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Abstract. During the next century, atmospheric nitrogen (N) deposition is projected to
more than double, potentially slowing litter decomposition by altering microbial community
composition and function. If the flow of energy though detrital food webs is diminished by the
slowing of decay under higher rates of atmospheric N deposition, this agent of global change
could also negatively impact the abundance and composition of soil fauna. To test this
hypothesis, we studied soil faunal communities in four sugar-maple-dominated forests that
comprise a long-term N deposition experiment. To examine whether changes in soil faunal
communities could then feed back to influence litter decay, litterbags with 13C-enriched aspen
litter were placed in the forest floor in one study site. The microbial community within the
litterbags was characterized using PLFA analysis. Overall, long-term experimental N
deposition reduced the abundance of microarthropods (ambient vs. experimental N
deposition: 7844 vs. 4357 individuals/m2, respectively; P ¼ 0.004). We attribute this overall
decline partly to the reduced energy flow entering the detrital food web, which has been
documented in previous work in our system. Although there was no difference in
microarthropod species richness between N deposition treatments, there was a shift in
community composition within the most abundant group (Oribatida), indicating species-
specific responses to N deposition. Experimental N deposition reduced the number of
microarthropods colonizing litterbags by 41% (P ¼ 0.014). This was associated with a
reduction in 13C mobilization from leaf litter into microbial biomass. Overall, this study
demonstrates that chronic N deposition has a detrimental effect on the soil detritus food web,
and that the negative effect may feed back to influence litter decay and ecosystem functioning.

Key words: decomposition; detrital communities; hardwood forests; microarthropods; microbial PLFA;
N deposition; northern hardwood forest; oribatid mites; phospholipid fatty acid analysis.

INTRODUCTION

Global changes in climate and land use are affecting

biodiversity in many ecosystems (Wolters et al. 2000),

and this has triggered extensive research into the

consequences of these anthropogenic forces for ecosys-

tem functioning (Chapin et al. 1998, Diaz et al. 2006).

The majority of experiments have focused on plants and

animals living aboveground (Hughes 2000, Walther et

al. 2002, Wu et al. 2011), whereas comparably less is

known regarding belowground responses (Wardle et al.

1999, Blankinship et al. 2011). Most research into soil

biotic responses to global change has focused on

microbial communities, whereas the responses of soil

fauna at higher trophic levels, such as nematodes, mites,

and springtails, are less understood, but clearly mediate

important functions that have ecosystem-level implica-

tions (Osler and Sommerkorn 2007, Sackett et al. 2010).

For example, soil fauna can alter the physical environ-

ments of the soil through litter comminution and soil

bioturbation (Lussenhop 1992), or can regulate the

activity and population dynamics of the microbial

community through grazing (Moore et al. 1988,

Lussenhop 1992, Hassall et al. 2006). Moreover,

significant links between soil fauna communities and

decomposition rates have been observed in the field

(Neher et al. 2012).

Anthropogenic nitrogen (N) deposition is a pervasive

agent of global environmental change (Vitousek et al.

1997). Over the past 150 years, atmospheric N

deposition has increased from 0.05–0.10 g N�m�2�yr�1
prior to 1880 to 1.50–2.00 g N�m�2�yr�1 in the early

1990s across large areas of the northern hemisphere; this

rate is projected to double during the next century

(Galloway et al. 2004). Atmospheric N deposition can

stimulate net primary productivity in N-limited terres-

trial ecosystems, thereby increasing ecosystem carbon

(C) storage, albeit there is considerable debate regarding

the extent of this stimulation (Nadelhoffer et al. 1999,

Magnani et al. 2007). However, atmospheric N deposi-

tion also could increase ecosystem C storage by slowing

plant litter decay and accelerating organic matter

accumulation in soil (Carreiro et al. 2000, Frey et al.

2004). Although most studies of N deposition focus on
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changes in the microbial community (Zak et al. 2011),

the few studies that have been conducted suggest that

soil fauna at higher trophic levels could also be affected

by anthropogenic N deposition (Boxman et al. 1998, Xu

et al. 2009, Eisenhauer et al. 2012). Shifts in micro-

arthropod community composition, in response to

experimental N deposition, can significantly reduce soil

respiration and accelerate nutrient leaching in laborato-

ry microcosms (Heneghan and Bolger 1996). However,

our knowledge is incomplete regarding the in situ

response of soil fauna to anthropogenic N deposition

and potential feedbacks that could modify rates of litter

decomposition.

Previous studies have reported that anthropogenic N

deposition can have either beneficial or detrimental

effects on detrital food webs. For instance, Sjursen et al.

(2005) found increased microarthropod abundance in a

subarctic ecosystem after application of NPK fertilizer,

attributing this to the bottom-up effects of higher plant

productivity. In contrast, N fertilization can reduce

carbon allocation belowground to roots and rhizodepo-

sition (Hogberg et al. 2010), thereby reducing energy

availability in the soil environment. Moreover, anthro-

pogenic N deposition can reduce rates of litter decay

(Knorr et al. 2005, Zak et al. 2008), which can also

reduce the energy entering the detritus-based food web.

Both of these belowground responses to anthropogenic

N deposition could negatively impact the soil microbial

community, as well as higher trophic levels in the soil

food web.

Here, we sought to understand the mechanisms by

which chronic N deposition has influenced the dynamics

of the detrital food web in soil. In a long-term field

experiment consisting of four sugar maple (Acer

saccharum) forest stands, chronic experimental N

deposition has slowed plant litter decay and accelerated

organic matter accumulation in forest floor and surface

mineral soil (Pregitzer et al. 2008, Zak et al. 2008,

Edwards et al. 2011). The slowing of plant litter decay

has resulted from a decline in lignolytic extracellular

enzyme activity, originating from the transcriptional
down-regulation of fungal genes encoding these enzymes

(Edwards et al. 2011). At the same time, microbial
biomass had been reduced by 18% under experimental N

deposition (DeForest et al. 2004). We were interested in
determining whether soil fauna at higher trophic levels

were also affected negatively by long-term experimental
N deposition; we reasoned that a lower microbial
biomass and the slowing of litter decomposition could

plausibly reduce the flow of energy into the detrital food
web. We focused on microarthropod groups involved in

important soil processes, such as litter fragmentation
and microbial grazing (collembola, oribatid mites), as

well as mesostigmatic mites that, through their preda-
tion, are potential regulators of grazer abundance

(Coleman et al. 2004). We hypothesized that (1)
microarthropod communities are affected negatively by

long-term N deposition, due to reduced energy flow
entering the detrital food web; and that (2) the change in

microarthropod communities further feeds back to slow
litter decomposition. We tested these hypotheses by

quantifying microarthropod populations in forest floors
receiving ambient and experimental N deposition.

Additionally, we placed litterbags containing 13C-
labeled leaf litter in one of the forest stands to determine

whether chronic N deposition has compromised the
ability of microarthropod communities to colonize and
degrade new litter.

METHODS

Site description and experimental design

This long-term study of experimental N deposition
consists of four sugar maple (Acer saccharum)-dominat-

ed northern hardwood forests in the Great Lakes region
of North America (Burton et al. 1991). The sites are

floristically and edaphically matched (.80% sugar
maple on sandy soils), but they differ in climate along

a north–south latitudinal gradient (Fig. 1). Within each
study site, six 30 3 30 m plots were established in 1994;

three plots receive ambient N deposition and the
remaining three plots receive ambient plus 30 kg

NO3
�-N�ha�1�yr�1. The additional NO3

� is delivered
over the growing season in six equal applications of solid
NaNO3 pellets; a 10 m wide buffer surrounds each plot,

and it also receives the experimental treatments. More
detailed descriptions of the study site can be found in

Zak et al. (2008).

Microarthropod survey

Forest floor litter was collected in June 2009 in site B

as an initial survey of microarthropod populations.
Within each plot, a 10 3 10 cm PVC frame was placed

randomly on the forest floor, and the Oi and Oe
horizons were collected and placed in a plastic bag. In

total, six samples were collected from each plot receiving
either ambient (n¼ 3) or experimental N deposition (n¼
3). All of the samples were transported to the lab in

FIG. 1. Map of four study sites in the Great Lakes region in
North America.
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coolers and placed in modified Tullgren funnels within

48 hours (Crossley and Blair 1991) to extract micro-

arthropods. After the 5-day extraction, litter was placed

in a 608C oven for 24 hours for the subsequent

determination of dry mass. A second microarthropod

survey was conducted in May 2011 in all four study

sites, using the same sampling and extraction scheme.

The extracted microarthropods were preserved in 70%
ethanol, and three major groups (Mesostigmata, Col-

lembola, and Oribatida) were enumerated under a

microscope. For the second survey, those in the most

abundant group (Oribatida) were further identified to

genus or species based on the keys written by R. A.

Norton and V. M. Behan-Pelletier (unpublished data) for

use at the Ohio State University Summer Acarology

Program.

Litterbag experiment

Litterbags (203 20 cm) were constructed using a layer

of 1-cm polyester mesh to form the top of the bag and 1-

mm fiberglass mesh on the bottom. The larger top mesh

allowed for the free movement of invertebrates into the

litter bags, and also reduced potential changes in

microclimate created by the litterbags (Bradford et al.

2002). To quantify the active microbial community that

relied on the litter inside the litterbags, 20 g of 13C-

enriched aspen litter (Populus tremuloides) was placed in

each litterbag, representing new litter entering forest

floor. We used aspen to produce 13C-enriched leaf litter

because sugar maple, the dominant species in our sites, is

a slow-growing species that would not produce sufficient

quantities of leaf litter for this experiment. The 13C-

enriched aspen litter was produced by pulse-labeling

propagated ramets of one aspen genotype. Labeling was

conducted in a field chamber during the 2008 growing

season, and naturally senesced and abscised leaves were

collected during autumn. The labeling chamber was

similar to that used by Mikan et al. (2000).

The constructed litterbags were transferred into the

field in individual plastic bags. In total, 96 litterbags

with aspen litter were placed in plots receiving ambient

(n ¼ 3) and experimental (n ¼ 3) N deposition in site B

during June 2009. In addition, 16 empty litterbags were

placed on the forest floor to control for any external

litter input to the litterbags. The Oi horizon was first

removed, and the litterbags were secured to the top of

the Oe horizon with steel pins; the original Oi horizon

was then placed on top of each bag. Three supplemen-

tary litterbags were placed in the forest floor, as just

described, but were immediately retrieved to estimate

any loss during transportation.

Four litterbags from each plot were collected 2, 4, 12,

and 16 months after placement in the field. Four empty

litterbags were also collected on each date to estimate

the mass of any external litter that had infiltrated

litterbags. On each collection date, litterbags were

placed in separate plastic bags in coolers and were

transported to the laboratory within 24 hours. In

addition, one soil core sample (5 cm diameter 3 5 cm

depth) underneath each litterbag was collected. More-

over, one forest floor sample outside the litterbags was

collected from each plot. Both the soil and litter samples

that were collected from outside the litterbags served as

paired controls when comparing the microbial commu-

nity inside bags (see PLFA analysis).

In the lab, the litterbags were cut open after the

outside was carefully brushed, and any roots that had

penetrated the litterbags were removed. The litter was

then thoroughly homogenized. Approximately 75% of

the field-moist litter was placed in modified Tullgren

funnels to extract microarthropods (into 70% ethanol)

over 5 days. The remaining litter was freeze-dried for

phospholipid fatty acid (PLFA) analysis. The extracted

microarthropods were sorted into three major groups

including Mesostigmata, Collembola, and Oribatid

mites; individuals were enumerated under a dissecting

microscope and oribatid mites were further identified to

species.

After microarthropod extraction, litter was oven-

dried at 608C and weighed to determine moisture

content. The oven-dried litter was further ground into

powder and combusted at 5008C to measure the ash-free

dry mass. Five subsamples of the original litter were also

combusted to determine the ash-free dry mass of the

litter used in the beginning of the experiment. Litter

mass loss during the field incubation was corrected for

ash content, and mass loss values were expressed on an

oven-dry, ash-free basis.

PLFA analysis

Phospholipids fatty acids (PLFAs) were extracted

from the contents of each litterbag to determine

microbial community composition, biomass, and 13C

content. Approximately 25% of the field-fresh litter from

each litterbag was freeze-dried within 24 hours of

collection. The litter samples in the forest floor outside

the litterbags and the soil samples underneath the

litterbags were also freeze-dried. About 1 g of freeze-

dried litter (or 5 g of soil sample) was subjected to a

solution containing 10 mL of CH3OH, 5 mL of CH3Cl,

and 4 mL of PO4
�3 buffer to extract total lipids (White

et al. 1979). A 21:0 internal standard (5 pmol) was added

to each sample at the beginning of the extraction to

determine the extraction efficiency. The extracted

PLFAs were then separated by silicic acid chromatog-

raphy. Isolated polar lipids were further subjected to an

alkaline CHCl3-CH3OH solution to form fatty acid

methyl esters (FAMEs; Guckert et al. 1985). Fatty acid

methyl esters were separated using gas chromatography

and quantified using a Finnigan Delta plus mass

spectrometer with a GC/C III interface (Thermofinni-

gan, Bremen, Germany). Alongside the samples, a

standard solution containing five common FAMEs

(14:0, i15:0, 15:0, cy19:0, 18:1w7t) of known concentra-

tions were analyzed after every fifth sample for quality

assurance purposes. The concentration of sample
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FAMEs was determined by a regression equation based

on the standard FAMEs.

In total, 20 PLFA biomarkers were identified and

grouped to bacteria, Actinobacteria, and fungi. The

total PLFA abundance (nmol/g litter), after adjustment

for extraction efficiency and extracted litter mass, was

used as an indication of total viable microbial biomass.

The 12C:13C ratio for each FAME was used to calculate

the 13C content of each group (lg 13C/g litter), which

was used to quantify the newly acquired C from the 13C-

enriched aspen litter.

Data analysis

The density of microarthropod groups in the forest

floor was calculated in two ways. The first method

combined the abundance of six subsamples within each

plot and divided the sum by the total collected area

(individuals/m2). The second method employed the sum

of the abundance within each plot divided by the total

dried mass of the six subsamples (individuals/g dried

litter). We also calculated the density-by-area abundance

for the microarthropod groups inside the litterbags,

based on the area of the litterbag (0.04 m2) and the total

dried mass of litter inside. Because the results from these

two methods were highly correlated with each other, we

present only the results of analyses of density-by-area

data.

To test how experimental N deposition influenced the

microarthropod community in the forest floor, we first

used a Student’s t test (unpaired) to analyze the first

survey data (site B only). Three-way ANOVA (site, N

treatment, and taxon group) was used to analyze the

density data from the second survey (all four sites). The

species richness of the oribatid community was assessed

using individual-based rarefaction curves, and the 95%
confidence zone was used to detect any difference

between the N deposition treatments.

The species composition of the oribatid mite commu-

nities was represented in a community matrix using three

different indices: relative abundance was calculated as

the percentage of each species within each plot; presence

or absence was the binary conversion from the raw

abundance data; incidence of each species was the

frequency of finding that species in six subsamples of

that plot. The use of incidence data was to scale the

original data to 0 (absence) to 6 (occurring in all six

subsamples) to prevent bias of the dominant species or

the rare species.

Bray-Curtis dissimilarity was calculated for these

three community matrices, which were then subjected

to nonmetric multidimensional scaling (nMDS) to

visualize any differences in the species composition of

oribatid mite communities (Kruskal and Wish 1978,

Minchin 1987). To explore relationships between the

compositional trends revealed by ordination and differ-

ent N deposition treatments, we fitted the N deposition

levels (ambient, 10 kg N�ha�1�yr�1; elevated, 40 kg

N�ha�1�yr�1) to the nMDS space by rotational correla-

tion (Dargie 1984), which is similar to a multiple linear

regression of the environmental variables on the set of
ordination axes. Statistical differences in community

structure were also assessed using permutational multi-
variate analysis of variance (PerMANOVA; Anderson

2001). As the three different community matrices yielded
similar results for the multivariate analysis, only the
results from the incidence data are shown in the Results

section.
For the litterbag experiment, repeated-measures

ANOVA was used to explore the effects of collection
date and N deposition treatment on microarthropod

density and the microbial PLFA composition inside the
litterbags. We used nMDS to visualize the species

composition of oribatid communities in the litterbags
using the incidence data previously mentioned; statisti-

cal differences in community composition were assessed
by PerMANOVA.

The remaining mass in the litterbags was scaled to
percentage of the initial mass, and then was fitted to a

first-order exponential decay equation (At ¼ e�kt), with
At as the remaining mass at time t (Jenny et al. 1949).

The decay constant k was estimated to represent the
decay rate for each plot. Student’s t test was used to

compare the difference in decay rate of litterbags under
different N deposition treatments.

Repeated-measures ANOVA was performed on IBM
SPSS Statistics Version 19 (2011). The species rarefac-

tion curves were generated using EstimateS version 8.2
(Colwell 2009). Multivariate analysis including nMDS

and PerMANOVA were performed in package vegan
(Oksanen et al. 2012) in R 2.15.1 (R Development Core
Team 2012).

RESULTS

Microarthropod surveys

The initial survey in site B (June 2009) revealed that
the density of all three microarthropod groups was

reduced by experimental N deposition. Oribatid mite
density declined from 9722 6 442 individuals/m2 (mean

6 SD) under ambient N deposition to 3833 6 1551
individuals/m2 under experimental N deposition (P ¼
0.017); this represented a 60% decline in density.
Similarly, Collembola density under experimental N
deposition (406 6 200 individuals/m2) was only 34% of

that under the ambient treatment (1989 6 362 individ-
uals/m2; P¼ 0.044). Finally, the density of Mesostigma-

ta declined from 1289 6 164 individuals/m2 under
ambient N deposition to 733 6 116 individuals/m2

under experimental N deposition (P ¼ 0.011).
For the second survey in May 2011, three-way

ANOVA revealed that all three microarthropods groups
responded similarly to experimental N addition across

all four study sites (Table 1, Fig. 2). Consistent with the
results from the first survey, experimental N deposition

reduced the overall density of microarthropods by 44%
across four sites (Fig. 2). At the same time, the

abundance of Mesostigmata was related positively with
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the abundance of Collembola and oribatid mites (r2 ¼
0.39, P , 0.01). Despite the decline in overall density of

microarthropods under experimental N deposition, the

species richness of the oribatid community was compa-

rable between N deposition treatments (Fig. 3), with the

number of species being slightly lower under experimen-

tal N deposition (51 species) than in the ambient

treatment (61 species).

However, different oribatid species responded differ-

ently to experimental N deposition, resulting in a change

in the community composition (Table 2; PerMANOVA,

P¼ 0.01). As seen in the nMDS ordination space in Fig.

4, oribatid communities from different sites were

distinctly different along axis 1 (PerMANOVA, P ,

0.001). At the same time, communities under experi-

mental N deposition all clustered lower on axis 2,

suggesting that experimental N deposition was causing

similar changes in species composition (Table 2; site 3

treatment, P ¼ 0.514). In addition, fitting the N

deposition levels to the ordination space indicates that

the elevated N deposition level is associated with mite

communities represented at the lower end of axis 2 (Fig.

4; R2¼ 0.309, P¼ 0.022). Oribatid species that were only

found (e.g., Atropacarus striculus, Hypochthoninus rufu-

lus, Platynothrus peltifer) or were more abundant (e.g.,

Fuscozetes fuscipes) under experimental N deposition

have relatively low scores on axis 2. In contrast, species

with high scores on axis 2 are those only present (e.g.,

Epidamaeus spp., Ommatocepheus sp., Pilogalumna sp.)

or more abundant (e.g., Tectocepheus veltus) under

ambient deposition. A list of species with their nMDS

TABLE 1. Analysis of variance (ANOVA) of the density of
microarthropods in the forest floors and in the litterbags in
northern hardwood forests in the Great Lakes region of
North America.

Source of variation df SS F P

Forest floors

Site 3 2.13 8.29 ,0.001
Taxon 2 16.81 98.04 ,0.001
Treatment 1 0.8 9.38 0.004
Site 3 Taxon 6 3.52 6.84 ,0.001
Site 3 Treatment 3 0.38 1.48 0.233
Taxon 3 Treatment 2 0.24 1.38 0.262
Site 3 Treatment 3 Taxon 6 0.16 0.32 0.926
Residuals 48 4.12

Litterbags

Time 3 11.84 27.6 ,0.001
Taxon 2 5.09 9.25 0.004
Treatment 1 2.27 8.23 0.014
Time 3 Taxon 6 2.61 3.05 0.016
Time 3 Treatment 3 1.96 4.57 0.008
Taxon 3 Treatment 2 0.05 0.03 0.913
Time 3 Taxon 3 Treatment 6 0.28 0.33 0.919

Note: The forest floor data were pooled from four study sites,
and the litterbag data were pooled from four retrieval dates.
Three-way ANOVA for forest floor data included site (n¼4), N
treatment (n¼ 2), and taxon group (n¼ 3). Litterbag data were
analyzed using repeated-measures ANOVA, with taxon group
and N treatment as between-subject factors. Densities were
calculated as the number of individuals per unit area and were
log-transformed before analysis. Abbreviations: df, degrees of
freedom; SS, sum of squares.

FIG. 2. Density (mean þ SE) of Oribatida, Mesostigmata,
and Collembola in the forest floor, averaged across four study
sites, under ambient and elevated N. Three-way ANOVA
indicated that density of Oribatida, Mesostigmata, and
Collembola was significantly lower under experimental elevated
N deposition (P ¼ 0.004).

FIG. 3. Rarefaction curves of oribatid mite communities (a)
inside the litterbags and (b) in the forest floors. The forest floor
data were pooled from four study sites, and the litterbag data
were pooled from four retrieval dates. The solid lines indicate
the 95% confidence zones for the rarefaction curve of ambient
N plots; the dotted lines indicate 95% confidence zones for the
rarefaction curve of elevated N deposition plots. Replicate
times ¼ 500.
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scores and their association with the N treatments can

be found in Appendix A: Table A1.

Litterbag results

Aspen litter decayed rapidly, with an average of 17%

of initial mass remaining after 16 months. Comparison

of the decay constant k indicated that there was no

difference between mass loss rates of litter under

ambient and experimental N deposition (Fig. 5; P ¼
0.434).

Similar to the results from the forest floor, the density

of microarthropods in the litterbags was lower under

experimental N deposition (Fig. 6; treatment effect, P¼
0.014). The populations also varied among the retrieval

dates (Table 1; time effect, P , 0.001), wherein oribatid

mite densities were greater during the two summer

collection dates (August 2009 and June 2010), and

Mesostigmata and Collembola densities declined

through time (Fig. 6; time 3 taxon interaction, P ¼
0.016). There was a positive relationship between the

densities of Mesostigmata and Collembola, even after

accounting for the time effect (partial regression, time as

covariate; R2¼0.51, P¼0.021). Although the number of

oribatid species in the litterbags was similar between N

deposition treatments (Fig. 3), oribatid community

composition varied between N deposition treatments

(Table 2; treatment effect, P ¼ 0.001).

PLFA analyses

Total microbial biomass (represented by total PLFA

abundance) in the forest floor outside the litterbags and

in the soil underneath the litterbags was very similar

among four retrieval dates and did not differ between

the ambient and experimental N deposition treatments

(Appendix B: Fig. B1). Similarly, the total microbial

biomass inside the litterbags did not differ between the

ambient and experimental N deposition treatments (Fig.

7a), although the total biomass was slightly lower in the

second year (time effect, P ¼ 0.027).

Overall, the microbial PLFAs inside the litterbags

were highly enriched by 13C, compared to those outside

the litterbags. The average ratio of 13C:12C of PLFAs in

the forest floor was 0.012, whereas this ratio inside the

litterbags averaged 0.035. Although the total microbial

PLFAs were similar, the lower 13C:12C ratio led to a

significantly lower 13C content of microbial PLFAs

under experimental N (Fig. 7b; P ¼ 0.03), and all three

microbial groups (fungi, Actinobacteria, and bacteria)

responded similarly (taxon 3 treatment effect, P ¼
0.259). At the same time, the 13C content of the

microbial PLFAs declined over time (P , 0.001).

TABLE 2. PerMANOVA analysis of the species composition
of oribatid mite communities in the forest floor or that
inside the litterbags.

Source of variation df SS F R2 P

Forest floor

Treatment 1 0.19 2.40 0.07 0.010
Site 3 1.22 5.13 0.42 ,0.001
Treatment 3 Site 3 0.23 0.97 0.08 0.514
Residuals 16 1.27 0.44
Total 23 2.92

Litterbag

Treatment 1 0.54 3.13 0.11 0.001
Time 1 0.69 4.01 0.14 ,0.001
Treatment 3 Time 1 0.27 1.55 0.05 0.140
Residuals 20 3.45 0.70
Total 23 4.94

Note: The incidence of the species, calculated as the
frequency of encountering that species in the six subsamples
within each plot, was used in the community matrix. The
forest floor data were from the second microarthropod survey
across four sites; the litterbags data were pooled from four
retrieval dates. For PerMANOVA analysis, Bray-Curtis index
was used and permutation times ¼ 2000. Abbreviations: df,
degrees of freedom; SS, sum of squares.

FIG. 4. The nonmetric multidimensional scaling (nMDS)
ordination of the oribatid mite communities in the forest floor.
The arrow indicates the direction of increasing N deposition
(R2¼ 0.309, P¼ 0.022). Symbol shapes designate different sites.
Symbols are open for ambient N deposition plots and solid for
elevated N deposition plots.

FIG. 5. Mass loss rates (mean 6 SE) of aspen litter inside
the litterbags over time. Litter mass loss did not differ between
the ambient plots and the elevated N deposition plots (P ¼
0.434). The lines are best fit to the first-order exponential decay
equation on the average of the ambient deposition (open circles,
dashed line) and the elevated treatment (solid circles, solid line).
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Interestingly, the 13C content of soil microbes under-

neath the litterbags did not increase until the last

retrieval date, suggesting a time lag in the mobilization

of 13C-labeled aspen litter from the litterbags (Appendix

B: Fig. B2).

DISCUSSION

After 17 years of experimental N deposition, the

abundance of both detritivores (Oribatida and Collem-

bola) and predaceous mites (Mesostigmata) has declined

in forest floor, suggesting that a reduction in decay

under experimental N deposition has decreased energy

flowing through the soil food web. This finding directly

contrasts to previous studies, in which positive effects on

soil fauna have been found under N fertilization. This

discrepancy may arise from the fact that those ecosys-

tems are either young, developing forests (Berch et al.

2006), grasslands (Van der Wal et al. 2009), or

heathland (Sjursen et al. 2005), in which enhanced

productivity under N deposition has directly increased

plant litter production. Such an increase would provide

additional substrate for soil fauna, thereby increasing
energy available to the soil food web (Berch et al. 2009).

In our study system, net primary productivity has also

increased under experimental N deposition, but has been
allocated to stem production, rather than leaf or fine-

root litter production (Burton et al. 2004, Zak et al.

2011). It appears that equivalent litter production under
ambient and experimental N deposition, combined with

reduced decay under experimental N deposition, has

decreased the amount of energy available to fuel
organisms at high trophic levels in the soil food web.

Our observations, in combination with the studies just

described, indicate that changes in plant litter produc-
tion and its rate of decay can both be important controls

of soil fauna communities under N deposition.

Consistent with our observations, detrimental effects

of anthropogenic N deposition on soil fauna have been
reported from various ecosystems. For example, Eisen-

hauer et al. (2012) found that the abundance of

predatory nematodes and the species richness of
nematodes and microarthropods were reduced in a

long-term (13-year) grassland study under experimental

N deposition. They attributed this decline to decreases in

rhizodeposition. Other evidence of the negative effects of
anthropogenic N on soil fauna has been observed in

FIG. 7. (a) Total C and (b) 13C content (mean þ SE) of
microbial PLFAs (phospholipid fatty acids) inside the litter-
bags. Although the total microbial biomass did not differ
between the N treatments (total C, P ¼ 0.56), the 13C content
declined over time (P , 0.001) and was consistently lower in the
elevated N deposition treatment (13C, P¼ 0.03).

FIG. 6. Density (mean þ SE) of microarthropods (Oriba-
tida, Collembola, and Mesostigmata) inside the litterbags.
Repeated-measures ANOVA indicated a decrease in their
density in litterbags under elevated N deposition (treatment
effect, P¼ 0.014).
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boreal spruce forests (Lindberg and Bengtsson 2006),

lodgepole pine forests (Berch et al. 2006), and subtrop-

ical forest (Xu et al. 2007). However, the amounts of N

added in the aforementioned studies were much higher

(�100 kg N�ha�1�yr�1) than those in our experiment (30

kg N�ha�1�yr�1); such high levels of N could result in soil

acidification, base cation depletion, and the mobilization

of Al3þ, all of which are detrimental to soil fauna

(Matson et al. 2002). Such changes in soil chemistry

have not occurred in our experiment, because soils are

newly developed in calcareous glacial drift; soil pH, salt

concentrations, and cations remain unchanged (Zak et

al. 2008, Patterson et al. 2012). In contrast, litter

decomposition has slowed due to the inhibition of

lignolytic activity, resulting in an accumulation of

organic matter in forest floor and surface soil (Pregitzer

et al. 2008, Zak et al. 2008). The thickening of forest

floor could potentially provide increased living space for

soil fauna; however, declines in their densities suggest

that these microarthropods are not limited by habitat

availability. Rather, the positive relationship between

the Mesostigmata and their prey (oribatid mites and

Collembola) suggested that the decline in Mesostigmata

was due to the decline in their food resources (oribatid

mites and Collembola), which in turn was a bottom-up

effect from the inhibition of microbial activity and litter

decomposition under long-term experimental N deposi-

tion.

In spite of the decline in overall abundance, we did

not observe a change in species richness of the most

abundant group (Oribatida) under experimental N

deposition (Fig. 3), which contrasts with other studies

(Eisenhauer et al. 2012). However, it is difficult to

compare the results among studies, because some

provide only broad taxonomic resolution (Eisenhauer

et al. 2012) and most studies do not quantify sampling

effort (i.e., rarefaction analysis), which is crucial to

understand whether the majority of species have been

encountered. In our study, we did observe fewer species

under elevated N deposition; however, rarefaction

analysis indicates that species richness should converge

between N treatments with additional sampling.

Although the total number of oribatid mite species

did not differ between the N deposition treatments,

species-specific responses resulted in a shift in commu-

nity composition (Fig. 4). Overall, there were 16 species

absent under experimental N deposition, whereas five

species (A. striculus. H. rufulus, P. peltifer, and two

Xylobates species) occurred exclusively under experi-

mental N deposition. Moreover, it should be noted that

species in the same genus can respond differently to

experimental N deposition. For instance, Tectocepheus

veltus and T. minor are two closely related and

morphologically similar species that are often found in

temperate regions (Laumann et al. 2007). T. veltus is

dominant in many ecosystems (Fujikawa 1988, Fujita

and Fujiyama 2001), but its relative abundance declined

under experimental N deposition. In contrast, the

relative abundance of T. minor increased under exper-

imental N deposition (Appendix A). The minor species

(T. minor) had also been found to dominate T. veltus in

crop fields, which the authors attributed to the higher

migration ability of T. minor and its ability to utilize

different microhabitats (Fujita and Fujiyama 2001). In

our case, we are unable to provide an ecological

explanation for this response because the autecology of

these species (especially T. minor) is largely unknown.

Changes in energy flow or changes in fungal community

composition under experimental N deposition (Edwards

et al. 2011) may alter the competitive ability of mites

that have different preferences for fungal species

(Mitchell and Parkinson 1976). We expect that species

that rely more on fungal hyphae in their diets will be

more negatively affected by N deposition than those that

rely more on detritus or other food items. Indeed, the

accumulation of organic matter on the forest floor may

even benefit species that feed predominantly on litter.

Consistent with this expectation, many of the species

detrimentally affected by experimental N deposition

(Appendix A), including species in the genera Epida-

maeus (Kaneko 1988), Eremaeus (Mitchell and Parkin-

son 1976), Carabodes (Schneider et al. 2004), and

Galumna (Neena and Haq 1989), feed predominantly

on fungal hyphae (Luxton 1972). On the other hand, the

three species that only occurred under experimental N

deposition rarely feed on fungi. For example, Atropa-

carus striculus and Platynothrus peltifer are primary

decomposers that feed predominantly on litter, an

insight derived from their 15N:14N natural abundance

(Schneider et al. 2004) and their lack of chitinase to

degrade fungal cell walls (Siepel and De Ruiter Dijkman

1993); Hypochthoninus rufulus has been reported to be

an omnivore that feeds mostly on dead animals (Siepel

and De Ruiter Dijkman 1993, Schneider et al. 2004).

Another omnivore (Fuscozetes fuscipes; Wallwork 1958)

also increased in its relative abundance under experi-

mental N deposition.

We expected that reductions in the densities of soil

fauna under experimental N deposition would then

reduce subsequent litter decomposition, completing a

feedback process between litter and soil fauna. Our data

are in partial support of this prediction. First, presum-

ably because of their lower densities in natural litter,

fewer microarthropods colonized our experimental

litterbags under experimental N deposition. Various

studies have observed that microarthropod communities

can accelerate the recovery of fungal communities after

disturbance (Maraun et al. 1998a), stimulate extracellu-

lar enzyme activity, and increase microbial respiration

(Kaneko et al. 1998, Wickings and Grandy 2011). Such

simulating effects may arise because microarthropods

can: (1) fragment litter, exposing more surface area for

microbial activity; (2) disperse fungal spores and hyphae

on their body surface; and (3) graze on fungal hyphae

and simulate metabolism of microorganisms (Behan et

al. 1978, Lussenhop 1992). Therefore, the lower densities
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of microarthropods under experimental N deposition

could result in lower microbial activity that feeds back

to reduce litter decay. However, our results provided

mixed evidence for this prediction. Although we did

observe a lower 13C content of microbial PLFAs inside

the litterbags, we did not observe any change in total

microbial biomass or litter decay rate in litterbags under

elevated N deposition. Typical limitations of litterbag

experiments (e.g., no control over litter fragments that

were lost from the bags) may have reduced the statistical

power necessary to detect any difference in decay rates

between treatments. Nevertheless, the lower 13C con-

tents of microbial PLFAs may suggest that the ability of

the microbial community to utilize new litter was

reduced, which may have resulted, in part, from lower

microarthropod activity. That is, reduced litter frag-

mentation and a lower surface area for microbial attack

may have reduced the amount of litter 13C assimilated

by the saprotrophic microbial community. Additionally,

changes in the oribatid community could potentially

alter the composition of the microbial community by

selective feeding (Mitchell and Parkinson 1976, Maraun

et al. 1998b) with consequences for mobilization of 13C

from the litter.

Ecological implications

By combining field surveys and a litterbag experiment,

we have demonstrated that chronic N deposition has a

detrimental effect on a detritus-based food web, which

may have diminished the ability of saprotrophic

organisms to metabolize fresh litter. This finding argues

that soil food webs may not be buffered against global

change stressors as previously thought (i.e., elevated

CO2, increased temperature, and so forth). Functional

redundancy has been assumed to be a common feature

of soil fauna (Wolters 2001), and it is believed to be the

reason why changes in species composition may have

little influence on decomposing litter (Liiri et al. 2002).

However, there is evidence that environmental stress can

produce changes in the abundance and activity of soil

fauna, with important consequences for nutrient and

carbon cycling (Heneghan and Bolger 1996, Briones et

al. 2009). For example, some microarthropod groups

failed to recover after intense agriculture management,

leading to slower organic matter decay in abandoned

agricultural areas (Siepel 1991). In our study, the decline

in the overall abundance of microarthropods would

presumably reduce litter fragmentation for saprotrophic

microorganisms potentially contributing to the declining

rate of belowground C cycling observed in our system.

This suggests a possible feedback mechanism wherein

the inhibition of lignolytic activity under experimental N

deposition reduces the energy entering the detritus-based

food web, which detrimentally affects the soil fauna; the

decline in soil fauna activity would then feed back to

inhibit the ability of microorganisms to decompose new

litter. Our results suggest that future rates of atmo-

spheric N deposition could alter the composition and

function of soil food webs, wherein the slowing of

microbial decay initiates a cascading negative effect on

higher tropic levels, culminating in the greater storage of

C in soil organic matter.
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Appendix A

Oribatid mite species present in this study and their species scores from nMDS analysis (Ecological Archives A023-069-A1).
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Figures for microbial phospholipid fatty acids (PLFAs) outside the litterbags (Ecological Archives A023-069-A2).
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