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For some ectotherms such as Ixodes scapularis, a vector of Lyme disease, changes in temperature is believed to affect the

interstadial development time and hence give rise to a time-periodic delay due to seasonality in the population dynamics

described by a stage-structured population growth model. Here, we develop a formulation linking the chronological delay

with multiple stage-specific interstadial delays. We also present a definition for the basic reproductive ratio for such a

system, develop a simple algorithm to compute it, and show that the results regarding the stability of the zero solution are

consistent with those from computing the dominant Floquet multiplier. Numerical simulations also show that the threshold

value for the population persistence or extinction depends not only on the mean but also on the amplitude and phase of

the periodic development delays. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. Introduction

For some ectothermic insects such as deer ticks (Ixodes scapularis), the interstadial development time is temperature-dependent,

with higher temperatures typically resulting in shorter development times [22, 23, 25, 32, 33]. Motivated by this physiological

characteristics of such populations, we formulate an appropriate mechanistic model that describes the evolution of the population

in each biologically distinctive stage under seasonally varying periodic environment from general structured population dynamics

models [37]. To parametrize the model and to link model simulations to observed data, we formulate the model as a system

of delay differential equations for which each state variable corresponds to the population size at a given biological stage. This

formulation permits rigorous mathematical analysis and calculation of key threshold indices that determine if a population will

survive or go extinct. This, as will be shown, requires the exploration of the iterative relationship between development times,

and the minimum and maximum ages of the population in each state.

A systematic approach has been developed in the pioneering work of Nisbet and Gurney [21] to derive population models

for insects with dynamically varying instar duration. Here we develop a formulation to link the insect chronological age with

the insect stage-specific age which corresponds to the physiological mass in the work of Nisbet and Gurney [21], and Metz

and Diekmann [20]. We obtain a system of delay differential equations with time-periodic lags which are explicitly given using
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a specific chronological age and stage-specific age relationship (Eq. (9)). This facilitates some qualitative study of the model

system, in particular, for the formal definition and some computation of a basic reproductive ratio, denoted by R0.

This ratio, one of the most important and useful quantities in the field of ecology and infectious disease epidemiology, has been

considered and studied extensively in deterministic models. In epidemiology, the value of R0 characterizes the potential growth

of the population of infected individuals after one infected individual is introduced into a completely susceptible population. In

general, R0 > 1 (R0 < 1) indicates that the size of infected population will increase (decrease) and the disease will become

endemic (die out) (see [1, 11, 12, 29, 35] for detailed definitions and some applications). In ecology, R0 accounts for the

average number of reproductive offspring produced by a single reproductive member in its life span. As such, the population

will grow if R0 > 1, while the population cannot establish in the ecosystem if R0 < 1 [18, 38, 39]. The value of R0 plays a

threshold role in determining the stability of the corresponding linearized system at the infection-free or population-extinction

steady state. A natural way to define R0 for a model system is to consider the linearization of the model system at this steady

state. The matrix describing the linear system is broken down into either the F − V (or T +Σ) decomposition [11, 12, 29] in

an autonomous ODE system, or the F (t)− V (t) decomposition in a periodic ODE system [35]. Here F (or T , F (t)) is the

transmission matrix in epidemiology (or the new-borne matrix in ecology) describing the new infections or new-borne females,

and V (or −Σ, V (t)) is the progressive matrix describing the change of each state due to death, development and removal. For

an autonumous ODE system, R0 is defined as the spectral radius of the so-called the next generation matrix, FV
−1 (or −TΣ−1)

and the value is computed as the dominant eigenvalue of FV −1. For a periodic nonlinear ODE system, R0 is defined as the

spectral radius of a next generation operator L constructed from the matrices F (t) and V (t) [2, 35]. There are some numerical

algorithms for calculating R0 [3, 35] and there have already been quite a few applications using periodic ordinary differential

equations [3, 6, 14, 16, 18, 28, 30, 39] and delay differential equations with discrete and time-constant delay [4, 5]. There is

also a way to define this threshold value for stochastic differential equations [10, 36, 40], which determines the probability of a

primary outbreak. Wangombe et al. [36] has also studied this for a stochastic model of tick-borne diseases.

Here, we use some of these methodologies to formally define the basic reproductive ratio of the kind of system of delay

differential equations with periodic delay we are considering, and to propose and validate a numerical algorithm for computing

R0. More specifically, we follow the idea of [2] for a definition of the basic reproductive ratio in a periodic environment, using

the renewal equation satisfied by the birth rate y(t) [2, 17, 34, 35]:

y(t) =

∫ ∞

0

K(t, r)y(t − r) dr, (1)

where the kernel K(t, r) is ω-periodic with respect to t and the basic reproductive ratio was defined to be the spectral radius of

the next generation integral operator

L : u(t) 7→

∫ ∞

0

K(t, r)u(t − r) dx (2)

acting on the function space consisting of ω-periodic continuous functions.

This paper is organized as follows: In Section 2, we derive a stage-structured model of delay differential equations with periodic

delay and verify the well-posedness of the system. Section 3 gives the detailed derivation of the basic reproductive ratio of the

model and proposes a numerical algorithm for calculating R0. In Section 4, we present numerical simulations to illustrate the

algorithm and some insights about the dependence of R0 on model parameters. We also compare the proposed R0 values with

those of the dominant Floquet multiplier. We show that our results are consistent with the those obtained by using the existing

algorithms for the dominant Floquet multiplier. A brief discussion is given in the last section.

2. Model Formulation

Here, we develop a general dynamic population model where the interstadial development time of the population from one life

stage to the next has considerable variation due to temperature change. Due to seasonality, these development times should

really be time-dependent, and a periodic function may offer a reasonable approximation. In our formulation, a key assumption

is that the transition times between consecutive stages lead to periodic delays. Here, we subdivide the life cycle of a given
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population into n stages and assume that each stage embodies a specific point of the life of the individual. We denote the size

of subpopulations at the j th stage by xj (2 ≤ j ≤ n). These stages are in order of increasing maturity (e.g. egg, various larvae,

nymphs and adult stages) by xj . We reserve x1 to represent the size of the mature subpopulation who are able to produce

offspring (egg-laying females). We also assume that δ is the fixed sex ratio for such population.

2.1. Overall assumptions

In order to appropriately formulate the mathematical model, we make the following assumptions:

(H1) Let τi(t) represent the time period that a newly developed tick state xi+1 at time t is evolved from the previous tick state

xi at time t − τi(t). Assume that temperature varies periodically with period ω = 365 days and that τi(t) (i = 2, · · · , n)

is a non-negative periodic function of t with the same period. We also require that 1− τ ′i (t) ≥ 0, which excludes the

possibility of the i th stage of the tick going back to the previous (i − 1)th stage except by birth.

(H2) There is a good reason to assume that stage-wise mortality rate depends on the size of subpopulation at that particular

stage due to host grooming behavior or host resistance [23]. Thus we assume that the mortality rate µ(t, a) at time t

and age a is density-dependent and age-dependent, given by the following piecewise function:

µ(t, a) =

{

µ1(x1(t)), a ∈ [An(t),∞),

µi(xi(t)), a ∈ [Ai−1(t), Ai(t)], i = 2, · · · , n,
(3)

where Ai−1(t) and Ai(t) are the time-dependent minimum and maximum ages of those individuals who are developing

within the specific i th stage (this will be defined later), and µi is a non-decreasing function with µi(0) > 0.

(H3) The birth function of eggs is given by the Ricker function

b(x1(t)) = px1(t)e
−sT x1(t), (4)

where p is the maximal number of eggs that an egg-laying female can lay per unit time and sT measures the strength

of density-dependence. The assumption reflects the ecological consideration that the reproduction is linear in x1 only for

small densities, decreases as a consequence of intraspecific competition, and then drops significantly at very large densities

due to the available resources being utilized by the adults only for their own physiological maintenance.

2.2. Model derivation

We now introduce the population chronological age variable a and denote by ρ(t, a) the density of the female population at time

t and age a. Following the standard argument for population dynamics with age structure [37], we start with















( ∂
∂t
+ ∂
∂a
)ρ(t, a) = −µ(t, a)ρ(t, a),

ρ(0, a) = φ(a), a ≥ 0,

ρ(t, 0) = b(x1(t)), t ≥ 0,

(5)

where φ(a) is the initial age distribution of the population. Integrating (5) along characteristics yields

ρ(t, a) =

{

ρ(0, a − t)e−
∫ t
0 µ(r,a−t+r) dr , 0 ≤ t ≤ a,

ρ(t − a, 0)e−
∫ a
0 µ(t−a+r,r) dr , a < t.

(6)

In order to evaluate the rate of change of the specific stage xi at time t, we introduce a new variable ρi(t, ai) for the density

of the female population in the i th stage at time t and stage-specific age ai . In other words, ai is the stage-specific age and a

is the population chronological age. Therefore, the total size of female individuals in the i th-stage at time t (xi(t)) is given by

linking the stage-specific age (ai) and chronological age (a) as follows:

{

x1(t) =
∫∞

0
ρ1(t, a1) da1 =

∫∞

An(t)
δρ(t, a) da

xi(t) =
∫ τi (t)

0
ρi(t, ai) dai =

∫ Ai (t)

Ai−1(t)
ρ(t, a) da, i = 2, · · · , n.

(7)
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Recall that Ai−1(t) and Ai(t) are the minimum and maximum ages of those individuals who are developing in the specific i
th

stage.

To proceed, we need to know the relationship between chronological age a and stage-specific age ai at time t. Note that the

population density ρ(t, a) at time t and age a is developed from the density of the population ρ(t − a, 0) at time t − a and age

0. We depict this as

ρ(t − a, 0) −→ ρ(t, a).

It is obvious that a = a2, A1(t) = 0 and A2(t) = τ2(t). Now ρ3(t, a3) are developed from themselves at time t − a3 and age

zero, while ρ3(t − a3, 0) are developed from the population at time t − a3 − τ2(t − a3) with the population chronological age

zero. Hence,

ρ(t − a3 − τ2(t − a3), 0) −→ ρ3(t − a3, 0) −→ ρ3(t, a3).

Therefore, the stage-specific age a3 and the chronological age a are related by

t − a3 − τ2(t − a3) = t − a. (8)

In particular, a3 = 0 is equivalent to a = τ2(t)(= A2(t)) and a3 = τ3(t) is the equal of a = τ3(t) + τ2(t − τ3(t)). Then we

obtain

A3(t) = τ3(t) + τ2(t − τ3(t)).

Similarly, for each i = 2, · · · , n, we obtain an expression determining the time-dependent minimum and maximum age of the

population in each specific stage:

Ai(t) =

i
∑

j=2

τj

(

t −

i
∑

k=j+1

τk

(

t −

i
∑

l=k+1

τl (t − · · · τi−1(t − τi(t)))

))

. (9)

In order to obtain the equation for x ′i (t), we differentiate (7) along with the assumption (H2) and this gives rise to

x ′1(t) = δ

{∫ ∞

An(t)

{(∂t + ∂a)ρ(t, a)− ∂aρ(t, a)} da − ρ(t, An(t))A
′
n(t)

}

= δ

{

−ρ(t,∞) + ρ(t, An(t))−

∫ ∞

An(t)

µ(t, a)ρ(t, a) da − ρ(t, An(t))A
′
n(t)

}

= δρ(t, An(t))(1− A
′
n(t))−

∫ ∞

An(t)

µ(t, a)δρ(t, a) da

= δρ(t, An(t))(1− A
′
n(t))− µ1(x1(t))x1(t), (10)

where we have made the biologically realistic assumption ρ(t,∞) = 0.

For i = 2, · · · , n, we obtain

x ′i (t) =

∫ Ai (t)

Ai−1(t)

{(∂t + ∂a)ρ(t, a)− ∂aρ(t, a)} da + ρ(t, Ai(t))A
′
i(t)− ρ(t, Ai−1(t))A

′
i−1(t)

= ρ(t, Ai−1(t))(1− A
′
i−1(t))− ρ(t, Ai(t))(1− A

′
i(t))−

∫ Ai (t)

Ai−1(t)

µ(t, a)ρ(t, a) da

= ρ(t, Ai−1(t))(1− A
′
i−1(t))− ρ(t, Ai(t))(1− A

′
i(t))− µi(xi(t))xi(t). (11)
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To eventually obtain a closed system for (x1(t), · · · , xn(t)), we need to evaluate ρ(t, Ai(t)). This can be done by the method

of integration along characteristics. Set t = t0 + s, a = a0 + s, and V (s) = ρ(t0 + s, a0 + s). Then

dV (s)

ds
=

(

∂

∂t
ρ(t, a) +

∂

∂a
ρ(t, a)

)∣

∣

∣

∣t=t0+s;
a=a0+s

= −µ(t0 + s, a0 + s)ρ(t, a)
∣

∣

∣t=t0+s;
a=a0+s

= −µ(t0 + s, a0 + s)V (s).

(12)

Note that (12) is a linear first-order ordinary differential equation, we easily obtain

V (s2) = V (s1)e
−

∫ s2
s1
µ(t0+r,a0+r)dr . (13)

For t > Ai(t), setting s2 = Ai(t), s1 = 0, t0 = t − Ai(t), and a0 = 0, we have

V (Ai(t)) = ρ(t, Ai(t)) = ρ(t − Ai(t), 0)e
−

∫ Ai (t)
0 µ(t−Ai (t)+r,r) dr .

With some straightforward calculations, we obtain

ρ(t, A2(t)) = ρ(t − A2(t), 0)e
−

∫ A2(t)
0 µ(t−A2(t)+r,r) dr

= ρ(t − A2(t), 0)e
−

∫ A2(t)
0 µ2(x2(t−A2(t)+r)) dr

= ρ(t − A2(t), 0)e
−

∫ t
t−A2(t)

µ2(x2(r)) dr

:= ρ(t − A2(t), 0)α2(t, t − A2(t)),

and

ρ(t, A3(t)) = ρ(t − τ3(t), A3(t)− τ3(t))e
−

∫ A3(t)
A3(t)−τ3(t)

µ(t−A3(t)+r,r) dr

= ρ(t − τ3(t), τ2(t − τ3(t))e
−

∫ t
t−τ3(t)

µ3(x3(r)) dr

= ρ(t − A3(t), 0)e
−

∫ τ2(t−τ3(t))
0 µ(t−A3(t)+r,r) dre

−
∫ t
t−τ3(t)

µ3(x3(r)) dr

= ρ(t − A3(t), 0)e
−

∫ t
t−τ3(t)

µ3(x3(r)) dre
−

∫ t−τ3(t)
t−A3(t)

µ2(x2(r)) dr

= ρ(t − A3(t), 0)e
−

∫ t
t−τ3(t)

µ3(x3(r)) drα2(t − τ3(t), t − A3(t))

:= ρ(t − A3(t), 0)α3(t, t − A3(t))

where α2(t, t − A2(t)) = e
−

∫ t
t−A2(t)

µ2(x2(r)) dr and α3(t, t − A3(t)) = e
−

∫ t
t−τ3(t)

µ3(x3(r)) drα2(t − τ3(t), t − A3(t)).

Similarly, we have

ρ(t, Ai(t)) = ρ(t − Ai(t), 0)αi(t, t − Ai(t))

= ρ(t − Ai(t), 0)e
−

∫ t
t−τi (t)

µi (xi (r)) drαi−1(t − τi(t), t − Ai(t)),

where the iterative relationship of αi(t, t − Ai(t)) is as follows (i = 2, · · · , n)

αi(t, t − Ai(t)) = e
−

∫ t
t−τi (t)

µi (xi (r)) drαi−1(t − τi(t), t − Ai(t)), (14)

with α1 = 1. Obviously, each αi(t, t − Ai(t)) (i = 2, · · · , n) represents the density-dependent survival probability of an egg who

was born at time t − Ai(t) and is able to live until time t when the egg eventually belongs to the stage xi with full maturation.

In order for the model to be biologically meaningful, we prove the following lemma that concludes that the i th stage of the

population will not go back to the previous (i − 1)th stage except by birth.
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Lemma 1 With the assumption (H1), at time t ≥ 0 for all i = 2, · · · , n, we have

(i) Ai(t) ≥ Ai−1(t) and Ai(t) = τi(t) + Ai−1(t − τi(t));

(ii) 1− A′i(t) ≥ 0 and 1− A
′
i(t) = (1− τ

′
i (t))(1− A

′
i−1(t − τi(t))).

Proof. Since t − τ3(t) < t, t − τ2(t) is an non-decreasing function, we have t − τ3(t)− τ2(t − τ3(t)) ≤ t − τ2(t). This is

equivalent to A3(t) ≥ A2(t). Again t − τ4(t) < t, t − τ3(t) is a non-decreasing function, we have t − τ4(t)− τ3(t − τ4(t)) ≤

t − τ3(t). Since t − τ2(t) is non-decreasing, we have

t − τ4(t)− τ3(t − τ4(t))− τ2(t − τ4(t)− τ3(t − τ4(t))) ≤ t − τ3(t)− τ2(t − τ3(t)).

That is, A4(t) ≥ A3(t). By the same argument, we obtain Ai(t) ≥ Ai−1(t), i = 2, · · · , n. From equation (9), we can easily

obtain Ai(t) = τi(t) + Ai−1(t − τi(t)) and 1− A
′
i(t) = (1− τ

′
i (t))(1− A

′
i−1(t − τi(t))) ≥ 0.

Then when t > An(t), the closed form of the model becomes

x ′1 = δαn(t, t − An(t))b(x1(t − An(t)))(1− A
′
n(t))− µ1(x1(t))x1(t),

x ′2 = b(x1(t))− α2(t, t − A2(t))b(x1(t − A2(t)))(1− A
′
2(t))− µ2(x2(t))x2(t),

x ′i = αi−1(t, t − Ai−1(t))b(x1(t − Ai−1(t)))(1− A
′
i−1(t))

− αi(t, t − Ai(t))b(x1(t − Ai(t)))(1− A
′
i(t))− µi(xi(t))xi(t), i = 3, · · · , n,

(15)

where the birth function b(x) and death function µ(x) are specified in assumptions (H2) and (H3), αi(t, t − Ai(t)) refers to

Eq. (14), and relation Ai(t) refers to lemma (1).

Note that each equation of x ′i (t) except x
′
1(t) has the following form

x ′i (t) + death rate = inflow rate− outflow rate := fin(t)− fout(t). (16)

“Inflow rate” indicates that at time t all individuals enter the specific stage (xi) with zero stage-specific age at a rate fin(t);

and “outflow rate” represents that all individuals leave the specific stage (xi) at full specific-stage maturity age at a rate fout(t).

Moreover,

fout(t) = αi(t, t − Ai(t))b(x1(t − Ai(t)))(1− A
′
i(t))

= e
−

∫ t
t−τi (t)

µi (xi (r)) drαi−1(t − τi(t), t − τi(t)− Ai−1(t − τi(t)))

·b(x1(t − τi(t)− Ai−1(t − τi(t))))(1− τ
′
i (t))(1− A

′
i−1(t − τi(t)))

= (1− τ ′i (t))e
−

∫ t
t−τi (t)

µi (xi (r)) dr fin(t − τi(t)).

Namely, fin(t) is related to fout(t) by the following form:

fout(t) = (1− τ
′
i (t))σ(t, t − τi(t))fin(t − τi(t)), (17)

where (1− τ ′i (t)) is the “maturation ratio” of the population at the specific stage xi tracking entering and leaving of the stage,

and σ(t, t − τi(t)) := e
−

∫ t
t−τi (t)

µi (xi (r)) dr the survival probabilities from the moment entering the stage to the moment leaving

the stage. We also emphasize that all inflow rates and outflow rates are time-dependent, and our model does not exclude

the situation in which individuals may undergo no development in a low temperature condition or enter diapause induced by

environmental condition such as photoperiod change provided that the “maturation ratio” (1− τ ′i (t)) is zero.

2.3. Nonnegativity and boundedness

We consider solutions to system (15) with a focus on the long-term dynamics where t ≥ An(t). The initial data for system

(15) cannot be arbitrary. For biological reasons the initial data must satisfy several constraints and we only consider solutions

6 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–23
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that satisfy these constraints. Define τm = min
t∈[0,ω]

An(t), τM = max
t∈[0,ω]

An(t). It is easy to see that each exponential function

αi(t, t − Ai(t)) is always positive and b(x1(t)) is nonnegative provided that x1(t) is nonnegative.

Theorem 1 Let the initial data xi(θ) ≥ 0 for −τM ≤ θ < 0 for each stage, and

xi(0) =

∫ 0

−τi (0)

e−
∫ 0
s µi (xi (r)) drαi−1(s, s − Ai−1(s))b(x1(s − Ai−1(s)))(1− A

′
i−1(s)) ds

=

∫ 0

−τi (0)

e−
∫ 0
s µi (xi (r)) dr fin(s) ds, i = 2, · · · , n. (18)

Then each component xi(t) of the solution of the system (15) remains nonnegative for all t ≥ 0, i = 1, · · · , n. Furthermore,

each component of the solution is also bounded for all t > 0.

Proof. First we show that x1(t) ≥ 0 for all t ≥ −τM when x1(θ) ≥ 0 for −τM ≤ θ ≤ 0. We prove Theorem 1 by showing that

xi(t, ε) is the solution of the modified system obtained from system (15) by adding ε to the right hand side with ε being arbitrarily

small. To show that x1(t, ε) ≥ 0 for all t > 0, we suppose that x1(t, ε) < 0 for some t > 0. Let t
∗ = inf{t : t > 0 and x1(t, ε) <

0}. Then t∗ ≥ 0, x1(t
∗, ε) = 0 and x ′1(t

∗, ε) ≤ 0. But, from the first equation of the modified system

x ′1(t
∗, ε) = δαn(t

∗, t∗ − An(t
∗))b(x1(t

∗ − An(t
∗), ε))(1− A′n(t

∗))

−µ1(x1(t
∗, ε))x1(t

∗, ε) + ε,

= δαn(t
∗, t∗ − An(t

∗))b(x1(t
∗ − An(t

∗), ε))(1− A′n(t
∗)) + ε.

Moreover, An(t
∗) > 0 ensures t∗ − An(t

∗) < t∗, implying that x1(t
∗ − An(t

∗), ε) ≥ 0 by the definition of t∗. This, in turn, implies

that x ′1(t
∗, ε) ≥ ε > 0, giving rise to a contradiction. Therefore, x1(t, ε) ≥ 0 for each t > 0. This is true for arbitrarily small

ε > 0. Letting ε→ 0 gives x1(t) ≥ 0 as a solution of system (15).

Next we show the nonnegativity of xi(t) for all t ≥ 0, i = 2, · · · , n. Moving the term µi(xi(t))xi(t) to the left side of the

equations of system (15) and multiplying both sides by e
∫ t
0 µi (xi (r)) dr yields

(

e
∫ t
0 µi (xi (r)) drxi(t)

)′

= e
∫ t
0 µi (xi (r)) dr (fin(t)− fout(t))

= e
∫ t
0 µi (xi (r)) dr

(

fin(t)− (1− τ
′
i (t))e

∫ t
t−τi (t)

µi (xi (r)) dr fin(t − τi(t))
)

=

(∫ t

t−τi (t)

e−
∫ s
0 µi (xi (r)) drαi−1(s, s − Ai−1(s))b(x1(s − Ai−1(s)))(1− A

′
i−1(s)) ds

)′

. (19)

Combining the initial data constraints (18), equation (19) yields

xi(t) =

∫ t

t−τi (t)

e−
∫ t
s µi (xi (r)) drαi−1(s, s − Ai−1(s))b(x1(s − Ai−1(s)))(1− A

′
i−1(s)) ds, (20)

which is non-negative because of the nonnegativity of x1(t). The expression (20) is ecologically reasonable since it accounts for

the total number of individuals in the specific stage xi at time t who come from eggs laid at time s − Ai−1(s) and successfully

moult to the stage at time s and still stay in the stage until time moment t. Here b(x1(s − Ai−1(s))) represents the number

of eggs who were born at time s − Ai−1(s); αi−1(s, s − Ai−1(s)) is proportion of eggs who were born at time s − Ai−1(s) and

develop into xi stage at time moment s; e
−

∫ t
s µi (xi (r)) dr is the survival probability at xi stage from time moment s to time moment

t; and (1− A′i−1(s)) is the “maturation ratio” comparing to newborn eggs at time s when eggs already develop into stage xi

with zero stage-specific age. The variable τi(t) is the required maturation time during stage xi at time t. Eq. (20) indicates

each component of the system (15) is nonnegative for all t ≥ 0.

The boundedness of the solution of system (15) is easy to show. Denote by N(t) =
∑n
i=2 xi(t) +

1
δ
x1(t) the total number of

individuals at all stages. It is easy to see that the birth function is bounded when the size of egg-laying females is nonnegative
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since

b(x1(t)) ≤
pe−1

sT
:= bmax.

Putting all equations of system (15) together yields

N ′(t) = b(x1(t))−

(

n
∑

i=2

µi(xi(t))xi(t) +
1

δ
µ1(x1(t))x1(t)

)

≤ bmax − µN(t), (21)

where

µ = minj∈{1,··· ,n}µj(0).

From (21) it follows that

lim sup
t→∞

N(t) ≤ bmax/µ, (22)

which implies the boundedness of all solutions of system (15) subject to the initial condition constraints. This completes the

proof.

3. Basic reproductive ratio (R0)

3.1. Definition of R0

System (15) has a population-extinction (trivial) equilibrium. Linearizing system (15) at the population-extinction equilibrium

yields

x ′1 = δα̂n(t)px1(t − An(t)))(1− A
′
n(t))− µ1(0)x1(t),

x ′2 = px1(t)− α̂2(t)px1(t − A2(t))(1− A
′
2(t))− µ2(0)x2(t), (23)

x ′i = α̂i−1(t)px1(t − Ai−1(t))(1− A
′
i−1(t))− α̂i(t)px1(t − Ai(t))(1− A

′
i(t))− µi(0)xi(t) (i = 3, · · · , n),

where α̂i(t) is the survival probability near the population-extinction equilibrium given by the following iteration relation

α̂2(t) = e
−µ2(0)τ2(t), α̂i(t) = e

−µi (0)τi (t)α̂i−1(t − τi(t)), i = 3, · · · , n. (24)

Note that α̂i is a ω−periodic function, i.e., α̂i(t + ω) = α̂i(t).

System (23) has a 1-dimensional decoupled subsystem

x ′1(t) = δpα̂n(t)(1− A
′
n(t))x1(t − An(t))− µ1(0)x1(t)

:= a(t)x1(t − An(t))− µ1(0)x1(t),
(25)

where

a(t) = δpα̂n(t)(1− A
′
n(t)). (26)

The rate of change of egg-laying females at time t depends on the number of egg-laying females at time t − An(t). To proceed

further, we need the following assumption:

(H4) h(t) := t − An(t) is a strictly increasing function of t.

We next identify R0. To this end, we examine the number of newly generated egg-laying females per unit time at time t. With

the assumption (H4), at time t, the cohort of egg-laying female (with its size denoted by x1(t)) will produce some newborns

who will eventually become egg-laying females at the future time h−1(t) := t̃, where h(t̃) = t̃ − An(t̃) is a strictly increasing

8 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–23
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function of t̃. We note that

d

dt
x1(t̃) =

d

dt̃
x1(t̃)

dt̃

dt
= [a(t̃)x1(h(t̃))− µ1(0)x1(t̃)]

1

1− A′n(t̃)

= [a(h−1(t))x1(t)− µ1(0)x1(h
−1(t))]

1

1− A′n(h−1(t))
. (27)

That is, the number of newly generated egg-laying females per unit time at time t is given by y(t) = c(t)x1(t) with

c(t) := a(h−1(t))/(1− A′n(h
−1(t))). Note that

(eµ1(0)tx1(t))
′ = eµ1(0)t(µ1(0)x1(t) + x

′
1(t))

= eµ1(0)t(µ1(0)x1(t) + a(t)x1(t − An(t))− µ1(0)x1(t))

= eµ1(0)ta(t)x1(t − An(t)). (28)

Integrating of (28) from −∞ to t yields

x1(t) =

∫ t

−∞

e−µ1(0)(t−s)a(s)x1(s − An(s))ds. (29)

Multiplying (29) by c(t) gives (note c(s − An(s)) =
a(s)

1−A′n(s)
)

y(t) = c(t)

∫ t

−∞

e−µ1(0)(t−s)
a(s)

c(s − An(s))
y(s − An(s)) ds

=

∫ t

−∞

c(t)(1− A′n(s))e
−µ1(0)(t−s)y(s − An(s)) ds

=

∫ ∞

An(t)

c(t)e−µ1(0)(t−h
−1(t−r))y(t − r) dr

=

∫ ∞

0

K(t, r)y(t − r) dr, (30)

where

K(t, r) =

{

δpα̂n(h
−1(t))e−µ1(0)(t−h

−1(t−r)) , r ≥ An(t),

0 , r < An(t).
(31)

In particular, K(t, r) is a periodic function with respect to time t, i.e., K(t, r) = K(t + ω, r). Moreover, the kernel K(t, r) has

a biological interpretation. At time t, only the cohort of egg-laying females who are still alive before time t − An(t) is capable

of reproducing eggs which will mature to new generation of egg-laying females.

In Jagers and Nerman [17] and Thieme [34], the solution y(t) of (30) of the form eλtu(t) is considered, where u(t) is a

periodic function with period ω and satisfies

u(t) =

∫ ∞

0

K(t, r)e−λru(t − r) dr. (32)

Define the ω−periodic continuous eigenfunction space by Cω := {u : R→ R, u(t + ω) = u(t)} which is equipped with maximum

norm ‖ · ‖, and define an integral operator L : Cω → Cω by

(Lu)(t) =

∫ ∞

0

K(t, r)u(t − r) dr. (33)

Lemma 2 The operator L is strongly positive, continuous and compact on Cω.

Proof. It is clear that L is strongly positive in the sense that (Lu)(t) > 0 if u(t) ≥ 0 but u(t) 6= 0 for all t ∈ R. According to

the assumption (H4), there exist a positive number θ > 0 such that

h−1(t − An(t))− h
−1(t − r) ≥ θ(t − An(t)− t + r) = θ(r − An(t)). (34)

Math. Meth. Appl. Sci. 2009, 00 1–23 Copyright c© 2009 John Wiley & Sons, Ltd. 9
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In terms of (24) and (34), we have

‖(Lu)(t)‖ = ‖

∫ ∞

An(t)

δpα̂n(h
−1(t))e−µ1(0)(t−h

−1(t−r))u(t − r) dr‖

= ‖

∫ ∞

An(t)

δpα̂n(h
−1(t))e−µ1(0)(h

−1(t−An(t))−h−1(t−r))u(t − r) dr‖

≤ ‖

∫ ∞

An(t)

δpe−µ1(0)θ(r−An(t)) dr‖ ‖u‖

= δpe−µ1(0)θAn(t)
1

µ1(0)θ
e−µ1(0)θAn(t)‖u‖

=
δp

µ1(0)θ
‖u‖. (35)

It is easy to see from (35) that operator L is bounded, and thereby, continuous on Cω. Since

(Lu)(t) =

∫ ∞

An(t)

δpα̂n(h
−1(t))e−µ1(0)(t−h

−1(t−r))u(t − r) dr

=

∫ t

−∞

δpα̂n(h
−1(t))e−µ1(0)(t−h

−1(s−An(s)))u(s − An(s))(1− A
′
n(s)) ds

and

d

dt
α̂n(t) = α̂n(t)g1(t),

d

dt
h−1(t) =

1

1− A′n(h−1(t))
:= g2(t) > 0

for some ω-periodic functions g1(t) and g2(t) because α̂n(t) is an exponential ω-periodic function (refer to (24)). Then we have

d

dt
(Lu)(t) = δpα̂n(h

−1(t))(1− A′n(t))u(t − An(t)) + (g1(h
−1(t))g2(t)− µ1(0))(Lu)(t)

:= F (t)u(t − An(t)) + G(t)(Lu)(t),

where F (t) = δpα̂n(h
−1(t))(1− A′n(t)) > 0 is positive and periodic, and G(t) = g1(h

−1(t))g2(t)− µ1(0) is periodic. It the

follows that for any b > 0 such that ‖u‖ ≤ b, there exists a positive B = B(b) > 0 such that | d
dt
(Lu)(t)| ≤ B for all t ∈ [0, ω]

and u ∈ Cω with ‖u‖ ≤ b. Thus, the Ascoli-Arzela theorem implies that L is compact on Cω.

On page 77 of [11], L is called the “next generation operator”. Following Bacaër [3], Bacaër and Guernaoui [2], and Wang

and Zhao [35], we define the basic reproductive ratio as the spectral radius of the linear integral operator acting on the same

function space of ω-periodic continuous functions, i.e.,

R0 = ρ(L). (36)

Theorem 2 When R0 < 1, then zero solution of system (15) is locally asymptotically stable; when R0 > 1, zero solution of

system (15) is unstable.

Proof. By Lemma 2 and the Krein-Rutman theorem of strongly positive and compact linear operator, we can conclude that the

spectral radius of L is a simple positive eigenvalue of L with an positive eigenvector in Cω, and all other eigenvalue in absolute

value is strictly less than the spectral radius of L, so that R0 > 0. As shown the statement in the page 427 of [2], we obtain

λ > 0 if R0 > 1 and λ < 0 if R0 < 1, which means zero solution is local asymptotically stable if R0 < 1 and it is unstable if

R0 > 1.

3.2. Calculation of R0

There are algorithms developed to calculate R0 numerically [3]. Here we propose an algorithm by using the most intuitive

discretization and integration. This will link the calculation of R0 to the calculation of the spectral radius of a Leslie matrix.
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Changing the variable θ = t − r of (33), we obtain

(Lu)(t) =

∫ ∞

0

K(t, r)u(t − r) dr

= δpα̂n(h
−1(t))e−µ1(0)t

∫ ∞

An(t)

eµ1(0)h
−1(t−r)u(t − r) dr

:= p̄(t)

∫ t−An(t)

−∞

eµ1(0)h
−1(θ)u(θ) dθ

= p̄(t)

[

∫ t−An(t)

0

eµ1(0)h
−1(θ)u(θ)dθ +

∫ 0

−∞

eµ1(0)h
−1(θ)u(θ) dθ

]

, (37)

where

p̄(t) = δpα̂n(h
−1(t))e−µ1(0)t .

Since u(t) is ω-periodic, we have

∫ 0

−∞

eµ1(0)h
−1(θ)u(θ) dθ =

∞
∑

m=0

∫ −mω

−(m+1)ω

eµ1(0)h
−1(θ)u(θ) dθ

=

∫ ω

0

∞
∑

m=0

eµ1(0)h
−1(θ−(m+1)ω)u(θ) dθ.

So equation (37) is equivalent to

(Lu)(t) = p̄(t)

[

∫ t−An(t)

0

eµ1(0)h
−1(θ)u(θ) dθ +

∫ ω

0

∞
∑

m=0

eµ1(0)h
−1(θ−(m+1)ω)u(θ) dθ

]

= p̄(t)

[

∫ t−An(t)

0

eµ1(0)h
−1(θ)u(θ) dθ +

∫ t−An(t)

0

∞
∑

m=0

eµ1(0)h
−1(θ−(m+1)ω)u(θ) dθ

+

∫ ω

t−An(t)

∞
∑

m=0

eµ1(0)h
−1(θ−(m+1)ω)u(θ) dθ

]

= p̄(t)

[

∫ t−An(t)

0

∞
∑

m=0

eµ1(0)h
−1(θ−mω)u(θ) dθ +

∫ ω

t−An(t)

∞
∑

m=0

eµ1(0)h
−1(θ−ω−mω)u(θ) dθ

]

:= p̄(t)

[

∫ t−An(t)

0

H(θ)u(θ) dθ +

∫ ω

t−An(t)

H(θ − ω)u(θ) dθ

]

, (38)

with

H(θ) =

∞
∑

m=0

eµ1(0)h
−1(θ−mω).

In Equation (38), the integral is over an interval of one period [0, ω] and u(t) is an ω-periodic function. To compute

R0 numerically, we partition the interval [0, ω] into N (a large integer) subintervals of equal length. Set ti = (i − 1)ω/N for

i = 1, 2, · · · , N. Then at the point ti , equation (38) becomes

(Lu)(ti) = p̄(ti)

[

∫ ti−An(ti )

0

H(θ)u(θ) dθ +

∫ ω

ti−An(ti )

H(θ − ω)u(θ) dθ

]

. (39)

For each ti ∈ [0, ω), there is a unique integer ki such that ti + kiω − An(ti) ∈ [0, ω). Denote li := [
ti+kiω−An(ti )

ω
N

+ 1] ∈

{1, 2, · · · , N}, i.e., the nearest integer less than or equal to ti+kiω−An(ti )
ω
N

+ 1. Replacing ti + kiω by ti in equation (39), we
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obtain

(Lu)(ti) = p̄(ti + kiω)

[

∫ ti+kiω−An(ti )

0

H(θ)u(θ) dθ +

∫ ω

ti+kiω−An(ti )

H(θ − ω)u(θ) dθ

]

= p̄(ti + kiω)

[

∫ tli

0

H(θ)u(θ) dθ +

∫ ti+kiω−An(ti )

tli

H(θ)u(θ) dθ

+

∫ tli+1

ti+kiω−An(ti )

H(θ − ω)u(θ) dθ +

∫ ω

tli+1

H(θ − ω)u(θ) dθ

]

. (40)

In the case where tli = ti + kiω − An(ti), equation (40) becomes

(Lu)(ti) = p̄(ti + kiω)





li
∑

j=2

H(tj)u(tj)
ω

N
+

N+1
∑

j=li+1

H(tj − ω)u(tj)
ω

N





= p̄(ti + kiω)





li
∑

j=2

H(tj)u(tj)
ω

N
+

N
∑

j=li+1

H(tj − ω)u(tj)
ω

N
+H(tN+1 − ω)u(tN+1)

ω

N





= p̄(ti + kiω)





li
∑

j=2

H(tj)u(tj)
ω

N
+

N
∑

j=li+1

H(tj − ω)u(tj)
ω

N
+H(t1)u(t1

ω

N
)





= p̄(ti + kiω)





li
∑

j=1

H(tj)u(tj)
ω

N
+

N
∑

j=li+1

H(tj − ω)u(tj)
ω

N



 .

In the case where tli < ti + kiω − An(ti), equation (40) becomes

(Lu)(ti) = p̄(ti + kiω)

[

li−1
∑

j=1

H(tj)u(tj)
ω

N
+

∫ ti+kiω−An(ti )

tli

H(θ)u(θ) dθ

+

∫ tli+1

ti+kiω−An(ti )

H(θ − ω)u(θ) dθ +

N
∑

j=li+1

H(tj − ω)u(tj)
ω

N





= p̄(ti + kiω)





li−1
∑

j=1

H(tj)u(tj)
ω

N
+H(tli )u(tli )

ω

N
+

N
∑

j=li+1

H(tj − ω)u(tj)
ω

N





= p̄(ti + kiω)





li
∑

j=1

H(tj)u(tj)
ω

N
+

N
∑

j=li+1

H(tj − ω)u(tj)
ω

N



 .

Let Wi = u(ti). Then the problem of estimating R0 in (36) reduces to the calculation of the spectral radius of a given Leslie

matrix. Namely, we have the matrix eigenvalue problem of the form R̃0W = XW, where W = (W1,W2, · · · ,WN)
T , and R̃0 is

the spectral radius of a N × N positive matrix X. In this matrix, the (i , j) element is given by

xi j =











δpα̂n(h
−1(ti))

ω
N

∞
∑

m=0

e−µ1(0)(ti−h
−1(tj−kiω−mω)), 1 ≤ j ≤ li ,

δpα̂n(h
−1(ti))

ω
N

∞
∑

m=0

e−µ1(0)(ti−h
−1(tj−kiω−(m+1)ω)), li + 1 ≤ j ≤ N.

(41)

Remark 1 Since h(t) = t − An(t) is assumed to be a strictly increasing function with respect to t, we have the existence of

h−1, and it can be easily verified that h−1(t +mω) = h−1(t) +mω, m ∈ Z.
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3.3. Leslie Matrix (X) in a periodic time delay environment

In the formula (41), it is useful to rewrite X in the following form:

X =















r1s1,1 r1s1,2 · · · r1s1,l1 r1s1,l1+1 · · · r1s1,N

r2s2,1 r2s2,2 · · · r2s2,l2 r2s2,l2+1 · · · r2s2,N
...

...
...

...
...

rNsN,1 rNsN,2 · · · rNsN,lN rNsN,lN+1 · · · rNsN,N















.

The above matrix X has the following biological interpretations:

(a) ri = δpα̂n(h
−1(ti))

ω
N
(i = 1, · · · , N) is the number of newly generated egg-laying females per ω

N
-unit time at future time

h−1(ti) produced by an egg-laying female at time ti ;

(b) li = [
ti+kiω−An(ti )

ω
N

+ 1] ∈ {1, 2, · · · , N} (i = 1, · · · , N), the nearest integer less than or equal to ti+kiω−An(ti )ω
N

+ 1, where ki

is the unique integer such that ti + kiω − An(ti) ∈ [0, ω);

(c) si ,j which is given below

si ,j =

{

e−µ1(0)(ti−h
−1(tj−kiω)) 1

1−e−µ1(0)ω
, 1 ≤ j ≤ li ,

e−µ1(0)(ti−h
−1(tj−kiω−ω)) 1

1−e−µ1(0)ω
, li + 1 ≤ j ≤ N

(42)

represents the accumulated survival probability of all egg-laying females at time ti who developed from eggs at time

tj − kiω −mω or tj − kiω − ω −mω, and will become egg-laying females at the future time h
−1(tj − kiω −mω) or

h−1(tj − kiω − ω −mω), and have survived until the time ti . This can be observed easily since tli ≤ ti + kiω − An(ti)

and tli = tj + (li − j)ω/N implies

tj − kiω = tli − (li − j)
ω

N
− kiω ≤ ti + kiω − An(ti)− kiω − (li − j)

ω

N

= ti − An(ti)− (li − j)
ω

N
≤ ti − An(ti), j = 1, · · · , li ;

and

tj − kiω − ω = tli − (li − j)
ω

N
− kiω − ω

≤ ti + kiω − An(ti)− kiω − (li − j)
ω

N
− ω

= ti − An(ti)− (li − j + N)
ω

N

< ti − An(ti), j = li + 1, · · · , N.

(d) xi j = risi ,j (i = 1, 2, · · · , N; j = 1, · · · , li , li + 1, · · · , N) is the number of newly generated egg-laying females per
ω
N
-unit

time at time group i caused from all previous generation individuals of egg-laying females of time group j .

Comparing with the classical Leslie matrix, the females rate population was divided into N groups in terms of the rat’s age

and each cell (i , j)th of the Leslie matrix accounts for how many individuals of female rats will be in the age group i at the next

time step from each individuals of group j [7]. Here, in a periodic environment, we divide the population of egg-laying females

into N groups in terms of time in a period [0, ω], thereby each cell (i , j)th of our matrix X indicates how many egg-laying females

will be in the group i at next generation step from all individuals of group j at previous generation. Therefore, our X is just

a result of applying the classical demographic Leslie matrix in a constant environment to the periodic environment. A crucial

difference here is that the previous generation of egg-laying females is time-dependent.
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Table 1. Estimate R0. N is number of points equally discretizing the interval [0, ω), which represents 1 year.

N 100 365× 2 365× 4 365× 6 365× 8 365× 10

R0 6.834 6.742 6.746 6.747 6.747 6.747

4. Numerical simulations

In this section, we present some numerical simulation results using our proposed numerical algorithm for R0. We also use

these results to examine the impact of the amplitude and the initial phase of the periodic delay, as well as the implications of

temperature variation on the basic reproductive ratio R0.

In what follows, we let [R0] be the basic reproductive ratio of the corresponding time-averaged autonomous delay differential

system of (25). Such a system is obtained by replacing the periodic delay τi(t) with its corresponding time-averaged delay

τ̄i =
1
ω

∫ ω

0
τi(t) dt = τi0 for the original system of (25). This allows us to compare the basic reproductive ratio R0 in the

periodic environment with [R0] in the time-averaged constant environment. We also compare the value of R0 and [R0] with

the corresponding dominant Floquet multiplier and apply our developed method to calculate basic reproductive ratio of Ixodes

scapularis tick population under variable temperature conditions.

4.1. The impact of amplitude and phase of periodic delay on R0

In this subsection, we demonstrate our numerical algorithm by considering two examples, one with two stages and another with

four stages. The results can be conveniently used to examining the effect of the amplitude and the initial phase of the periodic

delay on R0.

Example 1.We consider Nicholson blowflies equation which was proposed in [15] by Gurney et al. In the model, larvae become

adults τ days after birth. The whole model system reads















u′i (t) = pum(t)e
−aum(t) − e−γτ(t)(1− τ ′(t))pum(t − τ(t))e

−aum(t−τ(t)) − γui(t),

u′m(t) = δe
−γτ(t)(1− τ ′(t))pum(t − τ(t))e

−aum(t−τ(t)) − dum(t),

(43)

where ui is the number of immature blowflies, um is the number of matured females blowflies, p is the number of eggs laid

per capita adult females blowflies, a measures the strength of density-dependence for fecundity, δ is the sex ratio, γ and d are

mortality rates for immature and matured blowflies respectively. We assume τ is a periodic function given by

τ(t) = τ0(1 + ǫ cos(
2π
365
(t + φ))). (44)

Corresponding to the first equation in (23) is the linearization of the second equation in (43) at trivial solution, that is,

u′m(t) = δe
−γτ(t)(1− τ ′(t))pum(t − τ(t))− dum(t) (45)

which will be used to define and calculate R0 as shown in Section 3.

We first discuss the convergence of our proposed numerical method. We fix τ0 = 15, γ = 0.1, d = 0.133, p = 8, δ = 0.5

similar to those in [26], and set ǫ = 0.1, φ = 0, ω = 365. We show in Table 1 the approximation of R0 which indicates the

fast convergence of our proposed algorithm. We now conduct some numerical simulations to gain insights on the relationship

between our basic reproductive ratio and the amplitude and phase of the periodic delay. Figure 1 shows that increasing the

amplitude of the periodic delay increases the basic reproductive ratio R0, and that using the corresponding time-averaged delay

differential system tends to underestimate the ratio ([R0] < R0). Figure 2 shows that the basic reproduction ratio R0 remains

at a constant value with varying φ. Therefore, R0 is independent of the phase difference in the two stage-structured scenario.

Example 2.We consider Aedes Aegypti mosquito population consisting of four stages: egg, larva, pupa and adult females. We
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Figure 1. The graph of R0 versus ǫ with ǫ in [0, 1]. Solid lines indicates the R0 values and dashed line is the corresponding time-averaged [R0]. Baseline

parameter values: τ0 = 15, φ = 0, γ = 0.1, d = 0.133, p = 8, δ = 0.5, ω = 365.
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Figure 2. The graph of R0 versus φ with φ in [0, 365]. Baseline parameter values: τ0 = 15, ǫ = 0.1, γ = 0.1, d = 0.133, p = 8, δ = 0.5, ω = 365.
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set δ(= 0.5) as the sex ratio and p(= 200/365) the average number of eggs laid per capita adult females per day. Mortalities of

eggs, larvae, pupae and adults are set as µ2 = 0.01, µ3 = 0.025, µ4 = 0.025 and µ1 = 0.09 respectively taking from literature

[27]. Average time delays from egg-to-larva, larva-to-pupa, pupa-to-adult are set as τ20 = 5, τ30 = 10, τ40 = 2 from website:

http://www.denguevirusnet.com/life-cycle-of-aedes-aegypti.html. As Aedes Aegypti is affected by the temperature [27], we

assume relevant time delays τ2(t), τ3(t) and τ4(t) take the forms

τ2(t) = τ20(1 + ǫ2 cos(
2π
365
(t + φ2)));

τ3(t) = τ30(1 + ǫ3 cos(
2π
365
(t + φ3)));

τ4(t) = τ40(1 + ǫ4 cos(
2π
365
(t + φ4))).

(46)

Linearizing system at mosquito-extinction equilibrium derived from first principle [37] yields

x ′1(t) = δpα(t)x1(t − A4(t))(1− A
′
4(t))− µ1x1(t), (47)

where x1 is the number of adult females mosquitoes. α(t) and A4(t) have the following forms

α(t) = e−µ4τ4(t)e−µ3τ3(t−τ4(t))e−µ2(τ2(t−τ4(t)−τ3(t−τ4(t)))),

A4(t) = τ4(t) + τ3(t − τ4(t)) + τ2(t − τ4(t)− τ3(t − τ4(t))).
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Figure 3. The graph of R0 (solid line) and time-averaged [R0] (dashed line) versus amplitudes ǫ2(= ǫ3 = ǫ4) ∈ [0.02, 0.2]. Baseline parameter values: τ20 = 5,

τ30 = 10, τ40 = 2, φ2 = φ3 = φ4 = 270, δ = 0.5, p = 200/365, µ2 = 0.01, µ3 = µ4 = 0.025, µ1 = 0.09, ω = 365.

Figures 3 and 4 report the simulations involving multiple periodic delays. Figure 3 shows that the increase of the amplitude ǫ2, ǫ3

and ǫ4 simultaneously can change the basic reproductive ratioR0 of system (47) from below the time-averaged basic reproductive

ratio [R0] to above. Hence, using the time-averaged delay differential system can either underestimate or overestimate the basic

reproductive ratio of the corresponding period system of DDEs.

In Figure 4, we change the phase φ3 over the interval [0, 730] while keeping τ2(t), τ4(t) and ǫ3 unchanged. We notice the

1-year periodicity of R0 as a function of φ3. Moreover, an increase of phase of φ2 yields the shift of R0 to the right. For instance,

the dashed curve corresponding to φ2 = 100 is just translation 100 to the right of the solid curve of R0 which corresponds to

φ2 = 0. Therefore, difference in peak timings of the multiple periodic delays can change the value of the basic reproductive ratio

R0, hence influence the state of survival and extinction of the population.
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Figure 4. The graph of basic reproductive ratio R0 versus φ3 ∈ [0, 730]. Baseline parameter values: τ20 = 5, ǫ = 1, τ30 = 10, ǫ3 = 1, τ40 = 2, ǫ4 = 0. Solid line

represents R0 versus φ3 when φ2 = 0; Dashed line represents R0 versus φ3 when φ2 = 100; Dotted line represents R0 versus φ3 when φ2 = 200; Dash-dot line

represents R0 versus φ3 when φ2 = 300.

4.2. Comparison of R0 with the dominant Floquet multiplier

Floquet multipliers are used in the theory of dynamical systems to determine the stability of periodic solutions. These can be

calculated for DDE systems with time-dependent delay by adapting the method described in Luzyanina and Engelborghs [19] and

Engelborghs et al. [13]. This is done by discretizing the time integration operator over the period and calculating the eigenvalues

of the resulting matrix. For non-autonomous systems such as DDEs with time-dependent delays, if the the dominant Floquet

multiplier has magnitude larger than one then the periodic solution is unstable. If the magnitude is less than one then the periodic

solution is stable.

We consider the constant zero solution in our examples as a periodic solution with the same period ω as the period of the

coefficients and delay function. In this way the stability of the zero solution could be investigated using Floquet multipliers as

well as R0. We expect that as a model parameter is varied, R0 and the magnitude of the dominant Floquet multiplier of a DDE

system will cross one at the same parameter value. Numerical experiments are consistent with this expectation and the plots are

shown in Figure 5 for Example 1, as well as in Figure 6 for Example 2.

4.3. The impact of temperature variation on R0

Now we apply our algorithm to calculate the basic reproductive ratio of Ixodes scapularis tick population composed of

12 stages under temperature varying environmental condition. There are seven temperature-dependent time delays τi(t)

(i = 2, 4, 6, 7, 9, 10, 12) and all others as constants. We take parameter values suggested in Ogden et al. [23]. Rodent

abundance for immature ticks R = 200, deer abundance for adults D = 20, τ3 = 21, τ5 = 3, τ8 = 5, τ11 = 10, µ1 = 0.005,

µ2 = 0.002, µ3 = 0.006, µ4 = 0.006, µ5 = 0.65 + 0.049 ln(1.01/R), µ6 = 0.003, µ7 = 0.006, µ8 = 0.55 + 0.049 ln(1.01/R),

µ9 = 0.002, µ10 = 0.006, µ11 = 0.5 + 0.049 ln(1.01/D), µ12 = 0.0001. 1971− 2000 normal temperature data are used for

three weather stations Ontario, Canada: Port Stanley, Hanover and Wiarton Airport. In order to obtain the periodic time delays

τi(t) (i = 2, 4, 6, 7, 9, 10, 12), we firstly obtain the seven period temperature-dependent development rates, denoted by di(t)

(i = 2, 4, 6, 7, 9, 10, 12) using the methodology developed in Wu et al. [39] by utilizing the following formulaes given at each day

of the year
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Figure 5. Plot ofR0 (black) and the dominant Floquet Multiplier (grey) versus τ0 ∈ [30, 40] for Example 1. Solid lines indicate results for periodic delay (ε = 0.5)

and dashed lines are for constant delay (τ(t) = τ0). Baseline parameter values: φ = 0, γ = 0.1, d = 0.133, p = 8, δ = 0.5, ω = 365.
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Figure 6. Plot of R0 (black) and the magnitude of the dominant Floquet multiplier (grey) versus µ1 ∈ [0.1, 0.4]. Solid lines indicate results for the periodic

delay case (ε2 = ε3 = ε4 = 0.5) and dashed lines are for the constant delay case (τi (t) = τ0i ). Baseline parameter values: τ20 = 5, τ30 = 10, τ40 = 2,

φ2 = φ3 = φ4 = 270, δ = 0.5, p = 200/365, µ2 = 0.01, µ3 = µ4 = 0.025 and ω = 365.

1/(34234(T (t))−2.27) (pre-eclosion period);

0.0013R0.515θi(T (t)) (time delay for host finding for larvae);

1/(101181(T (t))−2.55) (larva-to-nymph);
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0.0013R0.515θi(T (t)) (time delay for host finding for nymphs);

1/(1596(T (t))−1.21) (nymph-to-adult);

0.086D0.515θa(T (t)) (time delay for host finding for adults);

1/(1300(T (t))−1.42) (pre-oviposition period),

where T (t) is temperature at time t (unit ◦C); θi(T (t)) and θa(T (t)) are temperature-dependent host activity proportions for

immature and mature ticks (private communication). Note that the development rate of nymph-to-adult is affected by both

temperature-dependent climate condition and temperature-independent diapause as mentioned in Ogden et al. [23], and more

detail see the literature in Wu et al. [39]. Once the development rates are determined, the time-dependent delays (τi(t)) can

be determined via backward calculation by the following relation

∫ t

t−τi (t)

di(s) ds = 1. (48)

Therefore, the iterative time delays Ai(t) are finally determined in terms of relation (9). The graphs of τi(t) and Ai(t) are

presented in Figure 7 and 8 respectively. Comparing to the ODE system of Ixodes scapularis tick population [39], the reproduction

rate p for the DDE model should significantly higher than that in ODE model. Setting

p = 3000 ∗

12
∏

i=2

eµi τ̄i

1 + µi τ̄i

where τ̄i is average time delay between successive stages, and using our developed algorithm, we estimate the basic reproductive

ratio R0 to be 0.3371, 1.6200 and 2.8806 in Wiarton Airpot, Hanover and Port Stanley, respectively. This shows that increasing

temperature conditions can shorten the development time between two successive stages and the time for finding hosts, and

speed up maturation to egg-laying females, thereby increasing R0. Thus we can estimate the value of R0 subject to changing

temperature conditions, and this has significant implications for the survival of the tick population.

5. Discussion

We derived a stage-structured population model to incorporate the variable development time in each stage of development

(e.g., egg, larva, nymph and adult). The resulting model is a system of delay differential equations with periodic delay. Each

component of the system represents a different life stage and the periodic delays represent the transition time between successive

stages. Our model with n = 1 (single stage) is consistent with the work of Schuhmacher and Thieme [31] in the special case

with one exit maturation only. Let r(t) ≥ ǫ > 0 be the development rate of a single stage, then there exists a unique τi(t) such

that an individual must enter the stage at time t − τi(t) in order to reach maturation 1 and leave the stage at time t, i.e.,

∫ t

t−τi (t)

r(s) ds = 1.

Differentiating the above equation with respect to time t gives r(t)− r(t − τi(t))(1− τ
′
i (t)) = 0, hence we obtain

r(t)
r(t−τi (t))

=

1− τ ′i (t). Our derived formula (17) within a single stage is exactly the same as Eqn (48) of [31]. However, we have developed

a general model for the temperature-driven variable development of the parasite with multiple stages.

In the context of retarded functional differential equations (RFDEs), it is often difficult to analyse the asymptotic stability

of either an equilibrium or a periodic solution due to the difficulty in dealing with the existence of infinitely many eigenvalues.

There are intensive studies in the asymptotic stability of an equilibrium or a periodic solution for a linear autonomous/periodic

RFDEs. To carry out numerical analysis of the eigenvalues, a commonly used approach is to reduce the infinite dimensional linear

operator, as the solution operator for the linear autonomous RFDEs or monodromy operator in case of linear periodic RFDEs,

to finite dimensional linear operator by means of pseudospectral collocation. Then the eigenvalues of the latter situation can be

calculated by the standard methods for the associated matrix eigenvalues (see [8, 9] and references therein). In this paper, we
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Figure 7. The graphs of interstadial development delay τi (t) (i = 2, 6, 9, 12) under different temperature scenarios. Vectors representing mean monthly

1971− 2000 normal temperature in Port Stanley, Hanover and Wiarton Airport weather stations are given by [-5.5 -5.2 0 6.1 12.4 17.2 20 19.4 15.6

9.4 4.1 -2], [-7.1 -6.7 -1.7 5.4 12 16.9 19.5 18.5 14.3 8.3 2.4 -3.8], [-6.8 -6.9 -2.2 4.7 10.9 15.6 18.6 18.1 14 8.4 2.6 -3.3], respectively.

derived the basic reproductive ratio R0 for the scalar linearized periodic RFDE (linearized at the trivial solution) decoupled from

the linearization of the full system at the population-extinction equilibrium. We have proposed a discretization-based method,

where the periodic coefficients and the delays are both approximated by constants over a short time interval. This method then

reduces the problem of calculating the spectral radius of a linear integral operator (defined as the basic reproductive ratio R0) to

the calculation of the spectral radius of a finite dimensional matrix (the dominant eigenvalue of X). Our numerical simulations

indicate that this method is quite effective.

We compared our results with those from standard algorithms calculating the dominant Floquet multiplier [13, 19] in Figures 5

and 6. Although the two algorithms both involved the discretization of an operator, the calculations were very different and it

is encouraging to see that they are consistent in indicating which parameter regions the zero solution is stable or unstable. We

would like to note that the computation time required to calculate R0 using our method depends on the form of the delay term

(it depends on how h−1 terms are calculated) whereas the calculation of Floquet multipliers is more straightforward. However,

if we are interested in the stability of the zero solution as a parameter not involved in the delay term is varied (such as µ1 in

Figure 6), then it is possible to compute ri , ki , li as well as the h
−1 (tj − kiω) terms only once as the parameter is varied thereby

saving computation time relative to the recalculating the Floquet multipliers each time.

We also performed simulations to gain insights on how the basic reproductive ratio R0 depends on the model parameters.

With a single periodic delay, we noticed that the basic reproductive ratio R0 may increase as the amplitude of the periodic delay is

increased (see Figure 1). We then focused on the issue of how amplitude/phase differences can influence the basic reproductive

ratio R0 if multiple time-periodic delays are involved in a periodic system. We observed that time-averaged parameters should

be avoided if seasonality is involved as this may lead to a bad estimate of the basic reproductive ratio and result in an inaccurate

prediction of disease risk (see Figure 3). In particular, Figure 4 shows that the change of peak timings of two periodic delays can

change the value of the basic reproductive ratio. The study in Ogden et al. [24] showed that seasonal activities of different tick

instar changed due to the projected increased temperatures, from the current pattern “nymphal activities are ahead of larvae in
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Figure 8. The graphs of time delay Ai (t) (i = 2, 6, 9, 12) under different temperature scenarios. Vectors representing mean monthly 1971− 2000 normal

temperature in Port Stanley, Hanover and Wiarton Airport weather stations are given by [-5.5 -5.2 0 6.1 12.4 17.2 20 19.4 15.6 9.4 4.1 -2], [-7.1 -6.7 -1.7 5.4

12 16.9 19.5 18.5 14.3 8.3 2.4 -3.8], [-6.8 -6.9 -2.2 4.7 10.9 15.6 18.6 18.1 14 8.4 2.6 -3.3], respectively.

a year” to the one “larvae become active earlier than nymphs in a year” in the future. The result in [24] as well as our simulations

indicate that switch of peak timings of larvae and nymphs may alter the basic reproductive ratio R0 for the tick population, and

hence impact the estimate of tick population growth and associated tick-borne diseases such as Lyme disease.
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3. N. Bacaër, Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population, Bull. Math.

Biol. 69 (2007) 1067–1091.

4. N. Bacaër and R. Ouifki, Growth rate and basic reproduction number for populationmodels with a simple periodic factor, Math. Biosci.

210 (2007) 647–658.
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