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We consider a multi-period planning problem faced by a firm that must coordinate the production and

allocations of batches to end products for multiple markets. Motivated by a problem faced by a biophar-

maceutical firm, we model this as a discrete-time inventory planning problem where in each period the firm

must decide how many batches to produce and how to differentiate batches to meet demands for different end

products. This is a challenging problem to solve optimally, so we derive a theoretical bound on the perfor-

mance of a Certainty Equivalent (CE) control for this model, in which all random variables are replaced by

their expected values and the corresponding deterministic optimization problem is solved. This is a variant

of an approach that is widely used in practice. We show that while a CE control can perform very poorly

in certain instances, a simple re-optimization of the CE control in each period can substantially improve

both the theoretical and computational performance of the heuristic, and we bound the performance of this

re-optimization. To address the limitations of CE control and provide guidance for heuristic design, we also

derive performance bounds for two additional heuristic controls— (1) Re-optimized Stochastic Programming

(RSP), which utilizes full demand distribution but limits the adaptive nature of decision dynamics, and (2)

Multi-Point Approximation (MPA), which uses limited demand information to model uncertainty but fully

capture the adaptive nature of decision dynamics. We show that although RSP in general outperforms the

re-optimized CE control, the improvement is limited. On the other hand, with a carefully chosen demand

approximation in each period, MPA can significantly outperform RSP. This suggests that, in our setting,

explicitly capturing decision dynamics adds more value than simply capturing full demand information.

Key words : production planning; batch allocation; discrete time models; certainty equivalent control,

re-optimization
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1. Introduction

As product lines expands to target smaller, more segmented markets, the need to effectively deter-

mine stocking levels for individual end-products is becoming increasingly important. In this paper,

we consider the production and inventory (SKUs) planning problem faced by a firm that must

differentiate batches of a single intermediate product into market-specific end products to meet

demand over a finite horizon. Since demand for a particular end product is small relative to inter-

mediate batch size and batches must be entirely differentiated at one time, the determination of

how many batches to differentiate, and how many of each end product to make, is critical for

ensuring cost-effective operation. This model is motivated by an inventory planning problem in a

leading “orphan drug” biopharmaceutical firm with which we have worked. This firm manufactures

and distributes a biopharmaceutical treatment for a rare genetic disorder that leads to severe,

potentially life threatening, symptoms in people who have the disorder. This is a so-called “orphan

drug” – there is a relatively small set of patients who can benefit from the drug, and thus limited

incentive for firms to invest in drug development. In many countries (including the United States),

the government gives certain tax and patent incentives to encourage firms to develop orphan drugs.

Due to the nature of the manufacturing process, biopharmaceutical are typically manufactured in

large batches (this firm calls them “bulks”). In the case of this particular product, bulks can be

stored in this intermediate form for up to a year. In order to distribute the product to the mar-

ket, however, it must be “filled and labeled” for each end market—the intermediate form of the

product must be packaged into different-sized vials, properly labeled, and packed into cartons for

each country. Due to the way the product was approved in each market and because the contract

manufacturing firms that complete this process do not have sufficient storage or tracking capa-

bilities in place, an entire “bulk” must be filled and labeled at once. (In fact, we recommended

that the firm relax this practice, and we were told that the firm would not seek suppliers with

additional capabilities, as well as the necessary re-licensing, for this particular product, but that

the firm plans to pursue this route for future products.) The firm sells this product in 19 different

international markets, each of which has different labeling requirements; most importantly, once a
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vial is labeled for a particular market, it cannot be relabeled for another market. The nature of

demand is such that no market consumes a “bulk’s worth” of products in any period, and some

markets consume considerably less. At each decision epoch, the firm must decide how many bulks

to order and how many vials to fill and label for each market.

Related literature. Our problem is essentially a centralized batch ordering and differentiation

problem faced by a firm that must coordinate production of batches and allocations of batches to

end products for different markets. Alternatively, it can be viewed as a multi-retailer system where,

in each period, total orders from all retailers must be a multiple of an exogenously determined

batch size. Various models related to batch production/ordering have been studied. Veinott (1965)

studies the problem of batch ordering for a single retailer. For the backorder case, he shows that a

(R,nQ) policy, in which the inventory level is raised to at least R by ordering the smallest multiple

of Q whenever it falls below R, is optimal for both the finite and the infinite horizon problem.

Axsäter (1993, 1995, 1998, 2000), Forsberg (1997), and Cachon (2001) study the batch ordering

problem for two-echelon distribution systems with one warehouse and N retailers. The papers by

Axsäter assume that both retailers and warehouse use a continuous review (Q,R) policy. Axsäter

(1993) assumes N identical retailers and proposes both exact and approximate methods to evaluate

and optimize the performance of the system. Axsäter (1998) extends these results to 2 non-identical

retailers, Forsberg (1997) extends these results to N non-identical retailers with Poisson demand,

and Axsäter (1995, 2000) considers compound Poisson demand. In all of these continuous time

models, there is no allocation issue—all demands are filled using a first-come-first serve approach.

Cachon (2001) relaxes the Poisson demand assumption and models the periodic review version of

the system, adopting a (R,nQ) policy with random allocation at the warehouse. He characterizes

the optimal reorder point at each retailer given a reorder point at the warehouse, and then searches

for the optimal warehouse reorder point. Chen (2000) considers the batch production problem in

a multi-echelon serial system (N stages) under periodic review and finds that a modified version

of Veinott’s (1965) (R,nQ) policy is optimal, and Chao (2009) extends this model to allow fixed
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replenishment intervals (e.g., stage 1 can order every day, stage 2 can order every week, etc). The

authors show that the system achieves the minimum expected average cost when the ordering times

for all of the stages are synchronized. In all of this work, however, the batch ordering restriction

is imposed on each individual retailer or stage. In contrast, in our problem, the batch ordering

restriction is placed on the total orders from all retailers. The manufacturer utilizes this information

to decide how many batches to produce.

Our problem is also related to the discrete time multi-retailer inventory model under limited

resources, in which the allocation issue is explicitly studied: Given a scarce resource such as pro-

duction capacity shared by multiple retailers, each of whom sells unique products, the decision

maker must decide how to allocate production capacity in each period. DeCroix and Arreola-Risa

(1998) characterize the optimal policy for homogeneous products and develop heuristics for the

non-homogeneous case. Shaoxiang (2004) extends these results to two non-homogeneous products,

and Janakiraman et al. (2009) further extends these results to more than two products and develop

an asymptotically optimal policy. In all this work, there is a single capacity constraint on the

resource; in contrast, the constraint in our setting also comes from the nature of batch ordering.

Our contribution. In contrast to much of the existing related literature, which primarily

studies the structure of the optimal ordering/allocation policy, our primary objective in this paper

is to explore the performance in our setting of a simple yet commonly used heuristic control,

and analyze approaches for improving its performance. (For a special case, we also derive the

structure of optimal allocation policy.) First, we provide a theoretical performance bound for

Certainty Equivalent (CE) control relative to the optimal policy in our setting. In a CE approach,

all random variables (i.e., random demands) are replaced by their expected values, and the resulting

deterministic optimization is solved to determine the operating policy. In other words, the original

stochastic dynamic problem is transformed into a deterministic optimization problem. Due to the

challenges of estimating demand distributions in practice, as well as the challenges of solving the

original stochastic dynamic problem, CE control and its variant have became popular approaches
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for solving industrial scale inventory problem (Treharne and Sox, 2002; Calmon, 2015). Despite

its prevalence, however, we are not aware of a rigorous analysis of the theoretical performance of

CE control in the inventory literature (see Sections 3 and 4 for more discussions). There is, of

course, a deep literature focusing on deterministic inventory models, but this line of works tends

to focus on solution approaches for these deterministic models and, for the most part, the quality

of a deterministic model as an approximation for the related stochastic model is typically not

rigorously addressed. In this paper, we show that, for our model, although CE control can perform

very poorly if the planning horizon becomes long, periodic re-optimization of CE control improves

this performance by dampening the impact of planning horizon on total costs. If, however, the size

of demand variation is also relatively large, then re-optimization only has limited benefit and we

need to apply more sophisticated heuristics. These results shed light on the appropriateness of the

CE control approach in practice.

To address the limitation of the CE control, we additionally analyze two improvements to

CE control: (1) Re-optimized Stochastic Programming (RSP) and (2) Multi-Point Approximation

(MPA)—a full Dynamic Programming (DP) approach but with limited demand distribution infor-

mation. Note that, for computational simplicity, in the CE approach we deliberately deemphasize

two key elements of the original stochastic problem: demand variability (because we ignore the

demand distribution) and decision dynamics (because we ignore the fact that future decisions

should be contingent on current decisions, demand realizations, and system dynamics, and could

potentially be captured in an adaptive way). Both RSP and MPA are intentionally chosen to high-

light the potential improvement due to exploiting these elements. Unlike CE control, which only

uses expected demand information, RSP uses complete demand distribution for calculating batch

order and product allocation. However, it only partially captures decision dynamics via frequent

re-optimizations. MPA, on the other hand, directly models full decision dynamics but only partially

captures demand variability using a multi-point approximation instead of the complete demand dis-

tribution. The crucial and practically relevant question is this: When designing a heuristic control
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for an inventory problem, is it more important to capture demand variability or decision dynam-

ics? We show that, for our model, although RSP improves on the performance of re-optimized CE

control, the magnitude of this improvement is limited—RSP also performs poorly when the size

of demand variation becomes large. Indeed, we show that the solution of RSP is identical to the

solution of re-optimized CE control in some cases. This suggests that, in our setting, the benefit of

including more granular demand information is already captured (at least, partially) by frequent

re-optimizations. In contrast to RSP, with a carefully chosen demand approximation in each period,

MPA exhibits stronger theoretical performance bound, even with only limited demand information.

This highlights the importance in our model of explicitly modeling decision dynamics in order to

get the most benefit—simply incorporating more granular demand information is not sufficient.

Because solving large scale stochastic inventory problems to optimality is typically intractable in

practice, designing computationally efficient heuristics with analytic performance bounds becomes

important. In addition to providing guidance for constructing effective solutions for the specific

model we are considering, the approach we take in this paper, comparing the two algorithms—

RSP (capturing the fidelity of demand distribution but simplifying the decision dynamics) and

MPA (capturing the decision dynamics but simplifying the demand distribution)—can be applied

to other inventory problems to better understand the factors that lead to algorithm performance,

which can ultimately used to improve algorithm design.

Organization of the paper. In Section 2, we formulate our model; in Sections 3 and 4, we

introduce CE and analyze its performance; in Section 5, we discuss RSP and MPA; in Section 6, we

present results of our computational experiments; in Section 7, we briefly discuss the performance

of CE under a slightly modified modeling assumption; and finally, in Section 8, we conclude the

paper.

2. Model

We discuss a discrete time model where a firm (a centralized decision maker) must satisfy demands

in multiple markets (which we call retailers) through joint ordering and allocation decisions. In
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each period, the sum of allocated units across all end-product markets must equal the number

of batches used in that period. Specifically, we consider a model with T discrete periods and m

retailers, where the time periods are indexed by t ∈ {1, ... , T} and the retailers are indexed by

i∈ {1, ... ,m}. Demands across different periods are assumed to be independent and stationary. We

assume that lead time is zero and unsatisfied demands are backordered. (See Remark 4 in Section

4.3 for a discussion of nonstationary demand and Section 7 for an extension to the case of lost

sales. In general, our basic solution approach is straightforward to extend to deterministic lead

times.) The following notations are used throughout the paper:

Dt,i = demand faced by retailer i in period t

Fi(·) = cumulative demand distribution for retailer i

µi = expected demand in a period faced by retailer i

∆t,i = Dt,i −µi

hi = per unit holding cost for retailer i

pi = per unit penalty cost for retailer i

B = batch size (i.e., the number of units in a batch)

Iπt,i = starting inventory for retailer i at the beginning of period t under policy π

I1,i = starting inventory for retailer i at the beginning of period 1

Nπ
t,i = number of new units allocated to retailer i in period t under policy π

Zπ
t = number of batches ordered in period t under policy π

Cπ = total costs under policy π

Note that ∆t,i =Dt,i − µi is the difference between the actual and the expected demand faced

by retailer i in period t . Also, since total allocated units across all retailers must equal total units

contained in the new batches, we must have:
∑m

i=1N
π
t,i =Zπ

t B. For analytical tractability, although

we require Zπ
t,i to be a non-negative integer for all t and i, we allow Nπ

t,i to be a non-negative real

number. Under the backorder assumption, the starting inventory level at retailer i at the beginning

period t+1 under policy π is given by:

Iπt+1,i = Iπt,i +Nπ
t,i −Dt,i = I1,i +

t∑
s=1

Nπ
s,i −

t∑
s=1

Ds,i. (1)
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2.1. The Stochastic Planning Problem

At the beginning of period t, upon observing the available inventories at all retailers, the firm first

decides how many new batches to order. After ordering new batches, it must decide how many

units of end product to allocate to each retailer (i.e., how many units to label and package for each

market). Demands are then realized and inventories are consumed. Remaining units are held in

inventory until the next period and unsatisfied demand is backordered.

Let Π denote the set of non-anticipating policies, i.e., the set of policies that determine how

many new batches to order and how many units to allocate to each retailer in period t using only

the accumulated information up to the beginning of period t. Let C∗ denote the expected total

costs under an optimal policy π∗ ∈Π. We can write C∗ as follows:

C∗ := inf
π∈Π

T∑
t=1

E

[
cZπ

t B+
m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)

+ +
m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]
(2)

s.t.
m∑
i=1

Nπ
t,i =Zπ

t B, Zπ
t ∈Z+, Nπ

t,i ∈R+ ∀t, i (3)

Iπt+1,i = Iπt,i +Nπ
t,i −Dt,i ∀t, i (4)

Iπ1,i = I1,i ∀i (5)

where all the constraints must be satisfied almost surely (or with probability one). Let It = (It,i),

Nt = (Nt,i), and Dt = (Dt,i) denote the vector of starting inventory levels, allocated units, and

realized demands in period t, respectively. We can write the optimal control problem (2) using

Bellman’s equation as follows:

Ct(It) = min
Zt,Nt∈Ω(Zt)

{cZtB+G(It +Nt)+E [Ct+1(It +Nt −Dt)]} for t= 1,2, ..., T , and

CT+1(IT+1) = 0, (6)

where Ω(Z) = {N :Ni ∈R+,
∑m

i=1Ni =ZB} and G(y) =E [
∑m

i hi(y−D)+ +
∑m

i=1 pi(D− y)+].

In general, the joint ordering and allocation problem formulated in (6) is difficult to solve and

the optimal policy is challenging to characterize. As might be expected given the batch production

requirements, the optimal expected cost Ct(It) is not convex in starting inventory levels, so a simple
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base-stock style policy is not likely to be optimal for this problem. It is also not difficult to find

examples where the optimal decision as a function of inventory levels changes depending on the

period for a given planning horizon, or depending on the planning horizon length for a given period.

To calculate the optimal policy, it is therefore necessary to explicitly solve the entire dynamic

programming (6), which is generally intractable due to the problem size. As an illustration, if

demand is discrete and integral, full dynamic programming requires an exponential amount of space

O ((Imax − Imin)
m
) to store the state information where Imax (Imin) is the maximum (minimum)

possible inventory level. In a addition, since the problem not convex, to ensure global optimality,

there are also an exponential number of decisions O((ZmaxB)m) that need to be explored.

3. Certainty Equivalent Planning

In this section, we analyze the performance of the simple non-adaptive heuristic control we intro-

duced above—Certainty Equivalence (CE)—in which all random demand variables are replaced by

deterministic numbers and the resulting deterministic optimization problem is solved (Treharne

and Sox, 2002). Although not always known by that name (e.g., it is sometimes called Model

Predictive Control, see Ciocan and Farias, 2012; and indeed, it is sometimes naively employed by

managers without any name at all), CE control is popular in practice because it addresses two

complicating problems that arise when solving the original problem: (1) demand estimation is often

challenging (for instance, the firm that motivates this project uses a one-point estimate of demand

instead of the estimate of complete demand distribution, an approach which in our experience is not

uncommon); (2) the optimal control problem, even if the distribution can be estimated, is difficult

to solve (for a typical industrial-scale problem, even solving a deterministic version of the problem

is already quite challenging). Naturally, these concerns have motivated many practitioners to use

a heuristic control approach that can be implemented with little detailed demand information.

Given the fact that a CE-like approach is widely used in practice, an interesting set of questions

arises. How much is actually lost if a heuristic control derived from a deterministic model such as

CE is applied in a stochastic setting? (Common sense suggests that a deterministic model can be a
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poor approximation of a stochastic system.) Is there any setting in which a deterministic model is

a good approximation of a stochastic system? If so, in what sense? (In a context beyond inventory

problems, it is known that CE control can be optimal for some stochastic problems. One famous

example is the so-called Linear Quadratic Gaussian Control problem (see Stengel, 1994). For most

other known applications, CE control is typically suboptimal.)

Our results in this section show that CE control performs reasonably well when the size of demand

variation is relatively small compared to its mean (i.e., there is a small coefficient of variation)

and the planning horizon is short. However, as the problem size increases, the performance of CE

control deteriorates at the rate of T 3/2 as the planning horizon gets longer. In this section, we

characterize the performance of this deterministic heuristic.

To evaluate the performance of CE control, we define CD as follows:

CD := min
z,n

T∑
t=1

[
c ztB+

m∑
i=1

pi (µi −xt,i −nt,i)
+ +

m∑
i=1

hi(xt,i +nt,i −µi)
+

]
(7)

s.t.
m∑
i=1

nt,i = ztB, zt ∈Z+, nt,i ∈R+ ∀t, i (8)

xt+1,i = xt,i +nt,i −µi ∀t, i (9)

x1,i = I1,i ∀i (10)

Note that (7) can be written as a mixed integer linear program (MILP). We first explore the

relationship between CD and C∗. In much of the CE literature (e.g., Jasin and Kumar, 2012;

Ciocan and Farias, 2012), the optimal value of the deterministic problem serves as either a lower

or upper bound for the optimal value of the original stochastic control problem. This allows the

optimal value of the deterministic problem to be used as as a proxy for performance analysis of any

heuristic strategy. Unfortunately, this is not the case here due to the integrality of zt, i.e., C
D ̸≤C∗.

(A standard argument for proving either CD ≤ C∗ or CD ≥ C∗, depending on the context, is to

apply Jensen’s inequality and replace all random variables with their expected values. Since we

still require the number of batches to be an integer, this strategy does not work. It is possible to
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further relax this assumption and allows zt to be a real number, so we immediately get CD ≤C∗.

However, the resulting lower bound is too loose to be useful for performance benchmarking.)

To describe CE control, we let z = zD and n= nD denote an optimal solution of (7).

Certainty Equivalence - CE

1. At the beginning of period 1, solve CD

2. For t= 1,2, ..., T , do:

- At the beginning of period t, order exactly zD new batches

- After the new batches arrive, allocate exactly nD
t,i units to retailer i

As we define it, CE control precludes any consideration of the starting inventory, or backorder

levels, prior to making ordering and allocation decisions in each period because ordering and

allocation decisions are directly dictated by zD and nD, regardless of the actual demand realizations.

We define E[CCE] to be the expected total costs associated with implementing CE control. The

following results provide a bound for the regret introduced by implementing CE control:

Theorem 1. Let σ=maxiE[(D1,i −µi)
2]1/2. Then,

E[CCE]−C∗ ≤ 2σ(T +1)3/2

[
m∑
i=1

(pi +hi)

]
.

Two comments are in order. First, due to the non-differentiability of (·)+ = max(·,0) in (7),

the optimal solution zD and nD may not be unique. However, the bound in Theorem 1 holds

regardless of the choice of optimal solution. Second, the performance of CE is proportional to the

demand variability as measured by σ. If σ= 0, then CE control is optimal regardless of the planning

horizon, T . When σ > 0, however, the bound in Theorem 1 depends not only on σ but also on T 3/2.

The fact that we have T 3/2 in the bound, which is larger than T , should not be surprising (see

Remark 1 for additional discussions). Moreover, this scaling factor is not an artifact of the proof.

Our simulation results in Section 6 show that the relative regret of CE control quickly becomes

worse as T increases. Indeed, this is the reason why CE control can perform very poorly for multi-

period inventory problems even when demand variation is relatively small. This is in contrast to
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the performance of CE-type heuristics in other application areas such as revenue management and

dynamic pricing, where the regret scales with
√
T instead of T 3/2 (Gallego and van Ryzin, 1994;

Jasin, 2014; Jasin and Kumar, 2013). The following result is a corollary of Theorem 1.

Corollary 1. Suppose that demands are Poisson with µi = µ∗ for all i. Then, there exists a

constant M > 0 independent of T and µ∗ such that,

E[CCE]−C∗

C∗ ≤ M

(
T

µ∗

)1/2

.

The bound in Corollary 1 is proportional to
√

T/µ∗. Thus, even for the case of Poisson demand,

where the coefficient of variation goes to zero as the mean goes to infinity, T must be small relative

to µ∗ for CE control to be reasonably effective. While this may not be an issue for instances

with very large µ∗, this result shows that the applicability of CE control is rather limited. To

re-emphasize, in the context of our inventory problem, CE control may perform poorly, even for

instances with a small coefficient of variation, unless the planning horizon is also short. This paints

a rather bleak picture of the usefulness of deterministic approximation for multi-period stochastic

inventory problems. The main culprit here is the manner in which randomness accumulates over

time due to the per-period holding and penalty costs, which scale polynomially with T . This gives

rise to an important question: Is it possible to construct an alternative heuristic control that retains

the simplicity of CE control and yet is more effective than CE control, at least in the setting with

a small coefficient of variation and typical industrial planning horizon (which is about 2 to 5 years,

i.e., T = 24 to 60 if one period equals one month)? It turns out that simple re-optimization of CE

control at the beginning of every period significantly reduces the dependency of relative regret on

T . This makes CE control more practically appealing and also more amenable to problems with a

longer planning horizon. We introduce and analyze this approach in the next section.

Remark 1 (On the Factor T 3/2 in Theorem 1). Suppose that µi = µ∗ for all i. Consider the

most naive policy that does not order any batch until the end of the planning season. Aside from

incurring ordering costs of order Tµ∗, this policy also incurs total average penalty costs of order
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T 2µ∗. Thus, CE shows an improvement in comparison to the most naive policy by reducing the

dependency of regret on the length of planning season from T 2 to T 3/2.

4. Improving Certainty Equivalent Planning

We next discuss several modifications to the basic (static) CE control that can improve its perfor-

mance. For analytical tractability, we focus our attention only on the class of policies that uses zD as

the ordering policy, but optimizes the allocation policy. (One might expect additional improvement

if the ordering policy is also further optimized—this makes the analysis extremely challenging, but

we computationally test this approach in Section 6.) For a given ordering policy, except for some

special cases, the optimal allocation policy is difficult to determine when we have multiple retailers.

In the case of homogeneous retailers with identical cost structures and i.i.d demands, however, we

are able to completely characterize optimal allocation policy. We then prove that, as long as the

magnitude of demand variation is not large compared to its mean, simple re-optimizations of CE

control suffices to guarantee a significant improvement over the static CE control. This result gives

credence to the practice of re-optimization that is often employed in industry. Moreover, our anal-

ysis of re-optimization also suggests a natural inventory-balancing policy that can be implemented

in real-time. We discuss this at the end of this section.

Recall that zD is found at the beginning of the horizon by solving for CD. Let Π̃ denote the set

of non-anticipating policies that use zD as the ordering policy. Also, let Jπ denote the total costs

under policy π ∈ Π̃ and J∗ denote the total costs under the optimal allocation policy for a given

ordering policy zD. We can write:

J∗ := inf
π∈Π̃

T∑
t=1

E

[
c zDt B+

m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)

+ +
m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]
(11)

s.t.
m∑
i=1

Nπ
t,i = zDt B, Nπ

t,i ∈R+ ∀t, i (12)

Iπt+1,i = Iπt,i +Nπ
t,i −Dt,i ∀t, i (13)

Iπt,i = I1,i ∀i (14)
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Similar to C∗ in Section 2.2, we can write J∗ using Bellman’s equation as follows:

Jt(It) = min
Nt∈Ω(zDt )

{
c zDt B+G(It +Nt)+E [Jt+1(It +Nt −Dt)]

}
for t= 1, . . . , T , and (15)

where JT+1(IT+1) = 0 Ω(·) is as defined in Section 2.2.

4.1. Optimal Allocation Policy

In general, the optimal allocation policy that achieves J∗ is challenging to find; doing so requires

solving a full dynamic programming backward recursion, which is computationally intractable if

either T, m, or the support for demand distribution is large. However, if all retailers are homo-

geneous with identical cost structure (i.e., hi = h∗ and pi = p∗ for all i) and i.i.d. demands (i.e.,

Dt,i ∼D for all t and i), a simple and easy-to-implement allocation policy is optimal:

Theorem 2. Suppose that I1 = 0, pi = p∗ and hi = h∗ for all i, and demand at all retailers in

all periods is i.i.d. Then, the optimal allocation policy can be obtained as follows:

(1) At the beginning of period t, sort all retailers from the smallest inventory level to the largest,

It,1 ≤ It,2 ≤ . . .≤ It,m. Let θt =max{k ∈Z+ |
∑k

i=1 i(It,i+1 − It,i)≤ zDt B}.

(2) Raise the inventory of retailers with i≤ θt to the same level, i.e.,

Nt,i + It,i =
1

θt

(
θt∑
i=1

It,i + zDt B

)
∀i≤ θt.

(3) Allocate nothing for all retailers with i > θt by setting Nt,i = 0, ∀ i > θt.

In other words, when all retailers are homogeneous, the optimal allocation policy is to balance

the inventory levels in as many retailers as possible by allocating the new units starting with the

lowest inventory retailers. If the retailers are not homogeneous (either in demand distribution or

cost parameters), this allocation policy is no longer optimal. However, all is not lost. In Section

4.3, we will show that an inventory balancing policy similar to the one described in Theorem 2 is

near-optimal in the non-homogeneous setting.
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4.2. Re-optimized Certainty Equivalence

Motivated by our discusssions in Section 4.1, we now consider a simple heuristic control based on re-

optimizing the deterministic counterpart of J∗. Re-optimizations have been shown to significantly

improve the performance of CE-type heuristics in many application areas (Jasin, 2014; Jasin and

Kumar, 2012; Reiman and Wang, 2008; and Ciocan and Farias, 2012). In the context of assemble-

to-order system, Plambeck and Ward (2006) and Dogru et al. (2010) propose adaptive controls

that utilize some forms of re-optimization. However, their results do not carry over to our setting

for at least two reasons: (1) In the assembly-to-order setting considered in these papers, the firm

first observes demand before making a decision while in our setting, the firm first makes a decision

before observing demand; (2) in this assemble-to-order setting, the firm can make continuous

adjustments, while in our setting, the firm is limited to making adjustments at the beginning of

each period. In a standard inventory control setting, Secomandi (2008) analyzes the impact of re-

optimization on performance. He shows that re-optimization does not always improve the original

solution and provides sufficient conditions for re-optimization to guarantee a better result; however,

he does not provide a theoretical performance bound on his approach. The lack of existing results

in the literature is quite surprising given the practicality and prevalence of re-optimization-based

heuristics in industry. In fact, most companies with which we have interacted employ a form of

rolling horizon approach that periodically re-optimizes their planning models. Our results in this

subsection contribute to the literature by characterizing the benefit of re-optimizations on model

performance.

Define JD
t (It) as follows:

JD
t (It) := min

n

T∑
s=t

[
c zDs B+

m∑
i=1

pi (µi −xs,i −ns,i)
+ +

m∑
i=1

hi(xs,i +ns,i −µi)
+

]
(16)

s.t.
m∑
i=1

ns,i = zDs B, ns,i ∈R+ ∀s, i (17)

xs+1,i = xs,i +ns,i −µi ∀s, i (18)

xt,i = It,i ∀i (19)
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Let n∗t = (n∗t
s,i)s≥t, i≥1 denote an optimal solution of JD

t (It). Note that n∗t is a function of It.

However, for notational brevity, we will suppress its dependency on It. The complete description

of the re-optimized CE (RCE) control is given below.

Re-optimized Certainty Equivalent - RCE

1. At the beginning of period 1, solve CD

2. For t= 1,2, ..., T , do:

- At the beginning of period t, order exactly zD new batches

- Solve JD
t (It) and allocate exactly n∗t

t,i units to retailer i

- Update It+1 = It +n∗t
t −Dt

In contrast to static CE control, which is implemented independent of demand realizations (as

the policy allocates inventory according to nD throughout the planning horizon), RCE incorpo-

rates realized demands and updated inventory/backorder level by re-optimizing the deterministic

allocation problem at the beginning of every period. We now examine whether re-optimizations of

CE control is sufficient to significantly improve the performance of static CE control.

The impact of re-optimization for a problem with general holding and penalty costs is difficult

to analyze, primarily due to the non-differentiability of the function (·)+ =max(·,0). Moreover, the

optimal solution of JD
t (It) may not be unique. This makes the task of analyzing the evolution of

the re-optimized solution analytically intractable (see also Remark 2). However, we show that it

is possible to theoretically characterize the benefit of re-optimization under a particular sequence

of optimal solutions n∗1
1 , n∗2

2 , ..., n∗T
T when either these solutions satisfy a certain condition (see

Theorem 3) or all retailers are homogeneous with identical cost structure and i.i.d demands (see

Theorem 4). In Section 4.3, we will argue that RCE can in fact be interpreted as a form of inventory-

balancing policy. This observation is useful and can be used to motivate the development of optimal

inventory-balancing policies in other inventory control problems. Let D1:T denote the vector of all

realized demands in T periods. Define the hindsight total costs JH(D1:T ) as follows:

JH(D1:T ) := min
n

T∑
t=1

[
c zDt B+

m∑
i=1

pi (Dt,i −xt,i −nt,i)
+ +

m∑
i=1

hi(xt,i +nt,i −Dt,i)
+

]
(20)
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s.t.
m∑
i=1

nt,i = zDt B, nt,i ∈R+ ∀t, i (21)

xt+1,i = xt,i +nt,i −Dt,i ∀t, i (22)

x1,i = I1,i ∀i (23)

JH(D1:T ) (or simply JH) is thus the total costs if the firm has perfect knowledge of all future

demands. Since we obviously cannot do better than the perfect hindsight policy, we immediately

have E[JH(D1:T )] ≤ J∗. The result below gives us a sense of the level of improvement that may

result from periodic re-optimizations.

Theorem 3. Let σ = maxiE[(D1,i − µi)
2]1/2. Suppose that I1 = 0 and there exists an optimal

solution n∗1 and a constant φ> 0 such that n∗1
t,i ≥ φ and

∣∣∣ 1t ∑t

s=1 n
∗1
s,i −µi

∣∣∣≥ φ for all t and i. Let

JCE and JRCE be the expected total costs under the CE and RCE controls, respectively, and define

A= {
∑m

i=1 |∆t,i|<φ/2, ∀ t}. Then,

E[(JCE −JH)1{A}] ≤ 2σ(T +1)3/2

[
m∑
i=1

(pi +hi)

]
.

Moreover, there exists a sequence of optimal solutions n∗2
2 , ..., n∗T

T such that

E[(JRCE −JH)1{A}] ≤ 2σT

[
m∑
i=1

(pi +hi)

]
.

Note that, under CE control, we simply apply allocation policy nD
t during period t as in Theorem

1. Thus, the fact that the bound for CE control is of order T 3/2σ is not surprising. In contrast, the

bound for RCE is only of order Tσ, which means that re-optimizations improve the performance

guarantee of CE control by reducing the effect that planning horizon has on regret from T 3/2 to T ,

at least in the set A where total demand variation during each period is relatively small compared

to the number of allocated units. If σ is small compared to φ, then A happens with high probability.

In such a case, we can properly say that periodic re-optimizations improve the performance of

static CE control with a high probability. The conditions n∗1
t,i ≥ φ and

∣∣∣ 1t ∑t

s=1 n
∗1
s,i −µi

∣∣∣ ≥ φ in

Theorem 3 simply mean that in a deterministic world, we always allocate a positive number of
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products to each retailer at every period, and that the starting inventory level at each retailer

at the beginning of period t > 1 (i.e.,
∑t−1

s=1 n
∗1
s,i − (t − 1)µi) is always either strictly positive or

strictly negative. These conditions are not as strong as they appear—they can be easily satisfied

especially when the batch size is sufficiently large. Finally, note that the probability of event A is

a function of T . Without further assumptions on the cost structure and demand distribution, it

is not immediately clear from Theorem 3 alone how long the planning horizon can be before the

benefit of re-optimizations start to diminish. Per our discussions in Section 3, T must be much

smaller than µ∗ for static CE control to perform sufficiently well. The next result shows that RCE

clearly outperforms CE for a wide range of T values.

Theorem 4. Suppose that the following conditions hold: I1 = 0, pi = p∗ and hi = h∗ for all i,

demands are i.i.d with mean µ∗ and standard deviation σ∗, and zDt > 0 for all t. Define Â :=

{
∑m

i=1 |∆t,i| ≤B/(2m) ∀ t}. There exists a sequence of optimal solutions n∗1
1 , n∗2

2 , ..., n∗T
T such that

E[(JCE −JH)1{Â}] ≤ 2m(p∗ +h∗)(T +1)3/2σ∗ and

E[(JRCE −JH)1{Â}] ≤ 2m(p∗ +h∗)Tσ∗.

Moreover, if demands are Poisson, B >µ∗, and T = o(eµ
∗/(192m4)), there exists a constant M > 0

independent of T and µ∗ such that, for all large µ∗,

E[JCE]−J∗

J∗ ≤ M
√
T

√
µ∗ +

√
T

and
E[JRCE]−J∗

J∗ ≤ M
√
µ∗ +

√
T
.

The setting in Theorem 4 is not a special case of the setting in Theorem 3. (In Theorem 4,

we do not require | 1
t

∑t

s=1 n
∗1
s,i − µi| ≥ φ for some φ > 0 for all t and i; in fact, it is possible that

| 1
t

∑t

s=1 n
∗1
s,i − µi| = 0 for all t and i. Mathematically, we do not need this condition because we

assume that all retailers are homogeneous and demands are i.i.d.) Thus, the result of Theorem 4

cannot be seen as a corollary of Theorem 3. The bound for CE control in Theorem 4 is similar

to the bound for CE control in Corollary 1. Although the bound holds for T = o(eµ
∗/(192m4)) (i.e.,

T can be very large), T must be much smaller than µ∗ to guarantee the effectiveness of CE. In
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contrast, the bound for RCE is almost independent of T—as long as T = o(eµ
∗/(192m4)), which

can be much larger than µ∗, the relative regret of RCE decreases to 0 at a rate that is (roughly

speaking) proportional to 1/
√
µ∗ as µ∗ →∞. (Unlike with CE control, in the case of RCE, the

additional
√
T in the bound also helps speed up the convergence. However, since a typical planning

horizon extends about 2 to 5 years, if one period is one month (i.e., T = 24 to 60) and µ∗ is, at

least, on the order of hundreds or thousands, the greatest impact on performance comes from
√
µ∗

instead of
√
T .) Practically, this means that re-optimizations not only yield a stronger performance

guarantee, but also allow a much longer planning horizon. If T is larger than o(eµ
∗/(192m4)), then it

becomes necessary to also re-optimize the ordering decision zt in addition to the allocation decisions

{nt,i} to maintain a good performance. This alternative re-optimization policy, which essentially

re-optimizes the whole integer program instead of a linear program, can also be used to address

the case where demand variation is relatively large compared to its mean (in contrast to Poisson

demand in Theorem 4). We computationally test the performance of this approach in Section 6.

Remark 2 (On the Nonuniqueness of the Optimal Solution). Although we only prove

the results in Theorems 3 and 4 for a particular choice of optimal solution, we conjecture that

the non-uniqueness of the optimal solution is not detrimental to the performance of this approach

(as in the context of revenue management; see Jasin and Kumar, 2013, for results). Indeed, if we

use a differentiable convex cost functions for holding and penality costs that incur in each period

instead of the linear holding and penalty cost functions, the resulting deterministic problem is

differentiable and its optimal solution is unique. In such a setting, it can be shown that the bounds

in Theorems 3 and 4 still hold. This suggests that the bounds in Theorems 3 and 4 are not simply

an artifact of a particular choice of optimal solution.

Remark 3 (On the Use of Poisson Demand in Theorem 4). Instead of using Poisson demand

in Theorem 4, it is also possible to use Normal demand to better highlight the impact of B, σ, and

µ on performance. Suppose that demands are all Normal with mean µ∗ and standard deviation σ∗.

If σ∗ = o(B) and T = o(eB
2/(8m4(σ∗)2)), it can be shown using arguments similar to those used in
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the proof of Theorem 4 that there exists a constant M > 0 independent of T , µ∗, σ∗, and B such

that E[JROPA−J∗]
J∗ ≤ Mσ∗

µ∗+σ∗√T
. Thus, it is not necessary that B >µ∗ as long as σ∗ is small compared

to B.

4.3. Inventory Balancing

There is a relationship between the optimal allocation policy derived in Theorem 2 and the proposed

solution used in Theorems 3 and 4. The proof of Theorem 3 proceeds by constructing an optimal

solution n∗t. To be precise, using dual arguments (i.e., the sufficiency of Karush-Kuhn-Tucker

(KKT) conditions for optimality in linear programs), we show that if we use

n∗s
s,i = n∗1

s,i +∆s−1,i −
1

m

m∑
j=1

∆s−1,j

for all s≤ t− 1, then n∗t
t,i = n∗1

t,i +∆t−1,i − 1
m

∑m

j=1∆t−1,j and n∗t
s,i = n∗1

s,i for all s > t is optimal for

JD
t (It) on A. Similarly, the proof of Theorem 4 proceeds by constructing an optimal solution n∗t.

However, instead of using duality arguments, we use convexity arguments. (We cannot use the

same duality arguments employed in Theorem 3 because the conditions required for Theorem 4

may not hold.) We show that if we use

n∗s
s,i =

zDs B

m
+∆s−1,i −

1

m

m∑
j=1

∆s−1,j

for s ≤ t − 1, then n∗t
t,i =

zDt B

m
+ ∆t−1,i − 1

m

∑m

j=1∆t−1,j and n∗t
s,i =

zDs B

m
for all s > t is optimal

for JD
t (It) on Â. (If B is large and σ = o(B), it can be shown that Â happens with a high

probability.) Thus, in both Theorems 3 and 4, the proposed optimal solution is of the form n∗t
t,i =

n∗1
t,i+∆t−1,i− 1

m

∑m

j=1∆t−1,j. It is not difficult to check that this solution corresponds to a particular

inventory-balancing policy. Let IDt :=
∑t−1

s=1 n
∗1
s −(t−1)µ denote the inventory level at the beginning

of period t under the deterministic system with I1 = 0. Also, let ÎDt := IDt + n∗1
t . (ÎDt can be

interpreted as the after-allocation target inventory level in period t.) Under RCE, we can write

It,i =
∑t−1

s=1 n
∗s
s,i −

∑t−1

s=1Ds,i = IDt,i − 1
m

∑m

j=1

∑t−2

s=1∆s,j −∆t−1,i. So, allocating n∗t
t,i units to retailer

i at period t immediately brings the inventory level to It,i +n∗t
t,i = IDt,i +n∗1

t,i − 1
m

∑m

j=1

∑t−1

s=1∆s,j =
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ÎDt,i − 1
m

∑m

j=1

∑t−1

s=1∆s,j. This means that our proposed solution balances the inventory level at all

retailers by the same offset relative to the deterministic target level. In the case of Theorem 2,

since all retailers are homogeneous, there are uniform target levels, so this is equivalent to bringing

the inventory level at each retailer to the same value.

Remark 4 (On The Case of Nonstationary Demand). The arguments in the proof of Theo-

rem 4 can be generalized to a setting where demands across different periods are independent but

nonstationary. Let µi,t :=E[Dt,i]. If mint,i

{
zDt B

m
+µt,i − 1

m

∑m

j=1 µt,j

}
:= φ

m
> 0, we can use:

n∗t
t,i =

zDt B

m
+

(
µt,i −

1

m

m∑
j=1

µt,j

)
+

(
∆t−1,i −

1

m

m∑
j=1

∆t−1,j

)

and n∗t
s,i =

zDt B

m
+ µs,i − 1

m

∑m

j=1 µs,j for all i and s > t as an optimal solution of JD
t (It) on Ā :=

{
∑m

i=1 |∆t,i| ≤φ/(2m) ∀ t}. As long as φ is at least of the same scale as µ (i.e., the variation in µt,i

for each i is not too large), it can be shown that Ā happens with a high probability. Hence, the

results of Theorem 4 still hold.

5. Beyond Certainty Equivalence

Erring on the side of simplicity, CE control deliberately ignores two key elements of the origi-

nal stochastic problem: the magnitude of demand variation (as captured in σ) and the decision

dynamics (adaptive decisions contingent on realized demand, as captured in T ). The combined

impact of these two elements shows up in the bound—the regret of CE control scales linearly with

σ and polynomially with T . In Section 4, we proved that simple periodic re-optimizations improve

the performance of CE control by reducing the dependency of its regret on T from polynomial to

linear. This suggests several follow-up questions: Is it possible to further reduce the dependency of

regret on either σ or T from linear to sublinear? Is it more important to incorporate more demand

information or decision dynamics? In this section, we analyze two improvements on CE control:

(1) Re-optimized Stochastic Programming (RSP) and (2) Multi-Point Approximation (MPA). RSP

uses knowledge of the full demand distribution but only partially deals with decision dynamics via
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re-optimizations; in contrast, MPA directly models full decision dynamics (i.e., it solves a complete

dynamic programming), but only partially captures demand variation by generalizing the one-point

approximation used in static CE control and RCE to a multi-point approximation of demand.

We show that although RSP improves the performance of RCE, in general, its regret still scales

linearly with both σ and T . This result has an important implication: to significantly reduce the

dependency of regret on σ and T from linear to sublinear in our setting, it appears to be necessary

to explicitly model decision dynamics.

5.1. Re-optimized Stochastic Programming

We proceed in two stages as follows: In stage 1, we solve CD to calculate the number of new batches

to order at the beginning of each period; in stage 2, instead of re-optimizing JD
t (It) as in the case

of RCE, we re-optimize JS
t (It) defined below:

JS
t (It) :=min

n

T∑
ξ=t

czDt B+E

 m∑
i=1

pi

(
ξ∑

s=t

Ds,i −
ξ∑

s=t

ns,i − It,i

)+

+
m∑
i=1

hi

(
It,i +

ξ∑
s=t

ns,i −
ξ∑

s=t

Ds,i

)+


(24)

s.t.
m∑
i=1

ns,i = zDs B, ns,i ∈R+ ∀s, i (25)

Observe that JS
t (·) is a stochastic program. If demand is continuous and Fi(·) is differentiable

and strictly positive on (0,∞] for all i, it is not difficult to show that the objective function in (24)

is twice differentiable and strongly convex on (0,∞]m. Thus, an interior optimal solution of JS
t (It)

is also a unique optimal solution of JS
t (It). Let nSt = (nSt

s,i)s≥t, i≥1 denote the optimal solution of

JS
t (It). (We suppress the notational dependency of nSt on It.) The complete description of RSP is

given below:

Re-optimized Stochastic Programming - RSP

1. At the beginning of period 1, solve CD

2. For t= 1,2, ..., T , do:

- At the beginning of period t, order exactly zDt new batches

- Solve JS
t (It) and allocate exactly nSt

t,i units to retailer i

- Update It+1 = It +nSt
t −Dt
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Although our numerical results in Section 6 show that RSP consistently performs better than

RCE (by up to 10%), it is not easy to analytically characterize this improvement. Interestingly, it is

possible to show that the computed allocation under RSP is sometimes the same as the computed

allocation under RCE (see Lemma 1 below). This suggests that the benefit of including full demand

distribution is already captured (at least, partially) by simple re-optimizations of CE control.

Lemma 1. Suppose that I1 = 0, pi = p∗ and hi = h∗ for all i, demands are i.i.d and their common

cdf is differentiable and strictly positive on (0,∞], and zDt > 0 for all t. Let Â := {
∑m

i=1 |∆t,i| ≤

B/(2m) ∀ t}. Then, on Â, the optimal allocation under RSP at period t is given by:

nSt
t,i =

zDt B

m
+∆t−1,i −

1

m

m∑
j=1

∆t−1,j.

Recall from Section 4.3 that nSt
t,i =

zDt B

m
+∆t−1,i− 1

m

∑m

j=1∆t−1,j is the constructed optimal allo-

cation under RCE for period t. Thus, despite the fact that RSP uses the full demand distribution,

the regret associated with RSP in general is still O(σT ) (because the bounds in Theorem 4 also

hold for RSP). We conclude that, at best, RSP only provides limited improvement over RCE.

5.2. Multi-Point Approximation

In the previous subsection, we saw that incorporating full demand distribution alone is not sufficient

to improve significantly on RCE. We now consider the impact of explicitly modeling decision

dynamics. The essence of MPA is the use of multi-point demand approximations, to capture some

demand variation, along with full dynamic programming to fully exploit decision dynamics. There

are potentially many ways of doing this; here, we will only discuss one such approach. For each

i, let Si denote the support of Dt,i and D̂t,i denote the approximation of Dt,i. We consider an

approximation of the following form: There exists a partition {Ωk
t,i} (i.e., ∪k Ωk

t,i = Si) and a

mapping mt,i : {Ωk
t,i}→ {vkt,i} such that Dt,i ∈Ωk

t,i is approximated (or represented) by D̂t,i = vkt,i.

Note that, by construction, P (D̂t,i = vkt,i) = P (Dt,i ∈Ωk
t,i). For example, if vkt,i = µi =E[Dt,i] for all

k, t, and i, then we have the CE approximation.
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Now, consider the following optimization problem:

Ĉ∗ := inf
π∈Π

T∑
t=1

E

[
cZπ

t B+
m∑
i=1

pi (D̂t,i −Nπ
t,i − Îπt,i)

+ +
m∑
i=1

hi (Î
π
t,i +Nπ

t,i − D̂t,i)
+

]
(26)

s.t.
m∑
i=1

Nπ
t,i =Zπ

t B, Zπ
t ∈Z+, Nπ

t,i ∈R+ ∀t, i (27)

Iπt+1,i = Iπt,i +Nπ
t,i − D̂t,i ∀t, i (28)

Iπ1,i = I1,i ∀i (29)

where the expectation is taken with respect to the induced probability distribution for {D̂t,i}.

Let π̂∗ = (π̂∗
1 , · · · , π̂∗

T ) denote the optimal policy of Ĉ∗. Since π̂∗ is a policy defined in a “virtual”

world where demands are realized according to D̂ instead of D, it is not immediately clear how to

translate π̂∗ into a policy πR = (πR
1 , · · · , πR

T ) to be implemented in the “real” world where demands

are realized according to D. (The superscript “R” stands for “real”.) Here, we will focus on the

following policy translation scheme:

πR
1 = π̂∗

1 and πR
t (D1, ...,Dt−1) = π̂∗

t (I
π̂∗

t ) ∀ t > 1

where I π̂
∗

t+1,i = I π̂
∗

t,i +N π̂∗
t,i − D̂t,i (i.e., I

π̂∗
t is the virtual inventory level at the beginning of period t

under policy π̂∗ and demand realizations D̂1, ... , D̂t−1). Under policy π, at the beginning of period

t, we first calculate the virtual inventory level at each retailer; next, we order exactly Z π̂∗
t new

batches and allocate exactly N π̂∗
t,i units to retailer i. So, we respond as if demands are generated

according to D̂ instead of D. We state our result below.

Theorem 5. Let θt,i :=E[(Dt,i − D̂t,i)
2]1/2. Then,

E
[
CπR

]
−C∗ ≤ 2

m∑
i=1

(pi +hi)

 T∑
t=1

(
t∑

s=1

θ2s,i

)1/2
 .

Theorem 5 is the generalization of Theorem 1. (If D̂t,i = µi, then θt,i ≤ σ. So, we completely

recover the bound in Theorem 1.) It highlights the value of information in a multi-period inventory

control problem; in particular, it shows that it is most beneficial to use a more refined demand
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approximation during earlier instead of later periods. To illustrate this, suppose that Dt,i is uni-

formly distributed on [Li,Ui]. If we use a (T − t+1)1/2+α−demand approximation for Dt,i for some

α> 0 (i.e., by using (T − t+1)1/2+α points in [Li,Ui]), then E[CπR
]−C∗ =O(σT 1−α). Note that,

as α becomes large, the regret decreases to 0.

Remark 5 (Computational Complexity of MPA). Despite the promising bound in Theo-

rem 5, MPA solves a full dynamic programming problem. Thus, it is computationally much more

expensive than either RCE or RSP. One potential way to mitigate this computational burden is to

use a form of rollout algorithm with limited lookahead (Bertsekas, 2013; Goodson et al., 2015). The

analysis of a rollout algorithm for an undiscounted finite-horizon stochastic inventory problem is

an open research problem. As it is possibly a very challenging task, we leave this for future research

pursuit—our purpose in this paper is simply to highlight the potential benefit of including more

decision dynamics in designing a heuristic control.

6. Computational Experiments

We computationally test the performance of CE, RCE, and RSP. In addition, we also consider

jointly re-optimizing both the ordering and allocation decisions instead of the allocation deci-

sion alone under RCE and RSP; this essentially amounts to re-optimizing the entire integer pro-

gram. We call the resulting heuristics RCE-IP and RSP-IP, respectively. We use an industrial-size

example of 8 non-homogeneous retailers with µ = [5000,3000,2000,1000,500,300,200,100], h =

[2,2,2,2,3,3,4,4], p= [8,5,9,6,10,5,11,5], and B = 10,000. We run four different experiments: In

the first experiment demands are Poisson and, in the last three experiments, demands are Normal

with standard deviations equal to 5%, 15%, and 25% of their mean, respectively. The first two

experiments represent the case of “small” demand variation and the last two experiments represent

the case of “large” demand variation. For each of four experiments, we run 40 Monte Carlo simu-

lations and average the results. All experiments are run using MATLAB R2010b with Intel Core

i7-5820K CPU. We report the percentage regret for each heuristic control relative to the hindsight

policy (see (20)) in Tables 1 and 2.
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Table 1 Percentage regret

Poisson 5% Normal
T CE RCE RCE-IP CE RCE RCE-IP
1 4.81 4.81 4.81 10.01 10.01 10.01
2 4.97 4.10 3.66 10.61 8.83 7.78
3 5.22 3.56 3.56 10.43 7.22 7.22
4 6.47 3.99 3.99 12.40 7.69 7.69
5 7.72 4.33 4.33 14.90 8.28 8.28
6 8.00 4.18 4.18 16.60 8.53 8.23
7 8.05 4.18 3.83 18.25 9.69 7.74
8 8.50 4.26 3.95 18.31 8.86 7.55
9 9.08 4.33 4.04 19.47 9.09 7.87
10 9.88 4.47 4.20 21.12 9.22 8.11
11 10.06 4.30 4.06 22.40 9.78 8.26
12 9.76 4.19 3.92 21.84 9.38 7.83
13 10.12 4.26 4.00 22.44 9.23 7.93
14 10.58 4.33 4.08 23.43 9.29 8.06
15 11.20 4.39 4.16 24.77 9.46 8.16
16 11.43 4.31 4.10 27.32 11.13 8.14
17 11.23 4.20 3.99 25.88 9.78 7.83
18 11.64 4.26 4.06 26.40 9.63 7.83
19 12.15 4.34 4.14 27.05 9.66 7.92
20 12.66 4.34 4.15 28.00 9.86 7.93

Table 2 Percentage regret

15% Normal 25% Normal
T CE RCE RCE-IP RSP RSP-IP CE RCE RCE-IP RSP RSP-IP
1 27.23 27.23 27.23 23.96 23.96 35.12 35.12 35.12 32.15 32.15
2 34.70 30.53 26.52 22.39 20.09 49.00 45.80 41.37 31.79 31.51
3 31.08 23.81 23.75 13.46 13.96 47.71 39.55 39.14 25.14 26.52
4 33.32 23.07 23.15 13.21 13.76 53.49 40.81 40.05 26.19 27.33
5 37.79 23.52 23.38 14.56 14.72 60.98 41.84 40.13 28.74 27.64
6 45.25 26.33 23.14 18.42 14.96 71.97 47.49 40.60 37.10 28.61
7 53.39 33.25 24.18 23.77 15.11 80.96 53.94 39.88 42.51 27.42
8 52.34 30.42 23.41 20.67 14.19 80.90 51.62 39.33 40.08 27.41
9 52.09 29.07 23.61 19.20 14.17 85.03 52.07 39.34 40.73 26.43
10 53.95 29.13 23.78 19.40 14.23 91.18 54.47 39.03 43.96 25.92
11 59.27 30.53 23.72 21.96 14.53 102.42 60.68 39.58 51.54 26.32
12 61.18 33.58 23.27 23.27 14.22 102.28 60.38 39.28 48.37 25.96
13 60.39 31.43 23.00 20.99 13.93 106.09 61.21 39.99 48.95 26.50
14 61.45 30.50 22.85 20.22 13.61 111.77 63.16 40.53 51.30 26.72
15 64.49 30.97 23.29 20.78 13.92 119.83 67.23 40.96 56.46 27.00
16 68.99 32.54 23.08 23.07 13.86 128.52 71.93 40.78 62.85 27.31
17 70.27 33.95 23.13 23.56 13.84 127.47 71.31 41.35 60.30 27.48
18 69.76 32.48 22.73 22.03 13.46 129.98 71.73 40.79 60.56 26.91
19 71.71 32.27 22.95 21.84 13.29 135.03 72.31 40.50 61.85 26.68
20 74.69 32.99 23.03 23.07 13.50 142.75 75.57 40.84 66.20 26.68
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Table 3 Solution time

15% Normal
CE RCE RCE-IP RSP RSP-IP

Average solving time (sec) 0.0151 0.2113 2.7021 1.0937 3.3325

As suggested by Theorems 1 and 4, the regret associated with CE control gets worse rapidly as

the length of planning horizon increases. The performance of RCE appears to be quite stable for

the case of Poisson demand and 5% Normal. As the size of demand variation becomes large (e.g.,

15% and 25% Normal), the benefit of re-optimizations slowly diminishes; this is also as expected.

(Per Remark 3, as σ∗ increases, T = o(eB
2/(8m4(σ∗)2)) becomes smaller. So, it becomes necessary

to also re-optimize the ordering decision.) In all four cases, RCE-IP further reduces the regret of

RCE and also helps stabilize the performance, which highlights the benefit of jointly re-optimizing

the ordering and allocation decision. Clearly, RSP-IP significantly reduces the regret of RCE-IP.

Despite this, as discussed in Section 5.1, its relative regret is still of the same order as the size of

demand variation. (Note that, although RSP improves the performance of RCE, it does not always

perform better than RCE-IP.)

In Table 3, we report the solution time for each heuristic control for one of our experimental

cases: Normal demand with standard deviation equals to 15% of the mean. The recorded time is

the average solution time for one 20-period simulation. Although CE control requires solving an

integer program, the average solution time is fast, even for industrial-scale problems. The other four

approaches lead to a significant increase in solution time, although resulting times are by no means

unreasonable for practical purposes. All of the algorithms listed above, however, are significantly

more computationally efficient than solving the original problem to optimality. In fact, even solving

a problem that is 100 times smaller directly using the original dynamic programming takes several

hours. This highlights the relative solution speed of our heuristic algorithms.

7. The Case of Lost Sales

We now briefly consider the case of lost sales. We employ the same optimal formulation as in (2),

with two exceptions: the constant pi will now be interpreted as the lost sales penalty for retailer
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i and the inventory level evolves according to the formula Iπt+1,i = (Iπt,i +Nπ
t,i −Dt,i)

+ instead of

Iπt+1,i = Iπt,i +Nπ
t,i −Dt,i. Alternatively, we can also write Iπt+1,i =

[
max1≤ξ≤t

∑t

s=ξ(N
π
s,i −Ds,i)

]+
.

Define C̃D as follows:

C̃D := min
z,n

T∑
t=1

[
c ztB+

m∑
i=1

pi (µi −xt,i −nt,i)
+ +

m∑
i=1

hi(xt,i +nt,i −µi)
+

]
(30)

s.t.
m∑
i=1

nt,i = ztB, zt ∈Z+, nt,i ∈R+ ∀t, i (31)

xt+1,i = (xt,i +nt,i −µi)
+ ∀t, i (32)

x1,i = I1,i ∀i (33)

As with CD, C̃D can be formulated as a mixed integer linear program (MILP). Let z = z̃D and

n= ñD denote an optimal solution of (30). Under CE control, we order exactly z̃Dt new batches at

the beginning of period t and allocate exactly ñD
t,i units to retailer i during period t. Let C̃∗ and

E[C̃CE] denote the expected total costs under the optimal policy and CE control, respectively.

Theorem 6. Let σ=maxiE[(D1,i −µi)
2]1/2. Then,

E[C̃CE]− C̃∗ ≤ 2σ
m∑
i=1

[
(T +1)1/2pi +

2(T +1)3/2

3
hi

]
.

In contrast to the bound in Theorem 1 where both hi and pi are multiplied by T 3/2, in Theorem 6,

the term hi is still multiplied by T 3/2 but the term pi is only multiplied by T 1/2. This suggests

that CE control should perform better in a lost sales system than in a backorder system, especially

when pi is much larger than hi.

8. Closing Remarks

In practice, firms often solve planning problems by replacing random variables representing future

demand with deterministic demand estimates and firms often use a rolling horizon approach to

implement these solutions. In this paper, we considered an inventory planning problem from the

biopharmaceutical industry involving batch production and allocation, and analyzed a variety of
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heuristic controls that solve the Certainty Equivalent version of this planning problem, both one

time and in a rolling horizon setting. We characterized the performance of these heuristic controls,

finding that the performance of this deterministic approximation decreases with coefficient of vari-

ation and horizon length, but that implementation of a rolling horizon re-optimization approach

can significantly increase performance. We also explored heuristic controls that either use more

demand information or more decision dynamics. As expected, these heuristic controls perform bet-

ter. However, in our setting, we found that using additional demand information has limited value

while using more decision dynamics potentially leads to greater improvements, at the expense of

increased computational time. A natural way to mitigate this computational burden is to imple-

ment a rollout algorithm with limited lookahead (Bertsekas, 2013; Goodson et al., 2015). We are

not aware of results in the literature characterizing the theoretical performance of this type of

rollout algorithm for undiscounted inventory problems, and we intend to explore this challenging

problem in the future.
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APPENDIX

Proof of Theorem 1. Define W π
t+1,i = W π

t,i +Nπ
t,i − µi, where W π

1 = Iπ1 = I1. Observe that we

can write: W π
t,i = I1,i +

∑t−1

s=1N
π
s,i −

∑t−1

s=1 µi and Iπt,i = I1,i +
∑t−1

s=1N
π
s,i −

∑t−1

s=1Ds,i. So, I
π
t,i =W π

t,i −∑t−1

s=1∆s,i, where ∆s,i =Ds,i −µi. We now proceed to prove Theorem 1 in three steps.

Step 1

We first compute an upper bound for CD −C∗. We claim that

C∗ ≥CD −E

 T∑
t=1

m∑
i=1

(pi +hi)

(
t∑

s=1

∆s,i

)+
 .

This is not difficult to show. For any policy π ∈Π, we can bound:

T∑
t=1

[
cZπ

t B+
m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)

+ +
m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]

=
T∑

t=1

[
cZπ

t B+
m∑
i=1

(pi +hi)(I
π
t,i +Nπ

t,i −Dt,i)
+ −

m∑
i

pi(I
π
t,i +Nπ

t,i −Dt,i)

]

=
T∑

t=1

[
cZπ

t B+
m∑
i=1

(pi +hi)(I
π
t+1,i)

+ −
m∑
i=1

piI
π
t+1,i

]



32

≥
T∑

t=1

[
cZπ

t B+
m∑
i=1

(pi +hi)(W
π
t+1,i)

+ −
m∑
i=1

piW
π
t+1,i

]

−
T∑

t=1

m∑
i=1

(pi +hi)

(
t∑

s=1

∆s,i

)+

+
T∑

t=1

m∑
i=1

t∑
s=1

pi∆s,i

≥ CD −
T∑

t=1

m∑
i=1

(pi +hi)

(
t∑

s=1

∆s,i

)+

+
T∑

t=1

m∑
i=1

t∑
s=1

pi∆s,i,

where the first inequality holds because the identity Iπt,i =W π
t,i−

∑t−1

s=1∆s,i implies (Iπt,i)
+ ≥ (W π

t,i)
+−

(
∑t−1

s=1∆s,i)
+ and the second inequality follows by definition of CD. Taking expectation on both

sides and minimizing the sum in the left side of the inequality over π ∈Π yields the result.

Step 2

We now compute an upper bound for E[CCE −CD]. We claim that

E[CCE]−CD ≤E

 T∑
t=1

m∑
i=1

(pi +hi)

(
−

t∑
s=1

∆s,i

)+
 .

This can be shown using similar arguments as in Step 1. Let It+1,i = It,i+nD
t,i−Dt,i and xt+1,i =

xt,i +nD
t,i −µi (with x1 = I1). Since It,i = xt,i −

∑t−1

s=1∆s,i, we can bound:

E[CCE] =
T∑

t=1

E

[
c zDt B+

m∑
i=1

hi(It+1,i)
+ +

m∑
i

pi(−It+1,i)
+

]

=
T∑

t=1

E

[
c zDt B+

m∑
i=1

(pi +hi)(It+1,i)
+ −

m∑
i

piIt+1,i

]

≤
T∑

t=1

E

[
c zDt B+

m∑
i=1

(pi +hi)(xt+1,i)
+ −

m∑
i

pixt+1,i

]

+ E

 T∑
t=1

m∑
i=1

(pi +hi)

(
−

t∑
s=1

∆s,i

)+
+E

[
T∑

t=1

m∑
i=1

t∑
s=1

pi∆s,i

]

= CD + E

 T∑
t=1

m∑
i=1

(pi +hi)

(
−

t∑
s=1

∆s,i

)+
 .

The inequality follows because It,i = xt,i −
∑t−1

s=1∆s,i implies (It,i)
+ ≤ (xt,i)

+ +(−
∑t−1

s=1∆s,i)
+.

Step 3

Putting the bounds from Steps 1 and 2 together, we conclude that

E[CCE]−C∗ = E[CCE]−CD +CD −C∗
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≤ E

 T∑
t=1

m∑
i=1

(pi +hi)

(
−

t∑
s=1

∆s,i

)+
 + E

 T∑
t=1

m∑
i=1

(pi +hi)

(
t∑

s=1

∆s,i

)+


≤ 2
T∑

t=1

m∑
i=1

(pi +hi)E

( t∑
s=1

∆s,i

)2
1/2

≤ 2σ (T +1)3/2

[
m∑
i=1

(pi +hi)

]
.

This completes the proof of Theorem 1. �

Proof of Corollary 1. Since each fulfilled demand incurs at least an ordering cost and each unful-

filled demand incurs at least a penalty cost, we can roughly bound C∗ ≥E[
∑T

t=1

∑m

i=1min{c, pi}

Dt,i] = T
∑m

i=1 min{c, pi}µi. Putting this together with the bound in Theorem 1 and the fact that

σ=
√
µ∗ (because demand is Poisson) completes the proof. �

Proof of Theorem 2. The proof proceeds in two steps. The first step shows the general structure

of the allocation policy: raise the inventory for a subset of retailers to the same level and allocate

nothing to the rest of them. The second step shows the retailers we raise to the same level are the

retailers with lowest inventory.

Step 1

Define Yt,i = It,i+Nt,i and Yt = (Yt,i). The optimal allocation in period t given It and zDt can be

characterized by the first-order condition of (15): there exists λ,µi satisfies

∇Yt,i
G(Yt,i)+∇Yt,i

ED{Jt+1(Yt −Dt)}+λ−µi = 0 ∀i (34)

(Yt,i − It,i)µi = 0 ∀i (35)

m∑
i=1

(Yt,i − It,i) = zDt B (36)

µi ≥ 0 ∀i (37)

Notice the objective function in (15) is convex, and in Ω(Z) equality constraints are affine

functions and inequality constraints are convex as well. Therefore the first-order conditions are

sufficient for optimality.
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Since Jt(It) is always feasible, there must be a solution that satisfies (34) - (37), say

(Ȳt,1, Ȳt,2, . . . , Ȳt,m). Given (Ȳt,1, Ȳt,2, . . . , Ȳt,m), retailers can be divided into two subsets: one set of

retailers with µi > 0 and one set of retailers with µi = 0. Let A= {i |µi = 0} and k= |A|.

Case 1: For all retailers with µi > 0

By (35) we have Yt,i = It,i. Allocate nothing for those retailers.

Case 2: For all retailers with µi = 0

(34) - (37) reduce to:

∇Yt,i
g(Yt,i)+∇Yt,i

ED{Jt+1(Yt −Dt)}+λ = 0 ∀i∈A (38)∑
i∈A

(Yt,i − It,i) = zDt B (39)

where g(y) =ED [(hi(y−D)+ + pi(y−D)−)] is the single retailer inventory cost function. Suppose

the solution for ∀i∈A is (Ȳt,1, Ȳt,2, . . . , Ȳt,k) which satisfies (38) and (39). Notice that ED{Jt+1(Yt−

Dt)} is symmetric in Yt,i and Dt, and g(·) is the same for all retailers.

To see why, consider a simple example with discrete demand and T = 2, k = 2, let Ps be the

probability of demand scenario s and write (38)-(39) in extensive form.

∇Y1,1
g(Y1,1)+

∑
s

Ps(c+∇Y1,1
g(Y1,1 − ds1,1 +N s

2,1)) = −λ (40)

∇Y1,2
g(Y1,2)+

∑
s

Ps(c+∇Y1,2
g(Y1,2 − ds1,2 +N s

2,2)) = −λ (41)

Y1,1 +Y1,2 = zD1 B+ I1,1 + I1,2 (42)

N s
2,1 +N s

2,2 = zD2 B ∀s (43)

where dst,i is the demand and N s
t,i is the allocated units for retailer i in period t under scenario

s. Since demand D is i.i.d. for all retailers, demand scenarios must be symmetric. If (Ȳ1,1, Ȳ1,2)

satisfies (40)-(43), by exchanging N s
2,1 and N s

2,2, (Ȳ1,2, Ȳ1,1) also satisfies (40)-(43).

More generally, if there is a vector (Ȳt,1, Ȳt,2, . . . , Ȳt,k) that satisfies (38)-(39), then any permu-

tation of (Ȳt,1, Ȳt,2, . . . , Ȳt,k) also satisfies (38)-(39), which is optimal. By the convexity of Jt(It),

the solution ( 1
k

k∑
i=1

Ȳt,i,
1
k

k∑
i=1

Ȳt,i, . . . ,
1
k

k∑
i=1

Ȳt,i), which is the convex combination of the permutations
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of (Ȳt,1, Ȳt,2, . . . , Ȳt,k), must be optimal as well, which means raising inventory of all retailers with

µi = 0 to the same level is optimal. By (39), this level is

Nt,i + It,i =
1

k

(∑
i∈A

It,i + zDt B

)
∀i∈A

Step 2

Next, we’ll show that the set of retailers in A is indeed the θ retailers with lowest starting

inventory level, i.e. A= {i | i≤ θ} and k= θ. From now on, we will drop the subscript t if it is not

ambiguous. First, we define a total cost function Γ(·) for a single retailer to be

Γ(Yi) = c(Yi − Ii)+ g(Yi)+ED{Γ(Yi −Di)}

Notice Γ(·) is convex. Next assume retailers have pre-allocation inventory level {I1, I2, . . . , Im} and

remember these levels are sorted from smallest to largest. Denotes the order-up-to level in Theorem

2 to be Y ∗

Y ∗ =
1

θ

(
θ∑

i=1

Ii + zB

)
∀i≤ θ

and let the cost of the policy that raise {I1, I2, . . . , Iθ} to the same level Y ∗ to be P ∗. Now consider

two cases:

Case 1: Raise θ
′ ̸= θ retailers with the lowest starting inventory to the same level.

If θ
′
> θ then (36) is infeasible. Now, without loss of generality, assume θ−1 retailers with inventory

{I1, I2, . . . , Iθ−1} are raised to the same level Ȳ . Let the cost of this policy to be P
′
.

P
′
= (θ− 1)Γ(Ȳ )+Γ(Iθ)+

∑
i>θ

Γ(Ii)

≥ θΓ(Y ∗)+
∑
i>θ

Γ(Ii)

= P ∗

where the inequality holds because of the convexity of Γ(·). So P ∗ dominates P
′
.

Case 2: Raise inventory for θ arbitrarily selected retailers to the same level,

Without loss of generality, suppose we skip retailer j and raise the retailers with inventory
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{I1, I2, . . . , Ij−1, Ij+1, . . . , Iθ, Iθ+1} to the same level Ȳ . It is easy to check we have Ȳ ≥ Iθ+1 ≥ Y ∗ ≥ Ij.

Let the cost of this policy to be P
′
, then by convexity Γ(·) we have

P
′
= θΓ(Ȳ )+Γ(Ij)+

∑
i>θ+1

Γ(Ii)

≥ θΓ(Y ∗)+Γ(Iθ+1)+
∑

i>θ+1

Γ(Ii)

= P ∗

which again P ∗ dominates P
′
.

Thus, raising the θ retailers with the lowest inventory level dominates any other possible set

of retailers, so we have A = {i | i ≤ θ}. Since there is no other allocation outperforms the one in

Theorem 3, the expected total cost under the allocation policy in Theorem 2 must be J∗. �.

Proof of Theorem 3. We proceed in several steps.

Step 1

Define nH as follows: nH
t,i = n∗1

t,i + ∆t,i − 1
m

∑m

j=1∆t,j. We claim that if D1:T ∈A, then nH is an

optimal allocation for JH . To see this, first note that, using xt+1,i = I1,i +
∑t

s=1 ns,i − tµi (because

xs+1,i = xs,i +ns,i −µi), optimization JD
1 (I1) can be written as:

JD
1 (I1) = min

n

T∑
t=1

[
c zDt B+

m∑
i=1

pi yt,i +
m∑
i=1

hiθt,i

]
(44)

s.t. yt,i ≥ tµi −
t∑

s=1

ns,i − I1,i ∀t, i (45)

yt,i ≥ 0 ∀t, i (46)

θt,i ≥ I1,i +
t∑

s=1

ns,i − tµi ∀t, i (47)

θt,i ≥ 0 ∀t, i (48)
m∑
i=1

nt,i = zDt B ∀t (49)

nt,i ≥ 0 ∀t, i (50)

By Karush-Kuhn-Tucker (KKT) conditions, there exists dual variables λ1
t,i, λ

2
t,i, λ

3
t,i, λ

4
t,i, ξt, and

Ωt,i corresponding to constraints (45)-(50) such that

pi = λ1
t,i +λ2

t,i ∀t, i
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hi = λ3
t,i +λ4

t,i ∀t, i

0 = −
T∑

s=t

λ1
t,i +

T∑
s=t

λ3
t,i + ξt −Ωt,i ∀t, i

0 = λ1
t,i

[
yt,i − tµi +

t∑
s=1

ns,i + I1,i

]
∀t, i

0 = λ2
t,i yt,i ∀t, i

0 = λ3
t,i

[
θt,i − I1,i −

t∑
s=1

ns,i + tµi

]
∀t, i

0 = λ4
t,i θt,i ∀t, i

0 = Ωt,i nt,i ∀t, i

λ1
t,i ≥ 0, λ2

t,i ≥ 0, λ3
t,i ≥ 0, λ4

t,i ≥ 0 ∀t, i.

Since we assume that I1 = 0 and
∑t

s=1 n
∗1
s,i− tµi is either strictly positive or strictly negative for

all t and i, we immediately have Ωt,i = 0 for all t and i. Now, to show that nH is optimal for the

hindsight problem on A, it is sufficient that we show: (1) nH
t,i ≥ 0 for all t and i, (2)

∑m

i=1 n
H
t,i = zDt B

for all t, and (3) I1,i +
∑t

s=1 n
H
s,i −

∑t

s=1Dt,i has the same sign (i.e., strictly positive or strictly

negative) as I1,i +
∑t

s=1 n
∗1
s,i − tµi for all t and i. (If these conditions are satisfied, then we can use

λ1
t,i, λ

2
t,i, λ

3
t,i, λ

4
t,i, ξt, and Ωt,i from JD

1 (I1) as dual variables for the hindsight problem. Since KKT

conditions are both necessary and sufficient for optimality in linear program, we can then conclude

that nH is optimal.) But, conditions (1)-(3) immediately follow from the definition of nH and A.

This completes the proof.

Step 2

We will now prove that E[(JCE −JH)1{A}] ≤ 2σ(T +1)3/2 [
∑m

i=1(pi +hi)]. This is not difficult to

show. Using nH as the optimal solution for the hindsight problem, we can write: IHt,i =
∑t

s=1 n
∗1
s,i +∑t

s=1∆s,i− 1
m

∑t

s=1

∑m

j=1∆s,j −
∑t

s=1Ds,i. Moreover, we also have: ICE
t =

∑t

s=1 n
∗1
s −

∑t

s=1Ds. So,

on A, we can bound:

JCE −JH =
T∑

t=1

m∑
i=1

pi

( t∑
s=1

Ds,i −
t∑

s=1

n∗1
s,i

)+

−

(
t∑

s=1

Ds,i −
t∑

s=1

n∗1
s,i −

t∑
s=1

∆s,i +
1

m

t∑
s=1

m∑
j=1

∆s,j

)+

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+
T∑

t=1

m∑
i=1

hi

( t∑
s=1

n∗1
s,i −

t∑
s=1

Ds,i

)+

−

(
t∑

s=1

n∗1
s,i +

t∑
s=1

∆s,i −
1

m

t∑
s=1

m∑
j=1

∆s,j −
t∑

s=1

Ds,i

)+


≤
T∑

t=1

m∑
i=1

(pi +hi)

[
|∆t,i|+

1

m

t∑
s=1

m∑
j=1

|∆s,j|

]
.

The result immediately follows because E[|∆t,i|1{A}]≤E[|∆t,i|]≤ σ for all t and i.

Step 3

We now argue that E[(JRCE −JH)1{A}] ≤ 2σT [
∑m

i=1(pi+hi)]. This requires that we first study

the evolution of the re-optimized solution. However, since the solution of JD
t (It) may not be unique,

we will only prove the result under a particular sequence of optimal solution {n∗t
t }.

Define n∗t for t > 1 as follows: n∗t
t,i = n∗1

t,i + ∆t−1,i − 1
m

∑m

j=1∆t−1,j and n∗t
s,i = n∗1

s,i for s > t.

Suppose that D1:T ∈A. The following can be shown: If we use ns = n∗s
s for all s≤ t− 1, then (1)

the starting inventory level for retailer i at the beginning of period t is given by It,i =
∑t−1

s=1 n
∗1
s,i −

(t− 1)µi −∆t−1,i − 1
m

∑t−2

s=1

∑m

j=1∆s,j and (2) n∗t is an optimal solution for JD
t (It). These can be

proved by induction. We start with t= 2. (The case t= 1 is trivially true.) Note that we can write:

I2,i = I1,i+n∗1
1 −D1,i = n∗1

1,i−µi−∆1,i. At the beginning of period 2, we have to solve the following

linear program:

JD
2 (I2) = min

n

T∑
t=2

[
c zDt B+

m∑
i=1

pi yt,i +
m∑
i=1

hiθt,i

]

s.t. yt,i ≥ (t− 1)µi −
t∑

s=2

ns,i − I2,i ∀t≥ 2, i

yt,i ≥ 0 ∀t≥ 2, i

θt,i ≥ I2,i +
t∑

s=2

ns,i − (t− 1)µi ∀t≥ 2, i

θt,i ≥ 0 ∀t≥ 2, i

m∑
i=1

nt,i = zDt B ∀t≥ 2

nt,i ≥ 0 ∀t≥ 2, i

It is not difficult to show using similar dual arguments as in Step 1 that n∗2 is an optimal

solution for JD
2 (I2). In particular, on A, all the three conditions in Step 1 still hold: n∗2

t,i ≥ 0 for
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all t ≥ 2 and i,
∑m

i=1 n
∗2
t,i = zDt B for all t ≥ 2, and

∑t

s=2 n
∗2
s,i − (t − 1)µi has the same sign (i.e.,

strictly positive or strictly negative) as
∑t

s=2 n
∗1
s,i − (t − 1)µi for all t ≥ 2 and i. This allows us

to use the same dual variables that correspond to the constraints in JD
2 (I1 + n∗1

1 − µ) for JD
2 (I2);

therefore, by the sufficiency of KKT conditions, we conclude that n∗2 is optimal for JD
2 (I2). This

is our base case. Now, suppose that (1) and (2) hold for all s ≤ t − 1. We want to show that

they still hold for s = t. By induction hypothesis, we can write: It,i = It−1,i + n∗ t−1
t−1,i − Dt−1,i =(∑t−2

s=1 n
∗1
s,i − (t− 2)µi −∆t−2,i − 1

m

∑t−3

s=1

∑m

j=1∆s,j

)
+
(
n∗1
t−1,i +∆t−2,i − 1

m

∑m

j=1∆t−2,j

)
−Dt−1,i =∑t−1

s=1 n
∗1
s,i − (t− 1)µi −∆t−1,i − 1

m

∑t−2

s=1

∑m

j=1∆s,j. So, (1) holds. At the beginning of period t, we

have to solve the following linear program:

JD
t (It) = min

n

T∑
s=t

[
c zDs B+

m∑
i=1

pi ys,i +
m∑
i=1

hiθs,i

]

s.t. ys,i ≥ (t− s+1)µi −
t∑

r=s

nr,i − Is,i ∀s≥ t, i

ys,i ≥ 0 ∀s≥ t, i

θs,i ≥ Is,i +
t∑

r=s

nr,i − (t− s+1)µi ∀s≥ t, i

θs,i ≥ 0 ∀s≥ t, i

m∑
i=1

ns,i = zDs B ∀s≥ t

ns,i ≥ 0 ∀s≥ t, i

By similar arguments as before, it is not difficult to check that, on A, we have: n∗t
s,i ≥ 0 for all

s ≥ t and i,
∑m

i=1 n
∗t
s,i = zDs B for all s ≥ t, and

∑t

r=s n
∗t
r,i − (t− s+ 1)µi has the same sign (i.e.,

strictly positive or strictly negative) as
∑t

r=s n
∗1
r,i− (t−s+1)µi for all s≥ t and i. This allows us to

use the same dual variables that correspond to the constraints in JD
t (I1 +

∑t−1

s=1 n
∗1
s − (t− 1)µ) for

JD
t (It); hence, by the sufficiency of KKT conditions, we conclude that n∗t is optimal for JD

t (It).

This completes the induction.

We now make two important observations: under RCE (i.e., using ns = n∗s
s for s≤ t) we have

IRCE
t+1,i =

∑t

s=1 n
∗1
s,i − tµi −∆t,i − 1

m

∑t−1

s=1

∑m

j=1∆s,j. In contrast, under the perfect hindsight policy



40

in Step 1, it is not difficult to check that IHt+1,i =
∑t

s=1 n
∗1
s,i − tµi − 1

m

∑t

s=1

∑m

j=1∆s,j. So, I
RCE
t+1,i =

IHt+1,i −∆t,i +
1
m

∑m

j=1∆t,j. This implies:

JRCE −JH ≤
T∑

t=1

m∑
i=1

(pi +hi)

[
|∆t,i|+

1

m

m∑
j=1

|∆t,j|

]
.

As in Step 2, the result follows because E[|∆t,i|1{A}]≤E[|∆t,i|]≤ σ for all t and i. �

Proof of Theorem 4. We proceed in several steps.

Step 1

Similar to Theorem 3, we first argue that E[(JCE − JH)1{Â}] ≤ 2m(p∗ + h∗)(T + 1)3/2σ∗ and

E[(JRCE −JH)1{Â}] ≤ 2m(p∗ +h∗)Tσ∗. Define nH as follows:

nH
t,i =

zDt B

m
+ Dt,i −

1

m

m∑
j=1

Dt,j =
zDt B

m
+ ∆t,i −

1

m

m∑
j=1

∆t,j.

We claim that if D1:T ∈ Â, then nH is an optimal allocation for JH . To see this, simply note that

T∑
t=1

[
c zDt B+

m∑
i=1

p∗ (Dt,i −xt,i −nt,i)
+ +

m∑
i=1

h∗(xt,i +nt,i −Dt,i)
+

]

=
T∑

t=1

c zDt B+
m∑
i=1

p∗

(
t∑

s=1

Ds,i −
t∑

s=1

ns,i

)+

+
m∑
i=1

h∗

(
t∑

s=1

ns,i −
t∑

s=1

Ds,i

)+


≥
T∑

t=1

c zDt B+
m∑
i=1

p∗

(
1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

m∑
j=1

ns,j

)+

+
m∑
i=1

h∗

(
1

m

t∑
s=1

m∑
j=1

ns,j −
1

m

t∑
s=1

m∑
j=1

Ds,j

)+


=
T∑

t=1

c zDt B+
m∑
i=1

p∗

(
1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

zDs B

)+

+
m∑
i=1

h∗

(
1

m

t∑
s=1

zDs B− 1

m

t∑
s=1

m∑
j=1

Ds,j

)+
 ,

where the first equality follows by the definition of xt, the first inequality follows by the convexity

of (·)+, and the last inequality follows by the definition of nt and zDt . Since It+1,i =
∑t

s=1 ns,i −∑t

s=1Ds,i, it is not difficult to check that the above lower bound is achieved by setting nt = nH
t .

Moreover, on Â, we have nH
t > 0 for all t. So, nH is an optimal feasible solution for JH .

We will now prove that E[(JCE −JH)1{Â}] ≤ 2m(p∗ +h∗)(T +1)3/2σ∗. This is not difficult to

show. Note that, by similar arguments as above, it can be shown that nD
t,i = zDt B/m for all i is an

optimal solution of CD. Using ICE
t =

∑t

s=1 n
D
s −

∑t

s=1Ds, we can write:
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JCE =
T∑

t=1

c zDt B+
m∑
i=1

p∗

(
Dt,i −

1

m

t∑
s=1

zDs B

)+

+
m∑
i=1

h∗

(
1

m

t∑
s=1

zDs B−Dt,i

)+
 .

So, on Â, we can bound:

JCE −JH =
T∑

t=1

m∑
i=1

p∗

(Dt,i −
1

m

t∑
s=1

zDs B

)+

−

(
1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

zDs B

)+


+
T∑

t=1

m∑
i=1

h∗

( 1

m

t∑
s=1

zDs B−Dt,i

)+

−

(
1

m

t∑
s=1

zDs B− 1

m

t∑
s=1

m∑
j=1

Ds,j

)+


≤
T∑

t=1

m∑
i=1

(p∗ +h∗)

[
|∆t,i|+

1

m

t∑
s=1

m∑
j=1

|∆s,j|

]
.

The result follows because E[|∆t,i|1{Â}]≤E[|∆t,i|]≤ σ∗ for all t and i.

We now argue that E[(JRCE − JH)1{Â}] ≤ 2m(p∗ + h∗)Tσ∗. Define n∗t as follows: n∗1
t,i =

zDt B

m

for all t, n∗t
t,i =

zDt B

m
+ ∆t−1,i − 1

m

∑m

j=1∆t−1,j, and n∗t
s,i =

zDs B

m
for all s > t. Suppose that D1:T ∈ Â.

The following can be shown: If we use ns = n∗s
s or all s≤ t−1, the inventory level at the beginning

of period t is given by

It,i =
1

m

t−1∑
s=1

zDs B− (t− 1)µ∗ −∆t−1,i −
1

m

t−2∑
s=1

m∑
j=1

∆s,j

and n∗t is an optimal solution of JD
t (It). These can be proved by induction. We start with t= 2. (The

case t= 1 is trivial.) At the beginning of period 2, we have I2,i = I1,i +n1 −D1,i =
zD1
m

−µ∗ −∆1,i.

To show that n∗2 is optimal for JD
2 (I2), note that, by convexity of (·)+, we can bound:

T∑
t=2

[
c zDt B+

m∑
i=1

p∗ (µ∗ − It,i −nt,i)
+ +

m∑
i=1

h∗(It,i +nt,i −µ∗)+

]

=
T∑

t=2

c zDt B+
m∑
i=1

p∗

(
(t− 1)µ∗ −

t∑
s=2

ns,i − I2,i

)+

+
m∑
i=1

h∗

(
I2,i +

t∑
s=2

ns,i − (t− 1)µ∗

)+


≥
T∑

t=2

c zDt B+
m∑
i=1

p∗

(
(t− 1)µ∗ − 1

m

t∑
s=2

m∑
j=1

ns,j −
1

m

m∑
j=1

I2,j

)+

+
m∑
i=1

h∗

(
1

m

m∑
j=1

I2,j +
1

m

t∑
s=2

m∑
j=1

ns,j − (t− 1)µ∗

)+

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=
T∑

t=2

c zDt B+
m∑
i=1

p∗

(
(t− 1)µ∗ − 1

m

t∑
s=2

zDs B− 1

m

m∑
j=1

I2,j

)+

+
m∑
i=1

h∗

(
1

m

m∑
j=1

I2,j +
1

m

t∑
s=2

zDs B− (t− 1)µ∗

)+
 .

Recursively solving (t−1)µ∗−
∑t

s=2 ns,i−I2,i = (t−1)µ∗− 1
m

∑t

s=2 z
D
s B− 1

m

∑m

j=1 I2,j yields ns,i =

n∗2
s,i for all s≥ 2 and i. Since n∗2 exactly achieves the lower bound, it must be optimal. (Since zDt ≥ 1

for all t, n∗2 > 0 on Â; so, it is a feasible optimal solution.) This is our base case. Now, suppose that

the conditions hold for all s≤ t−1. We want to show that they also hold for period t. By induction

hypothesis, It,i = It−1,i+n∗ t−1
t−1,i−Dt−1,i =

(
1
m

∑t−2

s=1 z
D
s B− (t− 2)µ∗ −∆t−2,i − 1

m

∑t−3

s=1

∑m

j=1∆s,j

)
+(

zDt−1B

m
+∆t−2,i − 1

m

∑m

j=1∆t−2,j

)
−Dt−1,i =

1
m

∑t−1

s=1 z
D
s B − (t− 1)µ∗ −∆t−1,i − 1

m

∑t−2

s=1

∑m

j=1∆s,j.

Using similar convexity arguments as above, it is not difficult to check that n∗t is optimal for

JD
t (It). This completes the induction.

Putting our results together, we have IRCE
t+1,i = 1

m

∑t

s=1 z
D
s B − tµ∗ − ∆t,i − 1

m

∑t−1

s=1

∑m

j=1∆s,j

and IHt+1,i =
1
m

∑t

s=1 z
D
s B − tµ∗ − 1

m

∑t

s=1

∑m

j=1∆s,j. So, I
RCE
t+1,i = IHt+1,i −∆t,i +

1
m

∑m

j=1∆t,j. This

implies: JRCE − JH ≤
∑T

t=1

∑m

i=1(p
∗ +h∗)

[
|∆t,i|+ 1

m

∑m

j=1 |∆t,j|
]
on Â. Taking expectation yields

E[(JRCE −JH)1{Â}]≤ 2m(p∗ +h∗)Tσ∗.

Step 2

We claim that P (Â)≥ 1− 2mTe−B2/(16m4µ∗) for all sufficiently large B2/µ∗. First, note that:

P (Â) =
T∏

t=1

P

(
2m

m∑
i=1

|∆t,i|<B

)
≥

T∏
t=1

[
1−

m∑
i=1

P

(
|∆t,i| ≥

B

2m2

)]
.

By an exponential tail bound for Poisson random variable, it can be shown that P (|∆t,i| ≥

B/2m2)≤ 2e−B2/(16m4µ∗) (see below). Thus, by Bernoulli’s inequality, we can write P (Â) ≥ (1−2m

e−B2/(16m4µ∗))T ≥ 1− 2mTe−B2/(16m4µ∗) for all sufficiently large B2/µ∗.

Proof of an exponential tail bound for Poisson random variable. By Markov’s inequal-

ity, P (|∆t,i|>B/2m2)≤E[er|∆t,i|]/erB/2m2
for all r > 0. By moment generating function of Poisson

distribution, as long as r < 1 is sufficiently small, E[er|∆t,i|]≤E[er∆t,i ] +E[e−r∆t,i ] = eµ
∗(er−1−r) +
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eµ
∗(e−r−1+r) ≤ 2eµ

∗r2 . (The last inequality holds because er−1−r≤ r2 for all small r.) This implies

P (|∆t,i|>B/2m2)≤ 2eµ
∗(r2−(B/2µ∗m2)r) for all sufficiently small r > 0. Minimizing the bound over

r > 0, yields r=B/(4µ∗m2). Since B/(4µ∗m2) is small for all large µ∗, we can use the above bound

and get P (|∆t,i|>B/2m2)≤ 2e−B2/(16m4µ∗).

Step 3

We now put the results of Steps 1 and 2 together. From Step 1,

J∗ ≥ E[JH ]

≥
T∑

t=1

E

c zDt B+
m∑
i=1

p∗

(
1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

zDs B

)+

+
m∑
i=1

h∗

(
1

m

t∑
s=1

zDs B− 1

m

t∑
s=1

m∑
j=1

Ds,j

)+
 .

Since
∑T

t=1 z
D
t B ≥ TB ≥ Tµ∗ (because we assume that zDt > 0) and, for each t, either we have∑t

s=1 z
D
s B ≥ tmµ∗ or

∑t

s=1 z
D
s B < tmµ∗, we can further bound

J∗ ≥ cTµ∗ +
min{p∗, h∗}

m

T∑
t=1

min

E

( t∑
s=1

m∑
j=1

Ds,j − tmµ∗

)+
 , E

(tmµ∗ −
t∑

s=1

m∑
j=1

Ds,j

)+
 .

The expectations inside the min{·} operator are of order
√
tmµ∗. This means that there exists

a constant M ′ > 0 independent of T > 0 such that, for all large µ∗, we have

J∗ ≥ cTµ∗ +M ′√µ∗ T 3/2.

Note that, on Âc, we can loosely bound Jπ with
∑T

t=1 cz
D
t B +

∑T

t=1

∑m

i=1 T (p
∗ + h∗)Dt,i (i.e.,

each unit of demand incur both holding and penalty cost T times). Since E[Dt,i1{Âc}]≤E[D2
t,i]

1/2

E[1{Âc}2]1/2 ≤ 2µ∗P (Âc)1/2 (because E[D2
t,i] = V ar(Dt,i) +E[Dt,i]

2 = µ∗ + (µ∗)2 ≤ 4(µ∗)2 for all

large µ∗), using the exponential tail bound proved in Step 2, we can bound E[(Jπ − J∗)1{Âc}]≤

4m2µ∗(p∗ + h∗)T 3e−B2/(32m4µ∗) ≤ 4m2µ∗(p∗ + h∗)T 3 e−µ∗/(32m4) ≤ 4m2(p∗ + h∗) (because T 3 =

o(eµ
∗/(64m4))). Putting these together with the bounds in Step 1, we conclude that, for all large µ∗,

E[JRCE]−J∗

J∗ ≤ 2m(p∗ +h∗)T
√
µ∗ +4m2(p∗ +h∗)

cTµ∗ +M ′√µ∗ T 3/2
≤ M

√
µ∗ +

√
T

for some M > 0. This completes the proof. �
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Proof of Lemma 1. We prove by induction. Let Ft,s(·) denote the cdf of
∑s

ξ=tDξ,i. Define:

Gt(nt; It) :=
T∑

ξ=t

m∑
i=1

E

p∗( ξ∑
s=t

Ds,i −
ξ∑

s=t

ns,i − It,i

)+

+ h∗

(
It,i +

ξ∑
s=t

ns,i −
ξ∑

s=t

Ds,i

)+
 .

The following expression is useful for the proof:

∂Gt

∂ns,i

=
T∑

k=s

[
(h∗ + p∗)Ft,k

(
k∑

ξ=t

nξ,i + It,i

)
− p∗

]
for all s≥ t. (51)

We now proceed in two steps.

Step 1

In this step, we show that the result is true for t= 1. (This is our base case.) Consider JS
1 (0). By

(51) and KKT conditions, there exists dual variables v1s,i ≥ 0 and w1
s corresponding to constraints

ns,i ≥ 0 and
∑m

i=1 nns,i
= zDs B, respectively, such that, for all i, we have:

(h∗ + p∗)F1,T

(
T∑

ξ=1

nξ,i

)
− p∗ = v1T,i +w1

T (52)

(h∗ + p∗)F1,T−1

(
T−1∑
ξ=1

nξ,i

)
− p∗ = v1T−1,i +w1

T−1 − (v1T,i +w1
T ) (53)

:

(h∗ + p∗)F1,1 (n1,i)− p∗ = v11,i +w1
1 −

T∑
s=2

(v1s,i +w1
s) (54)

v1s,i ·ns,i = 0 ∀s (55)

Let θ1T,i := v1T,i +w1
T and θ1s,i := v1s,i +w1

s −
∑T

ξ=s+1(v
1
ξ,i +w1

ξ) for s≤ T − 1. We claim that ns,i =

zDs B/m is the unique optimal solution of JS
1 (0). To prove this, note that, if we set v1s,i = 0 for all

s and i, the variable θ1s,i is independent of i. By abuse of notation, let θ1s,i = θ1s for all s and i. By

(52),
∑T

ξ=1 nξ,i =F−1
1,T

(
p∗+θ1T
p∗+h∗

)
. Taking the sum over all i’s gives

∑T

ξ=1 z
D
ξ B =mF−1

1,T

(
p∗+θ1T
p∗+h∗

)
. So,

T∑
ξ=1

nξ,i =
T∑

ξ=1

zDξ B

m
.

Similarly, by (53) and (54), for s≤ T − 1, we have:

s∑
ξ=1

zDξ B =mF−1
1,s

(
p∗ + θ1s
p∗ +h∗

)
and

s∑
ξ=1

nξ,i =
s∑

ξ=1

zDξ B

m
.
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We conclude that

ns,i =
zDs B

m
and θ1s = (p∗ +h∗)F1,s

(
s∑

ξ=1

zDξ B

m

)
− p∗ for all s,

from which the constants w1
1,w

1
2, ...,w

1
T can be calculated properly. (Since p∗ + θ1s > 0, the term

F−1
1,s

(
p∗+θ1s
p∗+h∗

)
is well-defined.) We have just shown that there exists dual variables v1s,i ≥ 0 and w1

s

that not only satisfy KKT conditions but also yield ns,i = zDs B/m for all s and i. Our result for

t= 1 follows by the sufficiency of KKT conditions for optimality in a strongly convex optimization.

Step 2

Now, suppose that the formula given in the lemma holds for all t≤ t′. We want to show that it also

holds for t= t′+1. Note that, since the formula for nSt is exactly the constructed optimal solution

in Theorem 4, by the same arguments as in the proof of Theorem 4, we have:

It′+1,i =
1

m

t′∑
s=1

zDs B− t′µ∗ −∆t′,i −
1

m

t′−1∑
s=1

m∑
j=1

∆s,j.

Consider JS
t′+1(It′+1). By KKT conditions, there exists dual variables vt

′+1
s,i ≥ 0 and wt′+1

s corre-

sponding to constraints ns,i ≥ 0 and
∑m

i=1 nns,i
= zDs B, respectively, such that, for all i, we have:

(h∗ + p∗)Ft′+1,T

It′+1,i +
T∑

ξ=t′+1

nξ,i

− p∗ = vt
′+1
T,i +wt′+1

T (56)

(h∗ + p∗)Ft′+1,T−1

It′+1,i +
T−1∑

ξ=t′+1

nξ,i

− p∗ = vt
′+1
T−1,i +wt′+1

T−1 − (vt
′+1
T,i +wt′+1

T ) (57)

:

(h∗ + p∗)Ft′+1,t′+1 (It′+1,i +nt′+1,i)− p∗ = vt
′+1
t′+1,i +wt′+1

t′+1 −
T∑

s=t′+2

(vt
′+1
s,i +wt′+1

s ) (58)

vt
′+1
s,i ·ns,i = 0 ∀s (59)

Arguing as in Step 1, setting vt
′+1
s,i = 0 for all s≥ t′ +1 and i, yields:

It′+1,i +
s∑

ξ=t′+1

nξ,i =
m∑
j=1

It′+1,j

m
+

s∑
ξ=t′+1

zDξ B

m
for all s≥ t′ +1 and i.

Simple algebra gives:

nt′+1,i =
zDt′+1B

m
− It′+1,i +

m∑
j=1

It′+1,j

m
=

zDt′+1B

m
+∆t′,i −

1

m

m∑
j=1

∆t′,j and
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ns,i =
zDs B

m
for all s > t′ +1.

This completes the induction. �

Proof of Theorem 5. The proof is similar to the proof of Theorem 1. Define W π
t+1,i = W π

t,i +

Nπ
t,i − D̂t,i, where W π

1 = Iπ1 = I1. Observe that we can write: W π
t,i = I1,i +

∑t−1

s=1N
π
s,i −

∑t−1

s=1 D̂s,i

and Iπt,i = I1,i+
∑t−1

s=1N
π
s,i−

∑t−1

s=1Ds,i. So, I
π
t,i =W π

t,i−
∑t−1

s=1 ∆̃s,i, where ∆̃s,i =Ds,i− D̂s,i. We now

proceed in three steps.

Step 1

We first compute an upper bound for Ĉ∗ −C∗. We claim that

C∗ ≥ Ĉ∗ −E

 T∑
t=1

m∑
i=1

(pi +hi)

(
t∑

s=1

∆̃s,i

)+
 .

This is not difficult to show. For any policy π ∈Π, we can bound:

T∑
t=1

[
cZπ

t B+
m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)

+ +
m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]

=
T∑

t=1

[
cZπ

t B+
m∑
i=1

(pi +hi)(I
π
t,i +Nπ

t,i −Dt,i)
+ −

m∑
i

pi(I
π
t,i +Nπ

t,i −Dt,i)

]

=
T∑

t=1

[
cZπ

t B+
m∑
i=1

(pi +hi)(I
π
t+1,i)

+ −
m∑
i=1

piI
π
t+1,i

]

≥
T∑

t=1

[
cZπ

t B+
m∑
i=1

(pi +hi)(W
π
t+1,i)

+ −
m∑
i=1

piW
π
t+1,i

]

−
T∑

t=1

m∑
i=1

(pi +hi)

(
t∑

s=1

∆̃s,i

)+

+
T∑

t=1

m∑
i=1

t∑
s=1

pi∆̃s,i,

where the first inequality holds because the identity Iπt,i =W π
t,i−

∑t−1

s=1∆s,i implies (Iπt,i)
+ ≥ (W π

t,i)
+−

(
∑t−1

s=1∆s,i)
+. Taking expectation on both sides, minimizing the sum in the right side of the inequal-

ity over π ∈Π followed by minimizing the sum in the left side of the inequality yields the result.

Step 2

We now compute an upper bound for E
[
CπR − Ĉ∗

]
. We claim that
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E
[
CπR

]
− Ĉ∗ ≤E

 T∑
t=1

m∑
i=1

(pi +hi)

(
−

t∑
s=1

∆̃s,i

)+
 .

This can be shown using similar arguments as in Step 1. Let It+1,i = It,i+nπR

t,i −Dt,i and xt+1,i =

xt,i +nπR

t,i − D̃t,i, with x1 = I1. Since It,i = xt,i −
∑t−1

s=1 ∆̃s,i, we can bound:

E
[
CπR

]
=

T∑
t=1

E

[
c zπ

R

t B+
m∑
i=1

hi(It+1,i)
+ +

m∑
i

pi(−It+1,i)
+

]

=
T∑

t=1

E

[
c zπ

R

t B+
m∑
i=1

(pi +hi)(It+1,i)
+ −

m∑
i

piIt+1,i

]

≤
T∑

t=1

E

[
c zπ

R

t B+
m∑
i=1

(pi +hi)(xt+1,i)
+ −

m∑
i

pixt+1,i

]

+ E

 T∑
t=1

m∑
i=1

(pi +hi)

(
−

t∑
s=1

∆̃s,i

)+
+E

[
T∑

t=1

m∑
i=1

t∑
s=1

pi∆̃s,i

]

= Ĉ∗ + E

 T∑
t=1

m∑
i=1

(pi +hi)

(
−

t∑
s=1

∆̃s,i

)+
 .

The inequality follows because zπ
R
= zπ̂

∗
and It,i = xt,i −

∑t−1

s=1 ∆̃s,i implies (It,i)
+ ≤ (xt,i)

+ +

(−
∑t−1

s=1 ∆̃s,i)
+.

Step 3

Putting the bounds from Steps 1 and 2 together, we conclude that

E
[
CπR

]
−C∗ = E

[
CπR

]
− Ĉ∗ + Ĉ∗ −C∗

≤ E

 T∑
t=1

m∑
i=1

(pi +hi)

(
−

t∑
s=1

∆̃s,i

)+
 + E

 T∑
t=1

m∑
i=1

(pi +hi)

(
t∑

s=1

∆̃s,i

)+


≤ 2
T∑

t=1

m∑
i=1

(pi +hi)E

( t∑
s=1

∆̃s,i

)2
1/2

≤ 2
m∑
i=1

(pi +hi)

 T∑
t=1

(
t∑

s=1

θ2s,i

)1/2
 .

This completes the proof of Theorem 5. �

Proof of Theorem 6. Define W π
t+1,i =W π

t,i +Nπ
t,i −µi, where W π

1 = Iπ1 = I1. Also, define et+1,i =

(et,i +∆t,i)
+ and vt+1,i = (vt,i −∆t,i)

+, where e1 = v1 = 0.
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Step 1

We first show that Iπt,i ≥ W π
t,i− et,i for all t and i. This can be proved by induction. The inequality

obviously holds for t= 1. Now, suppose that Iπt,i ≥ W π
t,i−et,i for some t > 1, we want to show that it

also holds for t+1. But,W π
t+1,i =W π

t,i+Nπ
t,i−µi ≤ Iπt,i+Nπ

t,i−µi+et,i = Iπt,i+Nπ
t,i−Dt,i+et,i+∆t,i ≤

(Iπt,i +Nπ
t,i −Dt,i)

+ +(et,i +∆t,i)
+ = Iπt+1,i + et+1,i. This completes the induction.

We claim that

C̃∗ ≥ C̃D −E

[
T∑

t=1

m∑
i=1

hi et+1,i +
m∑
i=1

pi eT+1,i

]
.

Let Π be the set of non-anticipating policies. For any policy π ∈Π, we can bound:

T∑
t=1

[
cZπ

t B+
m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)

+ +
m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]

=
T∑

t=1

[
cZπ

t B+
m∑
i=1

(pi +hi)(I
π
t,i +Nπ

t,i −Dt,i)
+ −

m∑
i

pi(I
π
t,i +Nπ

t,i −Dt,i)

]

=
T∑

t=1

[
cZπ

t B+
m∑
i=1

(pi +hi)I
π
t+1,i −

m∑
i=1

pi(I
π
t,i +Nπ

t,i −Dt,i)

]

=
T∑

t=1

cZπ
t B+

T∑
t=1

m∑
i=1

hiI
π
t+1,i +

m∑
i=1

pi(I
π
T+1,i − Iπ1,i)−

T∑
t=1

m∑
i=1

pi(N
π
t,i −Dt,i)

≥
T∑

t=1

cZπ
t B+

T∑
t=1

m∑
i=1

hiW
π
t+1,i +

m∑
i=1

pi(W
π
T+1,i −W π

1,i)−
T∑

t=1

m∑
i=1

pi(N
π
t,i −Dt,i)

−
T∑

t=1

m∑
i=1

hi et+1,i −
m∑
i=1

pi eT+1,i

=
T∑

t=1

[
cZπ

t B+
m∑
i=1

pi(µi −Nπ
t,i −W π

t,i)
+ +

m∑
i=1

hi(N
π
t,i +W π

t,i −µi)
+

]

−
T∑

t=1

m∑
i=1

hi et+1,i −
m∑
i=1

pi eT+1,i +
T∑

t=1

m∑
i=1

pi∆t,i

≥ C̃D −
T∑

t=1

m∑
i=1

hi et+1,i −
m∑
i=1

pi eT+1,i +
T∑

t=1

m∑
i=1

pi∆t,i,

where the last inequality follows by definition of C̃D. Taking expectation on both sides and mini-

mizing the sum in the left side of the inequality over π ∈Π yields the result.

Step 2
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Let It+1,i = (It,i+ ñD
t,i−Dt,i)

+ and xt+1,i = (xt,i+ ñD
t,i−µi)

+ (with x1 = I1). Note that It,i ≤ xt,i+vt,i

for all t and i. This can be proved by induction. The inequality obviously holds at t = 1. Now,

suppose that It,i ≤ xt,i + vt,i for some t > 1. Then, It+1,i = (It,i + ñD
t,i −Dt,i)

+ ≤ (xt,i + vt,i + ñD
t,i −

Dt,i)
+ ≤ xt+1,i + vt+1,i. This completes the inducion.

We now compute an upper bound for E[C̃CE − C̃D]. We claim that

E[C̃CE]− C̃D ≤E

[
T∑

t=1

m∑
i=1

hivt+1,i +
m∑
i=1

pivT+1,i

]
.

This can be shown using similar arguments as in Step 1. Observe that

E[C̃CE] =
T∑

t=1

E

[
c z̃Dt B+

m∑
i=1

hi(It,i + ñD
t,i −Dt,i)

+ +
m∑
i=1

pi(Dt,i − It,i − ñD
t,i)

+

]

=
T∑

t=1

E

[
c z̃Dt B+

m∑
i=1

(pi +hi)It+1,i −
m∑
i=1

pi(It,i + ñD
t,i −Dt,i)

]

= E

[
T∑

t=1

c z̃Dt B+
T∑

t=1

m∑
i=1

hiIt+1,i +
m∑
i=1

pi(IT+1,i − I1,i)−
T∑

t=1

m∑
i=1

pi(ñ
D
t,i −Dt,i)

]

≤ E

[
T∑

t=1

c z̃Dt B+
T∑

t=1

m∑
i=1

hixt+1,i +
m∑
i=1

pi(xT+1,i −x1,i)−
T∑

t=1

m∑
i=1

pi(ñ
D
t,i −µi)

]

+E

[
T∑

t=1

m∑
i=1

hivt+1,i +
m∑
i=1

pivT+1,i

]

=
T∑

t=1

E

[
c z̃Dt B+

m∑
i=1

hi(xt,i + ñD
t,i −µi)

+ +
m∑
i

pi(µi −xt,i − ñD
t,i)

+

]

+E

[
T∑

t=1

m∑
i=1

hivt+1,i +
m∑
i=1

pivT+1,i

]

= C̃D + E

[
T∑

t=1

m∑
i=1

hivt+1,i +
m∑
i=1

pivT+1,i

]
.

Step 3

Putting the bounds from Steps 1 and 2 together, we have:

E[C̃CE]− C̃∗ = E[C̃CE]− C̃D + C̃D − C̃∗

≤ E

[
T∑

t=1

m∑
i=1

hivt+1,i +
m∑
i=1

pivT+1,i

]
+ E

[
T∑

t=1

m∑
i=1

hi et+1,i +
m∑
i=1

pi eT+1,i

]
.

Now, since {∆t,i} forms a Martingale with respect to the natural filtration, by Doob’s Maximal

inequality, E[et,i]≤ 2σ
√
t and E[vt,i]≤ 2σ

√
t. Applying integral comparison with

∫ √
t dt yields the
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result. This completes the proof of Theorem 6. �


