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ABSTRACT

A detailed petrographic and geochemical study of marine cements from the Permian
Reef of New Mexico and West Texas was undertaken to test the hypothesis that the elemental
chemistry of Permian seawater was similar to today's seawater. It has been proposed that the
Mg/Ca ratio of seawater has varied over Phanerozoic time, resulting in alternating periods of
predominantly aragonite versus calcite precipitation. The Permian reef contains abundant
former aragonite and isopachous marine cements, which may have been formed at a time of a
high Mg/Ca ratio of seawater, perhaps similar to today's ratio of 5:1. Isopachous marine
cements collected from the Permian Reef Complex revealed microdolomite inclusions under
SEM, indicating a mineralogy of former magnesian calcite. Previous studies of the Permian
reef have shown that primary 6180 and 613C isotopic values of these marine cements can be
retained, and where they are preserved, elemental data should be able to be reconstructed,
allowing for a calculation of the Mg/Ca ratio of Permian seawater. Well preserved samples
were distinguished through a combination of petrographic, isotopic, and elemental data. The
Mg content of well preserved samples show some variation, with samples from a neptunian
dike and from crinoids showing the highest amounts of Mg. The variation in Mg content
indicates that isotopically preserved samples might not be preserving their elemental content.
Using a calculated distribution coefficient of 0.023 based on the estimated depth and
temperature of precipitation of these former magnesian calcite cements, a range of 0.870 to
2.91 for the Mg/Ca ratio of Permian seawater was obtained from marine cements. The
neptunian dike, at a Mg/Ca ratio of 2.60 may be the most reasonable estimate. These
estimates for a Permian Mg/Ca ratio are much lower than fluid inclusion data from the same
time period, and more work is needed to find out why this is the case.

INTRODUCTION

Most marine carbonate cements form directly from seawater, and therefore,

can contain records of the Earth's oceans through geologic time. However, these

cements are often composed of minerals that are metastable, such as high-

magnesian calcite (HMC) and aragonite, and so are subject to diagenetic alteration.

Investigating how much of the original features are preserved in a carbonate cement

allows for the characterization of the original composition of the fluid from which the

carbonate formed. From this, questions such as the reconstruction of ancient

seawater chemistry, and inferring changes in the earth processes that control this

chemistry, are possible.

Increasing evidence over the past several decades indicates that the

mineralogy and minor element composition of different mineral phases precipitated
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from seawater have varied over Phanerozoic time. Based on the mineralogy of early

marine cements and ooids, Sandberg (1983) divided the Phanerozoic into intervals

of "aragonite seas" and "calcite seas." Variations in atmospheric CO2 and

icehouse/greenhouse climate conditions were initially suggested as controls on

these mineralogic changes (Sandberg, 1983). More recently, it has been suggested

that this change in the composition of carbonate phases reflects primary changes in

the Mg/Ca ratio of seawater as a result of variation in mid-ocean ridge hydrothermal

activity (Hardie, 1996; Stanley and Hardie, 1998; Cicero and Lohmann, 2001).

Changes in ocean water Mg/Ca have been inferred from studies of marine evaporite

assemblages (Hardie, 1996), evaporated seawater contained in primary fluid

inclusions in marine halites (Lowenstein et al., 2001; Horita et al., 2002), abiotic

carbonate phases (Carpenter and Lohmann, 1992; Cicero and Lohmann, 2001), and

biotic assemblages (Dickson, 2004). From these studies, it has been suggested that

marine carbonate mineralogy is dominated by aragonite and HMC at low latitude

reefal settings during periods of elevated seawater Mg/Ca.

In spite of the many studies conducted within the last decade, collective

knowledge of the Phanerozoic evolution of seawater compositions based on

elemental ratios in marine carbonate cements remains incomplete in that materials

representing the critical time intervals of aragonite precipitation, when the Mg/Ca

ratio of seawater is suspected to be similar to today's ratio of 5:1, have not yet been

examined in detail. Carbonates formed within the massive, reefal facies of the

Permian Reef complex of New Mexico and West Texas contain well-preserved

marine cements, precipitated under proposed "aragonite sea" conditions. This

2



provides a unique locality in which to characterize seawater chemistry during a time

of predominantly aragonite and high-magnesian calcite precipitation. Therefore,

elemental and isotopic chemistry of carbonate cements from the Permian Reef

complex allow for an opportunity to test the hypothesis that the Mg/Ca ratio of

seawater was high during this period, and that Permian ocean chemistry was similar

to today's oceans. An estimate of original seawater chemistry from the Permian

would not only add to the information gained from studies of other Paleozoic

carbonates (which have focused on times of "calcite seas"), but will also be

compared to modern seawater chemistry, in which aragonite is the dominant abiotic

carbonate phase in low latitude reefal settings. Marine carbonate precipitates are

ideal to study because they can provide a more direct way to measure Mg/Ca ratios,

and because abiotic carbonate cements are not plagued with the difficulties involved

with potential vital effects from biotic material.

GEOLOGIC SETTING

Delaware Basin Formation

Late Paleozoic deformation of North America produced a series of basins that

covered much of the present-day southwestern United States, including the

Delaware Basin, located in New Mexico and West Texas (Adams, 1965). The

Delaware Basin, which was formed during this deformational event, was once part of

the much larger basin, the Tobosa Basin (Adams, 1965; Hills, 1984). During the late

Mississippian through the Early Permian, the collision of Laurasia and Gondwana to

form the supercontinent Pangea produced the Ouachita orogeny in the Marathon-
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Delaware Basin region (Kluth and Coney, 1981). The consequences of this

collisional event caused reactivation of PreCambran basement, and block faulting.

Consequently, the Central Basin Platform was uplifted, dividing the Tobosa Basin

into the Delaware and Midland Basins (Hills, 1984). The Delaware Basin subsided

rapidly during the Pennsylvanian in response to the Ouachita orogenic front, and

remained a deep-water basin until the end of the Permian (Ye et al, 1996). During

the Permian, the Delaware Basin was situated in a near-equatorial position along the

western edge of Pangea and reefs began to form along the margin of the basin (Hill,

1996)

Capitan Reef Complex

Adams et al. (1939) was the first to divide the Permian into the Wolfcampian,

Leonardian, Guadalupian, and Ochoan stages based on index fossils. In addition to

the use of fusilinid biostratigraphy and lithological correlations, bentonites have

provided an additional way to determine equivalent Guadalupian stata (Garber et al.,

1989). During the Leonardian, small patch reefs formed, which set the stage for

more extensive reef growth in the Guadalupian (Hill, 1996). The Goat Seep Reef

formed during the Middle Guadalupian time, whereas the more extensively studied

Capitan Reef Complex occurs in Upper Guadalupian strata. The Capitan Reef

Complex outcrops along the southeast margin of the present-day Basin and Range

block-faulted Guadalupe Mountains of New Mexico and West Texas (McKnight,

1984) (Fig. 1). The Capitan Limestone has been extensively studied, as it is one of

the best exposures of a fossil reef in the world. Numerous canyons cut
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perpendicular to the northeast-southwest trend of the Guadalupe Mountains,

providing excellent exposures of the reef complex.

Lloyd (1929) was one of the first researchers to interpret the Capitan

Limestone as a fossil reef, and noted that lateral changes in rock lithologies

represented a transition of facies from backreef to reef, forereef, and basin. Many

other researchers such as Kendall (1969), Cys et al. (1977) and Garber (1989) have

all expanded on the facies concept, and what each facies represents. The Middle

Guadalupian facies consist of the backreef Grayburg and Queen Formations, the

Goat Seep Dolomite, and the basinal Cherry Canyon Formation. The Upper

Guadalupian facies are composed of the backreef Seven Rivers, Yates, and Tansill

Formations, the reefal Capitan Limestone, and the basinal Bell Canyon Formation

(Fig, 2).

Major facies of the backreef region include the coastal sabkha/ playa made

up of red siltstones, gysum and dolomite, and the tidal flat/ lagoon which contains

mostly dolomite and evaporates. The lack of fossil diversity in the shelf facies

indicates elevated salinities (Babcock, 1977), and the presence of the alga Mizzia

indicates shallow water conditions (Kirkland and Chapman, 1990). A pisolite shoal

characterized by pisolitic dolomitic limestones and tepee breccias may represent the

shallowest position of the reef, although this is contested (Kirkland-George, 1992).

The reef facies consists of an organic framework of calcareous sponges, algae,

bryozoans, and other organisms bound together with inorganic cements to make a

wave-resistant structure (Babcock, 1977; Yurewicz, 1977). The forereef had a steep

slope, and consisted of mainly debris talus from the reef facies. The forereef grades
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into the basinal facies, which consists of siltstones and sandstones that interfinger

with limestone and dolomite.

The Capitan Limestone, which, along with equivalent shelf and basinal

sediments, makes up the Upper Guadalupian strata, consists of a massive reef

member that forms unbedded steep cliffs, and a thickly bedded forereef member.

The Capitan Limestone is underlain by the older Goat Seep Dolomite (Crawford,

1989) and extends basinward beyond the Goat Seep Dolomite, indicating that the

Capitan Limestone prograded laterally during its development (Hill, 1996). The

massive reef member is primarily composed of boundstone lithologies, which

contain the framebuilding problematical (algal?) genera Tubiphytes and

Archaeolithoporella, calcareous sponges, and bryozoans, and abundant cement

(Mruk, 1985). There is a diverse marine fauna in addition the framebuilding

organisms which include brachiopods, fusilinids, bivalves, gastropods, ostracodes,

echinoderms, cephalopods, trilobites, and corals, suggesting a normal marine

environment (Babcock, 1977). Yurewicz (1977) found that the lower and middle

parts of the massive facies may have formed in relatively deep water with low

turbulence based on a lack of fossil zonation, however Babcock (1977) suggested a

shallower origin for the upper part of the massive facies based on differing ecologic

communities. The forereef member of the Capitan Limestone is also called the talus

member since it contains boundstone debris derived from the reef (Kendall, 1969).

The debris was probably emplaced by rockfalls, submarine slumps, slides, turbidity

currents, and debris flows (Melim and Scholle, 1989). The forereef member shows

patchy dolomitization (Mruk, 1985). Yurewicz (1977) divided the Capitan Limestone
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into the lower, middle, and upper Capitan corresponding to the Seven Rivers, Yates,

and Tansill Formations, respectively. The lower Capitan records a rapid

progradation of the reef into the basin; whereas, the middle and upper Capitan

shows more of an aggradation, with a steepening slope margin and decrease in

debris to the basin. By Tansill time, evidence points to an increase in evaporative

conditions and salinity, which resulted in the end of reef formation (Hill, 1996). The

demise of the Capitan reef may have been due to increased climate aridity,

restricted circulation of marine waters as the Hovey channel became cutoff, or uplift

and exposure of the reef (Garber et al, 1989).

PREVIOUS RESEARCH

Petrography

The petrographic relationships of the marine cements within the Capitan Reef

Complex have been extensively studied. Yurewicz (1977) and Mazzullo and Cys

(1977) defined the cements present in the Capitan Reef, and subsequently Mruk

(1985) and Given and Lohmann (1985) petrographically refined these definitions.

Overall, there are three major cement types: botryoidal fibrous, isopachous fibrous,

and equant spar. The botryoidal fibrous and isopachous fibrous are interpreted to

have formed in a synsedimentary environment because they are intergrown with

algal coatings and marine sediments (Yurewicz, 1977). The botryoidal fibrous

cements occur as void-filling botryoidal arrays, or nodular growths associated with

the problematical alga, Archaeolithoporel/a (Yurewicz, 1977). Based on the acicular

nature of the fibrous arrays and on the basis of their optical properties and blunt
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terminations, the botryoidal cements are interpreted to have precipitated as an

original aragonite composition (Yurewicz, 1977; Mazullo and Cys, 1977; Mruk,

1985). The former aragonite cements locally comprise up to 80% of the carbonate

in the Upper Capitan massive facies (Given and Lohmann, 1985; Mruk, 1985).

Isopachous cements, which comprise radial fibrous (and possibly fasicular optic,

Rahnis and Kirkland, 1999), radiaxial fibrous and prismatic cements occur as layers

of light to dark brown crystals which uniformly coat the substrates on which they

precipitate, and are interpreted to have formed either after the aragonite cements

(Mruk, 1985), or potentially deeper in the reef . Based on the presence of radiaxial

extinction and microdolomite inclusions, these isopachous cements are interpreted

to have been precipitated originally as magnesian calcite cements (Lohmann and

Meyers, 1977; Mruk, 1985; Given and Lohmann, 1985).

Under cathodoluminescent microscopy, both the former aragonite and

magnesian calcite cements show a patchy mixture of areas of luminescence and

nonluminescence (Mruk, 1985; Given and Lohmann, 1985). As the quality of

preservation deteriorates, luminescence increases, indicating that diagenesis of

these cements has resulted in a mixture of a luminescent and nonluminescent

phases, which form a linear covariant trends in stable carbon and oxygen isotope

plots. The convergence of trends from samples taken along an Upper Capitan

paleoslope allowed Given and Lohmann (1985) to derive an average original

isotopic composition of the nonluminescent phase based on former aragonite

samples of -2.5 %o 8180, and + 5.3 % &8C. The marine isotopic signature remained

constant throughout the reef and foreslope facies, indicating that the Delaware Basin
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was a well mixed water mass. However, there is an enrichment in 5180 towards the

end of the Guadalupian, which suggests increased restriction of the Delaware Basin.

After cementation of the reef by aragonite and magnesian calcite cements,

much of the remaining porosity was filled by clear, equant sparry calcite cements.

Under cathodoluminescence, these cements show alternating nonluminescent and

brightly luminescent couplets, which may be related to more rapid oxidizing flow and

decreased flow with more reducing conditions, respectively (Mruk, 1985). Based on

the relatively constant oxygen isotope composition and the enrichment in carbon

isotopic composition with increasing paleodepth, Given and Lohmann (1986)

concluded that Spar I represents the establishment of a meteoric-phreatic system in

the reef facies. Mruk (1985) and Crysdale (1986) suggest that Spar 11 was

precipitated in an elevated temperature regime in a burial phreatic system. More

recently, Hill (1996) believes that Spar II is related to the uplift of the Basin and

Range instead of burial.

Preservation of the Capitan Reef Complex

Prior work by Given and Lohmann (1985, 1986) has demonstrated that

primary marine 873C and 8180 isotopic compositions can be obtained from these

ancient cements through detailed petrographic and geochemical analyses. In the

Permian Reef Complex, both former aragonite and magnesian calcite cements were

examined. Given and Lohmann (1985) showed that microsampling of the mixture of

luminescent and nonluminescent phases produces linear covariant trends which

converge at primary marine cement values. Interestingly, the former aragonite and
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high-magnesian calcite cements converge at differring primary marine values with

an offset similar to modern aragonite and high-magnesian calcite cements,

indicating that the primary marine values of both mineral phases were in fact

preserved during diagenesis. The original marine value is for high-magnesian

calcite is shown to have a 8180 of -2.7 %o and a 813 C of 4.3 %o (Carpenter and

Lohmann, 1997). Where oxygen isotopic compositions of the marine cements are

preserved, water/rock ratios can be inferred to have been very low (i.e. a "closed"

system), and so stabilization under closed system conditions allows the original

marine isotopic values of the dissolving phase to be imprinted on the secondary

diagenetic phase which was isolated from exchange with external secondary fluids.

METHODS

Field work was conducted during the summer of 2004, and consisted of

sampling from the massive reefal facies of the Permian Reef Complex in New

Mexico and West Texas. Samples were taken from both Bear and McKittrick

Canyons. Slabs were cut from each sample, polished, and diamond polished thin

sections of the areas with the highest density of isopachous cements were made.

The thin sections of Permian marine cements were examined by polarizing and

cathodoluminescence microscopy to distinguish between primary marine

components and later diagenetic phases. Cathodoluminescence microscopy was

performed on a Technosyn cold cathodoluminescent Model 8200 Mk II unit at 15 kV

with a 150-450 pA beam current.
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Samples deemed well preserved from cathodoluminescent microscopy were

selected and carbon-coated for scanning electron microscopy analysis. Analysis

was undertaken using a Hitachi S3200 SEM to locate microdolomite inclusions in

isopachous marine cements using backscatter electron images to support an origin

of high-magnesian calcite for these cements. The SEM was also used to

characterize the distribution and shape of the microdolomite inclusions, as well as to

give a qualitative idea as to their chemical composition. Crinoids, where present,

were also analyzed. The leaching technique of Glover (1961) was used to etch the

polished surface of one thin section with cold 0.17 M EDTA to develop slight relief

such that microdolomite inclusions would stand out. In subsequent samples that

were not etched with EDTA, it was determined that etching was not necessary to

reveal the inclusions on BSE images. Volumes of microdolomite inclusions in

isopachous cements and crinoids were estimated using a computer imaging

program which quantified areas in the BSE images according to their gray-level

scale. Back-scattered electron imaging obtained during scanning electron

microscopy work helped to determine the best sampling techniques for the

magnesian calcite cements for isotopic and elemental analysis.

Two sampling techniques were utilized during this study to obtain carbonate

material for geochemical analyses. Initially, bulk samples were drilled from areas of

isopachous marine cement on polished rock chips using a microscope-mounted drill

assembly. Bulk samples were acquired first to resolve which samples would be best

utilized for more precise sampling. These analyses established an overview of the

813C and 6180 isotopic variation as well as the elemental variation of Sr, Mg, Mn, Fe,
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and Ca in the reefal sequence. High-resolution sampling was performed using a

Merchentek Micromill on diamond polished thin sections of selected rock chips.

Sample areas were digitized and drill paths interpolated along areas of isopachous

marine cement that showed the least luminescence under cathodoluminescence

evaluation. A computerized X-Y-Z stage was used to mill out the interpolated drill

paths.

Approximately equal size splits of carbonate powder from the bulk samples

and high-resolution samples (-20 pg each) were taken for stable isotope and

elemental analyses. Samples taken for stable isotope analysis were roasted in a

vacuum at 200*C for one hour to remove volatile contaminants and water. Samples

were then reacted at 760 ± 20C with anhydrous phosphoric acid in a Finnigan MAT

Kiel device coupled to a Finnigan MAT 251 isotope-ratio mass spectrometer.

Isotopic ratios were corrected for 170 contribution and adjusted for acid fractionation

and source mixing by calibration to a best-fit regression line defined by the

standards NBS-18 and NBS-19. Precision of the data is better than 0.1% for carbon

and oxygen isotopes, and is maintained through daily analysis of carbonate

standards. All stable isotope data are reported in %o notation relative to VPDB.

Splits of the identical sample powders used for isotopic analyses were

measured for Mg, Ca, Sr, Mn, and Fe contents using a High Resolution Finnigan

Element ICP Mass Spectrometer. Powdered samples were dissolved in 1.2 ml of

dilute 1% HNO3 plus 2% HCI spiked with Indium as an internal standard. Samples

were then further diluted with 1% HNO3 diluted with Indium as an internal standard.

Paired isotopic and elemental analyses are important, as the preservation of
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elemental chemistry is based on the retention of primary isotopic values. Precision

of the elemental analyses were better than 2%, and precision of the Mg/Ca ratios

were better than 0.3%.

Electron microprobe study allowed for the differentiation and analysis of

microdolomite inclusions versus the surrounding calcite cement in former

magnesium calcite cements and crinoids through spot analyses of the inclusions and

calcite. Microdolomite inclusions and the surrounding host calcite were randomly

sampled with the same operating conditions to allow comparison of these two

components. Concentrations of Ca, Mg, Mn, Fe, and Sr were determined on a

Cameca SX100 microprobe with an accelerating voltage of 15 kV, beam current of 4

nA, a beam diameter of 2 pm, and a counting time of 10 s. Detection limits were

1670 ppm for Ca, 600 ppm for Mg, 1430 ppm for Fe, 1400 ppm for Mn, and 3580

ppm for Sr. Analysis of these isopachous cements on the electron microprobe

provided a crucial check on the data obtained from the ICP-mass spectrometer.

RESULTS

Examination of isopachous marine cements under a polarizing microscope

revealed that the cements form layers of cloudy gray to brown crystals which

uniformly coat the surfaces where they precipitate. Isopachous cements often coat

fossil materials such as Archaeolithoporella, Tubiphytes, bryozoans, brachiopods,

sponges, and fusilinids. Isopachous cements were also seen to coat aragonite

botryoids. Most crystals observed displayed radiaxial-fibrous optical properties, in

which twin planes, where visible, were curved concave-upwards towards the tip of
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the crystal, and undulose extinction in which the extinction direction migrated in the

same direction as which the microscope stage was turned. Radiaxial-fibrous calcite

is unique in that it has been associated with former high-magnesian calcites

(Lohmann and Meyers, 1977).

Differing optical properties were seen in other areas of the isopachous

cements. Small areas within the cement or certain layers within a continuum of

isopachous crystals displayed radial-fibrous or fasicular-optic extinction properties.

In most cases, fasicular-optic crystals were initially observed, in which undulose

extinction migrated in the opposite direction of the way the microscope stage was

turned. On closer examination, the fasicular-optic crystals resolved themselves into

smaller crystals, each with radial-fibrous properties (straight twin planes and unit

extinction). Thus, it seems that the radial-fibrous crystals were in the process of

coalescing to form fasicular-optic calcite, although these two crystal forms were

much rarer overall than radiaxial-fibrous calcite.

Under cathodoluminescent microscopy, isopachous calcite cements

displayed a range of properties based on their level of preservation. Well preserved

cements showed a relatively dark, but still dull orange luminescence. As

preservation levels decreased, the dull orange luminescence became brighter, and

interspersed with small brightly luminescent orange areas, imparting a patchy, or

blotchy appearance to the calcite. Some samples showed alternating layers of

bright orange luminescence and dark dull orange luminescence. Poorly preserved

cements displayed large areas of bright red luminescence indicating secondary

dolomite overgrowth. The crystal terminations in the isopachous layers display a
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progression of probable meteoric alteration, as larger crystals grade into even larger

calcite spars with alternating bands of bright orange luminescence and

nonluminescent layers. More poorly preserved isopachous cements often show

large red rhombic dolomite crystals at the termination of calcite crystals (Fig. 3 and

Fig. 4).

Crinoids were not especially numerous in samples from the Permian Reef.

However, where present, crinoids were easily identifiable under polarizing

microscopy by their generally larger size than other skeletal material, and the unit

extinction of their crystals. Under cathodoluminescence, crinoids were most often

nonluminescent. They were very easily identifiable under cathodoluminescence

because they were usually the only completely nonluminescent component in thin

section. Occasionally, a crinoid was brightly luminescent, or had a nonluminescent

core with a luminescent outer layer. Nonluminescent crinoids were taken to be the

least altered, and were further analyzed (Fig. 5).

SEM studies revealed that the inclusions were dolomite in composition, and

that overall, microdolomite inclusions were more numerous in the crinoids than in the

former magnesian calcites. The cements contained mostly anhedral to subhedral

dolomite inclusions which ranged in size from 5-30 pm across. In some samples the

size of the dolomite inclusions were about the same average size, however in other

samples there was a large variation in the size of the inclusions (Fig. 6). Dolomite

that was clearly from an external fluid source occurred at the outer edges of the

cements and was much larger, at over 100 pm across. In general, microdolomite

inclusions tended to occur in bands or in patches in the isopachous cements,
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although their distribution in selected samples, such as one from a neptunian dike in

McKittrick Canyon, was more uniform. Volumes of microdolomite inclusions overall

ranged from 0.460% to 6.86%, with a mean of 3.46%. The neptunian dike showed

the highest density of all the samples, at over 6.00% (Fig. 7A, 7B).

Microdolomite inclusions in the crinoids were more numerous and more

uniformly distributed than those in the isopachous cements. The inclusions were

approximately equal in size to those in the isopachous cements; however, in some

cases the inclusions were more subhedral than anhedral. This was the case with

most of the crinoids observed, however there was one sample in which some

stereom structure was visible, and the microdolomite inclusions were not well

developed into rhombic crystals but dolomite was found in and around the stereom

structures. The range in volume of microdolomite inclusions in the crinoids

examined was 8.38% to 17.1%, with a mean of 13.4%.

Porosity in most of the marine cement and crinoid samples was

approximately 5%. This porosity was not accounted for in volume estimates of

microdolomite inclusions, meaning that the porosity was assumed to contain calcite.

In fact, some microdolomite inclusions were probably present in at least some of the

current pore space. It is difficult to know exactly how much of the porosity was

occupied by dolomite, and so we can only say that estimates of microdolomite

volumes are minimum estimates only, with actual amounts of microdolomite slightly

higher.

Microprobe analysis of the inclusions and surrounding calcite in the

isopachous cements and crinoids revealed that magnesium was concentrated in the
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inclusions in both components. No appreciable magnesium was found in the

surrounding host calcite, indicating that it is indeed a low-magnesium calcite. A 48-

50 mole % magnesium occurred with highest frequency in the microdolomites found

in isopachous cements (Fig. 8). Some microdolomites had a lower magnesium

content, which is probably because they were located under a thin layer of calcite,

as indicated by the fact that some inclusions appeared to not be in focus while

surrounding inclusions were in focus under the BSE viewer. Magnesium content of

crinoids also revealed a 48-49 mole % magnesium with highest frequency. The

slight calcium enrichment of the microdolomite inclusions is probably an artifact of

the microprobe analytical procedure related to vaporization of CO2 from the

surrounding carbonate (see Lohmann and Meyers, 1977).

The stable carbon and oxygen isotopes of the former magnesian calcite

cement show a similar linear covariant trend to that of Given and Lohmann (1985)

when plotted together (Fig. 9). The cement from Bear Canyon displayed two linear

covariant trends. The upper trend follows a linear path from the proposed Permian

original marine value at a 6180 of -2.7 %o and a 813 C of 4.3 %o towards Spar II at

about -12 6180. The data points along this trend indicate mixing between one

calcite phase that retains the original Permian 6180 and 813 C marine values and

Spar II, which probably involves a deep burial fluid. The lower trend from Bear

Canyon also follows a linear path which begins at the original marine value but

slopes steeply down towards Spar I at -8 % 6180. Spar I may be meteoric in origin

(Given and Lohmann, 1986). Stable isotopes from McKittrick Canyon also show a

linear covariant trend, however this trend does not extend nearly as far towards the
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calcite spars as does the trend from Bear Canyon, which probably reflects the extent

of sampling from McKittrick Canyon. Although more of the data from McKittrick

Canyon are clustered around the original Permian marine value, the trend extends

above the original marine value to a slightly heavier carbon value. Many of the

samples with more positive carbon also contain elevated iron contents, indicating

that they may be diagenetically altered, and not reflect the original isotopic

composition of Permian marine water.

The elemental data confirm that the former magnesian calcite cements

chosen for sampling, which have a dark dull luminescence, have low levels of Mn

overall (Fig. 10 and Fig. 11). The Fe content is variable, with more well preserved

samples presumably having lower amounts of Fe. A clustering of samples with a

Fe/Ca (mmol/mol) content of less than 0.150 was used as an indicator of more well-

preserved samples. Samples that fell into this grouping were used to calculate a

Mg/Ca ratio of Permian seawater. Marine cements showed variable amounts of

magnesium, but most commonly values ranged between 1.0-3.0 mole % MgCO3.

Samples from the neptunian dike showed the highest magnesium content, at the

upper range of values. Crinoids in general had much more magnesium than the

cements, with values ranging from 3.0-6.0 mole % MgCO3.

The elemental Mg contents obtained from the ICP-MS correspond well to the

volumes of microdolomite estimated from BSE images. To convert from a mole %

MgCO 3 to a volume of dolomite, it must first be noted that the formula for dolomite is

Cao.5Mgo.5CO3. If a magnesian calcite rock containing 10 mole % MgCO3 and 90

mole % CaCO 3 dissolves and reprecipitates to form dolomite and calcite, then for
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every dolomite formed, 0.5 moles of Mg goes to the dolomite formation, and there is

9.5 mole % MgCO3 left. As dolomite is progressively formed, 20 units of dolomite

can be formed from a 10 mole % MgCO3. Thus, doubling the mole % MgCO3 of a

sample should give an estimate of the volume % of microdolomites it should contain.

As an example, the neptunian dike contained approximately 6.0 volume %

microdolomite inclusions, and thus contained 3.0 mole % MgCO3 when examined

with the ICP-MS. Likewise, crinoids contained an average of about 13 volume %

microdolomite inclusions, and had a 6.0 mole % MgCO3.

Sr data showed two distinct linear trends on a Sr/Ca versus Mg/Ca plot.

Interestingly, samples mostly from McKittrick Canyon, with the exception of one

sample from Bear Canyon, plot on the top trend containing elevated amounts of Sr.

The bottom trend contains samples solely from Bear Canyon. Regression lines

through each of these trends yield regression coefficients of only 0.34 and 0.39, with

Sr/Mg slopes of 0.0025 and 0.0009, respectively. These Sr/Mg values are much

lower than estimates from other time periods in the Phanerozoic (Cicero and

Lohmann, 2001).

DISCUSSION: The MglCa Ratio of Permian Seawater

Geochemical Models

Geochemical models have been proposed for the entire Phanerozoic which

predict that the Mg/Ca ratio of seawater varied between 1.0 and 5.0 throughout this

time (Wilkinson and Algeo, 1989; Hardie, 1996). These oscillations also coincide

with other global cycles such as sea level, icehouse versus greenhouse conditions,
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and atmospheric CO2. The Hardie (1996) model uses estimates of the supply of Mg

and Ca to the ocean by rivers, exchange of these elements by hydrothermal fluids

generated at mid-ocean ridges, and removal of these elements by precipitation of

carbonates and evaporites. A major sink of Mg2 + is dolomitization, which is

incorporated into some models, although estimates of dolomite abundance through

time can vary (Holland and Zimmermann, 2000).

Geochemical model estimates for the Mg/Ca ratio of seawater from the

Permian differ. The Hardie (1996) model, which is based on variations in ocean

crust production as estimated by the Phanerozoic sea level curve, shows multiple

small-order oscillations during the Mississippian through Jurassic time, with Mg/Ca

ratios falling from a high of 4.5 during the late Pennsylvanian/early Permian to a low

of 3.0 during the late Permian. Mg/Ca values rise slightly at the end the

Permian/beginning of the Triassic up to 3.5. The Wilkinson and Algeo (1989) model

shows a similar high in Mg/Ca during the early Permian, however the magnitude is

lower, at only about 2.8. Mg/Ca then falls during the late Permian/lower Triassic to

1.0. Thus, it is evident that estimates from the Permian vary widely, with values as

high as 4.5 to values which drop to as low as 1.0. However, for the majority of

Permian time, the two models seem to agree that the Mg/Ca ratios appear to have

been higher than other times such as earlier in the Paleozoic, with values most likely

around 3.0.
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Fluid Inclusions and Evaporite Mineralogy

Modern evaporated seawater produces brines which are depleted in the

concentration of Ca2+, and which are considered MgSO4 rich. Sedimentary basins

such as the U.S. Gulf Coast contain volumes of brine at depth with high

concentrations of Ca2+, and are distinct from modern seawater. Since evaporative

concentration of modem seawater results in brines depleted in Ca2+, this suggests

that these different basinal brines inherited their chemistry from evaporated

seawater formed during times when oceans were enriched in Ca2+ and depleted in

SQ42- (Lowenstein et al., 2003). Geologic periods, such as the Permian, which have

elevated magnesium ion and sodium ion concentrations coincide with periods when

aragonite and MgSO4 salts were important marine precipitates. In contrast, periods

where the Mg/Ca ratio of seawater is less than 2 coincide with times when seawater

was depleted in Mg and Na, calcite is the dominant carbonate precipitate, and

evaporites contain K, Mg, and Ca chloride salts (Lowenstein et al., 2001). Hardie

(1996) has compiled data which indicate that times when aragonite cements are

abundant coincide with the presence of MgSO4 evaporite deposits; whereas when

calcite is the predominant abiotic precipitate, KCI evaporites are precipitated.

Fluid inclusions within halites of these evaporite deposits have also been

used to reconstruct ancient seawater chemistry; however, there can be problems

involved when using these ancient fluid inclusions. First, the brines trapped as

inclusions may or may not be derived from seawater. The inclusions may record the

ancient seawater chemistry, or they may be the result of what is termed

syndepositional recycling, a process in which meteoric water inundates the basin
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thereby dissolving the original salts (Timofeeff et al., 2001). Inclusional brines are

also not simply the parent seawater concentrated into the brine because of the

precipitation of minerals during brine evolution. Modeling techniques must be used

to extrapolate and back-calculate the individual ion compositions of ancient

seawater. These techniques can be complicated both from the addition of external

waters and from effects of dolomitization (Timofeeff et al., 2001).

Horita et al. (1991) studied brine inclusions in marine halite from the Permian

Salado Formation in the Delaware Basin and found that the composition of Permian

seawater was probably similar to modern seawater. Horita et al. (2002) expanded

on these studies and found that at a minimum, the magnesium ion concentration of

Permian seawater was 48 mmol/kg H20. Since some of the inclusional brines have

been modified by in-basin dolomitization, the magnesium content is only a minimum

estimate. Estimates of the sulfate ion concentration were 16 mmol/kg H20 at a

minimum, and calcium ion content was a minimum of 14 mmollkg H20. Horita et al.

(2002) translated their data into an estimate of the Mg/Ca ratio of Permian seawater

to be similar to today's, at 5.2. Lowenstein et al. (2001) also found that the

composition of fluid inclusions in marine halites from the Permian most closely

resembled modern seawater. Calculated Permian Mg/Ca ratios were always higher

than 2.5, and sometimes higher than 4.

Echinoderm Data

Dickson (2002, 2004) has investigated the use of echinoderms in

reconstructing ancient seawater chemistry. Although in the past echinoderms have
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not been used as potential proxy for marine Mg/Ca ratios because of their

susceptibility for diagenetic alteration, echinoderms, like some marine cements,

have the potential for closed-system diagenesis, and can alter from a high

magnesian calcite to a mixture of calcite and dolomite that preserves the original

bulk composition. It appears that the Mgt} composition of marine echinoderms rises

and falls in phase with the other Phanerozoic oscillations in Mg/Ca predicted by

others (Dickson, 2004).

Although Dickson's echinoderm data generally follow the trends set by others

for the Mg/Ca ratio of seawater over time, the echinoderm data differ substantially

when changes over shorter time intervals are considered. Prediction of seawater

Mg/Ca ratios from echinoderms also has disadvantages as Mg partitioning during

growth of the echinoderm is not understood well, and therefore accurate prediction

of the Mg/Ca ratio of seawater is uncertain. Even when modem echinoderms have

been examined, it appears that different parts of an echinoderm partition Mg

differently than other parts (Ries, 2004). Even if a distribution coefficient of Mg for

modern echinoderms could be reliably calculated, this distribution coefficient could

be very different for differing species of echinoderms in the past. Care must also be

taken to minimize the possibility that crinoids examined were not formed in colder

waters, as this would also affect Mg partitioning. Diagenetic alteration of the crinoids

also must be examined in detail as to assure closed-system diagenesis. Under

cathodoluminescence, crinoids that have been altered are more readily seen as

highly luminescent. Crinoids can show varying amounts of luminescent intergrowth

under cathodoluminescence, and analysis of Mg contents of a brightly luminescent
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crinoid would result in an inaccurate assessment of how much Mg may have been

present in the crinoid before it was altered.

Data from the Upper Permian from echinoderms reveal averages of 7.7, 8.5,

and 9.6 mole % MgCO3. The range, however, is quite large, spanning from

approximately 6.5 to 13 mole % MgCO3 (Dickson, 2004). This translates into

average estimates of the Mg/Ca ratio of seawater for the Permian to be 2.2, 2.5, and

2.9, with a range from 1.5-2.5. These estimates are considerably lower than

estimates from fluid inclusions of Permian age.

Estimating a Mg/Ca Ratio of Permian Seawater from the Permian Reef

Complex

Since the isopachous marine cements of the Permian Reef show radiaxial

extinction, and because of the presence of microdolomite inclusions revealed under

SEM, these cements are most likely former magnesian calcite cements (Wilson and

Dickson, 1996; Lohmann and Meyers, 1977). Since magnesian calcite is a

metastable carbonate phase, there is a diagenetic drive towards the formation of

more stable phases, namely calcite and dolomite. Thus, stabilization of magnesian

calcite occurs through dissolution-precipitation reactions because of the metastability

magnesian calcite, and because of the solubility differences between magnesian

calcite, low-magnesian calcite (LMC) and dolomite. In a most likely scenario, trapped

diagenetic fluids in the system dissolve the magnesian calcite, and precipitate stable

LMC. When the Mg/Ca of fluid increases to point where magnesian calcite

dissolution is inhibited, dolomite is precipitated, resulting in the formation of
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microdolomite inclusions. In this manner, microscale dissolution of the magnesian

calcite, followed by magnesium enrichment of the solution, followed by the

precipitation of LMC and dolomite results in the diagenetic fabric of these former

magnesian calcite Permian marine cements. Since these dissolution-precipitation

reactions occurred in a closed system manner, as suggested by the preservation of

primary marine isotopic signatures in the Permian Reef, elemental compositions of

the calcite phases (namely magnesian calcite cement) should also be preserved.

From the Mg/Ca of the former magnesian calcite cement, the Mg/Ca ratio of

seawater can be calculated because the Mg/Ca of the mineral phase is related to

the Mg/Ca of the liquid via the distribution coefficient of magnesium into calcium

carbonate.

DMg = Mc/Ca calcite
Mg/Ca liquid

In order to calculate the Mg/Ca ratio of seawater, however, the best value for

the Mg/Ca of the former magnesian calcite cements and the best distribution

coefficient must be determined. The volume of microdolomite inclusions was

determined through SEM studies. Assuming that a value of 6.0%, such as the

values found from the neptunian dike represents a reasonable number for the

volume percent of microdolomite inclusions, this would be equivalent to a magnesian

calcite containing about 3.0 mole % MgCO 3. If these Permian marine cements were

high magnesian calcite cements, there has been some magnesium lost. One would

expect that if aragonite and high magnesian calcite cement are the most common

abiotic precipitates during times of high seawater Mg/Ca, then the magnesian calcite

cements of the Permian reef would also be of high magnesian calcite mineralogy,
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but perhaps this is not the case. The presence of a later luminescent calcite phase

visible under cathodoluminescence does account for some loss of Mg. Under

cathodoluminescence it appeared that about half of the present volume of the

isopachous calcites consisted of former magnesian calcite and the other half

consisted of the younger luminescent calcite phase. This would indicate that the

amount of magnesium present in the neptunian dike sample could be corrected from

3.0 mole % MgCO3 to 6.0 mole %. This value agrees with the higher amounts of

magnesium found in the crinoids, and may mean that magnesium has been lost from

the former magnesian calcite cement but retained in the crinoids. This is supported

by the presence of more microdolomite inclusions in the crinoids and the lack of

luminescent intergrowth in the crinoids sampled.

Hasiuk (2005) analyzed crinoids and marine cements from Muleshoe Mound

in the Mississippian Lake Valley Formation, and isolated nonluminescent crinoids as

well as crinoids of varying luminescence for isotopic and elemental analysis. The

nonluminescent crinoids were found to be isotopically and elementally similar to the

marine cements. The crinoids also plot closer the original isotopic marine value for

the Mississippian, indicating that they are well preserved. Luminescent crinoids

appear to have lost Mg when they were diagenetically altered, indicating that

nonluminescent crinoids from the Permian reef may record a Mg value that is more

representative of the true Permian Mg/Ca ratio, however Mg partitioning in crinoids

still remains problematic.

The low amount of magnesium found in the former magnesian calcite

cements could also been explained by temperature. In modem environments,
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higher magnesium incorporation into calcium carbonates occurs in shallow, warm,

tropical settings, whereas calcites with lower magnesium contents occur higher

latitudes, or at greater depths (i.e. colder temperatures) (Major and Wilbur, 1991).

Abiotic marine calcites from modern shallow water tropical settings (25-29°C)

contain 14-18 mole % MgCO 3, whereas at a depth of 200m, 14 mole % MgCO3

form, and at temperatures of 15-20°C, 12-15 mole % MgCO3 form (Videtich, 1985).

Former magnesian calcite cements in the Permian Reef usually occur lower in the

reef than aragonite cements, indicating that they formed at greater depths and/or

temperatures. Based on estimates of water depth above the reef (Weidlich and

Fagerstrom, 1999), reefal height, and where samples were collected, a maximum

depth of precipitation of the magnesian calcite samples collected is about 200m, and

so seawater temperatures were probably cooler where magnesian calcites were

being precipitated.

In order to predict seawater Mg/Ca ratios from former magnesian calcite

cement data, Mg2l partitioning must be understood, which makes estimating a

distribution coefficient (D) problematic. Laboratory studies can provide an

understanding as to the factors which control magnesium incorporation into calcite,

and this has been investigated extensively. It has been found that DMg values

increase with increasing temperature and Mg/Ca of the solution, and decrease with

increasing SO4
2 (Katz, 1973; Mucci, 1987; Mucci and Morse, 1983; Mucci et al.,

1989). The effect of precipitation rate and PCO2 on magnesium partitioning are still

controversial (Given and Wilkinson, 1985; Burton and Walter, 1991; Mucci and

Morse, 1983; Hartley and Mucci, 1996). Unfortunately, results of laboratory
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experiments conducted at conditions similar to tropical reefal environments

underestimate the observed composition of modern marine high magnesium calcites

by 4-6 mole % MgCO3 (Videtich, 1985; Burton and Walter, 1991; Hartley and Mucci,

1996).

Given the molar Mg/Ca ratio of seawater, Carpenter et al. (1991) estimated a

mean distribution coefficient for Mg for modem abiotic calcite from Enewetak Atoll to

be DMg = 0.034. Using this distribution coefficient, and a Mg/Ca molar ratio of the

Permian marine cements of 0.06, we get a Mg/Ca ratio of only 1.76 for Permian

seawater. Assuming that these former magnesian calcite cements formed in cooler

waters, and assuming that today a HMC of 12 mole % MgCO3 would form at a depth

of 200m, using today's Mg/Ca ratio of 5.14, a distribution coefficient of 0.023 can be

calculated. Using this modified distribution coefficient and applying it to the marine

cement in the neptunian dike containing a modified mole % MgCO3 of 6.00

(assuming a luminescent intergrowth of 50%), we come out with a Mg/Ca ratio of

Permian seawater to be 2.60, which is obviously much lower than the Mg/Ca ratio of

today's seawater. This estimate of 2.60 is also just about the highest estimate from

the Permian reef. If we take the Mg/Ca ratios of the best preserved samples

according to Fe content, meaning that samples containing more than 0.150

mmol/mol Fe are discounted, then estimates for the Mg/Ca of Permian seawater

from former magnesian calcite cements range from 0.870 to 2.97, with an average of

1.50. These values were calculated with a DMg of 0.023. Crinoids were not

numerous enough in the samples from the Permian reef to provide a solid estimate

of Permian Mg/Ca, and they also grew closer to the ocean surface, which would
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mean a different distribution coefficient must be used. Thus, the "best estimate" of

2.60 from a well-preserved neptunian dike sample seems to be on the high end of

estimates for the Permian Mg/Ca of seawater, however if many of the samples are

showing Mg loss, then perhaps a high estimate is reasonable (Table 1).

While the estimate of 2.60 is lower than the Mg/Ca ratio of today's oceans (at

5:1), it does fit with estimates from other studies. In fact, this estimate is similar to

that of the geochemical models, which seem to agree around a value of 3.0 for the

Permian. Estimates from crinoids also seem to agree, as Dickson's best averages

give estimates of Permian seawater around 2.5, although the range is very great,

which is somewhat troubling. Fluid inclusion Mg/Ca values seem to generally be

higher than estimates from models, crinoids, and marine cements. Lowenstein

(2001) revealed values that were always above 2.5, and sometimes higher than 4.0.

Estimates from Horita et al. (2002) were even higher, at 5.2. Therefore, it seems

that estimates from crinoids and from this study of marine cements reveal lower

Mg/Ca ratios of Permian seawater than fluid inclusion data (Fig. 12). In such a case,

either the crinoid and marine cement data are underestimating the Mg content of the

Permian samples, or the fluid inclusion data are overestimating the amount of Mg

present in their samples.

Since it has been shown that the marine cements from the Permian reef can

retain their original isotopic composition, it was proposed that the isotopically well

preserved samples should preserve their elemental values. Therefore, it seems that

well preserved samples should show a more uniform Mg content, however there is a

large variation in the amount of Mg, making it hard to decide on a reasonable Mg/Ca
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ratio of Permian seawater from these marine cements. It seems that the crinoids

retain more Mg, however it is unknown whether vital effects may have played a role

in retention of Mg in crinoids. Thus, the estimate from marine cements of 2.60 for

the Permian is not an absolute. And so, either the Permian seas did not contain as

much Mg as might have previously been thought, or they may have contained high

amounts of Mg, which are not retained by these marine cements or crinoids.

CONCLUSIONS

Well preserved samples of former magnesian calcite cement from the

Permian Reef Complex were obtained by a variety of methods. Petrographically,

those samples with the darkest luminescent properties under cathodoluminescence

were isolated. Isotopically, those samples that plotted closest to the original

Permian marine seawater value were considered. Finally, those samples with the

lowest Fe content were isolated in order to calculate a Mg/Ca ratio for Permian

marine seawater. Although there is still the potential for Mg loss and diagenetic

alteration, the methods of sample selection tried to ensure picking samples with the

lowest amount of alteration for calculation of the Mg/Ca ratio of seawater.

The calculation of a Mg/Ca ratio of Permian seawater involves further

assumptions because there is an additional luminescent diagenetic phase present in

the former marine cements, from which Mg has been lost. Therefore any estimates

of Mg content will probably underestimate the amount of Mg originally present. This

is why it was assumed that 50% of the original fabric has been replaced by a later

luminescent calcite phase in calculations regarding the Mg/Ca ratio of seawater.
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This assumption was also supported by the presence of nonluminescent crinoids

which retained approximately 50% more Mg than the former marine cements. A

further assumption is the value of the distribution coefficient used to calculate the

Mg/Ca ratio of seawater. Since these former magnesian calcite cements most likely

precipitated in deeper colder waters than the aragonite which precipitated in the

warm surface waters of the reef, a distribution coefficient lower than 0.034 does not

seem unreasonable.

Despite effectively increasing the Mg content of the samples based on the

assumption that Mg has been lost and replaced by a diagenetic luminescent phase,

the estimates for the Mg/Ca ratio of Permian seawater are still much lower than

today's value. The range of 0.870 to 2.97, with a best estimate of 2.60 for the

Mg/Ca ratio of Permian seawater for marine cements is also, for the most part, lower

than most fluid inclusion estimates. The values do somewhat coincide with data

from crinoids. This suggests that more research needs to be done to resolve these

differences in estimates for the Permian for fluid inclusion data versus crinoid and

marine cement data.
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Fig. 1. Map of the Guadalupe Mountains of New Mexico and West Texas.
The Permian Reef Complex follows a northeast/southwest trend and is cut
by numerous canyons. Samples were collected from Bear Canyon and
McKittrick Canyon.
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Fig. 2. Cross section of the Permian Reef Complex showing the shelf
formations, the massive reef and forereef facies, and the basinal formations.
Samples were collected from the massive facies of the Capitan Limestone.
Samples from Bear Canyon are older and equivalent in age to the Seven Rivers
Formation. Samples from McKittrick Canyon are younger and equivalent to a
late Yates or early Tansill Formation age.
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Fig. 5. Paired images crinoid fragments under polarizing light microscopy with
uncrossed polars (A, C, E) and cathodoluminescent microscopy (B, D, F).
Image B shows a mostly nonluminescent crinoid, C and D show a
nonluminescent crinoid surrounded by a patchy dull/brightly luminescent
former magnesian calcite cement. F shows a brightly luminescent crinoid.
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former magnesian calcite cement from a neptunian dike.
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Mole % MgCO3 of Microdolomites in HMC and Crinoids
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Fig. 8. Mole % MgCO 3 in microdolomites within former HMC cements and
crinoids obtained using a microprobe. A mole % MgCO 3 of 48% occurs with
highest frequency, indicating a dolomitic composition for the inclusions. Data
from less than 40 mole % MgCO 3 are indicative of a small amount of calcite
mixing in with a microdolomite inclusion upon analysis.
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Sample Type # Analyses Avg Mg/Ca Mg/Ca SD Avg Mg mol% Mg/Ca SW Modified Mg/Ca SW

B2 HMC cement 5 34.20 2.90 3.31 1.49 2.97
B2-FB HMC cement 16 13.99 3.23 1.38 0.61 1.22

B7 HMC cement 11 17.26 3.19 1.70 0.75 1.50
87 Crinoid 1 24.36 - 2.34 1.06 1.06
88 HMC cement 11 14.25 3.77 1.40 0.62 1.24
88 Cdnoid 2 49.26 15.11 4.68 2.14 2.14
P5 HMC cement 5 9.96 1.76 0.99 0.43 0.87

P7A HMC cement 5 14.53 3.30 1.43 0.63 1.26
P7A Cdnoid 1 59.93 - 5.65 2.61 2.61
P78 HMC cement 4 16.56 8.33 1.62 0.72 1.44

Table 1. Calculation of a Permian Mg/Ca ratio using samples with a Fe/Ca
less than 0.150 mmol/mol. An initial Mg/Ca of seawater was calculated using
a DMg of 0.023, and a modified Mg/Ca of seawater was created assuming that
50% of former magnesian calcite cements are now occupied by a later
luminescent diagenetic phase.



Tr PmI P

a,
(V

60-

5.0---

4.0 -

3.0-

2.0 -

1 .O -

O.O--

K/

4 I

/ _IK;,
U

I

250
I

300

Age (Ma)

Fig. 12. Seawater Mg/Ca molar ratio versus age for the Pennsylvanian, Permian, and
Triassic during a time of proposed "aragonite sea" conditions. The range for the Permian
Reef former magnesian calcite cement data is shown as an orange bar, with the square
representing the "most likely" value for the Mg/Ca ratio. Echinoderm data from Dickson
(2004) is shown in red. The solid green line is the Mg/Ca ratio modeled by Hardie (1996)
and the dashed blue line is the Mg/Ca ratio modeled by Wilkinson and Algeo (1989). The
purple vertical bars plot a range of possible Mg/Ca ratios from fluid inclusion data
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inclusion data from Horita et al. (2002).
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APPENDIX I

Sample ID Location Region East North Elevation (ft)
B2 Bear Canyon 13R 516590 3531188 7501

B2-FA Bear Canyon 13R 516590 3531188 7501
B4 Bear Canyon 13R 516587 3531248 7565
B6 Bear Canyon 13R 516534 353134 7813
B7 Bear Canyon 13R 516449 3531351 7890
B8 Bear Canyon 13R 515398 3532063 7889

BI11 Bear Canyon I13R 516476 3532431 7999
B12 Bear Canyon 13R 516553 3531282 7697
P2 McKittrick Canyon I13R 522889 3539456 5849

P5B McKiftrick Canyon 13R 522867 3539761 6239
P6 McKiftrick Canyon I13R 522887 3539848 6329

P7A McKiftrick Canyon I13R 522785 3539903 6511
P7B McKiftrick Canyon I13R 522785 3539903 6511
P11 McKiftrick Canyon 13R 522811 3540006 6557
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APPENDIX 2

Sample Type Sample ID Mineralog- 5180 I1513C MgCa Mg mol% I SrICa IMn/Ca Fe/Ca

Bulk Samples
Run I

B2
B2
B2
B2
B2
B4
B4
B4
B4
B4
B7
B7
B7
B7
B7
B8
B8
88
B8
B12
B12
812
B12
812
P2
P2
P2
P2

P5B
P5B
P5B
P5B
PS
P5
P5
P6
P6
P6
P6

P7B
P7B
P7B
P7B

.01

.02

.03

.04

.05

.01

.02

.03

.04

.05

.01

.02

.03
.04
.05
.01
.02
.04
.05
.01
.02
.03
.04
.05
.01
.02
.03
.04
.01
.02
.03
.06
.01
.02
.03
.01
.02
.04
.05
.01
.02
.03
.04

Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite

-3.34
-4.03
-4.08
-4.71
-4.54
-6.96
-6.90
-6.84
-7.34
-7.47
-4.93
-5.51
-6.27
-5.46
-5.34
-4.52
-2.74
-3.27
-2.98
-6.15
-5.48
-4.79
-6.45
-5.54
-4.79
-4.56
-4.00
-4.14
-3.18
-3.47
-3.82
-4.10
-2.40
-2.47
-2.90
-2.45
-2.94
-2.68
-3.38
-2.92
-2.88
-2.75
-2.75

4.79
4.38
2.90
1.97
2.63
1.60
1.55
1.19
1.32
1.26
3.91
3.63
2.72
3.36
3.16
3.27
4.07
3.80
3.48
2.16
3.52
3.99
3.11
2.55
3.11
3.77
4.14
2.85
5.39
5.11
4.30
6.12
5.36
5.44
5.23
5.56
5.05
5.37
4.83
5.99
6.02
5.89
5.48
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Bulk Samples
Run 2

Bulk Samples
Run 3

P7B
P11
P11
P11

B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.
B2.

B8(1).
B8(1).
B8(1).
B8(1).
B8(1).
88(1).
B8(1).
B8(2).
88(2).
88(2).
88(2).
B8(2).
88(2).
B8(2).
88(3).
88(3).
B8(3).
B8(3).
88(3).
B8(3).
B8(3).

P2
P2
P2

.05

.01

.02

.03

.01

.02

.03

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.01

.02

.03

.04

.05

.06

.07

.01
.02
.03
.04
.05
.06
.06
.01
.02
.03
.04
.05
.06
.07

.01

.02

.03

Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite

Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite

Mg Calcite
Mg Calcite
Mg Calcite

-2.68
-3.98
-4.13
-3.25

-6.13
-5.71
-5.04
-5.12
-4.81
-4.55
-4.96
-5.06
-5.38
-5.40
-5.61
-6.25
-6.99
-6.79
-6.88
-5.30
-6.14
-6.61
-3.01
-2.98
-2.83
-2.55
-2.85
-2.16
-2.71
-2.99
-3.49
-3.84
-2.09
-2.85
-4.80
-4.81
-5.81
-2.08
-1.69
-3.74
-3.80
-3.26
-2.43

-3.97
-3.38
-3.39

5.66
5.11
4.31
5.45

-0.34
0.06
0.81
-0.09
2.05
2.37
1.66
0.99
0.41
0.34
-0.56
-0.90
-3.96
-4.32
-4.51
1.16
-3.02
-4.22
4.29
4.12
3.22
4.40
4.04
4.48
4.36
4.08
3.65
3.65
4.86
3.81
3.73
3.71
-0.33
4.27
5.09
3.82
4.12
4.07
4.50

3.04
3.92
3.97
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P2
P2
P2
P2
P2
P2
P2

P5(2)
P5(2)
P5(2)
P5(2)
P5(2)
P5(2)
P5(2)
P5(2)
P5(2)
P5(2)
P5(3)
P5(3)
P5(3)
P5(3)
P5(3)
P5(3)
P5(3)
P5(3)
P5(3)
P5(3)
P5(4)
P5(4)
P5(4)
P5(4)
P5(4)
P5(4)
P5(4)
P5(4)
P5(4)
P5(4)

B2-FA.
B2-FA.
B2-FA.
B2-FA.

B6
B6
B6
B6

B8 (1)
B8 (1)

.04
.05
.06
.07
.08
.09
.10
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10

Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite
Mg Calcite

-3.76
-3.66
-3.61
-3.43
-4.08
-4.15
-4.07
-3.60
-3.55
-3.43
-3.38
-2.67
-2.75
-2.55
-2.59
-2.63
-2.68
-2.29
-2.40
-2.77
-3.07
-2.58
-2.68
-3.12
-3.08
-2.80
-2.70
-3.87
-3.22
-2.99
-2.99
-2.66
-3.18
-3.27
-3.70
-3.05
-2.32

-11.85
-10.24
-12.17
-12.41
-11.78
-6.96

-12.04
-11.36
-6.22
-8.37

3.70
3.70
3.69
4.35
2.78
3.46
3.25
4.62
4.69
4.69
4.71
5.49
5.47
5.52
5.41
5.51
5.52
5.47
5.48
5.32
5.17
5.38
5.38
5.35
5.26
5.41
5.47
5.18
5.40
5.34
5.39
5.39
5.38
5.31
5.24
5.42
5.54

0.49
-2.34
-0.89
0.93
1.75
-1.81
1.39
0.93
-5.13
-7.85

Bulk Samples
Run 4

.01 Calcite Spar

.02 Calcite Spar

.03 Calcite Spar

.04 Calcite Spar

.01 Calcite Spar

.02 Calcite Spar

.03 Calcite Spar

.04 Calcite Spar
.01 Calcite Spar
.02 Calcite Spar
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B8 (2) .01 Calcite Spar -10.82 -5.27
B8 (2) .02 Calcite Spar -12.06 -7.94
B8 (2) .03 Calcite Spar -8.72 -9.41
B8 (3) .01 Calcite Spar -7.96 -8.47
B8 (3) .02 Calcite Spar -11.99 -4.63
B8 (3) .03 Calcite Spar -7.26 -7.98

B11 .01 Calcite Spar -11.46 -1.05
B11 .02 Calcite Spar -12.35 -1.23
811 .03 Calcite Spar -7.71
B11 .04 Calcite Spar -8.54

-9.37
-10.31

Micromilled B2-FB(1) .01 Mg Calcite -4.05
Samples B2-FB(1) .02 Mg Calcite -3.62

Run 1 B2-FB(2) .01 Mg Calcite -3.82
B2-FB(2) .02 Mg Calcite -2.87
B2-FB(2) .03 Mg Calcite -5.02

B5(1) .01 Mg Calcite -6.66
B5(1) .02 Mg Calcite -6.82
B5(1) .03 Mg Calcite -7.15
B5(2) .01 Mg Calcite -6.80
B5(2) .02 Mg Calcite -6.52
B7(1) .01 Mg Calcite -5.74
87(1) .02 Mg Calcite -6.32
B7(1) .03 Mg Calcite -6.00
B7(1) .04 Crinoid -3.70
B7(2) .01 Mg Calcite -5.57
B7(2) .02 Mg Calcite -5.77
88(1) .01 Mg Calcite -3.32
B8(1) .02 Mg Calcite -4.19
88(1) .03 Crinoid -5.01
B8(1) .04 Crinoid -3.43
88(3) .01 Crinoid -3.39
88(3) .02 Mg Calcite -3.20
B8(3) .03 Mg Calcite -2.91
88(3) .04 Mg Calcite -4.36
P5(3) .01 Mg Calcite -2.71
P5(3) .02 Mg Calcite -2.70
P5(3) .03 Mg Calcite -2.55
P5(4) .01 Mg Calcite -2.38
P5(4) .02 Mg Calcite -2.76
P7A .01 Crinoid -1.39
P7A .02 Mg Calcite -3.60
P7A .03 Mg Calcite -3.00
P7A .04 Mg Calcite -3.17

P7B(1) .01 Mg Calcite -2.89
P7B(1) .02 Mg Calcite -2.78
P7B(1) .03 Mg Calcite -2.56

3.86 11.50
3.06 12.51
3.96 10.16
4.91 10.21
3.37 12.01
1.16 5.05
2.78 5.14
2.08 5.00
1.80 5.55
2.08 6.06
3.55 17.98
2.83 17.35
3.76 22.51
4.64 24.36
3.53 17.26
3.30 23.15
3.74 27.27
3.60 13.44
4.65 43.61
5.40 59.94
5.31 38.58
3.91 24.59
4.14 11.54
3.25 13.72
5.29 13.37
5.35 11.20
5.34 16.33
5.21 20.73
4.60 15.82
5.76 59.93
3.67 12.09
5.39 11.83
5.19 15.94
5.44 28.97
5.50 14.21
5.90 13.80

1.137
1.235
1.006
1.011
1.186
0.503
0.511
0.497
0.552
0.602
1.767
1.705
2.202
2.378
1.697
2.263
2.655
1.326
4.179
5.655
3.714
2.400
1.141
1.354
1.319
1.108
1.607
2.031
1.558
5.653
1.194
1.169
1.569
2.816
1.401
1.361

0.094 0.061 0.088
0.089 0.058 0.116
0.093 0.060 0.099
0.092 0.054 0.087
0.097 0.071 0.253
0.105 0.105 0.055
0.111 0.107 0.148
0.103 0.122 0.056
0.102 0.093 0.044
0.107 0.091 0.032
0.173 0.076 0.091
0.187 0.075 0.097
0.195 0.081 0.111
0.258 0.058 0.121
0.187 0.074 0.089
0.199 0.077 0.112
0.086 0.124 0.874
0.085 0.097 0.113
0.162 0.038 0.368
0.144 0.034 0.059
0.139 0.035 0.088
0.086 0.093 0.218
0.077 0.081 0.073
0.085 0.093 0.089
0.143 0.104 0.211
0.144 0.089 0.278
0.153 0.094 0.242
0.145 0.142 0.226
0.138 0.078 0.276
0.407 0.012 0.053
0.147 0.083 0.125
0.156 0.102 0.217
0.168 0.071 0.142
0.156 0.046 0.068
0.151 0.063 0.214
0.140 0.069 0.067
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P7B(2) .01 Crinoid -3.58 6.07 33.44 3.235 0.270 0.100 0.325

Micromilled
Samples

Run 2

B2 .02 Mg Calcite -4.73
B2 .03 Mg Calcite -4.13
B2 .04 Mg Calcite -4.74
B2 .05 Mg Calcite -5.40
B2 .06 Mg Calcite -5.65
B2 .08 Mg Calcite -5.24
B2 .09 Mg Calcite -6.22
B2 .10 Mg Calcite -5.85-
B2 .11 Mg Calcite -6.25

B2-FB(1) .01 Mg Calcite -2.73
B2-FB(1) .02 Mg Calcite -2.62
B2-FB(1) .03 Mg Calcite -2.90
B2-FB(1) .04 Mg Calcite -3.85
B2-FB(1) .05 Mg Calcite -4.05
B2-FB(1) .06 Mg Calcite -4.77
B2-FB(1) .07 Mg Calcite -4.64
B2-FB(2) .01 Mg Calcite -4.11
B2-FB(2) .02 Mg Calcite -3.74
B2-FB(2) .03 Mg Calcite -5.68
B2-FB(2) .04 Mg Calcite -4.20
B2-FB(2) .06 Mg Calcite -5.15

B7(1) .01 Mg Calcite -6.58
B7(1) .02 Mg Calcite -6.26
B7(1) .03 Mg Calcite -6.00
B7(1) .04 Mg Calcite -5.35
B7(2) .01 Mg Calcite -5.33
B7(2) .02 Mg Calcite -5.26
B7(2) .03 Mg Calcite -5.60
B7(2) .04 Mg Calcite -5.55
B8(1) .01 Mg Calcite -3.19
B8(1) .02 Mg Calcite -2.98
B8(2) .02 Mg Calcite -2.94
B8(2) .03 Mg Calcite -3.03
B8(2) .04 Mg Calcite -3.73
B8(2) .05 Mg Calcite -2.44
B8(3) .01 Mg Calcite -3.86
B8(3) .02 Mg Calcite -3.63
B8(3) .03 Mg Calcite -3.24
B8(3) .04 Mg Calcite -2.67
P5(2) .01 Mg Calcite -2.38
P5(3) .01 Mg Calcite -3.39
P5(3) .02 Mg Calcite -3.31
P5(3) .03 Mg Calcite -2.61
P5(3) .04 Mg Calcite -2.69
P5(3) .05 Mg Calcite -2.39
P5(3) .06 Mg Calcite -2.81

1.75 54.563
2.89 37.155
2.74 37.053
0.55 64.295
0.34 71.934
0.09 33.941
-2.70 32.201
-0.76 30.626
-2.33 35.346
4.57 11.512
4.94 11.798
4.50 12.063
3.02 11.914
2.72 19.019
2.90 15.862
1.78 16.397
3.75 15.589
4.43 13.043
1.12 19.461
3.32 13.261
2.67 19.579
2.98 14.304
3.08 17.410
3.18 15.781
3.30 17.030
3.31 13.756
3.18 13.861
3.72 14.412
3.45 13.157
3.11 15.692
3.36 16.880
4.35 8.586
3.56 14.890
3.90 13.322
4.54 12.271
3.97 11.404
3.12 15.404
3.94 14.642
3.50 23.161
5.36 12.999
3.53 9.354
3.61 9.000
5.34 15.873
5.24 19.450
5.12 20.094
5.01 11.640

5.174
3.582
3.573
6.041
6.710
3.282
3.119
2.971
3.414
1.138
1.166
1.192
1.177
1.866
1.561
1.613
1.535
1.287
1.909
1.309
1.920
1.410
1.711
1.553
1.674
1.357
1.367
1.420
1.298
1.545
1.660
0.851
1.467
1.315
1.212
1.127
1.517
1.443
2.263
1.283
0.927
0.892
1.562
1.908
1.970
1.150

0.098 0.111 0.156
0.098 0.091 0.098
0.095 0.095 0.068
0.087 0.109 0.157
0.094 0.136 0.180
0.115 0.134 0.060
0.119 0.129 0.083
0.116 0.123 0.064
0.114 0.159 0.160
0.082 0.049 0.044
0.085 0.046 0.042
0.083 0.056 0.037
0.086 0.058 0.030
0.094 0.077 0.097
0.103 0.086 0.099
0.089 0.083 0.033
0.094 0.062 0.031
0.092 0.056 0.030
0.107 0.101 0.095
0.093 0.072 0.033
0.100 0.076 0.067
0.160 0.074 0.174
0.159 0.077 0.079
0.160 0.068 0.097
0.158 0.077 0.070
0.166 0.080 0.192
0.163 0.089 0.091
0.168 0.084 0.027
0.161 0.082 0.054
0.074 0.090 0.069
0.075 0.095 0.065
0.076 0.093 0.051
0.084 0.122 0.326
0.088 0.185 0.330
0.077 0.107 0.081
0.091 0.115 0.082
0.075 0.082 0.055
0.074 0.089 0.109
0.077 0.102 0.102
0.144 0.080 0.039
0.132 0.079 0.121
0.134 0.089 0.143
0.139 0.086 0.183
0.140 0.091 0.227
0.146 0.098 0.399
0.139 0.085 0.204
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P5(3) .07 Mg Calcite -2.70 4.92 13.472 1.329 0.133 0.102 0.425
P5(4) .01 Mg Calcite -3.33 5.27 9.844 0.975 0.130 0.089 0.131
P5(4) .02 Mg Calcite -3.89 4.95 8.578 0.850 0.126 0.096 0.143
P5(4) .04 Mg Calcite -2.58 5.25 14.044 1.385 0.131 0.099 0.191
P5(4) .05 Mg Calcite -2.43 5.03 11.850 1.171 0.138 0.103 0.354
P7A .01 Mg Calcite -2.76 5.64 13.138 1.297 0.155 0.079 0.111
P7A .02 Mg Calcite -2.75 5.56 19.665 1.928 0.164 0.070 0.097
P7A .03 Mg Calcite -3.52 4.00 11.557 1.142 0.140 0.080 0.161

P7B(1) .01 Mg Calcite -2.97 5.31 11.929 1.179 0.132 0.068 0.104
P7B(1) .02 Mg Calcite -2.85 5.73 11.542 1.141 0.134 0.067 0.082

8180 and 5, 3C values are reported in %o notation relative to VPDB
Elemental ratios are expressed as mmol/mol
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