cells in our GFP1 samples, our comparative

analysis strategy successfully differentiated glial genes from

epithelial genes. A subset of neuronal genes that are not

expressed by enteric glia were somewhat enriched in the

GFP1 sample (Fig. 7B), suggesting that this sample contained

some neurons. Regardless, glial genes were enriched to levels

at least 20-fold higher than that of neuronal genes in the

GFP1 sample; therefore, the presence of some neurons is

unlikely to confound further analysis, which focuses on the

most differentially expressed genes.

We identified 292 differentially expressed genes between

GFP1 and GFP2 samples at a false discovery rate (FDR) cut-

off of 0.1. Table 1 lists the top 25 genes enriched in PLP11
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cells in the intestine, which includes several genes previously

reported to be important for enteric glial development, such

as Sox10 and Foxd3 (Laranjeira et al., 2011; Mundell et al.,

2012). To validate our RNA-Seq results further, we selected

five genes for additional analysis. Enteric glia are known to

express two of these genes, Sox10 and Entpd2 (Braun et al.,

2004; Lavoie et al., 2011), while three genes had not previ-

ously been tested (Gjc3, Sema3E and Kcna1). Quantitative

RT-PCR (qPCR) on three biological replicates of GFP1 and

GFP2 cells showed that 4 of the 5 genes were undetectable

in GFP- cells and enriched in GFP1 cells, validating both

our isolation technique and RNA-Seq results (Fig. 8A,B).

The only one of these five genes detectable in GFP2 cells,

Entpd2, had 27-fold greater expression in GFP1 cells (Fig.

8B). Consistent with this, Entpd2 immunoreactivity was pre-

dominantly found in glial cells in the mouse intestine, but

was also observed in a small population of cells adjacent to

crypts and along the serosa that were not glia (Fig. 8C–E).

Notably, Entpd2 was expressed by many but not all PLP11

glia. Similar to GFAP, Entpd2 was not detected in many

extraganglionic intramuscular glia (Fig. 8C–E). In summary,

these findings suggest that RNA-Seq profiling of enteric

PLP11 cells identified genes expressed by all enteric glia as

well as some expressed only by subsets, and support the use

of this dataset as a validated resource of gene expression in

enteric glia.

Enteric Glia Are Transcriptionally Distinct from
Other Types of Glia
Enteric glia share the same developmental origins as Schwann

cells, but have traditionally been considered to be analogous

to astrocytes based on their morphology and expression of

GFAP. To explore the transcriptional similarity between

enteric glia and other types of glia, we compared our data to

previous studies of gene expression in murine astrocytes, neu-

rons, oligodendrocytes, microglia, and Schwann cells (Supp.

Info. Table S1). In a second complementary approach, we

used an in silico cell type-expression deconvolution algo-

rithm, called CellMapper (Nelms et al., in review), to predict

genes expressed in enteric glia and other neural cell types

using human microarray data. The CellMapper algorithm

employs a “gene-driven” strategy, in which established cell-

type specific markers can be used to query large databases

to identify genes that share a similar expression profile.

In total, these two approaches provide independent gene

expression measurements for each cell type, allowing us to

determine which cell type-similarities are robust across

methods.

There are several technical challenges when comparing

gene expression between studies: different cell isolation proto-

cols, RNA purification methods, and expression technologies,

all leading to “laboratory effects” that can substantially alter

an overall expression profile (Zilliox and Irizarry, 2007). To

overcome these uncertainties, we designed a strategy to distin-

guish true biological differences between cell types while miti-

gating technical variability. First, we compared genes

upregulated in a given cell type (relative expression) rather

than raw expression levels. Second, we assessed similarity of

gene expression between each experiment by calculating a

“similarity score” (Yang et al., 2006; Fig. 9A). This score

emphasizes genes that are most differentially expressed in an

experiment over genes that do not change substantially and

FIGURE 7: RNA from PLP11 cells isolated from postnatal intestine is enriched for enteric glial marker genes. A: RT-PCR of RNA
extracted from FACS-sorted cells used for RNA Seq analysis shows enrichment for S100b mRNA but not Villin1 in the GFP1 fraction. B:
Relative difference in expression of cell-type specific genes in RNA-Seq data from GFP1 versus GFP2 samples. To avoid numerical insta-
bility (dividing by 0) in cases where a gene was very weakly expressed, a pseudocount of 0.01 was added to all measured FPKM prior
to calculating fold enrichment. This will, in general, decrease the estimated fold change, providing a more conservative value.
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contribute to noise. To test this approach, we calculated simi-

larity scores between every pair of studies and estimated how

much of the variability in these scores could be explained by

the combination of cell types being compared (e.g., Neuron-

Neuron, Neuron-Enteric Glia). Cell type combination

explained �80% of the variance in similarity scores

(g2 5 83%, P< 1024 by permutation test), indicating that

the similarity score strategy can highlight true biological dif-

ferences between cell types. Similarity scores between every

combination of samples are visualized as a heatmap in Fig.

9A. This plot shows the consistency across methods aimed at

measuring expression for the same cell type. For example, at a

global level, gene expression in astrocytes is highly similar

whether measured by RNA-Seq, microarray or CellMapper.

Previously known similarities and differences between cell

types are also evident. For instance, oligodendrocytes, astro-

cytes and neurons have very little gene expression similarity

with each other, and consequently similarity scores between

these cell types are very low. Schwann cells show strong simi-

larity with oligodendrocytes, the other myelinating cell type,

but only weak similarity to astrocytes and no similarity to

neurons. Enteric glia display the greatest similarity to

Schwann cells, and then to oligodendrocytes. They also

exhibit some similarity to astrocytes, but it is limited and no

greater than the similarity between Schwann cells and astro-

cytes. Enteric glia share no significant similarity with the

mesoderm-derived microglia, pericytes or endothelia. Of note,

enteric glia exhibit significant similarity scores with neurons,

unlike any of the other types of glia. It is unclear if this simi-

larity is due to neuronal contamination of the enteric glial

data set, or shared expression of some biological pathways.

The consistency of this observation across the RNA-Seq and

CellMapper data supports the possibility of common

pathways.

The global comparisons of transcriptional similarity sug-

gest that enteric glia express many of the same genes as sev-

eral different types of glia. To investigate this suggestion

further, we examined our RNA-Seq dataset for expression of

a defined set of established markers of astrocytes, oligoden-

drocytes, and neurons. We selected the 50 top-ranked marker

genes for each of these cell types from a previous microarray

study (Cahoy et al., 2008), and asked whether these genes

were enriched in enteric glia by GSEA (Subramanian et al.,

2005). To validate this approach, we first assessed the rank of

these markers within RNA-Seq data sets for each of the CNS

cell types (Zhang et al., 2014). As illustrated in Fig. 9B, neu-

ronal genes were enriched only in neurons, astrocytic genes in

astrocytes, and oligodendrocyte genes in oligodendrocytes,

confirming that the marker genes chosen were consistent

across studies and represented a reproducible set of cell type-

specific markers within the CNS.

When we carried out GSEA using these markers in the

enteric glia data set, the results were striking. Markers for all

3 CNS cell types were enriched, with some markers being

strongly expressed in enteric glia (ranking among the top

enriched enteric glial genes), while other markers were unde-

tected (Fig. 9B). This result was the same whether we ana-

lyzed the enteric glial expression profile predicted by

CellMapper or the RNA-Seq data, showing that this finding

was consistent across methods (Fig. 9B). Certain subsets of

TABLE 1: Top 25 Genes Enriched in PLP11 Enteric Glia

Gene GFP2

(FPKM)
GFP1

(FPKM)
Log 2
Fold
Change

FDR

Kcna1 0.60 116.25 7.59 0.0072

Gjc3 0.09 22.56 8.01 0.0118

Gpr37l1 0.16 40.98 8.02 0.0118

Plp1 2.46 479.20 7.61 0.0118

Cdh19 0.34 42.12 6.97 0.0118

Grik3 0.06 27.04 8.79 0.0148

Kcna6 0.20 34.02 7.38 0.0159

Fign 0.14 15.56 6.83 0.0159

Tacr3 0.05 10.98 7.79 0.0200

Nell2 0.17 19.39 6.87 0.0200

Col20a1 0.31 74.31 7.91 0.0200

Sostdc1 1.60 198.28 6.96 0.0200

Slc35f1 0.49 39.29 6.34 0.0207

Foxd3 0.06 22.09 8.51 0.0207

Sema3e 0.20 33.07 7.36 0.0216

Kcna2 0.73 55.70 6.24 0.0284

Col28a1 0.16 13.11 6.39 0.0284

Sox10 0.02 42.14 11.00 0.0362

Ptprz1 0.93 32.43 5.12 0.0474

Wdr86 0.07 30.86 8.69 0.0476

Zfp451 1.91 57.93 4.92 0.0498

Megf10 0.05 4.58 6.64 0.0522

Lrrc4c 0.03 5.95 7.83 0.0553

Gfra2 2.01 56.40 4.81 0.0643

Cadm3 1.47 41.12 4.81 0.0665

Fragments per kilobase of transcript per million mapped reads
(FPKM) for each gene in GFP2 and GFP1 RNA-Seq samples
from PLP1-eGFP mouse intestine. FDR: false discovery rate.
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markers of each CNS cell type were strongly enriched in our

GFP1 sample. For instance, a subset of genes important in

myelinating glia including Sox10, Plp1, Mbp, and Mpz, were

all strongly enriched while others, such as Mog, Mobp, and

Mag were not detected (Supp. Info. Fig. S5). Astrocytic genes

such as Gfap, Entpd2, and Dio2 were all highly enriched in

enteric glia while other widely used markers of astrocytes,

such as Aldh1l1 and the glutamate transporter Slc1a3

(GLAST), were not expressed (Supp. Info. Fig. S5). Taken

together, the GSEA and global analyses of transcriptional sim-

ilarity show that enteric glia are a unique class of glia, with-

out direct analogy to any other type of glial cell examined.

Discussion

Molecular Markers of Enteric Glia
Enteric glia have previously been related to other types of

glia, such as Schwann cells and astrocytes, based on the

expression of single molecular markers or cellular

FIGURE 8: RNA-Seq identifies genes enriched in enteric glia. A, B: Quantitative RT-PCR validation of genes enriched in enteric glia
according to RNA-Seq. A: Representative agarose gel electrophoresis of RT-PCR. B: Bar plots of qPCR data show median 1/2 1.48
times the median absolute deviation of each gene’s expression level relative to Gapdh (n 5 6; * 5 P < 0.05, Mann-Whitney U test). C–E:
Entpd2 immunostaining of colon from PLP1-eGFP mouse at P21. Boxed areas displayed at higher magnification immediately below
respective images show that intraganglionic PLP1-expressing glia in the muscular layer exhibit strong Entpd2 immunoreactivity,
while extraganglionic glia are dim (* indicates a nonglial cell expressing Entpd2). Scale bar represents 50 lm (panels C–E) or 11 lm
(panels C’–E’).
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FIGURE 9: Global comparisons of enteric glial transcriptional profiles to that of other PNS and CNS cell types. A: Heatmap illustrating
global similarity scores between gene expression in glial and nonglial cell types. See Supporting Information Table S1 for source data
for each cell type. FDR < 0.1 annotated on color scale. B: GSEA showing the rank of markers from neurons (N), oligodendrocytes (O),
and astrocytes (A) within the transcriptomes of CNS cell types (top box) versus enteric glia (bottom box).
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morphology. We analyzed the distribution and colocalization

of the most commonly used glial markers along both the lon-

gitudinal and radial axes of the murine intestinal tract, to

investigate the diversity and distribution of glial cells in the

ENS. We found that most enteric glia coexpress S100b,

PLP1, and Sox10, and that these 3 genes represent the most

widely expressed markers for glia in the ENS. In contrast,

only subsets of enteric glia in each intestinal segment express

GFAP. In the colon, for example, GFAP immunoreactivity

was absent from many extraganglionic glia in the muscle

layers, and present at variable levels of intensity even within

myenteric ganglia. Our observations, together with work by

others that focused on GFAP expression in myenteric plexus

(Boesmans et al., 2015; Jessen and Mirsky, 1983), show that

GFAP expression is absent from many enteric glia, and there-

fore does not serve as a universal marker for these cells.

In astrocytes, high GFAP levels are a marker of

“reactivity” and cellular activation (Silver and Miller, 2004).

GFAP expression in enteric glia may be similarly dynamic.

Upon lineage tracing GFAP-expressing cells within myenteric

ganglia, Boesmans et al. (2015) found that 23% of intragan-

glionic myenteric glia that expressed GFAP at one time point

did not express it 7 days later. This observation suggests that

GFAP expression may be dynamic within myenteric ganglia,

and is consistent with the variable intensity of GFAP immu-

noreactivity we detected. Our data show that a specific subset

of glia in the mature ENS, extraganglionic intramuscular glia

with Type IV morphology, is consistently GFAP-negative.

Future lineage tracing studies will be needed to determine

whether these and other GFAP-negative enteric glia, such as

those in the mucosa and submucosa, arise from GFAP-

expressing cells, and if so, when they downregulate GFAP

expression.

Precise characterization of molecular marker expression

and definition of subsets is essential to interpreting the grow-

ing literature on enteric glia. For example, a number of

groups have analyzed enteric glial function by targeted abla-

tion in vivo. These studies have implicated enteric glia in a

variety of epithelial processes in addition to neuronal support

(Aube et al., 2006; Bush et al., 1998; Savidge et al., 2007).

To date, virtually all of these studies targeted GFAP-

expressing cells. In contrast, one study using a nonselective

gliotoxin to ablate enteric glia showed changes in small intes-

tinal motility without epithelial dysfunction (Nasser et al.,

2006a). Our data show that large subsets of enteric glia, such

as extraganglionic, intramuscular enteric glia, do not express

GFAP. The conflicting findings in previous ablation studies

may reflect the underlying heterogeneity of enteric glia, and

suggests that the functional roles of some enteric glial subsets

likely remain undiscovered.

“Myelin Gene” Expression in Nonmyelinating Glia
One observation in our data is that PLP1 is widely expressed

by enteric glia. Taking advantage of this expression, we uti-

lized PLP1-eGFP transgenic mice to isolate PLP1-expressing

cells from the murine intestine and carry out RNA-seq. The

resulting transcriptional profile revealed that enteric glia

express, not only PLP1, but also many other genes that are

important for formation of compact and non-compact mye-

lin, including myelin basic protein (MBP), MPZ, 20,30-cyclic

nucleotide 30 phosphodiesterase and Sox10. Over the past 50

years, numerous ultrastructural studies have closely examined

the relationship between neurons and glia in the rodent ENS

and found no evidence of myelination in the small or large

intestine (Cook and Burnstock, 1976; Gabella, 1971, 1972;

Wilson et al., 1981). It remains unclear, therefore, why

enteric glia express these particular genes. The expression of

myelin genes in mature, nonmyelinating glia is not unprece-

dented in the nervous system. For example, the PLP1 pro-

moter is also active in perisynaptic Schwann cells and a

subset of supporting cells in the inner ear, neither of which

form myelin (Duregotti et al., 2015; Gomez-Casati et al.,

2010; Morris et al., 2006). The role that these molecules play

outside the context of myelin, however, remains unclear.

We found that not only is the PLP1 promoter transcrip-

tionally active in enteric glia, but that PLP1 protein is widely

detectable in these cells (Fig. 1). PLP1 is a profoundly hydro-

phobic integral membrane protein and, together with MBP,

accounts for >50% of the protein in CNS myelin (Deber

and Reynolds, 1991). Similarly, MPZ (P0) and MBP together

constitute up to 65% of the protein in PNS myelin (Garbay

et al., 2000). Why are classic myelin proteins expressed in

non-myelinating glia in the intestine? One possibility is that

myelin proteins may play more than a structural role within

glia. Studies of cultured oligodendrocytes show that PLP1 can

alter expression of other myelin genes and inhibit differentia-

tion of oligodendrocyte precursor cells (Karim et al., 2007;

Miyamoto et al., 2012). Similarly, MBP is increasingly recog-

nized as a multifunctional molecule that with a potential role

as a scaffolding protein (Harauz and Boggs, 2013). Although

enteric glia do not form myelin, proteins such as PLP1 and

MBP may be important for organizing signaling microdo-

mains that bring specific molecules together. Proteomic stud-

ies assessing the interaction partners of these classic myelin

proteins within enteric glia could provide new insights into

the signaling and other capabilities of these proteins.

Enteric Glia Are Heterogeneous and Distinct from
Other Glia
To explore the similarities between enteric glia and glia in

other parts of the nervous system, we utilized two different

approaches to compare genes enriched in enteric glia with
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those enriched in astrocytes, oligodendrocytes, Schwann cells,

microglia, and neurons. Remarkably, these global comparisons

of transcriptional profiles, as well as our studies of individual

molecular marker expression, converged on the observation

that enteric glia express genes and features of other glial types,

but do not exhibit a transcriptional signature identical to any

of them. This hybrid pattern of similarity likely reflects the

unique nature of enteric glia. Our comparative analysis of

transcriptional profiles was based on publicly available data

sets, most of which were obtained by purifying cell types

from early postnatal animals (Supp. Info. Table S1). The

Schwann cell data, for example, was obtained at P0 when

peripheral nerves are populated by many Schwann cell pre-

cursors that subsequently give rise to both myelinating and

nonmyelinating Schwann cells (Buchstaller et al., 2004).

Future studies using data obtained from mature glial types in

adult animals, when common developmental programs are

extinguished, may be even more revealing. In summary, our

comparative analysis shows that enteric glia are transcription-

ally most similar to Schwann cells and oligodendrocytes,

although they also express a subset of genes in common with

astrocytes. Contrary to traditional ideas, enteric glia and

Schwann cells exhibit similar degrees of transcriptional simi-

larity to astrocytes, although the genes expressed in common

may not necessarily be the same.

Another explanation for the hybrid pattern of transcrip-

tional similarity observed is that it reflects the underlying

diversity of enteric glial subtypes. It is possible that each

enteric glial subtype bears a strong resemblance to a particular

class of glia elsewhere in the nervous system, leading to a

hybrid gene expression pattern when all enteric glia are

assessed as a whole. We discovered that Type IV intramuscu-

lar glia as well as a subset of glia in the mucosa and submu-

cosa do not express GFAP, but do express PLP1 and S100b.

Further investigation of transcripts enriched in the RNA-Seq

screen might reveal additional genes that are differentially

expressed by subsets of enteric glia. For instance, our prelimi-

nary analysis of Entpd2 suggests that, like GFAP, it is not

expressed by many extraganglionic intramuscular glia. Entpd2

and GFAP are both enriched in mature astrocytes and not

detected in myelinating glia (Cahoy et al., 2008; Wink et al.,

2006; Zhang et al., 2014); consequently, enteric glia that

express these two proteins may share functions in common

with astroglia.

Taken together, our studies of individual glial marker

expression and RNA-Seq profiling show that the ENS is

populated by a heterogeneous group of glia that are transcrip-

tionally distinct from glia in other parts of the nervous sys-

tem. Future studies, such as single cell transcriptional

profiling, will be needed to assess more exhaustively the diver-

sity of enteric glial subtypes and their relationship to other

types of CNS and PNS glia. Enteric glia have increasingly

been implicated in the pathophysiology of a wide range of

neurologic and digestive disorders (Clairembault et al., 2014;

Garcia et al., 2014). The finding that the PLP1 promoter is

active in virtually all enteric glia opens the door to a new

array of genetic tools for manipulating enteric glial function

in vivo. These new tools will help to explore the roles of

enteric glia in both the physiology and pathophysiology of

the bowel.
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