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Abstract
The eruptive history of the Tequila volcanic field (1600 km2) in the western

Mexican arc is obtained from 4Ar/39Ar chronology and volume estimates for eruptive
units < 1 Ma. Ages are reported for 49 volcanic units, including Volcan Tequila (an
andesitic stratocone) and peripheral domes, flows, and cinder cones. Volumes were
obtained with the aid of field mapping, aerial photographs, digital elevation models
(DEMs), and ArcGIS software. Between 1120 Ma and 200 ka, a bimodal distribution of
rhyolite (~34 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between
685 and 225 ka, less than 5. km 3 of andesite and dacite erupted from > 15 isolated vents;
these lavas are crystal-poor and show little evidence of storage in an upper crustal magma
chamber. Approximately 200 ka, ~31 km3 of andesite erupted within < 24 kyrs to form
the stratocone of Volcin Tequila, indicating a cone-building eruption rate of > 1.3
km3/kyr. The phenocryst assemblage of these lavas suggests storage within a chamber at
~2-3 km depth. After a hiatus of 110 kyrs, ~14 km 3 of andesite erupted along the NW
and SE flanks of VolcAn Tequila at -90 ka, most likely from a second, discrete magma
chamber located at ~5-6.5 km depth. The youngest volcanic feature (~-60 ka) around
Volcan Tequila is the small andesite stratocone, Cerro Tomasillo (~-2 km 3). Over the last
1 Myr, a total of 127 ± 16 km3 of lava erupted in the Tequila volcanic field, leading to an
average eruption rate of ~79 m3/km 2 per year or an accumulation rate of ~8 cm/kyr. The
relative proportions of lava types are ~24-40 % basalt, ~0.6 % basaltic andesite, ~-32-50
% andesite, ~2 % dacite, and ~19-36 % rhyolite. On the basis of eruptive sequence,
proportions of lava types, phenocryst assemblages, textures, and geochemistry, the lavas
do not reflect the differentiation of a single (or only a few) parental liquid in a long-lived
magma chamber. The rhyolites are geochemically diverse and likely were formed by
episodic partial melting of sialic crust in response to emplacement of basalts into the
upper crust. There are no examples of mingled rhyolite and basalt magmas. Any process
invoked to explain the origin of the andesite and dacite at the Tequila volcanic field must
account for a persistent background leakage of geochemically diverse, small-volume
batches of crystal-poor magma ranging from basaltic andesite through dacite punctuated
by voluminous bursts of andesitic magmatism.

Keywords 4 0Ar/39Ar geochronology; GIS; Eruption rates; Aphyric andesites; Mexican
volcanoes; Trans-Mexican Volcanic Belt
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Introduction
The Quaternary Tequila volcanic field, in the western Mexican arc, includes a

large andesitic stratocone (Volcan Tequila), cinder cones and flows of basaltic through

dacitic composition, and rhyolitic domes. Thus a complete compositional spectrum from

basalt through rhyolite is present, and an accurate assessment of possible petrogenetic

links among them requires a detailed eruptive history that includes the ages, volumes, and

relative proportions of lava types. In this study, an intensive "0 Ar/39Ar dating program is

coupled to quantitative estimates of erupted volumes based on field mapping, aerial

photographs, digital elevation models, and ArcGIS software. Such detailed information

on the chronology and volume of erupted lavas can reveal whether a time-progressive

pattern in composition is present, which can be used to test various models of magma

differentiation. These data also constrain the length of time required to build a large

composite volcano, which bears on the longevity of the underlying upper-crustal magma

chamber feeding the cone-building eruptions. When eruption rates are combined with a

detailed study of the textures and phenocryst assemblages of the lavas erupted from large,

central volcanoes vs. small, peripheral vents, additional constraints on the time-scale for

upper crustal storage of these arc magmas are obtained.

The applicability of the 40Ar/39Ar dating technique to Pleistocene lavas and

comparisons with conventional K-Ar dating was first documented by Hall and York

(1978, 1984) and later revisited by Lanphere (2000). Previous work by Hildreth and

Lanphere (1994), Singer et al. (1997), Druitt et al. (1999) and Hildreth et al. (2003) have

demonstrated the success of both K-Ar and 4Ar/39 Ar methods in dating large suites of arc

volcanic rocks < 1 Ma. In this study, our strategy was to date as many different lavas as

possible with an accuracy and precision of at least ±50 kyrs; in most cases the results are

far better. Our primary goal was to identify and date all lavas erupted within the last 1

Myr, so that their individual and combined volumes could be evaluated.

The difficulty in quantifying eruptive volumes at arc volcanic fields has long been

recognized; factors include severe glacial erosion (e.g., Singer et al. 1997; Hildreth et al.

2003) and/or extensive pyroclastic activity (e.g., Druitt et al. 1999). The Tequila volcanic

field is ideal for a quantitative assessment of the volumes and proportions of different

lava types owing to its mild climate (no glacial activity) and the minor role of explosive
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volcanism. The rural, agricultural nature of the Tequila volcanic field provides numerous

roads and trails that allow excellent access to all volcanic units. Moreover, many of them

have been previously mapped and characterized (Demant 1979; Harris 1986; Nixon et al.

1987; Wopat 1990; Wallace and Carmichael 1994), and topographic maps, aerial

photographs, and digital elevation models (DEMs) are available for the entire area.

This study of the Tequila volcanic field is the second in a series designed to

obtain a high-resolution record of the chronology and volume of erupted magma (_ 1 Ma)

along the western Mexican arc. The results of this work can be compared with a similar

study of the Ceboruco-San Pedro volcanic field (Frey et al. 2003) located 75 km to the

northwest. These two adjacent volcanic fields have similar subduction parameters such

as crustal thickness, age of the subducting slab, and rate of subduction. Thus a

comparison of the eruptive history between the two volcanic fields within the last 1 Myr

can be used to test the relationship between subduction parameters and the average

composition of erupted magma. These studies are further strengthened by a comparison

with the chronological studies and volume estimates on the Mt. Adams and Mt. Baker

volcanic fields in the Cascade arc (Hildreth and Lanphere 1994; Hildreth et al. 2003,

respectively).

Tectonic setting

Volcan Tequila is one of eight major volcanic centers in the western Trans-

Mexican Volcanic Belt (TMVB) (Figure 1). The crustal thickness in this region is

estimated at 35-40 km from the gravity model of Urrutia-Fucugauchi and Flores-Ruis

(1996). The TMVB is associated with subduction of two plates under North America:

the ~9 Ma Rivera plate in the west (Klitgord and Mammerickx 1982), and the 12-18 Ma

Cocos plate in the east. Seismic evidence suggests that the Rivera plate descends at an

angle of 100 from the Middle America trench to a depth of 20 km, after which the angle

steepens to 500 at 40 km; the subduction angle is unconfirmed below ~50 km owing to a

lack of seismicity (Pardo and Suarez 1993). If the dip of 500 continues as the slab

descends, then Volcan Tequila lies more than 200 km above the Wadati-Benioff zone,

significantly further than the globally observed median distance of 125 ±38 km to the

volcanic front (Gill 1981). The rate of subduction of the Rivera plate is estimated at 1.9
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± 0.3 cm/yr along the western portion and 3.8 ± 0.4 cm/yr in the east, at the Rivera-Cocos

boundary (DeMets and Wilson 1997). Of special interest to this study is the evidence

given by DeMets and Traylen (2000) that subduction of the Rivera plate ceased ~2.6 Ma

and then resumed normal convergence ~I Ma at a rate of ~3.2 cm/yr.

Volcdn Tequila is located within the Tepic-Zacoalco graben of western Mexico

(Figure 1), one of three grabens that intersect 50 km south-southwest of Guadalajara.

Five andesitic stratovolcanoes, V. San Juan, V. Sangangiey, V. Tepetiltic, V. Ceboruco,

and V. Tequila, as well as two silicic centers, Las Navajas and Sierra La Primavera, are

confined to the Tepic-Zacoalco graben. Northwest-trending fractures and normal faults

are common in the graben, and cinder cones frequently align along these northwest-

trending lineaments (Allan et al. 1991).

The Tequila Volcanic Field

As illustrated in the aerial photograph in Figure 2, the andesitic stratocone of

Volcan Tequila forms the center of the 1600 km2 Tequila volcanic field and is surrounded

by rhyolite domes, flanking andesite flows, several cinder cones, and to the north, the

Santa Rosa basalt plateau. Volcdn Tequila rises to a summit of 2920 m, 1800 m above the

surrounding plains, and is constructed of andesite flows that are described in Wallace and

Carmichael (1994). An erosional gully (300 m deep) cuts from the summit of the

volcano to the northeast and has produced an alluvial fan that spreads over most of the

northeastern flank. At the summit, there is a 300 m spine of high-silica andesite (63 wt %

SiO2; Harris 1986). Whereas Volcdn Tequila is primarily an effusive volcano, minor ash

deposits are found at the summit and remnants of a small, dacitic air-fall deposit are

located on the northern (TQ23) and southwestern flanks (Figure 2).

A small andesitic stratocone, Cerro Tomasillo, rests on the southeast flank of

Volcdn Tequila. A line of four, small dacite domes and associated flows are found

immediately southeast of C. Tomasillo. Fissure-fed flows of andesite blanket the

northwest and southeast flanks of Volcdn Tequila and were likely erupted along the same

NW-SE lineament that includes the central vents of V. Tequila, Cerro Tomasillo, and the

line of four dacite domes (Figure 2). Nine small cinder cones of andesite and dacite

occur along the southern and western margins of V. Tequila, and five cinder cones of
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basalt and basaltic andesite (and one of andesite) occur to the west, north, and east of the

stratocone. Twelve rhyolite domes surround V. Tequila and are partly covered by

younger andesite flows; nine of these domes are concentrated along the northwest margin

of V. Tequila. The rhyolites of the Tequila volcanic field have been described in detail,

and seven of them dated with the K-Ar method, by Harris (1986).

Immediately north of V. Tequila, fissure-fed flows of basalt (and minor basaltic

andesite) comprise the Santa Rosa plateau, which slopes ~1 0 to the N-NE and spans an

area of -190 km2. Wopat (1990) described the plateau lavas and dated seven with the K-

Ar method. The Santa Rosa plateau underlies the agricultural lands between the northern

base of Volcan Tequila and the southern rim of the Rio de Santiago canyon. This

southern rim has an average elevation of ~1100 m, whereas the northern rim is -700 m

higher. As found elsewhere along the Rio de Santiago (Nieto et al. 1985; Wopat 1990),

basaltic lavas appear to have periodically filled and flooded the canyon, causing the river

to re-incise through the flows. It is likely that most, though not all, of the capping basalt

lavas that form the primary cover to the Santa Rosa plateau were sourced by fissure

eruptions located within the canyon, along the same NW-SE lineament that the Rio de

Santiago follows. The capping basalts show no evidence of individual flow margins

and/or pressure ridges, which suggests that they flooded from the canyon and were

deposited on flat-lying lacustrine deposits (exposed beneath the basalts on the southern

wall of the Santiago canyon). Owing to the difference in elevation between the northern

and southern rims, canyon-filling flows will tend to flood toward the south. The current

shallow dip of the Santa Rosa plateau toward the north is likely the result of continued

normal faulting since the emplacement of the basalts. Normal faulting along this segment

of the Santiago canyon has offset a 5.5 Ma ashflow on the northern wall by -450 m

(Nieto et al. 1985), and it likely accounts for the higher elevation of the northern rim of

the canyon.

Several additional studies have contributed information on the Tequila volcanic

field. Demant (1979) provided the first detailed geological study of the area, including

the petrography and chemistry of several lavas from the area. Nieto et al. (1985) describe

the stratigraphy and structure of this region and report both new K-Ar dates and those of

others, including Damon et al. (1979). Nixon et al. (1987) revised the geologic map and

6



report new chemical analyses and K-Ar ages on three samples: an andesite from the

upper part of V. Tequila, a basalt from the Santa Rosa plateau, and a dacite flow north of

the town of Tequila.

Composition and Mineralogy of Lava Types

Fifty-one samples were analyzed for major element chemistry by inductively

coupled plasma (ICP) analysis and for trace and rare earth element chemistry by ICP

mass spectrometry (ICP-MS) at Activation Laboratories in Ancaster, Ontario (Table 1).

The lavas are classified on the basis of silica content as follows: basalt (< 52 wt % SiC2 ),

basaltic andesite (52-56 wt % SiO2), andesite (58-63 wt % SiO2), dacite (64-69 wt %

SiO2), and rhyolite (>70 wt % SiO2). Modal abundances were determined by point

counts with > 1400 points (Table 1). Crystals > 0.3 mm are classified as phenocrysts,

microphenocrysts are 0.03-0.3 mm, and groundmass is <0.03 mm. Whole-rock analyses

and/or thin sections of collected samples were used to create the geologic map shown in

Figure 3.

Basalts and Basaltic Andesites

Basalt and minor basaltic andesite comprise the fissure-fed Santa Rosa plateau as

well as cinder cones and associated flows on top of the plateau. Both the basalts (49-51

wt. % Si0 2 ) and basaltic andesites (52-56 wt % SiO2 ) are enriched in TiO2 (2.0-2.6 and

1.3-2.1 wt. %, respectively) (Table 1). These mafic lavas contain phenocrysts of olivine

+ plagioclase ± augite. One basaltic andesite (TEQ33) from a small cinder cone contains

phenocrysts of hornblende in addition to plagioclase, olivine, and augite. The olivine

basalts that filled and flooded the canyon (e.g., TEQ10, TEQ12) have a coarsely

crystalline groundmass combined with abundant plagioclase microphenocrysts (~20-30

vol %) and many fewer (< 5 vol %) plagioclase phenocrysts, in marked contrast to similar

olivine basalts erupted as cinder cones or flows on top of the Santa Rosa plateau (e.g.,

ETZ1, TEQ39). These samples have a fine groundmass with few microphenocrysts and

more abundant phenocrysts.
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Andesites

Andesites in the Tequila volcanic field are divided into four categories: (1) the

main edifice of Volcdn Tequila, (2) younger flows along the southeast and northwest

flanks of V. Tequila, (3) the small stratocone of Cerro Tomasillo, and (4) peripheral

cinder cones and flows. The lavas from V. Tequila span a range in silica (59-63.5 wt %;

Table 1) similar to that of the younger flank lavas (59.1-63.7 wt %; Table 1), and both

groups have TiO2 concentrations that range from 0.9-0.6 wt %. Both groups of andesites

display a mineralogy and texture typical of that seen in large, andesitic stratovolcanoes;

they are phenocryst-rich (10-25 %), with plagioclase and two pyroxene assemblages.

Plagioclase is the most abundant phenocryst and often displays complex zoning, as well

as inner cores (sometimes bands) that are riddled with melt inclusions (Wallace and

Carmichael 1994). Most of the younger flank lavas contain hornblende phenocrysts as

well. The flows from Cerro Tomasillo dated in this study are described in Wallace and

Carmichael (1994); they are similar in most respects to those from V. Tequila.

Peripheral flows and cinder cones of andesite are not associated with the central

vent or flank flows of V. Tequila and are texturally and compositionally distinct.

Although their range in silica (58-62 wt %) is similar to that for the lavas from V. Tequila

and its flanks, the peripheral andesites contain higher concentrations of both TiO2 (1.2-

1.4 wt %) and total iron (Table 1). These flows are remarkably crystal-poor (3-10 vol %)

and include sparse euhedral prisms of plagioclase with inner cores that often contain

abundant melt inclusions. Orthopyroxene and augite are always present, and hornblende

is found in all peripheral lavas with > 59.5 wt % SiO2. The hornblende is often

completely surrounded by an opaque reaction rim (opacite). Rare xenocrysts of sieve-

textured plagioclase with no rims are found in one sample (TAL 13).

Dacites

The most prominent occurrence of dacite is the line of four domes and associated

flows immediately southeast of Cerro Tomasillo. A wet chemical analysis for one of

these domes (Q-39) is reported in Harris (1986); the sample has 69 wt % SiO2 and 0.4 wt

% TiO2. It contains 10 % phenocrysts of plagioclase, hornblende, and minor

orthopyroxene (Wallace and Carmichael 1994). Pumice of dacitic composition (TEQ23)
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from an airfall deposit contains phenocrysts of hornblende, plagioclase, and trace

amounts of orthopyroxene. There are five additional occurrences of dacite: all occur as

glassy cinder cones and are peripheral to V. Tequila and its flank flows. These cinder

cones range from 64.6-68.4 wt % SiO2 and, like the peripheral andesitic cinder cones, are

notably crystal-poor (3-8 vol %) and relatively enriched in TiO2 (0.9-0.5 wt %). The

phenocrysts include clear euhedral prisms of plagioclase, in addition to orthopyroxene,

sparse augite, and opacitic hornblende.

Rhyolites

The rhyolitic domes and flows in the Tequila volcanic field include peraluminous,

metaluminous, and peralkaline varieties that range from 70-76.5 wt. % SiO2 (Harris

1986). Domes consist of light-colored, porphyritic flows that contain 0-5 vol. %

phenocrysts of plagioclase ± sanidine ± augite in fine-grained groundmass; no quartz

phenocrysts were found in the samples collected by Harris (1986) or in the seven samples

collected and examined in this study. For our samples, SiO2 contents range from 75-76.5

wt. % (Table 1; after LOI correction for TEQ29 pumice). Four of the samples have no

phenocrysts or microphenocrysts. The remaining three samples contain sparse

phenocrysts of sanidine + plagioclase, and TEQ29 has additional hornblende.

40Ar/ 9Ar Geochronology Methods

Forty-nine samples were dated by the 40Ar/39Ar laser ablation, step-heating

method. Samples from lava and cinder cones, flows, and domes were selected to provide

the broadest coverage of the field area. All analyses were run at the University of

Michigan, and the procedures closely followed those described in Hall and Farrell (1995),

Conway et al. (1997), and Frey et al. (2003). Groundmass was dated due to the lack of

potassic minerals in the samples, except in two cases (TEQ9 and TEQ29) for which

hornblende was dated.

Samples were taken from the interiors of lava flows or the inner cores of dense

volcanic bombs from cinder cones, and each sample was checked for alteration using a

petrographic microscope. Hand samples were crushed using a jaw crusher and ceramic

mortar and pestle, and 1-2-mm sized grains of groundmass were hand picked under a
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binocular microscope in order to exclude grains with phenocrysts and/or vesicles. Grains

were washed ultrasonically with deionized water and were packaged in 99.5% aluminum

foil. Fish Canyon Tuff-3 biotite, with a K-Ar age of 27.99 ± 0.04 Ma (2a error) as

calibrated against MMhb-1 (Hall and Farrell 1995; Samson and Alexander 1987) was

used as the standard. This age is in agreement with the reported age of 27.95 ± 0.09 Ma

by Renne et al. (1998) and the average age of 27.95 Ma reported by Baksi et al. (1996).

One packet of standard for approximately every five packets of groundmass was arranged

in quartz tubes that were evacuated and sealed. Samples were irradiated with fast

neutrons for 6 hours at the Phoenix-Ford Nuclear Reactor at the University of Michigan.

The measure of the neutron flux, J, was monitored at different heights of the quartz tube

and interpolated to be applied to age calculations for individual sample positions.

Five grains of each irradiated sample (total weight of 5-20 mg) were loaded into

individual wells of a copper tray and degassed (by heating overnight at 150-200*C) into

the evacuated laser-line system to remove excess atmospheric argon. Samples were then

step-heated at increasing levels of laser power from 100 to 4000 mW (13 steps for

groundmass) using a defocused beam from a Coherent Innova 5-W continuous argon ion

laser. The laser power was directed at individual sample grains for 30 seconds at each

temperature while a liquid nitrogen-chilled cold finger and two SAES ST101 alloy getters

operating at 0.45 amps cleaned the gas. Peaks over the mass range 40-36 were measured

on a Daly detector. Fusion system blanks were subtracted from gas fractions at the five

Ar mass positions, and blank levels were monitored after every fifth sample fraction. The

data were corrected for interference reactions due to Ca, K, and Cl and for 37 Ar and 39Ar

decay. Ages were calculated using the decay constants in Steiger and Jager (1977).

Mass discrimination was monitored daily with an atmospheric Ar gas pipette and had a

precision of 0.3-0.5% for the "0 Ar/36Ar ratio.

40Ar/39Ar results and assessment of accuracy

The 4Ar/39 Ar data analyses for each sample, including gas spectra and inverse

isochron diagrams, as well as a complete degassing history are given in the Data

Repository (DR Figure 1 and DR Table 1). A summary of this information along with

total gas, correlation, and plateau ages are reported for each sample in Table 2a. The error
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analysis for each sample includes uncertainties in peak signals, system blanks,

spectrometer mass discrimination, reactor corrections, and J values.

The criteria for determining whether the plateau and isochron ages from an

incremental heating experiment are meaningful are as follows: 1) a plateau includes

>50% of the 39Ar gas released in at least three consecutive heating fractions, 2) the

plateau passes a null hypothesis test such that for a heating experiment with 13 steps the

MSWD is a maximum of 1.8, 3) the plateau and isochron ages are concordant at the 95%

confidence level, and 4) the 4Ar/36 Ar intercept of the isochron agrees with the

atmospheric value of 295.5 at the 95% confidence level. If the isochron includes only the

plateau points, the "0Ar/36Ar intercept will, by definition, be closely tied to the value of

295.5. Therefore we have done the regression as a subset of points that includes at least

the plateau points but which may include all of the values resulting from the incremental

heating experiment. The error on the plateau age is a standard weighted error for the

individual steps by variance (Taylor 1982), i.e. release fractions with more precise results

carry greater weight in the age calculation. Seven samples s 1 Ma had disturbed spectra

that did not result in a plateau; correlation and total gas ages are presented in Table 2b.

For these samples, the isochron age is preferred in five cases; in all cases but one, the

4Ar/36 Ar intercepts are within 2a of 295.5 (atmospheric ratio). Four samples are > 1 Ma

and are reported separately in Table 2c.

The accuracy of the 40 Ar/39Ar dates reported in Table 2 were evaluated in three

different ways: (1) a comparison with stratigraphic relations observed in the field, (2) a

comparison with dates obtained on the same samples but from other laboratories, and (3)

a replication of dates obtained in this study. Errors throughout the paper are given at the

la level. When comparisons are made at the 2a level, it is stated explicitly in the text.

Stratigraphic relations

The 4Ar/3 9Ar geochronology is supported in all cases where a stratigraphic

relation is observed in the field. We have documented eleven examples; locations are on

Figure 2 and dates are on Figure 3a. (1) In the town of Santa Teresa, the basalt flow from

cinder cone TEQ36 (261 ± 11 ka) overlies the rhyolite dome of TEQ45 (604±3 ka). (2)

This same flow (TEQ36, 261 ± 11 ka) overlies the capping basalt flow near the rim of the
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Santiago canyon (dated at 848 ± 20 ka by Wopat 1990), and it also flowed around and

abuts against the dacite flow of San Martin (dated at 630±30 ka by Nixon et al. (1987)).

(3) The basaltic andesite flow from cinder cone TEQ37 (427 ±20 ka) overlies the

rhyolitic dome of TEQ18/TEQ35 (642 ±6 ka; 632 ± 8 ka). (4) Flows from Cerro

Tomasillo, which have a mean age of 62 ± 11 ka (see below), overlie flows that form the

main edifice of Volcgn Tequila, which have a mean age of 196 ± 12 ka (see below). (5)

Lavas from Cerro Tomasillo (62 ± 11 ka) flowed around the dacite domes immediately to

the southeast. Nixon et al. (1987) report that these dacite domes are overlain by Tala

Tuff airfall deposits (95 ± 10 ka; Mahood 1981); they are thus older than 75 ka at the 2a

level. (6) A lobe from the main edifice of V. Tequila (196 ± 12 ka) and a lobe from

Cerro Tomasillo (62 ± 11 ka) each flowed around either side of cinder cone TAL13 (372

± 18 ka). (7) The northernmost lobe of V. Tequila (TEQ60; 178 ±8 ka) overlies the

rhyolitic dome TEQ22 (416 ±3 ka). (8) The basalt flow TEQ10 (671 ± 13 ka) from the

southern wall of the Santiago canyon is underneath basalt flow TEQ12 (592±20 ka). (9)

The basaltic andesite flow TEQ40 (194 ± 15 ka) flowed around and abuts against the

basaltic cinder cone TEQ39 (970±34 ka). (10) The andesite flank flow of

TEQ46FfEQ48 (mean age of 86±47 ka) flowed around the basaltic andesite cinder cone

TEQ33 (362 ± 13 ka). (11) The andesite flow of TEQ123 (87 ± 12 ka) overlies the

northwest flank of V. Tequila (196 ± 12 ka).

Interlaboratory comparisons

Our 4 0Ar/39Ar results are in excellent agreement with previously published ages

in all cases where the same lava flows or samples were dated. First, samples from two

different rhyolite domes, TEQ22 and TEQ35, with 4Ar/39 Ar ages from this study of 416

±3 ka and 632±8 ka, correspond to samples 1075-46 and 1075-142, which have K-Ar

ages of 456 ± 18 ka and 614 ± 20 ka, respectively (Harris 1986). Second, the spine of

Volcan Tequila was sampled and dated at 206±07 ka with the K-Ar method by Harris

(1986), whereas the same sample (1075-Q9a) was dated in this study at 198 ± 11 ka with

the 40Ar/39Ar method. Third, a basalt flow from the southern rim of the Santiago canyon

that we collected and dated (TEQ12, 592 ±20 ka) is the same as that collected and dated

with the K-Ar method by Gilbert et al. (1985) (MW995-033, 530±75 ka) and collected
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and dated with the K-Ar method by Wopat (1990) (1081-011,524±t 36 ka). A sample

from close to this same location and with a major element composition that is similar was

collected and dated by Nixon et al. (1987) at 930 ± 30 ka. However, it is possible that

this difference in dates may mark the boundary between a younger sequence of basalts

that filled the canyon and lapped up against the erosional remnant of an earlier sequence

of basalts that filled and flooded the river canyon. Finally, our date of 191 ± 13 ka for an

andesitic lava from the main edifice of V. Tequila (TEQ 17) is similar to the reported K-

Ar age of 220±30 ka by Nixon et al. (1987) for a Tequila lava located close to TEQ17

(Figure 2).

Replications

As a check on our "0Ar/39Ar method, different samples from the same volcanic

edifice/flow were dated in order to evaluate the consistency between results. (1) Six

samples were taken from different parts of the main edifice of V. Tequila (TEQ 15,

TEQ23C, TEQ60, TEQ17, TEQ6, 1075-Q9a; Figure 2) and resulted in a series of dates

(196 ±8, 196 ± 19, 178±8,191 ± 13, 216±# 11, and 198±11 ka; Figure 3a) that are all

within 2 sigma error of each other. The mean eruption age for the main edifice of V.

Tequila is thus 196 ± 12 ka. These results further suggest, within a 95 % confidence

interval, that the bulk of the main edifice was erupted within < 24 kyrs. (2) Two samples

from Cerro Tomasillo (PW139 and PW143), collected and described by Wallace and

Carmichael (1994), resulted in ages of 66±20 and 58± 10 ka, respectively. Although

Wallace and Carmichael (1994) label sample PW143 a flank andesite and do not assign it

to Cerro Tomasillo, its location (field map of Paul Wallace, personal communication) is

clearly a flow from Cerro Tomasillo as revealed by the newly available aerial

photographs and digital elevation models with 2m vertical resolution (Figure 2). (3) Two

peripheral andesite samples of nearly identical composition (Table 1) taken from a cinder

cone (TEQ31) and the distal edge of its associated lava flow (TEQ38) were both dated

and gave nearly identical results (691 ± 26 and 683±t 32 ka, respectively). (4) Two

rhyolite samples from the same dome (TEQ18 and TEQ35) with nearly identical major

and trace element compositions also gave indistinguishable results (642 ±6 ka, 632±8

ka). (5) Two andesite samples from the same northwest flank flow (TEQ46/TEQ48) with
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nearly identical compositions (Table 1) gave the same age within error. Their plateau

ages are within 2a of each other (53 ± 16 ka and 119± 18 ka), with a mean age of 86±

47 ka, whereas their isochron ages are within la of each other (73 ±24 ka and 108 ±27

ka), with a mean age of 91 ±25 ka. These flank andesite lavas were among the most

difficult to date owing to their youthfulness and vesicularity.

Summary of results for samples < 1 Ma

The eruption frequency of the different lava types (basalt/basaltic andesite,

andesite, dacite and rhyolite) over the last 1 Myr is illustrated in Figure 4. The earliest

eruptions of basalt occurred between 1 and 0.85 Ma within the Rio de Santiago canyon;

the geographic distribution of ages, morphology of flows, and petrographic textures

strongly suggest that this episode of basaltic volcanism led to the complete filling and

ponding of this segment of the canyon, causing basalt to flood southward and create the

primary surface of the Santa Rosa plateau. Flows that clearly post-date this primary

surface include the TEQ31/TEQ38 andesite cone and flow near the town of Amatitan

(691 ± 26; 683 ±32 ka) and the 630 ka dacite flow, north of the town of Tequila, dated

by Nixon et al. (1987). Basaltic eruptions continued to occur within the canyon; the next

series of eruptions occurred between -670 and 590 ka (TEQ10 and TEQ 12) and appear to

have filled the canyon locally and possibly caused the river to be re-routed several

hundred meters northward. The most recent eruption of basalt within the canyon

produced a lava cone (MW72) dated by Wopat (1990) at 364±46 ka. Between 0.95 and

0.19 Ma, at least six different basalt and basaltic andesite eruptions occurred from

isolated vents located on top of the Santa Rosa plateau. The youngest dated basalt (140 +

12 ka) is from cinder cone ETZ1, which is west of V. Tequila (Figures 2 and 3a).

The first eruptions of andesite were all peripheral to V. Tequila and include both

cinder cones and small lava flows. The oldest andesite (within the last 1 Myr) erupted

~690 ka as a cinder cone and associated flow on top of the Santa Rosa plateau

(TEQ31/38). The next andesite eruptions all occurred west and south of V. Tequila

between ~450 and ~225 ka as small flows and cinder cones. The main edifice of V.

Tequila is predominantly andesitic and appears to have erupted over a relatively narrow

time interval at ~200 ka. After an apparent hiatus of -110 kyrs, young andesite flows
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erupted ~90 ka along the northwest (TEQ123, TEQ46, TEQ48) and southeast (TALl)

flanks of V. Tequila. The youngest eruption of andesite (and the youngest feature in the

Tequila volcanic field) built the small stratocone of Cerro Tomasillo ~60 ka.

Two andesite samples of nearly identical bulk composition (Table 1) are from one

of the flank flows southeast of V. Tequila (TAL21 and TAL27) and were both dated;

unfortunately, both resulted in highly disturbed gas spectra without a plateau, and dates

are not reported. However, four different stratigraphic relations observed in the field

bracket the age of this flow. Along its western margin, this flank lava flowed on top of

the southernmost flows from V. Tequila (196 ± 12 ka), and it also flowed around cinder

cone TAL12 (454±32 ka). This flank flow is also clearly overlain by both Cerro

Tomasillo (62 ± 11 ka) and the dacite domes and associated flows (>75 ka). Thus this

flank flow must have erupted sometime between -200 and -75 ka, and its eruption may

have been broadly contemporaneous with the other andesite flank eruptions northwest

and southeast of V. Tequila, all of which have 40Ar/39Ar dates that cluster -90 ka.

Dacite first erupted -630 ka as a series of cinder cones west of V. Tequila (ETZ4,

ETZL1) and also as a flow on top of the Santa Rosa plateau (north of the town of Tequila;

dated by Nixon et al. 1987). The next dacite eruptions were two small cinder cones

southwest of V. Tequila -390 ka (TAL8, TAL9). Small remnants of a dacitic airfall

deposit are found underneath a small block and ash deposit of two-pyroxene andesite

(TEQ23C), which has been dated at 196 ± 19 ka. Thus it appears that a small explosive

eruption of dacite from the main edifice of V. Tequila occurred -200 ka. The youngest

dacite (erupted sometime between 200 and 75 ka) occurs as a series of small domes and

associated flows that are immediately SE of Cerro Tomasillo.

Rhyolite domes have erupted sporadically between 1120 and 240 ka throughout

the field area (on all sides of V. Tequila) with the greatest frequency of eruption between

400 and 700 ka. No rhyolite has erupted since the onset of major andesitic volcanism

-200 ka, when the main edifice of V. Tequila was built.

Samples > 1 Ma

Four dated samples are older than 1 Myr and are not included in the inventory of

erupted volumes. The results for these four samples are given in Table 2c; only two have
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plateau ages. The oldest (TEQ9, 5.14 ± 0.05 Ma) is a hornblende-bearing andesite

ashflow erupted onto (and covered by) lake sediments and is located on the southern wall

of the Rio de Santiago canyon stratigraphically beneath TEQ10, in view of the Santa

Rosa dam. This is likely the same unit that was dated by Damon et al. (1979) at 4.69 Ma

and described as a hornblende tuff near the town of Achio. The other three lavas are

found west of V. Tequila and are all crystal-poor to aphyric. One is an andesite (ETZ2,

2.24 ± 0.02 Ma) and plots outside the field area, whereas the other two are a basaltic

andesite and a rhyolite, respectively (ETZ5, 3.86 ± 0.04 Ma and ETZ7, 3.02 ± 0.05 Ma)

and appear in Figures 2 and 3a.

Volumes

Methods and Errors

The total volume of magma erupted at the Tequila volcanic field over the last 1

Myr was determined from geologic field mapping combined with analysis of DEMs

(1:50,000) superimposed on aerial photographs (taken at a scale of 1:20,000) using the

GIS software ArcView 3.2 and ArcGIS 8.1. The Universal Transverse Mercator (UTM)

projection and the Geodetic Reference System 80 (GRS 80) model are used. The DEMs

have a horizontal and vertical resolution of 50 m and 2 m, respectively. In order to

evaluate the volumes of volcanic cones, domes, and flows, individual units were

recreated in three dimensions using ArcGIS software.

All units were assumed to have a planar base, as small variations in underlying

topography were impossible to ascertain. When a cone, dome, or flow sat on a surface

with a slope <1-2o, the base of the 3D unit was assumed to be horizontal at the elevation

of the lowest point on the perimeter of the unit. When the underlying surface constituted

a steeper slope, the base slope of the unit was programmed manually; a sloping plane was

created using the points of elevation around the perimeter of the unit. If the perimeter

was obscured, i.e. the flows were ponded against older units or encroached upon by

younger flows, the slope and elevation of points at the base were inferred from flow

thickness and adjacent areas where the underlying slope was visible. Errors were

evaluated individually based on maximum and minimum possible volumes. For more

details of the procedure and error analysis, see Frey et al. 2003.
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The most challenging aspect of the volume calculations was determining the slope

and elevation of the basal surface beneath each unit. The errors of individual units fall

into three categories, ±0 - 5 %, ±6 - 10 %, and ± 11 - 25 % (Table 3). Errors are

smallest (<5 %) for units with well-exposed boundaries, including cinder cones and

isolated domes and flows. Volumetric errors of 6 - 10% resulted if andesitic lava flows

or rhyolitic domes ponded against older units or if overlying flows obscured the thickness

at the perimeter. To estimate the thickness of a ponded flow, the underlying slope was

calculated where it was visible and extended to the contact so the elevation at the base of

the flow could be estimated. Where a flow was partially buried, the thickness around the

exposed edge was measured and the concealed thickness estimated. Maximum and

minimum volumes were estimated by varying the thickness of the flow and the elevation

(degree of slope) of the underlying surface.

The most complex areas for volumetric calculations, and thus those with the

largest errors (11 - 25 %), occur where rhyolitic domes are partially covered by younger

andesite lavas. In these cases, the minimum volume is based on the area of the exposed

dome and a horizontal base level at the lowest point of the perimeter. The sides were

assumed to be vertical, which is consistent with their steep margins observed in the field.

The maximum volume is calculated by assuming that the exposed area is a fraction of an

idealized, circular dome where the highest elevation of the exposed dome is assumed to

be the center. The volumes of the younger andesite flows that flank V. Tequila and

partially cover rhyolite domes were calculated based on their well-defined perimeter and

an estimate of their thickness from the elevation and topography inferred for the

underlying volcanic units. Minimum volumes were calculated by assuming the flows had

a constant thickness over the exposed area.

Results

The results of the volume calculations are given in Table 3; Figure 3b shows the

outlines of the units used for these calculations. A relatively large volume is calculated

for basalt owing to our interpretation that basalt filled the Santiago canyon ~1.0-0.9 Ma

and subsequently flooded the Santa Rosa plateau at -0.85-0.9 Ma. The volume of

canyon-fill up to 20-40 m below the southern rim (~1060-1080 m) is readily calculated
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with the ArcGIS software and leads to a value of ~23-25 km3 . This volume is likely a

maximum, as the canyon was probably less deeply incised at 1 Ma than today. On the

other hand, this calculation does not account for the volume of basalt that filled the

canyon downstream, north of our defined field area. The volume of basalt that is

estimated to have covered the Santa Rosa plateau ~0.9-0.85 Ma depends on its areal

extent and thickness. The areal extent (~300 km2) is estimated to be its currently exposed

area (190 km2 ) plus the area of the canyon at the 1100 m contour line (110 km2). The

thickness (-30 m) is based on that for the package of three flows described and dated (top

and third flow) by Wopat (1990) that cap the canyon rim (MW77, MW78; Figure 2).

Thickness variations of 20-40 m led to a minimum and maximum volume for the lavas of

the Santa Rosa plateau of 6-12 km3 .

The sequence of dates obtained for TEQ12 (surface flow, 592±20 ka) and

TEQ10 (ponded flow beneath TEQ 12, 671 ± 13 ka) suggest that a second infilling of the

canyon occurred locally in this area. A total volume of 4.4 -6 km3 is estimated for this

canyon-fill. The volumes of isolated basalt and basaltic andesite flows located on top of

the Santa Rosa plateau are 0.40 ± 0.002 km3 (TEQ37), 0.60 ± 0.015 km (TEQ36), and

0.20 ± 0.01 km3 (TEQ40), whereas individual cinder cones associated with the basalt

flows are <0.01 km3.

The central andesitic stratocone, Volcan Tequila, has an estimated volume of 31 +

2.1 km3, whereas the adjacent Cerro Tomasillo has a volume of 1.9 ± 0.02 km3 . The

young andesitic flows that flank V. Tequila to the northwest have a collective volume of

8 ±2 km3, whereas the southeast flank lavas have an estimated volume of 5.8 ± 0.6 km3 .

Peripheral andesitic flows and cones have a combined volume of 2.9 ± 0.2 km3. The

dacite flow north of V. Tequila has a volume of 1.4 ± 0.16 km3, whereas the line of

dacitic domes and associated flows southeast of Cerro Tomasillo are 1.1 ± 0.03 km3.

The peripheral dacitic cinder cones have a combined volume < 0.19 ± 0.005 km3 . There

are 12 rhyolitic domes in the field area, with a total volume of 34.2 ± 6.3 km3 . The

largest dome (TEQ21) has a volume of 16±4.0 km3, whereas all other rhyolite domes

are significantly smaller (< 5 km3).
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Total erupted volumes, relative proportions of lava types, and eruption rates

The total volume of each lava type erupted in the Tequila volcanic field over the

last 1 Myr is 34-44 km3 basalt, ~0.7 km3 basaltic andesite, 46-56 km3 andesite, ~3.3 km3

dacite, and 28-40 km3 rhyolite (Table 3). Thus the total erupted volume is 111-144 km3

(or 127 ± 16 km3 ) over an area of ~1600 km2 in the last 1 Myr, which leads to an average

eruption rate of 79 m3/km 2/yr. This is equivalent to a lava accumulation rate averaged

over the entire field area of ~79 m/Myr or ~8 cm/ky. The relative proportions of lava

types erupted in the Tequila volcanic field in the last 1 Myr are ~24-40 % basalt, ~0.6 %

basaltic andesite, ~32-50 % andesite, ~2 % dacite and ~19-36 % rhyolite.

A combination of the 4Ar/39 Ar dates with the volume estimates for individual

eruptive units allows a graphical representation of how the volumes of different lava

types were erupted over time (Figure 5a). The data illustrate a general trend of bimodal

basalt-rhyolite volcanism between ~1.0 and 0.2 Ma, with only minor "background"

eruptions of andesite and dacite occurring over this interval. At ~200 ka, a pulse of

volcanism produced ~31 km3 of andesite to create Volcin Tequila, followed by a hiatus

of ~110 ka, whereupon ~14 km3 of flank andesite lavas were erupted. The eruption of -1
km3 of dacite followed soon after, and the last eruptive activity occurred -60 ka to

produce ~2 km3 of andesite in the form of Cerro Tomasillo.

The most recent and voluminous eruptions of andesite, including Volcan Tequila,

its flank flows, and Cerro Tomasillo, all occurred within the last 200 kyrs. Thus the

volcanism over this time period was overwhelmingly andesitic (-97 %). Because > 95 %

of the total andesite erupted in the Tequila volcanic field occurred in the last 200 kyrs, the

relative proportions of lava types is very different if only the first 800 kyrs of the last 1

Myr is considered. Over that time interval, the proportions are -53 % basalt, ~1 %

basaltic andesite, -2.5 % andesite, -2 % dacite and -41 % rhyolite. Thus for a

meaningful evaluation of eruption rates and relative proportions of lava types at an arc

volcanic field, it is necessary to define the time scale of interest, as emphasized by

Hildreth et al. (2003). This point is illustrated even more clearly by comparing the

eruptive history of the Tequila volcanic field with that documented for the Ceboruco-San

Pedro volcanic field (-75 km northwest of Tequila) over the last 1 Myr (Frey et al. 2003).
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Comparison with the Ceboruco-San Pedro volcanic field

The relative proportions of magma types erupted in the Ceboruco-San Pedro

volcanic field in the last 1 Myr are 0 % basalt, ~14-15 % basaltic andesite, ~62-66 %

andesite, ~18-22 % dacite and ~1 % rhyolite (Frey et al. 2003). The distribution of the

erupted volumes of these lava types over time is shown in Figure 5b and compared to that

for the Tequila volcanic field. The most striking difference is the paucity of basalt and

rhyolite in the Ceboruco-San Pedro volcanic field and their relative abundance in the

Tequila volcanic field between 1 and 0.2 Ma. In contrast, low-volume eruptions of

intermediate magma (andesite and dacite) constitute the "background trickle," the

relatively continuous eruption of non-focal lavas as described in Hildreth and Lanphere

(1994), at the Ceboruco-San Pedro volcanic field over this time period. Another

difference is in the total output of erupted magma over the entire 1 Myr interval in the

two volcanic fields (each 1600 km2), ~81 ±4 km3 at Ceboruco-San Pedro vs. ~127 ± 16

km3 at Tequila. Thus, the lava accumulation (volume per area) rate differs between the

two volcanic fields by more than 50 % (-5 vs. ~8 cm/kyr) over the last 1 Myr.

The most striking similarity between the two volcanic fields is the voluminous

intermediate (andesitic/dacitic) volcanism in the last few hundred kyrs. The relative

proportions of magma types erupted in the last 200 kyrs are -4 % basaltic andesite, ~71

% andesite, ~23 % dacite, and ~2 % rhyolite at the Ceboruco-San Pedro volcanic field

and ~97 % andesite and -3 % dacite at the Tequila volcanic field. Another similarity is

that both volcanic fields record a hiatus in volcanism between the mid-Pliocene and ~1

Ma. Frey et al. (2003) document a hiatus in the Ceboruco-San Pedro volcanic field

between 3.8 and 0.8 Ma. At the Tequila volcanic field, with the single exception of an

andesitic lava west of the field area (ETZ2, 2.2 ± 0.02 Ma), there appears to be a hiatus

between ~3 and 1 Ma. Lavas that cap the northern rim of the Santiago canyon north of

Tequila have been dated at 3.7 and 3.9 Ma (Damon et al. 1979), and we report ages of 3.0

and 3.9 Ma on a rhyolite and basaltic andesite, respectively, west of V. Tequila. These

are the youngest lavas prior to the eruption of the basaltic Santa Rosa plateau and the first

of the rhyolite domes at ~I Ma. This hiatus in volcanism coincides with the absence of

convergence of the Rivera plate from 2.6-1.0 Ma, whereupon normal convergence

resumed at a rate of ~3.2 cm/yr (DeMets and Traylen 2000). It is possible that the
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initiation of volcanic activity 1 Ma is related to the resumption of subduction of the

Rivera plate, although bimodal rhyolitic and high-Ti basaltic volcanism is not generally

associated with subduction. Perhaps hundreds of kyrs are required after resumption of

subduction before voluminous andesitic volcanism can occur.

Comparison with volcanic fields in the Cascade arc

Additional comparisons of eruption rates, total volcanic output, and relative

proportions of lava types can be made with two volcanic fields of similar areal extents

(~1250 km2 ) from the Cascade arc: the Mt. Adams volcanic field (Hildreth and Lanphere

1994) and the Mt. Baker volcanic field (Hildreth et al. 2003). Both areas are underlain by

-40-45 km of continental crust (Mooney and Weaver 1989) relative to the 35-40 km

estimated beneath the Tequila and Ceboruco-San Pedro volcanic fields (Urrutia-

Fucugauchi and Flores-Ruis 1996). Despite the erosive action of glacial activity over the

last 1 Myr in the Cascade arc, especially at the Mt. Baker volcanic field, Hildreth and

Lanphere (1994) and Hildreth et al. (2003) provide estimates of both total erupted

volumes and relative proportions of lava types.

The 200 km3 andesitic stratocone of Mt. Adams is significantly larger than Mt.

Baker (15 ± 3 km3), Black Buttes (30 ± 10 km3 ) (part of the Mt. Baker volcanic field), V.

Tequila (31 ±2 km3), and V. Ceboruco (51 ± 2.5 km 3). Moreover, owing to three

separate cone-building events at Mt. Adams, the total volcanic output at this volcanic

field over the last 1 Myr is estimated at 231-399 km3 (Hildreth and Lanphere 1994). In

contrast, the total volume of magma erupted at the Mt. Baker volcanic field over the last

1 Myr (not including 50-80 km3 of rhyodacite that erupted between 1.0 and 1.3 Ma) is

estimated at 65-137 km3 (Hildreth et al 2003), which is closer to the total output

documented for the Tequila and Ceboruco-San Pedro volcanic fields over the same time

interval. At the Mt. Adams volcanic field, the relative proportions of lava types erupted

in the last 1 Myr are -9-15 % basalt, 84-89 % andesite, ~2 % dacite, and 0 % rhyolite

(Hildreth and Lanphere 1994). Over this same interval at the Mt. Baker volcanic field,

the relative proportions are ~2 % basalt, -92 % andesite, -4 % dacite, and -3 % rhyolite,

excluding the rhyodacitic volcanism between 1 and 1.3 Ma (Hildreth et al. 2003).

21



The dominance of andesite in all four volcanic fields is directly related to the

voluminous cone-building events that build the large, predominantly andesitic

stratocones. More frequent cone-building events (e.g., three at the Mt. Adams volcanic

field) results in larger volcanic output. Based on data compiled from the literature, Crisp

(1984) argues that volcanic output at arcs is inversely correlated with the thickness of

crust. Although the crust beneath the Cascade arc is -0-10 km thicker than that beneath

western Mexico, the total volcanic output at the Mt. Adams volcanic field is 2-3 times

higher than in the Tequila and Ceboruco-San Pedro volcanic fields over the last 1 Myr.

Thus a clear correlation between the magnitude of volcanic output and crustal thickness

is not yet established.

Cone-building eruption rates

With the aid of detailed, high-quality 40Ar/39Ar chronology, eruption rates can be

determined not only for entire volcanic fields over a 1 Myr time interval but also over

relatively narrow time scales (i.e., tens of kyrs) appropriate to cone-building events at

individual stratocones. At V. Tequila, six samples taken from different parts of the main

edifice all have ages within two sigma of each other, leading to a mean eruption age of

196 ± 12 ka. The volume of the edifice is estimated at -31 km3 ; if the two-sigma error on

the eruption age (24 kyrs) is a good estimate of the maximum time interval over which

the Tequila stratocone was built, then the cone-building eruption rate is > 1.3 km3/kyr,

comparable to rates documented at other arc stratocones.

For example, the historically active stratocone of Volcdn Colima in western

Mexico (Figure 1) has erupted ~10 km3 over the last 4300 years ago (Luhr and

Prestegaard 1988), leading to an eruption rate of -2.3 km3/yr, nearly twice the minimum

estimated for V. Tequila. The other historically-active stratocone in western Mexico,

Volcin Ceboruco, is even more prodigious in its output, and has erupted -9.5 km3 of

andesite and dacite in the last 1000 yrs (Nelson 1980, Frey et al. 2003), following a

Plinian eruption of -3-4 km3 of dacite (Gardner and Tait 2000). The rate of effusive,

cone-building volcanism at V. Ceboruco is thus -9.5 km3/kyr. Stratocones from the

Cascade arc display a similar range of eruption rates. For example, the Mt. St. Helens

volcano in the Cascade arc has erupted -40 km3 over the last 4000 years, leading to a
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cone-building rate of 10 km3/kyr (Mullineaux 1986). Hildreth and Lanphere (1994)

document three separate cone-building events at the Mt. Adams volcano (-50 km east of

Mt. St. Helens) over the last 1 Myr with rates that range from 1.6-5.0 km3/kyr. More

recently, Hildreth et al. (2003) estimated significantly lower cone-building rates of -0.3 ±

0.15 km3/kyr for two andesitic centers in the Mt. Baker volcanic field, Black Buttes and

Mt. Baker. Thus it appears that cone-building rates at arc stratocones can vary by

approximately two orders of magnitude.

Evidence for two short-lived upper crustal magma chambers separated in time

Detailed 4 0Ar/39Ar chronology constrains not just the rate, but also the duration of

cone-building events, and, when combined with petrologic and textural evidence, can be

used to place upper limits on the longevity and depth of upper crustal magma chambers.

The location of VolcAn Tequila and its flank lavas along a prominent NW-SE lineament

suggests that they overlie a major passageway for magmas ascending from the lower or

middle crust. These magmas appear to have collected in the upper crust, forming a

chamber at two discrete periods of time: ~200 ka and -90 ka for durations of ~30 kyrs or

less. These chambers are expected to be the site of mingling between different ascending

magma batches that may or may not be related to one another by crystal fractionation.

Ubiquitous disequilibrium textures in these lavas, described by Wallace and Carmichael

(1994), confirm the mingling of at least three endmember magma compositions (andesite

to dacite) prior to eruption. Importantly, the endmember magmas were already of

andesitic to dacitic composition prior to their mingling within the upper crustal chambers.

The chronologic evidence for two discrete magma chambers beneath V. Tequila,

separated in time by ~110 ka, is further supported by phase equilibrium data. Most of the

lavas erupted -90 ka from the flanks of V. Tequila are distinguished from those erupted

-200 ka from the main edifice by the addition of hornblende to an otherwise similar

phenocryst assemblage of plagioclase and two pyroxenes. Wallace and Carmichael

(1994) performed a detailed petrologic study of both sets of lavas and show a systematic

difference in their pre-eruptive temperatures and water concentrations. On the basis of

both iron oxide and two-pyroxene thermometry, they calculated temperatures of ~910-

960*C for the hornblende-bearing magmas and ~990-1045*C for the hornblende-free
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magmas. Wallace and Carmichael (1994) used these temperatures in conjunction with

the plagioclase-melt equilibria of Housh and Luhr (1991) to estimate pre-eruptive water

concentrations in the two groups: 3.3-4.7 and 2.5-3.0 wt % for those with and without

hornblende, respectively. In Figure 6, we combine these results with the experimentally

determined water-saturated phase diagram of Moore and Carmichael (1998) for an

andesite from western Mexico (similar to those erupted from V. Tequila) to locate the

position of two discrete magma chambers in P-T space (Figure 6). The results suggest

that the earlier magma chamber that fed the eruptions of V. Tequila ~200 ka (for a

duration of < 24 kyrs) was located at a relatively shallow depth of ~2-3 km (~5 0- 70 MPa)

and was injected by magmas > 990*C. The absence of hornblende phenocrysts reflects

higher magmatic temperatures, i.e., above the thermal stability limit of hornblende. In

contrast, the second chamber, which formed ~110 ka later, appears to have been located

at a depth of ~5.0-6.5 km (130-170 MPa) and was injected by relatively cooler magmas

(910-960*C), thus allowing hornblende to crystallize.

The peripheral andesites and dacites, especially those erupted from the nine cinder

and lava cones along the southern margin of V. Tequila, have very few phenocrysts,

which suggests that they ascended rapidly through the upper crust and did not stall within

an upper crustal chamber. Nor is there any textural evidence of magma mingling, which

is consistent with the monogenetic character of each cone and flow. The absence of any

upper crustal magma chamber feeding these small-volume eruptions of andesite and

dacite (total volume is ~4.5 km3) is further supported by the distribution of their eruption

ages over a 460 kyr interval (~685-225 ka), with no pattern of increasing silica content

with time (Figure 7). These peripheral eruptions give further evidence that hydrous

andesitic and dacitic magmas are emplaced into the upper crust as crystal-poor liquids

and that significant crystallization of these magmas occurs only if they stall and degas

within upper crustal chambers (Cashman and Blundy 2000; Carmichael 2002).

The plagioclase phenocrysts in most of the andesites and dacites (both peripheral

and focal eruptions) have cores, and sometimes bands, that are riddled with melt

inclusions. This texture is often interpreted in the literature as a resorption feature. An

alternative hypothesis (Anderson 1984) is that this texture reflects extremely rapid crystal

growth under conditions of strong undercooling (AT > 100 degrees), similar to that
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documented in experiments by Lofgren (1974). Such strong undercooling is fully

expected if crystallization of these andesites and dacites is driven by degassing of water

during decompression, causing the liquidus for plagioclase to abruptly increase by > 100

degrees (Figure 6). If this texture is a reflection of degassing-induced crystallization,

then it further underscores the conclusion that the andesites and dacites were emplaced

into the upper crust as crystal-poor liquids.

Petrogenesis of lavas within the Tequila volcanic field

The detailed eruptive chronology of the diverse lavas within the Tequila volcanic

field, combined with their relative volumes, places strict constraints on models of their

collective petrogenesis. Proposed models must be consistent with the following

observations: (1) The basalts and rhyolites are broadly associated in time (1-0.2 Ma) and

do not appear to be directly related to the voluminous eruptions of andesite over the last

200 kyrs. (2) The compositional spectrum of andesite through dacite (59-69 wt % SiO2)

was erupted from small-volume, isolated flows and cinder cones over a period of ~460

kyrs (~685-225 ka) with no time progression in their compositions. (3) The

compositional spectrum of andesite through dacite (mostly 59-63 wt % SiO2 ) was erupted

in relatively large volumes in a relatively short time (tens of kyrs) at V. Tequila at two

discrete times, separated by a hiatus of ~110 kyrs. (4) Hydrous andesitic and dacitic

liquids were emplaced into the upper crust (either into short-lived chambers or directly

onto the surface) as crystal-poor liquids, and therefore must have been generated in the

middle or lower crust by a process that produces a crystal-poor liquid.

Further constraints on the genetic relationships among the lavas are provided by

simple plots of two incompatible trace elements, Ba (large ion lithophile) and Zr (high

field strength) as a function of silica concentration (Figure 8). The lavas are divided into

four groups: (1) basalt/basaltic andesite, (2) andesite/dacite from V. Tequila and its

flanks, including C. Tomasillo, (3) peripheral andesite/dacite, and (4) rhyolites. The

basalts and basaltic andesites show a wide spread in these two incompatible elements and

indicate considerable geochemical diversity among the mafic lavas. Therefore, any

relationship among the basalts and basaltic andesites likely involved numerous parental

liquids following limited differentiation trends, similar to the conclusions drawn by
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Dungan et al. (2001) for lavas at the Tataro-San Pedro volcanic field. The rhyolites, with

which the basalts and basaltic andesites are associated in time, have an equally large

spread in Ba and Zr, and thus clearly were not all derived from a single, homogenous

rhyolitic magma body with a long residence time in the upper crust (i.e., over ~800 kyrs

of eruptive history). A more plausible scenario is that the individual rhyolite domes each

were produced during discrete episodes of partial melting of upper sialic crust, most

likely driven by the episodic emplacement of hot, basaltic magmas into the upper crust

between 1.0 and 0.2 Ma; some of these basalts erupted along NW-SE fractures and faults.

It is unclear whether this bimodal volcanism of rhyolite and high-Ti basalt is a

consequence of the renewed subduction of the Rivera plate ~1 Ma or merely reflects

extensional tectonics.

The andesites and dacites, especially those erupted in significant volumes from V.

Tequila and its flanks, are not obviously linked to the basalts and basaltic andesites in

terms of their eruptive history. If they are related by a crystal fractionation process to

parental liquids similar to these more mafic lavas, then the scatter in Ba and Zr indicates

that such a process must have operated on numerous parental liquids, each of which was

geochemically distinct and likely of modest volume. Thus, the image of a single or only

a few large chambers of initially homogeneous magma undergoing crystal-fractionation

(e.g., a la Skaergaard) is probably unrealistic. Nor is mixing of the rhyolites and basalts

to produce the andesites and dacites a reasonable hypothesis because: (1) such mingled

basalt/rhyolite lavas have not been identified in the Tequila volcanic field despite their

coexistence for -800 kyrs, (2) there is no evidence of a single olivine crystal in more than

150 thin sections of andesite/dacite lavas from the Tequila volcanic field examined

petrographically by Wallace and Carmichael (1994) (and 28 more in this study), and (3)

textural evidence suggests that andesitic and dacitic magmas were emplaced into the

upper crust as homogenous, crystal-poor liquids, and therefore mingling and

crystallization occurs largely in upper crustal chambers. Therefore, of the four principal

mechanisms commonly invoked to explain the generation of andesite/dacite magmas at

subduction zones (i.e., crystal fractionation, crustal assimilation, magma mixing, partial

melting), the one that appears to be most consistent with the evidence provided in this

study is partial melting of an amphibolitized mafic lower crust.
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Many authors (e.g., Hildreth and Moorbath 1988; Atherton and Petford 1993;

Tepper et al. 1993; Lange and Carmichael 1996) have suggested that mantle-derived arc

magmas solidify near the base of the arc crust, causing crustal thickening through magma

accretion. During solidification, hydrous basaltic magmas lose some water, allowing a

hydrous fluid to ascend through fractures and amphibolitize previously solidified mafic

rocks. The introduction of new additions of basaltic magma from the mantle may then

heat and partially melt variably hydrated (amphibolitized) portions of the mafic lower

crust. Melting experiments on mafic amphibolite at -1 GPa indicate that initial partial

melts are broadly dacitic in composition for as long as hornblende is residual; melts move

to andesitic compositions as the amphibole-out curve is crossed (e.g., Wolf and Wyllie

1994).

Although it is beyond the scope of this paper to provide a rigorous evaluation of

the partial melting hypothesis, it appears to be the process that is most consistent with the

detailed eruptive history documented for two different volcanic fields (Tequila and

Ceboruco-San Pedro) in the western Mexican arc. The recurring theme is a persistent

background leakage to the upper crust of geochemically diverse, small-volume batches of

crystal-poor magma with a compositional range over basaltic andesite/basalt, andesite,

and dacite. The magmas undergo significant crystallization only after emplacement in

the upper crust, have no progressive sequence in their composition over time, and are

periodically punctuated by voluminous bursts of andesitic magmatism.
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I
Table 3 Volumes of dated units at the Tequila volcanic field

Sample Volume km3
Andesites Cerro Tomasillo 1.9* 0.02

ETZ3 0.04 ± 0.001
ETZ10 0.07 * 0.002
PICA 0.22±* 0.01

PW123 8±* 2.00
TALS 0.20 ± 0.01
TAL7 0.08± *0.002

TAL12 0.04 ± 0.001
TALI3 0.02 ± 0.001
TAL21 4.6±t 0.60
TAL23 1.04* 0.12
TAL25 0.41 ± 0.01
TEO31 0.20 ± 0.02
TEO52 0.48±t 0.05
TEQ53 I ± 0.01
TE067 1.3±* 0.13

Volcdn Tequila 31 ± 2.1
Total 50.60 t 5.09

...

% error Min km3 Max km3 % of Total
1.10 1.88 1.92

s

Basaltic Andesites

Total

Basalts

Total

Dacites

TAL26
TE032
TE033

TEQ37flow
TE037
TEQ40

ETZ1
TAL3
TE036

TEQ36flow
TE039
-1 Ma

-850 ka
-670 ka
-590 ka

DOMES
ETZ4

ETZ11
GN624

GN624a
GN624b

TAL8
TAL9

TAL17

ANESRHYO
ERHYO
JH147
JH182
JH201
JH257
JH260
TEQ21
TE022
TE029
TE034
TEQ35
TE045

0.03± 0.001
0.08± 0.002
0.01 ± 0.001
0.4 ± 0.02

0.01 ± 0.001
0.2 ± 0.01

0.73 a 0.04

0.03 ± 0.001
0.01 ± 0.001
0.01 ± 0.001
0.6 ± 0.015

0.01 ± 0.001
24 ± 1.00
9.0± 3.00
4.4 ± 0.41

0.83 ± 0.40
38.84 ± 4.81

1.1 ± 0.025
0.04 ± 0.001
0.07± 0.002
1.2± t0.14

0.15 ± 0.015
0.09 ± 0.008
0.04 ± 0.001
0.04± 0.001
0.21 ± 0.01
2.94 a 0.40

0.12 ± 0.03
0.37± 0.04
0.57 ± 0.03

1 ± 0.25
2 ± 0.2
3 ± 0.6
2± t0.1
16±4

2.1 ±t0.2
1.2 ± 0.06

0.05 ± 0.003
4.7 ± 0.5
1 ± 0.25

34.1 ± 6.26

127.2 t.16.6

2.50
2.86
4.55

25.00
5.00
2.50
2.50
5.00
13.04
11.00
2.44
11.00
10.42
1.00
10.0
7.00

10.05

3.00
2.50
5.00
5.00
5.00
5.00
3.56

3.3
5.0
5.0
2.5
5.0
4.2
33.3
9.4

48.2
12.4

2.3
2.5
2.9
12.0
10.0
9.0
2.5
2.5

4.76
13.7

25.0
10.8
5.3

25.0
10.0
20.0

5.0
25.0
10.0
5.0
5.0
10.6
25.0
18.4

0.039
0.068
0.21
6.00
0.19

0.078
0.039
0.019
4.00
0.92
0.40
0.18
0.43
0.99
1.17

28.90
45.51

0.029
0.078
0.010
0.398
0.010
0.199
0.70

0.029
0.010
0.010
0.59

0.010
23.00
6.00
3.97
0.43

34.03

1.08
0.039
0.068
1.06
0.14
0.08

0.040
0.039
0.20
2.54

0.09
0.33
0.54
0.75
1.80
2.40
1.90

12.00
1.90
1.14

0.048
4.20
0.75

27.85

0.041
0.072
0.23
10.00
0.21

0.082
0.041
0.021
5.20
1.16
0.42
0.22
0.53
1.01
1.43

33.10
55.69 (31.6 - 50.3)

0.031
0.082
0.011
0.402
0.011
0.201
0.76 (0.49 - 0.68)

0.031
0.011
0.011
0.62
0.011
25.00
12.00
4.79
1.23

43.65 (23.7 - 39.5)

1.13

0.041
0.072
1.34
0.17
0.10

0.040
0.041
0.22
3.34 (1.8-3.0)

0.15
0.41
0.60
1.25
2.20
3.60
2.10

20.00
2.30
1.28

0.053
5.20
1.25

40.37 (19.4 -36.4)

Total

Rhyolites

Total

Total volume erupted 13.0 110.6 143.8



Figure Captions

Fig. 1 Tectonic framework and overview of western Mexico, modified from Delgado
Granados (1993). Numbered triangles in the Tepic-Zacoalco and Colima grabens refer to
central volcanoes: (1) Sierra La Primavera, (2) V. Tequila, (3) V. Ceboruco, (4) V.
Tepetiltic, (5) V. SangangUey, (6) V. Las Navajas, (7) V. San Juan, and (8) V. Colima-
Nevado.

Fig. 2 Aerial photograph of the field area with the geologic units outlined as on the
geologic map. Major features and sample locations are labeled. Stars represent dacitic
airfall deposits.

Fig. 3 Geologic map of the Tequila volcanic field. Numbers are dates in millions of
years.

Fig. 4 Eruption frequency diagram for lava erupted over the last one million years.
Included in this diagram are five K-Ar dates from Harris (1986), one from Nieto-Obreg6n
et al. (1985), three from Nixon et al. (1987) and six from Wopat (1990) on samples in the
volcanic field not dated in this study, as well as the 4Ar/39 Ar dates from this study.

Fig. 5 a Relative volumes of lavas erupted < 1 Ma in the Tequila volcanic field. The
apex of each peak represents the 4Ar/ 9Ar age (x-axis) and the volume of the erupted
lava (y-axis). The width of each distribution curve represents a uniform error of ±40
kyrs. Both the height and area under each curve display the relative volumes of each
volcanic feature. b The same diagram as in a, but for the Ceboruco-San Pedro volcanic
field (Frey et al. 2003).

Fig. 6 Water-saturated phase diagram for an andesite modified from Moore and
Carmichael (1998). The dashed lines are isopleths of wt. % water calculated from Moore
et al. (1998). The shaded areas indicate the P-T conditions of the two magma chambers
beneath V. Tequila, separated in time by ~110 kyrs.

Fig. 7 a The age (and 2 sigma error) of each dated eruptive unit 5 1 Myr as a function of
silica concentration; there is no correlation. b Same as a, but only the peripheral cinder
cones and flows of andesite and dacite are shown; there is no trend of increasing silica
with time.

Fig. 8 a Plot of incompatible element Ba as a function of silica concentration for basalts
through rhyolites. b Same as in a, but a blow-up of only basaltic andesites through
dacites. c Same as in a, but for incompatible element Zr. Basalts and basaltic andesites
are shown by crosses enclosed by squares, andesites and dacites from the main edifice
and flanks of V. Tequila are shown by solid dots, andesites and dacites from peripheral
cinder cones and flows are shown by the symbol X, and rhyolites are shown by open
squares.
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Data Repository: Discussion of incremental step-heating results
Age spectra and inverse isochron diagrams are included for each sample, and

errors are reported at the la value. The criteria for determining whether the plateau and
isochron ages from an incremental heating experiment are meaningful are as follows: 1) a
plateau includes >50% of the 39Ar gas released in at least three consecutive heating
fractions, 2) the plateau passes a null hypothesis test such that for a heating experiment
with 13 steps the MSWD is a maximum of 1.8, 3) the plateau and isochron ages are
concordant at the 95% confidence level, and 4) the 4Ar/ 36Ar intercept of the isochron
agrees with the atmospheric value of 295.5 at the 95% confidence level. The error on the
plateau age is a standard weighted error for the individual steps of the plateau by variance
(Taylor 1982), i.e. release fractions with more precise results carry greater weight in the
age calculation. Seven samples < 1 Ma had disturbed spectra that did not result in a
plateau; correlation and total gas ages are presented in Table 2b.

In the isochron diagrams, a dotted line indicates that all the heating fractions were
included in the regression, and a dashed-dotted line indicates that only heating fractions
associated with the plateau were included.

TEQ29 - Hornblende from R hyolite
The plateau includes all the heating fractions; there are large errors on the low and high-
temperature fractions but the ages are consistent throughout the run. The isochron
includes all the heating fractions and agrees with the plateau age at the la level.

ETZ6 Basaltic Andesite
Anomalously young ages in the lowest temperature heating fractions suggest minor argon
loss and were excluded from the plateau. The highest temperature fractions also were
excluded due to the likelihood that xenocrystic pyroxene degassed and caused anomalous
ages as well as sudden increases in calcium and chlorine. The plateau points were used
to construct the isochron, which agrees with the plateau age at thela level.

TEQ32 Basaltic Andesite
A plateau exists that fits the criteria, but the sample contains a high initial argon content
with inherent uncertainty about the exact value. Therefore the isochron age using points
from all the heating fractions has been designated as the more reliable age and agrees
with the plateau age at the 2a level.

TEQ31 Andesite
The stair step pattern in the initial heating fractions suggests that argon was lost due to
slight alteration; these fractions were excluded from the plateau. The plateau points were
used to construct the isochron, which agrees with the plateau age at thela level.

TEQ38 Andesite
The sample has an initial, low temperature heating fraction of an anomalously old age,
followed by three fractions of young age that may be due to argon loss/alteration. Minor
alteration is also suggested by changing chlorine and calcium concentrations over the

1



course of the experiment, but nine of 13 steps form a plateau with an MSWD of 1.30. The
sample contains a high level of atmospheric argon. The plateau points were used to
construct the isochron, which agrees with the plateau age at the 2a level.

TEQ10 Basalt
The plateau excludes anomalously old ages in both low and high temperature fractions.
The low temperature discrepancy is most likely due to release of atmospheric argon,
which may be expected in a young, vesicular sample. The high temperature discrepancy
is most likely due to the fusion of Ca-rich pyroxene or augite, which corresponds with the
jump in calcium concentrations. All of the heating fractions were used to construct the
isochron, which shows a wide spread of points and is consistent with the plateau age at
the l6 level.

TEQ18 Rhyolite
High levels of atmospheric argon in the sample may cause anomalously old ages in the
low temperature heating fractions; the plateau excludes these fractions. The isochron is
based on all heating fractions and is not within error of the plateau age. The MSWD of
the isochron age is 1.66 and of the plateau age is 0.37.

TEQ35 Rhyolite
Slight alteration of the obsidian may have led to argon loss and anomalously young ages
in some of the low temperature heating fractions; these fractions are excluded from the
plateau. The plateau points were used to construct the isochron, which agrees with the
plateau age at the 2a level.

ETZ4 Dacite
High levels of atmospheric argon in the sample may cause anomalously old ages in the
low temperature heating fractions. These fractions have been excluded from the plateau.
The plateau points were used to construct the isochron, which is not within error of the
plateau age. The MSWD of the isochron age is 0.89 and of the plateau age is 0.87.

TEQ21A Rhyolite
Slight alteration of the obsidian may have led to large errors on heating fractions in the
low temperatures. The plateau excludes these fractions although the ages are consistent
with the higher temperature results. Isochrons were constructed using both the plateau
points and all the points, but the isochron and plateau ages are not within error. The
reported isochron age uses all the points and is an errorchron with an MSWD of 2.23.
The plateau age has an MSWD of 0.67.

ETZ11 Dacite
High levels of atmospheric argon caused large errors on the low temperature heating
fractions, but the ages are internally consistent and thus all have been included in the
plateau. All of the heating fractions were used to construct the isochron, which is
consistent with the plateau age at the la level.

2



TEQ45B Rhyolite
Large errors on heating fractions in the low temperatures may have been caused by slight
alteration of the obsidian, but the ages are consistent and all results are included in the
plateau. All of the heating fractions were used to construct the isochron, which shows a
wide spread of points and is consistent with the plateau age at the la level.

TEQ12 Basalt
The plateau excludes anomalously old ages in both low and high temperature fractions.
The low temperature discrepancy is most likely due to release of atmospheric argon,
which may be expected in a young, vesicular sample. The high temperature discrepancy
is most likely due to the fusion of Ca-rich pyroxene or augite xenocrysts, which
corresponds with the jump in calcium concentrations. The plateau points were used to
construct the isochron, which agrees with the plateau age at the la level.

TAL12 Andesite
The plateau excludes anomalously old ages in low temperature fractions. The low
temperature discrepancy is most likely due to release of atmospheric argon, which may
be expected in a young, vesicular sample. The first heating fraction gives an
anomalously young age, suggesting minor argon loss at the grain rims. The plateau points
were used to construct the isochron, which agrees with the plateau age at the la level.

TEQ37 Basaltic Andesite
The fourth heating fraction gives an anomalously low age that is not reflected in change
in calcium or chlorine concentrations; the other steps result in consistent ages, so the
plateau includes all of the heating fractions. The isochron age is based on all fractions
and is consistent with the plateau age at the 2a level.

TEQ22 Rhyolite
Slight alteration of the obsidian may have led to large errors on heating fractions in the
low temperatures, so the plateau excludes these results. Isochrons were constructed using
all the points and using only the plateau points, but the isochron and plateau ages are not
within error. The reported isochron age uses all the heating fractions and has an MSWD
of 0.96. The plateau age has an MSWD of 1.10.

TAL9 Dacite
Anomalously young ages as well as a spike in chlorine concentration in the low heating
fractions suggest minor alteration and argon loss. The plateau excludes these fractions.
The isochron age is based on all fractions and is consistent with the plateau age at the La
level.

TEQ66 Dacite
Slight alteration of the glass may have led to irregular values in calcium concentrations as
well as argon loss that produced slightly young ages in the low temperature heating
fractions. The plateau includes these fractions and results in a MSWD of 0.69. The
isochron age is based on all fractions and is consistent with the plateau age at the la
level.
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TAL8 Dacite
Slight alteration of the glass may have led to irregular values in the calcium
concentrations as well as argon loss that resulted in large errors in the low temperature
heating fractions. These fractions have been excluded from the plateau. The isochron age
is based on all fractions and is consistent with the plateau age at the la level.

TAL13 Andesite
The initial heating fractions have large errors and old ages that suggest alteration and
release of atmospheric argon; these fractions were excluded from the plateau. This is
consistent with irregular values (at low temperatures) in the calcium and chlorine
concentrations. The plateau points were used to construct the isochron, which is
consistent with the plateau age at the la level.

TEQ33 Basaltic Andesite
The heating fractions have low errors and consistent ages, so all of the steps were used in
calculating the plateau age. The total gas, plateau, and isochron ages are all within la
error of each other.

TAL25 Andesite
The plateau excludes anomalous ages in both low and high temperature fractions. The
low temperature discrepancy of an old age is most likely due to release of atmospheric
argon, which may be expected in a young, vesicular sample. The high temperature
discrepancy, which corresponds with the jump in chlorine and calcium concentrations, is
most likely due to the fusion of pyroxene (Ca), Ca-rich augite, and hornblende (Ca and
Cl) xenocrysts. All the heating fractions were used to construct the isochron, which is
consistent with the plateau age at the la level.

ETZ3 Andesite
The heating fractions have large errors, most likely due to the large volume of
atmospheric argon, but the ages used for the plateau are internally consistent. All the
heating fractions were used to construct the isochron, which is consistent with the plateau
age at the la level.

TEQ36 Basalt
The heating fractions have low errors and consistent ages, so all the steps were used in
calculating the plateau. The total gas, plateau, and isochron ages are all within la error of
each other.

TAL11 Andesite
The anomalously low age in the first heating fraction indicates slight argon loss due to
alteration. The jump in calcium and chlorine concentrations at the highest temperature
fractions suggests degassing of pyroxene, Ca-rich augite or hornblende xenocrysts. The
sample contains very high levels of atmospheric argon. Isochrons were constructed using
all the points and using only the plateau points, but the isochron and plateau ages are not
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within error. The reported isochron age uses the plateau fractions and has an MSWD of
1.01. The plateau age has an MSWD of 0.86.

TEQ6 Andesite
Large errors in the initial heating fractions suggest minor alteration, but the plateau
excludes these fractions and uses ~90% of the 9Ar released. All of the heating fractions
were used to construct the isochron, which shows a wide spread of points and is
consistent with the plateau age at the 2a level.

JH009 Andesite
The plateau excludes anomalously old ages in the high temperature heating fractions.
The high temperature discrepancy is most likely due to the fusion of pyroxene, Ca-rich
augite, or hornblende xenocrysts, which corresponds with a rise in calcium and chlorine
concentrations. All of the heating fractions were used to construct the isochron, which
shows a wide spread of points and is consistent with the plateau age at the 2a level.

TEQ23C Andesite
The plateau excludes anomalously young ages in the high temperature heating fractions.
The high temperature discrepancy is most likely due to the fusion of pyroxene, Ca-rich
augite, or hornblende xenocrysts, which corresponds with a rise in calcium and chlorine
concentrations. The isochron has a MSWD of 5.49 and so is an errorchron.

TEQ15 Andesite
The plateau excludes anomalously old ages in both low and high temperature fractions.
The low temperature discrepancy is most likely due to release of atmospheric argon,
which may be expected in a young, vesicular sample. The high temperature discrepancy
is probably due to the fusion of pyroxene, Ca-rich augite, or hornblende xenocrysts,
which corresponds with a rise in calcium and chlorine concentrations. The plateau
fractions were used to construct the isochron, which is consistent with the plateau age at
the 2a level.

TEQ40 Basaltic Andesite
The plateau excludes high temperature heating fractions with anomalously old ages that
are most likely due to fusion of pyroxene or Ca-rich augite xenocrysts. The plateau points
were used to construct the isochron, which is the same as the plateau age at the la level.

TEQ17 Andesite
The stair step pattern in the initial heating fractions suggests that 4Ar* argon was lost
due to slight alteration; these fractions were excluded from the plateau. Although there
were large errors in the highest temperature heating fractions, the steps were included
because these ages did not change the age of the plateau. The plateau points were used to
construct the isochron, which is the same as the plateau age at the la level.
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TEQ60 Andesite
The plateau excludes the first and last heating fractions of the experiment. The
anomalously low age in the first step indicates slight oAr* loss due to alteration. The
jump in calcium concentrations at the highest temperature fractions suggests degassing of
Ca-rich augite or pyroxene xenocrysts. The plateau points were used to construct the
isochron, which results in an age the same as the plateau age at the La level.

TEQ25 Andesite
The plateau excludes high temperature, anomalously old ages that are most likely due to
fusion of Ca-rich pyroxene or plagioclase. The isochron is based on all the heating
fractions and the age corresponds with the plateau age at the la level.

ETZ1 Basalt
The heating fractions have low errors and consistent ages, so 100% of the 39Ar was used
in calculating the plateau. The total gas, plateau, and isochron ages are all within la error
of each other. All the heating fractions were used to construct the isochron.

TEQ48 Andesite
Although there were relatively large errors in the highest temperature heating fractions
the ages did not affect the age of the plateau and were included. All the points were used
to construct the isochron, which resulted in an age within a la error of the plateau age.
The sample contains a high concentration of atmospheric argon, which results in a cluster
of points near the Y-axis of the isochron.

TEQ46 Andesite
The heating fractions have low errors and consistent ages, so 100% of the 39Ar was used
in calculating the plateau. The sample contains a high concentration of atmospheric
argon, which results in a cluster of points near the Y-axis of the isochron. All the points
were used to construct the isochron. The total gas, plateau, and isochron ages are all
within la error of each other.

TALI Andesite
The heating fractions have low errors and consistent ages, so 100% of the 39Ar released
was used in calculating the plateau. All points were used to construct the isochron; the
plateau and isochron ages are within la error of each other.

PW123 Andesite
The plateau excludes an anomalously old age in the lowest temperature fraction. The low
temperature discrepancy is most likely due to release of atmospheric argon, which may
be expected in a young, vesicular sample. The isochron age is based on all of the step-
heating fractions and is the same as the plateau age within la error.

PW391 Andesite
The plateau excludes anomalous ages in the high temperature heating fractions that may
result from degassing of xenocrysts. The sample contains a high concentration of
atmospheric argon, which results in a cluster of points near the Y-axis of the isochron.
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The isochron age is based on all of the step-heating fractions and is the same as the
plateau age at the la level.

PW143 Andesite
The plateau excludes anomalously old ages in the high temperature heating fractions that
are most likely due to fusion of pyroxene xenocrysts, which corresponds with the jump in
calcium concentrations. The plateau points were used to construct the isochron, which
has the same age as the plateau age at the la level.

TEQ39 Basalt
There is no plateau age for the sample. The descending stair step pattern in ages that
corresponds with increasing calcium concentration may indicate recoil effects. The
sample has a high concentration of atmospheric argon, which may affect the errors on the
analysis.

ETZ1O Andesite
The sample contains high concentrations of atmospheric argon, which has resulted in
large errors on the heating fractions of the plateau diagram and a cluster of points near the
y-axis on the isochron diagram. Because the isochron has an MSWD of 1.89, close to the
minimum of 1.8, the isochron age has been reported. No plateau age can be calculated
for this sample.

TAL26 Basaltic Andesite
There is no plateau age due to the appearance of two clusters of ages that may indicate
two phases of degassing of the sample. Each group of fractions contains 50% of the gas
released, so neither fits the requirement to form a plateau of >50% of the 39Ar. The
calculated average age of each group is within error of the isochron age. This sample has
a high concentration of atmospheric argon, so samples are clustered near the y-axis of the
isochron.

TEQ67 Andesite
There is no plateau age for this sample due to inconsistent ages calculated at the different
heating temperatures. The large errors are likely due to the high concentration of
atmospheric argon in the sample. The gas from all the step-heating fractions was used to
construct the isochron.

PW133 Andesite
The plateau age of this sample is negative, so it has not been reported in the tables in the
paper. A negative age indicates youth, supporting the ages (~100 ka) obtained for the
total gas and isochron ages. The anomalously old ages at high temperatures are most
likely due to fusion of Ca-rich pyroxene, plagioclase, or hornblende, which corresponds
with the jump in calcium and slight rise in chlorine concentrations. The sample is rich in
atmospheric argon, which explains the cluster of points by the y-axis on the isochron
diagram. All points were used in calculating the isochron age, which is consistent with
the plateau age at the Ia level.
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TEQ9 Hornblende from Dacite
The plateau age includes gas from all except the final gas fraction. The last step had a
low age that corresponds to a jump in calcium, suggestive of degassing of xenocrystic
plagioclase, pyroxene, or hornblende. The isochron has a wide spread of points, all of
which were used in its construction. The isochron and plateau ages correspond at the la
level.

ETZ5 Basaltic Andesite
A plateau age could not be determined for this sample. The descending stair step pattern
in ages combined with the high concentration of calcium suggests possible recoil effects.
The gas from all the step-heating fractions was used to calculate the isochron age, which
has a good spread of points along the isochron and a well-defined y-intercept.

ETZ7 Basaltic Andesite
There is no plateau age for this sample due to inconsistent ages calculated at the different
heating temperatures. The correlation diagram has an errorchron based on all the heating
fractions.

ETZ2 Andesite
The plateau excludes anomalously old ages in both low and high temperature fractions.
The low temperature discrepancy is most likely due to release of atmospheric argon. The
high temperature discrepancy is most likely due to fusion of Ca-rich pyroxene or
plagioclase, which corresponds with a slight increase in calcium concentrations. All of
the heating fractions were used to construct the isochron, which shows a good spread of
points and is consistent with the plateau age at the la level.
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39Ar/ OAr

0.0035 r ,M0 M179-q6a TAL-1 3 Andesite
1

4e
3 36

IU
12
00.

0.0031
006

S004
0.0 P.

0.011
000-

0.8 Totalg

(0.7 Plateai

S0.5
-c 0.4

00 0.2
Q0.1

0.0
-0.1
-0.2

gas age =354f36 ka
au age = 372 ±18 ka

0.0025

<0.002.
0

<0.0015.

. t= 356 ±28 ka40r r = 305±f13

III:MSWD a0.479

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
39Ar/aOAr

0.001

o.ooos

a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39A Released

60 M179-q7a TEQ-33 Basaltic Andesite
4.8

93.8
24
12
0.0

005
004
002
0.01
00D0

0.0035

0.003

0.0025

0.8 Total gas age = 371 ±14 ka

S0.6 lta g =32±3k

c 0.5
1 0.4
Q0.3

0.2
0.1
0.0

-0.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39A Released

0.0 L-
0.0

g<0.0015

'" 0.0033 ,V. 0.0032 ,
"0.0031'"

0.0029 ' "a"

" 0.0 0.14 0.28 0.42 0.566

.t= 320 ±59 ka ""

40Ar/36Ar = 300 ±6

MSWD = 0.953 "

0.001

0.0005

0.oi
0.0 0.5 1.0 1.5 2.0 2.5 3.039 Ar/40 Ar

3.5 4.0 4.5 5.0
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a

C

{

{

{

c {

G

C

Q {

I

Mt184-a23a TAL-25 Andesite

2.6
2

0.04

0.30

0.0040

0.0035

0.0030

'1.

0.0025

0
I 0 .0 0 2 0

0.0015

0.0010

0.0005

0.0000
0.1

"I

.

t= 346 ±16 ka
40Ar/ 36Nr = 302 ±3
MSWD = 2.06

0.1
0.0
0.1 L

0.0 00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of 39Ar Released
0.9 1.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.539 ArI"OAr

M 179-s2a ETZ-3 Andesite
e.0
4B
3.6

12

0.0

000

C0.94
a0.82
0.7

~0.00
S0.5
a0.4

0.3

0.2
0.1

a

3

3

I

t

D

5

l

D

Total gas age = 351 X45 ka

Plateau age = 339 ±35 ka

0.0035

0.0030

0.0025

Q<0.0020

0.0015

0.0010

0.0005

I

ir~~ 1 0.0032 lit"
0.0028

., 0.0026

k. 0.0 0.18 0.36 0.54 0.72

t= 367 f60ka V
40Ar/ 3 Ar = 294 ±3 .
MSWD = 1.06 "

0.0000-0.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released
0.0 0.5 1.0 1.5 2.0 2.5

39Ar/40Ar
3.0 3.5 4.0

10 M 179-r6a TEQ-36 Basalt
2

C

006

0.01

CU

0.9
0.8 Total gas age = 261 ±11 ka
0.7 Plateau age = 261 ±11 ka
0.6
05;

0.0035

0.0030

0.0025

Q 0.0020

0.0015

0.0010

0.0005

0.0000
0

0.02

. 1'.0.0026
0.02

0.0020

0.0018

" 00016

6

1.51.61.71.81.92.02.1

r

0.4

0.2
0.1

0.0
0.1 ~ ~ ~ P 0. .3 04 . 06 0. .8 09 I.

t = 268 ±18 ka
40Arf' Ar = 292±:5

MSWD = 1.42

-1

Fraction of 39A Released
1 2 3

39Ar/40Ar
4 5 6
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M 187-a41 a TALl11 Andesite
e w

B.0 T

4.8
3.8

12

001

001
0.0)0

0.9
0.8
0.7

S0.6
S0.5
a~0.4

< 0.3
0.2
0.1

0.0

Totagas age =271 f19 ka

Plateau age = 224 t1 9 ka

.i

U LKJM r

0.003

0.0025

Q 0.002

0.0015

0.001

0.0005

0.0032

"" "0.0031

"", "0.0028

0.0026

t^ 287 f10 ka " "

40Ar/3 6Ar = 292:1±5 '

MSWD = 1.01

F I

00.1 0.2 0.3 0.4

n Mac

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Fraction of 39Ar Released

6rM 179-a32a TEQ-6 Andesite

0
0.0c

4.8~3.
2.4
12

0.0

0.93

0.64
S0.52
S0.41

0.30
0.2
0.1
0.0

Total gas age = 227±16 ka

Plateau age = 216 ±1 1 ka

0.0035

0.003

0.0025

Q 0.002

0.0015

0.001

0.0005

0.0

0 1 2 3 4 539Ar/40Ar

t=173 t14 ka

MSWD Ar= 119

MArI3 A=119

0 2 4 6 8 10
39Ar/40Ar

-o
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.c

Fraction of 39Ar Released

M184-a65a JHOO9 Andesite
48

12
00

0.06

004

tP

000~

0.9 Total gas age= 211 ±1 2ka
0.8
0.7 Plateau age =198 ±11 ka

~0.6
e 0.5

S0.4
2 0.3

0.2
0.I1-

0.01
-0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of 39Ar Released

0.0035

0.0030

0.0025

< 0.0020

0.0015

0.0010

0.0005

t= 1491:16k

40rA = 316 +19

MSWD = 0.536
'

n nnnn .. ti

0 2 4 639 Art0Ar
8 10 12
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M184-a5Oa TEQ-23C Andesite
8.0

C

a0

48B
36
124
12
0.0
00
0.04
0.02

09

0.0035

0.0030

0.0025

Q 0.0020

0.0015

0.0010

0.0005

0.4
0.,

r 0.1
0..

o .;
0.

0.
-0.

,8
,7 Total gas age = 211 ±11 ka

\ 'I 0ArI 36Ar = 299±f8

* \. g MSWD =5.49

* 41
6 Plateau age =196 ±19ka
5
.4
3
2
.1
0
.11
0. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91.

Fraction of 39A Released
0

0.0000 L
0 2 4 639Ar[" 3Ar

8 10 1z

C

6.0 
M179-a39a TEQ-15 Andesite

42

IC 3.8

j 2.4

12

0.0

0.05

:0.04
10.02
0.01

0.00

D.9

D.8 Total gas age = 223 ±9 ka

D.7

D.6 Plateau age = 196 ±8 ka

ftc

U.I.A.A3III1!

0.0030

0.0025I

CU

C

<C

<0.0020

S0.0015

t=151 ±l7ka
"'", 40ArI 3 Ar =312 ±28

" """ MSWD = 2.93
.,~

D.4

0.3
0.2
0.1
0.0

0.0010

-01 L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39A Released

0.0000 !U . E _.-..1
0 2 4 6 8 10 12

39Ar/4°Ar

0.003s _

2

M 179-sOa TEQ-40 Basaltic Andesite
1

t

U

D

aa

4.8
368

124
12
0.
0
3.04
0.02
001

I

0.0030

0.0025

< 0.0020
0

0.0015

0.00

0.9
0.8
0 .7 Total gas age = 233 ±18 ka

C0.6 Plateau age = 194 ±15 ka
c 0.5
a) 0.4

Q0.3
0.2
0.1

0.0
-0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of 39A Released

b

t= 214 ±17ka

40Ar/36Ar = 291 ±2
'". MSWD = 0.958

0.0010

0.0005-

0.0000-L
0 1 2 3 439Ar/40Ar 5 6 7
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M 179-a38a TEQ-1 7 Andesite
6.0
48

12

0.0

006

002

0.9

0.8 Total gas age =162 4:6 ka

0.7 Plateau age = 191 ±13 ka
S0.6__ _ _ _ _ _ _ _ _

S0.5
q 0.4

Q0.3
0.2
0.1
0.0

_0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

6,1 M179-a36a TEQ-60 Andesite

If - I0.0035

0.0030

0.0025

<0.0020

S0.0015

0.0010

0.0005

0.0000

0.03

0.0030

0.0035

<0.0020

Q<0.0015

0.0010

0.0005

0.0031 _

0.0028

0.0025

0.0022 J
".N 0.0019

Q.0 0.4 0.8 1.2 1.6

2ka"

= 295 ±13 '~

0.581

-T-r

t= 158 f5

00ArAr:

MSWD=
__ _

IA

0 2 4 639ArI"r
8 10

0

0

0
C

0
.

0.

48
3s
24
12

' LZ ' ' n -

00
3041
).01

t4.

I".
1i

.9
.8 Total gas agel87 ±11 ka
.7 Plateau age =178 ±8ka

.6

0.4

Q0.3
0.2
0.1
0.0

-0.1
0.1

't= 176 f'

40Ar/3 Ar
MSWD=

13 ka

=298±f14

0.911 '

n nnnn l I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of 39A Released
0

M 179-q8b TEQ-25 Andesite

0.8

0.6

V 0.4
0.2
0.1
0.05

-0.1
0.0 0.1te0.2ag0.3 10 0.± 061.7 0. 09a.

Frctono oReeae

0 1 2 3 4 5 6 7 8
39Ar/40Ar

N.J t=162 ±20 ka
0.003 .. 40Ar/Ar = 291 ±6

"'4'. MSWD =2.38

0o.0o2

0.001 '-

0.0005 . '

0.0 4

0 1 2 3 4 5 6 7 8 939Ar/40Ar
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,a M179-r4a ETZ-1 Basalt
U.UIJ3.sr r

2

005
S004
002
001
0 0

0.9
0.8
0.7

2 0.

r 0.5
( 0.4

Q0.3
0.2
0.1

zzmmz' ae 15 15k
0.0030

0.0025

s'0.0020

0.0015

0.0010

0.0005

0.0000
0

t= 147 ±38 ka

40ArI36Ar = 293

'MSWD = 0.509

0.0024 . l
0.0021

0.0018 _ _ _ _ _ _

0.0 0.5 1.0 1.5 2.0 2.5

f13'"

2.[
-0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39A Released

.0 M 179-a32a TEQ-48 Andesite

0.8

0.6 Paeuae=19±8k

2 .4

0.2

0.1
0.00

-0.1
0. oalgsag 35±8k

., .,

2 4 639 Ar/4 0Ar
8 10

0.0035

0.003

0.0025

_.

! ~

0.0034

0.0033

0.0032

" 0.0032

". 0.0031

0.0 0.1 0.2 0.3 0.4 0.5

< 0.0015

0.001

0.0005

0.0

t= 108 ±27 ka
40Ar/36Ar = 296 ±1

MSWD = 1.59

10.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of 39A Released
1.0

U

0

a0

0 M 179-a27a TEQ-46 Andesite
4$
38
24
12
0.t
0
0.04
1.05
o01
.00C

0.9
0.8 Total gas age = 56±f20 ka

0.0035

0.0030

0.0025

< 0.0020

~<0.0015

0.0010

0.0005

0.0000

0 2 4 6 8 10 12 14
39Arf 40Ar

0.0032.

0.0031 1
0.00301

0.0 0.32 0.64 0.96 1.28

t =73 ±24 ka.

40r36A = 293 ±3

MSWD =0.705 "

0.6 Plateau age = 53 ±16 ka
c0.5

w0.4
Q0.3

0.2
0.1
0.0

-0.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released
39Ar/40Ar

15 20
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.0 M 187-a25a TAL-1 Andesite

0.8
0.7

S0.4
S0.36
0.0

0.02
0.1
0.00

-0.1
-0.2

Cd 0.0 0.1 0.2e .3u 04a0.e0.6 0.7 .8109 1.

01F

00

0.0035

0.003

0.0025

Q 0.005

0.001

0.005

0.00

.6
t=9 "±1k

"AA =8::
MS "=17

2 4 6 8 10
39Ar/4"Ar

12 14 16

0.9
0.8
0.7

cz0.6
S0.5
S0.4
0.3

Total gas age = 96 ±116 ka

Plateau age = 87 ±12 ka

Q

pQ

C7

0.00Kj
0.0025

0.002
r..

0.0015 "

0.001 t'=82f14 ka '4 .

°°Ar/3 6Ar =299±f4 ".

0.0005 MSWD = 0.535 4..

H
a4

0.2
0.1

0.0
-0.1-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of 39A Released

8o M179-38ba PW-391 Andesite

0.0

0.0035

0.003

0 2 4 6 8 10 12 14 16 18
39Ar/40Ar

S36

12
..................... _ _F - ,J .................. ........... L- 6-

I00
0.06

001

1,.~~ 0.00341I
0.0033 "--

. . 0.0032

" 0.0032

\ . 0.0031

\ 0.0 0.14 0.28 0.42 0.56

-1

0.0025

a

000

0.9 Total gas age =85 ±27 ka
0.8 Plateau age = 66 ±20 ka
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
"0.

<0.002

< 0.0015

0.001 t= 51 ±37 ka \
40r'r=297 ±3

M SW D =0.809

.4

0.0005 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of 39A Released
0.9 1.0

0.0'L
0

- - - ... -

5 10 1539Arf"Ar
20 25 30
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.0 M 179-36ba PW-143 Andesite

0.9

0.7
0.06 Pltaag=5±0k

c0.54
0 04

001
0.20
0.1

0.0

-0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of 39A Released

0.0036

0.0034

0.0032

0

< 0.0030

if *t I 53±l 6 ka
I 0Ar?36Ar = 298±f7

MSD=1.80

0.0028

0.0026

0 1 2 3 4 5 6 7
39Ar4'OAr

8
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M184-a31 a TEQ-39 Basalt
lo

2

0.0035

0.003

0.0025

('S
C

C

1.26

t50.82
0.61
0.40

0.2
0.0

00.8

024

1.2

00

01

i~0.002[

0.0015

"~.
"'1 4.

t=4"6k
fA/6 r=9±

MSD=63

0.001

0.0005

U.0'
0.0 0.2 0.4 0.6 0.8 1.0 1239ArI4OAr 1.4 1.6 1.8

0.0035

0.0030

0.0025

0 0.0020

~g0.0015

'VI 0.0035
0.0034
0.0033

0.0032
". 0.0034

0.0030

.
.

.,
.

w

1

,

M

10 Total gas age =124 ±134 ka
0.8 No plateau age
0.6

0.4
r 0.2

0.0
Cm. .2

-0.4
-0.6
-0.8
-1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of 39Ar Released

20M187-a39a TAL-26 Basaltic Andesite

~06
c0.05

0.3
0.02
0.1
0.00

-0.1

0.0 01N .2o .30.40.t06e07u.8a.91.
Frctono oReeae

II

0.0 0.04 0.08 0.12 0.16

0.0010 t=444±140Oka
40Ar/ 36Ar = 295 ±0.4
MSWD = 1.89

0.0000'u
0.0 0.5 1.0 1.5 2.039Art' 0Ar

2.5 3.0 3.5

0.00~3

0.003 0.03

0.0025 "'. 00028

0002". 00026

" 0.0 0.16

g<0.0015.

0.001 t= 343 ±:38 ka "

48Arf36Ar = 288 ±3
0.0005 M SW D= 1.99

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

39Ar/"QAr

60.32 0.48 0.64

3.5 4.0 4.5 5.0
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M 184-a42a TEQ-67 Andesite

0.9

~0.0
c0.56
o0.04

0.2
0.1
0.00

-0.1

2 0.0 . . . . . . . . . .

Frctonof0ArReeae

M1935aP-134ndst

0.0035

0.003 ::.i032
0.0031

0.0025 0.0030
" 0.0029

Q .002 '

0.0015'

001 t= 312 ±32 ka"

'Ar'r= 297 ±0.4

0.0005 MSWD = 0.933

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

39Art 0QAr

0.2 0.3 O.a

3.5 4.0 4.5 5.C

3.5

U25

S15
0.

01.06
a0.52
0.01

-0.5

-1.0

'0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.(
Fraction of 39Ar Released

0.0035

0.0030

0.0025

Q<0.0020

s<0.0015

0.0010

0.0005

.

0.0034 F I

0.0031

0.0030

S0.0 0.03 0.06 0.09 0.12

-1

t= 114 ±79 ka

"3Art'6Ar = 293 :+:2

MSWD = 1.58

0.0000I
0 0 2 4 6 8 10 12 1439Ar/"2Ar
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M 179-q5b TEQ-9 Andesite (hornblende)

20 ,8

12e

4

0

0.,8

c 012
o.os

0.04

0.00

6.5 Total gas age = 5118 ±62 ka

R-01

cd 6.0

5.7
" 5.5

c 5.2

4.6
4.4
4.1

Plateau age = 5 13 7±47 ka

0.0030

0.0025

¢0.0020

0.0015

0.0010

0.0005

0.0000
0.1

I" t= 5120 ±51 ka
40Ar 36Ar = 300±f9

', MSWD = 0.573
,N

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39A Released
,o 0 0.05 0.1 0.15 02 0.25 v 0.339Ar/"Ar

M184-a46a ETZ-5 Basaltic Andesite
nn_

6.0
48~3.6
2.4

V1.2
0.0
0.06

S004
0.02
001
000

4.4
43 Total gas age= 3911 ±37 ka
4.2 No plateau age

2 4.1
c4.0
a,3.9

Q3.8
3.7
3.6
3.5
3.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of 39A Released

M 184-a29a ETZ-7 Rhyolite
1.0

S01
04
021
0.00

S0.046

002
0.01

0.0035

0.0031
0.03 .,0.0007

0.00050.0025 0.00

" 0.002
Q 0.002 "

~<0.0015

0.001 t= 3855 ±35 ka
40r r= 295 ±3

0.ooo5 MSWD = 3.06

0.0
0.0 0.05 0.1 0.15 0.2 0.25

39Ar/0Ar

0.0035 "

0.003 '"

0.0025

0.002 1
0.0015 V

0.001 t= 3023 ±45 ka
40Ar/36Ar = 282±f4

0.0005 MSWD = 3.89

0.0
0.0 0.1 0.2 0.3

0.33 0.36 0.39 0.42

0.3 0.35 0.4 0.45

3.5
3.4

cju 3.3

3.2
-c3.1

o3.0
Q2.9

2.8
2.7
2.6

Total gas age = 2905 ±12 ka

No plateau age

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39A Released
0.4 0.5 0.6

39 Ar/40Ar
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M184-a36a ETZ-2 Andesite

2.8
2.7
2

.0

2.02
1.91

1.8

CD

Q

5

4

2

h

4

i

Total gas age = 2306 ±34 ka

Plateau age = 2238 ±24 ka

).0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of 39Ar Released

0.0035

0.0030 .
0.0025 "

Q 0.0020 '""

0.0015

0.0010 t =2213±32 ka 4
4Ar/?6Ar = 297 f2

0.0o05 MSWD = 2.92

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
39Ar/"OAr
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