Determining Autolysis and Decomposition Rate of Mouse Carcasses

Maryam Heshmati, Kathleen Keene, and Jason S. Villano

Undergraduate Research Opportunity Program, University of Michigan, College of Veterinary Medicine, University of Illinois Urban Champaign, Unit for Laboratory Animal Medicine,

University of Michigan Medical School, Ann Arbor, Michigan

Despite the widespread use of mice in biomedical research, there is currently a lack of information on carcass decomposition and autolysis rate. While it is not uncommon to find dead mice in cages, researchers and veterinarians often harvest tissues for experiments and/or histopathology for health surveillance and disease diagnosis. Thus, it is important to have quality tissues for histological evaluation. The overall goal of this study is to investigate autolysis and decomposition rates of mouse carcasses in different microenvironments and time period's post-mortem. We evaluated factors that could affect these rates: body core temperature, body weight, body fat composition, and microenvironmental variables. Mice (n=19), implanted with microchips to measure body core temperature, were anesthetized for dual energy X-ray absorptiometry (DEXA) scan to determine body fat composition. Mice were euthanized by carbon dioxide inhalation and necropsy was performed immediately after euthanasia or 2 hours after carcass placement (PE2) in either static microisolator caging (SM) or cold room; where carbon dioxide (CO₂), ammonia, humidity, and temperature were measured. Tissues were fixed in formalin and trimmed for histological scoring. Our data shows CO₂ levels decreased significantly from 0 hours (\bar{X} =3800ppm ± 160.52) to PE2 (\bar{X} =7533.3 ± 117.908); whereas, changes in humidity and ammonia levels, and temperature changes were insignificant. Interestingly, body weight loss was noted in cold room PE2 while mice in the SM gained weight. Histopathological results are pending for future consultation with microenvironment. Future studies will include longer time points and different cage systems.

Determining Autolysis and Decomposition Rate of Mouse Carcass

Abstract

Despite the widespread use of mice in biomedical research, there is currently a lack of information on carcass decomposition and autolysis rate. While it is not uncommon to find dead mice in cages, researchers and veterinarians often harvest tissues for experiments and/or

histopathology for health surveillance and disease diagnosis. Thus, it is important to have quality tissues for histological evaluation. The overall goal of this study is to investigate autolysis and decomposition rates of mouse carcasses in different microenvironments and time period's postmortem. We evaluated factors that could affect these rates: body core temperature, body weight, body fat composition, and

microenvironmental variables. Mice (n=19), implanted with microchips to measure body core temperature, were anesthetized for dual energy X-ray absorptiometry (DEXA) scan to determine body fat composition. Mice were euthanized by carbon dioxide inhalation and necropsy was performed immediately after euthanasia or 2 hours after carcass placement (PE2) in either static microisolator caging (SM) or cold room; where carbon dioxide (CO_2), ammonia, humidity, and temperature were measured. Tissues were fixed in formalin and trimmed for histological scoring. Our data shows CO₂ levels decreased significantly from 0 hours $(\overline{X}=3800$ ppm ± 160.52) to PE2 $(\overline{X}=753.33 \pm 117.908)$; whereas, changes in humidity, ammonia, and temperature changes were insignificant. Interestingly, carcass body weight loss was noted in cold room PE2 while carcasses in the SM gained weight. Histological results are pending for

correlation with microenvironmental results. Future studies will include longer time points and different cage systems.

Materials and Methods

- Gas detector probe was inserted into ~5mm holes in SM cages or placed inside cold room for oxygen, ammonia, and carbon dioxide measurement.
- Data logger was placed inside cold room and SM to measure humidity and temperature.
- Mice were weighed and implanted with microchips to measure body temperature.
- Body fat composition was analyzed by dual energy X-ray absorptiometry (DEXA) scan.

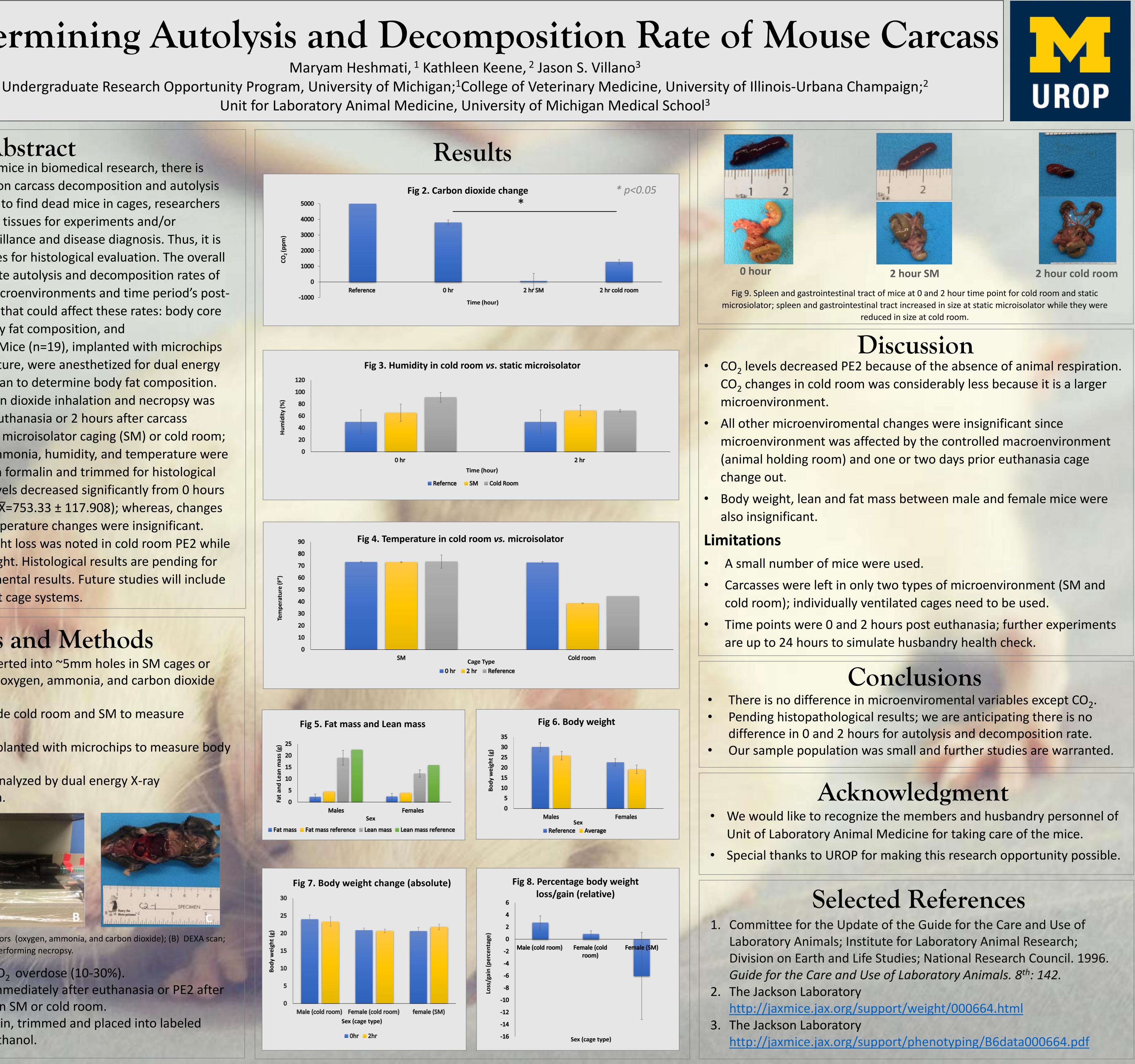
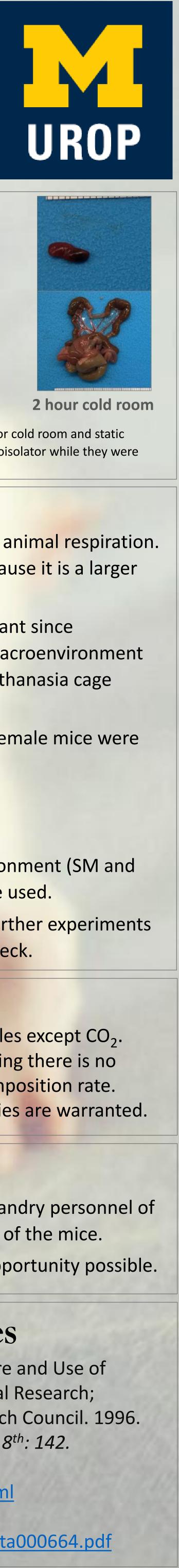



Fig 1. (A) Measuring microenvironmental factors (oxygen, ammonia, and carbon dioxide); (B) DEXA scan; (C) performing necropsy.

- Mice were euthanized by CO₂ overdose (10-30%).
- Necropsy was performed immediately after euthanasia or PE2 after going through rigor mortis in SM or cold room.
- Tissues were fixed in formalin, trimmed and placed into labeled cassettes submerged into ethanol.

