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AESTEACT

It is now wa2ll known that for tnildings witnh eécentric
centers of aass and stiffrness, thece' is a dyenamic
amplifizatiocn of torque and a dynamic reduction in building
shear., The main éonceén Qith tuilding tprsion is that the
eccentricity induces a rotaticnal motion whose contribution
to the displacement .at the petiphery causes an increased
als?la;ament compared to the displacement corresponding to
Zero eccentriélty. Cther researchers have reported for a
singie acceleroyram as mucih as a 40-100% increase in the
getipher@l response.

Ia {nxs dissesrtation, tke prctabilistic approach is
seleCtei for tkhe analysis ct linear response. The
earthqyuake ground excitaticn is discussed and a simple
expression relating torsional earthquake power spectra to
trdnSl&tiondl earthyuake ECuer srectra is developed.
Interaction relations are derived for systems #ith |
simultaneous X, ¢, and Y grcund excitations.

The percigheral resgcn

n
m

is studied using tae
provakbilistic approach. It 1s shown that a special case
arises where tne tperipheral response 1is independent of the
eccentricity ratio and frequency ratio.

Tha state of the art of artificial accelerogranm
generation 1s discussed. Various parameters affecting
ground rotational motion are discussed. |

Noal inear rasponse characteristics £for a four extefior

wall model are analyzed and it is ccncluded that parametric



resonasce 1s not a prcblea for this mcdel.

dajor conciusions from the results of this dissertation
inciude the follduing: a) the @maximum expected increase in
periphzral rcesponse is on the crder of 5C%, b) the single
most important parameter in building totrsiom is the torsion-
translation frequency ratio, and «c¢) torsional ground
excitatioa @must be guite large ©[efore it significantly

affects thoe rte

177

ponse far  systems with well separated

Lreyuenc Les.
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CHAPT=R I
- TNT‘BODUCTION

According to 'Eerodotus, vhen Xerxes was planning the
second Persian expedition against the Greeks in 480 B.C., a
briﬁqeb built for +he crossing a* fellespont by his
Phoenician and Egyptian engineers vwas destroyed by a storn.
The engineers were beheaded and the waters of Hellespont
receivedﬂthree hundred lashes(1).

In anéient Mesopotamia, the Code of Hammﬁrabi contained
the fibét building ”code- Its design philosophy was to
prescribe the punishment for a failed building, one'of which
} was thevdeath of the builder¢2).

As time passed, society became less barbaric and byilding
became more- scientific.

‘While ﬁhere is n1no writteh historical evidence the
Eg?ptians had knowledge of a theory of structural behavior.
their immense and precise civil enqineerinq'works suggest
‘they dev;séq empirical rules 1in their building. The Greeks
contribution to structural theory was by Aristotle (384-322
B.C.). and by Archimedes (287-212 B.C.) who formulated the
equilibrium principle of Statics. The Romans, while profuse
builders, designed their structures empirically. The Riddle

Ages, as is typical of the vperiod, seeas devoid of much

civil 'enqineering progress. Althoﬁgh a few of the



2

Renaissance's versatile scientists,: Da Vinci and Galileb,
discussed structural behavior in their publiéatibns.:it was
not until the 1éth gentﬁry, tﬁe' Age 6vaeason, that the
basis for the nmodern theory of mechanics of solids wés
established by Hooke, the . Bermoulli's, . Eunler, LaGrange,
Couloumb, and Ha§ie:. - The establishment of the theory
changed the emphasis of .design from empirical-obser#ations
on strength to a scientific elastic analeis of stresses and
stfains<3). -

Dedicafinq a bridge, Frarnklin Delano Roosevelt once
remarked that bridge building is the story of civilization.
I£ surélyA is ihé story of ¢ivil engineering. Nineteenth
century bridge failures héd a profound effect on ﬁhe'course
.of.the civil engineering profession. 1In 1876, a'Howe truss
biidge at Ashtabula, Ohio, collapsed, killing uninety
persons. It héd been‘ ereéfed by a non-engineer, vho also
had modified its desigmn. legislation following the
catastrophe required that the design and construction of
bridqgs_be directed by p:ofessional_enqineers<~).

®Fhile infamous bridge failures in wind in the 1800's
brought about studies and desiqn.’:ulés for wind bracing, it
took the qéeat San Francisco EBarthquake of 1906 to spur the
profession to studies of earthquake resistant design,
resultingvin the first American bauilding code for.ea:tﬁquake
~design rules,;nameljvthe'Santa Barbara code of 1925¢(S).

Many studies of earthquake resistant design center om

inelastic response. The 'present design philosophy that



structures be able to withstand a 'larqe earthqdéke vhile
allowing structaral damage is based in ﬁart on econoaics and
the concept of limit design, introduced by Housner(&), The
principle of limit design is to allo¥ the structure to
"aissip§te energy hysteretically, which resualts in a
ductility demand design tequireﬁént.,
| Ducfile moment frame buildiﬁqs -are typically.5ystems of.
orthogonal " plane  frames coupled thtouqh‘ floor
diaphragms. for.two—dimensional analysis, the plane frasmes
can - be analyzed = separately. The hysteretic enerqy -
dissipation for a moment frame takes plaée through plastié
hinqing‘gof the nembers when yield moment ”capacity is
'exceededi» The siaplegt model for ,such plastic hinging is
the elasto-plastic model. The elasto-plastic model was used
by Ber§<<7’ in the inelastic analyses of ﬁlane frames angd
also by Newmark (8), The next refihemeﬁt in the analysis
'was the use of the bilinear model. This wmodel vas employed
by Clough €9), Iwan (€10), and Giberson <11} to mention a
few. Since the moment curvature relation for typical memberé
¥as not multilinéar' bat curvilinear, the next refinement
included the Ramberg—Osgobd model (€12) gtilized by Jennings
:‘133, Goel (14), and Kaldjian €(1S), |

Suggested analytical models for the hysteretic behaviour
"of shear walls have been used vwith some success (16 17),
 Extensive experimental data also exists on the hysteresis

behaviour of reinforced concrete flexural members and the

parameters affecting 1it; however, no generally accepted



modeling technigque exists.

ﬁany' special ~purpose  computer brdgréms eﬁist. for
inelastic‘dynaaic',plane frame analysis; one widely used
general purpose computer program for this purpose is DBAI&ZD
by Kanaan and Powell (18),

Thé development of the computer apd the increased size of
computer core space spurred the_developmént and use of space
frame elastic vorograms. A space- frame elastic dynanmic
analysis progranm, VTABS, developed, by Filson €19)
econoﬁically utilizes the planar structure of space frames;
however, it computes colamn axial - strains ‘that ‘are not
compatible in columns common to orthogonal plane frames. In
the éourse of - thé space prograa, the Yational Aeronautics
and SPaée .Administzatién aevelopéd a th:ee-diménsiOnal
elastic dynamic ,ahalysis computer progranm, NASTRANC20),
Other public qeneral,purpoée space frame programs developed
are SAP-IV!215 and STRODL €22), ‘

Three diaensionél elastic dynamic compater programs are
expensive to use since each Jjoint has six Adéqreés of
freedom, requiring a large amount of computer tinme injmatrix
manipalation. simplifyiqgv techniques have‘ been employed
with somelsuccess to show the gross structuaral response;

Barly studies 23> of building torsion have shown that
the lateral‘ and  torsional motions. of ‘the structure are
coupled if there eiists an eccentricity between the centérs
of mass and stiffness of the structure. Por small

.

eccentricitieslthe usual method of ”analysis consisted of



computing the static torgque, +the prbduct of the building
shear and the eccentricity. Many studies (2¢ 2%) have shown
that the dynamic torgque nay considerably exceed this
product. Most of these studies have shown that a reduction
in the ﬁorizontél building shear usually occurs along with
this dfnamic amplification of torgue.

Hoerner €263 did a study of modal coupling, meaning a
coupling betvéen thé‘ fwo translational énd one rbtational
degrees' of freedom such that each aode ﬁay contain a
component of all three degrees of freedom. Hoernmer's stud?
showed thgt *he amount of modal coupling‘is reléted to the

2

eccentricify between the center of mass and the center of
étiffnesé?divided by che traﬁslational-torsional frequency
differencé- - This is confirmed by £forced vibration tests
cz7), -

Heidebrecht'(ZS) used modal analySis with the frames and
shear walls modeled as .prismatic shear and bending beanms
réspective;y-‘ With a‘.simplification of thefthreebcouﬁled
‘differential equations of mo*ion, he developed nomographs to
deterﬁine the higher coupled frequencies.
| Berg €¢29) also used modal analysis in a study of a
cantilever shear beam model to show the effect of
unsymmetric- setbacks. His study showed +that +torsional
oscillations occur and  wmode shapes are coupléd for
unsymmetric setbacks.

Tso (30) showed that when a symmetric buildinq‘with no

eccentricity, i.e. uncoupled, is excited in omnly one
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direction, torsional response can. arise from the nonlinéar
‘coupling betwegn translatidhal; and térsional motions, knbvn
as parametric resonance.

The final refinemeat in analysis‘vteghniques“ ié the
modeling of buildings as inelastic space frames. 'Okada (31)
modeled a one story buildig§ és. a space frame to show the
vincreased‘co:ner damage due to high;eécentricity. Padilla-
Mora (32"u$ed.a four frame shear building as a model to
show  the effgct commEon column orthogonal strength
intgraction has on hysteretic dissipated energy.

Shiga ¢33) developed a spécial purpose three-dimensional
inelastic dynamic response cbmputer progran for the~analysis
of a building damaged by the 1968 Tokachi=Oki
earthquake. The results correlated with the damage.

Mondkar et al ¢34 have developed a qenerai.purpcse
-inelastic th:ee-dimensional'dynamic finite eleaent'copputer
program, ANSR, which is an extension of DRAIN2D (18), }it is
very expensive to utilize.

There have been many attempts to model a building as a
‘beam (35)_, For some purposes this technique gives the
- desired result. For elastic analyses it is difficult, if not
Aimpoésible,.to match both <the higher frequencies and mode
shapes. Por a typical ©N-story building the beam model'’s
parameters can be adjusted such that the ¥ frequencies will
match the actual building’s freQuenciés,« but then the mode
shapes may not match (and vice versa). = For inelastic

analyses wvhere higher modes may not'bé as important, a bean




model cannot simulate the strenqgth 'interaétion of colunmns
common to »orthoqonél fraaes-' Also, it cannot model the
effects of unsynmetrical strength (as opposed to stiffness)
in parallel frames. These problehs can be ‘avoided by
modeling 'the individnal framés as beans, but this creates
new problems. Fot the shear bean médel. a‘ change in
stiffneés at the Ith \1evel changes the stiffness matrix
coefficients at +he (I-1), (D) and (I+1) rows and
columns. For a wmoment frame, a change in stiffness in a
‘member-at the Ith level changes all the coefficients in the
lateral éﬁiffness ‘matrix.  This problenm can also be
circumvent;d'by‘modeling;the frame és a bending beam inétéad
of a sﬁea: beams; . however, the frame's dynamic
characteristics are more like a shear beam than a bending
beam. Some attempted remedies coasist of using Tim&shenxd
beanms and series or parallel beams; yet, the modeling of a
building as a beam raises more objections than the benefits
of eéonomics-cf the model can justify.

Another modeling technique can be used for . 1-story
buildings and buildings beihq analyzed in their fundamental
mnode only.' Kan and Chopra ¢36) did an exhéustive study of
the parameters affecting the torsional response of linear
one storf buildings. Por 1inelastic Sehaviour, the single
resisting element or generalized coordinate stiffness for
nuitidegreé of freedom systeams analyzed only .ih the
fundamen£al mode, can be assigned a hysteresis loop based on

theoretical or experimental information depending on the
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type of building. PFor example, in a steel aoment frame
building a bilinear or Ramberg-Osgood type hysteresis wéuld
‘be appropriate ({Fig. ~1-1). A symmetrically braced frame
type hysteresis, illustrated in Fig. i-z, exhibits the slip
type shape characteristic of bolted €frames. A shear wall
resisting element differs from mnmoment frame hysteresis in
that it is dsnallf of the degrading type. The shear wall
type hysteresis is illustrated  in *ig. 1-2 and is
characterized by the pinéhed shape near the origin.

A more riqqrous method for mgdelinq inelastic building
motion is by the member by member approach. Heré the matrix
structural analysis teéhnique is 1used with the global
stiffness matrix being altered in time as each member
changes stiffness in time. There are different types of
hysteresis behavior ﬁor 'diffefent resisting eleﬁent memhe:s
as described above.

A bifurcation of analysis methods arises in the choice of
time domain versus fiéquency domain analysis. The choice
partially rests on the philosophy of the amalyst. Tinme
series' analysis is generally more expensive and
statistically more variant thdn' fre@uency domain analysis
vhich gives the expected maximum (37) as opposed to a
maximum of a member of an ensemble of ergodic processes.
Por inelastic respoﬁse, freguency doﬁain analysis cannot be
applied without using some approximate technigue since the
complex frequenCy'respoﬁse function is tinme dépendent.'

At the present time there is no generally accepted method
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Figure 1-3 Typical Shear Wall Hysteresis
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for determining by spectral '7ana1ySis ~the'\statistical
parameters 'Of response  for a stochastically.'excited
~nonlinear hysteretic Systei;‘ The Fokker-Planck equation
approach for nonlinear systems, which involves thé soluation
of a partial differential equation 1involving the Joint
probability of displacenent, velocity, and time, is @ot
applicable for either nonwhite excitation (3%) or hysteretic
systems. BEquivalent linearization techniques (39), where
minimization of the mean squared error is used in finding a
statistically "equivalent | linear stiffness énd damping
coefficient, 1is limited ¢to either bilinear systeams with
nearly equal slopes or systems with small nonlinearities dr
small ductilities (40),

Probably thé most reliable methodﬁ of studying the
'response of inelastic hysteretic three-dimensional-
structures is by Monte=-Carlo methods. Statistical
'parameters‘éan-be.»déterﬁined by ‘analyzing an ensemble of
time ‘series analyses of structural response to ergodic
excitations. The uonté-earlo methods will be used in this
thesis. Chapter II reéounts the state of ¢the art in
artificial acceletog:am Qenefation, its nnderiying
érocesses. and  the paraméters affecting it. Ground
rotational motion is also described and discussed. Chapter
III des;ribes the elastic torsional resporse of buildings
using as the foundation the excitations described in Chapter
II. The torsional respoﬁse‘ is analyzed in the fregquency

domain. - Chapter IV describes the model used in the



"

inelastic study and the solution technique used to analyze
‘the response. Chapter V lists the results for the inelastic
studies and discusses the nonlinear respounse

characteristics.

A



CHAPTER IT
DESCRIPTION OF BABTHQ?AK&
EXCITATION

Observations of geologists and cnrren£  thinking on the
origin of the earth make it évident that earthquakes have
been occurring for at least hundredé_of millions of years.

Tarly historical and biblical references to earthquakes
occur as far back as 1600 B.é. <*3).' Historical speculation
- as to the causes of earthquakes ﬁas bases in legengd,
mythology, science, aStroiogy and religiog.

Aristotle believed that earthguakes were caused by
subterranean winds prddﬁced by an evaporation of moisture
inmprisoned in  the 'earth's crust. "Pliny,‘ a Roman
philosopher, late;fexpandedh on Aristotle's belief, wﬁitinq
that earthquakes vere eartﬁ's way of punishing the
wickedness of men who mine ofes of gold, silver and iromn, a
thenme fepeated in variation in different cultures a:ound the
:world.‘ |

Zoomorphic qualities are assigned ‘to earthquakes in the
legends of many cultures and countries. In Japan, it was
thought there was a giant subterranean spider who caused the
earth to shake when he moved. In India the mythical monster
was a mole:: in nonQOlia, é hog; and in North Americg a
tortoise (44). A BSSA account of the 1811 NWev Hadtié.

uiSSOu:i'eérthQuakef455 tells of a ieqéﬁd ciaiming,that

12



13

earthquake to be caused by a horned comet colliding with the
earth.
Scandinavian aythology rTegarding earthquakes concerned

the peccadillos of deities. Indian lore contains seven myths

N

concerning - earthquake sources. Fascinating accounts of -

causes of earthquakes abound in the mythologies of warious
fcultures; L |

Gods of earthquakes are referredi to in} various
mytholoqieé- A‘commoh theme in the beliefs of differernt
cultures regards ihe earthquake as divine punishment visited
»uQSn a wicked npeople. With t*ime natural explanatiéns of
earthquakes éefe expounded and received to varying
degrees. In an article in  the westeemed Philosophic
TranSacticns of the Boyai‘ Society of ©London im 1750, a
vriter in his foreword apologized to "those who are apt £o‘
be offended at any attempts %o give a natural accqﬁnt of
earﬁhguakes." As late as 1930, according to neuspaper.
repdrts (London Times, July 28, 1930), the Archbishop of
Naples referred to the Ttaliam earthquake of July 23, 1930
as God's vengeance visited ﬁpon an immoral people.

rﬁiétorical legends and ayths are fascinatigq_to read.
The evolution of sciéntific thouaght is another iqterestinq :
and related aspect of earthquakes important to _the
understanding of two geophysical topics,. rpamely, the
mechénism and 'underlying caases of earthquakes, Tﬁq
currently accepfed predominant’ earthquake mechanisa, the

Elastic Rebound theory, was proposed in 1908 by Harry
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Fielding Reid and Andrew ;Lavson; They were - faced with
charges of "mysticism™ since they . presented the mechanism
but not the undef;yinq cauées of the earthguakes. The
Elagtic Rebound Tkeory postulates a slow accumulation of
strain along the fault until rupture occurs. The fault then
rebounds to a new equilibriuﬁ position radiating shock waves
outward. |
!ﬁch speculation concerns the underlying cauase of the
sloé accumuiaéion of si:ains neceséary to thé Blastic
Rehound mechanism. A prevalent theory of the 19th centqty
wvas that earthqgakes iere caused by contraction of the earth
_by~cooiinq- Most tﬁeories on the origin of the earth assume
it hés cooled from a mdlten mass. The cooling of the earth
through qeologic time has Sblidified the earth down to the
molten core, vhose existence is..theorized by its inability
_to transmit seismic shear waves. fet, the surficial layer of
the earth is not ¢hanqihg in .tehpe:ature and therefore is
not chanqing in volume. The crust thus beédmes toovlarqe'to
fit the shrinking layers beneath Ait, tesdltinq “in the
folding and faulting of crustal diastrophism. The major
criticism of the comtraction theory is that the folding.of
the »crﬁst and 1its  associated wmountain bﬁildinq process
should be more widely distributed over the earth's surface.
The isostatic'vprinciple has been called 1into play by
other fheories;_éxpgximents have shown that a plamb bob does
.not deflect tovards a mountain as it would if the 2ountain

_were merely an added . mass on the surface. The theory of
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isostasy states that at some depth beneath the surface, all
columns of the earth's crust are made ap of lighter rocks
floating on‘ a layer - of heavier rocks requiring that
gonntains have déep roots cbnsistinq of these liqhter'roc?s.
Accompanying the process. of mountain érosion is the reverse
- plastic flow of rocks beneath it. '

Apother p&puiar theory regarding the undérlying cause is
the convection theory. The convection theory presumes, by
various causes, tamperature differences in the mantle. As a
’ result,-convection‘currents develop similar to those in the
at;osphe:e- The horizontal éurrent near the surface would
dfﬁq the crust wi*h it. At points of rising convection
curreuts; crustal stretching occurs, resulting in>grabensm
-éﬁd normal (tensionf fault planes. At points‘of descending
convection currents crustal comptéssioﬁ results in mountaih\
building and thrust (compression) fault planes. The generai
criticism of +this theory is that it requires cyclical-
chanées in temperatﬁre of ¢the earth, uaeteas,largeASYSteﬁs
such as the earth tend to thermal equilibrium.

;Brief mention should also be wmade of ‘the magmatic
‘theory. This theory reguires thermal changes in the eartﬁ's
crust, bringing about ﬁaquatic ,differentiation and plastic
flow of rock.

The theory‘of contipental drift currently enjoys the =most
widespread support in the scientific 6ommunity. The otiqinél

proponent of the theory was Alfred iegéner (48)_, As pany a

grade schooler has observed, the continents of South
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America and Africa fit together like.‘pieces.of a puzzle. .
currrent thinking'on the _cbntinental dfift theory vievs the
ea:th's surface as having opce--consisted ~of one large
supe;continent éalled_Athe ‘Panqaéa. Recent tésearchers in
paleomagnétism‘have reconstructed the Pangaea by analyzing
thé change in ocientatidp: of land .masses by studying the
direction of the magmetic field of nevw ro;kS'(lava)'in time
(47>, As stated, the continental drift theory is now viewed
as tﬁe most probable. source .fotA the slow accumqlation_of
_strain requi;ed'by the Eiastic Rebound Theory.

| Whatever the hature of tﬁe source of earthquakes, the
earthquake succnssato:y ground wmotion causes distress in
civil éngineerinq structures. To understand the effect on
s#ructures itiis‘necessary to know the nataure of the gr&uhd
gotions. For elas;ic structures the usual analysis method is
by réspo#se spectra. Techniqnes' have been devéloped to
'6btain &he}expected» response. spectra by the statistics of
oscillator response ¢37)_, oOther methods have been used to
obtain plausible "desiqn spectra” (48), These methods have
their rdots} in the statistics of statiomary stoChaétic
progeésés, i,e;' :ahdom vibr;ticn ~theory. Although
earthquakes are obviqusiy nonstationary, studies have shown
that for linear systeas, nonstationarity'has little effect
on the expected 'reépqnse.n Hgtever, for inelastic systems,
the response is sometimes sensitive tovthe,time.va:iation of
ithe energy of the motion¢+9). Thus for inelastic systems,

Honte-Ca:lo,methqu,of_analysis,are,desiréble, This in turn
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requires families or ensembles of stochastically similar
ground motions.
Ensembles of "similar"™ stronqg motion accelerograms do not

"exist. In fact, the occurrence of large earthquakes is

\

modeled statistically as a Poisson process, a model fdt rare .-

events. 'Thus, the need for data creates a need for
mathematicalamo&elihg of earthquake ground mbtion.

For 1low frequencies and epicentral distancés latge
relative to the source dimension, earthquake sources may be
approximated bj point sources. The assumed force field must
,be:in equilibrium both before and after the earthquake- One
sudh'poinﬁ source meeting the criteria is the double conple.
It consists of two couples of opposite -sign 960 out of
‘phase-_ For a pure shear rebound phenomenon vin the low
frequency limit, the equifalent point source is a double
couple €(S0), The scale parametér of  the double couple is
the seismic moment necessary for’the assuuned soﬁrce té'be in
equilibrium. It can be related to the fault dimension and .
avéraqe fault slip.

The enerqgy reledséd* in an earthquake for an elastic
rebguﬁd phenonenon comes from stored elastic energy. The
enerqy is released in the form of frictional heat from the
‘fault slip and as seismic waves. Various matheﬁatical
- models exist rélatinq the released energy to the fault area,
average displacement, and average stress drop 'ove: tﬁé:

~fault. The stress drop in turn 'can be related to the fault

displacemént‘ and geometry. Estimates of. maximur ground-
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acceleration = can ba . made using the aforementioned
péramete:s. Some disagreemen% centers on the‘daximﬁm near
,source acceleration. .. For frequencies 1less than 10 Hz,
Brune<5°)_calcuiates the maximum acceleration as being in
tke neighborhood of 2g. = The ~maximum ground acceleration
recotdgd to date is 1.259 for the 1971 Pacoima Dan
acceleroctam - of “he San - Pernando earthquake"<513-
fealistically 'speakinq thouah} in sPecifyinq a paximpum
ground accelecation, the Drobahility of its occurrence must
be taken in;c account, 1l.e. similar =-o many design code
philosophies, the maximum acceleration should be related to

’ /

‘mean racurrence  intervals (zeturn periods).  Curren<%
proposed cod=zs confain a Vdesiqn maximua gtound acceleration
of J.4g.

Another quantity necessary for the stochastic description
of qroupd:motion is-the.predominant frequency, the fregquency
at the neak of “he power specCt-une. Thc predominaht fzequency
near the fault is +he subject of current research by
seiscologists and is not well understood; Among the
parameters related o the predominant frequency are the
}crack §rcpaqaiion velocity, fault geometry, fault size, rock
streanh,A topography, and ’ fault '~ breakout. ‘ The site
predominant frequency is altered by the local geology. The
effect of local geologic structure is similar to passirq the
motion throngh. a filter with appropriate £frequency and
damping characteristics. Nonhomogeneity of the transmission

medium, multiple reflection and - refraction, and sometimes
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focusing, cause a widening of *he "band wid<th in =he near
field £or earthquake ground motion. Because of this and thé
shape 0of power spectra of actual':eco:ded ground motiomns,
"stochastic modelling of ground motion has become'popular.
\
Different types of artificial earthquake gronnd'motion
can  ba generated according to observed peculiar

characteristics. * Jennings &t al. (52) generated artificial

(

accz=lerograns to rzoresent four differant <«ypes of ground
motion on firm soil. Newmark and Rosenblueth (#1) classify
‘eapthquakes into four broader groubs: 1) practically a
siﬁ;le'shock near -he epicenter of a shallow earthanake, 2)

long, wids band strosg ground aotion on firm soil siamilarc ro

{a

the 1949 ¥S El Centro record, 32) long, narrow tand motiorn on

in

oft soil, and #) la:qe scale permanent deformations wit
possible landslides or soil liquefaction. h

The first type can be analyzed deterministically, using
similar recorded gronnd mo:ion.

Tﬁe third kind of ground motion <can be obtained by
‘filtering the second tyve.

The fourth tyve will not be dealt with here.

The second type is the major concern of this thesis.
Actunal records of this +ype are more prevalent than other
types. Since it is a wide band process, white noise has been
used to represen*t it. Due *o 'its random appearance,
communications  theory offers many tools to study itéz
probébilistic pature.

Housner ¢(53), Bycroft (S4), -and Rosemblueth ¢(55), among
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others, modeled grouna_ motion of this fype as stationary
white noise of limited duration by superposifion of randomly’
arriving sﬁort ~duration pulses with random frequency and
amplitude. ;

The average . of Fourier- amplitude spectra of existing
strong ground motion accelerograms shows that the spectzg
are not white noisé but rather are like a broad band process
that damps out with higher frequencies. 'This suggests
filtering white noise  with  appropriate filter
characteristics to match the power spect;a. Kanai ¢(S&) and
Tajimi (57) suyggested that the transfer function for total
».respdnseyaccele:ation be selected with filter properties
which match the hroad.'bénd nature of actual accelerogran
spectra. The total acceleration transfer function filter
will anmplify those frequencies near the filter natnral
frequency and  attenuate the higher
ftequencies. Singularities. occur  at zero frequency fot
velocity and displacement. Jennings, Housner, and Tsai (52)
used a high pass filteﬁ'~for response displacement to
attenuafebthese'very low frequencies. This eliminates the
Aproblem"since it_causes the power at zétb fréquency to be
zero; fhe average of many accelerogran pouer spectra fits
. closely this filtered white noise spectra.

The next refinement was +o simulate the nonstationarity
of actual accelerograms. The usual' procedure is to use an
envelope function to vary the intensity of the process. The

- nonstationary process uses the product of the statiomnary
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Stochastic proress and <+he deterministic envelope function.
-Séveral . types of envelope functions have ~been used.
Jennings et al.(52) separated . it into an initial parabolic
phase, a constan* s*irong ao-ion phase, and a decaying tail.
The paraaeters for this intensity function are chosen to
mnatch the intensity or 'vatiance o2f actual accelerograss.
Gotofand'Toki~<53) used a *ramnscendental intensity‘functiou

'nf the typ=
T(t) = as(t/5') sexpl (27-%) /51 Jed (%) 2.1

X . A .
where a, t', and H{(*+) are, respectively, a constant, the
time of peak I(t), and the Heaviside unit sten functisn.
~Xoopmans et al.(S3) used a =-ranscendental in*ternsi=y function

of the shape
I(t) = ae[exp(-ost)-exp(-Be=)] ' o 2-2

where a, a, and B are cohétants.

.Ahother stép in the refinement of artificial
acceieroqrams is thes use of Berg and Housner's (80) baseline
correction. This procedure nminimizes  the @:ean square

.
velocity 1im order to remove excessively large ground
diéplaéements-

| The necessity for including the nonstationarity inkthe
artificial accelerograms is determined by its effect on the
cesponse. Amin, Tsao, and Ang¢*9), Roopmans et al.(59) aﬁq
Shinozuka and Sato(%1), . among others have studied this

effect. The +heoretical information contained in extreme.
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value theory is verv helpful 1in separating the effects of
variogs parameters of the expected crespounse. Also the
relation of the variance with <time for  aounstationary
orocesses resulting from zero  initial conditions is
necessary o understanding these effects.

The study of amin et al.(+9) reported the deformation
spectra of elastoplastic systeas ~ {2% damping) ‘using a
s*azionary =2xci*azion and 2 nons:ationary'excitation of the
Jennings et al. <?2);type,‘both with a total dura*ion of 25
sec. The spec+tra, reproduced in Figare 2-1, show a decrease
in fesponse~gith_increasing ducfility. The spectra, reported
for initial frequency, also show the response for the

“a=ionary and nons*tatiorary excitatlor to be approximately

0]

equal for linear structures. The extreme of a stationary

Gaussian process is related to the duration by

Z(mag]y(t) 1) oi/In(2%5eF ) A 2.3

where 2( ) denozes expectation, s is the duration and F is
. e

~he average number »f zern carossings/=ec. of *he nrocess.
For 3 = 25 sec. and Fe =5 Hi; halvinq the duration only
changes <*the expected ﬁesponse by approximately 6%. The
higher ductilities show e decrease in responSe'larger +han
6%, as seen in ?igure 2= 1. The ‘repoft concludes that the
nonstationari*y causes ‘a difference 'in response f£or high
nonlinearity. | : | |

It is possible that the difference lies in the effective

dnrations for the stationary and nonstationary excita*ions
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used. The probability of the latter vortion of the
nonstationary decaying tail containing the extreme is surely
remote, i.e. the effect of the type of noastationarity can

be viewed as resulting in a shorter effective daration.

\

40 .
T — 1
3¢ 4 -
—d iy \ |1 1 —0uctitity Factor, u =i
20
N
8 N
< 10 : } .
;T = :
- 5 o
.g i ; 1
= 4 D DD L) : Y 1\ | P
2 P VAN o RN AR L S U R
3 A 7T T T T 1 S NSy T
: a ﬂ R ' ' R IR : A\ ) i
< 2 ///ZZ Nonsiationary Pseude - Zorthouake § X\‘\}{ - -
,]; I‘K ‘igg Q.204 g, "1923~24 in,/‘SBC-y ’\Jx\\\\\\ ! ‘
= H N A
_ 5,1/ _ A 4.45 in. ' l \\éX
} Comparabla Stationary Pssudo-Zarthquake : —2ay
'y‘9=0.204 g, 93=8.35 ins/sec, yg=8.19 in.
o7 . - ’ ~
Q.5 : :
0‘4 | [} [ ]
Q. g2 03 05 07 ¢ 2-'3 .5 7 @ 20 30

Undamged Matural Frequancy, fa, cas

Pigqure 2-1 Deformation Spectrum for Elastoplastic
Systems (B=0.02) [Adapted from Amin et al.(*9)]

With increasing ductilities the effective statistical or
as sometimes- | called equivalent lipear stiffness
decreases. By viewing the elastoplastic response as an
equivalent linear system the response uoﬁlinearities tend to
reduce the effective vnatnral frequency and 1increase the
effective damping. The possible reduction 1in natural
frequency 1s presumed the same for the stationary and

nonstationary excitation.
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"The deformation ‘sﬁeCt;um ir - Figufé‘2;fv is shown‘for
ductilities, i.e. méximum—displacement nondimensionalizedAby
yieid diépiacement., Penzien and ;iqcaz), Wwho s*udied the
effect.Of duration on response, depicted the response of the
experimental distribution ir the form of Gumbel (83) extreme
value Type I chafts_ﬁéprodnéed,in Figure 2-2.

Gumbél Typé I >extfeme ,valde' probability iistribu;ions

vary as

P{O<KX__ .} = exp(-exp (-¥) ]
max’ :

wheré Q is defired as
O=maxix(t) |

- . . :
Q is the mode of Q and the reduced variate ¥ is defined as

1=_Ter0-01]
c
q
and °§ _depends on the nunber of observed extrenme

‘valuoes(84),. Guhbel extreme value - charts plot as a sﬁfaiqht
bline~with'the most probable valué'.at the’reduced‘variate
origin.'"Its'éiope is proportional to the étandard deviation
of the extreme values. The slopes in’Fiqﬁre 2-2 increase
with'ihcreasinq -nonlinearity imé;ying an increase in the
‘standara déviatidn of the extreme respdnse, i.e; a‘larqér
spreéd-of the values. With an average_ofvaﬂlarge: cuaber of
aécélerbqrahs the regpo§5é gspéctra ’anémaiies said %o be

caused by nonstationarity may not be sSo 1large since the
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ns@réadf of the valués ' inc:eases  jvith' increasing
nonlinearity; Thé Aﬁin:et;wél. fepo:t(49> apparently used an
average of eiéht acceierograms, a rather small statistical
sample from which %o draw conclusions. o

To give an éxamble of the effect of nonétationarity.
consider the extrgmé response from the levél. crossing
.approaéb. c:aﬁdall<65¥ presents an excellent s+=a%e of the
art review. As shown shown in Pigure 23 the extreme valnes
have a specific probability disntibgtion.'rhe usual method
in first passage problems is to detéfmine the mean, mode, or
4@edian of +the extreme values in terms of its standard
deviatidn, 2.g. “he most probable eizreme is the product of
fhe standafa deviation of the respénse and a péak factor, R.
The asymptote of the most oprobable peak factér‘for_ﬁhite

noise is

E= +/Zv1In(2.9°N) ‘ | 2.4

where N is ihei number; ¢f éycles‘the system‘has undetgoﬂe,
i.e. *the nafu:al ffeQuéncy ﬁ;méslthé du:atién. Por ronwvhite
éxcitatiOQ the peak‘ faqtsr is a <function of the average
number of zefo\A cfossings ” (usually ngar"ghe“ natural
.fréqﬁenCy)..the-damping,vthe probability of exceedance, the
‘auration, and a 'parémete:‘ éimilarﬁ,to_ +he coefficient of
vatiation of th;‘magima. An épp:ozimate expression for the

neak factor E, is(es8)
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| R=1//2tln{2'N'[1' exp (=8 e-/reln(2e¥)) ]} 25

vhere e, a measure of the spread of the power spectrum is

Y

fe =[1-4,2/(n, oH,) ]08 ’ . ' 2.6

and’ni, the ith moment of the power spectra about the origin

is

i N . . B
Hi.=fw oG 2 (w) sdw o 2.7

Thef}quivalent.parameterAvalues derived from the Amin fepott
could decrease the peak factor, R, as much as 13% by'halving.
- the duration. ‘Although the different durétidn would glso
affect the standard deviation, the difference is negligible
’for the damping used. The decrease in response thus appear§
to be caused more by the effective duration than the effect
of noanstationarity. | |

'This says nothing,‘ of course, for the effect of
nonstationarity of the -tfanscendenﬁal type, e.g. Equatioﬁ
2.1 or Equation 2.2. Here the time rate of change of the
inté;sity and the duration both combine to afféct the
"expected response. An exact Solﬁfion for the stationary
first passage problem does not exist. However, fét a
sufficient number of cycles the. asymptote gives a very good
approximation.

Aéproximate techniques - for nonstationarj response are

just starting to receive attention. For nonsStationarity due -
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/]

to transient re

in

ponse of s*ationary exci<ation, nune method
is *o uée an eguivalen* duration. For nonstationary linear
response lue  to noastationary excitation with a
ttanscendentél infensity function, the most logical approach
i;-to consider the extreme a function of the total enérqy,
i.2. p:oportional to the inteq:aleE_the intensity function.
This follows from stationary response exﬁremes~being the
prolact of tae standard deviation or power and the veak
facfor which 1is pcovportional 0 the duration. . One approach
would be to sbtain the marginal probability densi:ty function
ofjihe maxima by integratinag .out tide dependence of the
variance in the Davenpdr?<57) derivﬁtion.‘The statistics of.
nonstationary peak response ars beyond = the scope of'this."
reporte

Kgbb and Penzien(ses) studied; the accelerograms of th;
1971 San Fernando eaﬁthuake. ‘TheirA resulting intensity
functi5ns resemble the tﬁanscéndental intensity function
more>closély than they resemﬁle the Jennings et al.<5?’
intensity functioh- Kubo and Penzien also showed distinct
jumps irn the phase of =the cross correlation between the
ho:;zontal. ground accelerogram, possibly l1inked to the

rrival of different waves. -

Satégoni and Hart(é9) presented a aethod for genetatinq
artificial acceleroqrams incorporating nonstationary power
spectra. They used ~hree discrete powé: spectra qu:
different phases of the duration ia order to simulate the

decrease in the predoaminant frequency with tinme. They used -
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a transcenden=al intensity .func+ion of tha form

I(t) = astYeexp(-eot) | . 2.8

where a,Y, and € are constants dezermined by a bés;hﬁit
~analysis 6f ezistiﬁg ' ad;eleroqrams. This concept of
evoiutionary power' spectra is not' new.. Nevertheless, it
immensely coﬁplicates the stétistics nf extrene respons2
making i* nearly in=Tactable. |

The Saragoni aad dart reports show the intensity function
"to vary for differcenz eérthquakes. -Also the phases of the
discrete power soectra would éhange #ith fault orienfation
-and eoicentral distances. A method 2 simulate this was
presented by Rascon and Cornell(7o), whd prbduced artificial
acceleroaqrams fromr a | physically baéed model; Théir
simulation involved a supérposition of :andéﬁly arriving
dilata*ional and diatortional! single pulses with a Poisson
arrival'distfibuiion‘from'a number of elémentary foci. The
2lementary foci qéneraté fge singie pulses along tﬁe fault
plane, moving aCCdrdinq %o fhe srack propagation
vVélOCitV.. ttenuation was based on spherical spreadinq and
multiple reflection _ahd refraction. The duration and the
parameters were based on stétiSiiéal-studiés relétiné these
paraméters Eo"magnitude, épicent:él distances, etc. fhe
‘resulting simﬁlations closely . resemble’ actual
accelerograns. | | | -

The ptecéding' deSCriétions of the various methddsvto

generate artificial accelerograms indicate the increasing
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cqmpleiity that accoﬁpadies more faithful simulazion of
ground motions. ?or} a particular site of given local
geology, amany factérs are bheing introduced that influence
the accelerograms, such as fault size, oriéntation, seismic
pstential, distance from the -fault, etc. This emphasizes
*he nonunive:sality of acCeleroqramS‘and‘thetcare wizh which
they should be- éelected_ for particular' sites. For these
reasons, the accele:oqtamé used here will be aenecated by
the computei p:oa:ém ESEQGEH(71). This program generates
.ensembles_of £iltered white noise with an intensity function
of Ehe Jennings et -al.fss’ type to represent strong ground
aotion"on firm" soil.. .The use 0of these -artificial.
ac:elefoqrams shoull prassent 1o drawback ,th:ouqh4 its
ééne:ality since =hi= dissertation is a study of general
building response and not a particular site. i

The 'proqram 'PSEQGEN can jJenerate ensembles nE
stochastically similar atﬁificial acceleroqrams. Individual
nembers of the ensemble 'can ‘be used +to represent fhe two
orthogonél horizontal ground motions. They will, hovwever,
‘be uncorrelated. Penzien and Watabe(72) have shown that the
coréélﬁtion between the two orthogonal horizontal ground
.motions will be a Aminimuﬁ in <“he near field when one is
pointed in the direction of the epicenter. They concluded
~that ground  motions  generated ar-ificially can be
‘uncorrelated providéd the components are .directed;alon§x

principal axes which are perpendicular and parallel to the

‘fault. The fact +hat the correlation is ‘minimum and -
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negliagible when nacallel and perpendicula:> o *he fault is
not surprisiang when you_:considé: “he nature of shear and
compression waves. Also,. Féscon(73{ zas shown that single
degree of fréedou -asSponse is maximum when the s+ructure is
oriented along one of these. §ame'p:incipal axes. For these

re2asons and +he argument expounded in Appendix B, this

r

'dissertation uses uncorrelated horizontal ground motions.

A comvoleta “descriotion of +the ground motion involveé six
zoapon2nts: thr2e translational and three rotational. The
two rotational_compohehts of rocking «hose axes ar= in the
horizontal plane are not included 1ia this a%al?sis. In
addition, <the vertical <ransla*ion 'compoqent w¥1ll not be
included. Th;s laavas the two horizontal translations and
the rotation whose axis is vertical. As previously
mentioned the horizontal motions will be artificially
" generated to <resenble actual accelerograms and will be
statis=ically uncocrelated. The origin of torsionakl gronnd
motion is generally thought +to be ©Love waves which are
horizontally polarized shear waves near the sucface(see
?igure 2-'4%). The torsional motion arises from the éuantity

Qv

3%X. The motion V(x) is related %o the frequency F, wave

speed Cg, and wave length A,where

Cg=F»A N ‘ 2.9

¥hile the wave speed can be determined, the random nature of
the motion is such that there will be a random aixture of

frequencies determined by the power spectra. Artificial
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\
s-ansla*ion acceleroqramsifare hased on the average DboOwer
spec=ra of many écﬁﬂa; earthquake accelequrams. There are
yet no rcevorted torSion accelerogranms; 4thus,r one cannot
1etermine <he correlation between toréion and translation.
Jeither can %he poweT spectra be determined.

Some @eans of generating earthquake ground rotation is
iesired. .Stacting from the assumption *has horizontal
surface amotion is dérived from the nearly v=2rtical
refraction of shear waves at the base rock soil ianzerface,
VYewnark(25) proposed a method to determine the rotation
based on the theory of elasticity. That the refraction is
nearcly verticalb arises from a consideration of <%he

respective wave velocities and Snell's Law {(Figura 2.5).

/]

Thus a* the free surface the refracted waves will travel at
the wave velocity of the rock no*t the soil. Newmark

calculates the ground rotation #, as

1 v 30 | S 2210
g= = [— - — -
2 ox dy ) ’

¥ith the ground motions u and V ancorrelated and

stochastiéally similar, the ground motion simplifies to

F= 2.11

1

¥ith the further assumption that

V=¥ (£-x/C )



ay surficial ' T

. soil
IH P1 layer-. P1G1%1%p 1
P2 SH, granitic ° 2G2°52°p2
layer
Y2 5 '
- Ci@:Cz

sinyl sinY2 sinsl sinB2 sinal sina2
p; °p,  C%sv; Csv, CsH; s,

'g) Near Vertical Refraction into Surface Soil Layer

to epicenter
B —————

eplcenter

ey

S~ oo

\\Raywigh

——

b) Plan view of LT e
Simplified ground surface DOlnr trans;atlon due

to different wave types.
Figure 2-5 Surface Wave Motion

2.12

Ros2ablueth( 74> proposed a modification of this to
account for tha building size. Since EBgquation 2.12 is valid

for a point, the . effective or average displacenment

determined by assuming a rigid building and neglecting back-

scattering is



Aetermined by assuming

and neglecting backscattering is
3/2

V(‘:-x/cs)-dx. S 2.13

LT

-B/2
where 3 is the building width transverse to the motion V.

Por a sinusoidal translation, Tquation 2.13 reduces to

T=3in (mePRe \) esin (wez) 2.1
Te3e A

where A is the ya#elenqth. ‘Figure 2 6 dapicts the éffect of
~he building lengzh =2 wavelénq:h ratio has in decreasing
the effective translation 'accordinq .to Rosenblueth's
assumption. Observations qf ear*hquake daﬁage reinforce
“his no%zion =hat civil engineering works covering largér
ground area respond w#with less intensity.

Nathan and MacKenzie (7S5) calculated *he torsion response>
spectra by use of Bquarion 2.12 in a finite difference form

expressed in terms of acceleration rather than displacement

g =[T (t+d=T (t) vic o7 | 2.15

Finite differenczs technigues are based on small, fianite
changes where )the function 1is assumed to vary smoothly
betweén the points;‘ The groaond acceleration 1s assumed
linear between"the digitized | valdes since very high

frequencies are dJdeemed unimportant in building response.
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B2

_ Figure 2-6 Schematic of Effect of Building.
¥ijth to ¥Wavelength Ratio in Average Translation
Neglecting Rackscattering
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With typical values of the digitizing interval of 0.025 sec,
~he maximum value aliowable’for the transit time would be of
. the order of 0.025 sec. For.ét Jave sgeeﬁ ofv300 m/seé and a
building width transverse to the‘ motionAof 30m the.ttansit
time of a shear ﬁavg is 0.1 sec, oz 4 diqitiziﬁq intervals.
Figqure 2-7 illust:atesb the Qeficien:y of +he finite
difference approach.

Currently, ¥ewmark e al.(76) are studying the effect of
building size or ttansit time Dby calculating +the response

spectra for the input acceleratinn averaged over the transit

*ime, T, as

t+T
v o= 1 f V o(t)edt=1[V(t+7)-T(t) ] S -2.16a
T ' ’ T
£
. and
T =5e[T(ctn)+T(£) ] - 12e[V(t+T) =V () ] - 2.76b
cs.Tz - Cé°T3 ‘

where 7 i3 proportional to the third derivative of V, -
calculated "as 3&/1, which in turn is detersmined by a least

sguares fit of 3‘overAtime v (Pigure 2-7) . Figure 2-8 shows
the effect of this averaging in reducinq the extreme values.
The =excitation used for generating figure 2-8 'was an
enseable of ten stationary filtered "thtg noise

accelerograms of 10  sec. duration using the filter
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characteristics of PSEQGEN <71i.

Another method for apalyzing the effect this averaging
has on bauilding rT2sovonse is frequency domain analysis. The
averaged respodse isrthe resuit of cohvolviﬁq the excitation
with the -averaging filter. As shown 'in Apvendix A, the

resulting power spectrunm is redaced by +*he factorc

aultiplying sin(wt) in Zquation = 2.74. The resulting

n

i

ceduction of rthe oover =pectra reluces zthe ex;itaﬁion
variance, which in =z-urn reduces <the expec+ted peak value.
fhe response power sﬁectrum is the pcoduct of the inpauat
pow=2r soectrua, averagicg filter, and the complex frequency
reéponse fupction. It is readily apparent that the variance
and =~hus the peak response should decrease more for higher
frequencies. This expected trend is verifisd in Fiqure 2-8.

The +tran3it time reduction ipcreases with increasing
building size. Also, it 1is dépendent' on the aséumed vave
speed which is depeﬁdeﬁt-on the assumed wave type. For small
buildings this reduction will be slight. Another source for
the reduction of idealized 1input excita*ion 1is the soil-
structure interaction. Luco(77) found the effect of
embedment 9f “he foundation *o be gquite significant. The
excitatién’used in Luco's stndy wvas obliquely incidént SH
waves. The input twist for a hemispherical foundation was
determined to be half <+ha*t of a circular disk foundation.
This reduction was attributed to the effect of scattering
and'the increased foundation stiffness. The‘ Tesults are

presented in a nondimensionalized form via a frequency ratio
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(n]

parane+e- ¢ommonly -used in £foundatioa dvnaaics which is
proportional to the Eoundatiou size to wavelength fatio.

Yet another reduction in the eiﬁected maximum ground
torsion is discassed by Newmark and Rosenblueth. Their
proposéd reduction 1is due to the statistical relation
between ex=reme values in the orthogoral directioﬂ.

As -eviden%t, the Newmark approach to qround torsion can be
viewed as an upper limit. The vaiuesAdetetminéd are reiuced
by buildihq ©0 | wavelenqth ’:atios,' 30il-structure
interaction, sca*:ering, etc. Since <the Uniform Building
Code does not iaclude ground-rotétion, Newmark's values for
qround,:otation #1ill be used in %this thesis to de<ermire its
effect. |

The need for actual free-field rotation and <ranslation
records is‘ aﬁpa:ent- It is especially necessary to

ietermine <+he correlation between ground rotatiosn and

=ranslation and its rela*ive effeczt.



CHAPTER ITI

SLASTIC TFSPONSE

Buildings with coincident centers of nass and stiffness
are called uncounlad systems in *hiz rhesis. For the

dynamic analysis of uncoupled systeams, responses along the

p:;écipal directisns are analyzed independently. When an

eccentricity be*ween <the <cen*ers of npass and stiffness

LY

exists;'the responses along +the princioal axes are coupled.
:Analyzinq the responses along the principal Aaxesm
independently amay give good rTesulzs if these threge-
ffequenéies are well separated- and ::he eccentricities are
not oo large. Full scale *ests(27) have confizazed the
strohg coupling that loccuts with close natural freguencies
even if the eccentricities are small.

The usnal Adesiqn nrocedure to account £or ac eccentric
méés is to add a force due to the torgue, calculated as the
product of story shear and eccentricity. Many stundiesi{z+
38) have shown that the dynamic story shear decreases when
there is én eccent:iéity and that the dynamic torque exceeds
the prodnct of shear and eccentricity. For *all buildings
consisting of noment resisting planar frames, althougﬁ‘

lateral-torsional coupling decreases the total story shear,

the story torgque iacreases the shear in +he peripheral

43 - : ¢



44

lateral fofce tesistinq" elements;"Tbus _tﬁe statément thét
story shear decreaées,'.must not be .taken to iaply that
la*eral-torsional coupling is beneficial.

The torsioral response_of large civil engineering works
such as bridges ard pipelinesﬁ-is av;esult 0f eccentricities

as well as the horizontal ground notion not béihq in phaée

aver the leng=<h of the structure. This type of structure
is not considered in this study. There 1s 0of coycse

L i

torsional ground waotion; however, the effect of ground

rotatl:

O

1 as studied in  this cﬁapter iz based on Newmark's
(24) +treatment of tke subject, which 'is desc:ibed in
Chap:e: II.

The objective of this chapter 1s to formulate a method
to study ‘the elastic ceéponse ot torsionaily‘ coupled
bnildinas by modal anal?sis based on statistical concepts
similar to that Ideveloped by Rosenblueth(24), #ut exten@ed-
to th:éeudimensionél'3syétéms., This method will bé‘uséd
primarily to éhov the effect of ground rotatian and the
absence of correlatioﬁ hetween | tﬁe horizontal ground

translations.

Structural Systems

Most tall buildings are ‘eiihe; shear wall tybe, moment
frame type, or a combination of the 'two; Shear wall
buildings are commonly multiply connected vertiéal.plates
like that illustrated in >?iqure~ 3+71a).  For tﬁis type of
building, shear flow must be considered. A moment frame type

building is illustrated in Figure 3-1b). Both will be
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assuﬁea to have rigid E;oor diaphragms.

The origian of the principal axes of thésé structural
systems is the center of stiffness (sometimes called center
“o'f rigidity,tesistance,twist or torsion, or shear center).
~ The principal axes are orthogonal anpd are defined such that

a force in the direction of one of the principal axes causes
a-dispiacemené o;ly in that directioan.
| The principal axes in a moment frame system Consisting
of planar frames that are not ocrthogonal are determined by .
stgtic#fz‘).

~Once the ’principal axes have been determined the

lateral stiffness 1in the principal directions can be

.determined'ds

, Ky =2Kyq
i
Ky = ZKY]_
i

vhilé the torsional stiffness, Aefined about the center of
[} ¥ )
mass and neglecting individual element  torsional

stiffnesses,-is

Ry =2Ryio¥yZ ¢ 3K, 07,2

The eccentricities are
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a) Shear Wall Type :
b)Moment Frame Type

Figure 3-1 Structural Systezs
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Figure 3-2 Exanpple Building Layout
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Ty =2 ¥ oKy Ky
. .

for KiAand Yy as shown in Fiqure 3-Z2.

Analysis of an HQStoré s=ructare g=nerally requires 3¥
deqreeé of - freedou. Shiga(42) and Hoerne:‘zﬁ) have
developed a oprocedure to simplify this *to N three deqree of

om

7]

fon

free: y3temas. The mode shapne 1is

_ Cxn" 03
‘ (An$=\Cgn" 03
Cyn' D3

for structures where the story masses aAare colinear , the
story stiffnesses are colinear, and the ratio of the late:;l'
stiffnessesbis.the same for all stories. {C}p is the nth
node of *he 3DOF system and {Dj} is the jth mode of the NDOF.
sysfem, which is *he same for x,d, ard Y.

Generally, ir 1is assamed <that the £first three mode
shapes of a nultistory strncture ar=2 two oprimarily
-trénslation modes and the orimarily +torsion mode.. The
torsion frequency 1is nearly always 1less than twice the
fundamental. The second mode in the fundamental direction
is usually greater <han 3 +imes the fundamental; so, the
translation stiffnesses v&uld have to be an' order of
magnitude different before the éésumption would not be *rue.
A multistory structure <can bhe anaLyzéd approximately as a

three degree of freedom system by using the'Eirst three
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modes as described above.
Equations of Motion

The equations of motion for the single stoty three

degree of freedom system shown in Figure 3-2 are

4

- T r , e : r
i x | ?ggoay@ o] 0, 5gx

R MR 92eB /R |[Rely |==|Rel
Cy LT N Y It %1 "ey |

3.1

w =(K /M) 05 w ={k /1Y0S5  ={(X¥ * 105
= (K /) S E/MOS w2 (K /T )
The characteristic equation for this system is

/,

w {wx wy +w¢ Jeow -

4.( w 28y 24 29 {y 2=y 2eF 2 /R2) 4+ 2e(w 2= 2F 2/72 .2
X Y @ )4 X ) X o} x v ) T
T w20y 2e{w 2=y 22 2/R2=w 2eF 2/R2) 1=0 3.2

[igeoy®e (ugizu ®ea,2/B0 0 202 2/82) ]

- or

F3+PeF2 +QeF+R=0

where F=q2.

Let C=(3-P2) /3, and Q?(2'93f9020Q+27OR)/27

"“and A=[ -D/2+(D2/6+C3/27) 95 ]1/3, B=[ -D/2-(D2/4+C3/27) 051/ 3



then the coupnled fregquencies can he directly comruted as

w 2=~ (A+B) /2= (A-B) « (-3) 05/2-2/3
w2?=a(A+B)/2+(A‘B)v(»3)°5/2 P/3 ) _ - 3.3
w32=Af8=P/3 .

The solu=ion car be unstable for some extreme combinations

of eccantricities and uncoupled frequencies.

For-Ex,Eny and w #mx +ha nnpormalized aode shaves are

. - ‘ ’ . ,_,.‘

L -, 2a7 /7 - 2al 2~y 2
i ! by "2 yF T E gt (0afm0gd)
. : » 2~ 2 2 . 2-y 2
s \ (W~ w2 o *E rludmwld)
(2]= }-(w?"w?) ( 1 (wyZ wy)
w et /% o /F
g L5
sy 20 . 2.y 2 2 : :
m){’OEy'(ml wx) wy 03{3_ . 1
; EO(mf-w;) (wf—w;)
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1 -u2eE /R 0

(A1 |~(w,2-0,2 S 0

wy? *E /R

0 a9 1

and if Ey=E~0

ral=l 0 1 o

which is the mode shape of the uncoupled systen.
Once the wuncoupled £requencies and mode shapes have
been determined, +the maxima can be estimated by modal

combination. The usual method is the roo* sum square (RSS)

0=(3Q 2 )98 3.4

i

which is baéed on Athe assumption of near inderendence of
modal responses. The modal responses are nearly indebendent
if the fregquencies are well sepafated. In an analysis of a
planar structure, thé‘:atio of frequencies'are-approximately

17:3:5%e e however, in- three-dimensional systems  the
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frequencies zan be very close +oge=har.

In systems z2 the frequencies are close together the

usual procedure in modal combination is to use a method
proposed by Rosenblueth(24) ip which the distribution of *he

response q(t) is assumed to he Gaussian with zero mean. The

©

necessary fucther assumptior, consistent with extreme value

theory, 1is that the maximum resnonse Q=max|q{=)] is

D;onortional to the standard deviation,i.e.

E(2)2 «<q2()> - 3.5

whers ¥ ) denotes expectation and < > Jdeno=es tine
average.
The response can be expressed 1in teras of its impulse-

_:esponse-function,_h, as

+

QR =[h(t-tr) ez (L") dt!

or in discretized fornm

HYY]

(9]

q(t)=jh{t~t')¢z(t')-dt'= hrz;hgz;..-+g'g
& =00

. ¢
where z (%) is whize noise of intensity Gg e
With *he further assumption +hat each term in Equation 2.6

is independent, the variance of q becozes

+

<q2 (t) >=5{h2ez2) 3.7

and by the Cauchy-Schwarz inequality, I(h2 e z2) < th2ey31z2,
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t
<g2(t)> < Lh2 = cfhz(t-t')Odt' = clh2(t)edt 3.8
- e

~c

for Gaussian excitation. The inequality in Equation 3.8
" becomes a proportionality by vir*ue of Parseval's relation,

h2(t)dt = [ [1H(W) |2dw]/(2°m) = <g2(t)>/(G 2e2s7) 3.9
. N -c0 . O

-
where H(w),_the éomplex freéuency reséonse‘function, is the
Fourier transforp of the transfer functionm h(t), and GOZ is
the intensity of the white noise excitation.

For a MDOF'systeﬁ,. by expressing ﬁhe reébonse q(tj as

the sum of its modal values

q(t)=Iq (t)

i

and inserting this in terms of its modal transfer function

into Equation 3.8 Rosenblueth obtains

02=3Q,2 q.z zQi'Qj 3.10
i iy TeE 2
. . = W_, -
Eiy®. ai~"%aj

Biowi+8j omj

wvhere B; is the ith mode's fraction of critical damping and
Wgi the ith mode's damped natural freguéncy- The quantity
1/(1+Eij2) can be interpreted as  the correlation

coefficient.
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~To aﬁderstand the limitations of =quation 3.10 dﬁe to
its underlying assumptions, it is necessary‘tovunderstand
its derivation‘and the effect of the assamptions. For this
reason a modal combination expression will be derived based .
6q Rosenblueth'é approach, i.e. @maxinmum square responsé
proportional to the variance; but the mathematical approach
will be in the freqnency domain rather than the time domain.
The  expected péak response is 1likewise presumed
proportional to the vsténda;d deviation, . the root of the
variance. The mean sguare valae 1in turn will be desériﬁed

11ed

by the complex frequency response function,i.e.

o]

<To(E)e¥ (£)>=]G

2 () o4 3.11
o Ym¥p (w) *dw -t

where
G 2 (@) =H_ (w) *B_ (w) *G 2 3.12
Im¥p Im  Yp ZmZpn .

and Gz 5 2(d is the cospectrum of the =mth and ath DOF's'
m°n

excitation.
Usually the input excita*ion is assumed to be white

noise to simplify the mathematics. 1Initially, this sanme

assumption will be made in +the following derivation. Thus

.Equation 3.11 becomes

[~

| ‘Ym(t"Yn(t)>=IHY (w).aY.(@).g z'dw‘ - | 3513

- *m n (@)

By (W) is by definition
m :

H ®)=1 23je2eB o, o ,~ ,27eM ! ' 3.148
Ym() /{[‘Um ’mwmw w?] m.} o v
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where %' is the modal nass and Wy apd Ty are =he mth
natural frequancy and fraction of critical damping,
-:espeCtively.. | |

The response 1is expressed 1in terms of its wmodal
responses, and thus <the ‘}variance of *he fesponse is
axpress=3 ip teras of the modal variances and covariances.
The equa*ions of a@o%ion for a MDOF systenm with classical

n1odes are

(10 +CTR+[RI K ==00 () .

In uncoupled form where [A] is the matrix of eigenvectors

and {(Y}={aj{q},

v . . T _ . T
(Ty+(2e30w] ¥} +{ w? JrX}==("" T"10A] (M ]{Z}=-(2" J71(2] (P}

3.15

whers [M']=[1]1T1][2].
A response quantity of interest g (t) can be expressed

as

‘ = ° +) = To‘
QL) =L C_ o7 (£)={C 3 eIV (1)} 3.16

n
and by definition,

G 2 (w) | 3.17

2 =5
Gq (=1 Z:Crm'{‘:r:n' ITm¥n

i B o

Combining Equations 3.12,3.15,and 3.17 gives
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e T Hey 1Tp .
G 2 ={C H ™A jire 2 4 1{C} 3.18
# (wy=1{CY { MOBRES o (w) 1L AT Y(w)}{ } |
*or a two-dimensional system,i.e. planar frames, @ach degree

of freedom is =ubjected *o +*he same excitation and each

A

element of the matrix [G_2(w)] is the same. 1Introducing

VA
=his into Rquation 3.18, rearranging terms and integrating

gives .
2 = vOF MOT ) e<Y v (t .15
<32 (t) >= 1 (Cmo m)-(Cn- n) m(t). n( ) > 3.15

m o

; ‘i 3 - - 0 ~
where HPFm is the m@modal participation factor for aode a,

defined as

L
‘g
g
il
—~
™M
£

) /(LU A 2) . 3.20

and {¥(t)} is the s30lution %o Eqdation 3.15 where the right

hand side is just {Z}.
Iquation 3.19 can be rewritten as

2 (7 = 40 o M D 2 (=) >0S Yy 2 (*+ 0S P
g2 (1) > zz(Cmo. _Fm) (("no Fn)<Ym (=) < n (=) > .

mn : _ 3.21

whersa Pmn is +the correlation coefficient of 2n(t) and
Y At)- Since the RMS value 1is assumed proportional to the
peak value,Q, Zguation 3.21 can be revritten as

02= 110 20 #P o s 3.22

‘ma



(o) ]
(o)

where Q +he peak r=2sponse of +he mth mode, 13

mf
0 p=Cp* 127 o S (W) | m | 3,23
ani

pmn.—.g.(wmoem+m agn).(mmz.gmamnaosn) 05/1D]2 '3.24

n
D= (W, 2~ w, 2)~ (W eB + wnan) 2 ]+i6f2;wdm° (Wn*3mt mﬁoan) 1

(se=2 loveniix C o= de:iva%ion); For saall daaping Equation
3.24% gives ﬁalues of the correlation very close o those
inhercent in Iguation 3.10.

Equa=ion 3.22 has two limiting assumptions, namely
white noise éxcitation and identical excitation for each
degreze 2f freedoa. As explained in Appendix D, the effec*
2f the white noise assumption is not considered significant
for cases of practical interest. ‘The effect of tha second
assump-ion 1is nox so eviden+«. "It is clea: though, =hat the
second assuaption 1is not valid <for a three-dimensional
system. For +he *wo-dizensional system each element of the
matrix of [GZZ(m)} is the Same but for the three dimensional

systen it is

5 2{y G ) Gg g M)

[Gg2lw) 1= GZ¢Zx2(w) Gz¢2f“’ sz¢zyz(w)f 3.25

e Zyzxz ( w) GZyZ¢2 ((-U) G ZY2 (w -

where {Z}={ng RoUg¢ ‘Ugy}?

Chapzer II describes the current state of the art in ground

motion description.
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Eguation 3.25 can .be greatly sinmplified by
incorporating the approximations described in Chapter II,
namely Newmarkian ground rotétion and uncorrelated grouand

‘translations. Por ground rotation defined as

R a4z 4z
2 dx dy

the excitation, following Newmark's procedure is

z¢v =.[zy =2, ].p/(z-cs) 3.267_

where C_ is the shear wave speed in the underlyving

.rock. Since we are assuming auncorrelated ground translations

we can set Gj 3 2(Wy=0., The autocovariance function for the
Tx

ground rotational excitation is
, Bz¢{r)= B2, 4(t) o2 4 (E+T) ]
Inserting Equation 3.26 gives

* Ry (T)=[R_ (1) =2eB_ _ {T)+R_ (1) J*(B/(2+C ))2
% Z A Z s
Y Y X X |
For uncorrelated but equal spectral density ground
‘translations, this reduces to
Ry (T)=2eRy (T) *(R/(20C))2 -

g Y

Thus,

Gy 2(W)=(R2/2sC_2) oG- 2 {W)
zr¢ s ZY
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=(gz/2acsz)3w92062yz(@_

and

- Y. -~ Y
f&g 2 (w)esdw
Y

. =0

[63, 4% (9 edw = (R2/2+Cg2)  [w2eGj 2(wedw « [Gy 2(w<du
- r o '

L

=)
=(32/2.c82).mg2.f32 2w edw
-0 y

where W is the predominant frequency, -
The crosscovariance function for rotation and

translation is

B. . (1) =E[3
z¢zxm [r_¢

=(ELE () oh (ten) FELE (£) o _(t+1) ]} (B/20C))

(t) o7 (t+7) ]
x .

=0 - E[, (t) oF_(t+7) Je(R/29C )

o7

R-0

[N

R

2eC

A
l_'.
X

]

where
) oo
B (D= [G5 2(uw)eexp(-iewenedu
X -0 X
Differentiating this gives

. -]
Bj 5 (1= (R/2eC ) o | isteGy 2(u)vexp(-iewer)edu.

#lx - X
= fGi 7 2 (p) sexp({-ieweT) edyw
-0 “rg“x .

Thus,



G-z'r¢'z'x2 (w) = (R/ZOCS).'I.-@-G;ZXZ {w)

where Gz 2(w) 1is real, svmmetric and
R X _

o«

<2r¢aix>=£§§r¢zx2(m)-am=(R/2-CS) [ioweGs 2 (w) *dw=0

For gsR'mg/(2oCs), Zquatior 3.25 reduces %o

1 Q 0
(557 (w) 15|90 2g2 0| 6z 2w 3.27
]3 L g

For C_=YF_%A, A bpeing the seismic wavelength in the

s g
underlving rock ani Fg the corresponlding £requency, -&
becoaes TeR/A, Combining Egquation 3.27 and 3.18 and

integrating gives Eguation 3.21 where YPF eMPP_ is now

= - e} » : 2
MP® oMPF =2, oA +#A, el 42 2el, ek, 2.28

The RMS wvalue determiqeﬂ by using Tqua*tion 3.23 should -

be less than that calculated using Equatiom 3.20 becaﬁse the
lattef aséumes all degrees of fr=edom have the same
;xcitation and are tﬁus identical.

As an example, consider the shear wall building
analyzed by Heidebrecht (28)  which is shown in Figure 3-3
with the corresponding freguencies and mode shapes. The
ﬁunﬂamental mode is predominantly vy moﬁion, the second .mode -
predominantly x mo*ion and the -third mode mostly rotatién.
The values of C; for the y displacement of point B, A3i*17m/

L)

fat .AZi are



€c

. 1
14m
1
. 3
L 40m
v 20m
K =K =3.3x10 V/mco =w =2,78
X 'y 11 X vy -
K¢= 3.8x10""N-m/rad.
t,=3.54 ,
1x10°% ? l e 5 1
Mass=1x Kg - . L
R=26.6 m . m
Bx=-10m
EY=~5m .
Alx -.4
Mode 1 “1B1a(T) 43
fl=2.46¢ps Aly .80
.89
Mode 2 ={.0
f2=2.78‘cps .45
.20
Mode 3 ={ .89
f3=3.76cp$ ~.401

Figure 3-3 Example Bulldlng and Coupled Bodes
{ Adapted from ‘Heidebrecht (28) ]

-
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Trey =f.45 .17 1.0 T L

The matrix of correlation coefficients ® mn’ the same for

\

Equations 3.10 and 3.24 are

. 1q0 109 000
1=|.09 1.0 .07

{e ,
m 1 o0 .07 1.0

which aszumes a percentage of criiical daamping of 5% in each
IR '
node.

" The wmodal participatibn factors as «calculated by

. Zguation 3.23 for a wavelength of 1900m, are

0.80 -0.39 0.00
[42F 1=|-0.39 0.02 -0.00 .
0.00 -0.00 1.00 | .

The ma=rix of the mean sqguare modal values as determined by
t ¢ '

Equations'3-22v3.24 and 3.28 are

r .

2.73 -0.02 0.00
0.02 0.02 - 0.00
0,00 0.00 12.27

- for the response spectrum shown in Figure 3-4.

The R4S displacement of point B is +thus 3.87
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centimeters. &% wmeans of comparizon, if Eguatior 3.20
7ers used instead of Eguation 3.28 the RMS displacement
'"would be 4.38 centimeters, and if the absolute sum of the

i

aodal values were used i+ would be 5.51 centimerers.

A

100 PTG

50

20 ~U
: /

10 —

0.1 0.2 0.5 1.0 2 5 0

T, sec.

Figure 3-4 Example Design Response Spectrua

The difference between ‘the values For Zguatjion 3.283
and 2.20° lies in Vthe correlation of the excitations. ,The
forﬁe: aésumes only the . spectra }to be the sane whi;e the
latter assumes the spectra and the excitations»themselves to
be identical. ' © |

Another way of showing this effect is by a graph of the
interaction esgquations. Rosenbluéth and Elorduy 24 and Xan

and Chopra 356 presented the effect of torsional coapling as

graphs of the Jdynaamic: foréés, dénd;mensionalized by the
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uﬁcoupled force in +<he direction of <he excitatioh, versus a
nondimensional <£requency fatio for a flat  accelera%ion
spectrum. The torque is preseanted as the ratio of dynamic
\tO sStatic eccentricizy.

For a lqﬁound excitation consisting  of only X - -
::anslationg; Kan ani Chopfa36 also derived tﬁé interactiorn |

surface of the normalized forces as

qﬁere the bar deandotes the value normalized by the uncouoled
=7 =0,

Xy

Pigure 3-5 shows the interaction Ltezween the forces for

force in the directinn of “he excization,i.e. for =

a ground excitation consisting nof only Y translation with a
flat acceleration spectrum. The forces are not normalized

here.

w
Ma,_/‘-'éx

Figqure 2-5 Force Interaction for X Sround Zxcita= ion
Only and Tlat icce’era+lon Qnectrum(“ /E=0, wy/m =1)

-

The effect of the coupling 1is to decrease the shear ‘in
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~he Y direction while causing a shear ian the Y direction and
a TorTque.

For a ground =xcitation consisiinq of rotation only, a
similar ipteraction fo: a flat acceleration spectrunm is
~ shown in Figure 3-4§ for . different values of the radias of
gyration +tn wavelength ratio. dere the effect of the
coupling is to déctéase the. torjue while inducing buildinq
shears. The decreaise  in the torgue for Aifferent
accent-icity fatics shown in Figuze 3-6 is much less “han
the decrease in the shear in the direction of excitiation as

shown 1

3
o |
t..‘
0

are 3 5.

Irteraction zelations can also be derived for systeas
with simultaneous ¥, &g, and Y excitations. For uncotrelated
' qroand”translations, and ground rotation excitation defined
by Zguation 3.26, all the excitations are uncorrelated as
shown by Equatiqn 3;27. Por " uncorrela*ed excitations the

variance of the sum of the modal responses is the sum of the

response modal variances and the interaction surface is

T 2+7 24T2 = 2(1+g2) , 3.29
X 'y

Figure 3=7 shows the interaction between the forces for
excitations. described by Equation 3527 and with flat
acceleration speétra. . .

The increases in the . shear for higher levels of the
radias of gyration *o wavelength 'ratio 'are not great.
Although Figure 3-6 shows an . increase in the shears due to

~+the ground rotation, the decrease 1in shear showan in
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O
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100

Ey/R=0l

0.50

0.2
L 0.3

2=

£y/R=0l

; 02
/;LS

W 2m | e | = iz

A“¢/“x m¢/mx -

-~ ?iqure 3-8 Forcce Interaction for o Ground Excitazion
Only and Flat Acceleration Spectrum(zx/3=0,wy/wx=1)

Fignre 3-5 for *he ground *ra2nslation excitatiosn more than
Jff;ets *his as shown 1in Figure 3-7. Also, iz aust be
remembered.that the shortesg‘ wavelength oﬁ interest is of
the order of 600-1000 meters since the reasoning behind the
ground rotation excitation assumes the wavelength to be :that
associatedlﬁith the undeflyinq rock and the shortest naturalﬂl
periods of interest are 0.2 sSec. or longer. Thus for

typical :building sizes the ratio § will Dbe of the order

0.0-0.1. As
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§I.
\\ Ey/R=0.]
Ey/ R =0l |
s . 0.2
L . G
= 0.2 Zar 0.3
03 : - /
-+ 8. e
L 253 = I 2.3
é/mx w¢/mx
£=Q25 3
N-D
Ey/R=0Q.
0.2 St
0.3 Q.3
&3 .
S : = . g
) L0 203 g 120 250 <2z
3 . :
><=
SST
g + S L - =
Sngg 10 23 “am 12 2.0 <

Pigure 3-7. Force In*eractlon For
Oncorrelated Ground Excitatiomns

With Plat Acceleration Spectra (Ex/B=0 ,wy/wx-1)
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seen in ?idure 3-7, even for the‘worst case of wx=w¢=my, for
£=0.1, only =he <torque is appreciably affected bv the
coﬁolinq.
~ ‘It 1is now w2ll establisked that the story shear
decreases with increasinq eccen*ricity. I* can also be said
that *he stqry‘displacements yi-2., the displacement at the
center of maés{wdecrgase with increasing eccentricity. The
shear and displacement a*= the ©periphery of the btuilding,
novwever, 1is qeneralLv thought to increase with eccentricity.
Tge reason it is ~thought to increasé is that the
egcentricity induces a :Qtational motion whose displacement
a£ the perioharcy aore thaq offsets the decrease in the
. average or s=ory displacement’ that occurs with iacreasing
eccentricity. |

‘The method presented in this chapter can also be ased to
examine the peripheral response and the parameters affecting
i*.  For the system shown irn Figure 3—2,‘the’displacement
af the center of mass(C.M.) is less than what it would be if
the centets of mass and stiffness were coincident. The
origin of *the coordinate system is the center of mass. The
displacement of the point marked P is determined bv the
relation
Up = Ux + (EYm/H)'(U¢)
or in matrix form

7 = {1 E /R O0}e{U} = [C}T(m} 3':30'”

P ym o . ' "

With this :elatiou, the power spectral density of UP is

determined to be



8

g, ()= 1) Tr5y? (w) 160)

= {C}T{ 8 (w) JALATTG,2 (w) 10 A T H (w) 1C)
wﬁere ~he spectral densitYAof the éround motion {Gzz(w)] is
Jetermined by Equation 3.27.

The variance of Up then 1is

o]

J_2> = G,, 2 d

p .-cj; Up (UJ) ey

® - 1 o 0
=[G 2(woeC}Tra(w Fra T |0 2eg2  2fra1[H(y 110 ey
cw 2 30 1
which upon expanding, becomes
<7 2>=[3 2(wWyefH.2(w) o(2 2 + Qef2ed 2 + 3 2
' «i 7" bo fT 2 (W) oo xx 2otz Bx VX !

+2.3Ym/§aal(m)oaz(m),(3x¢oaxx+2~ga-A¢xoé¢¢+Ayx~AY¢)
+ (EYm/R)z'HZ?(m)'(Ax¢? + 2‘52’A¢¢2 + Ay¢2)}'dw
and afte: integrating, becomes
<UP2> = <pr'2>e(nxx2 + 2°~520A¢x2 + 2’Eym/1=.-ayx2)
+(Eym/3)zf<gp¢z>.(Ax¢z + 2.;2.A¢¢z + zagym/aogy¢z)
*2'3ym-/’-"<pr‘Y ,.>.-(Axx-'A +2ez2al eA  +2eE /Reld eA )

oI xg gx @@ ym  yx yg
3.31
The . variance of the inpnt ground +translations are
assuaed the same. The variance of the ground rotation is
determined by the quéntity €. The area of interest in
building torsion concerns sys*tems where the freguencies are
close together. For such systems the»modal‘quantities
<pr?>'<Yp§$2>' and <Ypy 2> can be assumed approximately equal
<pr2>=<Yp¢2>=<YpY2>é02-'

where g is a constant.

A special case of interest arises vwhen g = +/2/2.
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Tguation 3.21 then can be rednced <o

<71 2> 2 A 2+3 243 2 + E R)2e{A - 2+) 243 2

p o e Tl g™ g hye™) + ym/’) “xg e tyg !
4D e 2eT._ _sPa(B _eA 44 ey +a ed

xg " o b A g By g

gZe (1 + (2yp/F)2 + 0) | 3.32

T+ shonid be no+ted tha* =quation 2.32 is independent of -

the eccentricity, i.e., the maximua response at the

periphery does not increase with eccentrici*ty, reqardless of
its value. A value of g= +/2/2 1is higher than “ypical
though,

in order =0 examine +t+he effecrs of <he differen=

(&1

paraneters, Fiqure 3-3 was plotted using different frequency

catioss,eccentricity ratios, distances foo the «center of

=]

mass(E}m(R), and different values of g. The first column of
graphs represents the response for 2 /E=0.0,i.e. at the
center of amass. I+ shows +*he familiar creduction vitﬁ
increasing eccenzricity. The second column represents Eym/
E=0.6, and  the | third 1.22(which would represent the
'periphery of a sqﬁare building).

The bottom row of graphs in Fiqure’3-8 represents §=0.0,
i.e®., no ground rotation, Tt shéws a significant increase
for Eym/3=1-22. The @iddle row represents £=0.25 and the
top rcow &= 1/5/2.

The maximum increase for £=0.0 and Eym/5=1.22 (the

1]

xterior of a sguare building) 1is abou: SSZ'Hhen‘w¢/mx=1 .
This is about the same when £= +/2/2 and Eym/R=1.22. This
represents a static eccen*tricity of about 33% of the

building width.
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Figure 3-8 Effect of Ground Rotationm
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“hat thkis means is that the ex

resoonse 1s essentially independent

rotation for sSystems where ~he
frequencies are the sane.
This is no%*t 'true, however,

“orsional and lateral frequencies

In this case the  Llevel

of ground

the lzvel of resnonse as seen in

pected maximum peripheral

of the level of ground
torsional amd 1lateral

for systems where the
are not close together.

rotation directly affects

Figur= 3-3. The response

in. this case can hbe

approximated

by the root sum sguare of

the torsional and lateral responses.

The single mos: important vac-iable 1in detecmining the

peripheral resoonse is the torsional lateral frequency ratio

"3ince 1in mos:

U

cases & should be less Than 02.1.

The method presented should give reasonable estimates

of +the -elastic torsional —response of three-dimensional

building sys*eas. The relative effect of the diffecent

parameters on the expected maximum response is based on a

probabilistic description of the groand motion. The powver

spectral density matrix of the ground motions is taken to be

a diagonal matrix. The expected maximua peripheral response

is determined as the standard deviation of the response

which is based on the diagqonal power spectral density matrix

of ground montions.



CHAPTER IV

13 previouasly stated, the nonlinear pmodel aus+ be kept
simole for =reasons of economv. Since earthquake peak
response coefficients of variation vary from 0.1 to 0.3,

t be averaged <o interpre: +the results

3.
0]

sevesal saamples mu
.ﬁeahianully. Also, nonlinea: systeas, especially tﬁ:ee-
iimenéional nonlinear systeas are conmplex and’expensive to
simulate.

The characteristicés of 'nénlinear ﬁorsional response are
needed though, sinceihuil&inqs;réspond inelastically to some
edrthduakés. It is desired ‘to know the effect of ground
roiation‘in a "nonlidéar system. Alsé, nonlinearities in an
unsvmme'ric builﬂinq tend'to increase the eccentr-icity. The

I

ffect‘thductility tequihements of peripheral lateral load

w

elements is also needed.

In order io analyzé accﬁrately and efficiently the
effect hysteretic énezqy' dissipaéion: has on the parameters
'eccentticity ratio, fregquency uratio, and strength ratio, a
éimple: single éyory modél is 'uéed. The single story
buiiﬁing fh&& will Bg studied: is  ého#n in Fiqure 4-1. The

load resisting elements exhikit a single degree of freedom

,'72



hyéteresis " where <+he force 1is a function of onlv one
displacement as opposed to, Say, & beam-column where tzhe
forces are a function. of se?eral displacements. This_
simplifies the nonlinear *orsional response coapntations by
epnabling the use of simple hysteresis types.

Many different simple hysteresis iypes are available
depending on ‘wh;t 1s being modelled. The elastoplastic
moiel was developred t35 aodel thevelastic-plastic hehaviour
of steel. The bilinear aodel 1is similar to the elasto=
plastic model but allows strain-hardeninq.

IR

‘ For mqment»;esistinq members the gradual yiélding inward
of the cross section reguires smoothing of the sSharp
vielding in the bilinear nmodel. This together with the
Bauschinger effect brought abouz the use of the Eamberg-
O0sgood hyste:esis model which is a cnrvilinear model ver}
similar to the bilinear model. g

Arother single degreé of freedom hysteresis model is the
oriqgin oriented shear model. In this model the unrloading is
alwayé ‘di:ected through the oriqiﬁ giving a pinched
hysteresis Llooo. This model is used where nonlinear
deformations and failure characteristics are governed
orimarily by shear.

The stiffness degrading model 1is used for members whose
stiffness degrades upon reloading, where the degree of
degradation‘depends on the current ductility. The stiffﬁéssit
degrading and o:iqinwo;iénted shear models are usually used

to model reinfo-ced concrete members.
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- The building aodél‘ﬁéedqtg studf'thg.noﬁlinear behaviou:
of buildings subject to ﬁorsiénal motionﬁis(shown'in Bigure
u~1; It donsists‘ of a rigid diaphragm rdof, and four
i#dependent extarior lateral ,icad»ﬁesisting elements, e.g.,

steel moment frames or braced frames.

v
 §
1”
5 ?IEY |
Y |+ tem|
N >
\ s}
k) . Ex
Y fmriopi it X
Bx

Figure 4-1 Building Model

Thi§~mode1 cén represent many different single story
buildings in use. Some of the buildings on nuclear reactor
sites’i:e siﬁgle story <four frame buildings. Indnstzial'
" buildings are commonly ohe story aﬁd for better utilization
of sPace,iofteuihave' only exterior frames. wé:ehodses are
often similar to such industrial buildings. |

Small commercial buildings are commonly one story.
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Also, snch buildings often have very high eccentricities.
Oone side of these buildings . is typicallyvallfgiass. leaving

only 3 exterior frames. This <can result in the center of

3ti

m

fness located at the exterinr which gives rise to the
very high eccentricity.

Spocts arenas, Auditoriums, and meeting halls are other
examples of sinqie story ex*terior framed buildings.

. Multistory, amultibay structnres ohviously don't fit tha
crizeria for +this nodel;  however, with some crude
:aggtaximations this aodel can give the multistory, nultibay
qf;ss response. Tar exaaple, 1if th= :esponse can be
.pr;suméd_to consist orimarily of <the fundamental mode then
~this aporoximation should give reasonable results. N

Some a@ultistory struc*ure

n

-are no*t suitable for
modelling as a sinéie story*'structdre even “for gr;sé
results. Buildings with _eccentric nenthouses are one
example. Buildings vith sudden changes in stiffness or
changes in the ggcentricity ére another exaaple.

Multibay structures require another approximation in
order to bé modelléd as a single bay struct-ure. The frames
on each side bf_the center of stiffness are lumped together
each as one franme keeping'.the. total stiffness constant so
.fhe fréquency isn't changed. For the building shown in
*igqure U~2, “he stiffress Of the equivalent frames in the Y-

‘direction would be as follows

Kye1® gyl* Ry2



T8

p—y

Ip order +to keep unchanged *he rota*ional stiffness due to
these frames, the distances Xi;;,{.5 would be determined from

Kg1°%1® * Ryt %% = Foept¥e®
Ky3tX3? * Bypedy? = KopoeXe?

where~¥tl would be between Yl and Xz;

Pigure 4-2 Multibay Building

For a linear  amultibay system this methoa of modelling
wonld give the sane results: hovever,‘ a problem arises in
n§nlinear response. If the yield 1levels of frames 1 apnd 2
Qere PYl and Fyz, then tke obvious choice for the equivalent
frame's yield level would be Fyl+Fy2‘ For a'sysﬁem with no
eccent:icify and no torsiomal excitations, the response of
the actual.hﬁltibay structufe aﬁd the four ffame'equivalent

model would not be +the same unless the yield levels of

frames 1 and 2 were identical. For bilinear hysteresis‘wiﬁh
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,3ifféreqt yieald levels for the “rames labelled ore and *wo,
the equivalent £frame would. tave to exhibit @ trilinear
hys:erésis to match the response of the actual structure.
Also, #hen a torsional resoponse exists, ‘the rotational
displacement which would cause vone of the frames in the
multibay stqutq:e to vyield, ‘would rot ne;essarily belthe
‘'same vield rotational displacement as that of the e@uivalent
model. The ‘maximum‘ momen+t fo:A each systea will be
. approximatelvy the same thsuqh. - So aocdelling nonlinear
mu%ﬁibay stfuctu:es;asA Sipqle bay structures does require
 soEe appfoximatioﬁs;. It sﬂoulﬁ model the gross respomnse
adééuately,ithbuqh-*
Z0UATINNS ©F ¥OTION

For the four frame s+tructure being analyzed, the rigid
diaphragm reduces the system to three deqfees of freedo;:-
two lateral displacenments and a rotation about a vertical
axis.

The dynanmic eéuations of motion for the three degree of
freedom nonlinear system shown in Pigure 4-1 are

[ATE+[CTOI+F (M} = ~[A17F 3 4.1
where

(FTI={F (05 ¥+IK; 300370, 3
agd [Ki] is the tangent stiffness at time'ti‘

The displacement vector (U} is +he saze as in Equafion
3.1, i.e. u

{U}=[§x Rel Uy_}'f

The mass matrix then becomes
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Thé' hys;e:esis: model_ chosen for thiz study 1is ‘the
bilinear model. The numeridé;- integfation method used is
fourth order EHunge-Kuita.

Fours order Runge-Kutta _numeti¢al integration of a
second order differential equation, 2.3. Egquation 3.1, is
conditionally s=able for zn/At>2.43, where In iz the period
df the syszem. The limear acceler a*lon method, sometinmes
referred to as Yewmark's B method¢*1), is conditionally
stable for Tp/A®>1.81. In a 1limited test of single degree
0L freedom linear responses to sihe waves, thg four<h order
Funge Kntta method was more accurate than thev linear
aéceleratipn method in terms of peak response and earthquake
innut energy, which is defined simpl§ as the energy input to
the strTucture. .The linear accelerafion method 1is wmore
efficient for the same Tn/At raiio though. The reason the
Funge-~Kutta method 1is wused is its accuracy and ease in
p:oqrammipq changes in thevtime s:ép Ata

For a bilinear hysteresis model the amount by which the
force 'can'dvershodt the yield envelope can be considerable;
especially for lo? _values of %1/Atf‘ The usual proéedu:e
taken when the force overshoots <the yield edvelope is to
redo this step's calculations with a much smaller time
incre@ent; say one~ fifth the originél: then,'wheu the force

is beyond the yield enielope,” presumably by a small amount,
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the time incremen= i3 reset to the or{qinal value and the
computations -resume.

A special algoritha 1is wused here to compute thé time
step necessary to :each the  yield force precisely. The
fourth order Funge-Kutta method is wused to solve Eguation
4.1. The ini;ia} +ime step indrément At is chosen on the
basis of étabiliff andvaccuracy. ‘When ~he force for one of
the elements overshonts *the yield edvelope, this time step's

. calculations are -edone with a new =ipe steD increment.

¥ > X : 4 } £ =t -

trat  t+t’

Figure 4~3 Bilinear Yield Znvelope

#hen the force overshoots +*he 7yield envelope, as shown

Q

in Figure 4-3, the displacement necessary for the force £
equal the yield forcé, is khown. If the displacement is
~assumed to be a third otder',function 5f tige, i.e. liuear'
acceleration; then the time increament correSponding to that
displacement can be computed. That displacement then‘is ‘

AX=(Fy-F(z)) /K = At‘i(t)*Atz‘[Z'z(t)*i(t+At)]/5 “-Zl

where -
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X (t+At) =X (£) #[ (x4 ) X (%) ]-At/%-.' 4.3
1 cubic equation in At is obzained by combinirg Equations
1.1 and 4.2, o
| .G(A£)=At3-{§(t+:')=§(+)}/(6-t')+At20§(t)/2+At~?(t)-AX=O.
At can be solved for_directi? or by Newton iteration

At =At -~ G(At )/GT{pt) . .
i+l i i i - . :
In,pracf;se, only a few 1iterations are required to achieve
the necessary accuracy. This +ime step incremen* is then
1sed in *the four=h order Eunge Xutta inzeqgration scheme for
~*his step only. The computed element force is then compared
to the vield wvalue and if it is within 1%, the solution

proceeds with *he ipitial time step 1increment. For the

siﬁulafions used in “his stuady the“accuracy has always been
Vuithin 1%- The computer program using this algortiha is
listed:in_hépendix Ew |

This soluﬁion techaique for bilinear systems can be
efficiently used for structures with few yielding elements.
For a structu:é with many ?ieldinq elements, thé constant
changing of the time step would make this +echnique

2xpensive, computationally.



CHAPTER V

* . NOWLINEAR RESPONSE RESULTS

The importance of +the various torsional parameters,
-2ccentricisy razio, torsional ground aotion, aad Strenath
ra=io £or *he modei as described in Chap*er IV are siuiied{
esbécially the peripheral response as it pectains to the
ductili<y demand.

Since the moiei is a nonlinear hysteretic s?stem. Yonte -
~Carlo methédé arce used. An .easemble of artificial
*ndnstationary accelerograns 1is qenerated as desccibed in
Chapter II using the computer progfam PSEQGEN (71) which
uses filtered white noisé with an intensi*y funczion of the
Jenning's et al¢(52) type. The 4intensity function I(t) is
shoﬁn in Figqure 5-1d). The acceleroqramé are the product of
“he stationa:yv filtered white rnolse and <the 1intensity
function I(t)e. The power spectral density shown in
Figure S5-1c) is the vproduct of the filter's tvo frequency
response functions shown in Pigure S-1a) and b). The
accelefoqrams‘iqénerated are_‘intended to simulate strong
ground wmozion on firm ~ soil in the vicinity of thé
epicenter(ssy, 'TEe genefated accelerograms are shown in

Figures 5-2 through 5-6.

8 1 . \\_‘
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—

Other parameters that characterize the accelerograns

include the wmaximum acceleration which‘averages O0.4g for the

five accelerograms with a standard deviationm of 0.01g. The

duration is 60 seconds with a duration of 31 seconds for the

strong ground motion  (statiomary) portion.

intensity<¢7?®) which is defined as

I,= m2+q) 1‘ Z, % (1) edt

is 22.2 ft/sec. The cas acceletatioﬁ is 0.1g. .

! | Z
[Hy (w) |

‘a)

d)

gle ¥

n

The Arias

e o e ' e
tl t2 t

’?iénre'541—Artificial Accélererau_Data

Housner's spectrum inteasity SI, is defined as

2.5
ST = [vear
0.1
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where V is %hé.pseddovelocity respbnse in ft/séc, often

for 20% damping, and T is the natural peribd. For ﬁhe five
Jenerated accelérbqrams the average spéctrum intensity ST is
3;§vft’for 20% damping. = Ground CrCo* zion was included and
computed according to Egquation 2.15.  The éhear'wave sveed
used was a conservative 1000 ft/se¢¢ This correééonds to a
value»oﬁ 6.15 éor' the p@rameter'é as described in Chapter
ITT for +the wavelength <corresponding. to the predomigant
~fregquency of excitation.

:Modal gérameters

e

’The normalized eccentricity ratio, Z2/F, 1is defined as
thé"eccentricity between <the center of méss_and stiffness
iivided by “he amass radius of gyration. The vélueé'o.o,
0.1, 0.2, 0.3, and an uhﬁsually kigh value of 1.0 wvwere usegy

for this ratio. The structure's dimension ratio By/By, was

2.0. The stiffness vas assumed b:oportional to the
limensions of the  structure i.e., X /Ry=2.0, so the
frequency ratio w / W, was /2 - The torsional-~lateral

frequency ratio w¢/wx is de*termined by the geometry of the
structure. For a uniform mass distribution the mass radius

of gyration is.

R= 1/!§xz*gyzf7'4

and the torsional fregnency is- .

R N LA G AW .U G RS B
g YT T T ORGSR

For By;ax anﬂ Ky;Kx, w¢/wx=1/§=1.73. ‘Fgr By/Bx=Ky/Kxf2¢
'W¢/wx=1.90-
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The mass of +he wmodel, assumed ﬁniformly distributed,
was 2.5 kipsesecz/inch. .Cther imporﬁant parameters of the
nonlinear response are tke natural frequeacies and a
strength parameter. The natural périods used vwere
2.2,0.6,1.0, and 1.4 seconds.

The other nparameter  determining nonlinear response
relates to the‘yiéid level. This streng+th parameter can be
exprassed in many different ways. The ciarrent TRC(79) code
.3pecifies the'base shear ¥, as |

:V=ZeIwKeCw3aH
whe;é.Z,I,K,C,S,‘and W afe a zone factor, an importance
faciar, a framing system factor, a natural period factqr, a
3ite-structu-e resonance factor, and tie building weiqht(or‘
maés times qravity);: A natural <choice for the strenqt§
parameter then is theﬂyield shear Fy' divided by +he weight,
Meg. ?

The values for Py/(ﬁiq) used were 1/8,1/4, and 1/2.

Results

The excitation <£for the first énaiysis consistéd of
accelerogram 1 for *he (-direction, accelerogram 2 for the
¥-direction, and using Equation 2.15 to determine the
‘rotational acceleration. The excitation for +he second
analysisrconsistediof accelerogram 2 for the_z?direction.
accelerbqram 3 for the Y-direction, and again using Equation
2.15 to détermine _the rotational acceleration. .Thé=
excitaﬁion for‘the third,v fourth, and. fifth aralyses are

similarly determined. All results presented are the average
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of the ﬁesults of the five dynamiC'analyseS.

The magimum displacements.and ductilities at. the center
of mass for different values of the e;centricity ratio and a
strength ratio of 1/2‘are shown in Figure 5-7 as functions
of the period in the X-direction. The displacemenfs in the
X-direction don't vary much ¥ith eccentricity. The
,displacemenﬁs in ﬁhe Y-direction‘ appear to increase with
eccentricity, but only slightly. |

| The mgkimum peripheral displacements and ductilities for
‘differeqt’yalues of the eccentricity fratié and a strength
rat;o of 1/2 are shown in Fiqure 5-8. The displaceuenté in
both directions increase with eccentricity £for the most
part.

The maximunm diSplacéQents 65 the center of mass and
their corresponding ductilities for different values of the
eccentricity ratio aﬁd a stre;qth ratio of 1/4 ére shown in
Pigure 5-9 as a fnnction' of the period in the X-direction.
The displacements in the JY=-direction and Y-difeCtion don't
vary much with éccentricity.

The maximum peripheral displaceaents and ddctilities for
different values of the eccentricity ratio and a strength
ratioHAf'T/nia:e shown in Figure 5-16.1 The displacements in
both di:ectith' increase with ecéent:iéity for the most
parte.

The maxiaunm displacements:aﬁd ‘ductilities at the center
of mass for different values of the eccentricity ratio and a

strength ratio of 1/8 .versus the period in the X-direction
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\1Y

0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4

Ty (seconds) : T :k (seconds)
.;a) Maximum Displacement b Maximum Displacement -

of Center of Mass of Center of Mass

in X Direction v in Y Direction
E/R

- ] T = O SO D D e
O. S e A S e
O. —_—
3.071 3.0+

105"‘

0.2 0.6 1.0 1.4 : 0.2 0.6 1.0 1.4
T (seconds) - Tac(seconds\
c) Ductility of Center , d) Ductility of Center
of Mass in X Direction of Mass in Y Direction

Figqre S-?‘Displacements_and Ductilities of
- Center of Hass

(?y/(ﬂ'9)=1/2)
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oz 0.6 1.0 1.4 0.2 061'0‘1"4
T% (seconds) ' (seconds)
~-a) Max;mum Elemant Displacer- Dj Max:mum“Eeement

ment in X=-Direction ' ~ Displacement .in- .
’ SR - Y-Direction

5.-»
0.2 0.6 1.0 1.4 - o. z 0.6 1.0 1.4
T (seconds) o (seconds)
c)Element Ductility d) Element Ductility
in X Direction , in Y Direction

Pigure 5-8 Peripheral Dieplaceneats'and

Ductilities (F y/ (Meg)=1/2)
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6.0

Ux (inches)
A

3.04

0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
Tx=(seconds)-. - * (seconds)
:a) Maximum Displacement ~ b) Maxzmum Dlsplacement
L of Center of Mass of Center of Mass
in X Direction v in ¥ Direction
E/R
.0 —m—mm
0.1 -————=
0.2 —————
0.3 —mm ~
1.0 ———u
3.0T 3.0T |

1.54 1.5.4
0.2 0.6 1.0 1.4 B ‘o.z 0.6 1.0 1.4
T (seconds) i x (seconds)
c) Ductlllty of Center : d) Ductlllty of Center

of Mass in X Direction of Mass in Y Direction
Figure 5-9 Displacements and Ductilities of
Center of dass

(Fy/(Hea)=1/4)
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0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
T, (seconds) _ . T., (seconds)
a) Maximum Elem=nt Displace - b) I‘aximum EIement
ment in X-Direction Displacement in
, : > Y-Direction
E/R

1.5.- 1.5 T
0.2 0.6 1.0 1.4 . 0.2 0.6 1.0 1.4
Ty {seconds) B (seconds)
c)Element Ductility d) Element Ductility

. in X Direction : v - in Y Direction

Figure 5-10 Peripheral Displacenents and

Ductilities(FY/(H'g)=1/“)'
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are showﬁ in ‘Fiqure 5-11. The displacements in the Y-
direc*ion don': show a discermnible trend. The disﬁlacemehts
in the Y-direction appear to incrzase with eccentricity, but
=onl§ slightly.

| The maximum.peripheral displacemenis and @uctilitiés for
iifferent values of the 'eccentricity ratio and a strength
ratio of 1/8 are shown in Figure 5-12. The displacements in
both directions increase with eccentricity £for +=he most
péft. The values for a period of 0.2 ssconds were left out
because the.ductilities were in *he hundreds, which for all

IR

practical ourposas -are not meaninafal.

5]

|
5

acth ke Partition

ne

1]

&

3
oo
ot
e

e parti=zion of enerqy in +*he model was also computed.
The eérthquake input epergy (FIZ) 1is defined as the total
acceletation integrated over the ground displacemeut
4 , A ST
ETIE = [Ye (0 +T )edn
d ¢

-

‘The dissipated hysteretic energy (DHZ) is the stiffness
related force integrated over relative displacement less the

Cecoverable strain enerqgy

t
_DRE = ﬁg(n)-dn - F21L) /(2eK)
_ R ,

The &issipated nonhysteretic eneﬁgy_ {DNHE) 1is the damping
fbrce “integrated : over relative diSplacemeﬁt plus the
recoverable strain enérgy. and kinmetic énergy- The strain

and kinetic energy are incinded 'éince they are eventually
dissipa+ed thfonqh damping. The fraction of critical viscqus

damping in all cases was 5%. {See Appendix _?. for
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of Mass in X Direction - of Mass in Y Direction

Pigure 5-11 Displacements and Ductilities of

Center of Mass . : ‘

o -
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0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
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Displacément in

o - Y¥-Dizection
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0.1 —===eooe
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1.0 o
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0.2 0.6 1.0 1.4 0.2 0.6 1.0 1.4
T}{(seconds) _ T} (seconds)
c) Element Ductility d) Element Ductility
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Pigure 5-12 Peripheral Displacements and

nnctilities(Py/(a-g)=:/a)
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The eazthquaée'input enerqv,AdiSSipated damping éneer,
and dissipated hysteretic enerév’for different vaiues of the
‘accentricity ratio and a strength :atio of 1/2 versus the
period in the Xadifection. are shown in Figure 5-13. The
valueé fdr a strength  ratio of '1/4 and 1/8 are shown in
Figures S5-14 and 5-15.

4~Sevetal things are notewofthj 4in'fﬁése figures. First,
ther=2 ddesh't seem T2 be any definite relation between the
valdés and gccgntricity, i.e. *hey_dcn'ﬁ nniformly incrc2ase
or decrease with  eccentricity. Second, as would be
exneéted, the dissipated hys*eretic enerqy 1increases for
lower values of ?y/(x’a). Third, the earthquake input
eﬁergy dacreases for lower values of ?y/(ﬂog). The reason
\;fét‘this is not clear. Finally, there is a definite peak in
the value of earthquake input energy versus period. this
can be explained. TIf <the dissipaied hysteretic enerqy were
viewed as an eguivalenfi visqous damping dissipated enerqgy,
- then the total valuae of'the damping parameter C would be the
sum of the viscdus damping and +he equivalent hysteretic
damoinq. fhe earthquake input energy would be approximately

PIE =_Tc-§2odt‘é.c»<bz>ot
.0 .

The mean square velocity can be reptesénted in terms of the

input power spectral density and +the velocity response

function . which ir  this case are unimodal functioans,

tions wit ne peak.
functions with one peak

-]

<B2> = [1Hglw) 12965 2 (w) +Ay
. -~ g o
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Pigure 5-13 Energy Pgrtitiqn(?y/(a'q)=1/2)
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Figure 5j1u Energj Partition(Py/(nog)=1/Q)
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A typical ve;ocity :esponse’ function is shown in
Pigure A3-1a), The input power spectral density is shown in
?igure 5-1. It follows that <72> would be largest when the
peaks of 'the +two functiomns vere concurrent. Thus, the
largest value of earthquake input energy should occur near
the peak of the input power spectral demnsity function. This
is the case.

The stfenqth ratio co:responding to a given ductility
ratio“is also of interest. For the ductilities, averaged
over the différent eccentricity ratios, the corresponding
'streﬁqth ratio is determined by interpolatipn fronm

Pigqures 5-7 to 5-12 and is shown in Pigure 5=16.

0.5 T
F v 1
M-g- 0.4
]
0.3
-+~
0.2
0.1 7

0.2 0.6 1.0 1.4
T}cpericd.

Pigure 5-16 Strength Ratio versus Ductility

Por a system with uniformly distributed mass, the
response of the element furthest from the center of
stiffness will be the largest. Due to this increased
response the stiffness will be smaller relative ¢to the

element closest to the center of stiffness. This smaller
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stiffness inCteéses the éccéntricity and,'one might exvect,
" could further increase the response of the element furthest
from the center of stiffness. |

This could lead to a situation where the.eccentricity
causes an 1increasingly nonlinear response of the element
until the ductility dgmandlcould not be met. That this is
not the case is evident from the results. The reason is
probably the type of' hysteresis ‘modél used. The bilinear
model has increasingly nonlinear strength as well as
increasing dissipated‘hystetetiC‘enerqy capaéity which would
both limit the response. 1In anf case, this doesbnot seem to

be a problem.



CHAPTER VI

SUNMARY AND CONCLUSIQNS

This dissertation i's concerned with the:stddy of torsion
in buildings SuhﬁeCted'to eafthquakes; Tt iévnov well knovwn
that thete»'is a ‘dynahiC"ampiification' of torgque and a
~ dynamic teduction in  building shear. A técehf. detailed
studﬁfused  +he mode 'supefpdsition and tésponse spectrum
techniques to develop response. envelopes for an éxéitgtion
" in one direétion;* Other researchers have reported for a
single accelerogran tesponsa,'és 'much as a 40-100% increase
in the peripheral.reSPQuse. | |

The: analytical technique‘ selected here for linear
reséonse vas the- probabilistic épptoach- .Thé probabilistic
- description of earthquake excitation ﬁés discuséed and a
simple expression relating torsional earthquake excitﬁtion
to transiaiional éarthquake excitation was developed.
7Interaction' relations, vere derived for sysféms - With
sipultaneous Y, o, and Y ground excitations.

fhe main conbern or :delete:iou5~ effect of building
torsion is ﬁée increase in petipharal response. The reason
" for the»incréése is  thought to be _ihat tﬁe eCcentticity
induces - a rotational motion whose ‘displacement at the
"periphefy " more than offsets the decreasedmigx'thé»sﬁqu
displaCemenﬁ,that occars'.vith'increaéinq’ecqentticity. The
peripheral response vas studied ”using’ the*préﬁabiiistic

model. The effect of the various paraméters” on the

.. 108
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‘rperighqral responsé 'ﬁaé studied. It 'vas shown that a.
. special caseAlarises where  the peripheral reséonse is
indépendent of the eccentricity or frequency ratio.

) ﬁa:thquake-grouﬁd'motion was described and the state of
the art of A_artificial‘. generation was - discussed.
Uhcorieiated gro&gd“;;anélations were used for this study.
Nevm;ri‘s model of ground rotational motiom vas used and the
various paramétérs aﬁfectidg it véfe studied. The decrease
on the maqnitdde of this ground rotatiomn as the rigid
buildiéq sizé to vgvelenqth ratio 1increases was also
discus§ed.

Arérobabilistic aéproach canpot be  used for nonlinear
hyéteretic reépqnse‘ Monte <Carlo methods are used foi
nonlinear reséonSe- 'An ensemble of artificial accelerograss
wEfe: generated for a respomnse aﬁalysis Aof a class of
ndnlinea§ building types. For the four exterior wall model
studied, a bilinear hysteresis was néed- For this type of
mcdgl the torsion-translation freguency_ratio is determined
by'tﬁe geometry of the structure. The results shoéed the
‘vperiéhérai response}to be only marginally higher *than that
fdr zero eccentricity. |

| Pér an eccéntric structare respondinq‘in the‘nonlineAr
tange,‘ the eccentricity _increages with the;’inc:easinq
7 nbnlinearities, pb;sibly‘causinq larger and larger torsiomal
 e£citation., These studies shpﬁed this is not a problem with

the bilinear hysteresis used with this model.
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Conclusions

Based on the study 1in this dissertation, the fallowing

general conclusions can be made: 1) in the statistical sense

of the word'expéctedlrﬂi.e. the nmean, the maximum expected
increase in the elésfié peripheral fésﬁonse'due to both the
eccentricity anquroﬁnd rotationsv is on the order of 50%;
2) the single most important parameter in ﬁuildinq torsion
is the torsion-translation frequency raﬁio; 3) torsional
ground excitation nast be guite larcge before it
significantfy affects the response for structures with ieil

separated frequencies; 4) the dissipated hysteretic energy

for nonlinear structures 1is maximum when the natuaral

frequency 1is near the predominant' "frequency of the
accelerogram; and 5) parametric resonance is not a problenm

for the four peripheral wall structure studied herein.
Concluding Remarks

The analysis of building torsion 1ia this dissertation
assumes the ground rotation to be related to the ground

translations by Newmark's relation.. Although the

conclusions stated are based om this assuaption, ‘it is still

felt, based on field observations of others, that ground
rotation is not much larger if different. VNevertheless, the
author still recommends the development and production of a

torsional seismometer to determine the actual magnitude of

- the ground rotatioms and its relation to ground

translations.
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Lastly, the importance of the torsion-translation
frequency ratio must‘be emphasized. It is recoamended for
qnusually shaped buildings where large_eccentricities are
unavoidabie, that the building be designed with well

separated torsion and translation frequencies. .
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“APPENDIX A

Response of single degree of freedom oscillétots is -
sometimes computed by the Duhamel or convolution integral.
The_response to an'impulée is a damped sineVWave comménly'
referred to as the impulse response function,h(t) of the oscil-
lator. The sUﬁming of the response due‘to each iﬁpﬁlse 
becomes in the limit an integral. The summing or super-
position of these responses is referred to as the Duhamel
or convolution intégral |

t o :
V(t)= [ h(t-t"')+P(t")dt’ A .l

-

where

h(t)= - o . A .2
exp(-B-w°t)-sin[m-(l-Bz)a54t]/[w-(l*Bz)QE]ti 0
which is the transfer function for the differential equation

2

V(£)+2+BeweV(t)+w2-V(t) = B(t) | A .3

The'Fourier transform of Equation A'.l, commonly

referred to as the complex frequency-résponse function, is
2 2 . -
H(w)=1/[wn -w +2-B-m-wn-1] o A .4

- The transfer function and the modulus of its transform
are plotted in Figure Aa).
‘The power spectral density of an ergodic stochastic process

is defined as ,
S s/2 | |
6% (w=lim| [ p(t)-exp(-i-u-t)-at|?/s A .5
S0 _s/z : )
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A sample random process and its spectral density are

shown in Figure Ab). .

(59)

It can éasily be shown that the response power

spectral density is the product of the square of the complex

frequency responsé function and the input power spectral'>.

density.

2, i 2
|Gv‘(w)l—!H(w) [€e

sz(w)l | BERL
The response v(t) and“corresponding‘p0wer spectral density
are shown in Figure Ac). = It is seen that a convolution

in the time domain corresponds to a multiplicatioﬁ in the
frequency dcmain; The converse can also be shown. Put
simply,_ﬁhe transform of a convolution of two func#ions%

is the product of the individual transforms; also, thé

- transform of the product of two functions is the convolution

~ of the individual transforms.

The averaging filter Utt(t)

0 tet"
Ue (£)={1/8" ~tkt<t! : : A L7
0 >t

along with its transform U(f):
U(f)=sin(2eme£t")/(2emef-t") : A .8
are depicted in Figure Ad).

The averaged response V(t) o ’
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£+t /2

©

m)%, _fv(t).dt= f Up: (E=t') °V~(t')dt"=Ut, (t) *V(t) A .9

t-t'/2

can be viewed as the convolution of Ups with V. The
transform of V shown in Figure Aé) is the product of ﬁhe
transform of Ueo and V. | o

The first zero of U(f) is 1/(2t'), which for the
' valués of interest Will be well beyond the natural frequency,
f. Thus the effect of the averaging is to reduce the
'ordinaﬁes of the spectral dehsity which reduces the variance
defined“as the area under the spectral density curve. Since
thé expéeted}extreme value is proportional:to the variance,
the effect of the averaging reduces the expected extréme

value, as expected.
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APPENDIX B
For a single degree of freedom (SDOF) system the
expected response is a maximum when the structure is directed

along one of the principal axes. The Motion along the princi-

ple axes are uncorrelated and are defined as the radial to the

epicenter and normal to the radius.

To show this, it is first assumed that the'maximum
expected response is proportional to the variance, con-
sistent with the theory of extreme values. The variance
is expreséed as the integral of the power spectral density
of the response, which is expressed as the integral of
}the produét of the frequency response function and excita-
tion power spectral deﬁsity.

Let R dénote the excitation along the principal axis P.
Since R and C are unéorrelated, the cross-correlation
function‘is zero. Thus, the cross spectrum Grcz(m), the
transform of the cross-correlation function, is also zero.
Let X and Y denote the angle 6 of the structure's
}to P. Then | _ _

X=C-+cos (8) N Resin(8)
and

Y=C-;in(e) + R-coé(e)

Describing the power spectral density of X and Y in terms

of R and C gives
2, 2 a2, 2a 2,
G, (Q)-cos (Q) G (Q)+$1n (9) G (w)

6,7 (@) =sin” (8) *G,? (1) +cos® () *G % ()
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2 _ ved . 2 - 2
ny (w)=cos () *sin(8) (Gr (w) G, (w))

The variance of response of the SbOF system is
 <xX%>= O; |H (w) |2°Gx2(w)dm
®
é-i‘|n(w)iz.[cosz(e)-Grz(m)+sin2(e)-Gcz(w)]dw
which is maximum when 6 is either 0° or 90° depending on
the relative variances of R and C.

For a multidegree of freedom (MDOF) system, the
approach is not és étraightforward, and simplifying
assumpti&ns must be made. First, the variance is expressed
as the sum of the.variances and covariances of therun-
coupled,modal responses. The résponse quantity of ihterest
is

Q= B} & &)
where

&} = [aT U}

D}+[2-B-0] U1+ 0?T ©1 &)

[A] is the matrix of eigenvectors. The response power

spectrum can be expressed as

9
For a 2-DOF system this expands to

¢ 2(w)= {B}*[Hl"m’[epz (w)1[A] [HT B}

2,2, 52

2 2, sin26) [Hy *Ap*Br+2 'Hsz'AﬁAz'lBl'B2+Hz ‘Ai'Bzzl +

2_,. 2,
Gq —(G0 cos 6+Gr

2 2 Y 2 2 L] ( .. L ] [ ] 2’. L] ®
(Gr =G, ) *cos@+sind [H AjAsB +H H{A; AT}Z& ByBfH, szAzsz) +.

. - 2 .2 52 2,.,2 .02
(Gc2-51n26+Gc2-cosze)[Hl'Au-Bl+2HfH£AﬁAéPfB;H2 Azsz] Bl

\
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argues, based on work by Rascon(73)

Rosenblueth(41)

that there is a deterministic relatioii between the ratio of
spectral intensities (SI) of the. groundg motions

along the two orthogonal axes, and

that as the RMS spectfum intensity increases éhe expected
ratio approaches uhity; For the RMS spectrum intensity>4.5,
gorrespondin§ to a Modified Mercalli intensity of around v,
the ratio exceeds 0.9. |

Thus, for earthquake intensities of intérest, SIx=51y.
~ Since the Arias intemsity, the variance times duration,

is closely related to Housner' s spectrum lntenSLty, we
-2 2

can say that. <X >~<Y >, or
«© (-~}
‘ 2 ) >~ 2.1> [ ] .
f G, (w) *dw = [ G, () *dw

l-.Q -l
Due to the origins of the two ground motions R and C, we

can say
lH(m)lz°Gr2(m)°dm=lH(u)|2-Gc2(w)°dm | | B.2

fhus, in Equation B.l, the first and third terms become
dominant and the contribﬁtion of the second term approaches
zero. Also, since the ﬁwo}dispiacement coordinates;
corresponding to the two hérizcntal grouﬁd trahslations,
are orthogonal the amount of coupling will be small even
in the worst case, i.e. Aii>>Aij‘ THis suggests that
‘Equation'B.l1 . will be maximum when the cos(8) *sin(8) is

maximum, i.e. 6=45°. However, Equation B.2 suggests that

the difference will be slight.
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 APPENDIX C
For a white noise process of intenéity,,cé, the o
covariance of modal responses is defined as

_<‘¥m(t)°Yn(t)>—_£ Hym(w).Hyn(w)'Go «dw 3.13
where the complex frequency response function is

—4 2 .. .. [ ] * - 2 ® ) - !
Hyn(w)-l/[wm +ie2 B, Wt W—w ] ‘ “g?%_—

. The variance is

) o , 22 c.2
L <Y S (E) >—_°J; IFHym(m)ll G, +dw e
The correlation coefficient Pmn is defined as
o - C<Y ()Y (B)> | iz
mn @ _. 2 05 ) 05 s
CRY_T(R)>TT e <Y T (E) >
Inserting: C.l1 . into "C.2. gives
<Yy (ee= [ —7 7 2 4 C.4
[w™+w = (4B "=2) cw =w "]
This can be factored to
2 - . :
: o : G_“+dw :
: e —w “cexp(-2+i:8)]-[w"~uw ~+exp(2:1-6)]

‘where exp(2+1+8)=[(1-2+B_%)]+i-[2B_- (1-B_%) %] and i=(-1)®



116

Equation:ACfS? can be expanded to

(-]

’ 2
<y 2 (t) > j o
) m T [w-wm-exp(-i-e)]°[m+wmfexp(-i-e)]

.. dw
[m-wm-exp(i°6)]'[w+wm°exp(i°6)]

a6

2 .

where exp(i-é)=[(l-Bm ) Tl+ie[B ]

Equation C.6 -~ has 4 poles of order 1; namely,iwm-exp
(i-6) and twm-exp(i-e). f(x) can be regarded as a iine

integral along the real axis. By the method of residues:

qff(x)dx=g £(z) -dz

r

where f£(z) is analytic in C_ except at a finite number of
" poles, and‘cr is a semicircular path whose diameter is the
real axis. Then

6 £(z)+dz = 2.meis {sum of the residues in the upper
& half of the complex z-plane}

The residue of £(z) at z',"z_' a pole oforder 1, is

Res[£f(z),2z']l=1lim [(z-2')*£(2)]
z+z!

The‘integrand{in Equation C,6 has two poles in the uppér
half oi‘the.complex z-plane, namely, mmeexp(iie) and

-wm-exp(—i-e).
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thus, ‘ Sy
2 2‘.'".‘Go .i
g (B)PE | .

m -

: 1 . e
[eXp(1-0)+expi-0) I [ exp(i-0)-expFi-6)] [exp(1-6) +exp( 1-8)1

3 - "« ‘ l ‘
"[-exp(-i+6)-exp(i-6)] [exp(i+B)-exp(-1i-8)] [-exp (~i-0)~exptie)]

.. Ao

Ty

-~ -

or

2, .
A CHE c.7

2-wn -Bm

which is the variance of the displacement of an oscillator
subjected to white noise excitation.

For the covariance, combining Equation 3.13 and C.1

. < Ym(t) -Yn(t) >=

. 2
-m. [wtw cexp(-1+8)]* [w-w +exp(i-0)]
s
dw

[w+wn°exp(i°6)]°[@—wnfexp(f1f6)] B
By the method of residues, Equation C.8 - becomes

<Y _(t)-Y (t)>=2-ﬂ°i-G‘2‘{sum of residues on upper half of
m n complex z-planel
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. 2
= i GEJ _
- L] L ] ( - 2
2ewp (1=By™)

. 1 .
Iwm-exp(i~em)+wn-exp(i~6n)]'[mm-exp(i-em)-wn'exp(-i-en)]

1 ,
[-wm-exp(-i-em)+wn-exp(i-en)][-wm-exp(-i-em)-wn-exp(-i-en)]

Simplifying,
<Y ()Y (0)>= 2emeinG ®e 1/2-1/21/ (2 ")
=2-w-i-G02- Q-i-Im(z)/Iz]z}/(Z-mm')

=4 oA 20 . . 2 ) °
=4-7+G, " (w *B +w Bn)/lzl c.9

where w_ ' is the damped natural frequency of the mth mode
and

-3 2- 2 - L] L 2 .. . . [ L4 :
cZ=l ey T ") = (wp o B Fw Bn) J+is[2-w '« (0 *B +w, *B )]

The correlation coefficient Pmn by inserting Equation

C.7 and C.9° into &.,3 is

33

3-Bn)°5/lzl2 C210..

— [ ] L ] L ] ] 4 3~' L ]
P =8 (wm Bm+wn Bn) (wm Bm wnv

mn
which is Equation 3.24. For B, B  <<1, Equation C.10
is very close to the simpler Equation 3.10 developed by

Rosenblueth.
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APPENDIX D
As described in Chapter 1II, the power spedtrmmfor
‘ensembles of accelerograms is commonly expressed in the
Kanai-Tajimi form | | e -
| S |
e 2(y = g : DL

z ey 22,2 2.3, 2
{[1 (w/mg) 1+4 Bg w /mg }

2 2,2
G, *(1+4 Bg w”/w

The response power spectrumfor this type of excitation is

2

2]\

2 _ 2, ' o -
G,  (w) = |Hy(w)l G, (w) - D2
or
® . G 2-(1+4-B 2w»z/m 2)-dw
2 _ o] g g :
<Y (t)>—j[m +w_ 2+ (4+B_2-2) ~0?=0t1 [ (1-0?/w_%)%+4-B 2.0?/u
” 4 2 2, 2
w_ *[1+4°B _“w/w_“]
‘Goz'-i Y PR C T S IR PrRS
n exp n n P n
. dw - D.3 -

2 2 . 2 2 .
[w wg exp(-2-1i eg)][w wg exp(2+1i eg)]

which has eight poles of order 1 at iwn-exp(ti-en) and

iwg-exp(:i-eg). By the method of residues

2.2.7+i¢ {Sum of the residues in the upper half

<y 2 (t)>=a,
of the complex z-plane.!l
With the assuption that the spectrum for the ensemble
of excitations is a wide band process, Bg will be larée
compared to that of the lightly damped oscillator; i.e.

Bg>>Bn
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‘and therefore
eg>>6n

After some algebra
| 20y oe .
S<Y (t)>=

2 2 2
w /wg

1+ (0 /u ) = (0 /0 ) 2 exp[2-i- (8 -0 ) I+exp[-2+1- (8+8.) ]}

1+4-
Bg

2y ppa_ 2, 202 .2 2, 2, .. 2
(l+4Bg Y {[1 gnz/mg ]2+4 zg (;)ni/wg } 42Bq . g i )
i - +4o Y ‘ - . e -

{1 (mn/wg) ] Bg W /wg 1+ {[4 0 /wg Bg] (1 Bg )}

2 2 2
Wy /wg (1-4 Bg

D.5
or

n-Gzz(m ) TeF ()

2 n ;
<Y “(t)>e —E——— + D.6"
n 20 _3+B 2.0 3B
n n g g

<¥ 2(0)>0.n. -6 2 () +<22(8)>Flu)

where Gzz(w)'is defined by Equation D.l;=: F(wn) is defined

in Equation . D.J, and.<Yn2(t)>w.n. is the response of the
oscillator to white noise. The assumption underlying
Equation D.6. gives rise to the same approximation used

in gﬁst response factors, based on graphical inspection.
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Typical values for Wy and Bg used in Equation D.l-:

are 15.6 radians/sec. and 0.6, respectively. For

L2 2 2 .
“némg' F(wn) = Go and Gz (wn)>Go . Also, s;nce B '«3n

the first term in Equation»Dgﬁ'{ dominates and

g
c<x ey <y 28 vuen. 6 2 (u)) D7
Thus'thelvariance, thch is proportional to the square of
the expected extreme value, is proportional to the value
of the excitation power spect;um at the oscillator natural
frequency. For a wide band excitation where the building
frequencies are close together the effect of nonwhite

excitation cancels.
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Appendix E
Nonlinear Response Program

PROGRAMNED BY MARTIN E. BATTS 1977

CONSISTENT UNITS (USE KIPSEINCHES)

GACC (1)= X GROUND ACCEL INPUT FILE 7
GACC({2)= Z GROUND ANGULAR ACCEL
GACC(3)= Y GROUND" ACCEL INPUT FILE 8

EXN= X DIST FROM ORBRYGIR TO C.G.

EYM= Y DIST FROM ORIGIN TO C.G.

BX= DTST ALON3 X AXIS BETWEEN Y RESISTING EIB!ENTS

BY= DIST ALCN5G Y AXIS BETWEEN X RESISTING ELEMENTS

BX= ECCFNTRICITY ALORG X AXIS FROM C.G. TO CENTER OF STIFTNESS
EYf= ECCEXNTRICITY ALO¥3 Y AXIS FBOM C.G. TO CENTER OF STIFFNESS
XI= % CRITICAL DAMPIN3 (VISCOUS)

DT= INTEGRATION TIME STEP

RASS= MASS

PMASS= NASS MOMENT OF INERTIA(=R**2%XASS)
TO= INTIAL TINE

TEXD= FINAL TIMEOF ACCELERATION

DTAC= EQUAL TIME STEP OF ACCELERATION AS IEPUI
R=POLAR RADIUS OF GYRATIONW OF HASS

-

SO0= INITIAL ELEHENT STIPFFUESS IELEX=1=RAMBERG-0SGJI0D
QY= ELEMENT YIELD PORCE IELEM=2=BILINEAR
BO= RAMBERG-05G0O0D COEFF. . 1ELEN=3=STIFFNESS DEGRADING

SY= TOTAL X DIRECTION STIPFFESS GG=ACCEL ZRATION UNITS

SY= TOTAL Y DIRECTION STIPFNESS IPDELT=0 MEANS NO P-DELTA ‘CALCS

SR= TOTAL Z DIREBCTION STIFFYESS HGT=HEIGHET 2P BLDS.

PHI= NODE SHAPE ACMULT=INPUT B. MULTIPLIER

D= EIGERVALUES '

DANP= DAMPING MATRIX=M-1/2%C*N-1/2

DYE= YIELD DISPLACEMENTS OF ELEMENTS

DYC=YTELD DISPLACEMENTS OF CDORD.  DIRECTION

Y= RELATIVE DISPLACEMENT

DY= RELATIVE VELOCITY

DDOY= RELATIVE ACCLERATION

OLDIS= CLD RELATIVE DI SPLACEMENT

PPC= OLD COORD TOTAL FORCE ' N

DISE= DISPLACEMERT OF THE ELEMENTS A

PP= FLENENT PORCE

OF= OLD ELEMENT PORCE

TE(I)= INTEGRAL OF ELENENT I FORCE TIMES DISPLACEMENT
(OUTPUT AS TE-STRATN ENERGY=DISSIPATED ENERGY) -

DAMPDE (I)= DAMPING DISSIPATED ENERGY FOR COORD DIRECTION I

VARC= COORD DISP COV. VARFC= COORD FORCECOV.

VYARE= RMS ELEMENT DISP VARFE= RMS ELEMENT FORCE

EQNS OF MOTION (Y)=(U, R*THETA,V) THETA ABOUT CENTER OF MASS

| (c11  c12/R  c13 ) (KX -KX*EY/R O. )
e 1 : 1 |
(Y ) + -*+(C21/R C22/R%%2 C23/R) *(Y) + —*{-KX*EY/R KO/R**2 KY*EX/E)*(Y)
] 5 |
(31 c32/& €33 ) (0. KY*EZ/R KY )
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C KO= STIFPNESS ABOUT CENTER OF MASS(NOT CENTER OF STIPFNESS)

C NOTE THAT THE MASS MATRIX IS THZ IDENTITY MATRIX.THUS THE MODAL MASSES

C ARE 1.0
DIMENSIOE FPORMAT(20), P1(8000), D1(8000), SOC(3), DYC(3), DYE(4)
COMNON /3TINE/ GASC(3), OGACC(3), G(8000,3) ,
CONMOK SK(3,3), DAMP(3,3), PHI(3,3), D(3), OLDPPC(3), OLDIS(3),

1 PDELTA ( 3)
COMNON /STIPP/ RI(8), FY{4), SO({4), IVC(4), S(4), PMAX(8), EPSHMAX,
1 - IBTOT

DIMENSION DISE(4), ODISE(8), DISEMX(3), ¥(3), DY(3), DDY(3),
ODY (4), TITLE(20), PP{(4), B{(6,6), DICMY(4), DISMX(3), .
PPMAX (4) , TDISMX (3), ACMAX(3), TACMAX(3), OF(4),
DUCTNX(3), TE{(3), PFC(3), OY (4), AUX1(3), AUX2(3),
PPCMX (3) , TPPCMX (3), VG(3), VARE(4), VARC(3,3), BIE(3),
DAMPDE(3), VARFE(4), VARFC(3,3), TBZ(3), P(3), FEBAR(4),
YEBAR (4) , FCBAR(3), YCBAR(3), VELE(3), OVELE (4), .
ACCE (), OACCE(4), ECCMAX (3}, SKINV(3,3)

REAL MASS, K1(3), K2(3), K3(3), K4(3), 4(3)

IN =5 o ;

IKN = 7.
INE2 =
IT = 6
10 READ (TN,20,BND=550) TITLE
WRITE (IT,30) TITLE
20 FORMAT (20A4)
30 FORMAT (1H1, 20A4/)
READ (IN,20) TITLE
WRITE (IT,40) TITLE :
30 FORMAT (//' Y GROUND ACCELERATION= ', 10A3, 10X, ' Y GROUND AZCELE
1RATIOS= ', 10A4/)"
READ (IN,50) EXM, EYM, BX, BY, XI, DT, MASS, TO, TEND, DTAC, 3G,
1ACMULT, CS, EGT, IELEM, IGROT, IPDELT, IPLGT
50 FORNAT (4F10.2/3F10.9/7F10.4/415)
NSTEPS = (TEND - TO) / DTAC + 0.49
READ (IN,60) SO, PY, RO
60 FORMAT (4F10.3)
BREAD (IN,70) PORNAT
70 FORMAT (2013)
PHASS = MASS * (BX*#%2 + BY**2) / 12.
B = SQRT((BX**2 + BY**2)/12.)
EX = SO(4) #* BX / (SO(3) + SG(4)) - EXN
EY = SO(2) * BY / (SO(1) + SO(2)) - EYH

SO WN -

IBTOT =0 .

EPSMAX = ogo '

SO0C(1) = sO(1) + SO (2)
SOC(3) = SO(3) + SO(W¥)

SOC(2) = SO(1) * EYN ** 2 + S0(2) * (BY - EYY) *"2 + S0(3) * EXxn
1=% 2 + SO(4) * (BX - EXM) ** 2 c
DET = SOC(1) * SOT(3) * (SOC{2) - SOC(1)*2Y*%*2 - S0C(3) *EI**2)

SKINV(1,1) = (SOC(2)*SOC(3) - (SOC(3)*EX)**2) / DET
SKINV(1,2) = (SOC({1)*S0C(3)*EY) / DET

SKINV(1,2) = (-SOZ (1) *SOC(3) *EX*EY) / DET
SKIRV(2,1) = SKINV (1,2)

SKIEV(2,2) (SOC(1)*SOC[3)) / DET
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SKINV(2,3)

= (-so~(1)tsoc(3)tnx) / DET
SKIEV(3,7) = SKINV (1,3)
SKINV(3,2) = SKINV(2,3) ' ‘ -
SKINV(3,3) = (SOC(2)*SOC(1) - (SOC(1)*EY)*+2) / DET
K(1) = 1.0 :
B(2) = 1.0 * B
H(3) = 1.0 , » ,
PDELTA (1) = GG * PLOAT (IPDELT) / HGT
PDELTA (2) = 0.0
PDELTA (3) = ,

3 * FLOAT (IPDELT) / HGT
EXR = EX / R - ,
EYR = BY / R : ' i
WRITE (IT,80) BX, BY, EXM, BYM, XI, DT, MASS, PMASS, TO, TEND,
1DTAC, R, EXR, EYR, 6G, ACMOULT, IELEN, IGROT, CS, IPDELT, HGT,
2IP1OT -

80 PORMAT (//'0 BX=', P7.2, ' BY=', F7.2, ' EX%=', P7.2, * BEYi=!,
1 F7.2, ' BETA=', P6.4, ' DP=', P6.4, ' HMASS=', B11.4, * X
2R*#*2 =', 211.4, ,* TO=', F7.3, ' °TP=', P6.3, ' DTAC=', F6.4, !
3 pR=', F8.4, ' EX/B=', F6.%, ' BY/R=*, P7.4, ' G=', FB8.3, 3X,
4 ACMULT=', F8.3, ' TIELEN=', I2/'0 IGROT=', I2, ' (NON O=NEWMARZ GRD
SROT)*, 5%, ' SHEAR WAVE SPEED=', P10.3, ' PDELTA?=', I3, ' HEIGHT=
6', P10.3, ' IPLOT=', IS)

CALL SSK(S0C(1), S0C(3), SOC(2). zx. EY, MASS, PMASS, R)
CALL EIG

po 90 = 1, 4
90 DYE(I) = FY(I) / sO{I)

AVG X 5 Y YIELD DISPLACENMENTS

DYC(1) = (DYE(1) + DYE(2)) /. 2.
DYC(3) = (DYE(3) + DYE(4)) / 2.

VALUE CF ROTATION (ABOUT CENTER OF MASS)  WHEX ALL.BI.NEBBMS HAVE
YIELDED I.E. MAX TORQUE/INITIAL STIFFNESS .

DIC(2) = (FY(1)=*EYM + FY(2)*(BY - EYM) .+ FY(3) *EX¥ + FY(Q)*(BI -
1EXN)) / SOC(2)

EQUAL XDAMPING IN ALL MODES:M-1K IS SYMNM §M-1C=PHI* (2KIW) ¢PHI IS SYAN
' SIKCE THE DISPLACENENT VECTOR IS
Y= (U,R*TEETA, V) )

"DO 100 T =1, 3
P(I) = 6.2832 / SQRT (D(I)) ‘ .
SOTE THAT NODAL HASSES ARE 1.0%3ASS.SEE ABOVE. BOT WE WANT DAMP/MASS.
DO 1003 = 1, 3 ‘
100 -B(I,J) = PHI(J,I} * 2.0 * SQRT(D(I)) * XI * 1.0

DO 120 I = 1, 3

Do 120K =1, 3
sUs = 0.0
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DO 110 3 = 1, 3
110 SUX = SOM + PHI(I,J) * B(J,K)

120 pAXP(XI,K) = SUM

WRITE (IT, 130) ‘ .
130 FORMAT ('OPERIOD PREQUENCY**2 NODE SHAEB', 30X, 'STIPFNESS MATRIX
1, 301. "DANPIRG YATRIX')

DO 1“0 I=1, 3 - :
140 WRITE (Ir,1S0) P(I), D(I), (PHI(I,J),J=1,3), (SK(I,J).,J=1,3),
1(DARP(I,J) ,J=1,3) }

150 FORMAT ((F6.3,F9.1,1X,3E12.4,3X,3212.4,3X,3E12.4)) -
REWIND INX ,
REWIND INK2

160 READ (INN,FORMAT,END=10) (G(I,1),I=1,NSTEPS)
READ (INNZ PORMAT) (G (X,3),I=1,NSTEPS) -

DO 170 I = 1, MNSTEPS
TINE = TO + (I - 1) * DTAC

IF YOU WANT SROUND ROTATIONAL ACCELERATION ¥OT=0, THEN IGROT KOT=0
G(I,2)=((G(I+1,1) =G (T, 1)) +G (T+1,3)=C (T,3)) )/ (2*SIEARNAVE spzzn)*n(r)
* M(I) DUE TDO THT NONDIMENSIONAL EQTATIONS
G(I,2) = ACNULT * M(2) * (G(T + 1,1) - G{I,1) + G(I + 1,3) - G¢(
1 .I,3)) / (2.%*CS*DTAC) '
IF (IGRAT .EQ. 0) G(I,2) = 0.0
G(I,1) = G(X,1) * ACHULT .
170 6(I,3) = G(I,3) * ACMULT

DO 180 I = 1, &
ODISE(I) = 0.0
DISEMX(T) = 0.0
PPMAX(I) = 0.0
OP(I) = 0.0
TE(I) = 0.0
VARE(I) = 0
VARFE (I)
PEBAR (T)
YEBAR (T)
OVELE(I)
OACCE (I)
IVC(I) =
S(I) = so(I)

PHAX (I) = FY (I)

IF (TELEX .EQ. 3) GO TO 180

FNAX (I) = FY(I) * (1. - RO(I)) / (SO(I)*RO(I))
180 CORTINUE ~ :

=0 nunuu

DO 190 T = 1, 3
oDY (I) = 0.0
DISMI(I) = 0.
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ACHMAX(I) = 0.0 c S
0¥ (1) = 0.0 : B
PPCHMX(I) = 0.0 , :

VG (I) = 0.0

BIE(I) = 0.0

OGACC(I) =
DAMPDE(I) =
TEC(I) = 0
FCBAR(I) = O.
YCBAR(I) = 0.
BCCHAX(I) = O

b 190 J = 1, 3
VARC(I,J) = 0.0
VARFC(I,J) = 0.0

190 CORTINUE

DTT = DT y - o
CALL SSK(SOC(1), SOC(3), SOC(2), BX, EY, MASS, PHASS, B)
L=0 ) S
IERR = 0 '

12 =1

TINE = 0.0

~ DO 200 I = 1, 3
200 GACC(I) = G(1,I)

8TH ORDER BUNGE-KUTTA SINGLE STEP INTEGRATION ABRAMORITZ P. 897
BEGINNING OF INTEGRATICK HERE
210 L =1 + 1 | ‘
DT = DIT
IBTOT = 0 | |
_SOLN OF EQNS OF NOTION ARE NONDINENSIONALIZED IF SUBR PNCTH
220 CONTINUE o |
BY CHABGING DT, TIME MAY NOW BECDTAC*(L2-1). IF SO, L2=L2-1
230 IF (TIAE + DT .LT. DTAC*(L2 - 1)) L2 = L2 - 1
NE SANT TIME(L-1)+DT BETWEEN DTAC*(L2-1) AND DTAC*L2
_IP (TIFE + DT .LE. DTAC*L2) GO TO 240
L2 = 12 + 1
G0 TO 230
240 PP = (TIME + DT - DTAC*(L2 - 1)) / DIAC

DO 250 1 = 1, 3 ' -
250 GACC({I) = PP * G(L2 + 1,I) ¢+ (1. - PP) * G(L2,I)

CALL FNCTN (L, 0.0, Y, DY, K1)

DO 260 T = 1, 3
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AUX1(I) = Y(I) + DT / 2. * DY(I) + DT / 8. * K1(I) * DT
AUX2(I) = DY(I) + K1(I) * DT / 2. ,

CALL FNCTN (L, 0.5, AUX1, AUOX2, K2)

DO 270 I = 1' 3
AUX2(I) = DY(I) + X2(I) *= DT / 2.

CALL FRCTN (L, 0.5, AUX1, A0X2, K3)
DO 280 T = 1, 3 L - o
AUX1(I) ‘= Y(I) + DT * DY(I) + DT / 2. * K3(I) * DT
AUX2(T) = DY(I) + K3(I) * DT
CALL PNCIN (L, 1.0, AUX1, AUX2, K4)
DO 290 I = 1, 3
Y(I) = 0T(I) ¢ DT * (DY(I) + DT/6.*(K1(I) + R2(I) + K3(I)))
DY (I) = ODY(I) + DT / 6. * (R1(I) + 2.*K2(I) + 2.%K3(I) + K& (I})

CALL F¥CT¥ (L, 1.0, ¥, DY, DDY)

t

FIND NBW ELEMERT D,V,A

DISE(1) = Y(1) + EYN * Y(2) / R

DISE(2) = Y (%) - (BY - EYY) * ¥Y(2) / R
DISE(3) = Y(3) ~ EXM * ¥(2) / R -

DISE(4) = Y(3) '+ (BX - EXM) * Y(2) / R
VELE(1) = DY(1) + EYN * DY(2) / R

VELE(2) = DY(1) - (BY - EYM) * DY(2) / R
YELE(3) = DY(3) - EXM * DY(2) / R

YELE(#) = DY(3) + (BX - BXM) #* DY{2) / R
ACCE(1) = DDY(1) + EYM * DDY(2) / R .
ACCE(2) = DDY(1) - (BY - EY¥) * DDY¥(2) / R
ACCE(3) = DDY(3) - EXM #* DDY(2) / R -
ACCE(4) = DDY(3) + (BX - BXM) * DDY(2) / R
PF(1) = OP(1) + S(1) * (DISE(1) - ODISE({1))
PF(2) = OF(2) + S(2) * (DISE(2) - ODISE(2))
PP(3) = OP(3) + S{3) * (DISE(3) - ODISE(3))
PP(4) = JF(4) + S(4) * (DISE(4) - ODISE(4))

PEC(l) = PF(T) + PF(2)
PFC(2) = PF(1) * BYN - PP(2) ¥ (BY - EIN) + PF(4) * (BX - EX® -

1PF (3) * EXn®

PPC(3) = PF(3) + PF(B)

FIND NEW ELEMERT STIFFNESSES

300

oDT = DT

DO 330 I =1, &4
G0 TO (300, 310, 320), IELEN
CALL RMBOSG(PF(I), OP(I), I)
GO TO 330
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POR BILNR,CHECK IF STIFPFNESS HAS CHANGED. IF SO,FIND YER DT &GTD130

310 CALL BILNR(PF(I), OFP(I), DISE(I), ODISE(I), OYELE(I), OACCE(I),
1 ACCE(I) , DTT, DT2, ODT, I)

PIND MIN DT IP MORE THAN ONE ELEMENT HAS YIELDED
DT = AMIN1(DT,DT2)
. 60 TO 330
320 CALL STPDEG(PF(I), OF(I), DISE(I), ODISE(I), OVELE(I), OACCE(I),
1 ACCE(I), DrT, DT2, ODT, IX)

DT = ANINI(DT2,DT)
330 COKRTIHNUE :

DO 360 I = 1, &
JUST INSOURANCE

IF (S(I) .GT. 1.001*S0(I)) IERR = 1
IF (IERR .EQ. 1) GO TO 460

IP ONE ELEMENT HAS YIELDED & ANOTHBER IS UULOADIHG FROY YIELD LINE
IT SHOULD CORVERGE IN ONE ITERATION

IP (IVC(T) .BQ. 1) GO TO 360 '
IFP (IVC(I) .EQ. O .ARD. IELEN .EQ. 1) GO TO 360

IF PLEMENT HAS YIELDED RESET YEW FORCES & DISPS. TO THEIR OLD VALJES
SINCE WE WANT TO UKDO THIS LAST TIME STEP : o ' ’

DO 3803 =1, &
380 PF(J) = OF(J)

DO 350 3 =1, 3
Y(J) = OY(J)
350 DY(J) = ODY(J)

EBY = S(2) * BY /7 (S(1) + S5(2)) - EINM

EX = S(4) * BX / (S{(3) + S(4)) - EXM

SX = S(1) + S(2)

SY = S{(3) + s(u)

SB = S(1) * EYM *=* 2 + S(2) = (BY - BYM) *= 2 + S(3) . EXN ** 2

1 + 5(8) & (BX - EXN) ** 2
CALL SSK (SX, SY, SR, BX, EY, MASS, PMASS, R)
IBTOT = IBTOT + 1 ‘ -
IF (IBTOT .LT, 5) GO TO 220

IF ITS NOT CONVERGINS, OR ELEMENT STIPFNESSES ARE OS ILLATING
BACK&FORTH .
SET DT=DT/2 ANRD TRY AGAIN

IBTOT = 0
IF (DT .LT. 1.E-4) IERR = 2
IF (IERR .EQ.2) GO TO 460
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DT = DT / 2.
GO TO 220

360 CONTIXNUE

TEMPORARY ; TESTING STATEMENTS

IF (IPLOT .20. 0) GO TO 365

F1(1)
D1 (1)

PF (IPLOT)
DISE(IPLDT)

365 TIME = TIME + DT

STMPSON'S ROLE INTEGRATION OF EI‘B ASSUMING ]’.IHEAB ACCELERATION FO2 DDY
THE *R*#2 'S ARE IN K1l...K4 & VG '

Do 390 I

1
2

*MASS

370

380

1, 3

EIE(I) = EIE(I) + MASS * (K1(I)*VG(I) + 2.*(K2(I) + K3 (I))*(VG(
I) ¢ DT*(3.%0GAZC(I) + GACC(I))/8.) + K (I)*(VG(I) + DT* (OGACC(
I) + GACC(I))/2.)) * DT / 6.

D0 3703 =1, 3

SINCi DAMP IS RONDIMENSIONALIZED BY MASS _
BLHPbE(I) = DAMPDE(I) + DAMP(I,J) * DY(I) * DY(-I) # DT * MASS
V6 (I) = VG(I) + (OGACC(I) + GACC(I)) =* DT / 2.

YCBAR(I) = YCBAR(I) + Y(I) *= DT / TEND

FCBAR(I) = FCBAR (I) + PFC(I) ¥ DT /VT.EHD

po 380 FJ = 1, 3 '

VARC(I,J) = VARC(I,J) + (Y(I)*Y(J)/(M(I)*4({J))) * DT / TEYD
YARPC(I,J) = VARFC(I,J) + (PFC(I)*PFC(J)) * DT / TEND

TEC(I) = TEC(I) + (OLDPPC(I)*MASS*M(I) + PPC(I)) * (Y(I) -
OLDIS(I)) / (2.*Hu(I))

OLDPFC(I) = PFPC(I) / (MASS*N(I))

OGACC(I) = GACC(T)

390 OLDIS(I) = Y(I)

DO %00 I = 1, 8

DEL = DISE(I) - ODISE(I) -
TE(I) = TE(I) + (PF{I) + OF(I)) * DEL / 2.
VARE(I) = VYARE(I) + DISE(I) ** 2 # DT / TEND

VARFE(I) = VARFE(I) + PP(I) ** 2 * DT / TEND
YEBAR(I) = YEBAR(I) + DISE(I) * DT / TEND
PEBAR(I) = FEBAR (I) + PF(I) * DT / TEND
ODISE(T) = DISE(I)

OVELE(I) = VELE(I)

OACCE(T) = ACCE(I)

0Y(I) = Y(I) .
ODY (I) = DY (I)

800 OP (I) = PFP(I)

BY = S(2) * BY / (S(1) + sS(2)) - EYH
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BX = S(8 * BX / (S(3) + S(3)) = BXxN
SX = S(1) + S( )

SY = S(3) + S(¥)

SR = S(1) =

EYH ** 2 + 5(2) = (B! - E!!) _x 2+ S(3) * EXN ** 2 4+
18(4) *= (BX - EXNM) ** 2
CAlL SSK(SX, SY, 3R, EX, BY, BASS. PHASS,  B)

COMPARE W/ HAXINDMS

IF (ABS (EX) .GT. z’i:cnx (1)) ECCMAY (1) = ABS(EX)
IF (ABS(EY) .GT. ECCHAX(3)) ECCMAX(3) = ABS(ET)

DO 430 T = 1, 3 :
IF (ABS(PFC(I)) .LT. prcux(I)) G0 T0 410
PFCEX(T) = ABS(PFC(I))
TPFCMX(I) = TIME
810 TP (ABS(DDY(I) + GACC(I)) .LT. ACMAX (I)*GG) GO TO 420
ACMAX (I) = ABS(DDY(I) + GACC(I)) / GG
TACMAX(I) = TIME
420 TIF (ABS(Y(I)) .LT. stux(r)) GO T0 330
DISMX(I) = ABS(Y (D)) -
TDISHMX(I) = TIME
DUCTNX(I) = DISNX(I) / DYC(Y)
430 CONTINUZ

DO 840 I = 1. g
IP (ABS(PP(I)) .GT.-P?HAX(I)) PFHAZ(I) = ABS(P?(I)) o
IP (ABS(DISE(I)) .GT. DISENMX(I)) DISENX(I) = ABS(DISE(I))
pucHxX (I) = nIszuxm / nm(x)
840 CONTIKUE

350 IP (TINME .1T. szu) Go To 210
ERD OF INTEGRATION
reaponxa! STATEMENTS: PLOTS Poacz DISP. HYSTERESIS FOR ELENBNTS#1

460 TF (IPLOT .EQ. 0) GO TO 470
CALL PLTOPS (0.0, 2.*FY(1)/SO(1), O., 22(1)/2., 7.. 10.)
CALL PAXIS (2., 10., 'DISP!, =0, 10.. 04, =10.+2Y(1) /S0 (1),
1 2.+FY (1) /50(1), 1.)
© CALL PAXIS (7., 6., VFORCE', 0, 8., 90., =2. *rz(l), FY(1) /2., 1.)
CALL PLINE(D1, F1, 1, 1, 0, 2, 1)
CALL PLTEND

470 DO 480 T = 1, &
VARPE(I) = SQRT(ABS(VARPE(I) ~ PEBAR (I)*#2))
VARE(Y) = SQRT(ABS(VARE(I) - YEBAR(I)**2))
880 TE(I) = TE(I) = PP(I) ** 2 / (2.%SO(I)) -

EIET = 0.0
" DANET = 0.0
TECT = 0.0
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DO 520 1 = 1, 3

DO 4903 =1, 3 . , ‘ .
VARFC(I,J) = SQRT (ABS(VARFC(I,J) - FCBAR(I)*PTBAR(J)))

430  VARC (I,J) = SQRT (ABS (VARC(I,J) - YCBAR(I)*Y-BAR(J))}) e e

PIE(I) = EIB(I) + MASS * VG (T) *= 2 7 2.
DO 500 J = 1, 3 ‘ : o
500 TEC(I) = TEC(I) - SKINV{I,J) * PEC(J) * PFC(I) / 2.

FINAL STRAYE & XINETIC ENERGY EVENTUALLY ARE DISSIPATED AS
DAMPING ENEBRGY :

DO S10J3 =1, 3
510 DANPDE(I) = DAHNPDE(I) + SKIHV(I,J) * P?C(J) * PPC(I) / 2.

- DAMPDE(I) = DAMPDE(I) + MASS * (DY(I) + VG (D)) *t 2 / 2. - 3ASS
1. ® PDELTA(I) * Y(I) ** 2 / 2. .
EIET = EIET + EIE(I) -
DANPT = DAMPT + DAMPDE (I)
520 TECT = TECT + TEC(I)

TEDE = DANPT + TECT

¥RITE (IT,S530) - (PPCHX(I),TPFCMX(I) ,I=1,3), (ATEAX(I),TACNAX(I) ;I=
11,3), (DISMX(I),TDISMX(I),I=1,3), DUCTHX, DYC, YCBAR, VARC, FIBAR,
2VARPC, EIE, EIET, DAMPDE, DAMPT, TEC, TECT, TEDE,. zccanx. L, L2,
3TIXE, TERR o
530 FORMAT (//'-QUANTITY x ', 'XTINE R RTINE

1 X YTISE'//' MAX FORCE', 6F10.3/'0ACC/3,TOTY, 6F10.3/70
2MAX DISPL*, 6F10.3, T80, ! THETA*R® /*0DUCTILITY*, 3 (F10.3,10X)/10YI
3ELD DIS*, 3 (F10.3,10X)/'0AVG DISP.', T11, 3(Fi0.3,10X)/, 'ORMS DIS
ap. %, 3(r11,3(F10.3,10X) ), °'OAVG FORCE', T11, 3(F10.3,70X)/, 'ORNS
5 FORCE', 3(T11,3(F10.3,10%)/), ' EQ. INPUT'/' ENERGY °,

6 ' - 8(F10.3,10X) /* DAMPING'/' ERERGY 'y ¥(P12.3,10X)/' DISSIP
TATED' /' ENERGY Y, 4(P10.3,10X) /T70, 'TOTAL DISSIPATED ENERGY= ', °
8 P10.3/* OMAXECC ', 3(F10.3,107), 10X, * L=°7, IS, ' L2=¢,

9 15, * TINE=', F10. u.'IERB‘ ‘. IS/)

VRITE (IT,540) (T,SO(I),F¥(I),DYE{I),RO(I),DISENX(I),DUCHX (L),
1PFMAX (I),TE(I) ,YEBAR(I) ,¥ARE (I) ,FEBAR(I),VARPE (I}, I=1,4)

S40 FORNAT ('~-ELMT $#/ STIFPF/YIELD FORCE/YIELD DISPL./R-0O cozyr/xnx HIS
1P. /DOCTILITY/MAX. PORCE/DISS. ENERGY/AYG DISP/RMS DISP./AVG FORZE/RY
25 PORCE/' //(I5,2X,F9.1,3%,F9.3,1X,F9.4, 71X, F5.3 7!,8(?9 '3,1X)))

GO TO 160 .
550 STOP 1
END ,
SUBROUTINE PNCTN(L, PCT, Y, DY, DDY) -
commON SK(3,3), DANP(3,3), PHI(3,3), D(3), OLDPPC(B). OLDIS(3|
1 PDELTA( 3)
CORNON /GTIME/ GA=C (3), OGACC(3), G(8000,3)
DIMENSION Y (1), DY (1), DDY (1), ADX(3)

‘Y == -C/B*Y -k =Y

v
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K*#Y=PREVIOUS PCRCE+INCREMENTAL FORCE ' )
=PREVIOUS FORCE+CTURRENT STIFPRESS*INCRBHBHT&L DISPLACENENT
- OLDPPC MUST BE- NOR!ALIZED i . v
DO 20 I =1, 3 ' :

10 S = BP(I,J) * DY(J)
20 ADX(I) =S

po 40 =1, 3
s = 0.0

 pP0O30J3 =1, 3 _
30 S =8+ SK(I,J) * (Y(J) - QLDIS(J)) .

40 DDY(I) = - (S ¢+ OLDPPC(I)) - AOX(I) - OGACC(I) * (1. - PCT) =
1G;CC(I) * PCT + PDELTA(I) * Y (I) ’ ,
RETURN
END

SUBBOUTINE SSK (SX, SY, SR, BEX, EY, MASS, PMASS, B)
~ COMNMOXN SK(3,3), DAMP(3,3), PHI(3,3), D(3), OLDPFC(3), OLDIS(3),

1 PDELTA(3)
REAL MASS
SK (1,1) = SX / MASS .
SK(1,2) = -EY * SY / (MASS*R) -
. SK (1,3) = 0.0
SK (2,2) = SR / PMASS
SK(2,3) = EX * SY / MASS / R
SK (3,3) = SY 7/ MASS
Do 10xXI=1,3
PO 103 =1, 3
10 SK (J,I) = SK(I,J)
RETURN
EED

- SUBROUTIYE BILHB(PP, oF, Y, OY;'OVBL, OAcC, ACC, OTT, DT, ODT, I)

BILINEAR STIFFNESS SUBROUTINE PEOGRAMMED BY X.E.BATTS 1978

-FOR AN ELEMENT WHOSE FORCE IS A FUNCTION OF OHLI ONE - DISPLACBHBRT

SUCH AS A LOMPED MASS SHEAR SYSTEM.
I7 THE PORCE OVFRSHOOTS THE BILINEAR ERVELOPE, THE SUBROUTINE
CONZUTES THE TINE STEP NECCESSARY TO HIT THE ENVELOPE pnnczsnxr(v/r
1%)

FOR_ELENENTS WHOSE FORCE IS A PUNCTION or SEVERAL DISPLACBHEKTS soc
AS MOMENTS IN A BEAN,

THE TISE STEP CALCOLATION NUST BE REFORNULATED (BUT CAN BE DONE
WHERE THE CHANGE §ILL BE IN THE OLD VELOCITY GACC & NEW ACC
SOCHE AS DY=MO/SO=2+#THETAA+THETAB-3/LENGTH#*PSI) -
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IvC HUST BE INITIALIZBD TO 1; S TO SO; PHAI T0 P!‘(1-RO)/(SO*RD)

CONMON /STIVP/ RO(4), PY(Q), SO(Q), Ive{w) , 5(4), PHRI(Q), EP:HA!.

1 IBTOT -
IVC(I)-O MBANS NEW CHANGISG' IYC(I)=1 HEASS UNCBAHGING IVC(T)=-1
BEAHS GNLOADING FROM YIELD LINE

DT = DTT
IF (IVC(I) .EQ. 0) GO TO 20
IF (IVC{I) .EQ. - 1) IVC(I) = 1.

IF UNLOADING GTO 103IF ROT GTD30. INITIALIZE CONVERGESCE COUNTER;

'IP Y IS BEYOND FY* (1~RO)/(SO*R0O) LOADINGEOMNLOADINS BECONE UNCLEAR

IP (ABS (OY) .LT.PMAX (D)) GO TO 5
~ IP(S(I).E2.S0(I)) GO TO 40 ,
IF (ABS (OY) .LT. ABS(Y).AND.ABS {PF) .LT.FY (I})) GO TO 10
IF (ABS (OY) .GT. ABS(U) .A¥D.ABS (PF) .GT.FY (I)) GO TO 10
G0 TO 110
S IF ((PF + OF)=(Y - 0%)) 10, 30, 30
10 IF (S(I) -EQ. SO(I)) GO TO 40

ONLOADIRG & PREVIDUSLY YIELDED,RESET STIPPHESS TO INIIIAL,IVC(I)
AND REDO TEIS TIME STEPS CALCULATIONS

S(I) = SO(I)
IVC(T) = -1
DT = DTT

GO TO 113

DT WAS CHANGED. RESEF IVC(I)=1 & CEECK IF PF=FY(I) SET
S(I) =SO(I) *RO (I) ; o

20 IVC(I) = 1.

S{I) = SO(I) *= RO(T}

EPSLON = ABS(PP - (RO (I)*(SO(I)*Y — PP - FY(I)) + rx(x))/(1. - BO(
1I))) / ABS (PF)

EPSLOF = AMTINT (EPSLON,ABS (PP - (RO (I)*{(SO(I)*f - PF + 32(1)) - PY(
11))/(1. - RO(I)))/ABS (PF)) .
EPSNAX = AMAX1(EPSNAX,EPSLON)

IF (EPSLON .LE. 0.01) RETURN

'CALCOLATED DI RAS FAILED TO CCNVERGE, RECALULATE DT IP- IT HAS OVERSHOT

ENVELOPE,OTHERNISE USE TEIS TIMESTEPSCONTINUE. IF TWO ELEMENTS
HAD YIELDED, ONE PROBABLY HAS NOT CONVERGED OR OVERSHOT;THIS IS OK
S(I) = So(I)
GO TO 40
IF NOT UNLOADING & NOT PREVIOUSLY YIELDED, cgicxvrovszg IF YIELDE) NOW
30 IF (S(I) .EQ. SO(I)) GO TJ 40

CONTINUING TO YIELD(GTO 110}
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6o 10 110
IF PF ABOVE BOTTOM YIELD LINE, (GTOSO)

80 IF ((PP? - (RC(I)*(SO(I)*Y - PF + .P!(I)) - PY(I))/(1. - RO(I))) .

1 GE. 0.0) GO TO S0

ELEMEZRT HAS YIELDED OF NEGATIVE SIDE. FIND NEW DT
G0 T0 60

IP PP BELOW TOP YIELD LINE RETURE

S0 IF ((PF - (RO(I)*(SO(T)*Y - PE - PY(I)) + rt(z))/(1. - RO(I)))
1 LE. 0.0) GO TO 110

ELEMENT HAS YIELDED ON POSITIVB SIDE. FIND NEW DT(GIO 60)

’

G0 10 60 | /
YTELDING. PIND NEA DT S.T. HE¥ PP=YTELDPF & SET IVC(I)=0

DY=(PY (I) -OF) /SO (T)=DT*OVEL+DT##2/6% (2*OACC+ACC (T+NE¥DT)) -

ASSUMING LINEAR ACCELERATION DOURING DTT,THIS INPLLES A CUBIC

EQF IK DT. SOLVE FOR DT,SET IVC(I)=0,5REDO TRIS TINE STEP W/ NEF DT

60 P = 3. % ODT * OASC / (ACC - GACC)
Q =2. * P * OVEL / OACC

FY(OY,0Y)=(PY (I) +RO(I)* (SO(I) *0Y-OF-FY(XI))})/(1-RO (X))

FIY = FY(I) ‘
Ir (X .IT. OY) FYY = -PY(I) -
= -6. % ODT / 53 (I) ‘* ((FYY + RO(I)* (SO(I)*IY - OF = r!x))/(1
1 RO(I)) -.OF) / (ACC - OACC) -
A = (3.%) - P*p) / 3.
B = (2.*P**3 - 9.#PsQ + 27.%R) / 27.
DT = ODT

IF A>0 THERES ONLY ONE REAL ROOT,USE NERTON ITERATION
IF (A .GE. 0.0) G TO 80
3 PEAL nrsmrucr ROOTS, FPIND THE ONE BETWEEN O AND DIT

D = -B/2./SQRT(-A**3/27 )

IF (ABS(D) .Gr. 1.0) GO TO 80
PHI3 = ARZOS(D) /3. .

€ = 2. * SQRT(-4/3.)

DT = DTT

DI2 = C * COS(PHI3 + (J - 1. )‘2.094395) - P / 3.
IF (bT2 .LE. 0.0) DT2 = DTT.

.
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IP (DTZ. LT. 1- g-u’ DT2=].E-Q
70 DT = AMNINIT (DT,DT2) -

GO TO 100

80 po %0 3 =1, 3
90 DT = DT - (DT**3 + DP*DT**2 + Q*DT + R) / (3. *DT**2 + 2. *P‘DT t.Q)

IF DT IS CLOSE TO DTT, LINEAR ACC. MAY GIVE DT>DTT SINCE
RUNGE-KUTTA 5 LINEAR ACC. GIVE SLIGHTLY DIFFERENI ANSWERS.
IT SHOULD BE WITHIN 1% THOUGH. IP NOT, IBOMB WILL =5

100 IVC({I) =0
110 RETORN
ERD
- SUBROUTINE RHBOSG(TT, oTT, I)

PERIOD /DT SHOOLD BE >16 OTHERWISE YCU CANT REALLY
CONSIDER THE ELEMENT TO BE LINEAR BETWEEN TIME STEPS

1 - IBTOT

DIMENSION YN(20,4), IC(84), UP(4)

GY (DY,DR) = 1. / (1. + (DR)*ABS(DY)#** (DR - 1.)) . « '
GRO (DY,DYD,MR) = 1. / (1. + (DR) *ABS({DY - DYD) /2.) **(DR ~ 1 ;)

CONNMON /STIFF/ RO(4), PY(Q), So(4), IVC(4), S(4), PMAX(4),EPSIAX,

GV=STIF¥FNESS OF SKELETON CURVE (W/ SHARPNESS COEFPP=DRS ALPHA=1.)
GRO=STIFPNESS NOT ON SXELETON CURVE v

EVEN IC(I) *S= UNLOADING PTS ON SIDE OF HYSTERESIS LOOP OF MOST
RECENT UNLOADING FI0M SKELETON CORVE

ODD IC(I)?'S = URLOADING PTS GOING IN OTHER DIRECTION

IVC MUST BE INITIALIZED TO 1, S TO SO

T=1TT /FY (D . ,
OT = OTT / FY(I) , '
‘ IP IVC(I)=1;0N SKELETON CURVE .
IF (IVC(I) .NE. 1) GO TO 30
IF (ABS{(I) .LT. ABS(OT)) GO TO 20
10 S(T) = SO(I) * GV(T,RO(I))

IC() =0

RETURN -
ONLOADING FRON SKELETON ZURVE .SET
IVC(I)=-1 & REDO THIS TINE STEPS
CALCULATIONS W/ NEW STIFPRESS

20 IVC(I) = -1 = =

OP(I) = 1. : e

' UP (I) =1: INCREASING JP (I) =-1; DECREASING

IF (T .1T. OT) UR(I) = -1. - :

IcC(I) =2

18(182): HIGHEST PTS ON SKELETON CURVE
rH (1,I) = -OT ’ )
N (2,I) = OT
S(I) = SO(I) * GRO(T,OT,RD (I))
-RETURN



o aa ann

nnaoan a.

136

30 IFP (ABS(T) .GE. ABS(Y4(1,I))) GO TO 50 |
IVC(I)=0 MEANS HOT ON SKELETON CDRVE

IVC(I) =0 '

IP DBITA(?ORCE)*DELIA(DISP)GTO GO T 20 .
. I.E. BOT UNLOADING

IF ((T - OT)*0OP(I) .GT. 0.) GO TO 60

UNLOADING BUT NOT FROM SXELETON CURVE
IVC (I) =-1 ' -

IVC(I) = -1
gP(I) = 1
IF (T .LT. OT) OP(I) = =1i.
IC(I) = IC(I) + 1 _ :
IF (UP(I)*(T - ¥YM(IC(I) - 1,I)) .GT. 0.) 30 ™ 70"
UNLOADING AGAIN §/ YN(IC(I))=UNLOADINS PT
YN (IC(I),I)
80 S(I) = so(r) * GRO(T.YB(IC(I) .I) RO(I))
RETURK
50 IVC(I) = 1 ' ' :
BACK ON SKELETON CURVE ,GTO 9
GO T0 10

CONTINUES OUSLOADING FRCM PT ¥M(IC(I)) TILL IT REACHES UNLOADING PP
YN (IC(I)-1) FHEN IT UNLOADS FROM PT ¥M (IC(I)-2) TOWARDS PT YN(IC(I)-3)
ETC. TILL THE SKELETON CURVE IS REACHED

60 IF (OP(I)* (T ~ YM(IC(I) - 1,I)) .LT. 0.) 50.TD &0
70 IC(T) = IC(T) -2 . .

IF (IC{I) .ED. 1) IC(I) = 2

IF (IC(I) .EQ. 2) GO TO 40

GO TO 60

END

sunnour:sv BIG
. DOUBLE PRECISION P, Q, R, A, B, x. Y

COMMON SK(3,3), DANP(3,3), 931(3 3), D(3), OLDPPC(B). OLDIS(Bi 0
1 PDELTA (3)

P = -85K(1,1) - SK(2,2) - SK(3,3)
Q = SK(1,1) * (SK(2,2) + SK(3,3)) *+ SK(2,2) = sx(3 3) - SK(2,3) *+
12 - SK{1,2) *=* 2

R = ~-SK({1,1) * SK(2 e2) ® SK(3 3) + SK(1 1) *= SK (2, 3) *¢ 2 + SK (3,
13) * SK(1,2) *=x 2

A = (3.D0%Q =~ D*P) / 3 DO

B = (2.D0*P*x3 --3,DO*P=*Q + 27.DO*R) / 27.D0

"IP (B**2/4.D0+A**3/27.D0 .GT. 0.D0) B = 2.D0 *- DSQRT(-L**B/Z?.DO)
1* B / DABS(B)

X = DARCOS (-B/2.D) /DSQRT {-A*#*3/27.D0)) / 3.D0

"= 2.D0 * DSQRT(-1/3.D0)

D(1) = Y * pCOS(X + u4.1887902D0) - P / 3.DO
D(2) = Y * DCOS(X + 2.094395103p0) - P / 3.D0
D(3) = Y * DCOS(X) - P / 3.DO



137

Do 10 xT= 1, 3

DO 103 =1, 3
10 PRI (T,J) = 0.0

PO BO I =1, 3
PHI(1,I) = 1.0 , o
IF (ABS(SK(3,3) = D(I)) .LE. 5.E-01 .AND. SK(2,3) .EQ. 0.0):
1 606 TO 20 - . o
Go 10 30 4
20 IP (SK(1,1) .E2. SK(3,3) .AND. I .NE. 1} GO TO 30
PHI(1,I) = 0.0 :
PHI(2,I) = 0.0
PHI(3,I) = 1.0
G0 TO 80 _
30 IP (ABS(SK(1,1) - D{I)) .LE. 5.B-01. .AND. SK(1,2) .EQ. 0.0)
1 _ GO TO 40 ~
60 TO 50
40  PHI(1,I)
PRI (2,I)
PHI(3,I)
GO TO 30 . ,
50 IF (ABS(SK(2,2) - D(I)) .LE. 5.E-01-. .AND. SK(1, 2) -EQ. 0.0 .AND.
1 SK(2,3) .EQ. 0.0) GO TO 60
80 TO 70 .
60  PHI(1,I)
PHI (2,I)
PHI (3,I)
GO TO 80
70 . IF (SK(1,2) .EQ. 0.0) PHI(1,I)
IF (SK(1,2) .EQ. 0.0) PHI(2,I)
IFP (SK(1,2) .NE. 0.0) PHI(2,I)
IP (SK(2,3) .NE. 0.0) PHI(3,I)
1 D(I))*PHI(2,I)) / SK(2,3)
80 CONTIRUE

wounn
OO
“ s
QOO .

o.o
1.0
0.0

0.0

1. 0

-(SK{1,1) - D{I)) / SK{1,2)
-(SK(1,2) *PHI(1,I) + (SK(2,2) -

1 Jo} 90 J=1, 3
SU¥ = SQRT(PAI(1,J)**2 + PHI(2, J)**Z + PHI (3, J)**Z)

PO9O I =1, 3
90 PHI(I,J) = PHI (I,3) / SURm

RETURY
END -
SUBROUTINE STFDEG(PP, OF, Y, CY, OVEL, OACC, ACC, DTT, DT, ODI, I)

BILINEAR STIFPNESS DEGRADING HYSTERESIS{SIHMPLIFIED TAKEDA)
SUBROUTINE. CALCOLATES NEW TINE STEP DT WHEN STIFFHESS'CHAHGBS

anan

COMMON/STIPF /RO(4), FY(8), SO{(4), IVC(4), S(4), P!AZ(E), BPS!AI.
1 - IBTOT
. DIMBNSION U (13,4, F(13,4), IC(“), IOC(“), 52(4)

c o
C IVC=1 MEANS UNCHANGINS STIFPWBSS' IVC--1 HBRHS UELOADING ,LAST STBP
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IVC=0 MEANS CHANGING STIFFNESS WHILE LOADING ,LAST STEP;CHK IF
CORVERGED

PT IC=2 IS THE HIGHEST PT. OK BILINEAR ENVELOPE REACHED
PT IC=4 IS THE MAXY PT REACHED ON WAY TO PT IC=2

Pr IC=1 IS THE MIGZROR OF PT IC=2

PT IC=3 IS THE MAX PT REACHED ON WAY TO PT IC=1

IVC MUST BE INITIALIZED TO 1: S TO SO; PMAX TO FY

DT = DTT ’

IF (IVC(I) .EQ. 0) GO TG 20
IF (IVC(I) .NE. -1) GO TO 5
S2(I) = SO (I)

IVvC(I) = 1

IOC(I) = IC(I) + 2

g{I0oC(I),I) = OY
F(IOC(I),I) = OF
DT = DTT :
G0 T0 160

10 IP (S(I) .EQ. SO(I)) GO Tq 60

UNLOADING & CHANGING STIFFNESS FIND DT S.T. DY=0 TO AVOID
PROBLEXS WHEN TWO ELEMENTS YIELD & UNLOAD SIMULTANEOUSLY

IVC(T) = -1
DY = 0.0
60 TO 110
20 IVC(T) = 1
IF( PMAX(I) .BQ. PY(I)) GO TO 40
IF (S(I) .EQ. SO(I) .AND. OP*(Y-0Y) .LT. 0.0) GO TO 40
EPSLON = ABS(? (I0Z(I) + 2,I) - PF) / ABS(PF) -
TP (EPSLON .GE. 0.01) GO TO 30

COBVERGED. LOADING TOWARD U (IC (I)~-2)
IP (I0C(I) .LE. 0) GO TO 90
S2 (I)=(P(IOC(I),I) —-F(I0C(I)+2,I))/(T(I0C(I),I) -0 (I0C(I)+2,I))
GO TO 160 : '

FAILED TO COSVERGE TO PT. O(IC(I))

30 10C(I) = IC(Y)
G0 TO 70

ONLOADTING TOWARDS ZERD FORCE, CHECX IF IT HIT ZERD
OR FPIRST NONLINEAR EXCURSION

40 IF (ABS(PF)/PY(f} .GE. 0.005.AND.PMAX(I).NE.PY(I)) GO TO 50

ZERO FORCE, FIND NEV STIFFNESS
OR PIRST EONLINEZAR EXCURSION

I?(anx(x);za.rt(r).annixss(pnxxgx)-ABS(pr)l/Pnnx(x).sz.o.o1)
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1 GO TO 100

IF (PMAX(I) .EQ. PY(I)) G0 TO 90
IOC(I) = IC(I) -1

§2(I) = F(I0C(XI),I) ,/ (O(IOC(I),I) - Y)
PP=0.0

GO TO 160

FAILED TO CONVERGE TO ZERO FORCE
50 TOC(I) = IC(I)
UNLOADING TOWARDS ZERO FORCE: CHECK IF BEYOND
60 S2 (I)=S0(I)
IF (PMAX(I) .BQ. PY(I)) 30 TO 160
IP (PP*OF .GT. 0.0) GO TO 160
DY = -OP / SO(T)
IVC(I) =0
GO TO 110
CONTINUING LDADING: CHECK IF BEYOKD P(IC(I),I)
70 IF (ABS(PF) .GE. ABS(F (MAXO(IC(I),1),I))) GO ro 80
S2 (T) =S (I) o
GO TO 160
80 IF (S(I) .EE. SO(I)*RO(I)) -GO TO 100
STILL ON BILINEAR EXVELCPE

90 S2(I) = RO(XI) * SO(I)
0

I0C(I) =

g(1,I) = -y
P(1,I) = -PF
0(2,I) =Y

P(2,I) = PF :
PMAX (I) = ABS(PF)
GO TO 167

IP STILL LINBAR,RETURKN

100 S2 (I)=S(I) :
IF (PMAX(I) .EQ. FY(I) .AND. ABS(PF) .LE. FPY(I)) 30 TO 160

CHANGING STIFFNESS, FIND NEW DT PIRST

DY = U (MAXO (IC(I),1),I) - OY

IVC(I) = 0 ' : .
IF (PMAX (I) .EQ. PY(I)) DY=(FY (I)/SO(I)=-ABS (0Y))*0Y/ABS (OY)

IF ONE ELEMENT YIELDS & ANOTHER UNLOADS, THE CHANSE IN TIME STEP YAY
CAUSE THE UNLOADING ELEMENT TO RELOAD. IN THIS CASE SINCE IC WILL
JUST HAVE BENN INCREMENTED BY 2 IN IS#9, WE DONT WANT TO DECREMENL IT
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IF (DY.NE.0.0) IOC(I)=IC (I)-2
110 P = 3. * ODT * OACC / (ACC - OACC)
Q = 6. * ODT * OVEL / (ACC - OACC)

-6. * ODT * DY / (ACC - OACC) X
(3.%0-P*p) / 3. ‘
(2.#P*%3 - 9_«P=xQ + 27.%R) / 27.

DT = ODT

IF (A .GE. 0.0) G3 TO 130
D=-B/2./SQRT(-A%*3/27.)

IF (ABS (D) .GT.1.0) GO TO 130
PHI3= ARCOS (D) /3.

€ = 2. * SORT(=-A/3.)

DT = DTT

o >

Do 120 3= 1, 3 '
DT2 = C * COS(PHI3 + (J ~ 1.)#*2.094395) - P / 3..
IP (DT2 .LE. 0.0) DT2 = DTT
IP(DT2.LT.1. E~4) DT2=1.E-4
120 DT = AMIXN1 (DT, DT2)

GO0 T0 150

130 DO 180 3 = 1, 3

180 DT = DT - (DT#*3 + PsDT#*2 + Q#DT + B) / (3.*DT#%2 + 2.+P&DT + Q)
IP (DT.LT. 1.E~4) DT=1.E-4
IF (DT .GT. DTT) DT=DTT

150 CONTINOE :
160 IP (I .NE. 4} GO TO 190
DO 170 J=1,4 -
IF (IVC(J) .EQ. 1) GO TO 170
GO TO 190 -
170 COBTINUE
DO 180 J=1,4
IC(J) = 10C(J)
180 S(J) = S52(J)
190 RETORN
END
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APPENDIX F

The first law of thermodynaﬁics for a closed system that

..

undergoes a change in state is

§0 = [ AE + [ W -1
foo - [z e ] -
2

where jaQ is the heat transferred by the pfocess_between
] :
state 1 and state 2 and fdﬁ is the work dome between state
1

1 and state 2. E 1is the energy of the system in a given
state and in this case represents the sum of strain energy,
SE and kinetic energy,KE. ‘ |

Equation F-1 can be written as
. wvhere 0, represents the dissipated hysteretic'aiésipated
energy,DHE, and dissipated damping energy, DDE

105= - (DHE+DDE) .
1%2 represents the work done by the system which is the
earthquake input energy,EIE

lg2 = «-EIE.

By writing the dyramic egquations of motionm as

n-(ﬁ'g'eﬁ') +CoT+F (7) =0
and integrating these forces through the distance_dU+dUg

t - @ - o -
f{mo(u +0 )+C-U+F(U)'}o(du+dﬂg=0
5 g

the various terms in Eguation F-2 can be expressed as
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t e® . @ . t - . . t - !
 [%e(T #U )-(dU#dUg)+f{COU+F(U)}0dU+ {CeU+F (U)} ed0 =0 F-3
o] g (o) . ‘ . g

By a suitable <change of variables and rearranging terms,
Rquation F-3 becomes

« t < .t t

t « = - . .
fﬁ-(H+Ug)o(dU+dUg)+chU~dU+fP(U)0dU=-f{C-U+F(U)}-dUg F-4
o 0 ‘o o

vhich satisfies the first law of thefmodynamics for the

closed system shown in Fiqure F-1.

SNV N V8 N VY NN N N Y

2=0

FPigure F-1 Dynamic Model
The first term in Equation P-4 is the kinetic energy,KE

KE = ncta(t)*ﬁg(t)]z/z

The second term is the dissipated damping energy,DDE

t . |
DDE = [C»02 (t) #dt
s | |
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Tﬁe third term represents the dissipated hysteretic energqgy

DHE.,and the strain energy,SE |
SE = KOUé(t)/Z

The right hand side of Equation F-4 is the

earthquake input enerqgy,EBIE

’ v t - t * e - = - -
EIE“=-j{K-U+c-U}odug=ja~(ug+U ) eUgedt.
o : o - ' '

Pinally, Equation F-4 can be rearranged as the more familiar

EIE = OST + AKE + DDE + DHE | F~5
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