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Spectral densities of components of the electromagnetic fields of thermal radiation in a uniform 
magnetoplasma are shown to be related to the radiation resistances of electrically small antennas 
radiating in the magne toplasma. 

For antennas of arbitrary size and shape the conventional concepts used to describe antenna per
formance in isotropic media, i.e., gain, effective area and effective length are generalized to anisotropic 
media and relationships between them and radiation resistance established. A thermodynamic method 
is used in the derivation of the relationships. 

A new derivation of the radiation resistance for an electrically small dipole in magnetoplasma is 
given based only on the far-zone radiated fields. ' 

1. Introduction 

In recent years there has been considerable interest in the measurement of field strengths or 
radiation intensities of radio waves in magnetoplasmas, for example for radio astronomy measure
ments from vehicles in the topside ionosphere. Two related aspects of this problem are treated 
in this paper. First, several papers have been published w_hich deal either with the strengths of 
thermal fields or with the radiation resistances of small dipole antennas in magnetoplasma. Simple 
relationships exist between these quantities in an isotropic plasma (Hugill, 1961). In this paper, 
these quantities are discussed for magnetoplasma and general relationships between them are 
established. The last section is concerned with properties of antennas of arbitrary size and form 
in magnetoplasma, with electrically small antennas entering only as an explicit, special case. 

In section 2, we consider infinitesimal electric and magnetic dipoles radiating into an em
bedding magnetoplasma. By equating the power fed to each antenna to the power fed by the 
antenna into the medium directly surrounding the antenna, Kogelnik (1960) and Kogelnik and 
Motz (1963) obtained integral expressions for the respective radiation resistances Re and Rm. Using 
these formulas, the ratios of Re or Rm to the corresponding free-space values can be written in the 
form: 

(l.l) 

where tfJ is the angle between the vector dipole moment and the static magnetic field, subscript p 

stands for either e or m, an4 subscript 0 stands for free space. The Ptp and Pai> are functions of 
the usual ionospheric parameters: X= [(plasma frequency)/(operating frequency)J2 , Y =(gyro 
frequency)/(operating frequency). Extensive numerical values are available (Weil and Walsh, 
1964, 1965) for the quantities ! {p3p ± Ptp) computed on the assumption of a cold, collisionless 
plasma. In this case there are separate sets of curves, one for radiation in each of the two modes 
of propagation, ordinary and extraordinary, from which may be obtained the net radiation resist
ance which is the sum of the contributions due to propagation of energy from the antenna in each 

of these modes. 
By a general argument, PtJJ and p3p are shown in section 2 to be proportional to the spectral 

densities of certain components of the thermal electromagnetic fields in an isothermal enclosure 
filled with a uniform magnetoplasma. Such radiation is equivalent, as far as local radiation in
tensity is concerned, to radiation within the topside of the ionosphere (a non-uniform plasma) 
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due to a cosmic source of uniform brightness temperature across the sky. The latter problem 
has been treated by Budden and Hugill (1964), who obtained expressions for the spectral densities 
of those components of the time-varying electric and magnetic fields within the ionosphere which 
are respectively perpendicular and parallel to the static magnetic field. They also presented 
numerical results for the ratios of these densities relative to the corresponding free-space quanti
ties. These ratios are shown in section 2 to be respectively identical to p~p and P3P· The various 
formulas representing the same quantities are each integrals over an angle (J from 0 to 7T/2 of 
integrands which do not look at all alike. This is due in part to the introduction of various non
independent variables to prevent the formulas from becoming unwieldy. As a check on the 
equivalences established by general argument, the integrands were expressed in the same set of 
parameters, X, Y and 0, and by algebraic manipulation shown to be identical. The algebra is 
straightforward but tedious and will not be given. 

In section 3, formulas for intensity of thermal radiation in anisotropic media are summarized 
in preparation for section 4, where generalizations to anisotropic media are made of the customary 
descriptors of antenna performance, i.e., gain, effective area and effective length. Relationships 
between these quantities and radiation resistance are found by thermodynamic argument for 
antennas of arbitrary type in magnetoplasma. The simple formula for effective length of a dipole 
used in section 2 is a special case of the general results found in this section. The generalized 
effective length is related to far-zone fields of the antenna when used as a radiator. From this 
result, a new derivation of formulas for Pte and p3e is carried out using only the far zone field. 
These new formulas are again integrals over () from 0 to 1T/2. All three forms give identical nu
merical results in spite of the very different explicit forms of the formulas. Hence a useful by
product of the different forms is that they provide means of verifying the computational results 
presented by Weiland Walsh and by Budden and Hugill in their respective publications. 

The following notations will be used. Bold face type represents a vector, while underlining 
any scalar or vector quantity, as f. or Vindicates that the quantity is complex. Thus V may be 
written in terms of two real vectors V 1 and Vz as·v V 1 + jVz; Y* is its complex conjugate and its 
magnitude squared will be written 

A unit vector associated with Vis indicated by a circumflex, thus V V/IVI. For the most part 
we shall he representing thermal radiation by quasi-periodic electromagnetic fields; that is, by 
vector fields of the form ~(t) = !!(l) exp (jwt), where the amplitude and phase of!! are random but 
vary only slightly over a period 27T/w of the exponential factor. Accordingly, two types of averaging 
enter. First, averaging over a period 27T/w which yields a mean square value .of A(t) which is 
essentially !ia(t)l2, and second, a long term averaging of IA(t)l 2 over a time interval ;uch greater 
than the reciprocal of the bandwidth of a(t). This latter average we denote as < lA j2 >; it is equal 
to <lal2 >and is twice the long term mean square value of ~(t). 

2. Equality of Relative Spectral Densities and Relative Radiation Resistances 

Following Dicke (1946), consider a lossless antenna with impedance R + jX in a large enclosure 
and connected to a load, the whole being at a constant absolute temperature, T. The second law 
of thermodynamics requires that the net radiation exchange between walls and load via the antenna, 
integrated over all frequencies and all directions, must he zero. To study energy exchange within 
a limited frequency range, the principle of detailed balancing may he applied. In an isotropic 
medium, this principle asserts that the net exchange of radiation between the load and the walls is 
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zero within any frequency interval. Hence, in frequency interval df, the available noise power 
KTdf generated by thermal fluctuations of electrons in the load resistance (Johnson, 1928; Nyquist, 
1928) must equal the noise power available from the antenna due to incident radiation. (Through
out this paper the electrical path between antenna and load is assumed to be reciprocal, i.e., the 
same fraction of the available power is transferred from antenna to load as from load to antenna, 
hence nonreciprocal elements such as isolators are excluded.) 

For a magnetoplasma, the argument must be modified. In this case, the principle of detailed 
balancing as applied to radiation (Vlieger, Mazur and Degroot, 1%1) is applicable if, for radiation 
from one body A to a second body B the actual medium is used, while for radiation from B to A 
the radiation is assumed to take place in a plasma differing from the original by having the static 
magnetic field reversed. This reversal causes the dielectric tensor, (A.1), to be replaced by its 

. transpose; in effect, the original medium, as described by its dielectric tensor, is replaced by a 
fictitious medium which will be referred to as the transpose medium. The modified principle no 
longer implies that in a given system in thermal equilibrium there is a detailed balancing of physical 
processes, but it does provide an aid to analysis. 

This modified principle may now be applied to the exchange of energy between the cavity 
walls and the load of the antenna in the case where the cavity is filled with a homogeneous magneto
plasma. Quantities associated with one of the two characteristic waves that may propagate will 
be distinguished by subscripts I and II; the total radiation resistance is R = R1 + Ru. Then the 
power radiated in characteristic wave q(q =I or II) is 

P qrad = (Rq/R)KTdf, (2.1) 

assuming a. power match between load and antenna at the frequency of interest. 
If radiation incident on the antenna from all directions in characteristic wave q and in fre

quency range df produces mean square open-circuit voltage t < I Vql 2 > , then the power dissipated 
in the load is 

P Qrec = < I Vql 2 > /8R. 
(2.2) 

Applying the modified principle of detailed balancing, and indicating quantities evaluated in the 
transpose medium by a superscript T, it follows that 

(2.3) 

For antennas symmetrical about a point it is clear that R~ = Rq, since reversal of the static 
magnetic field does not affect the geometry of the antenna with respect to the field. For this class 
of antennas, which includes symmetrical linear dipoles and plane circular loops, it follows that 

(2.4) 

Suppose now that the antenna is a center-fed, linear antenna, "electrically small" in that the 
dimensions of the antenna are much less than the shortest wavelength incident on it. If the an
tenna is electrically small in free space it will remain so in a medium in which the index of refrac
tion for propagation in any direction is not too large compared with unity. For a collisionless 
magneto plasma this requirement is not satisfied under either of the conditions 1 - f2 ~X ~ 1 
with Y ~ 1, or X~ 1 with Y ~ l (one of the indices of refraction, as determined by the Appleton
Hartree formula, becomes infinite for propagation directions forming the generators of a cone about 
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the direction of the static magnetic field). However, if these conditions are excluded from con
sideration, antennas of sufficiently small dimension may safely be considered electrically small 
in free space and in the plasma. 

The electric field E at the antenna may be regarded as the summation of elementary plane 
waves with all possible directions of propagation, any one of which is uncorrelated with the others. 
Applying the result (4.27), derived later, to each elementary wave and summing over them, yields 
for the open-circuit voltage due to the total electric field E, 

(2.5) 

where pis a unit vector along the antenna; ILl is a constant of proportionality sometimes referred 
to as the (scalar) effective length of the antenna. It is assumed to be independent of the presence 
of the magnetoplasma on the basis of the discussion following (4.27). 

Combining (2.4) and (2.5) yields for characteristic wave q, 

(2.6) 

where the suffix e indicates that a short electric dipole is considered. For the special case of 
vacuum, free from static magnetic field, 

(2.7) 

where E~ = p · E is the projection of the total field along an arbitrary direction. The electric field 
in the plasma may be resolved into components E11 and E1., respectively parallel and perpendicular 
to the static magnetic field. Evaluating (2.6) for the cases where p is parallel and perpendicular 
to the static magnetic field, and dividing by (2. 7), gives 

(2.8) 

(2.9) 

The factor -! enters (2.9) because El. is the sum of two perpendicular components, each of which 
has (because of symmetry) the same mean square value. 

An analogous treatment· may be applied to an electrically small, plane loop antenna in a mag
netic induction field,!!,. The open-circuit voltage is IVI 2 =w2A2 Ip · Bl 2

, where pis parallel to the 
magnetic moment and A is a function of the loop geometry only (not to be confused with the effec
tive area used later in this paper). Reasoning similar to that for the electric dipole then yields, 
with obvious notation, 

(2.10) 

(2.11) 

The numerical results of Weil and Walsh (1964, 1965) for the quantities p were obtained 
assuming the current distribution in the antenna used as a radiator is unaffected by the medium. 
This is equivalent to the assumption that ~ is similarly unaffected, so that their results and the 
results of Budden and Hugill (1964) for the left sides of (2.8)-(2.11) should agree regardless of the 
physical validity of the assumption. As stated in the introduction, this agreement has been veri-
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fied by direct algebraic manipulation of the integrands of the appropriate expressions in the 
respective papers.t 

3. Intensity of Thermal Radiation 

In section 4, directional properties of antennas in magnetoplasma will be considered, as 
opposed to section 2 where the quantities studied represented the effects of integrations over all 
directions. Use will be made of some properties of thermal radiation which will be reviewed in 
this section. 

Consider the intensity h for a given ray direction, i.e., direction of the Poynting vector, S 
(which in general does not coincide with the direction k of the normal to the wavefront)~ ·~j is 
defined for radiation at frequencies in the range (f, f + df) and ray directions within a range of solid 
angle dOg about the given ray direction, in terms of the long term average magnitude of the Poynting 
vector: 

(3.1) 

At radio frequencies, /1for a vacuum-filled isothermal enclosure is given, to sufficient accuracy 
for most purposes, by the Rayleigh-Jeans approximation to Planck's law, i.e., /1= 2KT/A.J. For 
an isothermal enclosure filled whh an anisotropic medium, a similar approximation leads to 

(3.2) 

where Kc is the local Gaussian curvature of the refractive index surface, i.e., the surface which 
is given, for each direction of the wave normal, by a radial distance equal to the refractive index. 
For an isotropic medium, Ka = n- 2• For the anisotropic case, 

cos a. d09 

dD.' 
(3.3) 

where a is the angle between the ray and wave normal, and dO is the range of solid angle of wave 
normals corresponding to dOg. Formula (3.3) facilitates the transformation from ray to wave 
normal directions for integrations such as that needed for (4.29). 

Equation (3.2) is the low frequency approximation to the generalization of Planck's law to 
anisotropic media derived by Mercier (1964). Mercier also showed that even under conditions 
where 'Ka = 0, the intensity formula integrated over all solid angles and all frequencies yields a 
finite energy density. Rytov (1953, 1959) had previously derived a form for /1 equivalent to (3.,21 
and (3.3) combined, but which does not exhibit Kc explicitly. Budden and Hugill (1964) demonstra· 
ted (3.2) for the case of radiation in a horizontally-stratified ionosphere due to an external source 
with brightness temperature T, and used (3.3) in their integrations to determine the spectral 
densities which entered in section 2. 

4. Relationship Between Antenna Gain, Effective Area, Effective Length, 
and Radiation Resistance 

The concepts of gain, effective area, effective length, radiation resistance, and their relation
ships, have proven useful in specifying the behavior of arbitrary antennas in isotropic media. 
With suitable modification, they may be extended to anisotropic media. To provide a basis for 

1 A minus sip should appear before the right.band side of the ..,cond of equations (62) of Budden 111d HIJiill'• pap<~r and was uoed in verifyins algebraically th., 
agreement with the Kogelnik forms. The conect sip was uud in their numerical work; that is, their numbetll are coMiotent with their formo.U.u when the minos 
ia used. 
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these extensions, the definitions and relationships of these quantities in the lossless, isotropic 
case will first be summarized in a manner emphasizing the properties which are modified upon 
extension to anisotropic media. 

4.1. Isotropic Case 

In (2.5) we used a scalar effective length for a short, linear dipole. Sinclair (1950) extended 
the concept to arbitrary antennas in vacuum by defining a complex vector effective length, _!!(k). 
His results are readily generalized to isotropic, homogeneous media. If a radiating antenna, 
excited by current I exp jwt, produces a radiation field Er(k) exp j(wt- k · r), then ~k) is defined 
by 

~of 
Er(k) = j 

2
"-:-,. _!!(k), (4.1) 

where A.0 is the wavelength in vacuum and ~ is the impedance of free space. Any effect of the 
medium is included in h(k). 

By use of a reciprocity theorem between two antennas in an isotropic medium, Sinclair showed 
that, when used in reception, an incident monochromatic, plane wave with wave vector - k and 
amplitude Ei(- k) produces an open-circuit voltage with amplitude 

f.= _!!(k) · Ef(- k). (4.2) 

It is assumed here, as in the appendix, that the convention by which the phase of any one cartesian 
component of E(k) is defined relative to any other is independent of the direction of propagation, 
that is, the same set of coordinate axes .are used to described the fields in transmission and recep
tion. This differs from the convention adopted by Sinclair. 

It should be pointed out that Sinclair arbitrarily assumed one component of h(k) to be real, 
the other components then being complex; this arbitrary choice of a real compone~i is in fact not 
possible, since h(k) expressed the relative phases of Er(k) and .J in (4.1), and of V and Ei(- k) 
in (4.2). - - - - -

From the definition (4.1), one may write 

(4.3) 

Thus, while the incident wav.e may have any polarization, (4.2) shows that the receiving antenna 
selects a component with polarization determined by that of the radiation field when the antenna is 
used as a radiator. The opposite polarization producef\ no response. The polarization of the 
radiation field depends on the geometrical characteristics of the antenna, the refractive index and 
the direction, k. 

If the antenna has radiation resistanc~ R, it radiates power t lli 2R and the power gain may be 
defined as 

G(k) (4.4) 

where Sr(k) is the flux of the radiation field at distance r, and the tilde indicates that it is averaged 
over a complete cycle. The average value of G(k) over 41r steradians is unity. 

If, in an incident wave, the component with the polarization to which the antenna is sensitiv.e 
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has flux (S; k), since the available power from the antenna is J Vj2/8R, an effective antenna area 
may be defined by 

(4.5) 

A number of simple relationships exist between the quantities !!_(k), G(k), Ae( k) and R. 
Using the fact that, in an isotropic medium, a plane wave with electric field E has flux S = nJEj2 2,o, 
one may show directly from the above definitions that 

and 

Combining (4.6) and (4.7) yields 

Ae(- k) = 'oJh(k)j2/4nR 

G(k) = 1T'onlh(k)j2/A.3R. 

(4.6) 

(4.7) 

(4.8) 

Also, by integrating the flux of the radiation field over a closed surface around the antenna, and 
equating to the radiated power, ! Jlj 2R, 

R l~ L, jh(k)j 2dfl. (4.9) 

The relation (4.8) may also be derived without the intermediary of (4.6) and (4.7) by thermo· 
dynamic arguments involving detailed balancing. In effect, this replaces the reciprocity the· 
orem used by Sinclair to derive (4.2) from (4.1), giving an alternate method to relate the antenna 
properties in transmission to those in reception. This is done, for example, by Pawsey and Brace· 
well (1955) for vacuum, and may readily be extended to an isotropic, refracting medium to yield (4.8). 

It is our objective to generalize the definitions of power gain, effective area and vector effective 
length, as well as the relations (4.6)-(4.9), to an anisotropic plasma. 

4.2. Gain and Effective Area in Magnetoplasma 

The plasma will again be assumed lossless. It will, however, not be necessary to exclude the 
ranges 1 }'2 "'-'X "'-' 1, Y "'-' 1 and X ~ l, Y ~ 1 except for parts of subsections 4.2 and 4.4. It will 
be required only that the radiation resistance R be finite. That R will be finite for large classes of 
current distributions, even when n ~ oo and Kc ~ 0, has been demonstrated by Arbel and Felsen 
(1963), Staras (1964), Seshadri (1965), and Lafon (1965). 

Several properties of an anisotropic plasma must be borne in mind. For a given wave normal, 
k, there are two possible wave vectors representing the two characteristic waves, one or both of 
which may be nonpropagating under certain conditions. A particular characteristic wave with 
wave normal k, having direction (0, cf>), has a single associated ray direction (9, <1>), where <l>=cf> and 
8-E>=a. However, a given ray direction and given index surface may have more than one asso· 
ciated wave vector, in general with different directions and magnitudes. In the following discus· 
sion of directional effects, unless otherwise stated, it is to be understood that a single characteristic 
wave (ordinary or extraordinary) and a single wave-normal k, together with its associated ray 
direction, is under consideration. This will be emphasized by explicit association of various quan
tities with a wave vector, k. Thus the symbolism G(k), Ae(- k), S(±k) is retained even though 
they are associated with energy flow along the ray direction E>(k), <l>(k). 
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A particular wave vector has an associated polarization which, in contrast to the isotropic 
case, is dependent only on the medium and(), and is independent of the method by which the wave 
is launched. In particular, the polarization of the radiation field of an antenna is independent 
of the antenna structure. Furthermore, from (A.4) it is readily shown that 

A 

E(- k) = E(k). (4.10) 

It is now clear that the definitions (4.4) and (4.5) for power gain and effective area may be 
retained for an anisotropic plasma, where the logical qualification is made in (4.5) that the flux Si(-k) 
is total flux with wave vector - k, rather than a particular component of the flux determined by 
the polarization characteristics of the antenna. In addition, one has an option in generalizing 
(4.4) and (4.5): 

(i) leave the formulas unchanged, R being total radiation resistance, or 
(ii) replace R by Rq. 

The second option gives a more complete separation of the effects of the two modes but leads, 
in general, to less elegant formulas relating G(k) and Ae(- k). Note that IVI 2/8Rq is not the power 
available to the antenna load; as before, the available power is I Vj 2/8R. For simplicity of notation, 
separate symbols will not be assigned to G(k) and Ae(- k) for each of the two options but the 
appropriate option will be indicated with the formulas. 

For both options, the value of gain averaged over 41r steradians is unity (by Poynting's theorem) 
if it is understood that for option (i) the average includes both characteristic waves, but for option (ii) 
the average is for characteristic wave q only. Thus, option (i) for G(k) gives the power radiated 
per unit solid angle in a particular characteristic wave as a fraction of the total power radiated, 
whereas option (ii) gives it as a fraction of the power radiated in characteristic wave q only. 

The generalization of (4.8) will be carried out by modifying appropriately the thermodynamic 
proof given by Pawsey and Bracewell (1955). Thus, consider an enclosure filled with magneto
plasma and inside it the antenna matched at the frequency of interest to a load. Because our 
interest is in a directional effect (as opposed to the situation in section 2), a small black body, 
subtending solid angle dfh at the antenna, is inserted. Let the whole be in thermal equilibrium -
at temperature T. 

Consider first the power originating in the load and radiated by the antenna. The power 
in the elementary frequency range df, in characteristic wave q with wave vector k, radiated into 
the solid angle d!lb and absorbed by the black body is (cf. (2.1)): 

option (i) 
(4.11) 

option (ii). 

The incident flux at the antenna in frequency range df, in characteristic wave q with wave 
vector - k, due to radiation with ray directions in the solid angle dnb, is given by (3.1). Using 
definition (4.5) extended to the anisotropic case, the open-circuit voltage due to this flux is 

option (i) 

option (ii). 
(4.12) 

The resulting power dissipated in the matched load is < dj Vj 2 > /8R, so using (3.2), the power 
originating in the black body and absorbed by the load is 

< dPrec(- k) > = 
{ 

KT dfdD.~e(- k)f"-3IKc I, 

(Rq/R)KTdfdD.~e(- k)/"-3IKcl, 

option (i) 

option (ii). 
(4.13) 
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A reversal of the static magnetic field dearly does not affect IKGI. since the refractive index 
is unaffected. Thus, applying the modified principle of detailed balancing to assert that the net 
energy exchange is zero, not only in each frequency interval but in the cone of rays subtended at 
the antenna by the small body, and vice versa, (4.11) and (4.13) yield the relations 

option (i) 
(4.14) 

option (ii). 

These expressions are the generalization of (4.8) to a magnetoplasma and include (4.8) as a de
generate case. If the factor R~R!R,fl_T is unity, the formulas for both options are the same. This 
is so in two obvious cases. One was pointed out in section 2, namely antennas symmetrical about 
a point. The other is when conditions are such that only one characteristic wave propagates, 
so that Rq=R. 

Although properties of random, thermal fields were used in the derivation of (4.14), G(k), and 
Ae(- k) were defined for CW propagation and it is clear that (4.14) must be valid for the CW case. 

4.3. Effective Length and Radiation Field in Magnetoplasma 

If the definition (4.1) of vector effective length is retained for a magnetoplasma it will be shown 
that the result (4.2) is not obtained. In view of the relatively simple physical interpretation of 
(4.2), h.(k) will instead be defined to satisfy (4.2). This condition by itself leaves h.(k) indeterminate, 
since one may add an arbitrary vector whose scalar product with Ei*(- k) is zero. However, (4.10) 
enables one to write 

... 
Ei*(- k)=Ei*(- k)_E*(k), (4.15) 

and it is reasonable to impose the condition 

A 

h(k) = f!(k)E(k), (4.16) 

so that (4.2) reduces to a purely scalar expression, 

l!(k)EJ*(- k). (4.17) 

The expressions (4.16) and (4.17) together may be taken as the definition of h.(k). F:or calculation 
of voltages in receiving antennas (4.17), involving only scalars, is sufficient. Note that h(k) is inde
pendent of the physical structure of the antenna. However, this structure influences J!(k), which 

depends also on the medium and on 0. 
Now Ae(- k) may be related to h.(k) by substitution of S from (A.8), and of (4.17) in definition 

(4.5) (modified to the anisotropic case): 

option (i) 

option (ii) 

(cf. (4.6)). The factor m is given by (A.9) and reduces to n in the isotropic case. 

(4.18) 

Next the radiating properties of the antenna will be investigated. Since conditions for which 
R can be infinite are excluded, the dominant field component at large distances varies inversely 
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with distance. A quantity {(k) will be defined such that the radiation field is given by 

clearly, 

{of 
Er(k) = j:-=-t'(k); 
- 2A.or-

A 

{(k) = {(k)E(k). 

(4.19) 

(4.20) 

Combining (A.8) and (4.19) with the definition (4.4), again modified to the anisotropic case, yields 

option (i) 

option (ii). 
(4.21) 

This may be compared with (4.7), although {(k) is not the effective length. The relationship be· 

tween lt'(k)l and lh(k)l is obtained by inserting (4.18) and (4.21) in (4.14), giving the result 

The relation between gain and effective length is now given by inserting this result in (4.21), 

option (i) 

option (ii). 

(4.22) 

(4.23) . 

This is the generalization of (4. 7). The complete relationship between {(k) and h(k), which deter

mines the radiation field in terms of the vector effective length, has not been established. From 
(4.22) it is clear that each of these quantities is related to the other one measured in the transpose 
medium. However, the relative phase of [!(k) and £1'(k) has not been found because the link be

tween radiation and reception characteristics was through (4.14), which is essentially a power rela
tionship and cannot reveal phase information. To obtain this information, it would be necessary 
to appeal to a principle other than that of detailed balancing of energy exchange. Formulas equiv
alent to the option (i) forms (4.14), (4.18), and (4.22), but with only brief indications of the proofs, 
have been given by W eil (1965). 

A receiving antenna may have several coherent waves with different wave vectors incident 
on it. In such a case the voltage [ associated with each k must be calculated separately and the 
resultant voltage obtained by adding these contributions with due regard to phase. An example 
would be radiation from another antenna in the homogeneous plasma, in which case there is a 
single ray direction, namelr the line joining the antennas, but there may be several different values 
of k. There is no way of compounding the several values of .h.(k) associated with a given ray 
direction without invoking the relative phases of the incident waves. The resultant available 
power is r~:fi 2/8R, and again there is no way of compounding the several values of Ae(- k) associ
ated with a given ray direction into a "total" effective area. Similarly, in the far-zone field of a 
radiating antenna, the total field associated with a given ray direction must be calculated with due 
regard to the relative phases of the various associated waves. Because of the different phase 
factors exp (-Jk · r), it is not useful, for a given ray direction, to define a "total" t' equal to I{.(k). 
On the other hand, the total time average flux is simply the sum of the fluxes associated with the 
various values of k. Thus it is possible to define a "total gain" for a particular ray direction as 
IG(k), so that the power radiated per unit solid angle in all waves associated with this ray direction 
is proportional to this total gain. 
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With the help of (4.22), the quantity ILl used in (2.5) may be derived. Consider a radiating, 
electrically short, center-fed, linear dipole of length 2a witlt current distribution l_(p)p. The 
radiation field may be found by direct application of the formula for far-zone fields of arbitrary 
antennas in magnetoplasma derived by Deschamps and Kessler (1964). The result is that 

{(k)=f::~ · E(k)/miKGil/2, (4.24) 

where (4.25) 

Using (4.22), together with the fact that the dipole is symmetrical, yields 

... ... 

jhT(k)j 2 =jh(k)l 2 =jLI2jp · E(k)j2. (4.26) 

If now the dipole is used to receive an incident plane wave E,-(- k), then application of (4.10) and 
(4.17) yields the open-circuit voltage, 

(4.27) 

A sufficient condition for jL j to be independent of the presence of the magneto plasma is that the 
relative current distribution, [(p)/I(O), of the dipole when used as a radiator be similarly independ
ent. It is reasonable to assume that this is so for a dipole which is electrically short in the sense 
discussed in section 2, which requires the ranges 1 - P ,;;; X ,;;; 1, Y ,;;; 1 and X ~ 1, Y ~ 1 to be 
excluded. 

4.4. Radiation Resistance and Radiation Field in Magnetoplasma 

Radiation resistance may also be related to effective length by using the fact that by applica
tion of Poynting's theorem the average value of gain over 41r steradians is unity. Hence, inte
grating (4.21) or (4.23), option (ii), over all ray directions of characteristic wave q and setting the 
result equal to 41r, yields for an arbitrary antenna, 

(4.28) 

or 

(cf. (4.9)). This completes our objective of generalizing the relations (4.6)-(4.9) to magnetoplasma. 
With this result, a new form may be obtained for the radiation resistance of a short electric 

dipole or current element in a magnetoplasma. Again, to ensure that the dipole is electrically 
short and may be approximated by a current element, X- Y regions in which there may be refrac
tive index infinities will be excluded. Then the radiation field will be free of singularity, and 
Poynting's theorem is clearly applicable. Substituting (3.3), (4.26), and (A.10) into (4.28) (it may 
be shown that in this transformation, the modulus signs around KG should be removed), gives 

R _ ~oiLI 2 l r-2j" E ... (k)j2Jn 
eq- 4A.5 4rr n . P.- au, (4.29) 
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where the integration now is over all wave normal directions rather than over all ra,y directions, and 
r is defined by (A.ll). The total free space resistance is readily evaluated by setting P= I, n= I, 
IP · E(k)l 2 =sin2 0 and d!l=27T sin OdB, giving · . 

(4.30) 

For the antenna in the magnetoplasma, setting d!l=sin OdOdcf! and noting that rand n are inde
pendent of t/J, the ratio of (4.29) to (4.30) is 

~=- dB nf-2 sin B dt/JIP · E(k)I 2
-

R 3 f'"/2 f2TT A 

Reo 417' o o 
(4.31) 

The integral over 1> is obtained in (A.15), and using (A.12) for P, the result is of the form (1.1) with 

3 f '~~'12 nul sin B · Pae=- dB 
2 o x2 cot2 O+ur-v2 cos2 B ' 

(4.32) 

and 

It may be verified that the integrands of (4.32) are identical to those of Kogelnik's (1960) cor
responding expressions, and to those of the appropriate expressions for relative spectral densities 
derived by Budden and Hugill (I964). 

This new derivation of the radiation resistance of a short electric dipole in a magnetoplasma is 
particularly interesting in that, in view of the definition of gain, (4.4) it is obtained by integrating 
the radiation flux over a large closed surface around the antenna in contrast to the method used 
by Kogelnik (1960), who obtained the power radiated in the form of an expression for 

- i Re J j_ * · ~dV 
over the antenna. Lee and Papas (1965) have criticized this latter "conventional" method as not 
yielding solely the true radiated power, i.e., the "time average real power absorbed by the sphere 
at infinity." Since the derivation in this section depends only on outward traveling wave fields 
varying as r-1 with an associated Poynting vector varying as r 2, it clearly can represent only true 
radiated power. The agreement with the result of Kogelnik confirms that his form represents 
only true radiated power as has been argued on other grounds by Staras (1966) and by Walsh and 
Weil (1966). This conclusion, based on the purely electromagnetic derivation as given, is also 
confirmed by the thermodynamic arguments of section 2, where the resistance discussed is evi· 
dently the true radiation resistance since it is associated with radiation exchange between the 
terminated antenna and the walls of a cavity of arbitrarily large radius. The equality of relative 
radiation resistances with relative spectral densities proved on thermodynamic grounds in section 
2, combined with the fact that the relative spectral densities derived by Budden and Hugill (1964) 
agree with Kogelnik's result for relative radiation resistances, indicates quite clearly that, at least 
with the frequency restrictions previously noted, Kogelnik deals with true radiation resistance and 
that his formulas are appropriate, for example, to the analysis of observations of cosmic noise by 
antennas in the topside ionosphere (Walsh, Haddock and Schulte, 1964). 

The authors express their appreciation to Professor G. A. Deschamps for discussions of an 
early draft of this paper. · 
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5. Appendix 

This appendix is devoted to obtaining expressions for m, f(k).and related quantities appearing 
in the text. All field quantities are understood to vary as exp [j(wt- k · r)], and this factor will 
be suppressed so that we are dealing with complex amplitudes. The dielectric tensor will be used 
as it occurs for the static field parallel to the z axis of a rectangular coordinate system: 

(A.1) 

For a cold, collisionless plasma, Et = 1-X/(1- P), E2 =XY/(1- P) and e3 = 1-X. The refractive 
indices for the two characteristic waves with wave normals at angle () to the z direction are then 

n2 =(d-d) sin2 O+EtEa (l+cos2 O)±l[(d-d-EtEa)2 sin4 0+4dd cos2 ())112 1. 
2(Et sin2 () + Ea cos2 ()) 

In the following, certain combinations of n and the Ei occur naturally: 

v= (Et- Ea)(n2-Et)+ d 
w=Et(n2-Et)+d 
x= Ea[(n2- Et)2 + d]t/2. 

"' 
The electric field of a plane wave with normal k is 

"' 
E =IEIE=E.$ k2(Et-n2)-jktE2 

where it kaEa Ea 'cos (J 

(k1 + /ci)w w sin2 e' 

"' 

(A.2) 

(A.3) 

(A.4) 

and kt. kz, and ka are the cartesian ~omponents of k, while Ez is an arbitrary scale factor which 
is taken here to be real, so that E · k is real. 

From Maxwell's equations, 

... 
J!= (nno)k x !':;. (A.S) 

so that Poynting's vector averaged ·over one cycle, i.e., 

(A.6) 

becomes, for real n, (A.7) 
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Thus, the flux may be written (A.8) 

where m=n!k-(k ·E) Re E! (A.9) 

may be determined explicitly from (A.4). 
The form form used in deriving (4.29) is obtained from the fact that cos a=k · S/S, together 

with (A. 7) and (A.8): 

m=nf2(k)/cos a, (A.10) 

where (A.ll) 

2 2 () 
f2(k)= 1- v cos . ur + x2 cot2 () 

Use of (A.4) gives explicitly (A.12) 

To evaluate the integral over cf> in (4.31), the coordinate system may be chosen so that p, 
which makes angle tJ; with the z axis, lies in the xz plane, i.e., 

p = x sin t/1 + z cos tf;. (A.13) 

... 
E(k) may be obtained from (A.4), leading to 

(A.14) 

where k1 =sin () sin <I> and k2 =sin () cos cf>. Eiementary algebra and integration then gives the 
result 

l21T " ( 2 2 () . 2 ,,, + 2- . .2 • 2 () 2 ·'·) dcf> 1 p . E(k)!2 = 7r x cos sm 'I' w- sm cos 'I' • 

0 - (x2 cos2 () + ur sin2 ()) 
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