
Multi-Duality in Minimal Surface-Type Problems 

By David Yang Gao and Wei H. Yang 

The multi-duality of the nonlinear variational problem inf J(u, Au) is studied 
for minimal surfaces-type problems. By using the method developed by Gao 
and Strang [1], the Fenchel-Rockafellar's duality theory is generalized to the 
problems with affine operator A. Two dual variational principles are' established 
for nonparametric surfaces with constant mean curvature. We show that for the 
same primal problem, there may exist different dual problems. The primal prob­
lem mayor may not possess a solution, whereas each dual problem possesses a 
unique solution. An evolutionary method for solving the nonlinear optimal-shape 
design problem is presented with numerical results. 

1. Introduction 

We are interested in the dual variational problems associated with minimal 
surface-type equations. Let Q be a bounded open set of R2, with boundary 
r = aQ; we seek a function u in a feasible set U which satisfies 

P(u) = inf { Jet + IVvl2 dQ. 
VEU in (1) 
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For different given feasible sets U and the parameters ex E R, problem (1) yields 
various minimal surface-type problems: 

1.1. H-surface problems 

Let ex = I and 

U = {u E Wd,l(Q) Il udQ = canst.}. 

then problem (1) is to find a surface, which is the graph of u (x. y) bounded by the 
domain Q, such that volume In u dQ is a given constant. The Euler-Lagrange 
equation associated with this problem can be given by 

(2) 

in which A E R is the Lagrange multiplier, depending on the constraint of the 
constant volume In u dQ = const. Equation (2) shows that the mean curvature 
of the surface is a constant over the domain Q. We call this problem simply the 
H-surface problem. As primal problems, surfaces with given mean curvature have 
been studied by many authors (see Miranda [2], Giusti [3], Brakke [4], Huisken 
[5], and Oliker [6], etc.). In this paper, we study this problem's multi-duality. 

1.2. Surface with obstacle 

If we let 

U = {u E WJ,l(Q) I u(x) ~ 1/f(x) 'Ix E Q}. 
where the real-valued function 1/f is a prescribed concave obstacle function. In 
this case, problem (1) is equivalent to a variational inequality. Such a problem 
has been studied by Kinderlehrer [7, 8], Nitsche [9], and Stampacchia [10]). 
The dual problem for von Karman plate has been studied by Yau and Gao [11]. 
Their result shows that for a geometrical nonlinear problem, the dual problem is 
equivalent to a coupled quadratic optimization. 

1.3. Plastic limit analysis 

We consider u as the velocity field in three-dimensional space, U = {u;} (i = 
I, 2, 3), and I Vul is a properly defined norm function of Vu (see [12]). Let U be 
the kinematically admissible space 

U={UEBD(Q)li,fUdr=l, u=oonru }, 

where BD(Q) is the space of bounded deformation vector functions introduced 
by Strang and Temam [13]; r t u r u = aQ; f : r ~ R3 is the unit surface 
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traction. Then problem (I) provides the limit loading factor for rigid-perfect 
plasticity (a = 0): 

A = inf { IVvl dQ. 
VEU]n 

For the problem of steady plastic flow in pipe, problem (3) can be written as 

A = inf ( 
VEU ]n (OV)2 (OV)2 - + - dQ, 

ox oy 

(3) 

(4) 

which gives the collapse pressure factor A for plastic flow. This is indeed a minimal 
surface-type problem with a = O. As the primal problem, the variational solution 
of (3) or (4) gives only the upper bound approach for the limit loading factor 
A. However, its dual problem provides the lower bound, which is important 
for engineering designs. Duality theory for such problems has been studied by, 
among others, Temam [14], Kohn and Temam [15], Temam and Strang [16], 
Cesari and Yang [17], Yang [18,19], Gao [20,21], and Gao and Strang [22]. 

The classical minimal surface problems have been studied for more than a 
century. It is known that the primal problem (1) mayor may not possess a 
solution u. Its dual problem(s), on the other hand, possess a unique solution p* 
(see [23, 24]). The extremality conditions link p* to the solution u of the primal 
problem if it exists. When the primal problem possesses no solution, the dual 
problems allow us to define the generalized solutions. 

Generally speaking, the primal functional for minimal surface-type problems 
can be written as P(u) = leu, Au). If A is continuous linear homogeneous 
operatc,r, the dual variational problem can easily be established by using the 
well-known Fenchel-Rockafellar theory of duality. For nonparametric minimal 
hypersurfaces, the dual problem has been studied extensively (see [23]). For the 
general parametric surface problems, the operator A is usually quadratic. In this 
case, the Fenchel-Rockafellar theory cannot be applied to construct the dual 
variational problems. By introducing a so-called complementary gap function, 
a new duality theory for nonlinear operator A has been developed by Gao and 
Strang [I]. Applications of this theory have been given to large deformation 
elastoplastic analysis [22,25], finite plastic dynamics [26], and obstacle problems 
for von Karman equations [I I]. 

The results of our study of the multi-duality in minimal surfaces-type prob­
lems show that by choosing variant geometric maps A, there may exist different 
dual problems for the same primal variational problem. If A is an affine op­
erator, then there also exists a complementary gap function between the dual 
variational functional and the conjugate functional of 1 obtained by using the 
Legendre-Fenchel transformation. This gap function plays an important role in 
dual analysis. Our idea and method were motivated by studying the H-surface 
problem; it turns out they can be applied to other minimal surface-type problems. 
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In Section 2 we briefly describe the concept of the Riemannian geometry 
of general minimal surfaces. Following the notation introduced by Ekeland and 
Temam [23] and Gao and Strang [1], in Section 3 we give a generalized geometric 
operator, which maps the configuration space to different metric spaces, and 
we illustrate the duality relations between the dual variables and operators. In 
Section 4, the dual variational principle for nonparametric H-surface is discussed. 
This theory has been generalized in Section 5 by using a different geometrical 
operator. Where we proved that there exists at least two different dual problems 
for the same primal variational problem. In Section 6, an evolutionary method 
for solving a nonlinear constrained optimization problem is presented. 

2. H-surface and primal problem 

Let M be a two-dimensional Riemannian surface in R3 with a nonempty bound­
ary aM. We denote by {Q, xa}(a = 1,2) the local chartinM. Then the surface 
M can be represented parametrically by the equations 

i = 1,2,3. (5) 

It is assumed that the map x(Xa) is of class C2, which induces a Riemannian 
metric C = {Call(X)} on M: 

3 

Call = L D~D~ = (xa, XIl)' (6) 
;=1 

where D = {D~} = {c3~a x} is a two-point tensor, and the superscript t denotes 
transpose of a vector or a tensor. The inverse of C is denoted by call = (Call) -1. 

Following the notation given in Ekeland and Temam [23], we designate two 
real vector spaces, V and V* , placed in duality by a bilinear pairing denoted by 
(, ) : V x V* ~ R. For example, if V c R3, we simply have 

If V c TxM (the tangent space of the surface M) c R2, 

(A, B) = Aa Ba = CallAa BIl V(A, B) E V x V*, (8) 

where the usual summation convention is assumed. In continuum mechanics, 
Call is called the Green strain tensor. 

Let LP and W p,q denote the usual Lebesgue and Sobolev spaces. Domain and 
range may be specified as LP(Q; R3). Here we assume that Q C R2 is an open 
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set of class C 2 and that ¢o is a regular function defined over r = aQ. Let C be 
the space of configurations 

(9) 

For any given Riemannian surface: x E C, C : R2 -+ R2 is positive definite: 

detC ?: O. (10) 

The total area of the surface M in this metric is denoted by P : C -+ R: 

P(x) := 1M dM = L JdetC(x(X)) dQ "Ix E C. (11) 

The mean curvature for the parametric surface M is given by 

where v E R3 is the unit normal vector of the surface M. Then the primal 
problem for minimizing the parametric surface with constant mean curvature is 
stated below: 

inf P(x) S.t. H(x(X)) = canst. "IX E Q. 
XEC 

For a nonparametric surface, x(Xa ) takes the form 

(12) 

(13) 

Here U : Q -+ R is the graph of the mapping x : Q -+ M. Substituting (13) 
into (6), we have 

D=J+J3®Vu, 

C = 1+ (vu)(vu)( 

or D~ = D~ + D~ua; 
or Cap = Dap + uaup, 

(14) 

where J = {8~} is a 3 x 2 identity and J3 = {8~} = (0,0, 1)( E R3 is a vector so 
that 

~ ]. 
u y 

It is easy to verify that 

detC = 1 + IVul2 > 0 Vu E Wl,l(Q; R). (15) 
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For a nonparametric surface, the total area of the surface M can be written as 

P(u) = In JdetC(u)dQ = In }I + lV'uI 2 dQ. 

In this case, the primal problem (12) becomes 

inf P(v), 
VEwci·I(Q) 

s.t. In vdQ = const. 

(16) 

(17) 

This is a nonlinear minimization problem constrained by a constant volume. 
Introducing the Lagrange multiplier J... E R to relax the constant volume 

constraint, we get 

L(v, J...) = In /1 + lV'vl2dQ + J... [In udQ - const.]. (18) 

So we have the saddle point problem: 

inf sup L(v, J...). 
VEwci·I(Q) AER 

The associated Euler-Lagrange system is 

I A(u)-J...=O, 

u = 0 on aQ 

in Q 

fn u dQ = const. 

(19) 

(20) 

The existence and uniqueness of the solutions for problem (17) or (20) depend 
on the constant J... as well as the boundary of the domain. The following lemma 
shows the convexity of the functional P (v): 

LEMMA 1. For any given nonparametrical surface v E Wci,1 (Q) : Q ---+ R, 

the functional P : W ci ' 1 (Q) ---+ R is convex. 

Prool Let E = V'v. It is easy to find that the functional P (v) is convex if 
and only if the function W(E) = Jl + EEt is convex VE(X) E LI(Q, R2). The 
second order directional derivative of W at E in the direction e is given by 

where H:f3 is the Hessian of w (E) defined by 
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By the Cauchy-Schwartz inequality, we have 

So for any given EEL I (Q, R2), we have 

which shows that W(E) is convex. Actually, W : LI (Q, R2) -+ Ris strictly convex 
because 82w is strictly positive for any given non-zero vector eEL I (Q, R2) .• 

Now our interest is in constructing the dual problems of (17). 

3. Geometrical mappings and dual variables 

In the duality theory of Fenchel-Rockafellar, the dual variational problem is 
based on the linear geometrical operator: A E £(V, Y) (see [23]). In this paper, 
we show that the same primal problem admits different dual variational problems 
by introducing different geometrical operators. 

Using the notation similar to those introduced by Ekeland and Temam [23], 
we set 

V* = Wl.l(Q; R)* = the dual of Wl.l(Q; R); 

Y2 = (p E LI(Q; R3 x R2) I det(ptp)(X) > 0 "IX E Q a.e.} 

Yi = {p* E LOO(Q; R2 x R 3) I det(p*tp*)(X) > 0 YX E Q a.e.}. 

By definition, we let E : V -+ R2: 

E:= Vu. (21) 

So we obtain 

(22) 

So far we have two kinds of geometrical variables: D and E, which depend linearly 
on the function u E V. Let p = {ps} E Y with PI = E for s = 1, P2 = D for 
s = 2. We may introduce the geometric operator A = {AS} : V -+ Y defined as 

I Vu 
Au = 

J +J3 ® Vu 

s = 1 

s = 2. 
(23) 
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We see here that for s = 2, A has a nonhomogeneous term J. The geometrical 
relations between the space V and Y can be written in a compact form, 

p(u) = Au = ! E S = I 

D S =2 

The Jacobian w (p) : Y ~ R can be denoted by 

! JI + Ipl2 = JI + EEt 
w(p) = 

Jdet(ptp) = Jdet(DtD) 

The conjugate variable p* E Y* of P E Y becomes 

Substituting equation (23) into (26), we have 

D*={D~}= y I [ 1+ u
2 

I JI + IVuI2 -uxuy 

Vp E YI 

Vp E Y2. 

for s = I 

for s = 2 

(24) 

(25) 

(26) 

(27) 

From Gao and Strang [1], for any given geometric mapping A : V ~ y, we 
have the following decomposition law: 

(28) 

Where At is the Gateaux derivative ofp(u) = Au at u E V, 

Atv = lim p(u + tv) - p(u). 
t-++O t 

An is the complementary operator of At. In this paper, for s = I we have At = A. 
But for s = 2, the Gateaux derivative of the geometric mapping A : V ~ Y2 
and its complementary operator should be 

A t V=J3@Vv, 

By using the Gauss-Green law, the conjugate operator of At satisfies the relation, 

(29) 
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0 Au =P G UEV PEY 
A = AI + An 

r r 
(u*, u) (p*, p) 

! 

U'EV'O A7 = A* - A~ 8 P' E Y' 
u* = -A7p* 

Figure I. Dual variables and spaces. 

For s = 1, A7 = A * : Yi --+ V* is simply defined by 

in n, 
on r, 

(30) 

where n E R2 is the unit normal vector on an. For s = 2, A7 : Yi --+ V* should 
be 

in n, 
on r. 

(31) 

It is easy to find that A; : Y* --+ V* is the balance (equilibrium) operator. 
For a given geometrical measure p = Au E y, the equilibrium equation for 
nonparametric surfaces can be written as 

-A;p*(Au(X» = A(u) = A VX E n. (32) 

The relations of these spaces and operators are presented in Figure 1. 
To relax the constant volume constraint in problem (17), we introduce a fea­

sible subset U C V, 

U:={vEVlv(X)=O VXEr,!nVdn=const.}, (33) 

and define the following general functional F : V --+ Ii := R U {+oo}, 

F(v) := \{Iu(v) = I 0 
+00 

if V E U 

otherwise 
(34) 
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where Wu is the indicator function of the setU.ltis obvious thatU = domF(v) := 
{v E V I F(v) < +oo}. Furthermore, for any given p E y, we define the 
functional W : Y ~ R: 

W(p) = In w(p)dQ Vp E E. (35) 

Then the total area P(u) of the surface can be written as 

P(u) = J(u, Au) = W(Au) + F(u), (36) 

where the functional J takes U x Y into R. SO the primal problem (17) now takes 
the following generalized form 

inf J(v, Av). 
VEV 

(37) 

Its Euler-Lagrange equation is 

o E A7aW(Au) + aF(u), 

which is equivalent to equation (20). 

4. The first dual variational principle 

For the nonparametric surface, the geometric mapping A : V ~ Y given in 
(23) is a linear operator, so using the Fenchel-Rockafellar theory of duality we 
can construct the dual H-surface problem. First, we consider the geometrical 
mapping E = Au = Vu. In this case, the conjugate function J*C-A*E*, E*) is 
given by the following lemma: 

LEMMA 2. IfdomFCv):f 0, then there exists a "A E Rsuchthattheconjugate 
function J* : V* x Y* ~ R is 

where W* : Y* ~ R is the conjugate function OfW(E): 

if1E*12 ~ 1 

if1E*12 > 1, 

and F* : V* ~ R is the conjugate function of FCu): 

where c is the constant from c = In u dQ. 

if A *E* -"A = 0 

otherwise 

(38) 

(39) 

(40) 
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The proof of this Lemma is straightforward using the Legendre-Fenchel trans­
formation (see, e.g., [23]). 

For any given A E R, we define the so-called statically admissible space 
U* c V*: 

U* := {v* E V* I v*(X) = A "IX E Q a.e.}. 

So the conjugate function F*(-A*E*) can be written as 

where \IIu* : V* -+ R is the indicator of the subset U*: 

\IIu·(v*) = I 0 
+00 

if v* E U* 

otherwise 

Furthermore, we define a closed convex subset K\ C Yj: 

and write the functional W* : Yj -+ R as 

(41) 

(42) 

(43) 

where \IIKj is the indicator of the subset K\ c Yj. Over the statistically admis­
sible space U*, we write 

and define the following problem: 

P*(E*) = sup P*(r*). 
T*EY~ 

-1\*r*EU* 

(45) 

THEOREM 1. There exists a A E R such that the primal problem (17) admits 
problem (45) as its dual and 

inf P = sup P*. (46) 

Furthermore, the primal problem (17) mayor may not possess a solution, whereas 
the dual problem (45) possesses a unique solution E*(J...) E Y* for the given J... E R. 
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Proof: Suppose that u E V is a solution of the primal problem (17). For a 
given E* E Y*, the Lagrangian L : V x Yi --+ R of the primal problem (17) is 
defined by 

-L(u, E*) = SUp{(E - Au, E*) - J(u, E)}. 
EEY 

We prove that the Lagrange multiplier E * is the solution of problem (45). Actually, 
for a given (u, (*) E U x Y*, 

L(u, E*) = (u, A*E*) - SUp{(E, E*) - W(E)} 
EEY 

For a given E* E Y* such that -A *E* E U*, we have 

L(u, (*) = -J...c - W*«(*) = sup P*(r*), 

since u E U is the solution of the primal problem (17). This shows that the 
problem (17) and (45) are mutually dual. 

Meanwhile 

inf P(v) 
VEV 

W(Au) = (E*, Au) - W*(E*) 

(A *(*, u) - W*(E*) = (-J..., u) - W*(E*) 

- -J... In u dQ - W*(E*) = P*«(*) 

sup P*(r*). 
!'EU' 

Since P* : Y* --+ R is strictly concave, upper semicontinuous (u.s.c.), if the 
convex subset Kl i- 0, then for a given A E R, the dual problem (45) has a 
unique solution. • 

Remark: While the primal problem (17) is similarto the upper bound theorem 
in the theory of plastic limit analysis, the dual problem (45) corresponds to the 
generalized lower bound theorem (see [20]). The physical meaning of the dual 
variable E* can be considered as the surface tension. The constraint IE*I ::: 1 
corresponds to the yield condition in plastic limit analysis. If 1(*1 > 1, the 
surface is broken. Using the property of the "generalized complementary energy" 
W* : Y* --+ ii, various approximate methods can be derived to solve the dual 
problem (see [21 D. 

In the closed convex subset Kl C Yi the functional P* (46) can be written as 

(47) 
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The dual problem (45) has a degenerated form: 

THEOREM 2. For a given A E V*, the dual problem 

sup {{ J 1 - IE*(X)1 2 dQ - AC} 
'*EJCI In 

-A*f*=). 

possesses a unique solution. 
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(48) 

This theorem can easily be proved by considering the concavity of P* over 
the closed convex subset K 1. Problem (48) is a constrained extremum problem 
defined on a closed convex subset K 1 E Yj and hyperplane U*. In the theory of 
plastic limit analysis, this theorem is similar to the classical lower bound theorem. 

5. The second dual variational principle 

Our aim here is to show that for the same primal problem (17), we may have 
different dual problems. For the given geometric relation (22), we look instead at 
(21), for the second dual problem of the nonparametric H -surface. In this case, the 
dual variables of u E V and D E Y2 are - A7D* E V* and D* E Yi, respectively. 
The conjugate function of J(v, D) should be ]*(-A7D*, D*) as explained by 
the following lemma: 

LEMMA 3. If domF(v) is not empty, then there exists a A E R such that 

where W* : Yi ~ R is a convex, l.s.c. function defined by 

W*(D*) = ( Jdet(D*D*I) dQ + Wy*(D*). In 2 
(50) 

Proof By the Legendre-Fenchel transformation we have 

J;(-A~D*, D*) = supsup{(-A~D*, v) + (D*, D) - J(v, D)} 
v D 

where 

W*(D*) = sup {(D*, D) - i Jdet(DtD) dQ}. 
DEY2 n 
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Since W(D) : Jh -* R is convex, the critical poin( 

roaxlm!ze .. the above optimal problem and gives the resu}t (5D) 
On the other hand, the dual variable of v E V is A; D* EO V· We produce 

Fi(-A7 D*) = sup{(-A7D*, VI - F(v») 
VEV 

= AC + sup{(-A7D* - A, v}) 
VEU 

= AC + Wu* (-A7D*) (51) 

to prove Lemma 2. • 
ItisobviousthatJi : U*xYi -* Risconvex. Unfortunately, for the geometric 

operator A : V -* Y2 with nonhomogeneous term J, li (-1\70"', D*) is not the 
dual variational functional of the primal functional lev, 1\1)) because its Euler­
Lagrangian is not equivalent to the governing equations of the H -surface problem. 
l'he difference between the conjugate functional li and the dual functional of 1 
is (he so-called complementary gap function defined by (~ee (L)) 

G>(-A:D*) = (-A~D*, u) = -(D*, l\nu) 

= - In tr(D"'J)dQ = - h D;qo~ dQ. (52) 

Here we define the functional Pi : Yi -* R U {-oo} : 

Pi(D*) = -W*(D*) - Fi(-A7D*) - G*(-I\~D"). (53) 

Then the second dual problem of H -surface problem (17) should be 

sup Pi(D*). (54) 
D*EY; 

THEOREM 3. Problem (17) and problem (54) are mutually dual, and 

inf P = sup Pi. (55) 

ljdomW*(D*)ndomFi( -A7D*) =1= 0, then the problem (54)posusus a unique 
soLution. 
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Proof' We produce 

inf P W(Au) = (Au, D*) - W*(D*) 

= (Anu, D*) + {u, A~D*} - W*(D*) 

In tr(D* J) dQ - AC - W* (D*) 

= sup P; 
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as the required duality relation. Since Pi : Yi ~ Ii is strictly concave, u.s.c. 
functional, then over the convex subset Yi, the problem possesses a unique 
solution. • 

For any given D* C Yi, if - A7D* E U*, the functional Pi can be written as 

P;(-A*D) = In tr(D*J)dQ - AC - In Jdet(D*D*t)dQ. (56) 

So the second dual problem (54) has the following degenerated form: 

. sup {l tr(D* J) dQ - AC - 1 J det(D*D*1) dQ} . (57) 
&E~ Q Q 

-A;D*=i. 

By now we have proved that for the same primal problem (l7), there exists 
at least two different dual problems, whose significance is as follows. Since the 
primal functional P is strictly convex, if the primal problem possesses a solution 
u, the dual solutions for problem (45) and (54) are equivalent and we have 

P(u) = Pt(E*(U) = Pi(D*(u». 

When the primal problem possesses no solution, the dual problems (45) and 
(54) define two different generalized solutions. From the point of view of the 
optimization theory, the first dual problem (45) is a nonlinear optimal problem 
with the nonlinear inequality constraint IE* I ::: 1 and the equilibrium constraint 
- A *E* = A. The numerical solutions for this kind of problems are very difficult 
to obtain, whereas the second dual problem (54) is constrained by only one 
linear equilibrium condition. It is easy to get the approximate solution by using 
discrete methods. Physically speaking, the first dual problem is equivalent to the 
lower bound theory in plastic limit analysis (see [2]). The second dual problem, 
on the other hand, is similar to the complementary energy principle in nonlinear 
elasticity. By the way, the second dual problem given here can easily be generated 
to study parametrical surfaces. 
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6. Evolutionary method for computing H·surfaces 

An evolutionary method for solving the H-surface problem was first studied 
by Temam [241 and Lichnewsky and Temam [27] for minimal hypersurface 
problems. Here we give only the applications to the H-surface problem. We 
assume that the graph u : Q x [0, T] -+ R is time dependent. The evolution 
equations 

I 
Ut = A(u(X, t» - A in Qx]O. T[. 

u = 0 on aQ x [0, T] 

u(X,O) = uo(X) in Q 

(58) 

associated with the primal problem (17) are treated as an initial~boundary value 
problem. In this evolutionary problem we have two unknowns, u(X, t) and A(t), 
but only one equation. From the constraint fn u dQ = V (V is a given constant), 
we have 

~ [ u dQ = [ Ut dQ = [ [A(u(X, t» - A] dQ = O. 
dt In In In 

This gives the equation for the Lagrange multiplier: 

) 
fn A(u(X, t» dQ 

A(t = . 
area(Q) 

But our numerical experiments show that this formulation yields an unstable iter­
ation. From the weak form of the constraint In u[A(<«X. t» -Jel dQ, a weighted 
formulation 

fn uA(u{X, t)dQ 
A(t) = , 

V 
(59) 

which is equally valid, produces stable solutions. We solve this evolutionary 
equation for Q = {(x. y) E R2 I 0 :=: x :=: I, O:=: y :::: l) and discretize 
this initial-boundary value problem by a regular three-dimensional net, which is 
generated from a regular net in the region Q with the space mesh size h and the 
time mesh size k. Then for a given A(tj), we look for approximate solution u~,v 
of the solutions u(x, y, t) at the grid point (xJL, Yv, tj). Here we use the standard 
finite difference method to compute the quantities 

j j 
uJL+1,v - uJL-1,v 

2h 
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1>0132 t>o4S0 

( I) Constant field (2) Sinusoidal field (3) R.oDdom field 

Figure 2. Numerical results for evolutionary solutions. 

j j j j 
UjL+I,v+1 - UjL_I,v+1 - UjL+I.v-1 + UjL_l.v_1 

h2 

By an explicit method, we use the algorithm: 

(i) Given initial condition U (x, y, to), constant V, Lagrange multiplier A(to), 
and a previously given precision w > O. Let j = O. 

(ii) Determine u(tk+d at every regular grid point P(xjL' Yv, tj) in the domain 
Qby 

"+1" " 
u~,v = u~,v + k[A(u~,v) - A(tj]. (60) 

(iii) Find A(tj+d by 

(61) 
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Figure 3. Convergence of evolution solutions for a random initial field. 

'+1 . 1 . 
If IIA(u~.\J) - All ::: lV or I In u~;\J dQ - VI ::: lV, u J+ 1 is the desirable 
numerical solution. Otherwise, by setting uJ+I = uJ, A(tJ+I) = A(tj), let 
j = j + 1 then go to step (ii). 

For three different initial data uo-(l) a constant field; (2) a sinusoidal field; 
(3) a random field-our evolutionary algorithm produced the identical final mini­
mal surface as shown in Figure 2. The scale u (x, y) is amplified. The convergence 
is shown in Figure 3 for Q = {(x, y) E R2 I 0 ::: x ::: I, 0::: y ::: l}, where 
the area P(u) of the surface, volume In u dQ, and error norm II Ut II are plotted 
against the time variable t. 
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