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The scattered field, when a plane wave is incident along the axis of a slotted, perfectly conducting, 
semi-infinite cone, is obtained by a superposition of the scattered field from an unslotted cone and the 
radiation field from the slot on the cone. The slot is a finite, thin, circumferential slot backed by a 
cavity which is characterized by an admittance. The induced voltage is represented by a sinusoidal 
distribution. The amplitude of the induced voltage is then related to the incident field by expressing it 
in terms of the radiating and load admittances of the slot. Expressions for the radiation admittance 
and the scattered far fields are derived. 

1. Introduction 

It is often desired to know the scattering properties of slots which ordinarily serve as radiating 
apertures. In this paper we will consider a semi-infinite cone with a finite, thin slot in the cir­
cumferential direction, as shown in figure l. The slot is located at a distance a from the apex, sub­
tt'nd:,; an an:,!le 2<f:J,., has a width of 2il. and is backed by a cavity that is characterized by a load 
admittance Yt. If the incident wave frequency is such that the slot has a resonant length, a sinu­
soidal distribution is a valid representation for the induced voltage. However, for slot length other 
than resonant. this distribution should also be a good approximation. The scattered field from the 
slotted cone will then be a superposition of the scattered field from an unslotted cone and the 
radiation field from the slot. The amplitude of the slot voltage is then related to the incident field 
by expressing it in terms of the radiation and load admittances of the slot. 

2. The Scattered Field From a Semi-infinite Cone 

Let us first consider an unslotted perfectly conducting semi-infinite cone 
1 
whose apex is at 

the ori~in of a Cartesian ('tmrdinate system (x, y, z). and whose axis is parallel to the z axis. A plane 
electroma:,!netie wavt> is assumed inddent in the direction of the ne~ative z axis. and. since there 
is no loss of :,!enerality in takin:r its electric vector to lie in the x direction. we choose 

E 1 iJ.eikz and H 1 -i11Yeikz 

where Y is the intrinsic admittance of free space and a time factor eiwl has been suppressed. 
The total diffracted field can be given in terms of the De bye potentials (u. v) (Goryanov. 1961) 

as follows: 
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z 

FIGURE l. Geometry of semi-infinite cone with a finite slot 
of angular width 2cf><, which is centered at cf> 1• 
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(3) 

where P~(cosx) is the associated Legendre function, l/Jv(x) is the Bessel function connected 
with the ordinary Bessel function according to 

l/Jv(x) = .y~x lv+l/2(x)=xjv(x) (4) 

and the numbers v 11 and 1-t 11 appear as the eigenvalues of the boundary problem and are deter­
mined from the equations 

. 
0
8 

P111 (cos 8o) = 0. 
cJ () 

Senior and Wilcox (1967) have programmed the computation of the roots v 11 and J.L 11 of 

P::;,(cos 8) and : 8 Pft~, (cos 8),
110 

respectively, as well as the values 

(5) 
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E._ p ~·(cos 8o) t and a ( E._ p Jl'( cos 0) ) 1 . av vn ae ~~~ 

The induced current 1 on the cone surface is related to the total magnetic field by 

(6) 

so that (7) 

The components of an electromagnetic field in a spherical system of coordinates are given by 

l ii2 iwf.L av Ee=--- (ru) ----
r iJriJO sin () iJ<f> 

. au 1 'iJ 2 

lWE
0
()+-. -8~ (rv). 

r sm iJru'l' 

The magnetic field on the cone surface can then be given as 

where 

T2(r)=-!!. i (2v+l):ir P! (-cos Oo) iJ p~ (cos Oo)I/Jv(kr) 
kr.n=l v(v+ l) sm 1TV ~pt ( 0 ) iJOo av v cos 0 

(8a) 

(8b) 

(8c) 

(9a) 
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(9c) 
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(ll) 
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and the primes denote differentiation with respect to the entire argument. From this point on we 
will delete the subscripts on the eigenvalues; therefore it should be understood that p. = ILn and 
V = Vn. 

In (12) and (13) we split off the incident field (Goryanov, 1961) and obtain the scattered far 
field by replacing '(kr) and its derivative by the leading term of their asymptotic expression for 

large kr, where 'v (x) = .J¥ HW 112 (x). The scattered far field is then 

where 

e-ikr 
E~= i cos 4> --Sf(O) 

kr 

t 
2v + 1 eiV1r -Jo P~ (cos 0) 

Sf(O) =-~ v(v+ 1) . ll aPv (cos Oo) aPv (cos Oo) 
Sill uo aOo av 

(14) 

+ 
2p. + 1 ei~-''" PA (cos 0) l - (15) 

p.(p.+1) . ll . ll a2 P ( ll) 
Sill {7 Sill uo aooa IL IJ. cos uo 

and (16) 

where 

j 
. aP( ) 

x etJJ.7r - I COS 0 } 
SHO) =- L 2p.+ 1 ae IJ. 2v+ 1 eiV1r PH cos()) 

II=! p.(p.+ 1) . ll a2 p ( ll) + v(v+ 1) . ll . ll aPv(cos Oo) aPv(COS Oo) • 
_ sin uo -all a ~'- cos uo sin u sin uo ll 

uo 1L auo ov 
(17) 

Since P,J,(cos 0) I a p ( )I . =±- I. cos 0 
sill e o=o ae o=o 

(18) 

0=-rr 0=-rr 

we note that 
(19) 

implying that for backscattering, the field has the same linear polarization as the incident field. 
In all other directions, however, the field is elliptically polarized and the component cross sec­
tions are 

(20) 

(21) 

with the complete scattering cross section given by 

(22) 
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3. The Radiation Field of a Resonant Slot on a Cone 

Let us consider a cavity-backed resonant slot centered at c/>1• The slot is narrow and in the 
circumferential direction, i.e., a thin finite circumferential slot defined by I r'- a I ~ 6., I cf>'- c/>1 I 
~ c/>0, where 2cf>0 is the angle the slot subtends and the primes denote coordinates on the surface 
of the cone. If the source frequency is so chosen that the slot is a half-wavelength long, a good 
representation for the induced slot voltage distribution is a sinusoidal one. Although it is expected 
that a sinusoidal distribution is still a good approximation for larger slots, and especially for smaller 
slots it should provide us with useful results. Hence we shall consider 

E ( , A..') E 1T cf> '- cf>t f I A..' A.. I A.. 
r r , 'I' = o cos 2 c/>o or 'I' - 'f'l ~ 'f'O (23) 

where the length of a resonant slot is 2cf>0a sin 80 = A./2. Since the slot width is much smaller than 
one wavelength, the slot voltage v across the gap can be considered a constant, i.e., v =- 26.Eo. 
The distribution at the slot can then be stated as 

(24) 

where v is the maximum slot voltage at the center of the slot. This voltage must be related to the 
radiation and loading admittance of the slot, which characterize the cavity bac}<.jng the slot. 

The potentials II and II* which describe radiation from a cone when the aperture fields have r 
components only are given by (Bailin and Silver, 1956): 

II= x " - ik(2v+ l)P~' (cos 8) 
,6;0 k v(v+ 1) (1 + 8om)1T sin OoaP~' (cos Oo)/av 

where r>, r< symbolize the larger and smaller of the coordinates r, r', respectively, and 

where 

· Er(r', cf>')L(r, r') sin m(cf>'-cf>)dr'dcf>' l
a+~ i<i> 1+<1>o 

a-~ <l>t-<l>o 

{
jp.(kr)~~(/.•r'} 

rl (r, r') = 
jp. ( kr' )~~(kr')h<;;_>(kr)/ h <;;_>(kr') 

r< r' 

r> r'. 

(25) 

(26) 

The primes denote derivatives with respect to the entire argument and ~(x) =xh~>(x). Since both 
TM and TE modes are excited by the slot distribution (24), we have for the components of the 
electromagnetic field 
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( 
iJ2 ) Er iJr + Jc2 rll 

iWE iJ ( 1 iJ
2 

( Il* 
He= r sin 8 acp rll) +-; oriJ(J r ) 

Hr= (!~ + Jc2) rTI*. {27) 

For the slot distribution given by (24) the integrations give 

m1T 

l
<l> +<I> (A..' .,~.. ) cos m(<P-<Pd cos 2k . 8 7r A_ 1 • ?T 'I' - 'f'l (A.. A..') .:~..~-.• _ ?T a sin o - - cos cos m '1'-'1' a'l' --

<Po <1> 1-<1>0 2<Po <Po ( ka sin Oo) 2 -m2 (28) 

where ka sin 8o=7r/(2cp0), and 

r ( ) =_.!_ (a+A. r ( ')d '=fh!Jl(kr)i~.t(ka)C~(ka)fh!Jl(ka) 
1 r, a 2.1 la-A. 1 r, r r U~.t(kr),~(ka) 

r>a 
r< a 

(29) 

7r B _ l<l>,+<l>o 1r( cp'- </11) • (A..'_ A..) drl-' =!!.._sin m( </11- <P) cos mcp0 • (30) 
-;: - cos 2,~.. sm m 'I' 'I' 'I' .,~.. (?T/2,~.. )2 m2 
'f'O </> 1-00 'f'O '1'0 o/0 

The potentials can then be expressed as 

(31) 

where r>, r < symbolize the larger and smaller of the coordinates r, a respectively; Som = 0 for 
m ,.., 0, and Som = 1 for m = 0; and 

TI*="' "' Yvm(2#L+ 1) Pjf(cos 8)f1(r, a)B '* ~ #L(JL + 1) sin2 (J0iJ 2PJf.( cos Oo)/o6oo#J.(l + Som) 
(32) 

From (27) the magnetic field He on the surface is given by 

Hq,= YvTii(r, <P) (33) 
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"' ~ A [k2a(2v+ 1)CJP;:'(cos 8o)/iJ8o 
where 'n(r, 1>) = L L ""o(l + Oom) v(v+ 1)aP~•(cos 8o)/f:Jv. . 

m n 'I' 

. c·>J m2 (2J.L+ 1)P::_'(cos 8o)f'(r, a) J (34) 
"Jv(krdhv-(kr>)+ · -~ 8 ( + 1)azpm( 8)/a8a · r sm· oJ.L J.L ~'- cos o o J.L 

where 
, _ jj_ _ { '~(kr)j~'-(ka)_,~(ka)"/h!J>(ka) 

r (r, a)- arrf!(r, a)- l/l~(krn'Jka) 
r>a 

r<a 

In the far field where r ~ a we have 

With this substitution the potentials can be expressed as 

e-ikr "' "' (2v+ 1)eivn-!2p~· (cos 8) 
ll=-v- ~ ~ l/Jv(ka)A 

kr L.. L.. v(v+ 1)</>0 (1 + Oom)aP~· (cos 80)/av m n 

(35) 

and (36) 

The components of the electric field can now be obtained. The 8-component is 

1 CJ2 ik a e-ikr 
E8=-- (rll) --.--ll*=ikv- s~-(8, </>) 

r CJra8 Y SID 8 aq, kr 
(37) 

1 "' "' A [(2v+ 1)ei.,.i2aP:J' (cos 8)/a8 
where Sf(B,</>) =<PoLL (1 + Oom) v(v+ l)aP~· (cos 8o)/av l/lv(ka) 

m n 

im2 (2J.L+ 1)P::.' (cos 8)ei~J-1T12j~'-(ka),~(ka) J 
-sin(} sin2 80J.L(J.L+ l)a2P::_' (cos 80)/iJ80iJJ.Lh!J>(ka) · (3B) 

The &-component is (39) 

where 

i(2J.L+ I)aP;:(cos 8)/a8ei~J-1T12j~'-(ka),~(ka) ]· (
4

0) 
sin 2 OoJ.L(J.L + 1) az Pz_' (cos Oo) I a8oiJJ.Lh ~>(ka) 

4. The Radiation and Loading Admittances 

To calculate the radiation and loading admittance, we will first define admittance as twice 
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the ratio of the complex power flow across the aperture to the square of the maximum voltage. 
The complex power radiated is 

· lfft+AJ<i> 1+<f>o _ ~ 
Wr=-2 E8 X Hr · iea sin ()0d¢'dr' 

a-A <t>,-<1>
0

- -

(41) 

where - denotes the complex conjugate. Substituting for the aperture field from (24) 

(42) 

The radiation admittance is then 

(43) 

where (33) was substituted for H ~-To evaluate the admittance we will need the following integra­

tions (see appendix): 

fq,, +4>o [ 1T 
_ cos m(c/>' -cJ>t) cos 2 ..~-. (c/>' 

<t>, <~>. ~0 
] 

, 1T cos mc/>o 
¢t) de/> = ¢ 0 ( 1T/2¢o)Z- m 2 (44) 

(45) 

The radiation admittance becomes then 

Yr y~ ~ 1T sin 00 ( cos m</>0 )
2 [k2a 2 (2v+ l)()P~(cos 6o)/d0o j,(ka)h<2 l(ka) 

~ ..;- (l + 6om)¢ij (1T/2c/>0 ) 2 -m2 v(v+ I)aP~•(cos 60 )/av " 

+ m2 (2J.L+ l)P:f(cos Oohs.t ] 6 
2 sin3 OoJ.L(J.L+ l)a 2Pjf(cos 00 )/iJfJooJ.L • (

4 
) 

To determine the loading admittance, the power that enters the slot must be known. It is here 
that v will be related to the incoming wave, for it is the incident field that induces the slot voltage. 
Since the compone'nt of the current that excites the slot is given by 

Jr(r, ¢)=cos r/>Jr(r) (47) 

a slot placed at ¢ ""'1T/2 will have little voltage induced and hence will scatter little. The power 
entering the slot is 

(48) 

Substituting the slot field (24), we have 

_ va sin Oo f f [ 1T , J - , , W- 4~ cos 
2

</>u (¢ -¢1) Hrbd¢ dr. (49) 



Scortering From Resonant Slots 

The load admittance is then 

The total magnetic field of the unslotted cone is given by (11). The load admittance is then 

J'r =-Yr- Ya 
2
s!: Oo I I cos [2~0 (cf/ -<Ptl J cos <f>'T2(r')d<f>' dr' 

=- y _ Yrra sin Oo cos <f>, cos <PuT2(a). 
r v<f>u[ ( rr/2</>of- l j 

This permits us now to solve for v. 
Thus the induced slot voltage is 

Yrra sin On cos <f>, cos <PuT2(a) 
v=- (Y,.+ l'r )</>o[(rr/2<f>u)2 -lJ . 

(50) 

(51) 

(52) 

This expression when used in (24) now gives the entire electric field distribution in the slot. It is 
seen that in this approximation, a slot placed at </> 1 = rr/2 does not scatter since the incident field 
does not excite the assumed symmetric mode (24) in the slot. In reality, some weak scattering will 
be produced by a slot at </> 1 = rr/2, since an odd mode of small amplitude will be excited. Although 
the component of the surface current (11) that excites the slot is equal to zero at <I>= rr/2, it increases 
to a small but finite value either side of <P = rr/2. For a slot of finite length, an odd mode 

EIJ= ;~sin rr(</>'- </>o) 

would then be induced. The radiation from such a slot distribution can be readily obtained by 
following the procedure of the previous sections. If this were done, one would find that v1 <,g v, 
that v, is largest for </> 1 = rr/'2., and that it vanishes as </> 1 approaches zero. Therefore, it is the even 
mode considered here which gives rise to the dominant scatter. The expression (52) for v also 
shows that the induced amplitude vis a maximum when the slot is placed at </>t = 0. From symmetry 
considerations one can also deduce that for slot positions near </>t = l the even mode becomes an 
accurate representation for induced voltage, with the error increasing as <f>, = rr/'2. is approached. 

One should also note that v is indeterminate for <Po= rr/2, which corresponds to slots with a 
length of a half circumference. However, the limit as <Po ---7 rr/2 does exist. 

5. The Total Scattered Field 

The total scattered far field can be written as the superposition of the scattered fields from 
the unslotted cone and the radiated field from the slotted one. Using (14) and (37) we obtain for the 
() component 

(53) 
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and similarly with (16) and (39) we obtain the </>-component 

e-ikr 
Eq,=-ikr[sin 1/>S~(O) +kvSHO, </>)]. (54) 

The two preceeding equations represent the solution to the scattered field of a slotted, semi-infinite 
cone for ~ plane-wave incident along the axis of the cone. They can be used, for example, to solve 
for the loading admittance when scattering in certain directions is to be minimized. If zero scatter· 
ing is desired in the (0, IJ>) direction, we can set Eo and Eq, equal to zero and obtain two solutions for 
Y.., , which are 

y =- y Y1rka sin Oo cos 1/>t cos 1/>oT:.(a) Sf(O, </>) 
" r+ IJ>0[(7T/21J>o)2-l] cos</> Sf(O) 

y =- y + Y1rka sin Oo cos 1/>1 cos l/>oT2(a) S:f(O, </>). 
" r ¢ 0[(7r/21/>0 ) 2 l]sin~J> S!(O) 

·These two statements will give the admittance for Y, · if 

5[(0, ¢) 
cos ~J>Sf(O) 

SHO, </>) 
sin ~J>S~(O) · 

If (57) can be satisfied, zero scattering is obtained in the (0, ¢) direction. 

6. Concluding Remarks 

(55) 

(56) 

(57) 

For a discussion of loading by reactive, semiactive, or active slots, the reader should consult 
Liepa and Senior (1966). The impedance }( which characterizes the cavity backing the slot can 
usually be obtained from waveguide theory once its physical dimensions are known. For example, 
if the backing is a piece of waveguide terminated in its characteristic impedance, the cone surface 
currents would excite the TE10 mode in the guide. The loading admittance, using the definition of 
admittance adapted in this paper would then be (Ramo, Whinnery, and VanDuzer, 1965) 

yrE = 1/>oa sin Oo [I-( 7T ) 2 ] 112 

" a 21/>oka sin Oo . 
(58) 

Note that this admittance is purely reactive for slots slightly shorter than 'A./2, and resistive for 
21/>oa sin 9o > A/2. For 21/>oa sin 00 = 'A./2 it is zero; however, including losses and other effects it 
is small but not zero. If the backing cavity is a piece of shorted waveguide of length d, the load 
admittance would be 

Y, = j cot f3dYJE. (59) 

.Most likely, the slot. on the cone surface will be backed by a waveguide with a cross section larger 
than that of the slot. The slot could also coincide with a narrow radiating slot in the broad face of 
a backing ractangular waveguide, mounted along the inside surface of the cone. In these cases 
the determination of Yt is more complicated, but an abundance of published material exists which 
can be readily applied to this case, as for example, Oliner (1957). 
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We have tacitly assumed that the slot backing, say a waveguide, can be described in terms 
of a load admittance which is a "lumped" parameter which carries the essential information about 
the interior fields vis-a-vis the scattering problem. To describe the interior in any greater detail 
would add great complication and in fact would be a restriction to a single problem depending upon 
the geometry and electrical properties of the interior. Such an approach has been carried out by 
various authors (Liepa and Senior, 1966) leading to the justification of our lumped approach. 

On the basis of experiments with slots on a finite cone-sphere (Goodrich et al., 1967), the semi­
infinite cone results can be applied to the finite cone provided the slot is directly illuminated by 
the incident field, the slot lies more than two wavelengths forward of the cone termination, and 
provided the scattered field is observed directly or if not directly then in the forward hemisphere 
of the cone. 

Many helpful discussions with V. V. Liepa are gratefully acknowledged. 

7. Appendix 

For computational purposes it might be convenient to retain the slot width dependence ~ 
explicitly in the expression for the radiation admittance Yr given by (46). Performing the integration 
of (45), we obtain 

If we were to expand $[k(a-~)] and {[k(a+~)] in a Taylor series and substitute the first 
two terms in the above right-hand side, the result would be the right-hand side of (45), namely ~'Y~L· 
The ~ dependence can now be shown explicitly in Y~ by substituting for the first factor 'YIL in (46) 
the expression 

(A.2) 

where the braces are those of (A.l). 
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