
Nuclear respiratory factor 2 induces SIRT3 expression

F. Kyle Satterstrom,1,2 William R. Swindell,3* Ga€elle Laurent,2

Sejal Vyas,2 Martha L. Bulyk3,4 and Marcia C. Haigis2

1Harvard School of Engineering and Applied Sciences, Cambridge, MA

02138, USA
2Department of Cell Biology, Harvard Medical School, Boston, MA 02115,

USA
3Division of Genetics, Department of Medicine, Brigham and Women’s

Hospital and Harvard Medical School, Boston, MA 02115, USA
4Department of Pathology, Brigham and Women’s Hospital and Harvard

Medical School, Boston, MA 02115, USA

Summary

The mitochondrial deacetylase SIRT3 regulates several important

metabolic processes. SIRT3 is transcriptionally upregulated in

multiple tissues during nutrient stresses such as dietary restric-

tion and fasting, but the molecular mechanism of this induction is

unclear. We conducted a bioinformatic study to identify tran-

scription factor(s) involved in SIRT3 induction. Our analysis

identified an enrichment of binding sites for nuclear respiratory

factor 2 (NRF-2), a transcription factor known to play a role in the

expression of mitochondrial genes, in the DNA sequences of

SIRT3 and genes with closely correlated expression patterns.

In vitro, knockdown or overexpression of NRF-2 modulated SIRT3

levels, and the NRF-2a subunit directly bound to the SIRT3

promoter. Our results suggest that NRF-2 is a regulator of

SIRT3 expression and may shed light on how SIRT3 is upregulated

during nutrient stress.
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Introduction

The NAD+-dependent mitochondrial deacetylase sirtuin-3 (SIRT3) is

central to the regulation of cellular metabolism, including the adaptation

to nutrient stresses such as fasting and dietary restriction (DR) (Lombard

et al., 2007; Hebert et al., 2013). SIRT3 protein levels are upregulated by

fasting and DR in liver, where it stimulates fatty acid oxidation (Hirschey

et al., 2010) and activates key nodes of ketone body production

(Shimazu et al., 2010) and the urea cycle (Hallows et al., 2011). SIRT3

mRNA levels are also upregulated by DR in brown adipose tissue, where

SIRT3 activates mitochondrial thermogenesis (Shi et al., 2005). In

addition, SIRT3 mediates some of the beneficial effects of DR, such as

the activation of mitochondrial superoxide dismutase to reduce oxidative

stress (Qiu et al., 2010; Tao et al., 2010) and the prevention of age-

related hearing loss in mice (Someya et al., 2010). Conversely, livers of

mice fed a chronic high-fat diet exhibit reduced SIRT3 mRNA and protein

levels (Hirschey et al., 2011), indicating that SIRT3 expression is

dynamically regulated by nutrient intake.

Surprisingly, little is known about the molecular control of SIRT3

expression. In murine adipocytes and hepatocytes, the transcription

factor estrogen-related receptor a (ERRa) has been shown to induce

SIRT3 expression in conjunction with peroxisome proliferator-activated

receptor c coactivator 1-a (PGC-1a) (Kong et al., 2010; Giralt et al.,

2011). In this study, we employed a bioinformatic approach to identify

additional transcription factors which regulate SIRT3 expression. We

searched publicly available microarray data to identify datasets with an

induction of SIRT3 by either DR or fasting and then computationally

identified transcription factor binding motifs enriched in the regulatory

regions of SIRT3 and co-induced genes. Our bioinformatic analysis and

experimental validation in cell culture identified nuclear respiratory factor

2 (NRF-2) as a novel transcriptional regulator of SIRT3 expression.

Results

Bioinformatic analysis

To identify transcription factors involved in SIRT3 induction, we undertook

a systematic bioinformatic approach (Fig. 1A). We first identified datasets

in which SIRT3 mRNA expression was increased with DR in neocortex

(GSE11291; Barger et al., 2008), cochlea (GSE4786, Someya et al., 2007),

and liver (GSE26267, Streeper et al., 2012), and with fasting in kidney

(GSE24504, Hakvoort et al., 2011). We conducted gene set enrichment

analysis (Table S1, Supporting information) to verify that this induction was

part of a larger metabolic adaptation. Next, based on the rationale that co-

expressed genes may share common transcriptional regulators, we

identified the genes most closely co-induced with SIRT3 in each dataset

(Fig. 1B, File S1, Supporting information). Groups of 25, 50, and 100 genes

were analyzed, allowing for greater statistical power than an analysis of

SIRT3 alone. Gene ontology analysis showed that the genes most closely

co-induced with SIRT3 were enriched in metabolism-related annotations,

as well as processes such as the cellular response to stress (Fig. 1C, Table

S2, Supporting information), suggesting that many co-regulated genes are

functionally related to SIRT3. For each dataset, a DNA sequence analysis

algorithm (Warner et al., 2008) was then used to calculate the enrichment

of a set of transcription factor motifs in 20 kbp of sequence surrounding (i)

the most SIRT3-correlated genes overall or (ii) the most SIRT3-correlated

mitochondrial genes (as determined by inclusion in the MitoCarta,

Pagliarini et al., 2008; File S2, Supporting information). The mitochondrial

group was included because SIRT3 is a mitochondrial-localized protein, and

factors which regulate its expression may act specifically on nuclear-

encoded mitochondrial genes during processes induced by nutrient stress

such as mitochondrial biogenesis (e.g., Scarpulla, 2002).

The highest-scoring transcription factor motif identified by this study

was nuclear respiratory factor 2 (NRF-2, also known as GABP) (Rosmarin

et al., 2004) from the neocortex dataset, regardless of number of genes

analyzed (Fig. 1D–F; for the other datasets, Fig. S1 (Supporting

information); full results for all datasets are in File S3, Supporting

information). NRF-2 was also the only motif significantly enriched across

the analyses of 25, 50, and 100 genes (Fig. 1G). NRF-2 is an E26

transformation-specific (ETS) family transcription factor that is important

for the expression of many mitochondrial genes (Scarpulla, 2002). NRF-2

is bound and co-activated by PGC-1a, and it is central to mitochondrial
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biogenesis and metabolism (Mootha et al., 2004; Baldelli et al., 2013).

All ten nuclear-encoded cytochrome c oxidase subunits have functional

NRF-2 binding sites (Ongwijitwat & Wong-Riley, 2005), and recognition

sites for NRF-2 are also present in the promoters of ATP synthase

subunit-b and succinate dehydrogenase subunits B, C, and D (Scarpulla,

2002). The effects of DR/fasting on NRF-2 and its targets in the datasets

studied are included as Fig. S2 (Supporting information). SIRT3 directly

interacts with several components of the electron transport chain,

including ATP synthase subunit b and succinate dehydrogenase subunit

A (Finley et al., 2011; Vassilopoulos et al., 2014), and one of its few

known regulators is PGC-1a. This functional overlap supports our

bioinformatic finding of NRF-2 as a candidate regulator of SIRT3.

Analysis of SIRT3 promoter

To investigate whether NRF-2 regulates SIRT3 expression, we probed for

NRF-2 binding sites in the SIRT3 promoter. SIRT3 shares a short

bidirectional promoter with the 26S proteasome non-ATPase regulatory

subunit 13 (PSMD13) (Bellizzi et al., 2007). The two genes are coded on

opposite strands, with their 50 ends toward each other and < 1 kbp

apart. Because of the bidirectional promoter, any binding sites in the

SIRT3 promoter are also in the PSMD13 promoter. Dissection of the

promoter using a separate sequence analysis tool (MAPPER, http://

genome.ufl.edu/mapper/; Marinescu et al., 2005) identified several

transcription factor binding motifs (Fig. 2A). Notably, NRF-2 was the

only overlap between our significant DNA sequence analysis results for

the neocortex dataset and the MAPPER results (Fig. 2B). Moreover, NRF-

2 sites often occur in tandem (Virbasius & Scarpulla, 1991), and the best-

conserved region of the entire promoter is a pair of NRF-2 consensus

sequences (Fig. 2C). NRF-2 is also known to direct transcription from

many bidirectional promoters (Collins et al., 2007). Taken together with

the motif enrichment results above, our findings strongly suggested that

NRF-2 may play a role in regulating SIRT3 expression, and perhaps

PSMD13 expression as well, via the PSMD13-SIRT3 promoter.

Experimental investigation of NRF-2 and SIRT3

We tested experimentally whether NRF-2 regulates SIRT3 and PSMD13

gene expression using human 293T cells. NRF-2 functions as a

heterodimer, with the a subunit binding DNA and the b subunit

facilitating binding between heterodimers (Batchelor et al., 1998). When

NRF-2a and NRF-2b1 were transiently overexpressed together (Fig. 3A,

B), SIRT3 mRNA levels were significantly induced (P = 0.046 for HA-

tagged NRF-2, P = 0.003 for untagged NRF-2, Fig. 3C) to a greater

degree than known NRF-2 target DNA polymerase subunit c-2 (POLG2)

(P = 0.26 for HA-tagged NRF-2, P = 0.44 for untagged NRF-2, Fig. 3D).

PSMD13 levels were not significantly affected (P = 0.21 for HA-tagged

NRF-2, P = 0.77 for untagged NRF-2, Fig. 3E) and were likewise only

weakly correlated with SIRT3 expression in the four datasets examined

(File S1, Supporting information). Conversely, when the DNA-binding

NRF-2a subunit was knocked down (Fig. 3F), SIRT3 mRNA levels

significantly dropped (P = 0.005, Fig. 3G). These data demonstrate that

SIRT3 expression responded dynamically to NRF-2 levels.

Having identified the presence of canonical NRF-2 binding sites in the

SIRT3 promoter and characterized the response of SIRT3 expression to

NRF-2 overexpression, we next tested whether the response to NRF-2

occurs via the SIRT3 promoter. A luciferase reporter plasmid driven by

the shared promoter in either the SIRT3 or PSMD13 direction (Satter-

strom & Haigis, 2014) was transfected into 293T cells. NRF-2 was then

overexpressed and luminescence measured. Overexpression of NRF-2

increased the activation of the reporter when driven by the SIRT3

promoter (P < 0.01, Fig. 3H) but did not have a significant effect when

the promoter was inserted in the PSMD13 direction (activity decreased,

P = 0.09, Fig. 3I). Further, point mutation or deletion of the NRF-2

binding site greatly reduced the activity of the reporter in the SIRT3

direction (Fig. 3J–K). Together with the quantitative PCR data, these

data suggest that NRF-2 may control SIRT3 expression by direct

interaction with the SIRT3 promoter.

To test physical binding of the SIRT3 promoter by NRF-2, a chromatin

immunoprecipitation was performed in 293T cells transiently overex-

pressing HA-tagged NRF-2a, the DNA-binding subunit of the NRF-2

heterodimer. Following chromatin isolation, HA tag was immunoprecip-

itated and qPCR was used to quantify the levels of target DNA.

Immunoprecipitation and quantification were carried out three times.

Using b-actin as a background normalization factor across experiments,

SIRT3 was significantly enriched in the NRF-2a-treated condition

compared to the untreated condition (P = 0.005). This enrichment was

to approximately the same degree as genes known to be transcription-

ally regulated by NRF-2 (Bruni et al., 2010), such as mitochondrial

transcription termination factor (mTERF) (P = 0.99), mitochondrial RNA

polymerase (POLRMT) (P = 0.30), and mitochondrial transcription factor

B2 (TFB2M) (P = 0.43), and to a significantly greater degree than non-

NRF-2-regulated genes such asmTERF3 (P = 0.01) and ribosomal protein

L30 (RPL30) (P = 0.002) (Fig. 3L). This enhancement was not seen with

control anti-histone H3 immunoprecipitations (Fig. 3M). These results

suggest that NRF-2a physically binds the SIRT3 promoter to affect SIRT3

gene expression.

Discussion

In this study, we have discovered that nuclear respiratory factor 2 (NRF-2)

is a novel regulator of SIRT3 expression. We used a bioinformatic analysis

to show that NRF-2 binding sites are highly enriched in the regulatory

regions of SIRT3 and genes that are similarly induced by DR. We have

also demonstrated that SIRT3 mRNA levels respond to overexpression or

knockdown of NRF-2 in 293T cells and that the same effect occurs when

using a luciferase reporter with the SIRT3 promoter. Finally, we have

shown by chromatin immunoprecipitation that the a subunit of NRF-2

binds the SIRT3 promoter directly, suggesting a model wherein NRF-2

binds the SIRT3 promoter, leading to the expression of SIRT3 mRNA. Our

data also suggest that SIRT3 and PSMD13 are regulated independently,

as NRF-2 induces the expression of SIRT3 but not PSMD13 under the

conditions studied.

NRF-2 binds and is co-activated by PGC-1a, leading to an increase in its

induction of target genes (Mootha et al., 2004; Baldelli et al., 2013).

Notably, ERRa, which is already known to play a role in activating SIRT3

transcription, is also co-activated by PGC-1a (Schreiber et al., 2003). Both

NRF-2 and ERRa drive the expression of oxidative genes as well as each

other (Mootha et al., 2004), but theymay be active at different times or in

different tissues; in support of this idea, NRF-2 was a significant result for

our analysis of the neocortex dataset, while one significant result for our

analysis of the liver dataset was ERRb (which has a nearly identical binding

motif to ERRa; ERRa was not in the set of JASPAR motifs). Although

further study is needed to determine the relative importance of these

transcription factors for the induction of SIRT3 in different physiological

contexts, our data suggest that NRF-2 plays an important role.

Because PGC-1a is induced in certain tissues by fasting or DR (Lehman

et al., 2000), the PGC-1a/NRF-2 pathway may underlie the upregulation

of SIRT3 and other mitochondrial genes in DR. The overlap in pathways

affected by NRF-2 and SIRT3 supports this idea. Even under basal
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conditions, the deletion of NRF-2 in mouse embryonic fibroblasts reduces

many markers of mitochondrial biogenesis, including oxygen consump-

tion and ATP production (Yang et al., 2014). SIRT3, meanwhile, is known

to increase oxygen consumption (Shi et al., 2005), to be important for

ATP production (Ahn et al., 2008), and to be important for mitochondrial

biogenesis (Kong et al., 2010). These functions are enhanced during
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stress (e.g., Vassilopoulos et al., 2014). Thus, not only do NRF-2 and SIRT3

function in similar stress-induced pathways, but SIRT3 carries out

functions which are abrogated when NRF-2 is absent. Although whole-

body knockout of NRF-2 leads to embryonic lethality (Ristevski et al.,

2004), necessitating the use of tissue-specific deletion or other more

nuancedmethods, further study will determine whether NRF-2 is required

for the action of SIRT3 under basal and stressed conditions.

Our analysis additionally identified multiple transcription factors of

interest which may be involved in the regulation of SIRT3 expression.

CCAAT/enhancer-binding protein a (CEBPa), whose motif was enriched

in the neocortex dataset, and c-MYC, whose motif was enriched in the

kidney dataset, regulate metabolic processes and would be reasonable

candidate regulators of SIRT3. CEBPa regulates transcription of the

human fat mass and obesity-associated gene (FTO) (Ren et al., 2014),

and c-MYC is well known for its role in cancer metabolism (reviewed in

Miller et al., 2012). Additionally, our inspection of the SIRT3 promoter

identified binding sites for transcription factors known to interact with

NRF-2, including Sp1 and Sp3 (Galvagni et al., 2001), or share common

targets with it, including ZNF143 (G�erard et al., 2007) and EGR1 (Fromm

& Rhode, 2004). Finally, ETS-1, ELF-1, ELK1, and ELK4 are all members of

the same family of transcription factors as NRF-2. It is possible that one

or more was identified because of its similar binding motif without

actually playing a role in SIRT3 expression; it is also possible that they are

important in different contexts, or, when they are co-expressed, multiple

factors may bind the same promoter element to activate gene expression

with different strengths (Takahashi et al., 2008).

Our findings are an important step toward elucidating the molecular

regulation upstream of SIRT3 expression. SIRT3 levels are increased in

multiple tissues during nutrient stresses such as DR. DR is associated with

increased lifespan (Anderson & Weindruch, 2010), as is a SIRT3 allele

with increased activity (Bellizzi et al., 2005). We have shown that NRF-2

plays a role in the induction of SIRT3, and this may help to uncover the

molecular pathways activated by DR and to inform therapies that delay

the onset of age-related disease.

Experimental procedures

Analysis of SIRT3 levels in microarray datasets

Microarray series data and corresponding platform annotations from

DR/fasting experiments were downloaded from the Gene Expression

Omnibus at http://www.ncbi.nlm.nih.gov/geo/. Significance of the
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Fig. 2 Analysis of SIRT3 promoter. (A) List of transcription factor binding sites identified by MAPPER in the mouse SIRT3 promoter. (B) Overlap of enriched transcription

factor motifs identified by analysis of SIRT3 correlated genes in the neocortex dataset (pink circle) with transcription factors identified in the SIRT3 promoter (green circle).

(C) Schematic of PSMD13-SIRT3 promoter, highlighting tandem NRF-2 binding sites with red text/yellow background and showing sequence across multiple species.

Fig. 1 Bioinformatic identification of NRF-2 binding site enrichment in DNA sequences of SIRT3 and co-expressed genes. (A) Overview of bioinformatic steps analyzing

transcription factor binding motif enrichment in the DNA sequences of SIRT3 and co-expressed genes. (B) Top 25 most SIRT3-correlated genes (by Pearson’s r) in the mouse

neocortex dataset. (C) Enrichment of selected gene ontology terms in top 50 most SIRT3-correlated genes in neocortex (full results in Table S2, Supporting information).

(D–F) Heat maps of transcription factor motif enrichment in the (D) 25 most SIRT3-correlated genes, (E) 50 most SIRT3-correlated genes, and (F) 100 most SIRT3-correlated

genes (by expression levels across samples) for the neocortex dataset. All genes = most SIRT3-correlated genes analyzed from all genes in dataset. Mitochondrial = most

SIRT3-correlated mitochondrial genes analyzed in the dataset. Top ten motifs are shown, ordered by motif’s maximum AUC score, a measure of enrichment. Red = greater

enrichment; white = less enrichment. * indicates q < 0.05; ** indicates q < 0.01. (G) Overlap of significantly enriched transcription factor motifs identified in (D–F), showing

results from analyzing the 25 (red circle), 50 (blue circle), and 100 (yellow circle) most SIRT3-correlated genes for the neocortex dataset.
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effect on SIRT3 was determined using a two-tailed Student’s t-test

with a significance threshold of P < 0.05. In cases where the platform

had more than one probe for SIRT3, each probe was examined

individually.

Gene set enrichment analysis

Gene set enrichment analysis of each dataset showing a significant

induction of SIRT3 by DR/fasting was performed using the GSEA version

2.0.10 java program from http://www.broadinstitute.org/gsea/down-

loads.jsp. Data files were prepared with the Broad GEOImporter

preprocess utility and were analyzed for the enrichment of gene

ontology-related gene sets as contained in the c5.all.v3.1.symbols.gmt

gene sets database. Datasets were collapsed from probes to gene

symbols using default settings, and 1000 permutations were conducted.

Gene set permutations were used because none of the datasets had a

sufficient number of samples per condition to allow the use of

phenotype permutations. Datasets which showed no significant induc-

tion of any gene sets were not included in subsequent analysis.

Calculation of co-regulated gene sets

The robust multiarray average (RMA) algorithm as implemented in the

Bioconductor package ‘affy’ (Gautier et al., 2004) for R was used to

background adjust and normalize the raw data files for each dataset that

showed upregulation of Sirt3 and gene ontology-related gene sets upon

DR (except for GSE24504, for which the GEO series matrix was used).

Correlations (Pearson’s r) were then computed between the SIRT3 probe

and each probe in the array. To control for probe specificity, probes

whose label contained an _s_ or _x_ were removed from datasets

generated from the Affymetrix Mouse Genome 430 2.0 Array unless

doing so would leave the gene without any valid probes. For genes with

multiple probes, correlations were averaged to compute a single

correlation value for the gene.

Gene ontology analysis

Analysis of overrepresented gene ontology terms was carried out within

the Cytoscape software program using the BiNGO plugin (Maere et al.,

2005), with the whole mus musculus annotation as the reference set.

The hypergeometric statistical test and Benjamini & Hochberg FDR

correction options were used.

DNA sequence analysis

Analysis was conducted using the PhylCRM-Lever algorithm (Warner

et al., 2008). The sequence analysis looked at 20 kbp for each gene,

from �10 kbp to +10 kbp surrounding the transcription start site.

Motif enrichment was calculated for all 130 mammalian motifs hosted

by version 4 of the JASPAR database (Portales-Casamar et al., 2010;

http://jaspar.genereg.net/). The analysis included weighting based on

the conservation of transcription factor motifs across genomes of

multiple species: mouse (mm9), rat (rn4), human (hg18), chimpanzee

(panTro2), rhesus macaque (rheMac2), cow (bosTau3), dog (canFam2),

and chicken (galGal3). SIRT3 itself was included in the lists of SIRT3-

correlated genes.

Additional DNA sequence analysis was performed using MAPPER

(Marinescu et al., 2005). MAPPER database runs with default filtering

options examined 2 kbp of mus musculus DNA sequence upstream of

the transcription start, using TRANSFAC, MAPPER, and JASPAR models.

Cell culture

Human embryonic kidney 293T cells were grown in Dulbecco’s modified

Eagle’s minimal essential medium (Life Technologies, cat. # 11995) with

10% fetal bovine serum (HyClone GE Healthcare, Little Chalfont,

Buckinghamshire, United Kingdom) and 1% penicillin–streptomycin

supplement (Life Technologies, Carlsbad, CA, USA) and maintained in an

incubator at standard tissue culture conditions (37 °C, 5% CO2). A

control knockdown line was created using a GFP shRNA construct, and a

293T NRF-2a knockdown cell line was created using shRNA construct

TRCN0000235698 from the RNAi consortium (both via the Dana-Farber/

Harvard Cancer Center RNAi Core facility).

Expression and reporter plasmids

HA-tagged overexpression plasmids for NRF-2a and NRF-2b1 were

generated using Gateway cloning techniques, starting from the

HsCD00080063 and HsCD00370955 entry clones, respectively, from

the PlasmID database of the Dana-Farber/Harvard Cancer Center DNA

Resource Core. Untagged overexpression plasmids were generated via

Gateway cloning techniques from HsCD00296808 and HsCD00338810.

The reversible SIRT3-PSMD13 promoter reporter construct was cloned as

described (Satterstrom & Haigis, 2014). Plasmid DNA was transfected

into 293T cells using FuGene6 (Roche, Basel, Switzerland) according to

the manufacturer’s instructions, and cells were allowed to grow for 48 h

prior to analysis.

SIRT3 promoter reporter mutagenesis

SIRT3 promoter reporter mutants were cloned with altered NRF-2

binding sites (a change of two bases in each of the two binding sites) or

with deleted NRF-2 binding sites (both binding sites and the intervening

sequence removed, a total of 26 bases). A QuikChange II mutagenesis kit

(Agilent Technologies, Santa Clara, CA) was used to produce the mutant

with altered binding sites, in which both NRF-2 binding sites have a

mutation of CCGGAA to CCTTAA (Virbasius et al., 1993). To produce

the mutant with both binding sites deleted, a Q5 Site-Directed

Mutagenesis Kit (New England Biolabs, Ipswich, MA, USA) was used

with an annealing temperature of 72 °C. Primers used are given in Table

S3 (Supporting information). For the altered binding site mutant, the pair

labeled DM1 was used prior to the pair labeled DM2.

Luciferase

Cells were grown in an opaque 96-well plate. Following co-transfection

of the SIRT3 reporter plasmid and the pRL renilla control vector

(Promega, Madison, WI, USA), the Dual-Luciferase Reporter Assay

System (Promega) was used according to the manufacturer’s instruc-

tions. Sample luminescence was assayed with a Cary Varian Eclipse

fluorescence spectrophotometer.

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was performed with the Simple-

ChIP Enzymatic Chromatin IP Kit (Cell Signaling, Danvers, MA, USA) with

antibodies against HA tag (Cell Signaling), histone H3 (Cell Signaling), or

normal rabbit IgG (Cell Signaling). Relative quantities of precipitated

DNA fragments were obtained using quantitative PCR. Three separate

immunoprecipitations were performed. To control for variation in

percent input across precipitations, the percent input of each target

NRF-2 induces SIRT3 expression, F. Kyle Satterstrom et al. 823

ª 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

http://www.broadinstitute.org/gsea/downloads.jsp
http://www.broadinstitute.org/gsea/downloads.jsp
http://jaspar.genereg.net/


gene was divided by the percent input of a random background gene, b-
actin. These normalized values were then averaged across precipitations

and analyzed for significance.

Quantitative PCR

For overexpression experiments in cells, RNA was extracted using RNEasy

Mini Kits (Qiagen, Hilden, Germany) and cDNA was synthesized using

iScript cDNA Synthesis Kits (Bio-Rad, Hercules, CA, USA). For both

overexpression experiments and ChIP analysis, quantitative PCR was

performed with 29 PerfeCTa SYBR Green FastMix (Quanta BioSciences,

Gaithersburg, MD, USA). Control primers for ChIP analysis were from

Bruni et al. (2010); other primer sequences are given in Table S3

(Supporting information) (except RPL30; Cell Signaling). For non-ChIP

analysis, b2-microglobulin (B2M) was used as a reference gene.
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Fig. S1 Heat maps of transcription factor motif enrichment in DNA sequences

of SIRT3 and co-expressed genes for cochlea (A–C), liver (D–F), and kidney

(G–I) datasets based on sequence analysis of the top 25, 50, and 100 SIRT3-

correlated genes in each dataset.

Fig. S2 Effect of DR or fasting on NRF-2 and its target genes, including ERRa,
in the datasets used in this study (neocortex, GSE11291; cochlea, GSE4786;

liver, GSE26267, kidney, GSE24504) as well as a mouse dataset previously

generated by our laboratory (GSE34773, skeletal muscle).

Table S1 Gene set enrichment analysis summary for datasets with significant

induction of SIRT3 in mouse tissue by dietary restriction or fasting.

Table S2 Overrepresented gene ontology terms in the top 50 SIRT3-

correlated genes in each of the four datasets analyzed.
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four datasets analyzed.
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