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Abstract

Background: Although follicle stimulating hormone (FSH) is known to be predictive of age at final menstrual
period (FMP), previous methods use FSH levels measured at time points that are defined relative to the age at FMP,
and hence are not useful for prospective prediction purposes in clinical settings where age at FMP is an unknown
outcome. This study is aimed at assessing whether FSH trajectory feature subgroups identified relative to
chronological age can be used to improve the prediction of age at FMP.

Methods: We develop a Bayesian model to identify latent subgroups in longitudinal FSH trajectories, and study the
relationship between subgroup membership and age at FMP. Data for our study is taken from the Penn Ovarian
Aging study, 1996-2010. The proposed model utilizes mixture modeling and nonparametric smoothing methods to
capture hypothesized latent subgroup features of the FSH longitudinal trajectory; and simultaneously studies the
prognostic value of these latent subgroup features to predict age at FMP.

Results: The analysis identified two FSH trajectory subgroups that were significantly associated with FMP age:

1) early FSH class (15 %), which displayed initial increases in FSH shortly after age 40; and 2) late FSH class (85 %),
which did not have a rise in FSH until after age 45. The use of FSH subgroup memberships, along with class-
specific characteristics, i.e, level and rate of FSH change at class-specific pre-specified ages, improved prediction of
FMP age by 20-22 % in comparison to the prediction based on previously identified risk factors (BMI, smoking and
pre-menopausal levels of anti-mullerian hormone (AMH)).

Conclusions: To the best of our knowledge, this work is the first in the area to demonstrate the existence of
subgroups in FSH trajectory patterns relative to chronological age and the fact that such a subgroup membership
possesses prediction power for age at FMP. Earlier ages at FMP were found in a subgroup of women with rise in
FSH levels commencing shortly after age 40, in comparison to women who did not exhibit an increase in FSH until
after 45 years of age. Periodic evaluations of FSH in these age ranges are potentially useful for predicting age at
FMP.
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Background

Information about age at natural menopause is important
for counseling women about reproductive planning and
for treating women who experience hormone-sensitive
gynecological conditions such as endometriosis and fi-
broids. Moreover, predicting age at menopause may help
determine risks for hormone-related adverse health out-
comes, such as breast cancer, endometrial cancer, osteo-
porosis and cardiovascular disease [1]. Prospective
prediction of age at final menstrual period (FMP) would
be beneficial in treatment planning as accelerated bone
lose begins one or more years prior to the FMP [2, 3]. Re-
searchers have previously evaluated detailed menstrual
diaries [4] and chronologic age to predict FMP. More re-
cently, interest has switched to examining reproductive
hormone levels, including follicle stimulating hormone
(FSH), estradiol (E2) and anti-mullerian hormone (AMH)
as predictors of FMP [2, 5, 6].

An objective of this study was to describe salient fea-
tures of prospectively collected FSH levels during the
menopause transition and identify features that are asso-
ciated with age at final menstrual period (FMP). Previ-
ous studies [5-7] utilized classic Cox Proportional
Hazard models to assess the impact of reproductive hor-
mones and time to menopause based on a one-time as-
sessment of risk factors. Other descriptive studies
aligned time to the date of FMP and described patterns
of menstrual cycle lengths [5] or longitudinal hormone
trajectories relative to FMP [8, 9]. Greendale et al. [2]
used longitudinal FSH levels to predict time to meno-
pause by selecting observed hormone levels at specific
points in time proximal to the FMP, i.e. 2 years prior,
1 year prior, etc. Although informative, this method is
not practical for prospective prediction of the FMP in
clinical practice.

Our proposed approach differs from these previous
studies in several ways. First, we describe the longitudinal
FSH trajectory patterns in relation to chronological age,
and allow the inclusion of women who had not yet
reached their FMP, and employed a generalized growth
mixture model (GGMM) [10] to identify informative FSH
subgroups in relation to age. We then utilized the combi-
nations of the resulting individual’s subgroup or class
membership and class-specific characteristics (level and
rate of FSH change at class-specific pre-specified ages) to
estimate associations with FMP age under a Bayesian ac-
celerated failure time (AFT) model. This approach
accounted for uncertainty in the estimation of FSH trajec-
tory features thereby increasing statistical power.

Methods

POAS database

The study evaluated 363 of the original 436 women from
the Penn Ovarian Aging Study (POAS). The POAS
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cohort was identified through random-digit dialing to
households in Philadelphia County, PA in 1996, with
stratified sampling to obtain equal numbers of African
American and Caucasian women, as described previ-
ously [11]. The subset in our analysis consisted of
women who were followed to, and did not reach, FMP
until after age 40, had AMH assessed at baseline, re-
corded values for the demographic covariates (BMI, race
and smoking) and had at least 6 hormone measurements
over the study period. All participants provided written
informed consent, and the Institutional Review Board of
the University of Pennsylvania approved the study.

At enrollment, all participants were premenopausal as
defined by regular menstrual cycles in the reference
range (22-35 days for the previous three menstrual cy-
cles), were ages 35—48 years with an intact uterus and at
least one ovary. Exclusion criteria included current use
of psychotropic or hormonal medications, including hor-
monal contraception and hormone therapies, pregnancy
or breast feeding, serious health problems known to
compromise ovarian function (e.g., diabetes mellitus,
liver disease, breast or endometrial cancer) and alcohol
or drug abuse in the past year.

The cohort was followed for 14 years after enrollment.
Follow-up assessments were at approximately 9-month
intervals for the first 5 years and then annually. At each
assessment, there were 2 in-home visits to collect study
data and blood samples for the hormone assays. All
visits were timed to the early follicular phase (days 2-6)
of the menstrual cycle and were conducted in two con-
secutive menstrual cycles or approximately one month
apart in non-cycling women.

The study was described to participants as a general
women’s health study. At each assessment, trained re-
search interviewers obtained structured interview data
on overall health including menstrual cycle informa-
tion, blood samples for the hormone assays, and an-
thropometric measures (height, weight, waist and hip
circumference).

Study variables

The primary outcome variable was age at FMP. Age at
FMP was calculated from her reported age at the first
follow-up assessment where the participant reported no
menstrual bleeding for at least 12 months.

Hormone values were assayed from blood samples that
were obtained at each study visit (days 2—6 of the men-
strual cycle), centrifuged and frozen in aliquots at —-80 C.
FSH and E2 were measured by radioimmunoassay in the
Clinical Translational Research Center (CTRC) of the
University of Pennsylvania using Coat-A-Count commer-
cial kits (Siemens). Inter-assay and intra-assay coefficients
of variation were less than 5 %. AMH measures from the
first available frozen samples in assessments 1-3 were
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assayed contemporaneously in 2011 in the CTRC of the
University of Pennsylvania, using AMH enzyme-linked
immunosorbent assay kits (Beckman Coulter Inc., Brea,
CA). The intra- and inter-assay coefficients of variation
were 4.6 and 6.8 %, respectively. The lower limit of detec-
tion was 0.10 ng/mL. Hormone measurements when
women were pregnant and/or breast feeding or had a hys-
terectomy with or without oophorectomy were not in-
cluded in the analysis.

Other covariates that were selected as possible risk
factors for FMP age included race (African American
or Caucasian), body mass index (kg/ m”) adjusted to
age 40 (defined below), and baseline smoking status
(yes, no) [11].

AMH and BMI values were adjusted to age 40 values
for all participants. This was accomplished by fitting
local polynomials using the lprq function in R package
“quantreg” to the median of AMH and BMI respectively
versus age to obtain predicted AMH and BMI values at
age 40. This age was selected a priori as an appropriate
reference age for prediction of FMP, and because AMH
levels decrease rapidly to non-detectible levels in this
age range [11, 12], resulting in insufficient numbers of
observed AMH values in the detectible range to facilitate
longitudinal modeling of this hormone.

Statistical analysis

We proposed a Bayesian joint model for the FSH trajec-
tories and FMP age to properly account for uncertainty
in estimating FSH trajectory features and thus gain stat-
istical efficiency by reducing the bias towards the null
hypothesis of no association [13]. It consists of defining
a longitudinal model for the FSH trajectories and defin-
ing a primary outcome model for the FMP age using the
extracted FSH features as covariates. The joint modeling
refers to methods to analyze the longitudinal model and
the primary outcome model jointly or simultaneously
[14, 15]. For the FSH trajectories, we utilized a GGMM
[10] to identify distinct feature subgroups (i.e., latent
classes); details of the GGMM are given in Additional
file 1. In the GGMM, we used cubic Bayesian penalized
splines [16] to flexibly model FSH levels evaluated at un-
equally spaced times, where the rate of change is repre-
sented as the first derivative of the smoothed mean FSH
level, and we assumed a t-distribution with 4 degrees of
freedom for the model residuals [17] to accommodate
large fluctuations in FSH levels. In addition, we modeled
FSH within-subject variability using a lognormal distribu-
tion [10, 18] and studied its predictive ability towards
FMP age. The FSH within-subject variability contributed
to increased risk of severe hot flashes [10]. Our approach
naturally accommodates the fact that the subject-level
mean hormone trajectories may differ from one another
and may be grouped into classes characterized by similar
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trajectory shapes. In contrast to fully parametric splines,
the use of penalized splines is not as sensitive to the exact
number and location of the knots. This added flexibility is
achieved as long as a sufficiently large number of knots
are used so that redundant knots will be smoothed away
by shrinking associated random effects toward 0. The use
of a heavier tailed t-distribution allows robust inference by
avoiding the potential influence of outlying hormone
levels.

For the outcome model to predict FMP age, we
employed accelerated failure time (AFT) models [19, 20].
We define the following notation. Let 7; denote age at
EMP for unit i, D; denotes which FSH trajectory subgroup
the unit belongs to; y,(7) is the mean FSH hormone level
at age 7, v,(7) is the rate of change in FSH hormone levels
at age 7, and o7 is the within-subject variability that cap-
tures the short-term fluctuations in FSH hormone levels.
In particular, we assume a lognormal AFT model for T;
conditional on covariates of interest. This is equivalent to
assuming the residual in the AFT model has a normal dis-
tribution, i.e., &~ N(0, ¢®). We found no violation of this
assumption when Cox-Snell residuals were evaluated. We
consider various features extracted from the GGMM
model defined for the FSH trajectories as covariates of
AFT models to predict FMP ages (Models M, s=1... 4 in
Table 1). Each of these AFT models was jointly estimated
with the GGMM model for the FSH trajectories. We also
compare these joint models with a baseline AFT model
(Model M, in Table 1) that does not include FSH feature
as covariates.

Because of possible censoring due to not reaching
EMP by the end of the study, hysterectomy or dropout,
FMP was not always observed. For these women we ob-
serve age at last visit or censoring age, C;. Assuming in-
dependence between censoring time and FMP age, we
imputed FMP age, T}, based on the specific AFT model
defined in Table 1. The imputed value was a random

Table 1 Specification of the AFT models to predict ages at final
menstrual period (T)

Model AFT models
Mo log(T;-40)=ag + X0 + &
My log(T; - 40) = ao + a1 D;+ aow; + X[ 0 + &
M, log(T; - 40) = ag + a,D; + a,w; + azu(40)(1 - D)
+ CI4/J,‘(45)D,‘ + X,T@ + &
Ms log(T; - 40) = ag + a;D; + a,w; + azv{40)(1 - D))
+ C(4V,‘(45)D,‘ + X,TG + &
My log(T; - 40) = ag + a1 D; + a,w; + azu(40)(1 - D)
+ Quu(45)D; + asvi(40)(1 - D) + agvi45)D; + x[6 + ¢;
Note:

o x/ = (adjusted log (BMI) at age 40, adjusted AMH at age 40, smoking, race)
® &~ N(0, 02 is the residual for log-normal AFT model

® D; is the early FSH rise class indicator and w; is the within-subject variability
in FSH; ui(t) and v(t) are the mean FSH level and its rate of change at age

T, respectively
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draw from the conditional posterior distribution, a trun-
cated normal distribution with its mean determined by
the AFT model conditional on other covariates and vari-
ance ¢ [21]. Model predictive performance or model fit,
was assessed using prediction Mean Squared Error
(PMSE) estimated from a 10-fold cross-validation [22]
for measured FMP age. Statistical significance of covari-
ate effects was determined when the 95 % Bayesian
Credible Interval (CI) did not contain 0.

We develop an efficient Markov chain Monte Carlo algo-
rithm (MCMC) for posterior sampling with equivalent prior
specifications as used in [10] (Additional files 2 and 3). The
inferences were based on 25,000 posterior draws after
a burn-in period of 10,000 iterations. All the compu-
tations were performed by calling stand-alone C++
code in R software developed using the Scythe statis-
tical C++ library [23].

Results
Out of the 363 women in the analysis, 180 reported the
EMP during the follow-up period. Of the remaining
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participants, 157 did not reach their FMP and were con-
sidered censored at their last assessment, and 26 had a
hysterectomy in the follow-up period before reaching
FMP and were considered censored at the time of
hysterectomy.

Two latent classes for mean FSH trajectories were
identified within the GGMM by Deviance Information
Criteria [24, 25], where D; =0 is defined as class 1, early
riser of FSH and D;=1 is class 2, late riser of FSH.
Figure 1a and c show the estimated mean FSH trajectory
over time for each class. Class 1 consists of women who
tend to have an earlier rise of FSH (15 % of the sample),
and class 2, women who tend to have a late rise of FSH
in their mid-40s (85 % of the sample).

Characteristics of the participants are summarized in
Table 1. The mean (SD) age of these participants was
43.1 (3.1) yr at baseline and 50.8 (3.2) yr at FMP. The
mean (SD) of FSH levels at baseline was 8.71 (4.88)
mlIU/mL. The mean (SD) of adjusted AMH levels at age
40 was 0.94 (0.77) ng/mL. These adjusted AMH levels
were further divided into quartiles to better understand
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Fig. 1 Fitted mean FSH trajectories from model M, for early FSH rise (FSH class 1, Panel 1.a) and late FSH rise (FSH class 2, Panel 1.c), along with a
histogram of the log-transformed estimated within subject variance, o7 for each class (Panels 1b and 1.d).
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the association with FMP age. Table 1 also shows the
comparison of 47 women who were classified as class
1 with the 316 women assigned to class 2. In addition
to differences in E2 and FSH, women in class 1 had
lower adjusted BMI (P <0.05) and lower AMH levels
(P <0.001). There were no differences in race (P =0.565).
Although women in class 1 were more likely to
smoke, this comparison did not achieve statistical sig-
nificance (P =0.063).

Table 2, column 2 describes the associations between
EMP age and baseline risk factors. BMI and AMH at age
40 were positively associated with FMP age, i.e., women
with higher BMI have an older FMP age. Similarly, a
higher adjusted AMH at age 40 (>0.54 ng/mL, 1st quar-
tile) is associated with an older FMP age. As expected,
smoking resulted in an earlier FMP age.

The results for models that consider FSH trajectory
subgroups are presented in Table 3 columns 3-6.
Women in class 2 reached FMP at later ages in compari-
son to women in class 1 (model M; (column 3, Table 3).
On average, it took 1.53 (exponentiations of the effect of
being in class 2 in lognormal AFT model M;) (95 % CI:
1.33, 1.77) times additional years post age 40 to reach
FMP for women in class 2 compared to women in
class 1. Adding such FSH trajectory class member-
ships improved model fit over the model containing
only AMH and demographics covariates. Model M,
and M3 (Table 3) took into account different timing
of FSH rise for women in early and later FSH rise
classes as well as potentially additional contributions
from FSH levels and rates of change at age 40 and 45
respectively. The use of alternative ages (e.g., 41 and
46 vyears) in each FSH subgroup resulted in similar
outcomes (not shown).
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The model with best fit, determined by minimum
PMSE, was model M, (the model which included all
predictor variables of interest). However, adding both
FSH levels and rates of change at age 40 and 45 for
early and later FSH rise classes respectively minimally
improved the PMSE over model M, (Table 3, column 4).
Also, the parameters associated with the rate of change in
ESH at age 40 or 45 were not statistically significant in
model M, Therefore, the simpler model M,, with root
PMSE =2.67, was selected as the best model to describe
the associations between FSH and FMP age.

In the model M,, for the 15 % of women assigned to
early rise FSH class, the FMP age was inversely associ-
ated with their FSH level at age 40 and for the remaining
85 % of women whose FSH began to increase in their
mid-40s, the association between FMP age was inversely
associated with their FSH at age 45. In this model,
smoking significantly decreased the FMP age, while
higher AMH levels at age 40 were associated with later
EMP age. Short-term variability in FSH residuals was
not associated with FMP age. Neither BMI nor race was
significantly associated with FMP age after accounting
for the other risk factors.

E2 trajectories were examined, but the current model-
ing method did not allow identification of meaningful
subclasses for E2 trajectories. Consequently, we applied
the class structure derived from the GGMM of the FSH
trajectories, and examined E2 trajectories according to
this class. Figure 2a and c illustrate the decline in E2 for
each subgroup. Class specific within-subject variability
in E2 shown in Fig. 2b and d, suggested that women in
class 1, whose FSH levels increased and E2 decreased at
younger ages had relatively larger variability in E2 values
than women in class 2, whose FSH levels increased and

Table 2 Participant characteristics and comparisons between FSH early and late rise classes

Total Early rise class Late rise class

N=363 N=47 N=316 P value
Age at baseline, mean (SD) 41.62 (343) 40 67 (3.65) 4167 (3.38) 0.060
Race, N (%) 0.565
Caucasian 188 (52) 22 (53) 166 (53)
Af. American 175 (48) 25 (47) 150 (47)
Smoker at baseline, N (%) 137 (38) 24 (51) 113 (36) 0.063
Adj BMI at age 40, mean (SD) 2842 (7.85) 26.07 (7.04) 28.77 (7.92) 0.013
Adj. AMH at age 40 (ng/mL), mean (SD) 117 (1.17) 0.39 (0.59) 129 (1.12) <0.001
AMH quartile, N (%) <0.001
Q1: <=0.54 ng/mL 91 (25) 29 (62) 62 (20)
Q2: >0.54 &< =0.83 ng/mL 91 (25) 12 (26) 79 (25)
Q3:>0.83 &< =151 ng/mL 90 (25) 4(9) 86 (27)
Q4:>1.51 ng/mL 91 (25) 24 89 (28)
Baseline FSH mlIU/mL, mean (SD) 7.92 (4.69) 12.03 (7.97) 731 (3.62) <0.001




Table 3 Coefficient estimates (95 % credible interval) for all candidate models

Mg (Column 2) M; (Column 3) M, (Column 4) Ms (Column 5) M, (Column 6)

Value 95 % Cl Value 95 % Cl Value 95 % Cl Value 95 % Cl Value 95 % Cl
Class 2 vs 1 0.424 0.288, 0.570 0.077 —0.568, 0.695 0.406 0.135, 0.677 —-0.109 —-0.814, 0.580
Class 1: 1(40) -0.442 -0.685, —0.213 -0.420 -0.671, —-0.175
Class 2: ((45) -0.273 —0.460, —0.096 -0.167 -0411, 0.087
Class 1: v{(40) -1.185 —-2.873, 0.619 —0.624 —-2.327,1.120
Class 2: v(45) —-0.850 —1.486, —0.236 -0.517 —1.365, 0.346
Within women Variability -0515 —1.289, 0.247 -0.011 —0.132, 0.108 -0.021 —-0.149, 0.101 —-0.008 —-0.130, 0.108
Intercept 1376 0672, 2.090 1.777 1.099, 2341 2.790 1.985, 3614 1.895 1.196, 2.509 2810 2019, 3.591
Adj log (BMI) 0.240 0.043, 0.437 0.073 —-0.078, 0.249 0.044 —-0.127, 0.208 0.059 —-0.093, 0.234 0.044 —-0.098, 0.207
Adj AMH,, 2"dQ 0.249 0.116, 0.381 0.151 0.026, 0.277 0.089 —0.038, 0.213 0.122 —0.005, 0.250 0.079 —0.042, 0.202
Adj AMH,4 3rd Q 0.421 0.281, 0.556 0.274 0.137, 0.407 0.179 0.046, 0.310 0.219 0.081, 0.363 0.163 0.032, 0.296
Adj AMH,4, 4th Q 0.420 0.274, 0.567 0.241 0.088, 0.391 0.155 0.008, 0.300 0.184 0.037, 0.331 0.137 —0.005, 0.280
Smoking -0.162 -0.263, —0.058 -0.138 -0.234, —0.040 -0.116 —-0.206, —0.029 -0.130 —0.225, -0.038 -0.111 -0.201, —0.022
Race (Caucasian) 0.059 -0.039, 0.155 0.030 —-0.057,0.123 0.006 —0.082, 0.093 0.029 -0.061,0.117 0.008 —-0.077, 0.094
Root PMSE 326 245,429 2.89 228,391 267 1.89,3.53 276 203,367 266 184,347

Note: significant coefficients at the 0.05 level are in bold face.
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E2 decreased at older ages. A two-sample t-test of the
estimated variances of E2 indicated a significant differ-
ence (P<0.001); the difference in the estimated vari-
ances of FSH is marginally significant (P =.052). These
findings further suggest the potential for physiological
differences between the women in the two identified
subgroups. In contrast, significant differences in the esti-
mated variances for the two FSH classes do not seem to
exist, as shown in Fig. 1b and d, where the distributions
of the estimated variances have similar spread.

Figure 3 overlays the fitted FSH and E2 trajectories for
class 1 (solid lines), and 2 (dashed lines). For class 1, the
corresponding decline in E2 appears to be delayed rela-
tive to the initial increase in FSH when compared to the
behavior in class 2. The closeness in distance of two E2
mean trajectories also explains the difficulties in identify-
ing the two subgroups using E2.

Additional analyses were conducted to examine the
performance of a model that included all women with
FSH levels at age 40 or 45 years, rather than the FSH

trajectory subgroups, and also included AMH and
demographic covariates. In this model, adding FSH level
at age 40 did not improve model fit over and above a
model with AMH and demographic covariates alone
(root PMSE =3.21, 95 % CI: 2.47, 4.08, estimates not
shown). In contrast, adding FSH level at age 45 did im-
prove prediction of FMP age based on AMH and demo-
graphic covariates alone (root PMSE =275, 95 % CIL
1.98, 3.52), perhaps because FSH level at age 45 served
as a surrogate for the FSH classes. While improved over
a model of risk factors alone, this model was inferior to
our best models M, and M,. Another model, which
added the E2 level or its rate of change at age 45 and
variability in residuals, did not improve the model fit
over model M, with root PMSE =3.27, 95 % CIL: 2.49,
4.26 and root PMSE = 3.26, 95 % CI: 2.51, 4.25, respect-
ively (estimates not shown).

To effectively predict age at FMP, we removed insignifi-
cant covariates and simplified our best models, M, and My,
to the following final prediction model, where BMI, race,
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Fig. 3 Fitted mean FSH trajectories (blue) for early FSH rise (FSH class 1) and late FSH rise (FSH class 2) from model M,; and corresponding
Estradiol mean trajectories (orange) for these two FSH classes. Green vertical bar indicates begin of the rise in FSH. Black vertical bar indicates

within-subject variability in FSH were dropped from M,
and quartiles of AMH were collapsed to 2 levels (AMH < =
0.83 and AMH > 0.83); other terms in M, were unchanged.
Figure 4a and b show the predicted FMP age at different
FSH levels for each class, using this model for 4 sub-
categories defined by the two levels of AMH and smoker/
non-smoker. Separate plots are displayed for early and late
rise FSH classes respectively. For example, for early risers
with FSH level of 10 at age 40, the predicted ages at FMP
for non-smokers with AMH <= 0.83 and smokers with
AMH > 0.83 are 47.1 year, 95 % CI: 46.0, 48.3 and 47.0 year,
95 % CI: 45.8, 48.3 respectively; for late risers with FSH
level of 10 at age 45, the results change to 51.7 years, 95 %
CL: 504, 53.1 and 51.5 years, 95 % CI: 50.0, 53.1 respect-
ively. This figure clearly illustrates the effectiveness of using
the FSH class memberships to predict FMP age (i.e., non-
overlapping of the 95 % credible intervals for each FSH
class), while the contribution due to AMH and smoking
were not as strong, indicated by the considerable overlap in

the 95 % credible intervals at various values of FSH. This
graph suggests that the impact of smoking on FMP age is
similar to that of AMH above/below the median value of
0.83 ng/mL.

Discussion

In this study, we demonstrated that our model of prospect-
ively collected longitudinal measurements of FSH identified
2 subgroups of women with distinct FSH trajectories that
were significantly associated with FMP age. The first sub-
group, comprising 15 % of the study sample, displayed initial
increases in FSH shortly after age 40, while the second sub-
group (85 % of the sample) did not have a rise in FSH until
after age 45. We then showed that class-dependent FSH
values, at age 40 or 45, were significantly associated with
EMP age. Importantly, these associations remained signifi-
cant after adjustment for AMH, BMI and smoking, which
are established risk factors for earlier age at menopause. We
also found that neither the rate of increase nor the within-
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Fig. 4 Predicted age at FMP with 95 % Cl for early FSH rise (FSH class 1) and late FSH rise (FSH class 2) based on our final model
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woman variability in FSH was associated with FMP age. To
the best of our knowledge, our work is the first in this area
to show the existence of latent classes in FSH trajectory pat-
terns relative to chronological age.

Using the same analytic approach for estradiol showed
that there was no heterogeneity in the longitudinal pat-
tern of this hormone in the present study. However,
when FSH class structure was applied to E2, we identi-
fied distinct profile differences, with significant increases
in E2 variability in the subgroup who had early FSH rise
(class 1) compared to the subgroup with FSH rise after
age 45 (class 2). These results suggest distinct difference
in physiology in the 2 subgroups beyond their FSH
trajectories.

We previously predicted FMP age based on AMH
from a Cox model which controlled for demographic co-
variates including smoking, body mass index (BMI) and
race [5], while the present study identified a richer set of
characteristics describing longitudinal FSH levels that
contribute to the prediction of FMP age. Furthermore,
this information indicated that the inclusion of the latent
class memberships in various models (e.g. M, and M)
could decrease the prediction errors by 20-22 % (based
on percentage reductions in PMSE’), indicating im-
proved model fit. These are new findings, which we
believe open a door to evaluation of reproductive hor-
mones at specific ages to aid in the prediction of
FMP age.

The findings add further information to previous stud-
ies of FMP age. In the Study of Women Across the
Nation (SWAN), researchers described the pattern of re-
productive hormones where the time axis was scaled to
align to the date of FMP as time O [8]. This showed that
a rise in log (FSH) began more than 6 years prior to the
FMP, while the acute decline in E2 did not commence
until around 2 years prior to the FMP. Similar profiles
were reported in the current analysis, but our two latent
classes distinguished the initial age when these changes
occurred.

More recent SWAN results [9] investigated clustering
of FSH and E2 trajectories pre- and post FMP age by re-
centering the trajectories as 0 at FMP age, while our ap-
proach used each woman’s chronological age between 35
and 60. Tepper et al. [9] identified 3 distinct FSH classes,
possibly due to the much larger sample size (n =1316).
The FSH levels from the three classes all tended to rise
about 2 years before the FMP, and therefore these FSH
classes did not differ in the timing of the rise in FSH
levels. However, as implied in our analysis that rising
FSH levels at an earlier age is associated with an earlier
age at FMD, it is not clear whether the FSH classes ob-
tained by the approach of Tepper et al. [9] is capable of
predicting age at FMP. While both approaches utilized
growth mixture models to identify subgroups of
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individuals sharing similar hormone trajectory patterns
over time, our approach integrated additional statistical
concepts (including robust inference and semi-parametric
smoothing methods), modeled within-woman variability
and studied its association with FMP age. More import-
antly, our approach utilized all available women in the
analysis and classified them into the two classes with a
rise in FSH levels at age 40 and 45 respectively, rather
than excluding women who had not yet reached their
EMP. Further, we not only evaluated the association be-
tween class membership and FMP age, our primary
outcome of interest, but could also examine associa-
tions between other features of the FSH trajectories
and FMP age.

Our findings were based on multiple FSH values mea-
sured over a 14-year time frame (6 to 28 observations
per participant), which is generally not feasible in clinical
practice. However, our findings indicate the importance
of age-specific time points, suggesting that fewer annual
measures at key ages, e.g., shortly after age 40 and again
around age 45 if there was no FSH rise at earlier ages,
would be reasonable for clinical predictions of FMP age.

An important issue in this research that has not been
disentangled is the interplay between women specific
risk factors, hormone changes and FMP age. Randolph
and colleagues [8] reported that obese women had an at-
tenuated FSH rate of rise in the time period prior to
EMP, which would imply that FSH is an intermediate
variable in the relationship between obesity and FMP
age. Our results are consistent with this possibility inas-
much as BMI was associated with older FMP age in the
baseline model, My. However, BMI was not significantly
associated with FMP age in models that included FSH
class membership, FSH levels or FSH rate of change,
and further studies are needed to examine the medi-
ation effect of FSH in the association between BMI and
FMP age.

Conclusions

This paper shows that the use of the identified latent
FSH trajectory features improves the prediction of time
to FMP by 20 % or more (i.e., percentage reductions in
PMSE’s) in comparison to the model based on AMH
levels and other baseline risk factors, although AMH has
been recognized as a stronger predictor for time to FMP
than FSH when only one hormone is considered in each
prediction model. Our proposed method quantifies time
using chronological age, and also accounts for informa-
tion collected from subjects who have not yet reached
their FMP. In contrast, existing methods align FSH tra-
jectories by centering each subject’s measurement time
at the FMP age and require observed FMP ages for all
subjects.
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