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A ERST FPACT

It is a0oi wail known that for buildings with eccentric

cenlteL oft sss and. stiffness, there is a dynamic

awpL.ifiation of torque and a dynaaic reduction in building

shear.' The main concern with building torsion is that the

eccentricity induces a rotaticnal motion whose contribution

to the d isul acem ent at t h e er:iphery causes an increased

Qisj lw.e et .i tred to t he disolacement cOLrespoLding to

zero ecc entrticit y. Other researchers have reported for a

sin -e acceleroy ram as much as a 40-~100% increase in the

eri pher al response.

1141t ii.L issertation, the probabilistic approach is

selectei for the analysis of linear response. The

edrth', UIkie ground. excitaticn is discussed. and a simple

expression relating torsional eart hquake power spectra to

trdns.~at iondi earthquake Ecwer spec tra is developed.

Interac~tion relatioui_, are deri~ied for systems with

simultaneous X, o, and Y grcund excitations.

T.L;;_ ' r aeI~ resronsE is studied using the

probabilistic approach. Ift is shown that a special case

arises where the peripheral response is independent of the

eccentr icitj ratio and freguency ratio.

The state of the art ot artificial accele rogram

generation is discussed.- Various parameters affecting

ground rotational motion are discussed.

toaliiiear response characteristics for a four exterior

wail mdel are a~nalyzed and it is ccncluded that parametric



resonance Ls not a or cn) e for this mcdel.

ajor o nciu lions fr oa the results of t his dissertation
inci ude the fowliowing : a) the maximumi expected increase in

p Li Lerai response is on the crder of 511°x, b) the single

mt, important parameter in building torsion is the tcrsion-

tZrflsia tion fre cpuenc y ratio,---ahd c) t orsio nal. ground

excitation must he quite large before .it sig[aif'icantly

afE e c is tc- :e s r nse f-'Dr s y ste Ms wi ta WelL sp arat ed
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CHAPTvP I

INTROD1UCTIoN

According to Herodotus, when Xerxes was planning the

second Persian expedition against the Greeks in 480 B.C., a

bridge built for the crossing a Eellesoont by his

Phoenician and Egyptian engineers was destroyed by a storm.

The engineers were beheaded and the waters of Hellespont

received three hundred lashes(C'.

In andient Mesopotamia, the Code of Hammurabi contained

the first building code. Its design philosophy was to

prescribe the punishment for a failed building, one of which

was the death of the builder(z).

As time passed, society became less barbaric and building

became more - scientific.

While there is no written historical evidence the

Egyptians had knowledge of a theory of structural behavior,

their immense and precise civil engineering works suggest

they devised empirical rules in their building. The Greeks

contribution to structural theory was by Aristotle (34-322

B.C.). and by Archimedes (287-212 B.C.) who formulated the

equilibrium principle of statics. The Romans, while profuse

builders, designed their structures empirically. The Middle

Ages, as is typical of the period, seems devoid of much

civil engineering progress. Although a 'few of the

I
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Renaissance's versatile scientists, Da Vinci and Galileo,

discussed structural behavior in their publications, it was

not until the 18th century, the Age of Season, that the

basis for the modern theory of mechanics of solids was

established by Hooke, the Bernoulli's, .,Euler, LaGrange,

Couloumb, and Navier. The establishment of the theory

changed the emphasis of design from empirical observations

on strength to a scientific elastic analysis of stresses and

strains 3).

Dedicating a bridge, Franklin Delano Roosevelt once

remarked that bridge building is the story of civilization.

It surely is the story of civil engineering. Nineteenth

century bridge failures had a profound effect on the course

of the civil engineering profession. In 1876, a Howe truss

bridge at Ashtabula, Ohio, collapsed, killing ninety

persons. It had been erected by a non-engineer, who also

had modified its design. Legislation following the

catastrophe required that the design and construction of

bridges- be directed by professional engineers(+.

While infamous bridge failures in wind in- the 1800's

brought about studies and design. rules f or wind bracing, it

took the great San Francisco. Earthquake 'of 1906 to spur the

profession to studies of earthquake resistant design,

resulting in the first American building code for.earthquake

design rules,.namely the Santa Barbara.code of 192553.

5any studies. of earthquake resistant design center ou

inelastic response. The present design philosophy that
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structures be able to withstand a large earthquake while

allowing structural damage is based in part on economics and

the concept of limit design, introduced by Housners) . The

principle of limit design is to allow the structure to

dissipate energy hysteretically, which results in a

ductility demand design requirement.

Ductile moment frame buildings are typically systems of

orthogonal plane frames coupled through floor

diaphragms. For two-dimensional analysis, the plane frames

can- be analyzed separatel'y. The hysteretic energy

dissipation for a moment frame takes place through plastic

hinging of the members when yield moment capacity is

exceeded. The simplest model for such plastic hinging is

the elasto-plastic model. The elasto-plastic model was used

by Berg (7) in the inelastic analyses of plane frames and

also by Newmark C ). The next refinement in the analysis

was the use of the bilinear model. This model was employed

by Clough (9), Ivan (10), and Giberson (11) to mention a

few.. Since the moment curvature relation for typical members

was not multilinear but curvilinear, the next refinement

included the Eamberg-Osgood model (12) utilized by Jennings

(13), Goel (14), and Kaldjian C1.)_

Suggested analytical models for the hysteretic behaviour

of shear walls have been used with some success c(6 17).

Extensive experimental data also exists on the hysteresis

behaviour of reinforced concrete flexural members and the

parameters affecting it; however, no generally accepted
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modeling technique exists.

Many special purpose computer programs exist. for

inelastic dynamic plane frame analysis; one widely used

general purpose computer program for this purpose is DRAIN2D

by Kanaan and Powell (t18

The development of the computer .and the increased size of

computer core space spurred the development and use of space

frame elastic Drograms. A space frame elastic dynamic

analysis program, TABS, developed. by Wilson C19)

economically utilizes the planar structure of space frames;

however, it computes column axial strains that are not

compatible in columns common to orthogonal plane frames. In

the course of the space program, the Mational Aeronautics

and Space Administration developed a three-divnensional

elastic dynamic -analysis computer program, -ASTRANC 2 0 ).

Other public general purpose space frame programs developed

are SAP-Iy721) and STRUDL C22)*

Three dimensional elastic dynamic computer programs are

expensive to use since each joint has six degrees of

freedom, requiring a large amount of computer time in matrix

manipulation.. Simplifying techniques have been employed

with some success to show the gross structural response.

Early studies (23) of building torsion have shown that

the lateral and torsional motions. of the structure are

coupled if there exists an eccentricity. between the centers

of mass and stiffness of the structure. For small

eccentricities the asual method of analysis consisted of
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computing the static torque, the product of the building

shear and the eccentricity. Many studies (24 2S) have shown

that the dynamic torque may considerably exceed ' this

product. Most of these studies have shown that a reduction

in the 4orizontal building shear usually occurs along with

this dynamic amplification of torque.

Hoerner C26 did a study of modal coupling, meaning a

coupling between the two translational and one rotational

degrees of freedom such that each mode may contain a

component of all three degrees of freedom. Hoerner's study

showed that the amount of modal coupling is related to the

eccentridity between the center of mass and' the center of

stiffness divided by the translational- torsional frequency

difference. This is confirmed by forced vibration tests

(27).

Heidebrecht (2S) used modal analysis with the frames and

shear walls modeled as prismatic shear and bending beams

respectively.. With a simplification of the three coupled

differential equations of motion, he developed nomographs to

determine the higher coupled frequencies.

Berg (,29) also used modal 'analysis in a study of a

cantilever shear beam model to show the' effect of

unsymmetric setbacks. His study showed that torsional

oscillations occur and' mode shapes are coupled for

unsymmetric setbacks.

Tso (3O) showed that when a symmetric building with no

eccentricity, i.e. uncoupled, is excited in only one
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direction, torsional response can. arise from, the nonlinear

coupling between translational and torsional motions, known

as parametric resonance.

The final refinement in analysis techniques is the

modeling of buildings as inelastic space frames. Okada (31)

modeled a one story building as a space frame to show the

increased corner damage due to high eccentricity. Padilla-

"ora C323 used .a four frame shear building as a model to

show the effect common column orthogonal strength

interaction has on hysteretic dissipated energy.

Shiga C33) developed a special purpose three-dimensional

inelastic dynamic response computer program for the analysis

of a buildinq damaged by the 1968 Tokachi-Oki

earthquake. The results correlated with the damage.

Mondkar et' al (34) have developed a general purpose

inelastic three-dimensional'dynamic finite element computer

program, ANSR, which is an extension of DRAIN2D ($S). It is

very expensive to utilize.

There have been many attempts to model a building as a

beam C(35). For some purposes this technique gives the

desired resilt. For elastic analyses it is difficult, if not

.impossible,. to match both the higher frequencies and. mode

shapes. For a typical N-story building the beam model's

parameters can be adjusted such that the N frequencies will

match the actual building's frequencies, but then the mode

shapes may not match (and vice versa).. For inelast ic

analyses where higher modes may not be as important, a beam
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model cannot simulate the strength interaction of columns

common to orthogonal frames. Also, it cannot model the

effects of unsymmetrical strength (as opposed to stiffness)

in parallel frames. These problems can be avoided by

modeling the individual frames as beams, but this creates

new problems. For the shear beam model, a change in

stiffness at the Ith level changes the stiffness matrix

coefficients at the (I-1) , (1) and (I+1) rows and

columns. For a moment frame, a change in stiffness in a

member-at th.e Ith level changes all the coefficients in the

lateral stiffness 'matrix. This problem can also be

circumvented by modeling the frame as a bending beam instead

of a shear beam; however, the frame's dynamic

characteristics are more like a shear beam than a bending

beam. Some attempted remedies consist of using Timoshenko

beams and series or parallel beams; yet , the modeling of a

building as a beam raises more objections than the benefits

of economics of the model can justify .

Another modeling technique can be used for .1-story

buildings and buildings being analyzed in their fundamental

mode only. Kan and Cho-pra (3 6)did an exhaustive study of

the parameters affecting the torsional response of linear

one story buildings. For inelastic behaviour, the single

resisting element or generalized coordinate stiffness for

multidegree of freedom systems analyzed only in the

fundamental mode, can be assigned a hysteresis loop based on

theoretical or experimental information depending on the
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type of building. For example, in a steel moment frame

building a bilinear or Ramberg-Osgood type hysteresis would

be appropriate (Fig. 1-1) . A symmetrically braced frame

type hysteresis, illustrated in Fig. 1-2, exhibits the slip

type shape characteristic of bolted frames. A shear wall

resisting element differs from moment frame hysteresis in

that it - is usually of the degrading type. The shear wall

type hysteresis is illustrated in Fig. 1-3 and is

characterized by the pinched shape near the origin.

A more rigorous method for modeling inelastic building

motion is by the member by member approach. Here the matrix

structural analysis technique is used with the global

stiffness matrix being altered in time as each member

changes stiffness in time. There are different types of

hysteresis behavior for different resisting element members

as described above.

A bifurcation of. analysis methods arises in the choice of

time domain versus frequency domain analysis. The choice

partially rests on the philosophy of the analyst. Time

series analysis is generally more expensive and

statistically more variant than frequency domain analysis

which gives the expected maximum (37) as opposed to a

maximum of a member of an ensemble of ergodic processes.

For inelastic response, frequency domain analysis cannot be

applied without using some approximate technique since the

complex frequency response function is time dependent.

At the present time there is no generally accepted method
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for determining by spectral analysis the statistical

parameters of response for a stochastically excited

nonlinear hysteretic system. The Fokker-Planck equation

approach for nonlinear systems, which involves the solution

of a partial differential equation involving the joint

probability of displacement, velocity, and time, is not

applicable for either nonwhite excitation (36) or hysteretic-

systems. Euivalent linearization techniques C 39, where

minimization of the mean squared error is used in finding a

statistically equivalent linear stiffness and damping

coefficient, is limited to either bilinear systems with

nearly equal slopes or systems with small nonlinearities or

small ductilities C0o)

Probably the most reliable method of studying the

response of inelastic hysteretic three-dimensional-

structures is by Monte-Carlo methods. Statistical

parameters can be determined by analyzing an ensemble of

time series analyses of structural r esponse to ergodic

excitations. The Monte-Carlo methods will be used in this

thesis. Chapter II recounts the state of the art in

artificial accelerogram generation, its underlying

processes, and the parameters affecting it. Ground

rotational motion is also described and discussed. Chapter

III describes the elastic torsional response of buildings

using as the foundation the excitations described in Chapter

II. The torsional response is analyzed in the frequency

domain. Chapter IT describes the model used in the



inelastic study and the solution technique used to analyze

the response. Chapter v lists the results for the inelastic

studies and discusses the nonlinear response

characteristics.



CHAPTER II

DESCRIPTION OF EARTHQUAK
E CIT ATTON

Observations of geologists and current thinking on the

origin of the earth make it evident that earthquakes have

been occurrinq for at least hundreds of millions of years.

Early historical and biblical references to earthquakes

occur as far back as 1600 B.C. C43). Historical speculation

as to the causes of earthquakes has bases in legend,

mythology, science, astrology and religion.

Aristotle believed that. earthquakes were caused by

subterranean winds produced by an evaporation of moisture

imprisoned in the earth's crust., Pliny, a Roman

philosopher, later expanded. on Aristotle's belief, writing

that earthquakes were earth's way of punishing the

wickedness of men who mine ores of gold, silver and iron, a

theme repeated in variation in different cultures around the

world.

Zoomorphic qualities are assigned to earthquakes in the

legends of many cultures and countries. In Japan, it was

thought there was a giant subterranean spider who caused the

earth to shake when he moved. In India the mythical monster

was a mole; in Mongolia, a hog; and in North America a

tortoise C(+). A BSSA account of the 1811 Rew adrid,

Missouri earthquake('s) tells of a legend claiming that

12
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earthquake .to be caused by a horned comet colliding with the

earth.

Scandinavian mythology regarding ea rthquakes concerned

the peccadillos of deities. Indian lore contains seven myths

concerning earthquake 'sources. Fascinating accounts of

causes of earthquakes abound in the mythologies of various

cultures.

Gods of earthquakes are referred to in various

mythologies.. A common theme in the beliefs of different

cultures regards the earthquake as divine punishment visited

upon a wicked people. With time natural erplanations of

earthquakes were expounded and received to varying

degrees. In an article in the esteemed Philosophic

Transactions of the Royal Society of London in 1750, a

writer in his foreword apologizvd to "those who are apt to

be offended at any attempts to give a natural account of

earthquakes." As late as 1930, according to' newspaper

reports (London Times, July 28, 1930), the Archbishop of

Naples referred to the Italian earthquake of July 23, 1930

as God's vengeance visited upon an immoral people.

Historical legends and myths are fascinating to read.

The evolution of scientific thought is another interesting

and related aspect of earthquakes important to the

understanding of two geophysical topics,. namely, the

mechanism and underlying causes of earthquakes. The

currently accepted predominant earthquake mechanism, the

Elastic Rebound theory, was proposed in 1908 by Harry



14

Fieldinq Reid and Andrew Lawson.. They were - faced with

charges of "mysticism" since they presented the mechanism

but not the underlying causes of the earthquakes. The

Elastic Rebound Theory postulates a slow accumulation of

strain along the fault until rupture occurs. The fault then

rebounds to a new equilibrium position radiating shock waves

outward.

such speculation concerns, the underlying cause of .the

slow accumulation of strains necessary to the Elastic

aebound mechanism. A prevalsent theory of the 19th century

was that earthquakes were caused by contraction of the earth

by cooling. Most theories on the origin of the earth assume

it has cooled from a molten mass.. The cooling of the earth

through geologic time has solidified the earth down to the

molten core, whose existence is theorized by its inability

to transmit seismic shear waves. Yet, the surficial layer of

the earth is not changing in temperature and therefore is

not changing in volume. The crust thus becomes too large to

fit the shrinking layers beneath it, resulting in the

folding and faulting of crustal diastrophism. The major

criticism of the contraction theory is that the folding ,of

the crust and its associated mountain building process

should be more widely distributed over the earth's surface.

The isostatic principle has been called into play by

other theories. Experiments have shown that a plumb bob does

not deflect towards a mountain as it would if the mountain

were merely an added. mass _ ox the surf ace. The theory of
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isostasy states that at some depth beneath the surface, all

columns of the earth's crust are made up of lighter rocks

floating on a layer - of heavier rocks requiring that

mountains have deep roots consisting of these lighter rocks.

Accompanying the process. of mountain erosion is the reverse

plastic flow of rocks beneath it.

Another popular theory regarding the underlying cause is

the convection theory. The convection theory presumes, by

various causes, temperature differences in the mantle. As a

result, convection currents develop similar to those in the

atmosphere. The horizontal current near the surface would

drag the crust with it. At points of rising convection

currents, crustal stretching occurs, resulting in grabens

and normal (tension) fault planes. At points of descending

convection currents crustal compression results in mountain

building and thrust (compression) fault planes. The general

criticism of this theory is that it requires cyclical

changes in temperature of the earth, whereas. large systems

such as the earth tend to thermal equilibrium.

Brief mention should also be made of the magmatic

theory. This theory requires thermal changes in. the earth's

crust, bringing about magmatic differentiation and plastic

flow of rock.

The theory of continental drift currently enjoys the most

widespread support in the scientific community. The original-

proponent of the theory was Alfred Wegener C). As many a

grade schooler has observed, the continents of South
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America and Africa fit together like. pieces. of a puzzle.

Currrent thinking on the continental drift theory views the

earth's surface as having once consisted of one large

supercontinent called the Pangaea. Recent researchers in

paleoagnetism have reconstructed, the. Pangaea by analyzing

the change in orientation of land masses by studying the

direction of the magnetic field of new rocks (lava) in time

C +7. As stated, the continental drift theory is now viewed

as the most probable source for the slow accumulation of

strain. required by the Elastic Rebound Theory.

Whatever the nature of the source of earthquakes, the

earthquake succussatory ground motion causes distress in

civil engineering structures. To understand the effect on

structures it is necessary to know the nature of the ground

motions. For elastic structures the usual analysis method is

by response spectra. Techniques have been developed to

obtain the expected response spectra by the statistics of

oscillator response (). Other methods have been used to

obtain plausible "design spectra" C 4a,. These methods have

their roots in the statistics of stationary stochastic

processes, i.e. random vibration theory. Although

earthquakes are obviously uonstationary, studies have shown

that for linear systems, nonstationarity has little effect

on the expected response. ovever, for inelastic systems,

the response is sometimes sensitive to the time variation of

the energy of the motion+9). Thus for inelastic systems,

lonte-Carlo methods of analysis are desirable. This in tarn
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requires families or ensembles of stochastically similar

ground motions.

Ensembles of "similar" strong motion accelerograms do not

exist. In fact, the occurrence of large earthquakes is

modeled statistically as a Poisson process, a model for rare

events. Thus the need for data creates a need for

mathematical modeling of earthquake ground motion.

For low frequencies and epicentral distances large

relative to the source dimension, earthquake sources may be

approximated by point sources. The assumed force field must

be in equilibrium both before and after the earthquake. One

suah point source meeting the criteria is the double couple.

It consists of two couples of opposite sign 900 out of

phase. For a pure shear rebound phenomenon in the low

frequency limit, the equivalent point source is a double

couple (sO). The scale parameter of the double couple is

the seismic moment necessary for the assumed source to be in

equilibrium. It can be related to the fault dimension and

average fault slip.

The energy released in an earthquake for an elastic

reboand phenomenon comes from stored elastic energy. The

energy is released in the form of frictional heat from the

fault slip and as seismic waves. Various mathematical

models exist relating the released energy to the fault area,

average displacement, and average stress drop over the

fault. The stress drop in turn ,can be related to the fault

displacement and geometry. Estimates of maximum ground
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acceleration can be made using the aforementioned

parameters. Some disagreement centers on the maximum near

source acceleration. For fregquencies less than 10 Rz,
BruneC5 0 ) calculates the maximum acceleration as being in

the neighborhood of 2g. The maximum ground acceleration

recorded to date is 1.25q for the 1971 Pacoima Dam

accelerogram of the San Fernando earthquake C s: s.

Reilistically speaking thouah, in specifying a maximum

ground acceleration, the probability of its occurrence must

be taken into account, i.e. similar .o many design code

philosophies, the maximum acceleration should be related, to

mean recurrence intervals (return periods) . Current

proposed codes contain a design ma:imum ground acceleration

of 0.4g.

Another quantity necessary for the stochastic description

of ground motion is the predominant frequency, the frequency

at the peak of the power spectrum. The predominant frequency

near the fault is the subject of current research by

seismologists and is not well understood. Among the

parameters related to the predominant frequency are the

crack propagation velocity, fault geometry, fault size, rock

strength,. topography, and fault breakout. The site

predominant frequency is altered by the local geology. The

effect of local geologic structure is similar to passing the

motion through. a filter with appropriate frequency and

damping characteristics. Nonhomogeneity of the transmission

medium, multiple reflection and refraction, and sometimes
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focusing, cause a widening of the band width in the near

field for earthquake ground motion. Because of this and the

shape of power spectra of actual recorded ground motions,

stochastic modelling of ground motion has become popular.

Different types of artificial earthquake ground motion

can be gener ated according to observed peculiar

characteristics. Jennings et al. (52) generated artificial

accelerograms to reoresent four different :ypes of ground

motion on firm soil.' Newmark and Rosenhlueth (41) classify

earthquakes into four broader groups: 1) practically a

single shock near -he epicenTer of a shallow ea=thquake, 2)

long, wide band stronq ground motion on firm soil similar to

the 19149) iS U Centro record, 2) long, narrow band motion on

soft soil, and' 4) large scale per manent deformations with

oossible landslides or soil liquefaction.

The first type can be analyzed deterministically, using

similar recorded ground motion.

The third kind of ground motion can be obtained by

filtering the secon'i type.

The fourth tyoe will not be dealt with here.

The second type is the major concern of this thesis.

Actual records of this type are more prevalent than other

types.. Since it is a wide band process, white noise has been

used to represent it. Due to its random appearance,

communications theory offers many tools to study its

probabilistic nature.

Housner s3), Bycroft C54, -and Rosenblueth Cs' among



others, modeled ground motion of this type as stationary

white noise of limited duration by superposition of randomly

arriving short duration pulses with random frequency and

amplitude.

The average . of Fourier - amplitude spectra of existing

strong ground motion accelerograms shows that the spectra

are not white noise but rather are like a broad band process

that damps out with higher frequencies. This suggests

filtering white noise with appropriate filter

characteristics to match the power spectra. Kanai < sea and

Tajimi (57) suggested that the transfer function for total

response acceleration be selected with filter properties

which match the - broad band nature of actual accelerogram

spectra. The total acceleration transfer function filter

will amplify those frequencies near the filter natural

frequency and attenuate the higher

frequencies. Singularities occur at zero frequency for

velocity and displacement. Jennings, Housner, and Tsai (52)

used a high pass filter for response displacement to

attenuate these very low frequencies. This eliminates the

problem since it causes the power at zero frequency to be

zero. The average of many accelerogram power spectra fits

closely this filtered white noise spectra.

The next refinement was to simulate the nonstationarity

of actual accelerograms. The usual procedure is to use an

envelope function to vary the intensity of the process. The

nonstationary process uses the product of the stationary
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stochas ic process and the ~pmin si. nvelope funct ion.

Several types of envelope functions have been used.

Jennings et al. t52 ) separatedl it into an initial parabolic

phase, a cons~an= strong oion piase, and a decaying tail.

The parameters for this intensity function are chosen to

match the intensity or variance of actual accelerograms5.

Coto, and- Toki -C58,) used a transcendental intensity function

of the tape

wh4? re a, t',and ' ) aref respctivelyl, a consant,".the

time of peak I (t) , and the Heaviside unit step function-

Koopmnan s st al. [ s jused a -; anscendental intensity func tion

of the shape

t (t) = a*[ exp(- a't) -exp(f- S ') 1 2.2

Twhere a, a, and are constants.

Another step i~n the refinement of artificial

acceierogra~s is the use-of Berg and Hoisner's (s0) baseline

correct ion. This procedure minimizes the mean square

velocity in order to remove excessively large ground

displacements.

The necessity for including the nonstationarity in the

artificial accelerograms is determined by its effect on the

response. Amin, Tsao, and Ang(49 ), Koopmans et al.. 5 9 ) and

Shinozuika and Satoc 5-i),- among- others have studied this

effect 1 . The theoretical information 'c ont aiued -in extreme-
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value theory is very helpful in. separatin(T the effects of

various parameters of the expected response. Also the

=elation of the variance with .time for nonstationary

orocesses resulting from zero initial cofditionls is

necessa:v to unders tandinq these effects.

The study of Amin et al. 49) reported the deformation

spectra of elastopla stic systems (2°' damping) using a

stationa ry °ci--ation and -a nons:at'ionary ex citation. of the

ilenninqs et al. ) type, both with a total durat-ion of 25

sec, Thy spectra, reproduced in Figure 2-1, show a decrease

in response wihicesn-dciiy h spectra, reported

for -initial frequency, also shodi the response for the

syt ionarv and nonsta3tionary excita tion to be approximately

equal for linear structures. The extreme of a stationary

Gaussian process is related to the duration by

7 (ma - y (t} ) a ( sF 2.3

where ( ) denotes expectation, .s is the duration and F is
e

-he averag~e number of zero crossings/,-ec. of Lhe process.

,or s = 25 sec.. and Fe = 5 Hz, halving the duration onl'f

chanqes the expected response by approximately 6%. The

higher ductilities show a decrease in response larger than

6,as seen in Figure 2-1. The report concludes that the

nonstationarity causes a difference in response for hiah

nonlinearity.

It is possible that the difference lies in the effective

duratio-ns for the stationary and nonstationary excitations
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used.. The Probability of

nonstationary decaying tail

remo-te, i.e. the- effect of

be viewed as resulting in a

the latter oortion of the
containing the extreme is surely

the type of nonstationarity can
shorter effective duration.
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?iqure 2-1 Deformation Spectrum for Eiastopiast ic
Systeas (B =0.02) EAdapted from Amin et al, (4 9 )]I

with jncreas in q d uctilit ies the effective statistical or

as so metimes c alled equivalent linear stiffness

decreases. By viewing the e lastop last ic respons-e as an

equivalent li.near sys tem the response non linearities tend to

reduce the effecti3ve natural frequency and increase the

effect.ive damping.. The possible reduction in natural

frequency is 'presumed the same for the stationary and

nonstationary- excitation.
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The deformation sTectru~m in Figure- 2-1 is shorn for

ductilities, i.e.. maximum displaceaent nondimeasionalized by

yield displacemnent.. Penzien and Liu( s ), -who studied the

effect 6f duration on response, depicted the response of the

experimental distribution in the torn of Gumbel (~ extreme

value Type T chaftts reproduced in Fi gure 2-2..

Gumbel Type I extreme value probability ljstrtonfl

vary as

«max e XP C- ex p(-y) 1

where Q is --efined as

Qaax IX(4t) I

Qis the -mode of Q and the reduced varia%.e ! is defined as

and. cr depends on the number of observeds extreme

ValUesC 6 4 ) . G.imbel extreme value charts plot as a straight

line -With -the most probable value at the&'reduced variate

origin. '"Its slope is proportional to the stL.andard deviation

of the extreme values. The slopes in- ?iqure 2-2 increase

with -increasing nonlinearity implying an increase in the

standard deviation of the extreme response, i.e. a larger

spread of the values. With an average of a, larger number of

accelerograms the response -spectlra anomalies said to be

caused by nonstationarity may not bea so large since the
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spread- of the values increases with increasing

nonlinearity. The Amin et al. reportC49) apparently used an

average of eight accelerograms, a rather small statistical

sample from which to draw conclusions.

To give an example of the eff ect of nonstationar ity,

consider the extreme response from the level crossing

approach. Crandallc6s. presents an excellent state of the

art review. As shown shown in "igure 2- 3 the extreme values

have a specific .pobability distribution. The usual method

in first passage problems is to determine the mean, mode, or

median of the extreme values in terms of its standard

deviation, e. g. the most probable extreme is the product of

the standard deviation of the response and a peak factor, R.
The asymptote of. the most probable peak factor for white

noise is

-V2 *-In( 2. 9.N.) 2.4

where N is the number ofc

i.e. the natural frequency

excitation the peak factor

number of zero crossings

frequency) , the damping, the,

duration, and a parameter

variation of the- maxima. An

neak factor ,S(66)

cycles the system has undergone,

times the du:ation. For nonwhite

is a function of the average

(usually near the natural

probability of exceedance, the

similar to the coefficient of

approximate expression for the
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R= -2**In {2"N"( 1- exp (-a e reln (2"N))]}2,.5

where 6 e, a measure of the spread of the power spectrum is

5e =[ 1-ME 2 /(LI 0 M) J 0. 2.6

and Mi, the ith moment of the power spectra about the origin

is

M1 fw".2 (w)edcw2.7

The equivalent parameter values derived from the Amin report

could decrease the peak factor, R, as much as 13% by halving

the duration. Although the different duration would also

affect the standard deviation, the difference is negligible

for the damping used. The decrease in response thus appears

to be caused more by the effective duration than the effect

of nonstationarity.

This says nothing, of course, for the effect of

nonstationarity of the transcendental type, e.g. Equation

2.1 or Equation 2.2. Here the time rate of change of the

intensity and the duration both combine to affect the

expected response. An exact solution for the stationary

first passage problem does not exist. However, for a

suifficient number of cycles the asymptote gives a very good

approximation.

Approximate techniques - for aonstationary response are

just starting to receive attention. For. nonstationarity due
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to transient resoonse of stationary excitation, one method

is to use an equivalent duration. For nonstationary linear

response due to nonstationary excitation with a

transcendental intensity function, the most logical approach

is to consider the extreme a function of the total energy,

i.e. Proportional to the integral of the intensity function.

This follows -from stationary response extremes being the

prolhct of the standard deviation or power and the oeak

factor which is prooortional to -he duration. One approach

would be to obtain the marginal probability density function

of the maxima by integrating out tile dependence of the

variance in the DavenportC67) der ivation. The statistics of-

nonstationary peak response are beyond the scope of this

report.

Kubo and. Penzien( 6 8) studied the accelerograms of the

1971 San Fernando earthquake. Their. resulting intensity

functions resemble the transcendental intensity function

more closely than they resemble the Jennings et al.C5 2s

intensity function. Kubo. and Penzien also showed distinct

jumos in the phase of the cross correlation between the

horizontal ground acceleroqram , possibly linked to the

arrival of different waves.-

Saragoni and Mart( 6 9 ) presented a method for generating

artificial accelerograms incorporating nonstationary power

spectra. They used three discrete power spectra for

different phases of the duration in order to simulate the

decrease in the predominant frequency with time. They used
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a transcenden-al intensity -function of the form

I(t) = aotY.exp(-e t) 2.8

where a,Y, and E are constants Tetermined by a best fit

analysis of existing accelerograms. This concept of

evolutionary power spectra is not new. Nevertheless, it

immensely complicates the statistics of extreme response

making it nearly int-aczable.

The Saragoni and art reports show the intensity function

-o vary for different earthquakes. Also the phases of the

discrete power sDectra would change with fault orientation

and epicentral distances. A method to simulate this was

presented by Rascon and Cornell(O), who produced artificial

accelerograms from a physically based model.. Their

simulation involved a surerposition of randomly arriving

dilata ionaal and distort.ionnaI single pulses with a Poisson

arrival distribution from a number" of elementary foci. The

elementary foci generate the single pulses along the fault

plane, moving according to the crack oropaqation

velocity. Attenuation was based on spherical spreading and

multiple reflection and refraction. The duration and the

parameters were based on statistical studies relating these

Darameters to magnitude, epicentral distances, etc. The

resulting simulations closely resemble actual

accelerograms.

The preceding descriptions of the various methods to

enerate artificial accelerograms indicate the increasing
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comolexity that accompIanies more faithful simulation of

ground motions. F-r a particular site of given local

geology, many factors are being introduced that influence

the accelerograms, such as fault size, orientation, seismic

potential, distance from the fault, etc. This emphasizes

the nonuniversality of accelerograms and the care with which

they should be, selected for particular sites. For these

reasons, -he acc°lerograms used here will be aeneated by

the computer P:ouam PSEOGENC7 . This proqram generates

ensembles of filtered white noise with an intensity function-

of ;he Jennings et- al.C 55) type to reoresent strong qound

motion on firm* soil. The use of these artificial-

accelorograms shoull present no drawback through its

generality since this dissertation is a study of general

building response and not a particula.r site.

The program PSEQGEN can generate ensembles of

stochastically similar artificial accelerograms. Individual

members of the ensemble can be used to represent the two

orthogonal horizontal ground motions. -They will, however,

be uncorrelated. Penzien and Watabet 72) have shown that the

correlation between the two orthogonal horizontal ground

motions will be a minimui in the near field when one is

pointed in the direction of the epicenter. They concluded

that ground not ions generated art ificially can be

uncorrelated provided the components are directed .alonq

principal axes which are perpendicular and parallel to the

fault. The f act that the correlation is minimum and
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neqiliaible'when oarallel and pernend icular to the fault is

not surprisinq when you. consider the.nature of shear and

compression waves. also, pa scon( 7 3 ) has shown that single

degree of freedomn response is maximum when the structure is

oriented along one of these same principal axes. For these

reasons and the argument. expounded in Appendix 3, thin

dissertation uses uncorr elated horizontal ground motions.

A complete lescriotiofl of the ground -noion involves six

2oa3nents: zhraee translational and three Trotational. The

two rotational components of rocking whose axes are in the

horizontal plane are not included in this analysis. In

addit ion, the vertical translation component will not- be

inclulded. This leaves the two. horizontal translations and.

the rotation whose axis is ver tiaal. As previously

mentioned the horizontal motions will be artifEicially

gene:,ated to resemble actual accelerograms and will be

statistically 'Incorelated. The origin of torsional ground

motion is generally thought to be Love waves which are

horizontally polarized shear waves near the surface (see

?iq4ure 2, ) . The torsional motion aris~s from the quantity

(av
3x. The motLion V (x) is related to t he frequency F, wave

speed CS, and wave length X ,where

CS- 2.9

while the wave speed can be determined, the random nature of

the motion is such that there will be a random 3icture of

frequencies determined- by the power spectra. Irtif icial
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t-ar sla ion accelero grains are based on the average power

spec-ra of many actDual earthquake accelerogramns. There are

yet no rReported torsion acceleroq rams; thus, one cannot

letermine he correlation between torsion and tra3nslation.

Neither can the power spectra be determi~ned.

Sore means of qenera~ing earthquake ground rotation is

desired. StartLing from the assumption that horizonta]l

surfface motion is derived from the nearly v*ertical

zef rac :ion of sh:ear :raves a t the. base rock soil tnterface,

NewmarkCZS) proposed a method to determine the rotation

based on the theory of ela stic it y_ That the refr act ion is

nearly vertical arises from a consideration of the

respective gave velocities and Shell's Law (Figure 2.5)..
Thus at the free surface the refracted waves will travel at

the wgave velocity of the rock not the soil. Newmark.

calculates the ground rotation 0, as

2j

With the' ground motions Q and V uncorrelated and

stochastically similar, the ground motion simplifies to

=3e 2.11'

With -the further assumption that

V=V (tXr/C)
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O =V 2.12

Rossi blii~th(7 + proposed a maodif ication of this to

account for tha building Size. Since Equation 2.12 is 'valid
for a point, the. effective or average, displacement

deteriiL ed by as suain g a rigid building and neglecting back

scattering is



determn~ied by assuming q

and neglecting backscattertnq is

3/2

V1 F1 V (t-x/C S) +dx 2.13

-g/2

where '3 is the building width transverse to the notion v.

For a sinusoidal translation, equation 2.13 reduces to

V=_Zn_____ -*:)2.114
Tre 3 * a

where X is Thie waveleauth. Fiaure 2-6 depicts the effect of

tan building lengh to wavelengt-h ratio has in decreasing

the effective translation accord ing to Kosenbiueth's

assumption. observations of earthquake damage reinforce

this notion -hat civil engineering works covering larger

ground area respond with less intensity.

Nathan and MacKenzie (75) calculated the torsion response

spectra by use of Egua?.ion 2.12 in a 'finite difference form.

expressed in terms of acceleration rather tha~n displacement

Q1 C[7 (t }T)h-uVP(t)3I/( C "'T)2.15
S

Finite difference techniques are based on small, finite

changes where the function is assumed to vary smoothly

between the points- The ground acceleration is assumed

linear between the digitized values since very hiqgh

frequencies are deemued unimportant in building response..
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B= X

Figaire 7--6 Schematic of Effect of BuildingWidth to Wavelength Ratio in Average Translation
Neglecting f-acksca t tori ng-
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pith typical values of the digitizing interval of 0-.025 sec,

the maximum value allowable for the transit time would be of

the order of 3.025 sec. For. a wave spee4 of ,300 r/sec and a

build ina width transverse. to the motion of 30m the transit

time of a shear wave is 0.1 sec, or,'4 digitizing intervals.

Figure 2-7 illustrates the def icierzy of the finite

difference approach.

Curretly, ' r °et al. t7 f6') are stiidying the effect of

buildinq size or transit time by calculating t-he response

snDectra for the input acceleration averaged over the transit

tim~fe, T , as

t+T

t

an.4

C "T2  C. *3
s s

where a is proportionl to the third derivative of V,.

calculated 'as -/ which in turn is determined by a least

squares fit of V over time T (Figure -2-7) . Figure 2-6B shows

the effect of this averaging in reducing the extreme values.

The excit ation used for generating Figure 2-8 'was an

ensemble of ten stationary f ilte red white noise

acc-eler ograms of 10 sec'. duration Using the filter
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characteristics of PS QG3 t C71.

Another method for analyzing the effect this averaqing

has on building response is frequency' dom ain. analysis. The
lverages response is the result of convolvinq the excitation

wish the- averaq in4 f ilter. As shown in Appendix A, the

resal ring power spectrum is reduced by the facto:

multiplying sin (ct) in Equation 2.114. The resulting

:edic-ion or the oower snect-a reIuce =the excitation

variance, which in Burn reduces the expected peak value.

the response power spectrum is the product of the input

cower spectr'm,. averaging filter, and the complex f-equency

response function. -t is readily apparent that the variance:

and -hus the peak response should decrease more for higher

frequencies,.'This. expected trend is verified in- Figure 2-3.

The tranait time reduction increases with increasing

building size. Also, itc is dependent on the assumed wave

speed1 which is dependent on the assumed wave type. For small

buildings this reduction will be slight. Another source for

the reduction of idealized input excitation is the soil-

structure interaction. Lucot 7 7) found the effect of

embedment qf the foundation to be quite significant. The

excitation used in Luco's study was obliquely incident SH~

waves. The input twist for a hemispherical foundation was

determined to be half that of a circular disk foundation.

This reduction was attributed to the effect of scattering

and the increased foundation stiffness. The results are

presented in a no nd imens ionaiized form via a. frequency ratio
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para ete: ;o orny .is ed in f ound:a tion dynamics which, is

proportional to the. foundation Size to wavelength ra tio.

Yet another red~uction in the expected maximum ground

torsion is d iscas sed b y New mar k a nd Rose nbl1uet h. The ir

proposed reduction is d ue to the statistical relation

between ex,"re one values in th-e orthogonal direction.

As --evident, the Newmark av proac h to ground torsion can be

vie-wed as an Upper limiit. The vaiues ietermined aren reluced

hy b1ildin 7 to wavelenrt 2 ratins, soil-=structure

intera3Ction, scatt ering, etc . Since the U~niform 3Bildinq

Code does not include ground rotation, Newark'-:: values for

ground rotaion v ill be used ir. this th esis to a etermine i.ts

e f-fect.

The. need for actlual free-field rotation and translation

records is apparent. TIt is especially necessary to
:iezertnine the correlation between ground rotation and

grans lat ion and its relative effect.



CHAPTERP1IT

ELASTIC rr3pONSr

Buildings With. coinci dent centers of mass and stiffness

are called uincouoled systems in thiS Thesis. For the

dynamtic analysis off uncoupled systems, responses along the

principal directions are analyzed independently. When an

eccen ricity be weep zhe centers of mass and st iff nes

exists, the responses along the principal axes are coupled.

Analyzing the responses along the principal axes

independently may give good results if these thre

frequencies are well separated and. the eccentricities are

not too large.. Full scale tests(Z27) have confirmed the

strong couplV nq that occurs with close natural frequencies

even if the eccentricities are small.

The usual r esign proce ure to accoi-nt for an eccentric

mass is to acid a force due to the torque, calculated as the

product of story shear and eccentricity. ;zany studies(2*'

36) have shown that the dynamic story shear decreases when

there is an eccentricity and that the dynamic torque exceeds

the product of shear and eccentricity. For tall buildings

consisting of moment resisting planar frames, although.

lateral~-torsional coupling decreases the total story shear,

the story torque increases the shear in the peripheral

4~3
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lateral force resisting7 elents. Thus the statement that

s -or y shear decreases, Mujst not be taken to imply that

lateraI - :ors ional coupling is beneficial.

The torsional response of large civil engineering works

such as bridges and pipelines is a. result of eccentricities

as well as the horizontal ground motion not being in phase

over the. length of the. structure. This type of structure

is not considere'1 in this stud Y" ThIere is of course

torsionail ground motion; however, the effect of ground

rtation a.s studied in this chapter is based on Mewmark's

C24) treatment of the subjectj __Which is described in

Chapter II

The objective of this chapter is to formulate a method

to study the elastic response of torsionally coupled

buildings by modal analysis based on staristical concepts

similar to that developed by 'Rosenblueth(24), but extended
to three- 1iaensional -systemgs This method will be used

primarily to show the effect of ground rotation and the

absence of correlation between the horizontal ground

translations.

Structi~ral Systems

Most tall buildincgs are either shear wall type, moment

Frame type, or a combination of the two. Shear wall

buildings are commonly multiply connected vertical plates

like that illustrated in Figure 3=-:1a) , ?or this type of

building, shear flow must be considered. A moment frame type

building . isius-trated in ?iqure 3-Ilb)' sBoth will be
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assumed to have rigid floor diaphragms.

The origin of the principal axes of these structural

systems is the center of stiffness (sometimes called center

of rigidity, resistance,twist or torsion, or shear center).

The principal axes are orthogonal and are defined such that

a force in the direction of one of the principal axes causes

a displacement only in that direction.

The principal axes in a moment frame system consisting

of planar frames that are not orthogonal are determined by

st~tics(24) -

Once the principal axes have been determined the

lateral stiffness in the principal directions can be

determined as

K K

i

while the torsional stiffness, defined about the center of

mass and neglecting individual element torsional

stiffnesses, is

ei

The eccentricities are

±u2~
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a) Shear Wall Type

"

b) Moment Frame Type

Figure 3-1 structural Systems

Xi

Y ie Yj

ecys

L

Fiau re 3-2 Example Building layout
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"y .Li.{Xi/-X

for K and Yi as shown in Fiiur° 3-.2.

Xnalysis Of an M~sorv s-z'Iczure generally requ~ires 3N

degrees of- freedom. Shiqa( 4 2 ) and Hoernerc 2 6 ~ have

developed a procedure to simplif y this to u three degree of

freecioia systets. The mode sha~e is

for structures where the story masses are colinear, the

story stiffnesses are colinear, and the ratio of the lateral

stiffnesses is the same for all stories. [C},~ is the nth

mode of the JDOF system. and (n j) is the jth mode of the NDOF7

system , which is t he same for Y, c, and y.

Generally, it is assumed that the first three epode

shapes of a cuitistory structure are two Primarily

transla-ion modes and the primarily torsion mode.. The

torsion frequ~ency is nearly always less than twice the

fundamental. The second mode in the fundamental direction

is usually grea-ter than 3 times the f undatmental; so, the

translation stiffnesses would have to be an order of

magnitude different before t-he asamptior- would not be true.

I multistory structure can be analyzed approximately as a

three degree of freedom system by using the first three
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modes as described above.

Equations of Motion

The equation~s of motion for the

degree of freedom system shown in Figure

single story. three

3-? Are

'J X!

Yj

f
x YE/ LOR

0 W 2"Ey/P w2
v.

ax

V"

'gx

*gy

3. !

where M is the mass , R is the radius of gyration, and

w ( . ) 1 5w _M 0 5 w (v1 
M 0 1Th e c h a r a c t e r i s t i c e q u a t i o n f o r t h i s s 'y s t e m i s

x y y ~Y x x x Y
-fwzew~e (W 2 W 2 e 2 2/P2wZE ~ =

xYyx x Y

or

F3 +Pp2 +*F +R=Oa

where FLLw2

Let 'C=(3'-P2)/3. and- D=(2-.p3-. P"0+27"R) /27

and A=f -D/2+ (D 2 /4 +C 3/27). Oz -3;r !3 ( D/2'-(f2/4+C3/2 7) O I/
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then- the COiD lei f..cekauenctes car. be irectly com ruted as

wZ=_. (h+B) /2- (A.-3) * (-3) 0.5/2-P/3
X22 ( B=/2 (A +B)Z}(IN = 3) O./2 P/3 3.3

W 32 =A +B P/3

The solua--io can be unst ab le for some ext re me combinat io ns

o f ecc3 atr ici!ties and uncoupled freq uencies-.

F r ^ X, *0 ani lw # wx 'h;: i gar-aIiz ed node shares ae
xY Y x

1

1 x

X yx

W L2 E a(W 
2 W2 )

Y y 1 Y.

x y

(w2 W 2)x

I

(W 2 w 2

4 y

w *w 2 w 2)
x y 3 y

y X K

(w
2 w 2 )

*1y

or~ i " and,
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[A ]=

'1 -OW 0.E R
WK2 'Wy

0

0

1 0

0 1

and ifZ =O

[A]=

1

0

0

0

1

0

0

0

1

which is the mode shape of the uncoupled system.

Once the uncoupled frequencies. and mode shapes have

been determined, the maxima can be estimated by modal

combination. The usual method is the root sum square (RSS)

Q=(2Qiz )O.5 3.4

which is based on the assumption of near independence of

modal responses,. The modal responses are nearly independent

if the frequencies are well separated.  In an analysis of a

planar structure, the ratio of frequencies are approximately

I:3:5:...;however, 'in three-dimensional systems the
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frequencies can be very close ta e =her.

in systems wh~ the frequecies are close together the

usual Procedure in modal combination is to use a method

proposed9 by Rosenbluet 2 4 ) in which the distribution of the

response q (t) is assumed to he Gaussian with zero mean. The

necessary frther assumptior , consisten: wit-h extreme value

theory, is that the maximum response Q=maxI q(t.)'I is

oronortional to the staadard deviation~i. e.

4()M q( 4 >3.5

where ( denotes expectation arid < > :ienozes time

a vera ge.

The response can be expressed in terms of its impulse--

response function, h, as

or in discretized form

where z(t) is whil e noise of intensity Go.

Stith the f urt-her ass3mp+tion that each term in Equation 3.6

is independent, the variance of q becomes

and by the. Cauchy-Schwarz inequality, E(hZ " zz) 5 EhZ.Ezz,
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t

<qz t) s h2 c h (tt~d' =c hZ (t) .dt3.

for Gaussian excitation. TIhe inequality in Equation 3.8

becomes a proportionality by virtue of Parseval's relation,

fhz (t)adt = f IaH(w) .2 dw/2 *T)_ <q2 (t) >/(GJ.'2rr) 3.9

wihere 3 (w) , the complex frequency response function, is the

Fourier transform of the transfer function h (t) , and G is

the intensity of the White noise excitation..

For a MD0F system , by expressing the response q(t) as

the sum of its modal values

and inserting this in terms of its modal transfer function

into Equation 3.8 Rosenblueth obtains.

Q2 Q i2 +2 EQi .. 3.10

ii

BieWi+Bj .wj

where Bi is the ith models fraction of critical damping and

Wdi the ith mode's damped natural frequency. The quantity

1/ l~yjz) can be interpreted as the correlation

coefficie nt~.
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To understand the limitations of equation 3.10 due to

its underlying assumptions, it is necessary to understand

its derivation and the effect of the assumptions. For this

reason a modal combination expression will be derived based

on Rosenblueth's approach, i.e. maximum square response

proportional to the variance; but the mathematical approach

will be in the frequency domain rather than the time domain.

The expected peak response is likewise presumed

proportional to the standard deviation, the root of the

variance. The mean square value in turn will be described

by the complex. frequency response function,i.e.

0o

<Ym(t) *Yn(t) >= jGY Y 2(w) edw 3. 1
-:o m n(

where

GYYn 2 (w)=Hy (w)Y (w)eG z (w)3.12
M n m n ZmZn

and GZ m Z ( is the cospectrum of the mth and nth DOF's
in

excitation..

Usually the input excitation is assumed to be white

noise to simplify the mathematics. Initially, this same

assumption will be made in the following derivation. Thus

Equation 3.11 becomes

00

<Y (t) r (t) >= f q (w) +H~(w) G 2+dw .3.13
-n n Yn 0

HY (w) is by definition
m

Hy (g)=1/[[w 2 +io2-B 'w *ww w2 1 f '} 3.14
m m m m m



where '4 M is the moda L mass and gm and 'fi are the mth

natural frequency and fraction of critical damning,

;especzively.

The response is expressed in terms of its modal

responoses, and thus the variance off tbe response is

expressed in ternas of the modal variances and covariances.

The equations of motion for a ADOF system with classical

miodes are

in uncoupiedl form Where [ k is the matrix of eiqenvectors

and Y m=r d(7

T T

3.15

whers [VI'1=[ ITI-I i.

A response quantity of interest q (t) can be expressed

as

and by definition,

G q2(w)- EC rmC rn G m~nZw)3 e 17

Combining Equations 3,.12 ,3_-15 ,and 3. 17 gi ves
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G G-() (C f'Iy{w) 1H a It r z2 (w) j]AJ Y (w) ](c3 3. 19

?Or a two-dimensional svstea,i.e. planar frames, each degree

of freedom is Subjected to the same excitation and each

element of the matrix F G 2 (w) I is the same. Introducing __

_his into Fquation 3.183, rearranging terms and integrating

gives

<g2(Ct)'>=' )s(C *"!?? )(C.<Y (t) 07 (t) > 3,l1M M n n m n

where 1D~m is the modal participation factor for mode m,

Tmf ined as

?m= (E "n'*Im)/(EMn *A 2) *3.20
in n nn ninn

n n

and (Y (t)}j is the solut ion to v' ua-ion 3.15 where the right

hand side is Just fl

equation 3.19 can be rewritten as

<cR2 (t) >= E(C. PF ) (Cn."' PF) <y 2 (t-) >05s<V 2 (t) >s *p n
mn 3.21

where Pn is the correlation coe ff icient of m (t) and

Y4t Since the ROSS value is assumed proportional to the

peak value,Q,' Equation 3.21 can be rewritten as

gQZQ r P n3.22

m~n
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whereQ, the peak response of +''e at h Moe, is

0m Gm1 m3v(wm) 3.23

(wiFw.~) w mw a ./ 123.24

II 2 - d ) ( mw "F 2] . ( 2 + w .( m + w' (see A o en -ix C _o : d riva tio n ). For s ma ll d a mpinq quation

3.24 gives values of the correlation very close to those

inheren: in guat:ion 3.10.

'auation 3.22 has two limiting assumptions, namely

white noise excitation and identical excitation for each

degree of freed;.n. Is explained in p~oendix 0, the effect

or th1e white noise assumption is not considered significant

for cases of practical interest. The effect of the second

assumption is not so evident. It is clear though, that the

second assumption is not valid for a three"dimensional

system. For. the two-dimensional system each element of the

matrix of rfGZ(w) ] is the same but for the three dimensional

system if-t is

a Z (w) ZxZ02 w) ZxZya w

rG~z(w) = [GZZ a(w) GZ5z(w) JZ Zz z(w)i 3.25

Z Z 2 w) GzyZ0 2(w) Gzz2(w) j
where (%}=(Ugx R'II gy

Chapter II describes the current state of the art i n ground

motion description.



57

Equation 3.25 can -be greatly simplified by

incorporating the approximations described in Chapter II,

namely Newmarkian ground rotation and uncorrelated ground

translations. For ground rotation defined as

R d Z X

2 dx dy

the excitation, following Newmark's procedure is

Zo -[ 1"F/(2'C ) 3.26

where Cs is the shear wave speed in the underlying

rbck. Since we are assuming uncorrelated ground translations

we can set G (w)=0. The autocovariance function for the
'xy

ground rotational excitation is

AZ tT) = E[rO(t) "Zro(t+T)

Inserting Equation 3.26 gives

ZY YzX ZXS

For uncorrelated but equal spectral density ground

translations, this reduces to

Ths (T)=28Z (T)P(./(2"CS))
Y

Thus,

G z2(W)=(aZ/ 2 *C2) *G... 2(WI

r# s Z



=(R2/2-*Cs2) 0WgZ"Gz 2Z(W)

and

00 
0 00fGZ 2 (w) .dw =(R 2 / 2 +CS2 ) f Wi"'(Z .(Li)"d W .fJGZ 2 ( W d w

GZ 2 (W).dW
-00Y

CO

_(R2/2*CS2) ,wg.2.fG.Z 2 (w) .dw
-0CY

whereu. is the predominant frequency,

The crosscovariance function for rotation and1

translation is

Z (Z ) = [Z rO(t) 07 x(t+ T)I
xx

2oCS d T

Where

00

R (T)= fG Z (w).exp(-i~w.eT)*dw
x -0X

Differentiating this gives

RZ T)= R/2CS. fi" Z ( ) lgp(-j W.T)a dW

x.-CO x
00

= fJG2 Z 2 (w) *exp (-i~wT) dw
-CO r;Sx

Thus,
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whereGZ 2 (w) is real, symmetric and

Co C0

<Zr_Zx> zZ Z2z(w) #dw=(R/2CS) iwGrZ 2(w) 'dw0(

F*or P"g/ ( 2 *C 5 ) ,equation 3. 25 :educ~s to

(Z w) 2 2 OI *G 2 (w) 3.27

'or C ~?g 0 1  being the seismic wavelength in the

underlying rock an' g the correspond3ing freciencv, -

becomes 'ITR/X. Co bininq Equat-ion 3.27 and 3.18 and

integrating gives Equation 3.21 where 'IFM 1,?Fn is now

Ham. P' =lm 1+ 3 *w3m+2' 2 m 2 n2 3,28

The RIS 7alue determined bit us ing 7 uat ion 3. 23 should

be less than that calculated using Equation 3.20 because the

latter assumes all degrees of freedom have the same

exc itat ion and are thus identical.

As an example, consider the shear- wall building

analyzed by Heidebrecht (2$) , which is shown in Figutre 3--3

with the corresponding freqTuencies and 'mode shapes. The

fundamental mode is predominantly y motion, the second mode

predominantly, x motion and the th.ird mode mostly rotation,

The values ofCi for the v displacement of point 3, A 3 i17m1

R"A 2i are
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Figire 3-3 Example Building and Coupled.LModes[Adapted .from -He idebr echt Cz8)2
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tCC= . 4 5 . 17 1 .0 91 T

The matrix of correlation coefficients nm the same for

auations 3.10 anid 3.2~4 are

Whlich assumes a Qercantage of critical damping of 5"T in each

moda.

The modal par icipation. factors as calculated by

Equiation' 3.2,3 for a wavelengt h of 1000m, are

0.80 '0.39 0.001

The !ua-rix of ±he mriei scuare modal values as deermined by

T7uations 3..223.24 and 3.28 are

~2.73 -0.02 0.00]
7.02 0.02 0.00

L.00 0.00 12.27j

for the response spectrum shown in Figure 3- 4.

The RCS displace ment of pointr B is thus 3.87
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cen time4ets -6 means o-f rompoar±ior , iI E 'iatixon. 2
aer e Wused instead aof Euar 1.0r:3.28 heMS displacement

'would be 4. 58 centimeters, and- if t: e absolute sum of the
3odal values were used it would be 5. 51 cent3ime pers. '

200

100

V Jcmn
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0w1 0.2 0".5 1.-0 2 5 10
T, sej..

Fiqure 3_4i Example Design Response Spectrum

The difference between the values for Eruatjon 3.2?3

and 2.20' lies in the correlation of the excitations. .*The

former assumes only the spectra to be the same while the

latter- assumes the spectra and the- excitations themselves to

be id enti c al.,

Another way of showing this effect is by a graph of the

interaction eauations. Rosen-blnet h and riolorduy 24 and Kan

and C ho pra 36 presented the effect of tors-ional coupling as

graphs of the ,d ynaluic" forces, nondime nsionalized by the
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uncoupled force in the direct iota of : he excitation, versus a

nondime sional frequency ratio for a flat -acceleration
snectriium. The torque is presented as the ratio of dynamic

)to s~a-..ic eccentrici- y.

?or a ground excitation consisting of only X - =

tran:;lations, Kan. an-1 Chopra3 6  also detived the interaction

surface of the normalized forces as

V } +T2 = 1

w'ere the bar denotes the value normalized by the 'ncoupled

for-ce in the iireciMnof the exciation,j~e. for X?()

r igure 3-5 shows -he interac-tion be- veep the force] for

a ground excitation consisting of only Y translation with a

flat. acceleration spec-rum. The forces are not normali-ze~d

here,

Ey/P--.. Ey/R=C3Ey/R=O.j

On ___ ______ __00.

?iqure 3-5 Force Interaction for X Ground Excitationonyand Flat Accel eration Spectrum (" P ,/;W

The ef fect of tche coupling i.s to decrease the shear "in
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.he X direction while causing a shear in the Y direction and

a ,orque.

"or a ground excitation consisting of rotation only, a

similar interaction for a flat acceleration spectrum is

shown in Figure 3-6 for. different values of the radius of

gyration to wavelength ratio. Here the effect of the

coupling is to decrease the torque while inducing building

shears. The decrease in the torque for different

eccentricity ratios shown in Figure 3-6 is much less, than

the decrease in the shear in the direction of excitation as

shown in Figure 3 5.

InLeraction relations can also be derived for systems

with simultaneous y, 7, and Y excitations. For uncorrelated

ground translations., and ground rotation excitation defined

by quation 3.26, all the excitations are uncorrelated as

shown by Equation 3.27. For uncorrelated excitations the

variance of the sum of the modal responses is the sum of the

response modal variances and the interaction surface is

7 2+7 2+72 2(1+ 2) 3.29
x y

Figure 3-7 shows the interaction between the forces for

excitations described by Equation 3.27 and with flat

acceleration spectra.

The increases in t he shear for higher levels of the

radius of gyration to wavelengt h ratio are not great.

Although Figure 3-6 shows an increase in the shears due to

the ground rotation, the decrease in shear shown in
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?igure 3-t Fore Thteracti.onfor o "rouind Excitation_
Only and Flat Acceleration Spectrum ( ,R=O.WW W=1)

Figure 3-S for th e ground 1ranslation ecitatianmore than

offset s this as shown in Fiqure 3-7. Also, it must be

remem be red that the shortest' wavelength of interest is of

the order of '6OO--1OOO meters since the reasoning behind the

ground rotation excitation assumes the, wavelength to be that

associated with the underlyinq rock and the sho-rtes t natur al

periods of interest are O .. sec. or longer. Thus' for

typical bhuilding sizes the- ratio will -be of the order

0.0-0e.1oAs
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*seen in Fiaure 3 -7, even for the worst case of w=W =Yfor

=o .1 , only : he torque is appreciably affected by the

cu 1 i .

It is now well established that the story shear

decreases. with increasing eccentricity. it can also be said

that the story displacements ,i~e., the displacement at the

center of css, derease with increasing eccentricity,. The

3hear and displacemnenz at the periphery ow he building,

.however, is '.anerallv thought to increase with eccentricity.

The reason it is thought to increase is that the

2cccn=,.--city nices a rotational motion whose displacement

at the periohery more than offsets. tihe decrease in the

average *-: 3 -oy displacement that occurs with increasing

eccentricity.

The method presented in this chapter can also be used to

examine the peripheral response and -the ;parameters affecting

it. For the system shown in Figure 3-2, the displacement

at the center of mass (C. Ms) is less than what it would be if

the centers of mass and stiffness 'were coincident. The

arigin of the coordinate system is .,he center of mass. The

displacement of the point marked ' is determined by the

relation

tip = UX + (EM/R).(

or in matrix form

U = 1 E /aR o}" { } _JJ j = un3.3 0

With this relation, the power spectral density of UP is

determined to be
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u () f) r u2 (w) I(CCl
= C}lTL H (w) J A IT[ GZ Cw) H A 11 if(w)1 C

where yhe spectral density of the ground !motion [FGZ (W) 3 is

letermined by Equation 3.27.

T'he variance of UI then is
00p

<U 2> = f GU 2 (.)j.~

= fGz2(fw)f CITE'(w) ]H! _1T 022 OF Xj[(w) 1C w

which upon expanding, becomes
00

p2 z ' 1(w) ° 2 (W) P 2 (I' + A

+ (E /) 26T 2 (w) (A02 +2'2 2 + A z) }*dw

and after integrating, becomes

(U 2> _ (yp 2 >.*(A 2 + 2*E 2 *AO2 + 2*E /P*A 2)

+ (FJ /R) Z,<YZV 2>. (px52 + 2** 4 2+2*E- /N*A 2)

+ 2 *E m/ ? *< Yp*Y P6>4(1 xx*A X5'+2 e z e l5 A$66+ 2 *E /t* A a'A)

3. 31

The .variance of the input ground translations are

assuiaed the same. The variance ofE the ground rotation is

determined by ;he quantity ~ The area of interest in

building torsion concerns systems where the frequiencies are

close together. For such systems the modal guantities

<y >, P >,and < y 2> can be assumed approximately equal

where a iS a constant.

As pec-ial .case of intere st aris es-when _ n/2/=1



69

Ecuaion 3.31 t-hen can bP rediced to

('7 2> = Q2 aX2. 2 +.i 2) + (E /r ) 2 .( +A14P 2)pUSf~x X yx Yinx5 65 Y

+1' 4 '7Y /Pa (AXX* X56+AOX. + "* )

Q 2 (l{1+ U(?/F) z } 0) 3.32

T should be noted that EquationL 3.32 is independent of

the eccentricitye, the maximum response at the

Periphery does not increase with eccentricity, regardless of

its valxie. A value off _ -v/2/2 is higher than typical

4 nflOrder to examine th e efffecrs of z the different

para-eters, Eiqure 3-8 was piotted using different frequency

=:ios,eccent ricity ratioJ=', djstanc°S -F- the center of

UaS (E /7 ,and di.faeren:, values of ~ The Lirst column of

graphs represents the response for E /FE=0.C,i. e. at the
yin

center off mass. It shows the faniliar reduction with

increasing eccen-rici-y. The second column represents EYr/

R=0.6, and the third 1.22 (which would represent the

periphery of a square buildinq).

The bottom row of graphs in Figqure 3-8 represents x=0.0Q,

i. . no ground rotation. Tt shows a significant increase

for 0 /2=1.22. The aiddle row represents =0.25 and the

top row /22

The maxitmum increase for E=0.0 and ? M/3=1.22 (the

exterior of ,a squaae building) is about 55 "when w0/w X1

This is about the same when _ -r/2 and E /R=1.22. This
yin

represents a static eccentricity o f about 331 of the

building Width.
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what this means is that the exoecter! maximum peripheral

resoonse is essentially independent of the level of ground

:o-ation for systems where the torsional and lateral

frequencies are the same.

This is not. rue, however, for systems where the

torsional an!! lateral frequencies are not close together.

In this case the level of ground rotation directly affects

the level of resrolse as seen in Fiqur 3-3. The response

in this case can he approximate=] by the root sum square of

the torsional and lateral responses.

The single most important variable in determin-ing the

peripheral resoonse is the torsional lateral frequency ratio

since in mos- cases ( should be less than 0.1.

The method presented should give reasonable estimates

of the elastic torsional response of three dimensional

building systems. The relative effect of the different

parameters on the expected maximum response is based on -a

probabilis tic description of the ground motion. The power

spectral density matrix of the ground motions is taken to be

a diagonal matrix. The expected maximum peripheral response

is determined as the standard deviation of the response

which is based on the diagonal power spectral density matrix

of ground motions.
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a revios ly ±:ated, t:he nonIinear moil ts he kept
snioie for reasons of economy. Since earthquarce peak

response coeffricO ients of variatioa vary from .~ to 0.3,

several samples mti-z be averaed o interpret the r sults

~ea.n 'Illlye Also, nonlinear sys gems, especially t1 ree-

-Umensional. nonlinear systems are complex and expensive to

simulate.

The characteristics of nonlinear torsional response are

needed though, since, buildings respond inelastically to some
earthqgua'kes. Tt is desired to know the effect of ground

rotation in a nonlin ear system. Also, nonlinearities in an.

ansymutrig bu il:inq tend to increase the ecc ent ricity.7 The
effect on ductility requirements of peripheral lateral load

elements is 'also needed.

In order to analyze accurately and efficiently the

affect hysteretic energy dissipation has on the parameters

eccentricity ratio, 'frequency ratio, and strength ratio, a

simple single st.ory model is used The single story

building tha will be studied is shown .in Figure 4-1. The
load resistinq elements. exhibit a single degree oAfrfeedom

72
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hysteresis where the force is a function of only one

lisplacement as opposed to say, a beam-column where the

forces are a function of several displacements. This

s implif ies the nonlinear torsional response compatations by

enabling the use of simple hysteresis types.

Many different simple hysteresis types are available

depending on what is being modelled. The elastoplastic

no'lel was develooed to yodel the elastic-plastic behaviour

of steel.. The bilinear model is similar to the elasto-

pl stic model but allows strain-hardening.

For moment-resisting members the gradual yielding inward

of the cross section requires smoothing of the sharp

yielding in the bilinear model. This together with the

Bauschingher effect brought about t he use of the Ramberg-

Osgood hysteresis model which is a curvilinear model very

similar to the bilinear model.

Another single degree of freedom hysteresis model is the

origin oriented shear model. In this model the unloading is

always directed through the origin giving a pinched

hysteresis 1oo. This model is used where nonlinear

deformations and failure characteristics are governed

arimarily by shear.

The stiffness degrading model is used for members whose

stiffness degrades upon reloading, where the degree of

degradation depends on the current ductility. The stiffness

degrading and origin-oriented shear models are usually used

to model reinforced concrete members.
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The buildi g model used to study the nonline ar behaviour

of buildings sub ject to torsicnal motion is shown in Figure

4-1. It consists of a rigid diaphragm roof and four

independent ext3 rior lateral lcad resisting elements, e.g.,

steel moment fra mes or braced frames.

Y

.

cs.

Ey

+C.m.

Z

Y

X

Z9y

s

zgx

4 -.

Ex

Bx

Figure 4-1 Building 1odel

This model can represent many different single story

buiitdigs in use.. Some of the buildings on nuclear reactor

sites .are single story four frame buildings. Industrial

buildings are commonly one story and for better utilization

of space, often have only exterior frames. Warehouses are

often similar to such industrial buildings.

Small commercial buildings are commonly one story.
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A-lso, such buildings often have very high eccentricities.

one side of these buildings is typically all glass, leaving

only ,.3 exterior francs. This can result in the center of

?tiffness located at the exterior "which gives rise to the

very high eccentricity.

Spots arenas, auditoriums, and meeting halls are other

examples of single story exterior framed buildings.

l ul tis for y, multiba7y structulres obviously don'tr fit t ha

critFeria for thiA model; however, wiz..h S)on'e crude

approximations this model can give the multistaory, multibay

gross response. ?or example, if th- response can be

presumed. to con-sist Drima rily of the fundamental- mode than
this approximation should give reasonable results.

Some multistory structures are not suitable for

todelllnq as a single story structur e even for gross

results~. Buildings with eccentric penthouses are one

example. Buildings with sudden changes in stiffness or

changes in the eccentricity are another example.

lultibay structures require another approximation in

ori~ec to be modelled as a single bay. sr ucture. The frames

*on each side of the center of stif fness- are lumped together

each as one frame keepinqa the total stiffness constant so

the frequency isn.'t changed.. For the building shown in

F igure 42, -the stiffness of the equivalent "frames in the Y--

dir ect~ion Vould.be as follows

KytJ7 yl' y2

Kytr K 3* K 4



P. . 7r;.cato kee ' unchanci.4th 6 at-ion al 3tif Fness -duie to

these fraaes, the distances XtiXtvould be determined from

K + K T t1X2 .

Ky3. (3Z y 4 X 4  yt2 t2 2

where- Tt would be between Tand X2

-f

-~ -i-- I
~~-1

h

X3 
a

Xa

- ?ig are 4--2 tmultibay Build inq

For a linear tntltibay system this method of modellinq
would cQtve the same results; h-owe ver, a probtAe arises in

nonlinear response. If the yieldi levels of frames 1 and 2

were Fyj and FY2, then 'the obvious. choice for the eq uiva Lent

frame Ts yield level would be F71+FY2. or a syste ith no

eccen tricit y and no torsiBona l exci.tations , the response of

the actua. multibay structure and the four frame- equiva-lent

model, would not be th'e same unless the yield levels of

frames 1 and 2 were identical. For bilinear hysteresis. with
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different yie ld levels for the frames labelled one and two,.

the equivalent frame would. have to exhibit a trilinear.

hysteresis to match the response of the actual structure.

.also, when a torsional response exists,. the rotational

displacement which would cause one of the frames in the

multibay s tructure to yield, would not necessarily be -the.

same yield rotational displacement as that of the equivalent

model. The maxim moment .f o= Each system will be

approximately the same though. So modellianq nonlinear

multibav :structures as_ single bay structures doe require

some approximarions.- It should model the cxross response

adequately, t hough~

?0oAT103i 11 7g,0T1

For the four frame structure being analyzed, the riqid

diaphragm reduces the- system to three degrees of freedom;

two lateral displacements an~d a rotation about a vertical

-a xio..

The dynamic equations of motion. for the three degree of

Freedom nonlinear system shown. in Figure 4-1 are

LM°fJ+C {III(F(U) } = Wf 1 gJ 4.1

where

and CfK . is the tangent stiffness at time t,.,.

The displacement vector (n1l is the sameL as in '.Equation

3. 1, i.e.

(U l= u FO yT

The mass matix then .becomes
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m 0

{]= 0 0

0 0 -

The hysteresis model chosen for this study is the

bilinear model. The numerical integration method used is

fourth order Runge-Kutta.

Fourth order . Runge-Kutta numerical integration of a

second order differential equation, e.g.. Equation 3.1, is

conditionally stable for T /at>2.43, where 1Tn is the period
n n-

of the sys:em. The linear acceleration method, sometimes

referred to as Newmark's S method( 4 1) , is conditionally

stable for Tn/t>- 91. Th. . a limited test of single degree

of freedom linear responses to sine waves, the Fourth order

Runge Kutta method was more accurate than the linear

acceleration method in terms of peak response and earthquake

inout energy, which is defined simply as the enecgy input to

the s-ructure. The linear acceleration method is more

efficient for the same T /At ratio though. The reason the
n

Bunge-;Kutta method is used is its accuracy and ease in

programming changes in the time step pt.-

For a bilinear hysteresis model the asount by which the

force can overshoot the yield envelope can be considerable;

esnecially for low values ofn /At. The usual procedure

taken when the force overshoots the yield envelope is to

redo this step's calculations with a much smaller time

increment, say one-fifth the original; then, when the force

is beyond the yield envelope, presumably by a small amount,
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the time increment 3i reset to the original value and the

comautations resume.

A saecial algorithm is used here to compute the time

step necessary to :each the' yield force precisely. The

fourth order gunge-Kutta method is used to solve Equation

4.1. The initial time steo increment At is chosen on the

basis of stability and accuracy. When the force for one of

the elements overshoots the yield envelooe, this time step's

calculations are redone with a new t-:ime steD increment.

F / x
F.

x t

.f t+ot t+t'

Figure 4-3 Bilinear Yield Envelope

when the force overshoots the yield envelope, as shown

in Figure 4-3, the displacement necessary for the force to

equal the yield force is known. If the displacement is

assumed to be a third order function of time, i.e. linear

acceleration, then the time. increment corresponding to that

displacement can be computed. That displacement then is

wh=r(Fy-F(t))/K = Qt e (t) +Qtzo[{2*X (t) +X.(*+Qt) ]/6 4.2
where '
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Acu.bic equat ion in At is ob-ained_ by combining Equations
-1 j and 4.2.

At can be solved for directly or by, Newton iteration
At=At G(At,)/G'At

i+1 i i jIn ,pract'ise, only a fewa iterations are required to achieve

the nec essary accuracy. "This +-i me step .incr'etnt 3i then

~iin 'the tourh rer EBtinqe K:utt n-eqratli n scheme for

thi st e on ly. The comput ed e? omen-, f orce is then compared

to the vie ld valuie and if it is Within 1 the solution.

roceeds iththe Litt± al t ime step increment.. For the

sil.ati'tons used in th-is study the accur acy has always been

withi n 190. The comiputer program usin hsagri i

listed in Appendix L.-

This solution technique for bil1inear systhems can be

efficiently- used for -structu'res: with few yielding elements.

For a structure with many yielding elements, the constant

changin q of the time step would make this technique

expensivecoutationallv.
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NOI1NEAfl RESPONSE RESU LTS

The importance of *the various tor)sional paraleters,

Iccenzricity rani o, torsional 4roiund motion, and strenuth

ratio Lor the model as described in Chapter IV are st uiied r.

esp~cia1Iy the peripheral response as it Dertains to the

ductilivy demand.

Since the model is a nonlinear hysteretic system, lonte

Carlo methods are uased. An ensemble of artificial

nonstationary accelerograms is generated as described in

Chapter II using the computer program PSEQGENT (71) which

uses filtered white noise with an intensity function of the

Jenning' s et al( 5 :2 ) type.. The intensity function I1(t) is

shown in Figure 5- 1d). The accelerograms are the product of

the~ stationary filtiered white noise and the intensity

Function I1(t). The power spectral density shown in

Figure 5-1c) is the product of the filter's two frequency

response functions shown in Figure 5-l3a) and b). The

accelerociratas generated are. intended to simulate strong

ground mot ion on firm soil. in the vicinity of the-

epicenterc 55 3). The generated accelerog ram~s ate shown in

Figures 5-2 throuigh 5-6,W

8T At
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Other pa rame ters that. characterize' the accelerograms

incluide, the maximum acceleration which averages O0..4g for the

five accelerograis with a standard deviation of 0.01 g. The

durati.*on is. 60 seconds with a. duration of 31 seconds for the

strong ground motio-n (stationary) portion.. The Airi.as

intensit y(7 8
g) which is defined as

a=. T0*1 Z q2ft)-.dt

is 32. 2 f t/sects The r ms accelIeration is 0-1q.

Z

2

(G)

C)

- -

2j

D)

I

1 2 c

n

1 2

n

lit) L

d)

Tt *-... 2

I a

1 2.r ti t 2 t

Fig ure- 5 1 &rtificia l A cce lero gram Data

Houisner ts spectrum intensity SI., is -defineds as

2.s

SL JDVedT
0.1



Where V is the pseudovelocity response in ft/sec, often

for. 2(x, damping, and T is the natural period. For the five.

generated accelerograms the average spectrum intensity ST is

3.',9 Et for 20%1 damping. Ground rotation was included and

computed according to Equation 2.15'. The shear wave sweed

used was a conse: vazive 1000 ft /sec. This corresponds to a

value of 0.15 for the paramel-er as described in Chapter

IIr for the wavelength corresponding, to the predominant

.frequency of excitation.

"o~l aramets

The normalized eccentricity ratio, , is defined as

the eccen tricity bet seen t he center of mass and. stiffness

3ivided by th~e mass radius of gyration. The values -0.0,

0.1, 0. 2.- 0.3, and an unusually high value of 1.0 were used

for this -ratio.. The stractur-e's dimension ratio BY/BX, was

2.0. The stiffness was assumed oproportional to the

limensions. of the structure i.e., KY/KX=2.0v so the

frequency ratio w / wx was -2 ,The torsional- lateral.

frequency ratio w/wX is determined by the geometry of the

3trtictlure. For a uniform mass distribution the mass radius

of gyration is5

R vT!:x BYT)./-

and the torsional frequency is*

O FI +KxY Y x / 1(3x Y

For 1 B and K =Kxrw /wx= =1.73. FrB lB, =K 1K =2,
Y x YFor Yx Yx

c /w =' goo.
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The :mass of the model, a.sumed uniformly distributed,

was 0.5 kips *sec2/inch, Other important parameters of the

nonlinear response are the natural frequencies and a

streingth oarame zer. The natural per iods used were

0.2 ,0.,6 ,1.0, and 1. 4 seconds.

The other oarameter determining nonlinear response

relates to the yield level.,. This strength parameter can be

expressed in many diffferent ways. The current}rTcz7' ) code

specifies the bease shear V, as

where- 7 ,L,g,C, S, and W are a zone factor, an importance

factr , a framinq -system factor , a natur al period factor, a

mte-ctruct.ure reSo-nartce facto=, and thQ building weight (or

mass times gravity) .. A Natural choice for the strength

parameter then is the yield shear F ~, divided by the weiqht,
eY

The values for Fy/ (Mq) used were 1/8,1/4~, and 1/2.

Res ults,

The excitation for the first analy-sis consisted of

accelerogram 1 for the x-direct ion, accelerogram 2 for the

Y-direction, and using Equation 2.15 to determine the

rotational acceleratLion. The excitation for the second

analysis consisted of accelerogram 2 for the X-digrectton,

aecclerogram 3 for the Y-direction, arnd again using Eqauation

2_.15 to determine the. rotational acceleration. The-,

excitation for the third, fourth,. and fifth analyses are

similarly determined. All results presented are the average
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of the results of the five dynamic analyses.

The maximum displacements and ductilities at. the center

of mass for different values of the eccentricity ratio and a

strength ratio of 1/2 are shown in Figure 5-7 as functions

of the period in the X-direction. The displacements in the

i-direction don't vary much with eccentricity. The

displacements in the Y-direction appear to increase with

eccentricity, but only slightly.

The maximum peripheral displacements and ductilities for

different values of the eccentricity ratio and a strength

ratio of 1/2 are shown in Figure 5-8. The displacements in

both directions increase with eccentricity for the most

part.

The maximum displacements of the center of mass and

their corresponding ductilities for different values of the

eccentricity ratio and a strength ratio of 1/4 are shown in

Figure 5-9 as a function of the period in the X-direction.

The displacements in the X-direction and Y-direction don't

vary much with eccentricity.

The maximum peripheral displacements and ductilities for

different values of the eccentricity ratio and a strength

ratio of 1/4 are shown in Figure 5-10. The displacements in

both directions increase wit h eccentricity for the most

part.

The maximum displacements and ductilities at the center

of mass for different values of the eccentricity ratio and a

strength ratio of 1/8 versus the period in the I-direction
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are shown in Figure 5-11. The displacements in the 7

direction don't show a discernible trend. The displacements

in the Y-direction appear to increase with eccentricity, but

only slightly.

The maximum peripheral displacements and ductilities for

different values of the eccentricity ratio and a strength

ratio of 1/8 are shown in Figure 5-12. The displacements in

both directions increase with eccentricity for the most

Dart. The values for a period of 0.2 seconds were left out

becauise the ductilities were in the hundreds, which for all

practical purposes -are not meaningful.

^arthguake nerg qpartition

The partition of energy in the model was also computed.

The earthquake input energy ( T ) is defined as the total

acceleration integrated over the ground displacement
t.

E=fyI.Qf +i ).d U
g g

The dissipated hysteretic energy (DIE) is the stiffness

related force integrated over relative displacement less the

recoverable strain energy

t
AREE . f.(U) drU - t)J/ (2"K)

The dissipated nonhysteretic energy (DNHE) is the damping

force integrated over relative displacement plus the

recoverable strain energy and kinetic energy. The strain

and kinetic energy are included since they are eventually

dissipated through damping.. The fraction of critical viscous

damping .in all cases was 5%. (See Appendix F. for
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The earthquake input energy, -dis~sipated damping energy,

and dissipated hysteretic energy for different values of the

eccetricit y ratio and. a strength ratio of 1/2 versus the

oer iod in the K sdirection are shown in Figure 5-13. The

values for a strength ratio of 1/4 and 1/8 are shown in

Figures 5--14 and. 5-15..

-Several things are noteworthy in these figures. First,

there icesn't_ seem _o be anyv de &finite re(lat ion be twQen the

values and eccenr icity, i.e. they. dor. "P. niformiy increase

or decrease~ with. eccentricity. Second, as would be

expecte~d, the dissi.pat ed hysteretic energy increases for

lower values of F Y/( *a) , Third, the earthquake input

energy decreases for lower values of ?'1'/(A~) . The reason

for this is not clear. Finally, there is a definite peak in

the value of earthquake input energy versus period. This

can be explained.. if the dissipated hyst eretic energy were

viewed as an equivalent viscous damping. dissipated .energy,

then the total value of the damping parameter C would be the

sum of the viscous damping and the equivalent hysteretic

daminq. The earthquake input energy Yould be approximately

TIE = C" 9z .dt'C Q>e
.0

The mean square velocity .can be represented in terms of the

input power spectral density and the velocity response

function. which in this case are unimodal functions,

functions with one peak.

j-2.

(tZ>=fI~y~)Iu u 2 w)d
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A typical velocity response function is shown in

Figure A3-1a) . The input power spectral density is shown in

Figure 5-1. It follows that <,> would be largest when the

peaks of 'the two functions were concurrent. Thus, the

largest value of earthquake input energy should occur near

the peak of the input power spectral density function. This

is the case.

The strength ratio corresponding to a given ductility

ratio is also of interest. For the ductilities, averaged

over the different eccentricity ratios, the corresponding

strength ratio is determined by interpolation from

Figures 5-7 to 5-12 and is shown in Figure 5-16.

0.5
F 

2

M- - 0.4

0.3

0.2.-b= 4

0.1

0.2 0.6 1.0 1.4
Txperiod.

Figure 5-16 Strength Ratio versus Ductility

For a system with uniformly distributed mass, the

response of the element furthest from the center of

stiffness will be the largest. Due to this increased

response the stiffness will be smaller relative to the

element closest to the center of stiffness. This smaller
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stiffness increases the eccentricity and, one might expect,

could further increase the response of t he element farthest

from the center of stiffness.

This could lead to a situation where the eccentricity

causes an incteasincgly nonlinear response of the element

until the ductility demand could not be met. That this is

not the case is evident from the results. The reason is

probably the type of hysteresis model used. The bilinear

model has increasingly nonlinear strength as well as

increasing dissipated hysteretic energy capacity which would

both limit the response. In any case, this does not seem to

be a problem.



CHIAPTE P

SUMARY AND CONCLUSIQNS

This dissertation is concerned with the study of torsion

in buildings subjected to earthquakes. It is now well known

that there is a dynamic amplification of torque and a

dynamic reduction in building shear.. A recent, detailed

study used the mode superposition and response spectrum

techniques to develop response envelopes for an excitation

in one direction. Other researchers have reported for a

single accelerogram response, as much as a 40-143% increase

in the peripheral response.

The analytical technique selected here for linear

response was the probabilistic approach The probabilistic

description of earthquake excitation was discussed and a

simple expression relating torsional earthquake excitation

to translational earthquake excitation was developed.

Interaction relations were derived for systems with

simultaneous g, 1, and Y ground excitations.

The main concern or deleterious effect of building

torsion is the increase in peripheral response. The reason

for the increase is thought to be that the eccentricity

induces a rotational motion whose displacement at the

periphery more than offsets the decrease in the story

displacement that occurs with increasing eccentricity. The

peripheral response was studied using the probabilistic

model. The effect of the various parameters on the

S I 4
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peripheral response was studied. It was shown that a

special case arises where, the peripheral response is

independent of the eccentricity or frequency ratio..

Earthquake ground motion was described and the state of

the art of artificial generation was discussed.

Uncorrelated groind'translations were used for this study..

Newmarks model of ground rotational motion was used and the

various parameters affecting it were studied. The decrease

on the magnitude of this ground rotation as the rigid

building size to wavelength ratio increases was also

discussed.

A probabilistic approach cannot be used for nonlinear

hysteretic response. Monte Carlo methods are used for

nonlinear response.. An ensemble of artificial accelerograms

were generated for a response analysis of a class of

nonlinear building types. For the four exterior wail model

studied, a bilinear hysteresis was used. For this type of

model the torsion-translation frequency ratio is determined

by the geometry of the structure. The results showed the

peripheral response to be only marginally higher than that

for zero eccentricity.

For an eccentric structure responding in the nonlinear

range, the eccentricity increases with the increasing

nonlinearities, possibly causing larger and larger torsional

excitation . These studies showed this is not a problem with

the bilinear hysteresis used with this model.
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Conclusions

Based on the study 'in this dissertation, the following

general conclusions can be made: 1) in the statistical sense

of the word expected, i.e. the mean, the maximum expected

increase in the elastic peripheral response due to both the

eccentricity and ground rotations is on the order of 50%;

2) the single most important parameter in building torsion

is the torsion-translation frequency ratio; 3) torsional

ground excitation must be quite large before it

significantly affects the response for structures with well

separated frequencies; 4) the dissipated hysteretic energy

for nonlinear structures is maximum when the natural

frequency is near the predominant frequency of the

accelerogram; and 5) parametric resonance is not a problem

for the four peripheral wall structure studied herein.

Conclud inaRemarks

The analysis of building torsion in this dissertation

assumes the ground rotation to be related to the ground

translations by Newmark's relation.. Although the

conclusions stated are based on this assumption, -it is still

felt, based on field observations of others, that ground

rotation is not much larger if different. Nevertheless, the

author still recommends the development and production of a

torsional seismometer to determine the actual magnitude of

the ground' rotations and its relation to ground

translations..
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Lastly, the importance of the torsion-translation

frequency ratio must be emphasized. It is recommended for

unusually shaped buildings where large _eccentricities are

unavoidable, that the building be designed with well

separated torsion and translation frequencies.
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APPENDIX A

Response of single degree of freedom oscillators is

sometimes computed by the Duhamel or convolution integral.

The response to an impulse is a damped sine wave commonly

referred to as the impulse response function,h (t) of the oscil-

lator. The summing of the response due to each impulse

becomes in the limit an integral. The summing or super-

position of these responses. is referred to as the Duhamel

or convolution integral

t
V (t)= f h (t-t') -P(t')dt' A .1

where

0 t <0

h (t)= A .2

20.5 2 0.5
exp (-B-w-t) *sin~w- (1-B2) -t]/[w" (1-B ) It> 0

which is the transfer function for the differential equation

V(t)+2.-B-wOV(t)+w2 V(t) = P(t) A .3

The Fourier transform of Equation A .1, commonly

referred to as the complex frequency response function, is

2 2H(-)=1/[w - +2-B-w-w -i] A .4
n n

The transfer function and the modulus of its transform

are plotted in Figure Aa).

The power spectral density of an ergodi~c stochastic process

is defined as
s/2

G 2(w)=limI p (t).-exp (-i-w-t).-dtt2 /s A.5

s -s/2
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A sample random process and its spectral density are

shown in Figure Ab).

(59)It can easily be shown that the response power

spectral density is the product of the square of the complex

frequency response function and the input power spectral

density..

G v2(w) = H (w) 2- G p2(w) A . 6

The response v (t) and corresponding power spectral density

are shown in Figure Ac). It is seen that a convolution

in the time domain corresponds to a multiplication in the

frequency domain. The converse can also be shown. Put

simply, the transform of a convolution of two functions

is the product of the individual transforms; also, the

transform of the product of two functions is the convolution

of the individual transforms.

The averaging filter Ult,(t)

0 t +-t'

Uts (t) = 1/t' -t k t < t' A .7

I t>t'

along with its transform U(f)

U(f)=sin(2-Tr-f-t')/(2-'i-f-t') A .8

are depicted in Figure Ad).

The averaged response Vet)
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t+t' /2

VT=V, Jv(t).dt= U , (to-t'I)V-(t') dt'=Ut, (t) *V(t) A .9

t-t'/2

can be viewed as the convolution of Ut, with V. The

transform of V shown in Figure Ae) is the product of the

transform of Ut, and V.

The first zero of U(f), is 1/(2t'), which for the

values of interest will be well beyond the natural frequency,

f. Thus the effect of the averaging is to reduce the

ordinates of the spectral density which reduces the variance

defined as the area under the spectral density curve. Since

the expected extreme value is proportional to the variance,

the effect of the averaging reduces the expected extreme

value, as expected.
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APPENDIX B

For a single degree of freedom (SDOF) system the

expected response is a maximum when the structure is directed

along one of the principal axes. The motion along the princi-

ple axes are uncorrelated and are defined as the radial to the

epicenter and normal to the radius.

To show this, it is first assumed that the maximum

expected response is proportional to the variance, con-

sistent with the theory of extreme values. The variance

is expressed as the integral of the power spectral density

of the response, which is expressed as the integral of

the product of the frequency response function and excita-

tion power spectral density.

Let R denote the excitation along the principal axis P.

Since R and C are uncorrelated, the cross-correlation

function is zero. Thus, the cross spectrum Grc2 (w), the

transform of the cross-correlation function, is also zero.

Let X and Y denote the angle 6 of the structure's

to p. Then

X=C-cos(Q) + R-sin(9)

and

Y=C-sin(6) + R-cos (e)

Describing the power spectral density of X and Y in terms

of R and C gives

Gx2 (w)=cos2 (6).G 2 (w)+sin(6)-OG 2 (W)
x r

G 2 (()=sins2 ()) (s)i+Cosn2 (n)G)2(W)
y.r c
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G 2 (w) =cos (e) sin (e) " (Gr2 (w) -Gc 2 (w))

The variance of response of the SDOF system is

< X2>=fJ IH (w) I2 -Gx 2 (w)dw

-00

= f IH(w)i 2[cos () -sGr2 (w) +sin2 C)- Gc (w) ] dw

which is maximum when e is either 0* or 90* depending on

the relative variances of R and C.

For a multidegree of freedom (MDOF) system, the

approach is not as straightforward, and simplifying

assumptions must be made. First, the variance is expressed

as the sum of the variances and covariances of the un-

coupled modal responses. The response quantity of interest

is
T

Q =- {B} {X}

where

}= [AT {U }

{t}+[2-B-w]'A{U}+[w 1'{U}= - }

[A] is the matrix of eigenvectors. The response power

spectrum can be expressed as

G 2 (){f[H]H[A[G 2() ] [A] [Hr {B}
q p

For a 2-DOF system this expands to

=(G2-cos 2+Gr2-sin2 9) [H2-A 2 -B2 +2-H H'A*A' B*B+H2 A2 -B2 1+
q o r ( -A 12 +2H -2A2

(G -G2) cose'sine H "; 2 2+HH4 A "+2AAB)
r c jPu 2i22 1222 2

(Gc2-sin26+G 2-cos2 e) [H -A -B2+2H2 H2A 2BgB+H 2A -B ] B1
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Rosenblueth argues, based on work by Rascon

that there is a deterministic relatiol between the ratio of

spectral intensities (SI) of the. ground motions

along the two orthogonal axes, and

that as the RMS spectrum intensity increases the expected

ratio approaches unity. For the RMS spectrum intensity>4.5,

corresponding .to a Modified Mercalli intensity of around V,

the ratio exceeds 0.9.

Thus, for earthquake intensities of interest, SIx=SIy.

Since the Arias intensity, the variance times duration,

is closely related to Housner's spectrum intensity, we

2 2can say that. <X >s <Y >, or

G 2(w) -dw G 2(W) - d
r c

Due to the origins of the two ground motions R and C, we

can say

IH(W)[ 2-Gr (W) -dw= IH(.) 120Gc2 ()-dw B.2

Thus, in Equation B.1, the first and third terms become

dominant and the contribution of the second term approaches

zero. Also, since the two displacement coordinates,

corresponding to the two horizontal ground translations,

are orthogonal, the amount of coupling will be small even

in the worst case, i.e. A. >>Ai.. THis suggests that

Equation'B.1 will be maximum when the cos(e) -sin (e) is

maximum, i.e. 8=450. However, Equation B.2 suggests that

the difference will be slight.
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APPENDIX C.

For a: white noise process of intezsi~ty, ,G, the

000

< Y(t)"Y(t) >=fIH ()-H ()" d 31
m n -GoYm yn o

where the complexc frequency response function is

H (w)=l/[w 2+iS2 eBm "m'"ww2] C.Jyn mmm_

The variance is

<Y2 ()> *H()IZG20 dw C. 2
<m (t> H w 2 o

The correlation coefficient Pn is defined as

Pmn 2 50 2mn
= <(t) <Yn (t)>.

Inserting C..1 _ into -C :2i gives

2 G 2 *dw

<y (t) >= -I ( 4 ( .B2 )2  4 ]C.4

This can be factored to

2 G..*dw "C.5
< Ym2(t)>=fl 2 2 0 2. 2 C

[w wm exp(-2*i'8)]'I" w -cm *exp(2i08)]

2 )05-where exp (2 "is"e) =E[(1-.2 "Bm2)]1+is"[ 2 "Bm "(1-Bm) ]5 and i= (-l)0.
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Equation- C.5: can be expanded to

a 
2

Ym(t)[> m-exp (-i-e) ] " [w+wm

dw

" -wm-exp (ie) ] - [w+w mexp (i-a) ].6

where exp (i -e)= [ (1-Bm2 ) 0.5 ]+i-"[BM

Equation C..6 'has 4 poles of order 1; namely,±w mexp

(i- 6) and ±wm-exp (ieQ) . f (x) can be regarded as a line

integral along the real axis. By the method of residues:

Iff(x) dx=i f (z) -dz
Cr

where f(z) is analytic in Cr except at a finite number of

poles, and Cr is a semicircular path whose diameter is the

real axis. Then

6 f (z) -dz = 2-7r-.i {sum of the residues in the upper
half of the complex z-plane}

The residue of f (z) at z' , z' a pole of order 1, is

Res[f(z),z']=lim [(z-z') -f(z)]

z+z'

The integrand in Equation C.6 has two poles. in the upper

half of the. complex 2-plane, namely, w -exp(i--) and
m

-*'m exp (-i- ) .
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thus,
22 2 -.r - G .i

< Ym(t) >= 30
mm

1
[exp(i-8)+exp(-i- 6)][ exp(i-O)-exp(-i-6) ] [exp(i-6)+exp( i-6)

[-exp(-i- ) -exp(i-)-[exp(i-6)-exp(-i-6) ] [-exp(-i-6)-exp(-e)l

or

2
2 Gor.

3<Y2(t)>= 3C.7 -

n m

which is the variance of the displacement of an oscillator

subjected to white noise excitation.

For the covariance, combining Equation 3.13 and C.1

. <Y (t)-Y (t)>=

2
000

[w+w exp(-i-e) - [w-wm-exp(i-e) ]

[w+o - exp (i- e) 1 - [w-wn -exp (-i- 6) ]

By the method of residues, Equation C.8 becomes

< Y (t) - Y (t) >=2 -ir "-i"G2 '{sum of residues on upper half ofm n ° complex z-plane}.
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2 "wm,(l-B 2)0.5

1

(-w m exp(-is m )+w n 10exp(i"sen)][-.wm "eXp{-isem)-wn eexp( sn)

Simplifying,

2-
<y m(t)"Y n(t)>= 2*w'"i*G o 2*{l/z-l/Z}/(2"w m')

=2*'rri*G 2. i.Im(z )/jz 2}(.w'0}

=4'ir'G " ( OB +w "B)/I1Z1 2 C9

where w ' is the damped natural frequency of the mth mode

and

Z=I( w -w'),-(w*B +w *B }2 '*2. "(WO*B +w *B )]jmn n In I n n In m In n n

The correlation coefficient p by inserting Equationmna, 7 and .C:9 into : 3i s

P8wB+w Bn sWm B m wn 3 Bn) 05/IZ12  C.0r

which is Equation 3.24. For Bn, B <« 1, Equation C.10

is very close to the simpler Equation 3.10 developed by

Ro senb lue th .
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APPENDIX D

As described in Chapter II, the power spectrum for_

ensembles of accelerograms is commonly expressed in the

Kanai-Taj imi form

2G2 (+B2w2/ 2)

'{[1- (w/w 9) 2I] +4-B 9 * w2/w 92}

The response power spectrumn for this type of excitation is

G Y2 () =H w)12.G2 ( D:-2

or
00 2 G2" 14 B22/w2)

.<Y (t)>9w 9

j4+W n 2(4Bn 2 2)w_W2  4 ] (w 2 /w g2 )2 +4-B g 2 W2/Wg9 2

40(+4B2 2/w2]

0 _G[w2-wn 2exp(- 2 "ie@ n)1[w2-w n 2*expC2 eieen)]

dw

gw2w 2exp(-2*i*E3 )]1[w2_wg *exp(2*i~e )I]

which has eight poles of order 1 at ±wn*exp(±iQen) and

±wg "expC(±i "8 ) . By.the method of residues

<Y <n2 (t)>=G 02 o2" 'rr"is{Sumof the residues in the upper half
of the complex z-plane.}

With the assuption that the spectrum for the ensemble

of excitations is a wide band process, B9 will be large

compared to that of the lightly damped oscillator, i.e.

g n



120

and therefore

After some algebra

G 2"T
<YV2(t) >_= 03

2"w 3"B
n n

1+4"B 2.2/ 2

l+ (wn/w ) - (wn/w 9) 2' {eXp[2 "i "(a9-8n)]I+exp [-2 "i "(8eg+en)jI}

G 2"lT
+ 0

2"w 3B
g g

(1+4B2) { [i-w 2/w 2] 2+4 " 2ew 2/w 2} -4 "B2*w 2/w2 C1-4 .B 2)
g n g g _n 4 g_4 -

'rt[1- (w /w ) 231+4 "B Z" /w2} 2+ {[ 4 w 2/w 2.3B 32 "(1-B 2)1
n g g wn g n g g g

D.5

or

2r*Gz2 (wn) TrrF(wn)

n2"wn 3Bn 2"wg "B
gg

= .<Y2 ()> n G2 ( z2(t>"Fw)

whreG 2(w) is defined by Equation D~l,. F Nwn) is defined

in Equation -D.5,ad <Y n Ct) >w .n. is the response of the

oscillator to white noise. The assumption underlying

Equation D. 6. gives rise to the same approximation used

in gust response factors, based on graphical inspection.
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Typical values for w and B used in Equation n.Jl .
g g

are 15.6 radians/sec. and 0.6, respectively. For

w <%, F (wn) ~ Ge2 and Gz2 (n) >G0 2 . Also, since B «Bn
i g z non

the first term in Equation .D.:- -" dominates and

2 2 2<Y 2(t)>= < Y 2(t) >w.n. G 2(tw )a-D7

n n z ni

Thus the variance, which is proportional to the square of

the expected extreme value, is proportional to the value

of the excitation power spectrum at the oscillator natural

frequency. For a wide band excitation where the building

frequencies are close together the effect of nonwhite

excitation cancels.
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Appendix E

Nonlinear Response Program

C
C PROGRAMMED BY MARTIN E. BATTS 1977
C
C CONSISTENT UNITS (USE KIPS&INCESES)
C GACC (1) = I GROUND ACCEL INPUT FILE 7
C GACC(2)= Z GROUND AWGULAR ACCEL
C GACC (3) = Y GROUND ACCEL INPU7 FILE 8
CEXM= Z DIST ?ROM ORTGIN TO C.G.

C EYIM= Y DIS T FROM O 0RIGItN TO C. G.
C BX= DTST A LONG X AXIS DBETWEEN Y RESISTING ELEMENTS
C BY= DIST ALONG Y AXIS BETWEEN X RESISTING ELEMENTS
C Elf= ECCFNTEIITY ALONG R AXIS FROIS C.G. TO CENTER OF STIFFNESS
C EY= ECCENTRICITY ALON3 Y AXIS FBOU C.G. TO CENTER OF STIFFNESS
C SI=%5 CPIT IC&I. D1PINS (VISCOUS)
C DT= INTEGATION TIME STEP
C BAS=BASS
C P11ASS= MASS MOMENT OF INERTIA(=R**2*HASS)
C TO= INTIAL TIME
C TEND= FINAL TIMEOF ACCELERITION
C DTAC EQUAL TME STEP OF ACCELERATION AS INPUT
C R=POLAR RIADIUS OF GYRATION OF MASS
C SO= INITIAL ELENIEWT SrIFFNESS IELBI=ABERG-OSGOOD
C QT= ELEMiENT YIELD FORCEF IELEM=2 BILEAR
C R0= RAMBERG-OSGOOD CDEFF. IELB13=STIFNESS DEGRADING
C S51= TOTAL X DIEECT ION STIFFN~ESS GG=ACCEL ERArION UNITS
C SY= TOTAL Y DlIRECTION STIFFNESS IP DELTO dMENS NO P- DELTA "CALCS
C SR= TOTAL Z DIRECTION STIFFNESS RGT=HEIGHT OF BLD 16
C PEI= NODE SHAPE ACMLTINPUT E. MULTIPLIER
C D= EIG ENVALUES
C DAMP= DAMPING fBATRI=1f2*C*E-1/2
1C DYE= YIELD DISPLACEMENTS OF ELEMIENTS
C DYCYIELD DISPLACEM1ENTS OF CDORD_ DIECTION
C Y= RELATIVE DISPLACEMENT
C DY= RELATIVE VELOCITY
C DDT= RELATIVE ACCLERATION
C OLDIS= CLD RELATIVE DLISPLACEHERT
C PWC= OLD COOED TOTAL FORCE
C DISE= DISPLACEBENI OF THE ELEMENTS
C PF= ELEMENT FORCE
C OF= OLD ELEMENT FORCE
C TE(I)= INTEGR.AL OF ELESTI1T I FORCE TIMIES DISPLACEIRST
C (OUTPUT AS TE-STRATW ZNERGYDISSIPATED ENERGY)
C DAMPDE (I)= DAMPING DISSIPATED ENERGY FOR COOED DIRECTION I
C VARC= COOED DISP COV. VARFC= COOED FOD1CECOV.
C VARE= EMS ELEMENT DISP VARE= EMS ELEMENT FORCE
C EQNS OF MOTION (Y) =(U, R*TrHETA, V) THETA ABOUT CENTER OF MASS
C
C (C11 CI2fR C13 ) (I -KI*EY/R 0.

C
C (Y ) f -*(C2 1/R C22/R«*2 C23/e) *(Y) 4 -* (-iKX*EY/R KO/R**2 KY*EX/R) *(Y)
C a e
C (C31 C3 2/R C33 ) (0. KI*EI/R KY )
c
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C KO= STIFFNESS ABOUT CENTER OF MASS (HOT CENTER OF STIFFNESS)
C NOTE THAT THE MASS MATRIX IS THEr IDENTITY NATRIX.rHUS THE MODAL MASSES
C ARE 1.0

DIMENSION FORMAT (2 0) , F1(8000) , D1 (800 0) , SOC (3) , D!C (3) , DYE (4)
COMMON I/3TIMP/ GAC(3) , OG ACC (3)-, G (8000,3)
CONNON SK (3,3) , DRMP (3, 3) , PSI (3, 3) , D (3) ; OLDPC(3) , OLDIS (3) ,

1 PDELTA (3)
COM5.O0 /STIFF/ ROD(4) , FY(4) , SO{(4) , IVCf4) , S(4) , PMAI (4) , EPSNAI,

1I -IBTOT
DIMENSION DISF (4&), ODISE(I) , DISElX(4) , Y(3) , DY(3) , DDY (3) ,

1 ODY (4) , TITLE (20) , PF (4) , B(6,6) , DCHI(L) , DISMX(3) ,
2 PYMAX (4) , TDXSttX(3) , AC!M&X(3) , TACMAX (3) , O 4
3 DUCT MX (3) . TE (4) , PFC (3) , OY (4) , AUXI (3) , AUX2 (3) ,
4 PFCKX (3) , TPFC!X(3) , VG (3) , VARE (4), VARC (3, 3) , EIE(3) ,
5 DAfPDE(3) , VARFE (4) , VARFC (3,3) , TEZ(3) , P(3) , FEBAR (4) ,
6 YEBAR (4) , FCBAR (3) , YCBAR (3) , VELE (4) , OVELE (4)o
7 ACCE (4) , OACCE (4&), ECCHIX (3) , SKINV(3, 3)

REAL MASS, K1I(3) , K2(3) , K3(3) , K4(3), M(3)
1N =5
IAN =7 .
IN N2 =8
IT = 6

10 READ (TN,20,EFND=550) TITLE
WRITE (IT, 30) TITLE

20 FORBEAT (201A4)
30 FORMAT (Hi, 20A4/)

READ (IA, 20) TITLE
WRITE (IT, 40) TITLE

410 FORMAT (//I I GROtJIID ACCELERATION= Is, IOA4£13Xi,, ' T- GROUND A:CELE
IRATION 'to 1014/-
RE AD (IN, 50) EXM, E IN, B!, BY, XI, DT, MASS, TO, rEND, DTAC, G,
1 &CMULT, CS, HGT, I ELEM, IG ROT, IPDELT, IPLOT

50 FORMAT (4Fl0.2/3F10.917F10.4/415)
NSTEPS = (TEND- TO) / DTAC + 0.49
READ (IN,60) S, FY, HO

60 FORMAT (4 FIO0:3)
READ (IN,70) FORMAT

70 FOE MAT (2014)
PHASS= MASS * (BX **2 + BY**2) / 12.
R = SQT ((BX** 2 + BY** 2) /12. )
EX = SO(4), * BX / (S0(3) + SO0(4)) - EX8
EY = SO (2) * BY / (SO0(1) + S50(2)) -EYM

IBTOT = 0
EP SMAX1 = 0
SOC(1) = S (1) + 90 (2)
SOC (3) = S6 (3) + 30(4)
SOC (2) *= SO (1) * EYE ** 2 + SO (2) * (BY- EYM) ** 2 + SO0(3) * 31M
l** 2 + SO (4) * (BX "- EXIS) ** 2
DET= SOC (l) * SO (3) * (SOC (2) - SOC (1) *Y**2- SOC (3) *EI**2)
SK INY(1,1)_ (SC(2)*SOC(3) - (SOC (3)*EX)**2) / DET
SKINIV(1, 2)= (SOC(1) *SOC(3) *EY) / DET
SKINV (1,3) = (-SO: (1) *SOC (3) *EX*EY) / DET
9IUNV(2,1) = SKINV (i,2)

SKINV (24,2) = (SOC(1) *SOC(3)) / DET
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SK1NV(2,3) =(--SO= (1)*SOC(3) *EX) / DET
SKINV (3,1)SKIN7 (1, 3)
SKINV (3,2) = SKINV (2,3)
SKINV(3,3) = (SOC(2)*SOC(1) - (SOC(l)*EY)**2) / DET
d(1) = 1.0.
3(2) = 1.0 * R
!i(3) = 1.0
POELTA (1) = GG * FLOAT (IPDELT) / HGT
PD ELTA (2) _ 0. 0
PDELTA (3) = G3 * FLOAT (IL'DELT) / NGT,
Rip = ET / R
EYR = EY / R
WRITE (17v80) 81, BY, ElM, EYE, 11, DT, HASS, PHASS, TO, TEND,

IDTAC, R, EX!, EYh, GG, ACMOLT, ZELEE, IGROT, CS, IPDELT, HGT,
2I PLOT

80 FORMAT (//'0 BY=I, F7.2, ' BY=' ,P7.2, ' EX ' , F7.2 , EY!'.,
1 F7. 2, ' BETA=', F6.4, ' DT=', F6.4, 'MASS', 21l.4,'
2R**2 =', -7I1.4, /' 'i'=', F7.3, * TP=', F6.3, ' DTAC*, F6.4,'
3 R=', F8. 4, ' FXH' 6.4, ' EY/R=', P7.4, ' G=', F8.3, &1, '

4 ACKULT=' ,28. 3, ' IELEE=' , 12/10 tGROT', 12, '(OWT 0=NEW MARK GRD
5ROT) ', 5K, ' S HEAR WAV E SP!EED=, FP10.3 , a PDELTA?', 13, ' REIGHT=
6'., F10.3, ' I PLOT =' , 15)

CALL SSK (SOCl) , SOC (3) , SOC (2) , El, EY, MASS, PIASS, R)
CALL EKIG

C
DO 90 1 = 1, 4

90 DYE (I) = F1(I) / S5O(I)
C
C AVG X 6 Y YIELD DISPLACEMENTS
C

DYC(l) = (DYE(1) } DYE (2)) /.2.
DY C(3) = (DYE (3) + DYE (4)) / 2.

C
C VALUE CF ROTATION (ABOUT CENTER OF MASS) WHEN ALL .ELEMENTS HAVE
C YIELDED I. E. MAX T ORQU E/IN ITIL L STIFFNESS
C

DY C(2) = (FY (1)*ETHM + FYl(2) *(BY-EYE) .+ FY (3) *EXE 4Y 4 *(C
IEIM)) / SOC (2)

C
C EQUAL %DAMPING IF ALL NODES:M-lK IS SY5MM SM-1z=PI* (2XIW) *PHI IS SIMM
C SINICE THE DISPLACEMEZNT VECTOR IS
C Y= (U,R8*TH!TA,VP)
C

DO 100 1 = 1, 3
P (I) = 6. 28 32 / SQBT (D(I) )

C I0?P THAT NODAL "SASSES ABE 1.0*MASS. SEE ABOVE. BUT WE WANT DksPKSS.
DO 100J3 =1, 3

100 B (I,J)= PHI (J fI) * 2.0 * SQRT (D (I)) XI * 1.0
C

Do 120 1 = 1, 3.
C

DO 120 K = 1, 3
SUN =0.0

C
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D110 J =1,3
SUS = SUM * PSI (I.J) * -3(J, K)110

c

C

C

C

C

C

C

120 DLEP (I,K) = SUN

WRITE (IT, 130)
130 FORMAT ('3P ERI OD ?REQUENCY!** 2 ODE SHAPE' , 33X, 'STIPPNIESS MITRIX

1et 301,,,'IDAMPINRG" ATRIX')

DO 140 I = 1, 3
140 WRITE (11,r150) P (I) , D (I) . (PHI (I,J),J1,3) , (SAC(I,J) ,J1,3) ,

1 (DAMP (I,J) , J=1 3)

150 FORML&T ((F6b.3, F9. 1 ,X 3E12.4&,3X o3E 12.4 ,3I, 3E 12.4) I
REWHIND INN
RE WIBD INN 2

160 READ (INN, FOLMAT EVD=10) (G (I, 1) ,1=1, NSTEPS)
REID (INN2*FORMIAT) (G (1.3) ,I 1,ISTEPS)

DO 170 I = 1, .NSTEPS
TIME = TO + -(1 - 1) * DT AC

IF YOU WANT ;ROUND ROTATIONAL ACCELERATION UOT=O, THEN IGROT WQTO

* II(I) DUE TD TH3E NONDIMENSIONAL EQTJATIOSS
G (I, 2) ACMNULT * M (2) * (G (I + 1,1) - G (1,1) + G (lI+ 1,3) .- G

1.1 I3)) /(2. *CS*DTAC)
IF (IGROT ..Q. 0) G (I,2) 000
G(l,1) = G(I.1) * ACNULT-

170 G (I,3) = G (I, 3) * ACHtYLT-

DO 180 1 = 1 4.
ODI S E(I) =0 .0
DISERX (T) = 0.0
PFNAI(1) =0.0

OF(I) =0.0
TE (I) = 0.0
VARE (I) =0.0
VARPE(I) = 0.0
PEBAR (1) = 0.0
YEAR (T) 0.0
OVELE (I) = 0.0
OACCE (I) =0 .0 -
IVC (I) = 1
S (T) = SO0(I)
PMAX (I) = FY (I)
IF (TELEX .EQ. 3)
Pt A1 (1) = FT (I)*

180 CONTINUE

Go TO 180
(1.e 2 0(I))/(SI)H()

DO 19 0 1 = 1, 3
ODY (I) = 0.0
DISC! Z(I) =0 .
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ACSAl (I) = 0:.0
0! (I) 0.0

9G (I) = 0.0
EIX (I) = 0.0
OGACC (I) =0.0
DAMP DE () = 0.0
TEC (I) = 0.0
FCBAR (I)-.=0.0
TCBA R(I) = 0.0
7CCH Al(I) = 0.0

C
DO 190 J 1,It3

VAERC(I ,J) =0.0
ARFC (I,3) =0.0

190-CONTINUE
C

DT T = DT
CALL SSK (SOC(1) , SOC(3) , SOC (2) , Ea, El, 5USS, PdASS, R)
L = 0
IEEE = 0
L2 -
TIME = 0.0

c
Do 200 1 1, 3

200 GA CC (I) =G (1, I)
C
C 4?T! ORDER BRGRE-KUTTA S INGLZE STEP IETEGRATION ABR LNOWITZ P. 897
C BEGINNING OF INTEGRATICN 1131!

210 L =L+9 1
DT =DTT
ISTOT = 0

C
C SOLN OF EQNS 0? MOTION ARE NONDINENSIONILIZED IN SUER FNCTR
C

220 CONTINUE
C
C BY CHA NGING DT, TIME MAY NOW BE<DTAC* (L2-1) . IF S, L2=L2-1
C

230 1? (TIME + DT . LT. DTAC* (L 2 1)) L2= L2 - 1
C
C WE WAIT TIH(L-1)+DT BETWEEN DTC* (2-1) AND? DTAC*L2
C

IF (TIME + DT' LE. DTAC*L2) GO TO 240
L2 = L2 + 1
GO TO 230

240 PP s (TIRE + DT - DTAC* (L2 - 1)) / DTAC
C

DO 250 I = 1, 3.
250 GACC(I) = PP * G(L2 + 1,1) . + (1. - PP) * G (L2,I)

C
CALL FUCTN (L, 0.0, Y, D, K)-

C
DO 260 1 = 1, 3-
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AUX1i(I) = TY(I) + DT / 2. * DTY(I) } DT /.8. * KaI(I) * DT
260 AU X2 (I) =DY (I) + K 1(I) * DT / 2.

CALL FNC N (L, 0.5, AkU Xi, A JX2 , K2)
DO 270 I = 1, 3

270 A UJX 2(I)=D Y (I) + K2(I) * DT /2.

CAlL FNKCTN (L, 0.5, hUll, AUX2, K3)

DO 280 1 = 1, 3
AUX 1 (I) =Y (I) + DT * DY (I) + DT / 2. * K3 (I) * DT

280 AU X2 (I)=D Y (I) + K~3(1) * DT

CALL FIECrN (L, 1.0, AtUli, AUX2, K4)

DO 290 1 1, 3
Y (I)=07 (1) + D T * (DY (I) + D T/6. *(KIl(I) 4 K2(I) K 3 (I)) )

2.90 DY (I) = ODY (I) + DT /b. * (Kl1(I) + 2a*K2 (I) + 2.*K3 (I) + K4 (.})

C ILL FJCr N (L, 1.0 , Y, D Y, DY)

FIND NEW ELEMENT D,TUA

.DISE(l)
DISE (2)
DI1S! (3)
DI SE (4)
YZL!(1)
TEL! (2)
VELE (3)
VEiLE (4)
ICCE(1)
ACCE (2)
ACCE(3)
ACCE(4)

Y (1) + E lM * Y (2) /R
Y (1)- (BY _ EYI) * Y (2) /H
Y(3) -- EX3 * Y(2) /E
Y (3) + (.BI X EX) * Yf(2) / 8
DY(1) + EYM. * DY (2) / 8
DY(l) - (BY EYM) * 01'(2) / B
DY1(3-) -EW * DECY(2) / R

DY (3) + (BI - EX M) * DY (2) / .E
DDY (1) + ElM * DDY (2) / B
DDY({1)- (BY - EYN ) * DDY (2) / 8
DDY (3) EXIM * D D Y(2) / 8

D D!(3) + (BX1-BX R)- * DDY (2) / B

C
C
C

C

PF (1) = orP(1) + S (1) * (DI SE (1) - ODIS E(1) )
PF (2) = OY (2). + S(2) * (DI S?(2) - ODIS E(2) )
PF (3) = 0F (3) + S(3) * (DI SE (3) - ODISE (3) )
PF (4) = 31?(4&) + -S5(4) * (DI SE(4) -- ODISE(4)-)

PF C (1) = PPF(1) + P F(2)
PP C(2) = PPF(1). * ElY1 - PF(2)* (BY - ElM1) + PP(4) * (8gI- 11!)-

I PF (3) * EI

PFC(3) = PF(3) +fE'F(4)

FIND NEW BEEET STIFPNESSES-

ODT = DT.

DO 330 I _ 1, 4
GO TO (300, 310, 320) , IELEM'

300 CALL RB OSG (PF (I) , OF (I) , I)
GO TO 330

C
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C FOR BILNR,CHECK IF STIFFNESS HAS CHARGED. IF SO,FIND NEW DT &GTOI3.0
C

310 CALL BILNR (P F(I) , O?(1), DISE (I) , ODISE (I), OYEt E (I) , OACCE (I) ,
1 ACC(), DTT, DT2 ODT, I)

C
C FIND MIN DT IF SORE THAN ONE ELEMENT HAS YIELDED
C

DT' = AMIN1 (DT,Dr2)
GO TO 330

320 CA1LL STFD E(P(I) , OF (I), DISEI) , 0DISE (), .OVEL E(I) , OACCE (I) ,
1 ACCE (I) , DT, DT2, OD'Iv I)

DT =ASIIN1(D T2, DT)
330 CONTINUE

C
DO 360 I =I, 4

C
C JUST INSURANCE
C

IF (S5(I) .GT'. 1. 001*SO(I)) IERR =1

IF (TIERR *EQ. 1) -GO TO 460
C
C IF ONE ELEMENT HAS YIELDED E ANOTHER IS UNLOADING FROS.YIELD LINE
C IT SHOULD CONVERGE IN ONE ITERATION
C

IF (IC(I) . M. 1) GO TO 360
IF (IVC (I) . EQ. 0 . AND. IELEM . EQ. 1) GO TO 360

C
C IF ELEMENT HAS YIELDED RESET 1EW FORCES & DISPS. TO -T3 EIR OLD V&LJZS
C SINCE WE WANT TO UNDO THIS LAST TIME STEP"
C

DO 340 J = 1, 4
340 PF (J)= OF (J)

C
DO 350 J = 1, 3

T (J) = 0T1(J)
350 DT!(J)= ODY (J)

C
EY' = S(2) * BY / (S5(1) + S (2)) - 3111
EX = S(4) * BX / (S5(3) + S5(4)) - EX5
SX = S(1) + S(2)
ST = S(3) + S(4)
SR = S(1) * EYM * * 2 +' S(2) * (BY - EYM) ** 2 + S(3) # ElM ** 2

.1 + S(4) * (BI - RXMf) ** 2
CALL SSK (SX, SI, SI, ESC, 3!, BASS, 21155, 1R)
IBTOT = IBTOT +'.1
IF (IBTOT .LT, 5). GO TO 220

C
C IF ITS NOT CONVER GIN, OR ELEMENT STIFP'ESSES ARE OSwILLATING
C BICKSFORTH
C SET DT=DT/2 AND TRY AGAIN
C

IBTOT =0
IF (DT .LT. I.E-4I) IERRE=2
IF (IERR . EQ. 2) GO TO 460
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DT = DT / 2.
GO TO 220

360 CO NTINUE'
C
C TEMPORARY ; TESTING STATENENTS

1? (IPLOT .!Mo. 0) GO TO 365
F1 (L) = PP (IPLOT)
D1 (Z) = DISE(IPLDT)

36 5 TI MEX=TInE + DT

C STIIPSONIS' RULE INT EGfL&TION 0F EIE ASSUMING LINEAR ACCELERATION FOR DDY
C THE *R**2 IS ARE II K1... KU 6 VG

DO 390 I = 1, 3
EIE(I) = EIE(I) + MASS # (K1 (I)*VG (I) + 2.*(K2(I) + K I)*V

1 I)+ DT* (3. *OGAC C(I) + G ACC (I) )/8.) + K4 (I) *(VG(I) + DT* (OGA CC (
2 I) + GACC (I) ) /.)) * DT / 6.

C
D0370J=1, 3

C
C *MASS SINCE DAMP IS AO NDIAENSIONALIZED BY BASS

C

VG (I) -=YG(I) + (OGACC (I) + GACC (I)) * DT / 2.
YCBAR (I)= YCBA (I) + Y (I) * DT / TEND
FCBAR (I) = F CBAR (I) + PF C(I) * DT /. TEND

C
DO 3803 = 1, 3

YARC (I, J) Y&VARC (I.J) + (Y (I) *Y (J) /(:1(I) *S(J) 1) * DT / TEID -

380 YARFC (IJ)= VARFC (I J) + (PFC (I) *PFC (J)) * DT / TEND

TIC (I) TEC (I) + (OLDPC (I) *NASS*M (I) + PC(I)) * (Y1(I)
1 OLI S(I) ) / (2. * 5(I) )

OLDPC (I)= PFC(I) / (MASS* (I) )
OGCC (t) =GACC (I)

390 OLDIS (I) = Y (T)
c

DO 400 I = 1, a$
DEL = DISE (I) -O0DISE (I)
TE (I) = TE (I) + (PF (I) + OF (I)) * DEL/ .2 .
VARE (I) VA RE (I) + DISE (I) ** 2 * DT / TEND
T]IRFE(I)= VARFE (I) + PF (I) ** 2 * DT / TEND
YEBAR(I) =IEBAR (I) + DISE (I) * DT / TEND

IMI8 I)=_FEBAR (I) + PF (I) * DT / TEND
ODISE (S) = DISE (I)
OVEL!(I) = V EIE(I)
OACC E (I) A CCE (I)
OY (I) =TY(I)
ODYfI) = DY (I)

400 OF (I) = PF (I)
C

EY = S(2) * BY / (S (1) + S5(2)) - EYE
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EX = S (4) * BX / (S5(3) + S (4)) - 315
SI =SfI) 4+ S(2)
SY S (3) + S (4)
SB = S (1) * EYN ** 2 + S(2) * (BY - ES) ** 2 +.S (.3) * EU! ** 2 +

1S (4) * (El - 3EX!) ** 2
CALL,SSEK(SX, SIo SR. EX, Eye BASSO PEASS, R)

C
C COMPARE i/ .AITJiS
C

IF (IBS (EX) . GT. ECCMAX (1) ) ECCNAX (1) = AS(E%)
IF (ABS(EY) .GT. ECC'IAI(3) ) ECCIIAX (3) = ABS(EY)

C
DO 430 I = 1, 3

IF (ABS (PFC (I)) . LT. PFC Ntl(I)) GO TO 410
PFC Z(l) =&BS (PFC (I) )
TPFCIX (l) = TIMIE

410 IF ( ABS (DD (l) + GACC (I)) .LT. AC!A(I) *GG) GO TO 420
ACTSAX (I) = ABS(O D! (I) + GACC (l).) / GG
TACA(z) = TIME

420 IF (ABS (Y (I)) . LT. DI SMI (I)) G O TO 4 30
DISHI (I) =ABS(Y (I) )
TDISNXZ(I) = TIE
DUCTHMX(I) DISS Y(I) / DTYC (1)

430 CO NTINUIE
C

00 440 I1, .T.PNA()=AB4P()
IF (ABS (PF(I)) 'G.PIFIAX(I))PFA()=AS PLj

DUCKI(I) ~D ISES X (I) / D YE (I)
440 CO NTINQE

C'
450.1? (TIME . LT. TEND) Go 'To 210

C
C END OF INTEGRATION

C TEXPOR &ET STATESiENTS: PLOTS FORCE DSP. HYSTERESIS FOR ELEMSEITS*1
C

460 ITF (IPLOT . EQ. 0) GO TO 47 0
CALL PLTOFS (0. 0, 2. *FY(1)f/SO (1) , 0., FY(I)/2.r 7.,p 10..)
CALL PARIS(t2.,, 10. , IDIS?' , -0, 10., 0., -10.*!T (1) /SO (1),

1 2.*FY(1)/SO(1), 1.)
CALL PAflS(7., 6., 'FORCE', 0, 8., 90., -2.*F!(1), FT(1)/2., 1.)

-CALL PLINE (D1, F1, ZL, 1. 0,- 2, 1)

*40CALL PLTEN D

.4DO 480 1 = 1,. 4
TARFE (I) = SQRT (ABS (VAETE (I) FEBA (I)**2)),
TIRE (I)= SQRT(ABS(VAR(I) -- YE5AR ()**2))

480 TEC(I)= TE (I) - PF (1) ** 2 / (Z. *SO() )
C

312T = 0.0
D A!PT = 0.0
TECT = 0.0

C
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DO 520 1 = 1, 3
C

D0490J1,3
VARFC (I,J) =SQRT (ABS (VARFC (I,J) FBR() =BR()))

49~0 VARC (,J) = SQRr (ABS (VARC(I,J)- YCBAR(I) *YBR(Jf))
C

312(I) = EIE (I) + BASS * VG (I) ** 2/ 2.

CDs0,003=1, 3

500 TIC (I) = TEC (I) - SKI NV (I, J) * PFC (J) * PFC(L)1),2.
C
C FINAL STRAIN 6 1KINETIC ENERGY EVENTUALLY ARE DISSIPATED AS
C DAMPING ENERGY

DO 510 J = 1, 3
510 DIHMPDE (I) = DASPDE (I) + SKINV (I,J) * PFC (J) * PFC (I) / 2.

C
DANPDE(I) = DAMPD (I) + MASS * (DY(I) +'VG (I)) ** 2 /,2. -!ASS

1- * PDELT (I) * Y (T) ** 2 / 2.
DIET = EIET + EI E(Z)
DAMPT =DAMP T 4+DAMPDE (I )

520 TECT = TECT + TEC (I)

TED! =DLM PT + TESCT
C

WRITE (IT, 530) -(PFCKI (I) ,TPFCdZ (I) .1=1,3). (AAX,(I-) ,TACMAI (I) ;I=
11,3), (DISNX(I),TOISMXIt) ,I=1,3) , DUCTIIX, DYC, ICBAE, 'ARC, F:B&R,
2VARFC, EU, EIET, DANPDE, DAMPT. TEC,. TECT, TEDE,_ ECCMAXo_ L, [L2,
3T1H!E, TEIR

530 FORMAT (//'-QUANTITY X ', ' XTI3B R RTI32
1 1 YTINE'//' MAX FORCE', 6F10.3/'0ACC,,TOT', 6F10.3/10
2M~l DI SPL' , 6F 10.3 , T80 , ' THETA*R' /'0D UCTILITY-", 3 (F0. 3 ,10X) /' OYI

* 3ELD DIS', 3 (F10.3,1 OX) /'OAVG DISP. ', T11, 3 (F O. 3, 1X) /, ' ORms DIS
4P. I 3 (Tl1 ,3 (FI10.3 ,10X) /)., 'QOAVG FORCE',# T1, 3 (Fl1O.3, lOX) /, ' OHMS
5 FORCE', 3 (T11-,3 (R10.3,I1OX) /) , ' EQ. INPUT'/'. ENERGY if
6 4 (FI.3,10X) /' DAMPING'/' ENERGY Is, 1 (F1.,10X) /' DISSIP
7ATED'/' ENERGY ' f, 4(F 10.3,I10X) /T70, 'TOTAL DISSIPATED ENERGY= 'o

8 F10.3/' OM3AECC "', 3 (710.3,10%) , 10%, *' 1,,I5, ' L=
9 150, ' TINE=, FIO.4,' IERR "'.I5/)

WRITE (1j,5140) (I, SO (I) ,FY (I) , DYE (I) ,RO0(I) , DISEMX(I) DUCMX (I.) ,
1PFMA%(I),TE(I) ,YEBAR(I) ,VARE(I),FE BAR UZ),VARPE(I),I=1, 4)

A5410 FORMAT ("-!t'T $/ STIFF/YIELD FORCE/YIELD DISPL./3-0, COEFF/5k[.frIS
1IP. /DUCTILITY/"1 AX. F ORCE/DIS S. ENERGY/AYG DISP/HMS DISP. /AvG FOR: E/Em
25 FORCE/' // (15 ,2Z,F9.1 ,3Z, F9.3,1XR,F9.4,o1X, F5.3 ,7Y,8'(F9-.3,1I) )

GO TO 160
550 STOP 1

EN D
SUBROUTINE FNCTN(L,. PCT, I, DY, DDY)
COMMON S (3,3) , DHP (3, 3) , PHI(3,3) , D (3), OL PFC( 3) , OLDIS (31,

1 PDELTA (3)
COMMON /GTIP E/ GAC(3) , OG ACC (3) , G (8000,3)
DIMBINSIOl Y (1) ,. DY (1), DDY (1) , A UX (3)

C'
C . .. "".

C Y =-Z -C/ *! -K/M*YZ
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C
C K*Y=PRXEVIOUS FCRCE+INCRZElZNTAL FORCE
C = PREVIOUS Foac!'+CTTR R TSTI ?FN ESS*I NCRE RENTAL .DISPLACEMIENT
C OLDPFC MUST BE NORMALIZED1

DO 20 1 = 1 , 3
s3=0.0

C
Do 10 7 1, 3

10 S 3 S+ DAMP (IJ3) * 'DY (J)
C

20 AIJI(I) = s
C

DO 40 1 = 1, 3
S = '0.0

C
DO 30 3= 1, 3

30. S = S + SK(I,J) * (Y (J) - OLDIS (J)).
C

4$0 DDTY(I) = '(S + OLDPFC (I)) - AOX (I) OGACC (I) * (1. - PCT)
1IGLCC (I) * PCT + PD ELTA (I) * Y1(I)

C
RETURN
END
SUBBOUTINE SSK (SIr S, SR, -E'rIEl, MASS, flSSH, )
CONNfON. SK(3,3) , DJLM?(3,3) , PHI(3 1 ,3), D (3), OLPC(3) r OLDIS3) r

1 PDELTA (3)
BE AL MASS
SK (10,1) =SC / SASS
SK (1,2) = -RY * SX / (BASS*R) -

SK (1 r3) = 0.0
SK (2, 2)= SR / PRA SS
SK (2,3) El£ * SY / MSS / R
SK (3, 3) =SY / !AS S

DO 10 1 = 1,r 3
C

DO 10J3=1, 3
10 SK (J, I) = SR (t, J)

C
RETURN
END
SUBROUTIE BILN(PF, OF, Y, 0!r OVEL, OACCv. ACC, OTT, DT, OD, I)

C
C BILIERARSTIFFN~ESS SUBROUTINE PROGRAMMED BarM.E.BATS 1978,
C -FOP. AN ELEMENT WHOSE FORCE IS A FUNCTION OF ONLY ONE DISPLACEMENT
c SUCH AS A LUMPED ASS SHEAR SYSTEM.
C I? TAE FOPRCE OVERSHOOTS THE BILINEAR ENVELOPE, THE SUBROUTINE
C COMPUTES THE TIME STEP NECCESSAP.! TO HIT THE ENVELOPE PRECISELY (1
C 1%
C FOR. EL!NENT5 WHOSE FDRCE IS A FUNCTION OF SEVERAL DISPLACEMENTS SUC
C AS NO ENTS IN A -BE Ai,
C THE TI ME STEP CALCULATION M.UST BE REFORIULATED (BUJT CANBE DONE
C WHERE THE CHARGE WILL BE INI THE OLD VELOCITY CACC & NET ACC
C 5SUCH AS DY=MOM/SO=2*THETAA+THETA3-3/LENGTH*PSI)
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C ITC 5UST BE INITIALIZED TO 1; S TO SO; PRAY TO -FY* (1-RO) / (SO*RO)
C

1 IBTOT

C IVC (I)=0 SPANS NEW CHANGING; IYC(I)=1 !SEANS UNCHAffGING;IVC(I)-1
C HEINS UNLOADING FROM YIELD LINE
C

DT = D TT
IF (I VC (I) . EQ. 0) GO TO 20
IF (lYCC-I) .EQ. 1) IVC(I) =I

C
C IF UNLOADING GTO 1:IF NOT GT3. INITIALIZE CONVERGENCE COUNTER;
C IF Y IS .BEYONlD FY* (1-R0) / (SO*R O) LOADINGS UNLOADING BECOME UNCLEAR
C

IFP(ABS (07) .LT. PSAI(I) ) GO TO 5
IF (S(X).EQ. SO (I)) GO TO 40
IF (ABS (0!) . LT. ABS( Y) . AND. IBS (PF) .LT.FY (I)) GO TO 10
IFP(ABS (OY) .CT.AiBS (U) .AND. ABS (PF) .GT. FY (I)) GO TO 10
GO TO .110

5 IF ((PP + OF) *(Y - CY)) 10, 30, 30
10 1F (S5(I) . EQ. SO (I)) GO TO 40

C
C UNLOADING E ?R EYIO USL!. YIELDED,RBESET STIFFNESS TO INIIAL, IVC (I) =- 1
C AND REDO THIS TIME STEPS CALCULATIONS
C

S (I) = SO(I)
ITC (I) =-1
DT =DTT
GO' TO 113-

:c

C DT WAS CHANGED. R ESET IVC (I) =1 & CHECK IF PF=FY (t) SET
C S (I)=SO0(I) *RD (I)'
C

20 IVC'(I) = 1 _
S (I) = S3(I) * RO(I
EPSLON = ABS(PF- (RO(I) *(SO (I)*Y -PF - FY (I)) + FT(I))3/(1. - BD(

11)3)) / ABS (PF)
EPSLON = AMlINi (BPSLO, ABS (PF- (RO (I) *(SO (I) *Y - PF + FY (I)) - FY (

11))/(l. - .O (I))) /ABS (PF) )
BP SNAI = AA 1 (EPS MAY, EPSLON)
IF (EPSLON .LE. 0.01) RETURN

C
C CALCUL ATED .DT HAS FAILED TO CONVERGE,- RECALLLATE OT IF-. IT HAS OVERSHOT
C ENVELOPE, OTHER WISE USE THIS TIMBSTEP&CONTINJE. IF TWO ELEMENTS
C HAD YIELDED, ONE PROBABLY HAS NOT CONVERGED08 OVERSH3T;THIS IS OK

5(I) =SO0(I)

GO TO 410
C
C IF NOT UNLOADING S Nor PREVIOUSLY YIELDED, CRECK TO SEE IF 'YIELDED .NON
C

30 IF (S5(1) . EQ. SO0(1)) GO TO 40
C
C CONTINUING TO YIELD (GTO 110).
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c
GO TO 110

C
C IF PIP ABOVE BOTTOM YIELD LINE, (GTO5O)
C

40 IF ((PP (30(1)*(SO(I) *Y - PF + FY(I)) - FT(I))/(1. - O(I))I
1 GE. 0.0) GO TO 50

C
C ELE013NT HAS YIELDED ON NEGATIVE SIDE. FIND NEV DT
C

Go TO 60
c
C 1F PIP BELOW TO)P YIELD LINE RETURN
C

50 IF ((PF.- (RO (I) *(SO (t) *Y - PF -FY1(I)) + F (I)) /(71. - RO (I)) I"
1 LE. 0.0) GO TO 110

C
C ELEM ENT HAS YIELDED ON POSITIVE SIDE. FIND NEW DT(GTO 60)
C,

GO TO 60
c
C YIELDING. FINDl NEW DT S.T. NEW PF=YIXLDPF 6 SET IC (I)zO0
C DT (?Y (I) -OF) /SO (I) =DT*OVXL+~DT**2/6* .(2*OACC+ACC (T+NEWDT) )
C ASSUMING LINEAR ACCELER~ATION DURING DTT,THIS IAPLrEES A CUBIC.
C EQN IN DT. SOLVE FOR DTUSET IVC(I)0O,&REDO THIS TIME STEP N/ NEW DT
C

60 P =3. . * 0DT * OAC / (ACC - OACC)
Q= 2. * P * OTEL / O&CC

C
C FY(0YOY)=(F! (I) +RO(I)* (SO(I) *o!-OF-F'Y(I)))/(1-Rto(II?)
.C

FYIT FY (L)
IF (Y .LT. 0!) FlY = -FY(I)
R = -6. * ODT / S7 (I) # ( (FTYI +'R(I)* (SO (I) *3Y - OF FTY))/1

1 RO0(I)) OF) / (ACC -O&CC)
A= (3. * - P* P) / 3.
B_ (2. *P**3 9. *P*Q + 27.*R) / 27.
DT =O0DT

C
C IF 1>0 THEBES ONLY ONE REAL ROOT,USE NEWTON ITERATION
C

IF(A . GE._0. 00) G3 TO 80
C
C 3 REAL DISTINCT ROOTS, FIND THE ONE BETWEEN 0 AID DTT
C

D = -B/2. /SQRT (-A** 3/27.)
IF (ABS (D) .GT. 1.0) GO TO 80
PH13 .ARZOS (D) /3.
C = 2. * S QRT (-a/3 .)
DT = DTT'

C.
DO 70 J = 1, 3

DT2 = C * COS (P1113 +(J - 1.) *2.094395) P /' 3.
IP (DT2 . LE. 0. D) DT2 = DTT
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IFT(DT2. LT. 1. -4j DT21. E-4
7 0 DT = A KIN1 (DT, DT2)

C
GO TO 100

C
80 DO .9013= 1, 3
90 DT?= T- (DT**3 t P*DT**2 + Q*DT + H) / (3. *DT**2 4 2. *P*DT *+.Q)

C.

C IF DT. IS CLOSE TO DTT, LINEAR ACC. MAY GIVE DT>DTT SINCE
C RUINGE-KUTTA 5 LINEAR ACC. GIVE SLIGHTLY DIFFERENT ANSWERS.
C IT SHOULD BE WITHIN 1% THOUGH. IF NOT, LEO MB WILL =5
C

100 IV C(I) = 0
110 RETURN

END
SUBROUTINE RMBOSG (TT, OTT, I)

C'
C PERIOD/DT SHOULD BE >16 OTHERWISE YOU CANT REALLY
C CONSIDER TtZ ELEMENT 7r0 BE LINEAR BETW EEN TIME STEPS
c

COMMON /STIFF/ RO (4), PY (4), SO (4) , IVC (4) , S(4) , PMAI (4),EPS!lAY,
1. IBTO0T

DIMENSION IN (20,4&) , IC()o, UP (4)
GV (DY,DR) = 1. / (1 .+ (DR) *AES (D)** (DR - 1.))
GRO (DT, DY0, DR) = 1 . / (1.+ (DR) *ABS ((DY -- DYO) /2.) ** (DR 1.))

C
C GV=STIFFNESS ON SKELETON CURVE (W/ SHARPNESS CDEFFDRS ALPHA=2.)
C GRO=STIFFNESS NOT ON SKELETON CURVE
C EVEN IC (I) IS= UNLOADING PTS ON SIDE OF HYSTERESIS LOOP OF MOST
C RECENT UNLOADING F3OM SKELETON CURVE
C ODD IC (I) IS = UNLOADING PTS GOING IN OTHER DIRECTION
C IOC MUTS BE INITIALIZED TO '1, S TO SO
C

T= TT / F! (I)
OT= OTT / FY (I)

C IF IVC (1) =1;.ON SKELETON CURVE
IF (IV C(I) .MNE. 1) GO TO 30
IF (ABS(!) .LT. AS(OT)) GO TO 20

10 S5(T) = SO3(I) * GV (T,RO (I) )
iC (I) =0
RETURN

C UNLOADING FROM SKELETON CURVE . SET
c IVC (I)=-1 & REDO THIS TIME STEPS
C CALCULATIONS W/ NEW STIFFNESS

20 IVC (I) _ -1
UP(I) =1.

C UP (I) =1; INCREASING 7P (I)'=-1;DECREASING
IF (T . LT. 0?) UP (I)= 1
IC (I) = 2

C YID(162) ; HIGHEST PTS ON SKELETON CURVE
YM (1,I) = -OT
1X (2,I) = 0?
S(1) = 50(1) * GRO (T,OT,RO (I) )
BUETURN
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30 IF (ADS (T) .GE. ABS (Y5 (1,I))) GO TO SO
C
C IVC (I)=0 ARANS NOT 31l SKELETON CURVE
C

IVC (I) 0
C IF DELTA (FORCE) *DELA (DI SP) GT0,GO T~l 20
C I. E. NOT UNLOADING

IF ((T- OT)*UP(I) .GT. 0.) GO TO 60
C
C UNLOADING BUT NOT FROM SKELETON CURVE
C ITC (I) =-1
C

ITC(I) =-1

UP (I) =1
IF (T .1LT. OT) UP (I) _ -1..
Ic (I) Ic (I) 4+ 1
IF (UP (I) *(T - YN (IC (I) -1t,1)) . GT. 0.) .0 TO 70

C UNLOADING AGAI N B/f !(IC (I)) =NLOADIN PT
! (C (1) .I) =OT

40S (1) =50(I) * GR (T,Y (IC (I) ,I) ,RO(I) )
RETURN

50 IVC(;[) = 1.
C BACK ON SKELETON CURVE , GTO 9

GO TO 10
C
C CONTIN UES URlO ADIN G FR O PT YM (IC (I)) TILL IT REAHES UNLOADING P1P
C Y!(IC(I)-1) 2HLPN IT UNLOADS FEQE PT YE (IC(I)-'2) TOWARDS PT YS(IC(t)-3)
C' ETC. TILL THE SKELETON CURVE IS REACHED
C

60 1? (UP (I).* (T - -YE (IC (I)- 1,1I)) .LT. 0.) -120T3 .40
'70 IC (1) = IC (I) -2

IF (IC (I) ..EQ. 1) IC (I) = 2
IF (IC (I) . EQ. 2) GO TO,.140
GO TO 60
EN D
SUBROUTINE RIG
DO UBLE PRE CISI ON 2, Q, B, 1, 3, X1t 1
COMMION SRK(3, 3), DAMP(3,3) , PHI (3,3) , D (3) , OLDPFC (3) , OL.DIS (3),
I PDELTL (3)

P= -SK (1, 1)- SK (2, 2) - SK (3, 3)
Q = Sid(1,1) # (SK (2,2) + SAC(3,3)) f SK (2,2) * SK (3,,3) - SK(2,3) **

1 2- SK (1, 2) ** 2.
R=-SK(1,1) * SK(2,2) * SK(3,3) 4'SK(1,1). *-SR (2, 3) 4** 2 + SK (3,

13) * SXK(1, 2) ** 2
A = (3, DO*Q - D*Pg / 3. DO
B = (2.DO*P**3 - -9. DO*P*Q + 27.DO*R) -f 27. DO
IF (B**2/L. Do+A**3/27.fDO . GT. O.DO) B = 2. DO # DSQRT(-A**3/27. DO)

1* B / DABS (S)
X = DARCS (-B/2. DD /DSQT(- A**3/27. DO)) / 3.D0
T 2. DO * DSOT (-1/3. DO)
D (1) = Y * DCOS(X +4 1.1887 902D0) P /' 3. DO
0(2) = * DCS(X + 2.091395103Db) P / 3.00
D (3) = Y * DCO.S (1) P / 3.00O

C
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DO 10 I = 1, 3
C

DO 10 J = 1, 3
10 PRI (I, J) = 0.0

C
DO 80 I = 1, 3

PHI (10I) = 1.0
.IF (LBS (SK(3,3) -D (I)) .1.. 5.E-01 INDW. SK (2,3) E!Q. 0.0)

1 -GObTOZ20
G0 TO 30

20 1? (SK(1, 1) .EQ. SK(3,3) .AND. I .NE. 1) GO TO030
PHI (1,I) = 0.0
PHI (2,z) 0.0
PHI (3, I) =1.0
GO TO 80

30 IF (ABS(SK(1,1)- D(I)) LE.. 5.E-01.-AND. SK(I r2) .EQ. 0. 0.)
1 GO0TO 40

GO TO 50
40 PHI(1,I) = 1.0

w ~PHI (2,I) = 0.0'
PHI (30I) = 0.0
GO TO 80

50 IF (ABS (SK (2, 2) -D (I)) .1LE. 5.E-01-.AND. SK (1,2) .EQ. 0.0 .AIND.
1 SK(2,3) . EQ. 0.0) GO TO 60

GO TO 70
60 POI (1,I) = 0.0

PHI (2; I) =1.0
*PHI (3,1) = 0.0

GO TO 80
70. 1F (SK(1,2) .EQ. 0.0) PHI (1,I) = 0.0

IF (SK(1 ,2) .EQ. 0.0) PHI (2,I)= 1.0
IF (SK(1,2) .NE. 0.0) PSI(2,I) = -(SK(1,1) -D(I)) / SK(18,2)
17 (SR(2, 3) .NE. 0.0) PHI (3,I) - (SK(1,2) *PHI(1,I) + (SK (2, 2)

1 D (I)) *PHI (2,I)) / SK (2, 3)
*80 CONTINUE

* C
DO 90 J3 1, 3

SUE =SQRT(PHI(1,J) **2 + PHI (2,J) **2 + PHI (3,J)**2)
C

DO 90 I = 1, 3
90 PHI (I,J) = PHI (, 3) / SUM

C
RE TURN
END
SUBROUTINE STFDEG(PF, OF, Y, C!, OVEL, OAZC, ACC, DTT, DT, ODr, I)

C
C BILINEAR STIFFNESS DEGRADING ?YSTERESIS(SIMPLIFIED TAKEDA)
C SUBROUTINE. CALCULATES NEW TImz STEP DT WHEN STIFFNESS CHANGES
C

COMO/STIFF ,RO (4) , FY (4) , SO (4) , .IYC (4) , S (4), PNAX (4) , EPSIAI,
1 IBTOT

DINEYSION U (13,4) , F(13,4) , IC (4) , IOC (4) , S2(4)
C
C IVC=1 MEANS UNCHANGING~ STIFFNESS; IVC-1 MEANS UNLOADING p LAST STEP
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C IVC=0 MEANS CHANGING 'STIFFNESS iHIL2E LOALDING ,LAST STEP;CEK IF
C CONVERGED
C
C PT IC= 2 IS THE 9IGHREST PT. O1 BILINEAR 'ENVELOPE RE ACED
C PT 1C=4 IS THE 5AX PT REACHED ONI WAY TO PT IC2
C PT IC=1l IS THE M121202OP ~ PT IC2
C PT IC3 IS THEIE AI PT REACHED ON WAY TO PT IC1
C IVC MUST BE INITIALIZED TO 1: S TO SO; PRAX TO FY
C

DT=D TT
IF (IVC (I) . EO. 01 GO TO 20
IF (IVC (I) . HE. -1) GO TO 5
S2 (I) =SO (I)
ITVC(I) = 1
IOC (I) = IC (I) +' 2
U (IOC (I) ,I). = 0!
F(IOC(I),I) = OF
DT=D TT
GO TO 160

5 IF ( OF # (Y - 01) ) 10, 701, 70
10 1? (S (1) . EQ. SO0(I)) GO TO 60

C
C UNLOADING ECRCHGING STIFFNESS BIND DT S.T.DY=0 TO AVOID
C PROBLEMS WHEN TWO ELEKESTS YIELD & UNLOAD SIMULTANSOUSLY
C

IVC (T) _-1.
DY = 0.0
GO TO 110

20 IVC (I) = 1
IF( PMAX (I) . EQ. FY (I)) GO TO 40
IF (S (t) .EQ. SO0(T) . AMD. OF* (Y-0Y) L1.. 0.0) GO TO 40
EP SLON =-A BS (F (XOZ (I) + 2,1I) PB) / A BS (PF)
IF (EPSLON AGE. 0.01) GO TO-30

C
C CONVERGED. LOADING TOWARD U (IC (I) -2)
C

IF (IOC(I) .LE. 0) GO TO 90
S2 (I)= (F(IOC(I) ,I) -F(IOC(I) +2.I))/(u(IOC(I) ,I) -U (IOC (I)+42,s) )
GO TO 160

c
C FAILED TO CORYVERGE TO PT. .U(I C(I) )
C.

30 IOC (I) = IC(I)
GO TO 70

C
C UNLOADING TOWARDS ZERO FORCE, CHECK IF IT HIT ZERO
C OR FIRST NONLINEAR E=CURSIO N
C

40 1F (ABS (PF)f/FY (I) . GE. 0.0 05. AND.PMA (I) A.F(I)) GO TO 50
C
C ZERO FORCE, FIND NEW STIFFNESS
C OR FIRST NONLINEAR EXCURSION
C
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1 GO TO10O
IF (PH Ar(I) . EQ. F?(l)) GO TO 90
IOC (I) = IC (I) -1
52 (1) = F (IOC (I)) ,'rfU (IOC (I) I) - Y)
PF=4.O
GO TO 160

C
C FAILED TO CONVERGE TO ZERO FORCE
c

50 IOC (T) = IC (I)
C
C UNLOADING TOWARDS ZERO FORCE; CHECK IF BEYOND
C

60 S2 (1)=SO (I)
IF (PMAX(I) -EQ. FY (I)) GO TO 160
IF (PF*0OF.GT. 0.0) GO TO 160
DY = -OF / SO (I)
ITC (Z) = 0
GO TO 110

C
C CONTINUING LOADING; CHECK IF BEYOND F(IC (I) ,I)
C

70 IF (ABS (PF) .GE. ABS (F (M~AO(IC (I) ,1) ,I))) GO rO 80
S2 (1) =S(I )
GO TO 160

c
80 IF (S5(I) .E. SO(I) *RO (I))2 GO TO 100

C
C STILL ON BILINEAR ENVELOPE
C

90 S2 (I)= ROCI1) * SO (I)
IOC (I) =0
U (lei) _-Y
F (1,1) = -PP
U (2,I) = Y
F (2,1I) = PPF
PM1aIl) = ABS (PF)
GO TO 160

C
C IF STILL LINEAR,ERETURN
C

100 S2 (I) =S (I)
IF (PMA(I) . EQ. FY(I) .AND. ABS (PF) .1LE. FY (1)) .30 TO 160

c
C CHANGING STIFFNESS, FIND NEW DT FIRST
C

DY = U (MAX0 (IC (I) ,1) ,I) 01
IVC (I) = 0
IF (PMAX(I) . EQ. FY (I) ) DY= (FY (I) /SO (I) -ABS (OY)) *OY/&ABS (OY)

C
C IF ONE ELEMENT YIELDS 9 ANOTHER UNLOADS, THE CHANGE IN TIME STEP 1AY
C CAUSE THE UNLOADING ELEMENT TO RELOAD. IN THIS CASE SINCE IC WILL
C JUST HAVE BENS INCREMENTED BY 2 IN IS#9, WE DONT WANT TO DECREMENZ IT
C.
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IF (Dye AE. 0a0) IOC (I)1C (I) -2
110 P = 3. * ODT * 01AC / (ACC- OACC)

Q = 6. * DDT * DYE L / (ACC -COACC)

R = --6 . * DDT * DY / (ACC - OACC)
A = (3 .*Q- P*P) / 3.
B = (2. *P* *3 - 9.* P*Q + 27 .* R) / 27.

DT= DD
IF (A .GE. 0.0) G2 TO 130
D=-$/2."/SQRT (-A**3/27. )
IF (ABS(D) .G T. 1.0) GO0TO 13 0
PH 13= ALRCOS (D) /3.
C = 2.. * SQRT ( A/3 .)
DT.DTT

C
DO 120 J = 1, 3

DT2 = C * COS (PH13 + ( - I .) *2. 0941395)- P / 3.,;
IP (DT2 . LE, 0.0) DT2 = DTT
IF (DT2. L To1. E-4) DT 2=1o.4

120 DT = AMIN1 (DT, DT21
C,

GO TO 150 _

C
130 DO 140 J = 1, 3
140 DT= DT - (DT**3 + P*DT**2. + Q*DT t H) / (3. *DT**2 * 2. *P*DT } Q)

IPF(DT. LT. 1.*E-m4) DT=1leE- 4
IF (DT .gT . DTT) DT=DTT

C-
150 COI(TIN QE,

160- IF (I A&E 4) GO TO 190
DO 170 J=1 ;4 -
IF (IV C(J) . EQ. 1) GO TO 170
GO TO 190

170 CONTINUE
DO 180 J=1,4
IC (J) =IOC (J)

180 S (J) = S2 (J)
190 RETURN'

END
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APPENDIX F

The first law of thermodynamics for a closed system that

undergoes a change in state is

2 2 2
faQ = f dE+f 6w

2
where JSQ is the heat transferred by the process between

1

state 1 and state 2 and 6 is the work done between state
1

1 and state 2. E is the energy of the system in a given

state and in this case represents the sum of strain energy,

SE and kinetic energyKE.

Equation F-1 can be written as

1 Q (SE 2 +KE 2 )-(SE1 +KE 1 ) +1W2 F-2

where 1 Q2 represents the dissipated hysteretic dissipated

energy, DHE, and dissipated damping energy, DDE

1Q2-- - (DHE+DDE).

1w2 represents the work done by the system which is the

earthquake input energy, EIE

S2 EIE.

By writing the dynamic equations of motion as

B" (U I+U )+CTU+F (u)=0
g

and integrating these forces through the distance dt+dU g

t .. .. .

f{Mo (U +U ) +Cet+F (U) )" (dU+dUg) =0
0g

the various terms in Equation F-2 can be expressed as
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t *. .t . "t
f " (IT }U ).(dtJ~dtJ9)+1 fCe+F (U) .dtl+j(C*U+F (U) } dU =o F--3

g g

By a suitable change of va riables and rearranging terms,

..guat ion -.3 becomes

t . . t i_. .. t "
fM(I+u) " dU+duq)+CNIodu+J(U) 'dU~mf{CUt+F (U)} dJ F004
o gg00

which satisfies the first l1aw o E
closed -system shown ain Fiqure ?-1.

64

k~

thermodynamics for the

Zit)

kox," gi

Figure- F-i Dynamic Model

The first term in Equation F-4 is the kinetic energyKE

KB = ltTJ U(t) + ;g(t) J2/2

The second terma is the dissipated damping eu-ergyDDE

t
DDE =f C Du(t).dt

0
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The third term represents the dissipated hysteretic energy

DH',o and the strain energ~y,SE

SE = KoU2 (t) /2
'the right hand side of Equation

earthquake in put energy ,EIE

!ILE f (K *V+CUo d U= r i(Ug' tJ )
0 0

is4 1 the

Finally, Equation F-4 can be rearranged as the more familiar

ETE = SE + AKE* DDE + DEEx 5
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