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Abstract 
 

Studying how the human brain functions during full-body movement can increase our 

understanding of how to diagnose and treat neurological disorders. High-density 

electroencephalography (EEG) can record brain activity during body movement due to its 

portability and excellent time resolution. However, EEG is prone to movement artifact, and 

traditional EEG methods have poor spatial resolution. Combining EEG with independent 

component analysis (ICA) and inverse source modeling can improve spatial resolution. In my 

first study, I used EEG and ICA to investigate the biomechanical and neural interplay of 

performing a complicated cognitive task at different walking speeds. Young, healthy subjects 

stepped significantly wider when walking with the cognitive task compared to walking alone, but 

walking speed did not affect cognitive performance (i.e. reaction time and correct responses). 

EEG results mirrored cognitive performance, in that there were similar event-related 

desynchronizations in the somatosensory association cortex around encoding at all speeds. For 

my second study, I addressed the problem of movement artifact in EEG. I created an interface 

that blocked true electrocortical signals while recording only movement artifact. I quantified the 

spectral changes in the movement artifact EEG, tested various methods of removing the artifact, 

and compared their efficacies. Artifact spectral power varied across individuals, electrode 

locations, and walking speed. None of the cleaning methods removed all artifact. For my third 

study, I examined cortical spectral power fluctuations and effective connectivity during active 

and viewed full-body exercise with different combinations of arm and leg effort. Larger spectral 

fluctuations occurred in the cortex during rhythmic arm exercise compared to rhythmic leg 

exercise, which suggests that rhythmic arm movement is more cortically driven. The strength 

and direction of information flow was very similar between the active and viewed exercise 

conditions, with the right motor cortex being the hub of information flow. These studies provide 

insight into how the human brain functions during full-body movement and may have 

applications for rehabilitation after a brain injury or in brain monitoring for improving cognitive 

performance. 
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Chapter 1: Introduction 
 

Human neuroimaging during activities such as walking can increase our understanding of how 

the brain coordinates full-body movement. Human full-body movement, and walking in 

particular, is controlled by a mixture of cortical (Suzuki et al., 2004;Harada et al., 2009;Gwin et 

al., 2011) and subcortical (Jahn et al., 2008) structures as well as spinal locomotor networks 

(Bussel et al. 1996; Lamb et al. 2000; Dietz et al. 2003). Understanding the cortical contribution 

to the control of human full-body movement is an important first step toward diagnosing and 

rehabilitating the brain after an injury or illness. In addition, the ability to monitor brain activity 

during real-world activities with walking could lead to the creation of brain-computer interfaces 

for gait assistance. Neuroimaging during full-body movement could also be used in healthy 

individuals for performance monitoring and enhancement. For instance, it could be employed to 

monitor cognitive fatigue in high-stress environments or to give real-time feedback on the 

performance of a cognitive task during walking.  

 

Traditional neuroimaging with tools such as functional magnetic resonance imaging and positron 

emission tomography requires subjects to remain still during scanning. In the past, this 

significantly limited the tasks during which brain activity could be studied. Advances in 

neuroimaging technology, including the advent of functional near-infrared spectroscopy 

(fNIRS), have allowed human cortical activity to be measured during unconstrained movements, 
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such as walking. This has led to an increased estimation of the cortex’s role in the control of 

walking. The primary motor cortex, premotor cortex and supplementary motor area are highly 

metabolically active during walking and running in young, healthy adults (Miyai et al. 2001; 

Suzuki et al. 2004). Studies with fNIRS have also indicated that cortical activity is positively 

correlated with walking speed. Harada and collegues showed increased oxygenated hemoglobin 

in the left prefrontal cortex and supplementary motor area during periods of higher walking 

intensity compared to periods of lower walking intensity in older adults (Harada et al. 2009). A 

drawback to fNIRS, however, is that is measures a slow metabolic signal rather than fast cortical 

potential changes. Therefore, it is not suitable for measuring cortical activity on the time scale of 

a stride during human walking. 

  

Electroencephalography (EEG) is a possible alternative neuroimaging technique that does not 

suffer from the same limitations. Unlike functional magnetic resonance imaging and positron 

emission tomography, modern EEG hardware is light-weight and portable enough to be used 

during unconstrained full-body motion. Unlike fNIRS, EEG has temporal resolution on the order 

of a few milliseconds, which makes it suitable for measuring intra-stride cortical changes during 

walking and walking-like activities.  

 

However, EEG has traditionally been thought of as having poor spatial resolution. Fortunately, 

the addition of advanced statistical techniques, such as independent component analysis (ICA), 

and inverse source modeling can provide spatial localization with a precision of approximately 1 

cm (Mullen et al., 2011). ICA is a blind source separation technique that can separate mixed 

signals into their underlying independent component (IC) signals. EEG signals recorded at the 



3 
 

scalp represent a combination of true brain signals from many cortical areas, electromyographic 

signals, artifacts such as those arising from human movement, and other signals. ICA applied to 

EEG data makes the assumption that signals from functionally distinct cortical areas are 

temporally independent (Makeig et al., 1996). Once ICA has separated EEG signals into 

temporally independent component signals, highly stereotyped artifacts such as horizontal and 

vertical eye blinks, muscle signals, and electrocardiography signals can be easily removed based 

on their spectral properties and scalp maps (Jung et al., 2000a;Jung et al., 2000b). Electrocortical 

source signals arising from individual cortical domains are dipolar (Delorme et al., 2012). 

Inverse source modeling can represent each electrocortical independent component signal with a 

best-fit equivalent current dipole within a boundary element head model (Oostenveld and 

Oostendorp, 2002). Clustering these electrocortical dipoles across subjects allows for group level 

analysis of mobile EEG data (Gwin et al., 2011). 

 

Recently, many studies have taken advantage of this improved EEG hardware and software to 

study the brain during walking (Gramann et al., 2010;Gwin et al., 2010;Gramann et al., 

2011;Gwin et al., 2011;Presacco et al., 2011;Lau et al., 2012;Severens et al., 2012;Sipp et al., 

2013;Seeber et al., 2014;Wagner et al., 2014;Seeber et al., 2015). These studies have all shown 

intra-stride cortical spectral fluctuations during human walking. This provides further evidence 

that the cortex is active during the control of human walking. However, the precise role the 

cortex plays in the control of human gait is still unknown. The answer will advance our 

fundamental knowledge of human motor control and may have many applications for 

rehabilitation and brain-computer interfaces.   
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Despite the successes of mobile brain imaging with EEG, the technique suffers from a 

substantial and previously unaddressed issue. EEG is very prone to movement artifact. This 

movement artifact can be an order of magnitude larger than true neural signals. During gait, 

spectral fluctuations induced by the foot hitting the ground can occur in the same frequency 

bands as true neural signal. Because gait artifact is time-locked to the stride cycle, tools such as 

ICA that rely on the temporal independence of the underlying signals of interest may not be able 

to fully separate brain activity and movement artifact. No previous studies have attempted to 

separate the relative contributions of movement artifact and brain signal during walking, 

therefore the results of previous EEG walking studies, particularly those conducted at fast 

walking speeds, need to be interpreted with caution.  

 

The primary goals of this dissertation were two-fold: 1) to apply the tools of EEG, ICA, and 

spectral analysis to gain a deeper understanding of how the cortex functions during 

unconstrained full-body movements in humans and 2) to advance the field of mobile brain 

imaging by identifying issues in current methodologies and testing potential solutions. In chapter 

1, I examined young, healthy subjects performing a challenging cognitive task across a range of 

speeds to tease out the effects of walking speed on both the performance of a spatial working 

memory task and the gait parameters associated with dual-tasking, such as step length, step 

width, and step length and width variability. In chapter 2, I tackled the problem of movement 

artifact in EEG signals. I designed a novel interface that blocked true electrocortical signals 

while retaining movement artifact signals. I characterized the spectral changes recorded by EEG 

electrodes at different walking speeds, tested various methods of artifact reduction, and 

quantified the results. In chapter 3, I investigated the cortical activity and effective connectivity 
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induced by active and viewed full-body exercise with varying combinations of arm and leg 

effort. The goal of all three of my dissertation projects was to increase our overall understanding 

of the human brain in motion. The following chapters (2-4) contain three complete manuscripts 

that can be read as individual studies. The first two chapters have been peer-reviewed and 

published. The third chapter will be submitted for publication shortly. 
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Chapter 2: Your brain on speed: cognitive performance of a spatial 

working memory task is not affected by walking speed 
 

This chapter has been previously published:  

Kline JE, Poggensee K, Ferris DP. Your brain on speed: cognitive performance of a spatial 

working memory task is not affected by walking speed. Front Hum Neurosci 8:288, 2014. 

 

Abstract 

When humans walk in everyday life, they typically perform a range of cognitive tasks while they 

are on the move. Past studies examining performance changes in dual cognitive-motor tasks 

during walking have produced a variety of results. These discrepancies may be related to the type 

of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for 

walking speed. The goal of this study was to determine how young, healthy subjects performed a 

spatial working memory task over a range of walking speeds. We used high-density 

electroencephalography to determine if electrocortical activity mirrored changes in cognitive 

performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with 

and without performing a Brooks spatial working memory task. We hypothesized that 

performance of the spatial working memory task and the associated electrocortical activity would 

decrease significantly with walking speed. Across speeds, the spatial working memory task 

caused subjects to step more widely compared with walking without the task. This is typically a 
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sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas 

exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the 

somatosensory association cortex, alpha power increased prior to stimulus presentation and 

decreased during memory encoding. There were small significant reductions in theta power in 

the right superior parietal lobule and the posterior cingulate cortex around memory encoding. 

However, the subjects did not show a significant change in cognitive task performance or 

electrocortical activity with walking speed. These findings indicate that in young, healthy 

subjects walking speed does not affect performance of a spatial working memory task. These 

subjects can devote adequate cortical resources to spatial cognition when needed, regardless of 

walking speed. 

 

Introduction 

In everyday life, people perform complex cognitive tasks while walking through various 

environments. This has led to a variety of studies on how humans dual-task cognitive and 

locomotor movements. However, the results from these studies are mixed. Recent reviews 

highlight the conflicting results in regard to cognitive and motor performance during dual-

tasking (Al-Yahya et al., 2011;Schaefer and Schumacher, 2011;Kelly et al., 2012b). Elderly 

individuals (Lindenberger et al., 2000;Simoni et al., 2013;Venema et al., 2013) and individuals 

with neurological deficits (Sheridan et al., 2003;Camicioli et al., 2006;Panyakaew and 

Bhidayasiri, 2013) tend to exhibit increased gait variability and decreased mental performance 

when dual-tasking walking and a cognitive task. Data from young, healthy subjects do not follow 

such a clear pattern. Some studies have shown cognitive-motor dual task cost in young, healthy 

adults (Grabiner and Troy, 2005;Al-Yahya et al., 2009;Verrel et al., 2009;Szturm et al., 2013) 
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but other studies have found that young, healthy subjects either have no dual-task effect 

(Grubaugh and Rhea, 2014) or a reduced magnitude effect (Melzer and Oddsson, 2004;Siu et al., 

2008;Srygley et al., 2009;Yogev-Seligmann et al., 2010b). Furthermore, the observed dual-task 

effect on kinematic or kinetic variables often differs across studies.   

Some of the discrepancies in dual-tasking results across studies may be related to the type of 

cognitive task chosen. The cognitive tasks that have been used for gait dual-tasking studies 

include an N-back task (Verrel et al., 2009), Stroop tasks (Melzer and Oddsson, 2004;Grabiner 

and Troy, 2005;Siu et al., 2008;Kelly et al., 2012a), a serial subtraction and a phoneme-

monitoring task (Al-Yahya et al., 2009;Srygley et al., 2009), an N-back task and a spatial 

attention task (Nadkarni et al., 2010), a verbal fluency task (Yogev-Seligmann et al., 2010a), and 

an automated operation span task (Grubaugh and Rhea, 2014). All of these tasks except the 

automated operation span task (Grubaugh and Rhea, 2014) had some effect on gait parameters. 

The N-back, Stroop, serial subtraction, verbal fluency, and automatic operation span tasks are all 

non-spatial working memory tasks. If walking is similar to upper limb motor tasks, it will engage 

cortical areas that are also involved in spatial working memory.   

 

Work by Seidler and colleagues supports the idea that spatial working memory tasks overlap 

with sensorimotor brain areas (Anguera et al., 2010). Their subjects performed a visuomotor 

adaptation task that involved manipulating a joystick to hit a visual target, and they also 

separately performed a spatial working memory task that involved mental rotation. Activation in 

the dorsolateral prefrontal cortex and the bilateral inferior parietal lobule overlapped between the 

motor and mental tasks. Moreover, spatial working memory performance predicted the rate of 

visuomotor adaptation. This suggests that upper limb visuomotor adaptation and spatial working 

memory likely share mental resources (Anguera et al., 2010). 
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Another factor that may result in discrepancies in dual-task findings across studies is walking 

speed. Walking speed fundamentally changes the dynamics of human gait. At faster speeds there 

is less time to make changes in limb movement for each step, and the body’s inertia is greater 

compared with slower speeds. These biomechanical changes are related to an increase in 

mechanical energy and passive dynamics at faster walking speeds compared with slower walking 

speeds (McGeer, 1993;Collins et al., 2005;Kuo, 2007). In addition, evidence from individuals 

with spinal cord injuries suggests that faster walking speeds rely more on spinal reflex pathways 

and spinal neural networks compared with slower walking speeds (Maegele et al., 2002;Beres-

Jones and Harkema, 2004;Ferris et al., 2004;Behrman et al., 2005) Results from functional near-

infrared spectroscopy indicates that humans have increased frontal brain activity at faster 

walking speeds compared with slower walking speeds (Harada et al., 2009). All of these data 

suggest that walking speed is likely to have an effect on brain activity during walking. By 

studying our subjects across a range of speeds, we could examine speed dependent differences in 

how the spatial working memory task affected brain activation and behavioral performance 

measures. 

 

The purpose of this study was twofold. First, we wanted to determine if concurrent performance 

of a spatial working memory task affects human walking dynamics in young, healthy subjects 

across a range of walking speeds. Second, we wanted to determine if walking speed affects 

cognitive task performance and electrocortical activity during a working memory task across 

those same walking speeds. Reported differences between young and older subjects and across 

studies might be due to differences in the specific walking speeds studied or the fact that there 

was no control of walking speed across the cognitive task and no cognitive task conditions. We 
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studied young, healthy subjects because they generally use a wide range of walking speeds in 

everyday life, and they are more cognitively capable compared with older subjects. We chose a 

Brooks spatial working memory task, because a balance task during standing disrupted 

performance on the spatial but not the non-spatial Brooks task (Kerr et al., 1985), and because 

there seems to be an overlap in spatial working memory brain regions and sensorimotor brain 

regions (Anguera et al., 2010). 

 

Specifically, we had two hypotheses about cognitive and motor dynamics. We hypothesized that 

walking kinematics would show signs of stability challenges when subjects performed the spatial 

working memory task compared with when they had no cognitive task. Increases in gait 

variability or wider step widths are both signs that humans are adapting to stability challenges. 

We also hypothesized that walking at higher speeds would decrease the performance of the 

spatial working memory task and decrease the related electrocortical activity. If faster walking 

speeds require greater cortical attention for control, then cognitive performance and the related 

electrocortical activity should both decrease with walking speed. In this study, we measured 

event-related spectral power synchronized to the presentation of a stimulus as our metric of 

electrocortical activity across conditions. To address these questions, our subjects stood (0.0 m/s) 

and walked at a range of speeds (0.4-1.6 m/s) on a treadmill, with and without performing the 

Brooks spatial working memory task.  
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Materials and methods 

Data collection 

Twenty healthy volunteers completed this study (18 males and 2 females, age range 18 to 39). 

All study procedures were approved by the University of Michigan Human Subjects Internal 

Review Board. All subjects provided written informed consent before participating.  

Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) on a treadmill with and without 

performing the Brooks spatial working memory task (Brooks, 1967). We recorded 

electroencephalography (EEG), motion capture data, ground reaction forces, and response data 

from the Brooks task (Figure 1). We fit each subject with an appropriately sized EEG cap. 

Before recording EEG data, we marked the position of each electrode on the subject’s head using 

a Zebris digitizer (Zebris, Germany). We ensured that all electrode offsets were <20 mV. We 

collected the EEG data at 512 Hz with a 264-channel active electrode array (ActiveTwo 

amplifier Biosemi, Amsterdam, The Netherlands). The EEG signals were initially referenced to a 

common reference. We placed reflective markers on the subjects’ calcanei and recorded motion 

capture marker data at 100 Hz using 10 Vicon motion capture cameras (Vicon, Los Angeles, 

California) placed around the perimeter of the room. We created an automated version of the 

Brooks task using the Simulink toolbox (The MathWorks, Inc.) and collected response data in 

real-time using LabView (National Instruments, Austin, TX).  
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Figure 2-1. Experimental Setup. 20 subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 
m/s) on a treadmill while continuously performing the Brooks spatial working memory task. We 
recorded EEG, kinematics, ground reaction forces, and response data from the Brooks task. 
 

Brooks task 

The Brooks spatial working memory task uses visuospatial working memory (Brooks, 1967). In 

our version of the task, we asked the subject to imagine an empty 3-by-3 grid. Then, a screen one 

meter in front of the subject instructed him or her to visualize the digits one through nine in 

randomized positions in the grid. Digits and their associated positions were presented, one at a 

time. Each stimulus (a digit and its position) appeared on the screen and remained there for two 
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seconds, after which it vanished, and there was a two second pause before the next stimulus 

appeared. The subject had to maintain all the digits and their positions in working memory to 

successfully fill in the entire grid. It took 32 seconds for the subject to get all the information 

they needed to complete one grid. After all nine stimuli were presented, there was a four second 

pause, after which the screen prompted the subject to type the imagined grid, row-wise, into their 

hand-held keypad. Once the subject had pressed nine keys on their keypad the Brooks task began 

again (Figure 2). Subjects were not permitted to change any digits of their response once they 

had been entered. Subjects typically completed five or six runs of the Brooks task during each 

five-minute trial.    

 

 

 

Figure 2-2. Brooks Task. Visual depiction of the Brooks spatial working memory task. Subjects 
performed the Brooks task continuously for five minute intervals. 
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Subjects performed the Brooks spatial working memory task continuously for five-minute 

intervals seven total times. Subjects began by performing the task while standing. Next, they 

alternated between walking with the cognitive task and walking without the cognitive task for 

four trials. Then, they performed a second cognitive task trial while standing. Next, they again 

alternated between walking with the cognitive task and walking without the cognitive task for 

four trials, and finally, they performed the cognitive task while standing for a third time. The 

order of the speeds for the walking trials was randomized across subjects to avoid order effects, 

but all subjects walked at all four speeds with and without the cognitive task. We instructed the 

subjects to respond to the cognitive task as quickly and accurately as possible, and we gave them 

no instructions about how to walk 

 

Brooks task analysis 

We gave the subjects two scores for each Brooks task trial, a percent correct score and a reaction 

time score. Percent correct was the number of digits placed correctly divided by the total number 

of presented digits. Reaction time was the average time that elapsed between the respond prompt 

and the ninth keystroke of the subject’s response. We compared the results across walking 

speeds using a one-way repeated measures ANOVA and the Bonferroni correction post hoc test 

in SPSS version 21 (SPSS IBM, New York, U.S.A). 

 

Gait kinematics analysis 

To analyze the data with respect to the gait cycle, we used custom scripts in Visual3D (C-

Motion, Germantown, MD) to identify gait events from the calcaneus marker motion capture 



15 
 

data. Specifically, we identified heel-strikes times by finding the minimum values for the 

position of the calcaneus marker in the z direction. The length for each step was the absolute 

value of the distance in the y direction between the right and left calcaneus markers at heel strike. 

The width for each step was the absolute value of the distance in the x direction between the 

right and left calcaneus markers at heel strike. We calculated the standard deviation of the step 

length and step width values to obtain step length variability and step width variability values. 

All values were divided by each subject’s leg length to create unitless measures. We performed a 

two-way repeated measures ANOVA with speed and task (Brooks task versus no task) as factor 

levels for step length, step length variability, step width, and step width variability. We set the 

significance level at p<0.05 with a Bonferroni correction post hoc test. 

 

We also performed a more finely-grained analysis of step variability between the encoding and 

retrieval periods of the Brooks task. We broke up the biomechanical data into periods of 

encoding, which is the time period between the start of a task trial (mental grid is empty) and the 

respond prompt (grid is filled), and retrieval, which is the time period between the respond 

prompt and the ninth keystroke of the subject’s response. We calculated step length, step width, 

step length variability, and step width variability as above. We performed statistical analyses as 

above, with speed and task period (encoding period versus retrieval period) as factor levels. 

 

EEG data analysis 

We post-processed the EEG data using custom scripts in the open-source MATLAB toolbox, 

EEGLAB (Delorme and Makeig, 2004). We merged all EEG recordings from a single subject 

into one dataset and high-pass filtered the data above 1 Hz. We removed channels exhibiting 
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substantial artifact on the basis of: 1) magnitude, with channels exhibiting values <30 or >10000 

μV removed, 2) kurtosis, with channels > 3 standard deviations from the mean removed, 3) 

correlation, with channels measuring voltages that are uncorrelated (r≤0.4) with the surrounding 

channel voltages for more than 0.01% of the time removed, and 4) standard deviation, with 

channels measuring voltages that are substantial more variability relative to other channel 

voltages as measured by standard deviation removed. These cutoffs were based on the work of 

Gwin and colleagues (Gwin et al., 2010). We identified and rejected noisy frames, or time 

periods of EEG data exhibiting high power across all channels (greater than 1.6 times the 

interquartile range of the channels). For some subjects, we made minor adjustments to these 

values to ensure that all the noisy channels and frames were removed. On average, we rejected 

130.5 channels (range, 108–153; std. dev., 14.0). We re-referenced the remaining channels to an 

average reference.  

 

 To the cleaned data sets, we applied adaptive mixture independent component analysis 

(AMICA) (Palmer et al., 2006;Palmer et al., 2008) to transform the EEG channel data into 

temporally independent component signals (ICs) (Makeig and Jung, 1996). We used the DIPFIT 

function in EEGLAB (Oostenveld and Oostendorp, 2002) to model each IC as an equivalent 

current dipole within a boundary element head model based on the MNI brain (Montreal 

Neurological Institute, MNI, Quebec). We removed ICs from further analysis if the best-fit 

dipole accounted for less than 85% of the scalp map variance (Gwin et al., 2011), or if the scalp 

map or spectra were indicative of an eye or muscle artifact (Jung et al., 2000a;Jung et al., 2000b).  

We clustered ICs across all 20 subjects based on similarities in dipole location, scalp topography, 

and spectra using a k-means clustering algorithm that is available in EEGLAB. We made 20 
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clusters and retained clusters containing ICs from more than half of the subjects (>10) for further 

analysis.  

 

For each cluster, we created an event-locked plot of spectral power change around each stimulus 

during the Brooks spatial working memory task, defined as the presentation of a digit and its 

position. We computed the power spectrum for each IC for every stimulus. We averaged the 

power spectrum over all stimuli for each IC and over all ICs for each cluster. To allow spectral 

changes over time to be easily visualized, we subtracted a baseline, which was the average 

spectrum over all time points, from the spectrum at each time point. These plots, showing 

spectral change from baseline, are referred to as event related spectral perturbations (ERSPs) 

(Makeig, 1993;Gwin et al., 2011). For the ERSP plots, time zero is stimulus onset. We used 

bootstrapping methods available in EEGLAB (Delorme and Makeig, 2004) to determine regions 

of significant difference from baseline (p<0.05). 

 

We wanted to determine if the ERSP data from the cognitive task showed a significant trend 

across the five walking speeds (0.0 to 1.6 m/s). Each ERSP plot is made up of 507 frequency 

bins and 200 time bins, yielding a total of 101,400 TxF bins. For each TxF bin, we used the 

MATLAB nlmefit function to fit a group level slope that best represented the change in raw 

spectral power across walking speed (from 0.0 to 1.6 m/s) for all independent components in the 

cluster. The nlmefit function fits a model where each model parameter is the sum of a fixed and 

random effect (mixed effect). For our model, walking speed was a mixed effect. After fitting the 

model at each TxF bin, we computed a p-value representing the significance of the slope at that 

bin. Finally, we accounted for family-wise error rate by subjecting all 101,400 p-values for each 

cluster to a false discovery rate algorithm 
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(http://go.warwick.ac.uk/tenichols/software/fdr/FDR.m). False discovery rate (Genovese et al., 

2002) controls the expected proportion of false positives. We set the accepted false discovery 

rate to 5%. Based on the assumption of positive dependence among observations, the false 

discovery rate algorithm generated a new p-value for significance.  

 

Results 

Cognitive task results 

Subjects performed the Brooks spatial working memory task equally well at all walking speeds. 

Responses had an average percent correct around 50% regardless of walking speed (Table 1). 

Because each position had to be filled with one of nine digits, 11% accuracy reflects chance level 

performance. Subjects filled in all nine numbers in the grid after about 11-12 seconds, regardless 

of walking speed (Table 1). Statistically, there was no significant difference by speed for either 

parameter (Table 1). 

 

Table 2-1. Average percent correct and average reaction time for the Brooks spatial 

memory task at all speeds. Data are the mean with the standard deviation in parentheses. The 

values for the Brooks task during standing is the average of the three standing Brooks task trials. 

The bottom two rows give the ANOVA results (F and p values) for percent correct and reaction 

time across speeds for the Brooks task. There were no significant changes with speed in these 

task parameters.  
 

Speed Average Percent Correct Average Reaction Time 
(seconds) 

stand (0.0 m/s)   48.3 (12.8)   11.1 (3.5) 
 

http://go.warwick.ac.uk/tenichols/software/fdr/FDR.m
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0.4 m/s  
51.3 (14.7) 

 

 
11.5 (4.1) 

 

0.8 m/s  
49.8 (18.2) 

 

 
11.9 (4.3) 

 

1.2 m/s  
53.3 (12.8)  

 

 
11.8 (4.9)  

 

1.6 m/s  
46.0 (16.4) 

 

 
10.9 (4.1) 

 

p value    0.18    0.44 

F value    1.798    1.000 

df    4    4 

Error (df)    76    76 

 

Gait kinematics results 

Brooks task vs. walking alone 

The addition of the Brooks spatial working memory task had some limited effects on walking 

kinematics. At all walking speeds, step width increased significantly with the addition of the 

Brooks task compared with walking without the Brooks task (ANOVA, F=22.62, p < 0.001; 

Bonferroni, p<0.05) (Figure 3 (A), Table 2). There were no significant differences between 

cognitive task and no cognitive task for step length (ANOVA, F=1.74, p=0.20) (Figure 3 (B)). 

Step length variability and step width variability also were not significantly different between 

cognitive task and no cognitive task across speeds (ANOVA, F=1.85, p=0.051 and F=1.16, 

p=0.30, respectively) (Table 2). There was no interaction between speed and task condition for 
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each of the four outcomes: step length, step length variability, step width, or step width 

variability (Table 2). 
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Figure 2-3. Average Step Lengths and Widths. (A) Average Scaled Step Widths at all speeds 
with and without the cognitive task. Subjects stepped significantly wider with the cognitive task 
than without the cognitive task at all speeds. Asterisks indicate significant differences between 
conditions. All values were scaled by each subject’s leg length to create unitless measures. (B) 
Average Scaled Step Lengths at all speeds with and without the cognitive task. There were no 
significant differences by task across speed. All values were scaled by each subject’s leg length 
to create unitless measures.  
 

Some gait kinematic parameters varied with walking speed, as expected. When comparing the 

different speeds with each other, step length increased with speed (ANOVA, F=499.08, p < 

0.001; Bonferroni, p < 0.05). Step width decreased at higher speeds (ANOVA, F=6.93, p=0.003; 

Bonferroni, p < 0.05). There were no significant differences in step length variability or step 

width variability between speeds (Table 2).  

 

Table 2-2. ANOVA table showing F and p values for speed, task, and speed x task 

interaction. By speed, all but one crosswise comparison (0.8 m/s and 1.2 m/s) of step length 

values were significantly different from each other (ANOVA, F=499.08, p<0.001; Bonferroni, 

p<0.05), and step width values were significantly different between 0.4 m/s and 1.2 m/s and 0.4 

m/s and 1.6 m/s (ANOVA, F=6.93, p=0.003; Bonferroni, p < 0.05). By task, step width was 

significantly greater with the cognitive task than without the cognitive task at all speeds 

(ANOVA, F=22.62, p < 0.001; Bonferroni, p<0.05).  
 

  
Speed (df=3) 

 
Task (df=1) 

 
Speed x Task 

 

 
Post-hoc Test 

 F value p value F value p value F value p value 
By 

speed 
p<0.05 

By task 
p<0.05 

Step 
Length 

499.08 
 < .001  1.74 

 
0.20 

 
0.90 

 
0.46 

 

 
All but 

0.8 
from 
1.2 
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Step 
Width 

6.93 
 

0.003 
 

22.62 
 < .001  0.53 

 
0.67 

 

0.4 
from 

1.2, 1.6 

 
ALL 

 

 
Step 
Length 
Variabi
lity 
 

3.18 
 0.051  1.85 

 
0.19 

 
0.81 

 
0.50 

   

 
Step 
Width 
Variabi
lity 
 

2.65 
 

0.08 
 

1.16 
 

0.30 
 

0.39 
 

0.76 
   

 

Encoding period versus retrieval period for Brooks task 

Walking kinematics during the Brooks task differed based on task period. Step length decreased 

during retrieval compared with encoding (ANOVA, F=6.53, p=0.02). There was also a 

significant interaction effect between speed and task period on step length (ANOVA, F=6.63, 

p=0.004). Both step width and step width variability increased during retrieval (ANOVA, 

F=35.41, p < 0.001 and F=16.33, p=0.001, respectively) compared with encoding. Step length 

variability did not show a statistically significant difference between encoding and retrieval 

(ANOVA, F=3.07, p=0.097). 

 

Gait kinematic parameters again varied with walking speed. For steps taken in the encoding and 

retrieval periods, there was a significant increase in step length with speed (ANOVA, F=988.22, 

p < 0.001; Bonferroni, p < 0.05). Both step width and step length variability were significantly 
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lower at 1.2 m/s than at 0.4 m/s (ANOVA, F=3.49, p=0.04 and F=4.68, p=0.016, respectively; 

Bonferroni, p < 0.05). There were no other statistically significant differences in step width, step 

length variability, or step width variability at any other speeds. 

 

Table 2-3. ANOVA table showing F and p values for speed, task period, and speed x task 

period interaction. Step length showed a statistically significant interaction between speed and 

task period (ANOVA, F=6.63, p=0.004) as well as an increase in step length at higher speeds 

and during encoding (ANOVA, F=988.22, p < 0.001; Bonferroni, p < 0.05 and F=6.53, p=0.02, 

respectively). Step width and step width variability increased during retrieval (ANOVA, 

F=35.41, p < 0.001 and F=16.33, p=0.001, respectively). Step width and step length variability 

were significantly lower at 1.2 m/s than at 0.4 m/s (ANOVA, F=3.49, p=0.04 and F=4.68, 

p=0.016, respectively; Bonferroni, p < 0.05). 
 

  
Speed (df=3) 

 
Task Period 

(df=1) 

 
Speed x Task 

Period 
 

 
Post-hoc Test 

 F value p value F value p value F value p value 
By 

speed 
p<0.05 

By task 
period 
p<0.05 

Step 
Length 988.22 < 0.001 6.53 0.02 6.63 0.004 ALL ALL 

Step 
Width 3.49 0.04 35.41 < 0.001 2.42 0.10 

0.4 
from 
1.2 

ALL 
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Step 
Length 
Variabi
lity 
 

4.68 0.016 3.07 0.097 0.64 0.60 
0.4 

from 
1.2 

 

 
Step 
Width 
Variabi
lity 
 

1.52 0.25 16.33 0.001 0.77 0.53  ALL 

 

EEG results 

Twelve independent component clusters met our criteria for further analysis (>10 subjects). Of 

the twelve clusters, six showed significant spectral power shifts temporally linked to stimulus 

presentation (Table 3).  

 

Table 2-4. Centroid location for all clusters of electrocortical sources containing ICs from 

more than ten subjects with significant event-locked spectral power shifts. Brodmann area 

(BA) is listed as well as the number of independent components (ICs) in each cluster. 
 

 
Functional area 

 
Brodmann 

area 

 
# of Subjects 

 
# of ICs 

Left Somatosensory 
Association Cortex 

7 13 33 

Central 
Somatosensory 
Association Cortex 

7 12 35 

Right Somatosensory 
Association Cortex 

7 11 17 
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Central Posterior 
Cingulate Cortex 

31 12 35 

Right Superior 
Parietal Lobule  

5 13 39 

Central Premotor and 
Supplementary Motor 
Area  

6 12 26 

 

 

Three clusters in the somatosensory association cortex had large changes in spectral power that 

were temporally linked to stimulus presentation and were consistent for all walking speeds. 

These cluster centroids were located in left, central, and right somatosensory association cortex 

(Figure 4). In all three somatosensory association clusters, alpha (8-13 Hz) power increased prior 

to stimulus presentation and decreased following stimulus presentation (Figures 5-7). The 

increase in spectral power likely represented an anticipatory effect given that it preceded 

stimulus presentation.  
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Figure 2-4. Electrocortical Clusters with event-locked spectral shifts. Clusters of 
electrocortical sources with significant spectral shifts time-locked to stimulus presentation during 
the Brooks spatial working memory task. Green is the central posterior cingulate (BA 31), blue is 
the right somatosensory association cortex (BA 7), orange is the left somatosensory association 
cortex (BA 7), purple is the middle somatosensory association cortex (BA 7), red is the right 
superior parietal lobule (BA 5), and yellow is the central premotor and supplementary motor 
cortex (BA 6). From left to right, the top three images show the centroid locations for each 
cluster from a horizontal, coronal, and sagittal view. The bottom three images show the 
independent component dipoles for each cluster from the same three perspectives. 
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Figure 2-5. ERSPs Left BA7. Event Related Spectral Perturbation (ERSP) plots showing power 
change around the presentation of a stimulus (a digit and its position in an imagined grid) in the 
left somatosensory association cortex (BA 7). Red represents a power increase from baseline and 
blue represents a power decrease from baseline. We set non-significant differences to 0 dB 
(green). The stand condition ERSP is the average of all three standing Brooks spatial working 
memory task trials. 
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Figure 2-6. ERSPs central BA7. Event Related Spectral Perturbation (ERSP) plots showing 
power change around the presentation of a stimulus (a digit and its position in an imagined grid) 
in the central somatosensory association cortex (BA 7). Red represents a power increase from 
baseline and blue represents a power decrease from baseline. We set non-significant differences 
to 0 dB (green). The stand condition ERSP is the average of all three standing Brooks spatial 
working memory task trials. 
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Figure 2-7. ERSPs right BA 7. Event Related Spectral Perturbation (ERSP) plots showing 
power change around the presentation of a stimulus (a digit and its position in an imagined grid) 
in the right somatosensory association cortex (BA 7). Red represents a power increase from 
baseline and blue represents a power decrease from baseline. We set non-significant differences 
to 0 dB (green). The stand condition ERSP is the average of all three standing Brooks spatial 
working memory task trials 
 

There were some minor significant spectral shifts in three other clusters, located in the premotor 

and supplementary motor area, the superior parietal lobule, and the posterior cingulate cortex. In 

the premotor and supplementary motor area, power in the lower alpha band increased 
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significantly following stimulus presentation during standing, but not during walking (Figure 8). 

In the superior parietal lobule and the posterior cingulate cortex, theta (4-7 Hz) power decreased 

significantly following stimulus presentation during standing and walking at all speeds (Figures 

9-10).  

 

 

Figure 2-8. ERSPs BA 6. Event Related Spectral Perturbation (ERSP) plots showing power 
change around the presentation of a stimulus (a digit and its position in an imagined grid) in the 
premotor and supplementary motor cortex (BA 6). Red represents a power increase from 
baseline and blue represents a power decrease from baseline. We set non-significant differences 
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to 0 dB (green). The stand condition ERSP is the average of all three standing Brooks spatial 
working memory task trials. 
 

 

 

Figure 2-9. ERSPs BA 5. Event Related Spectral Perturbation (ERSP) plots showing power 
change around the presentation of a stimulus (a digit and its position in an imagined grid) in the 
right superior parietal lobule (BA 5). Red represents a power increase from baseline and blue 
represents a power decrease from baseline. We set non-significant differences to 0 dB (green). 
The stand condition ERSP is the average of all three standing Brooks spatial working memory 
task trials. 
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Figure 2-10. ERSPs BA 31. Event Related Spectral Perturbation (ERSP) plots showing power 
change around the presentation of a stimulus (a digit and its position in an imagined grid) in the 
posterior cingulate cortex (BA 31). Red represents a power increase from baseline and blue 
represents a power decrease from baseline. We set non-significant differences to 0 dB (green). 
The stand condition ERSP is the average of all three standing Brooks spatial working memory 
task trials. 
 

Clusters containing independent components from more than half of the subjects (>10) were also 

located in left and right premotor and supplementary motor area (BA 6), left and right posterior 

cingulate cortex (BA 31), and right anterior cingulate cortex (BA 24, 32) (Figure 11). These six 
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clusters did not have large event-related spectral power changes linked to stimulus presentation 

that were consistent across walking speeds (Figure 12).  

 

 

 
Figure 2-11. Electrocortical Clusters without Event-locked Spectral Shifts. Clusters 
containing electrocortical sources from >10 subjects but without significant spectral shifts time-
locked to stimulus presentation during the Brooks spatial working memory task. Green is left 
premotor and supplementary motor cortex (BA 6), yellow is right premotor and supplementary 
motor cortex (BA 6), blue is right anterior cingulate (BA 32), red is right anterior cingulate (BA 
24), orange is left posterior cingulate (BA 31), and purple is right posterior cingulate (BA 31). 
From left to right, the top three images show the centroid locations for each cluster from a 
horizontal, coronal, and sagittal view. The bottom three images show the independent component 
dipoles for each cluster from the same three perspectives.  
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Figure 2-12. ERSPs without Event-locked Spectral Shifts. Event Related Spectral 
Perturbation (ERSP) plots showing power change around the presentation of a stimulus (a digit 
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and its position in an imagined grid) in the additional six clusters with independent components 
from >10 subjects. Each row is one cortical area. From top to bottom, the cortical areas are left 
premotor and supplementary motor area (LPM&SMA), right anterior cingulate (RAC), left 
posterior cingulate (LPC), right posterior cingulate (RPC), right anterior cingulate (RAC), and 
right premotor and supplementary motor area (RPM&SMA). The color scale is from -0.5 db to 
0.5 db.  
 

For all six clusters showing significant spectral power shifts temporally linked to stimulus 

presentation, there was no significant effect of walking speed on spectral power. After analysis 

with nlmefit and the false discovery rate algorithm, for all six clusters, the p-value calculated by 

the false discovery rate algorithm was equal to zero.  This means that there were no significant p-

values, and therefore no significant power changes by speed.  

 

Discussion 

Our results indicate that walking speed does not affect spatial working memory task performance 

or task-related electrocortical activity in young, healthy subjects within the range of speeds 

measured here. Our subjects showed no change in response accuracy or reaction time for the 

Brooks spatial working memory task across walking speeds. Their success rate for the task was 

about 50% regardless of whether they were standing, walking slowly, or walking quickly. We 

also found no evidence of change in the electrocortical activity devoted to the cognitive task 

across walking speeds. The event related spectral perturbation graphs in Figures 6-11 reveal 

similar patterns for standing and all walking speeds (with the exception of the premotor and 

supplementary motor cortex, Figure 9). The mixed effects model showed no significant trend in 

spectral power change across speeds. If we had found a speed effect in either task performance 

or electrocortical activity without the other having a speed effect, our results would have been 

harder to interpret.  
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Previous studies have shown that performance of some types of cognitive tasks are affected by 

walking speed. Tomporowski and colleagues showed that in older adults performing an 

executive processing task, response times decreased and response errors increased when walking 

at faster speeds compared with walking at slower speeds (Tomporowski and Audiffren, 2014). 

When walking freely, young and older adults tend to decrease their walking speed when given 

cognitive tasks to perform during locomotion (Beauchet et al., 2002;Patel et al., 2014). This 

decrease in motor performance with dual-task walking and cognition suggest that there are 

common mental resources devoted to both tasks. Thus, we expected to see a change in cognitive 

performance and electrocortical activity as walking speed increased. However, the majority of 

studies reporting dual-task performance costs during locomotion have examined elderly or 

impaired populations. It may be that young, healthy subjects have an increased ability to walk at 

high speeds and perform a challenging cognitive task with no performance decrease compared 

with older subjects. In addition, the type of cognitive task may alter the relative amount of dual-

task performance cost, as different cognitive tasks rely on different cortical substrates (Smith et 

al., 1996). When young, healthy subjects have demonstrated a dual-task performance cost 

(Melzer and Oddsson, 2004;Grabiner and Troy, 2005;Al-Yahya et al., 2009;Verrel et al., 

2009;Szturm et al., 2013;Patel et al., 2014), the cognitive task was not a spatial working memory 

task.  

 

Across all speeds, the addition of the spatial working memory task caused our subjects to step 

more widely compared to walking without a cognitive task. Wider steps have been associated 

with more stable gait (Bauby and Kuo, 2000;McAndrew Young and Dingwell, 2012). Past 

studies on young, healthy subjects performing cognitive tasks during walking have been 

inconsistent in finding step width changes (Grabiner and Troy, 2005;Siu et al., 2008;Al-Yahya et 
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al., 2009). Our spatial working memory task’s significant effect on step width in young, healthy 

subjects could be related to its high difficulty level. Subjects correctly placed only about half of 

the digits at each speed, indicating that the task was very challenging. Patel et al. found that the 

complexity of the cognitive task influences the relative dual-task cost during gait (Patel et al., 

2014). The lack of dual-task effects on gait kinematics for young, healthy subjects in past studies 

may be related to this difficulty/complexity effect or to the type of cognitive task, as we 

discussed above. 

 

When we broke down the kinematic results into periods of encoding vs. retrieval for the 

cognitive task, we found that the retrieval period showed changes in gait indicative of decreased 

stability. Step width and step width variability were both greater in the phase of the cognitive 

task that required the subjects to push buttons on the handheld device (retrieval) compared with 

the memorization period (encoding). The subjects also took shorter steps during the retrieval 

period compared to the encoding period. All of these changes in gait kinematics are traditionally 

seen by individuals that are older and have reduced gait stability (Dubost et al., 2006;Siu et al., 

2008;Yogev-Seligmann et al., 2008;Granacher et al., 2011). The encoding task is not unlike 

many everyday walking tasks such as walking and texting, or walking and dialing a phone 

number. This suggests that in the real world, performing dual manual and locomotor tasks likely 

results in humans responding to stability challenges as well. 

 

We found consistent electrocortical activity around stimulus encoding at all walking speeds in 

the somatosensory association cortex. Event-related spectral perturbations showed substantial 

alpha (8-13 Hz) synchronization preceding stimulus presentation and alpha desynchronization 

following stimulus presentation during the Brooks task. This area of the parietal lobe is involved 
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in locating objects in space and is engaged during spatial working memory tasks (Carlesimo et 

al., 2001). We presented a stimulus every four seconds during the Brooks task. Alpha power in 

the left, right, and central portions of the somatosensory association cortex increased 

approximately 1 second before the presentation of the stimulus (a digit and its corresponding 

position in the grid) and remained elevated until shortly after stimulus presentation. Alpha power 

in the somatosensory association cortex decreased approximately 0.5 seconds after stimulus 

presentation. This could represent neural encoding of the digit and its position in working 

memory. The alpha power fluctuation was stronger in the right than in the left somatosensory 

association cortex, which may indicate that this brain area shows a right hemisphere dominance 

for locating objects in space. Eighteen of the twenty subjects were right-hand dominant.  

 

We found small, significant theta power decreases around stimulus encoding in two brain areas: 

the right superior parietal lobule and the central posterior cingulate. Theta power modulations 

during memory tasks have been associated with memory encoding and maintenance by previous 

electrophysiology studies (Bastiaansen et al., 2002;Friese et al., 2012;Itthipuripat et al., 

2013;Lenartowicz et al., 2014). Bastiaansen and colleagues found sustained theta power 

decreases in frontal electrodes during the retention phase of a spatial working memory task 

(Bastiaansen et al., 2002). Burke and colleagues also found decreases in theta phase synchrony 

during memory encoding (Burke et al., 2013). Many studies have shown theta increases in 

frontal brain regions during memory encoding and maintenance (Itthipuripat et al., 

2013;Lenartowicz et al., 2014). However, we did not find any theta power increases in the 

frontal brain areas during performance of our task. It could be that during walking, these areas 

are engaged in gait-related processing, so cognitive task-related electrocortical shifts are 

undetectable within the gait related electrocortical activity. A host of functional near-infrared 
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spectroscopy studies have found that the frontal cortical areas are highly engaged during human 

walking, even without a secondary task (Miyai et al., 2001;Suzuki et al., 2004;Harada et al., 

2009). In addition, in a previous study from our lab, we also found electrocortical evidence of 

frontal cortical involvement in human walking without a cognitive task (Gwin et al., 2011). Our 

analysis of spectral perturbations in electrocortical activity was specifically limited to changes 

synchronized to stimulus presentation.  

 

On a similar note, activity in the premotor and supplementary motor cortex may demonstrate 

some overlap between cognitive and motor processing (Figure 9). During standing, power in the 

lower alpha band increased around stimulus presentation, and alpha and beta power decreased 

shortly thereafter. During walking, this effect was not visible. Studies have shown that the 

premotor and supplementary motor cortex is engaged during walking (Gwin et al., 2011). During 

walking this area was likely engaged in motor processing, and cognitive-related activity was 

either not present or undetectable.     

 

Some researchers have questioned how much mechanical artifact is present in walking EEG data 

synchronized to the gait cycle (Castermans et al., 2014). Previous studies have shown that EEG 

during walking is viable for non-gait synchronized data, as the approach of synchronizing EEG 

data to cognitive events not coupled to gait allows mechanical artifacts to wash out (Gramann et 

al., 2010). We observed the same pattern of neural activity at all speeds from standing (0.0 m/s) 

to very fast walking (1.6 m/s). This result indicates that EEG and ICA can reveal neural activity 

from a continuous cognitive task even when a subject is moving quickly. To our knowledge, our 

results are the first to show that high-density EEG and ICA can allow for the study of continuous 

cognitive dynamics at high walking speeds. This has important implications for the field of 
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mobile brain imaging, as it suggests EEG could be used even in real-world environments that 

include walking at normal speeds.  

 

Our study had some limitations that prevent us from drawing broad conclusions about the effects 

of speed on spatial working memory. First, we only examined young, healthy subjects. It is 

possible that we would have seen a larger effect in gait parameters and task performance if we 

had tested elderly subjects. Future studies should examine the neural and performance responses 

of elderly and neurologically impaired individuals. Second, we only examined a single cognitive 

task and a single cognitive task difficulty level. While unlikely, it is possible that an easier task 

or a harder task may have resulted in a different outcome. Third, the majority of the subjects in 

this study were males. There is some evidence that males may walk with increased variability 

under dual-task conditions. Hollman and colleagues had older adults walk and performed a 

backward spelling task (Hollman et al., 2011). Both genders increased their variability when 

walking with the cognitive task, however the variability increase during dual-task walking was 

greater in men than women. Finally, we did not assess our subjects’ preferred speed. A study by 

Schaefer et al. showed that children and young adults improved their cognitive performance on a 

working memory task while walking at their preferred speed on a treadmill (Schaefer et al., 

2010). The ideal dual-task cost study would include a range of cognitive tasks and difficulty 

levels, to separate out overlap in neural substrates between walking and various cognitive tasks.  

Our findings raise some interesting questions about dual-tasking. A popular view suggests that 

because walking requires mental effort, performing both walking and thinking can decrease 

thinking ability compared with thinking while standing still (Kahneman, 2013). Our results do 

not support that conclusion. For our spatial working memory task, mental performance did not 

change for walking vs. standing. Similarly, a recent study on the use of a treadmill desk found 
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that human subjects performed equally well on a range of cognitive tasks for slow walking 

compared to standing (Alderman et al., 2014). John and colleagues (John et al., 2009) also 

reported that subjects performing slow walking at a treadmill desk had no significant differences 

in selective attention, processing speed, or reading comprehension compared to sitting at a desk. 

Our study only examined a single cognitive task, but we found no detrimental effects over a wide 

range of walking speeds on cognitive ability.  

 

Other researchers have suggested that moving your body may actually improve creativity. 

Slepian and Ambady (Slepian and Ambady, 2012) found that subjects performed better on 

cognitive tasks related to creativity when moving their arms in fluid movements compared with 

not moving their arms. Longer term studies have found that chronic exercise also seems to 

increase creativity, but that is on the time scale of weeks or months (Flaherty, 2011). Putting 

together all of these observations with our own results, we suggest that people should not be 

concerned that walking while thinking will impair their cognitive performance. All in all, our 

study demonstrates that in young, healthy subjects perform equally well on a challenging spatial 

working memory task during walking at a range of speeds as during standing. Given the many 

benefits of walking (Rippe et al., 1988;Hardman and Morris, 1998), people should be 

encouraged to walk and think whenever possible.  
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Chapter 3: Isolating gait-related movement artifacts in  

electroencephalography during human walking 
 

This chapter has been previously published:  

Kline JE, Huang HJ, Snyder KL, Ferris DP. Isolating gait-related movement artifacts in 

electroencephalography during human walking. J Neural Eng 12(4):046022, 2015. 

 

 

Abstract 

Objective: High-density electroencephalography (EEG) can provide insight into human brain 

function during real-world activities with walking. Some recent studies have used EEG to 

characterize brain activity during walking, but the relative contributions of movement artifact 

and electrocortical activity have been difficult to quantify. We aimed to characterize movement 

artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of 

artifact removal methods. We also quantified the similarity between movement artifact recorded 

by EEG electrodes and a head-mounted accelerometer. Approach: We used a novel experimental 

method to isolate and record movement artifact with EEG electrodes during walking. We 

blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and 

simulated an electrically conductive scalp on top of the swim cap using a wig coated with 

conductive gel. We recorded motion artifact EEG data from nine young human subjects walking 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Kline%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=26083595
http://www.ncbi.nlm.nih.gov/pubmed/?term=Huang%20HJ%5BAuthor%5D&cauthor=true&cauthor_uid=26083595
http://www.ncbi.nlm.nih.gov/pubmed/?term=Snyder%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=26083595
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferris%20DP%5BAuthor%5D&cauthor=true&cauthor_uid=26083595
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on a treadmill at speeds from 0.4-1.6 m/s. We then tested artifact removal methods including 

moving average and wavelet-based techniques. Main Results: Movement artifact recorded with 

EEG electrodes varied considerably, across speed, subject, and electrode location. The 

movement artifact measured with EEG electrodes did not correlate well with head acceleration. 

All of the tested artifact removal methods attenuated low-frequency noise but did not completely 

remove movement artifact. The spectral power fluctuations in the movement artifact data 

resembled data from some previously published studies of EEG during walking. Significance: 

Our results suggest that EEG data recorded during walking likely contains substantial movement 

artifact that: cannot be explained by head accelerations; varies across speed, subject, and 

channel; and cannot be removed using traditional signal processing methods. Future studies 

should focus on more sophisticated methods for removing of EEG movement artifact to advance 

the field. 

 

Introduction 

Measuring brain activity during human walking has the potential to advance both basic 

neuroscience and functional technologies. Imaging the brain during movement can help 

determine what brain areas are involved in neuromotor control and how they interact during 

motor activities. Further, real-time information about brain processes during everyday activities 

as people walk could allow for the design of more broad-ranging brain machine interfaces. In 

addition, mobile brain imaging devices would provide valuable information about the brain 

activity patterns of individuals with neural disorders. For these goals to be achieved during 

locomotion, it is imperative to: 1) be able to identify specific brain sources, which requires good 
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spatial resolution, 2) be able to observe split-second neural changes within a stride, which 

requires good temporal resolution, and 3) be able to extract strictly neural signals. 

  

Advanced electroencephalography (EEG) technologies allow for novel insight into human brain 

function during whole-body movements. EEG has inherently good (millisecond) temporal 

resolution, and inverse source modeling techniques can provide spatial localization in the range 

of 1 cm (Makeig and Jung, 1996;Makeig et al., 2004a;Makeig et al., 2004b;Mullen et al., 2011). 

Functional near-infrared spectroscopy (fNIRS) has been used to study walking previously (Miyai 

et al., 2001;Suzuki et al., 2004;Harada et al., 2009), but it relies on a hemodynamic response, 

which has poorer temporal resolution. EEG offers better temporal resolution than fNIRS 

(Villringer and Chance, 1997;Irani et al., 2007), because EEG measures fast electrical potential 

changes rather than a slow metabolic signal. Combined with advanced statistical techniques, 

EEG can have comparable spatial resolution to fNIRS (Makeig et al., 2004a;Makeig et al., 

2004b). Our laboratory has recorded electrocortical spectral fluctuations during treadmill 

walking in healthy, young adults (Gwin et al., 2011;Sipp et al., 2013). Other groups have also 

proved the feasibility of measuring scalp electrocortical signals during human walking, at speeds 

ranging from 0.42 m/s to 1.9 m/s, to provide insight into brain function (Gramann et al., 

2010;Cheron et al., 2012;Lau et al., 2012;Severens et al., 2012;Wagner et al., 2012;Seeber et al., 

2014; 2015) . 

  

EEG recordings are a mixture of electrocortical and other signals, which ideally need to be 

separated to examine the brain activity. Other signals recorded by EEG systems include muscle 

and heart activity, eye movement, line noise, electromagnetic fields, and movement artifact 

(Figure 1(a); (Gwin et al., 2010)). To identify and remove these additional signals, first and 
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foremost, researchers can use visual inspection of EEG data to reject channels and time periods 

with large movement artifacts. There are also relatively simple frequency-based methods for 

removing artifact. Line noise can be separated by identifying and removing power at a frequency 

of 50 or 60 Hz. Either all power at this frequency can be removed via a notch filter, or only that 

which is independent of data at other frequencies. If the primary focus of a study is on non-gait 

related cognitive tasks, a moving average artifact template can be used to reject movement 

artifacts (Gwin et al., 2011). The drawback of this technique is that it also removes electrical 

brain activity that is time-locked to the gait cycle. Wavelet-based cleaning methods have been 

used in previous EEG studies to identify or remove low-frequency spectral fluctuations 

(Daubechies, 1988;Adeli et al., 2003).  

 

There are additionally more complex, comprehensive mathematical methods for removing 

artifact from neural data. Blind source separation techniques, such as Independent Component 

Analysis (ICA) and Canonical Correlation Analysis (CCA) (Sweeney et al., 2013), have been 

successful at separating eye and muscular artifacts from EEG data (Jung et al., 2000a;Jung et al., 

2000b), but they may be less successful with movement artifact due to the lack of independence 

between different noise signals. Additionally, Artifact Subspace Reconstruction (ASR) (Mullen 

et al., 2013) has also been used to remove artifacts from EEG recordings. ASR is a more 

complex, sophisticated method for movement-related artifact removal, but is beyond the scope of 

this paper. However, it will be included in a future analysis of how ASR and other more 

sophisticated techniques work in isolation and in combination to remove gait-related artifact.  

  

Another approach to determining how to separate movement artifacts from scalp EEG during 

human walking is to focus on characterizing the electrical artifacts induced by gait. Castermans 
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and colleagues recently compared spectral fluctuations over the gait cycle in EEG data and 

accelerometer data. They found common harmonics in the spectra of the EEG and the 

accelerometer that roughly corresponded to the subjects’ fundamental stepping frequency and 

increased with speed (Castermans et al., 2014). However, because accelerometers and EEG 

electrodes measure fundamentally different quantities, gait-related movement artifacts may differ 

between the two. Small movements of electrodes relative to a subject cause the electrodes to 

register a change in voltage, whereas the accelerometer only measures changes in the head’s 

acceleration relative to the environment. Using EEG electrodes to quantify artifact induced by 

head movement during locomotion is also problematic because the EEG will contain a mixture 

of true electrocortical signals and artifact signals, with no clear way to distinguish the relative 

contributions of the two. If we could explicitly determine the spectral and temporal properties of 

the movement artifact, it might be possible to remove the artifact while keeping the real 

electrocortical content that is synchronized to the gait cycle. However, to truly characterize 

movement artifact in EEG recordings, we must first isolate it.   

  

The purpose of this study was to isolate, record, and characterize movement artifact in EEG 

during human walking. We used a nonconductive layer, a silicone swim cap, to block all neural, 

muscular, ocular, and other physiological signals from the EEG electrodes (Figure 1(a)). While 

the signal we recorded likely contained nonphysiological electrical signals and movement 

artifact, the nonphysiological electrical signals, such as line noise and electromagnetic field 

noise, occur in a narrow frequency band and are small in magnitude, respectively, leaving our 

data dominated by movement artifact. We therefore refer to the data recorded by the EEG 

electrodes as movement artifact data. We placed a wig coated with conductive gel over the swim 

cap to simulate an electrically conductive human scalp with hair. Nine healthy subjects walked 
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on a treadmill over a range of speeds, while we recorded movement artifact data, head 

accelerations, and kinematic data. We hypothesized that EEG electrodes isolated from any 

electrophysiological signals would show gait-linked spectral fluctuations that varied across 

speed. We also tested the ability of a few simple cleaning methods to remove this movement 

artifact. Characterizing and attenuating walking-related movement artifact in EEG electrodes 

should improve our ability to study brain dynamics during walking. 

 

Material and Methods 

Data Collection 

Nine healthy young adults (27.0 +/- 4.8; male=4, female=5) with no known musculoskeletal or 

neurological deficits participated in the study. The University of Michigan Institutional Review 

Board approved the study protocol, and all subjects gave written informed consent. 

 

We devised a multi-layer approach to isolate and measure movement artifact with EEG 

electrodes (Figure 1(b); Active II, BioSemi, Amsterdam, The Netherlands). First, we placed a 

nonconductive layer, a silicone swim cap, over the subject’s scalp. The nonconductive layer 

prevents electrophysiological signals from propagating to the electrodes. To measure voltage 

differences generated by movement, the recording electrodes needed to be in contact with a 

conductive medium. To achieve this, we used a wig that was coated with conductive gel to 

simulate a scalp with hair. This was placed directly over the swim cap. We then placed the EEG 

cap over the simulated scalp and gelled the electrodes as customary for EEG studies (Gwin et al., 

2011). To view whether the silicone swim cap was blocking electrophysiological signals from 

the EEG electrodes, we asked subjects to blink their eyes and clench their jaw as we visually 
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inspected the channel data. We ensured that no muscle or eye artifact was visible in the EEG 

traces. To verify that we were measuring movement artifact, we asked subjects to nod their head 

up-and-down and shake their head from side-to-side, and we also physically shook the wires as 

we visually inspected the channel data for movement artifacts. Large movement artifacts were 

visible in the EEG traces during head movement and shaking for all subjects.  

 

We also estimated how well the resistances of our simulated scalp compared with the resistance 

of a natural human scalp (~0.001-0.1 Mohm for dry skin, (Fish et al., 2003)). We used a 

multimeter to measure the resistances between the ground and the electrodes on the simulated 

scalp (0.9 ± 0.4 Mohm). We also checked that the BioSemi electrode offsets were <20 mV, as 

recommended by BioSemi’s website (www.biosemi.com). The BioSemi system uses active 

electrodes, which are designed to reduce current flow through the skin-gel-electrode interface 

and thus reduce extraneous voltages from changes in impedance related to changes in the skin-

gel-sensor interface. The measured multimeter resistances of our simulated scalp and the voltage 

offsets provided by BioSemi suggest that the electrode characteristics were similar for the 

simulated scalp and actual human scalp.  
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Figure 3-1. Experimental Setup. Conceptual schematic and experimental set up. a) All of the 
signals that contribute to scalp EEG recordings, categorized as electrophysiological or non-
electrophysiological. b) Schematic of the methodological concept for isolating and measuring 
gait-induced movement artifact in EEG recordings. A silicone swim cap blocks true 
electrocortical signals while a simulated conductive scalp and a conductive wig allows the 
electrodes to measure voltage differences resulting from gait dynamics. c) Schematic of the 
experimental setup. Subjects walked at 4 speeds (0.4, 0.8, 1.2, and 1.6 m/s) on a custom split-belt 
force measuring treadmill. Trajectories of the calcaneus markers were recorded. An inertial 
measuring unit (IMU) with a tri-axial accelerometer placed on the forehead above the nose 
measured accelerations of the head during walking. 
 

Subjects walked on a custom force treadmill at a range of speeds (0.4, 0.8, 1.2, 1.6 m/s) as we 

recorded movement artifact data, lower limb kinematics, and accelerations of the head (Figure 

1C). Subjects walked at each speed for 10 minutes, and we randomized the order of the speeds. 

We also collected 10 minutes of sitting data at the beginning and end of the walking portion of 

the experiment. We used a ten-camera motion capture system (Vicon Nexus, Oxford, UK) to 

record kinematic trajectories of calcaneus markers, one on each foot. We recorded ground 

reaction forces for each lower limb as subjects walked. For the final six of the nine subjects, we 

used double-sided tape to place an inertial measuring unit (IMU) with a tri-axial accelerometer 

(The Opal, APDM, Inc., Portland, OR) on the subject’s forehead along the midline of the nose 

and covered the accelerometer with an additional piece of tape (Figure 1C). We placed the 

accelerometer on the forehead in order to get the best estimate of the acceleration of the head 

without interfering with the movement artifact recorded in any of the EEG channels. We 

recorded 5 minutes of accelerometer data for each speed. The sampling frequencies were 512 Hz, 

100 Hz, 1000 Hz, and 128 Hz for the EEG, motion capture, ground reaction force, and 

accelerometer data, respectively.  
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Data Analyses 

We compared the time courses of the accelerometer data, ground reaction forces, and movement 

artifact signal. We first aligned all of the data to a common trigger, a square wave of a constant 

frequency sent simultaneously to the different recording systems. We smoothed the ground 

reaction forces using a moving average of a 50-ms time window. 

 

To analyze the data with respect to the gait cycle, we used the calcaneus markers to identify gait 

events. We applied a 6 Hz low-pass Butterworth filter to smooth the kinematic data. The gait 

cycle consisted of the following gait events: initial left toe-off (LTO), left heel-strike (LHS), 

right toe-off (RTO), right heel-strike (RHS), and the subsequent left toe-off. Heel-strikes 

corresponded to the times of the troughs of the calcaneus marker vertical position and toe-offs 

corresponded to the times of the peaks of the calcaneus marker velocity in the vertical direction  

(Kline et al., 2014). 

 

We processed the EEG movement artifact signals offline using customized MATLAB scripts and 

EEGLAB (Delorme and Makeig, 2004). We performed initial analyses using all of the 

electrodes, but eventually focused our analyses on 5 electrodes spatially distributed around the 

head at the front (E12), back (A19), left (G11), right (C18), and top center (A1). These positions 

are relative to a BioSemi 256 channel headcap (http://www.biosemi.com/headcap.htm). We 

high-pass filtered the movement artifact signals using a two-way least squares FIR filter with a 

cutoff frequency of 1 Hz to remove drift. We divided the data into epochs corresponding to gait 

cycles, time-locked to left toe-off. To be as consistent as possible with previous published 

studies, we re-referenced the data to the average of all 256 channels (Gwin et al., 2011;Sipp et 

al., 2013). We rejected epochs that were greater than 3 standard deviations from the means of the 
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gait event times. We then used the remaining epochs as the raw data that we included in further 

analyses.  

 

We applied three movement artifact cleaning methods (discussed below) to the movement 

artifact data. For the uncleaned and the three cleaned data sets, we calculated changes in spectral 

power relative to baseline (event related spectral perturbations: ERSPs) according to Gwin et al.  

(Gwin et al., 2011). Briefly, this involved computing a spectrogram for each channel and epoch 

of data. We time-warped the spectrograms so that the gait events occurred at the same relative 

time within the gait cycle, to account for differences in absolute timing from stride to stride. We 

averaged the spectrograms for all epochs for the same channel and condition. To visualize power 

fluctuations about the baseline frequency spectrum, we subtracted the average frequency 

spectrum for the whole gait cycle from the frequency spectrum at each time point. We then 

averaged these ERSPs across all subjects (Makeig, 1993;Makeig et al., 2004a). We used 

bootstrapping methods available in EEGLAB (Delorme and Makeig, 2004) to determine regions 

of significant difference from baseline (p < 0.05). 

 

Furthermore, we wanted to quantify how similar the ERSP plots were across subject, speed, and 

electrode location. An ERSP is a three dimensional matrix of time by frequency by power, with 

the power values representing a power change from baseline. We used the Matlab ‘corr’ function 

to compute a pairwise linear correlation coefficient for the power values for our ERSP 

comparisons (Tables 1-2). We focused our analyses on channel A1 and 1.2 m/s. Channel A1 in 

the BioSemi EEG system is comparable to Cz in a traditional 10-20 system, and is closest to the 

motor cortex, where we would expect there to be significant activity during walking in a true 
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EEG study. Preferred walking speed is consistently found to be 1.2-1.3 m/s, leading us to focus 

on 1.2 m/s, the closest walking speed to preferred that we collected. 

 

Movement Artifact Cleaning Methods 

We applied three potential artifact cleaning methods: 1) moving average, 2) wavelets, and 3) 

moving average + wavelets. The first artifact cleaning method we used was a moving average, 

outlined in (Gwin et al., 2010). For the moving average, we specified the number of time-warped 

strides to average before and after the current stride and the low-pass filter cutoff frequency to 

apply to the average stride data. We subtracted this low-pass filtered time-warped average stride 

data from the raw data for the current stride. We used 10 strides and a 10 Hz low-pass filter 

cutoff, based on (Gwin et al., 2010). We then detrended the data, as the moving average 

processing sometimes introduced a linear trend into the data. The second artifact cleaning 

method was wavelets. Using Daubechies 4 wavelets, we removed signal content at frequencies 

below 8 Hz and applied the wavelets to the whole stride. The third artifact cleaning method 

combined the moving average and wavelets. We first applied the moving average (10 strides, 10 

Hz cutoff) and then the wavelet method (8 Hz over the whole stride). The moving average 

method occasionally introduced artifacts (<1% of the epochs). We identified epochs with values 

above a threshold of 100 µV and rejected them from all files to ensure that all artifact cleaning 

methods analyzed the same strides. 
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Accelerometer Analyses 

We compared the movement artifact signals measured using the EEG system with the head 

accelerations in all three directions (vertical, mediolateral, and anterior-posterior) measured 

using an accelerometer placed on the forehead. We used a fast Fourier transform (FFT) to 

compute the frequency spectra of each measure for the entire length of the data (EEG frequency 

resolution: 0.0017 Hz, accelerometer frequency resolution: 0.0033 Hz). We downsampled the 

movement artifact data recorded with the EEG system to 128 Hz, to match the sampling 

frequency for the accelerometer. Because there is most likely a time lag between the movement 

artifact signals recorded in the EEG electrodes and the head acceleration, we calculated the 

cross-correlation between the time series of each head acceleration direction and each electrode 

channel. We used MATLAB’s xcorr function to find the lag that corresponded with the 

maximum correlation for each combination of head acceleration direction and electrode channel 

(3 head acceleration directions x 256 EEG channels). Because the maximum correlations mostly 

occurred between the vertical head acceleration and movement artifact signals, we shifted the 

time series data by the lag that corresponded to the maximum correlation between the vertical 

head acceleration direction and each channel. The lag time used to align the movement artifact 

signal with the head acceleration was specific to each channel. We then performed a linear 

regression using the whole time series (~5 minutes) where an individual channel movement 

artifact signal was the response and all three head acceleration directions were predictors using 

MATLAB’s fitlm function. We repeated this linear regression analysis for each electrode 

channel to determine how much of the variation in the movement artifact signal recorded by that 

specific EEG electrode was due to the accelerations. To examine time-frequency characteristics, 



55 
 

we also compared ERSPs for the accelerometer data with the ERSPs for the movement artifact 

data. To allow for fair comparison, we computed ERSPs for the accelerometer data using the 

same process described above for the movement artifact data.  

 

Mastoid Experiment: Comparison of Data from Simulated Scalp Interface and Human 

Skin Interface 

To verify that the electrode/simulated scalp interface was fundamentally similar to an 

electrode/human skin interface, we had one of our nine subjects return for an additional 

experiment (Figure 8(a)). To obtain movement artifact data for the electrode/simulated scalp 

interface, we set up the experiment as previously described using the silicone swim cap and wig 

coated with conductive gel. The subject walked on the treadmill for five minutes at 1.2 m/s while 

we collected movement artifact data on the simulated scalp interface. To obtain movement 

artifact data for an electrode/human skin interface, we placed one EEG electrode on the subject’s 

left mastoid, a bony prominence known to have minimal electrophysiological signal. The 

BioSemi system uses two separate electrodes (common mode sense, CMS, electrode; driven 

right leg, DRL, electrode) to increase the common mode rejection ratio, instead of using a single 

ground electrode. There was not enough space on the subject’s mastoid to place the EEG 

electrode and the two BioSemi reference electrodes. We therefore placed the BioSemi CMS 

reference electrode on the left mastoid, next to the EEG electrode we were recording from, and 

the DRL reference electrode on the right mastoid. The subject again walked for five minutes at 

1.2 m/s while movement artifact data were recorded.  
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To determine if the two interfaces recorded movement artifact of a similar pattern and 

magnitude, we applied the ERSP analysis described above to both control datasets. For the 

electrode/simulated scalp data, we computed ERSP plots for the channels closest to the left 

mastoid, G21 and G22 (http://www.biosemi.com/headcap.htm). For the electrode/human skin 

data, we computed an ERSP plot for the electrode placed on the subject’s mastoid. We used the 

correlation method described above to compute a measure of similarity between the simulated 

scalp and mastoid ERSPs.  

  

Results 

The EEG electrodes measured movement artifact waveforms that varied across speed and 

electrode location. Waveforms increased in amplitude as walking speed increased (Figure 2). At 

the slowest speed, little movement artifact was detected. At the fastest speed, the movement 

artifact waveforms were more evident. The movement artifact also varied between electrode 

locations (Figure 2). 
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Figure 3-2. Time courses. Time courses of movement artifact and accelerometer data. Time 
courses of the ground reaction forces for the right and left legs, head accelerations (vertical, 
mediolateral, and anterior-posterior), and movement artifacts recorded in 5 electrodes (A1, A19, 
C18, E12, and G11) for the 4 walking speeds (0.4, 0.8, 1.2, and 1.6 m/s) for a single subject.  
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The time course waveforms of the head acceleration and movement artifact signals were 

different (Figure 2). During single support (when only one leg is in contact with the ground), 

there was typically a single peak in the accelerometer time series but multiple peaks and valleys 

in some of the electrode time series. The vertical accelerations of the head did not correlate well 

with the movement artifact signals measured by the electrodes (Figure 3). A phase space plot of 

the E12 electrode voltage versus the vertical head acceleration appeared to have no clear 

relationship across speeds (Figure 3(a)). The correlation coefficients were greatest for the 

vertical head acceleration and the movement artifact signals recorded in the EEG electrodes 

compared to the mediolateral and anterior-posterior accelerations (Figure 3(b)). At the normal 

walking speed (1.2 m/s), the average correlation coefficient was 0.35 ± 0.07 for the vertical, 0.14 

± 0.03 for the mediolateral, and 0.17 ± 0.04 for the anterior-posterior head accelerations. 

Additionally, the group average correlation coefficients increased with walking speed (Figure 

3(b)). For the vertical direction, the average correlation coefficient was 0.18 ± 0.06, 0.37 ± 0.09, 

0.35 ± 0.07, and 0.31 ± 0.08, from the slowest (0.4 m/s) to fastest (1.6 m/s) walking speed 

respectively. The linear regressions using the head accelerations in all three directions had an 

overall average R-squared of 14.3 ± 0.05, for the 5 primary channels we focused on, and across 

all speeds (Table 3). This indicates that the head accelerations only account for ~14% of the 

variance of the movement artifact signal recorded by the EEG electrodes. 
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Figure 3-3. Correlations between Accelerometer and EEG. Correlations between 
accelerometer and the frontal electrode movement artifact. a) Vertical head acceleration was 
plotted against movement artifact recorded in the frontal electrode (E12) for a stride of data for a 
single subject (same data as in Figure 2). b) Correlation coefficients between all three head 
accelerations and each electrode recorded movement artifact signals were generally < 0.4. Dark 
blue represents uncorrelated signals, correlation coefficient = 0.0 and green equals a correlation 
coefficient of 0.6. 
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Table 3-3. Intersubject mean and standard deviation R-squared values for linear 

regressions. These values were calculated using all three acceleration directions as variables for 

each electrode channel and speed. 
 

Speed Top (A1, 

Cz) 

Back (A19) Right (C18) Front (E12) Left (G11) 

0.4 4.8 ± 9.1 6.2 ± 7.7 9.6 ± 11.1 9.5 ± 13.3 3.9 ± 4.6 

0.8 15.1 ± 13.6 14.0 ± 12.8 23.2 ± 13.4 21.9 ± 12.7 21.7 ± 10.5 

1.2 16.4 ± 10.9 16.5 ± 9.8 17.8 ± 7.0 13.8 ± 4.6 19.6 ± 10.9 

1.6 13.0 ± 8.3 12.9 ± 9.4 18.0 ± 13.5 11.9 ± 11.6 15.4 ± 10.0 

 

 

Although there was some overlap, particularly for the lower frequencies, the frequency spectra 

for the accelerometer and the movement artifact data revealed spectral power harmonics at 

different frequencies and over different frequency ranges. (Figure 4). The accelerometer 

frequency spectra in the vertical direction had large peak amplitudes up to 20 Hz at the fastest 

walking speed. The movement artifact frequency spectra and accelerometer frequency spectra in 

the mediolateral and anterior-posterior directions had large peak amplitudes up to 10 Hz at the 

fastest walking speed. Movement artifact signal spectra amplitudes increased with faster walking 

speeds for the head accelerations in all three directions and all the electrodes. 
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Figure 3-4. Accelerometer and EEG Spectra. Frequency spectra for the accelerometer and 
electrode movement artifacts. Frequency spectra of the head accelerations (vertical, mediolateral, 
and anterior-posterior) differed from the spectra of the electrode recorded movement artifacts 
(A1, A19, C18, E12, & G11). Each column is a walking speed, increasing from left to right.  
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There were different distinctive patterns of movement artifact in the individual subject ERSPs 

that varied across walking speeds (Figure 5, Table 1). The individual subject ERSPs highlighted 

that the movement artifact varied from subject to subject.  As an example, we quantified the 

ERSP correlation coefficients across subjects for channel A1 at 1.2 m/s. Average correlation 

values were low (mean 0.09) and had a high standard deviation (0.11). These values indicated a 

high inter-subject variability. (For the raw data values, see Table 1 in the supplement). For many 

of the subjects, the pattern of spectral power change was variable across speeds. We quantified 

this variability by calculating correlation coefficients (Table 1), which revealed low correlation 

values when averaged across subjects. Individual subject ERSPs consistently indicated that the 

magnitude of the movement artifact and the maximum frequency at which it occurred increased 

with increasing walking speed. The individual subject ERSPs for the vertical head acceleration 

showed broadband spectral fluctuations, which were not consistently observed in the movement 

artifact ERSPs for all subjects and speeds (Figure 5). 
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Figure 3-5. Individual ERSPs. ERSP plots for individual subjects for both the head mounted 
accelerometer and channel A1. ERSP plots for individual subjects at channel A1 reveal inter-
subject variability in the movement artifact data. ERSP plots of individual subject accelerometer 
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data show that an accelerometer captures less inter-subject variation. Each row is a subject and 
each column is a walking speed, increasing from left to right. Red represents a power increase 
from baseline, and blue represents a power decrease from baseline. The x-axis is one gait cycle: 
left toe-off (LTO), left heel-strike (LHS), right toe-off (RTO), right heel-strike (RHS), and left 
toe-off again. Double support occurs between the dotted lines of LHS and RTO and between 
RHS and LTO. Note the different y axes and color bar power scales.   
 

Table 3-1.  Mean ERSP correlation ± standard deviation across speeds for all nine subjects 

at channel A1. 
 

  0.4 m/s 0.8 m/s 1.2 m/s 1.6 m/s 

0.4 m/s 1 0.25 ± 0.13 
  

0.02 ± 0.15 0.19 ± 0.16 

0.8 m/s   1 0.08 ± 0.09 -0.04 ± 0.19 

1.2 m/s     1 0.04 ± 0.12 

1.6 m/s       1 

 

 

Additionally, the ERSPs for the different electrode locations showed different patterns of 

movement artifact, which also varied across walking speed (Figure 6, Tables 1 and 2). 

Depending on the electrode location, the movement artifact differed, particularly with respect to 

the magnitude. The midline electrodes (A1, A19, & E12) generally recorded larger movement 

artifacts than the lateral electrodes (C18 & G11) (Figure 6). Based on the magnitude of the 

fluctuations in the ERSPs, the electrode on the front of the head (E12) was the most susceptible 

to movement artifacts compared with the other electrodes.  
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Figure 3-6. Group Averaged ERSPs. Group averaged ERSP plots oriented with respect to the 
head. ERSPs for the head accelerations in all three directions (vertical, mediolateral, and 
anterior-posterior) showed similar broadband synchronization and desynchronization patterns. 
ERSPs of the electrode-recorded movement artifact plotted spatially illustrate that midline 
electrodes (A1, A19, & E12), particularly in the front of the head (E12), were more susceptible 
to movement artifacts than lateral electrodes (C18 & G11). Red represents a power increase from 
baseline, and blue represents a power decrease from baseline. Each plot for each electrode is a 
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walking speed, increasing from left to right. The x-axis is one gait cycle: left toe-off (LTO), left 
heel-strike (LHS), right toe-off (RTO), right heel-strike (RHS), and left toe-off again. Double 
support occurs between the dotted lines of LHS and RTO and between RHS and LTO.  

 

Table 3-2.  Mean ERSP correlation ± standard deviation across channels for all nine 

subjects at 1.2 m/s. 
 

  A1 A19 C18 E12 G11 

A1 1 0.47 ± 0.35 0.28 ± 0.34 0.38 ± 0.35 0.47 ±0.33 

A19   1 0.53 ± 0.25 0.46 ± 0.38 0.43 ± 0.34 

C18     1 0.41 ± 0.32 0.16 ± 0.28 

E12       1 0.42 ± 0.29 

G11         1 

 

 

There were some consistent patterns across speeds in the ERSPs for individual subjects (Figure 

5) and for different electrodes (Figure 6). During the double support period (when both legs are 

in contact with the ground), there tended to be synchronization in the 8-30 Hz range at the fastest 

speed (1.6 m/s). At the slowest speed (0.4 m/s), double support tended to show a 

desynchronization in the 4-7 Hz range. In contrast, during the single support period, there was 

typically a strong desynchronization at the fastest speeds and a slight desynchronization at the 

slower speeds. However, correlation coefficient values reveal that these patterns are not 

completely consistent across all subjects and electrode locations (Tables 1 and 2). The mean 
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ERSP were most highly correlated for the two lowest speeds, 0.4 and 0.8 m/s. However, 

significant changes in pattern occurred from the slowest to the fastest speed, as evidenced by 

both the ERSPs and correlation values. Additionally, ERSPs for the accelerometer data in all 

three directions showed broadband synchronization and desynchronization, in contrast to the 

ERSPs for the movement artifact (Figure 6). 

 

The moving average, wavelet, and moving average + wavelet cleaning methods attenuated but 

did not remove all movement artifacts (Figure 7). We found that the cleaning methods had some 

success attenuating low-frequency, gait-related movement artifact at the slowest speed. Though 

the moving average and wavelet methods seemed to perform similarly, the combination of both 

seemingly had modest improvements over either method alone at these slower speeds. However, 

there was little quantitative difference between the two methods. At the fastest speeds, none of 

the cleaning methods we examined had much success attenuating the stride-locked movement 

artifact. 
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Figure 3-7. Group averaged cleaned ERSPs. Group averaged ERSP plots of the moving 
average, wavelet, and moving average + wavelet cleaning methods reveal that movement artifact 
remained despite cleaning. The cleaning results for the least noisy (C18) and most noisy (E12) 
channels are shown. Each row is a cleaning method and each column is a walking speed, 
increasing from left to right. Red represents a power increase from baseline, and blue represents 
a power decrease from baseline. The x-axis is one gait cycle: left toe-off (LTO), left heel-strike 
(LHS), right toe-off (RTO), right heel-strike (RHS), and left toe-off again. Double support 
occurs between the dotted lines of LHS and RTO and between RHS and LTO.   
 

Mastoid data comparison 

The ERSPs from the mastoid experiment indicated that EEG electrodes placed on the simulated 

scalp interface recorded movement artifact of a similar pattern and magnitude as EEG electrodes 

placed on human skin (Figure 8B). The mastoid ERSP and the ERSPs for channels G21 and G22 

on the simulated scalp showed similar movement artifact magnitude and timing in all but the 

highest frequencies. The correlation coefficients for the mastoid ERSP and the ERSPs for 

channels G21 and G22 were 0.54 and 0.57, respectively.  

 



70 
 

 

 

Figure 3-8. Mastoid ERSP. Schematic of the setup and ERSP plots for the mastoid experiment. 
a) To examine the electrode/human skin interface, an electrode was placed on the left mastoid 
underneath the swim cap. To examine the electrode/simulated scalp interface, the two electrodes 
closest to the left mastoid, G21 and G22, were used to measure movement artifact from the 
simulated scalp comprised of the wig coated with conductive gel placed over the swim cap. b) 
ERSP plots for the mastoid, G21, and G22 electrodes show similar broadband spectral 
fluctuations between 3-64 Hz.  
 

Discussion 

The main finding of the study was that movement artifact patterns recorded in EEG electrodes 

during walking had large spectral fluctuations over the gait cycle that increased in amplitude as 

walking speed increased. As speed increased, not only did the amplitude of the spectral 

fluctuations increase, but the spectral fluctuations appeared in higher frequency bands. Another 
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important finding was that the movement artifact patterns recorded by the EEG electrodes varied 

substantially across subjects and among electrodes located at different areas of the head. We 

applied some simple cleaning methods, moving average and wavelets, to the artifact data, but 

these cleaning methods were insufficient to remove all movement artifact. A third key finding of 

the study was that data from an accelerometer placed on the forehead had poor correlation with 

the movement artifact recorded by the EEG electrodes. There were substantially different 

spectral fluctuations between the EEG electrode data and the accelerometer data, however there 

were some similarities. Above 0.4 m/s the artifact spectral fluctuations were similar to the 

accelerometer spectral changes at 8-30 Hz for some subjects, but the timing was slightly shifted. 

Altogether, our findings highlight and quantify limitations in current EEG techniques and data 

cleaning methods. New approaches need to be developed to account for movement artifact 

patterns, especially at faster walking speeds, that affect EEG electrode data in order to improve 

interpretation of electrocortical activity during human locomotion. 

 

Several past studies have found spectral power increases during double support and spectral 

power decreases during single support at alpha and beta frequencies of scalp EEG at normal 

walking speeds, 0.78-1.25 m/s (Gwin et al., 2011;Cheron et al., 2012;Severens et al., 2012). 

These fluctuations have been reported to be caused by neural activity. Our pure movement 

artifact data, which contains no neural activity, also found that some subjects showed increased 

spectral power during double support and decreased spectral power during single support at 

faster walking speeds. This suggests that the spectral fluctuations reported in the previous studies 

reflect a combination of neural activity and movement artifact. Some studies conducted at faster 

walking speeds may have reported relatively little neural activity compared to artifact. Other 

studies at slower walking speeds, 0.22-0.60 m/s, have shown some increases in spectral power 
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during double support in alpha and beta frequencies as well (Wagner et al., 2012;Sipp et al., 

2013). However, the magnitude and duration of the increased spectral power at double support in 

our artifact data appears to be reduced substantially for the slower walking speeds. EEG data 

recorded at slower speeds are less likely to be contaminated with movement artifacts, especially 

in the higher frequency bands. Though using slower walking speeds may minimize movement 

artifact, it may also fundamentally change the motor task from rhythmic walking to a discrete 

stepping task, and so may limit the conclusions that may be drawn from such a study. Future 

studies may have to balance minimizing movement artifact with using speeds that are fast 

enough to be representative of typical human walking. 

 

Simple cleaning methods do not appear to sufficiently attenuate movement artifacts in EEG 

collected at fast walking speeds. We tested a moving average artifact template that had 

successfully reduced EEG movement artifact in a study of non-gait related cognitive events 

during walking and running (Gwin et al., 2010). We also tested Daubechies wavelets as a means 

to identify and remove low frequency artifact. We chose Daubechies wavelets based on their 

previous usage in EEG studies to identify low frequency spectral fluctuations (Daubechies, 

1988;Adeli et al., 2003). Both the moving average and wavelet artifact cleaning methods 

performed similarly in our study, but substantial movement artifacts remained at faster speeds 

(Figure 7). Consistent with previous results, the moving average worked well for removing 

artifacts that had a consistent pattern across occurrences (Chowdhury et al., 2014). Because 

stride to stride changes in movement patterns lead to differences in movement artifact, this 

cleaning method could only remove the noise that was consistent from stride to stride. In 

addition to the results presented, we also tested other values of stride numbers (±3 strides) and 

filter cutoff frequencies (30 Hz) for the moving average template. There were no noticeable 
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differences between the other values tested and the ones used for the current figures. The moving 

average template did tend to exacerbate electrical line noise (60 Hz) (Figure 7). The wavelet 

filter was less computationally expensive but eliminated almost all information below a given 

frequency (Figure 7). As a result, wavelets are not useful for targeting gait-related movement 

artifact and retaining low frequency electrocortical activity. 

 

EEG studies that use cognitive tasks that are not synchronized to the gait cycle are much less 

likely to have data interpretation affected by movement artifacts. For example, using a visual 

oddball task or another cognitive task that is not synchronized to the gait cycle allows for any 

movement related artifacts (and true electrocortical activity synchronized to the gait cycle) to 

wash out over a large number of cognitive events (Gramann et al., 2010;Gwin et al., 2010;Kline 

et al., 2014). For future research examining electrocortical activity during human locomotion, it 

would be beneficial to include a repetitive cognitive event non-synchronized to the gait cycle for 

analysis of EEG data. 

 

Our results indicate that an accelerometer does not record the same movement artifact signal that 

EEG electrodes record. Past studies have used accelerometers to measure movement artifacts in 

non-ambulatory tasks such as nodding and shaking of the head (Sweeney et al., 2010;O'Regan et 

al., 2013;O'Regan and Marnane, 2013). More recently, Castermans et al. used head-mounted 

accelerometers during walking and found patterns of synchronization and desynchronization in 

the data, especially at faster walking speeds (Castermans et al., 2014). Our results showed that 

movement patterns varied substantially across speed, subject, and electrode placement. There 

was greater complexity and variation than could be described by the simple patterns of 

desynchronization and synchronization found in accelerometer data. We also found that the 
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accelerometer data did not correlate well with the movement artifact data recorded by our 

simulated scalp electrodes. Small movement differences between the accelerometer, the 

electrodes, and their respective wires may contribute to the differences between the movement 

artifact in the accelerometer data and electrode data. Even with a wireless EEG system, it is 

possible that the relative motion of the electrodes to the scalp could still generate movement 

artifacts. The electrodes likely move side-to-side and up-and-down relative to the scalp or 

simulated scalp, which may lead to voltage drops. Passive electrodes are more susceptible to 

sudden changes in impedance and capacitance that can lead to sudden changes in voltage. Active 

electrodes like the ones used in this study may be less susceptible to sudden changes in voltage 

because active electrodes likely have more stable impedances, which can be observed in real-

time in the Biosemi software program as stable voltage offset values.  

 

Although our simulated scalp does not have exactly the same mechanical properties of real 

human scalp, the comparison of mastoid data and simulated scalp data suggests that it is close 

enough to capture similar movement artifact waveforms (Figure 8). The two sets of ERSPs are 

strongly correlated. However, there are substantive differences between the mastoid ERSPs and 

simulated scalp ERSPs at higher frequencies. The hair fibers of the wig likely provided some 

damping effect on the movement of the electrode. This could have attenuated the movement 

artifact recorded by the simulated scalp electrodes at the highest frequencies.  

 

The most accurate approach for recording movement artifact signals in EEG may be to block the 

electrophysiological signals in some electrodes during data collection so that those electrodes 

record only the movement artifact. An EEG system that simultaneously measured movement 

artifact and movement artifact plus neural signal would allow for an interpolative subtraction 
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process that could remove the movement artifact in real-time. This method would not need to 

rely on data averaged over time and might even be able to be employed in an ongoing basis 

during data collection. Movement artifact subtraction performed in real-time would advance 

mobile brain imaging and brain-computer interfaces substantially compared to the current status 

quo. An interpolative subtraction process would be useful when recording EEG during any full 

body movement where substantial artifacts occur, including with patient populations with 

spasticity or other movement disorders.  

 

Chowdury et al. recently explored the possibility of using an interpolative subtraction process to 

attenuate magnetic resonance imaging (MRI) noise from EEG recordings. They used a reference 

layer with similar conductivity to the human head to allow subtraction of movement-related and 

MRI-related artifacts during simultaneous EEG-fMRI recordings (Chowdhury et al., 2014). They 

explored only small (≤7 mm) head movements rather than larger head movements that are more 

characteristic of human gait. Their reference layer consisted of an agar, water, and sodium 

mixture that was not very durable. This idea has potential for separating movement artifact from 

EEG signals in walking, but further work needs to be done to modify the approach for walking 

applications. 

 

Our study had a few limitations that prevent us from drawing broader conclusions about the 

relationship between movement artifact and EEG data recordings. First, there was substantial 

inter-subject variability in the movement artifact signal. This inter-subject variability may have 

been due to individual gait patterns, electrode cap fit, and/or differences in the preparation of the 

wig set up for each subject. There was also variability across subjects in head shape, head size, 

and hair characteristics. All of these head and hair properties could have led to differences in 
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pressure between the electrodes and the scalp. In our preparation, the swim cap did not lay 

perfectly smooth over the subject’s head. This swim cap effect may also have contributed to the 

variability we observed across subjects and electrodes. Additionally, our conductive wig 

preparation had resistances greater than the resistances reported for dry skin. Designing a 

conductive scalp with resistive properties that more closely match actual scalp may improve the 

quality of the isolated movement artifact recorded in the EEG electrodes. Despite these 

limitations, this simple method for isolating and measuring the movement artifact recorded in the 

EEG electrodes seems to be promising for capturing gait-induced movement artifacts in EEG.   

 

Conclusion 

The relative amounts of true electrocortical signal and movement artifact in scalp EEG collected 

during human locomotion is difficult to determine. We created a novel approach for isolating 

pure movement artifact with EEG electrodes. The results from our simulated scalp protocol 

indicate that gait-related movement artifact can have varying magnitudes and patterns across 

subjects, conditions, electrodes, and strides. These differences are more complex than can be 

captured merely by accelerometry or eliminated by simple artifact cleaning techniques. The 

similar patterns of spectral fluctuation in our purely artifactual data and in previous studies of 

neural activity during walking suggest that the results of those studies need to be interpreted with 

caution. One possibility for future studies is to simultaneously measure movement artifact so that 

it can be characterized and removed from the neural data recorded by EEG. Ultimately, 

designing more sophisticated techniques that target gait-related artifact for individual strides 

would allow for more complete gait-related movement artifact attenuation in EEG recordings 
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during walking, which could greatly improve brain-machine interfaces and neurorehabilitation 

technologies. 

 

Supplementary Materials 

Supplementary Table 3-1. ERSP correlations across subjects for channel A1 at 1.2 m/s. 
 

  1 2 3 4 5 6 7 8 9 

1  1 0.59 0.12 0.28 -0.03 -0.06 0.07 0.02 0.23 

2    1 0.27 0.39 -0.10 -0.03 0.10 0.27 0.47 

3      1 0.33 -0.09 -0.07 -0.30 0.30 0.24 

4        1 0.19 0.10 0.36 0.48 0.16 

5          1 -0.15 0.39 0.04 0.04 

6            1 0.21 -0.19 0.01 

7              1 0.07 0.21 

8                1 0.06 

9                  1 
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Chapter 4: Cortical Spectral Activity and Connectivity during 

Active and Viewed Arm and Leg Movement 
 

Introduction 

An interesting feature of cortical control of human movements is that active movement and 

viewed movement recruit many of the same neural structures in the human brain (Prinz, 1997). 

“Mirror neurons,” which fire in response to both active and viewed movements were first 

discovered in monkeys (di Pellegrino et al., 1992). Since then, a slew of neuroimaging studies 

have confirmed that a similar neural mechanism exists in humans. Electroencephalography 

(EEG) studies have demonstrated desynchronization in the human motor cortex during both 

active and viewed movement (Cochin et al., 1998;Cochin et al., 1999;Calmels et al., 

2006;Avanzini et al., 2012;Cevallos et al., 2015). Studies with functional magnetic resonance 

imaging (fMRI) have found overlapping cortical activation during active and viewed movement 

(Iacoboni et al., 1999;Buccino et al., 2001;Grezes et al., 2003;Manthey et al., 2003).  

 
Because of the overlap in cortical recruitment for both active and viewed movement, some 

scientists have suggested that action observation could improve motor rehabilitation in patients 

with chronic stroke, Parkinson’s disease, or cerebral palsy (Buccino, 2014). In adults with upper-

limb impairment following a stroke, significant improvements in functionality were seen after 

eighteen consecutive days of action observation therapy (Ertelt et al., 2007). In children with 

cerebral palsy, a similar duration of action observation therapy increased spontaneous use of the 
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affected hand (Buccino et al., 2012). Given the potential therapeutic benefits of viewed 

movement, knowledge of the differences in cortical connectivity during active and viewed 

movement could provide insight for rehabilitation after a brain injury. It might also suggest 

potential rehabilitation targets accessible through transcranial magnetic stimulation. 

 

Human locomotion likely involves a distribution of cortical and spinal control, which may affect 

the potential benefits of viewing locomotion. Humans regularly coordinate arm and leg 

movements during locomotion or locomotion-like movements. In quadrupedal animals, the 

coordination of rhythmic limb behaviors relies heavily on collections of oscillatory neurons in 

the spinal cord, known as central pattern generators (Brown, 1914;Grillner, 1975;Grillner et al., 

1995;Marder and Calabrese, 1996;Duysens and Van de Crommert, 1998;Juvin et al., 

2005;Rossignol et al., 2006). In humans, rhythmic limb movement likely depends on a 

combination of cortical and spinal control. Functional near infrared spectroscopy studies  (Miyai 

et al., 2001;Harada et al., 2009) and electroencephalography (EEG) studies (Gwin et al., 

2011;Severens et al., 2012;Sipp et al., 2013) have shown cortical activation during human 

steady-state walking. There is also indirect evidence for central pattern generators in humans. 

This evidence includes primitive stepping-like motions in infants (Yang et al., 2005), rhythmic 

lower limb contractions in a patient with a complete spinal cord injury when the limbs are moved 

through the motion of gait (Wernig and Phys, 1992;Dobkin et al., 1995), and vibration-induced 

air stepping in healthy subjects (Isaev et al., 2004). Because humans likely share features of 

quadrupedal neural control but have adapted to become predominantly bipedal, there may be 

differences in the relative contributions of cortical and spinal control during rhythmic movement 

involving the arms and legs.  
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One way to examine cortical control is to use effective connectivity to find the causal 

relationship between brain regions. Positron emission tomography (Cabeza et al., 

1997;Rosenbaum et al., 2010) and fMRI (Biswal et al., 1995;Greicius et al., 2003;Kiran et al., 

2015) are frequently used to study effective connectivity. However, these modalities require 

participants to remain stationary and therefore cannot examine brain connectivity during 

unconstrained full-body motion. Another approach for studying real-world activities is to use 

high-density EEG, independent component analysis (ICA), and source localization techniques 

(Gwin et al., 2010;Gramann et al., 2011;Gwin et al., 2011;Sipp et al., 2013;Kline et al., 

2014).  Although this EEG approach does not have the spatial resolution of fMRI connectivity 

studies, it does provide excellent temporal resolution with spatial resolution of around 1 cm 

(Mullen et al., 2011). Lau and colleagues combined high-density EEG, ICA, and source 

localization with Granger causality to show that sensorimotor cortical connectivity was greater 

for standing compared to walking (Lau et al., 2012). Using a similar approach may provide 

additional insight into brain function as it relates to active and viewed movement.  

 

The overall purpose of this study was to quantify the differences in cortical spectral fluctuations 

and effective connectivity during active and viewed rhythmic limb movements. Our overall 

hypothesis was that we would be able to detect similar but weaker electrocortical spectral 

fluctuations and effective connectivity during viewed limb movement compared to active limb 

movement due to the similarities in neural recruitment. We tested different combinations of arm 

and leg movements (arms and legs, legs only, and arms only), because we hypothesized that 

active rhythmic legs only movements would show little spectral fluctuations based on evidence 

that suggests that rhythmic leg movements likely use spinal control (Sakamoto et al., 
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2007;Sakamoto et al., 2014). Additionally, some have suggested that the mirror neuron system is 

highly involved in human social interaction (Gallese et al., 2004;Oberman et al., 2007). 

Therefore, humans may have differences in cortical activity when viewing themselves compared 

to viewing someone else perform a movement. If there are indeed differences in electrocortical 

spectral fluctuations for different combinations of active arms and legs movements or viewing 

perspective, we hypothesized that there would also be similar relative differences in effective 

connectivity for viewing those arm and leg movements. To test these hypotheses, we had 

subjects perform different combinations of arm and leg rhythmic movements on a recumbent 

stepper while we videotaped them. The subjects later viewed video playback of themselves and 

another individual performing the movements. We recorded EEG data for all conditions. 

 

Materials and Methods 

Subjects and experimental setup 

Ten healthy adults (mean age 25.6 ± 4.4, 5 females) with no history of neurological disease or 

musculoskeletal injuries participated in this study. All participants signed a consent form approved 

by the University of Michigan Institutional Review Board.  

 

We used a customized recumbent stepping machine (TRS 4000, NuStep, Ann Arbor, MI) with an 

adjustable level of resistance and an isokinetic motor (Huang et al. 2009). The stepping machine 

combined features of a stair stepper and a recumbent bicycle. The handles and pedals were coupled 

so that the left handle and right pedal moved together.  
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Before data collection, we fitted the subjects with a 256-channel EEG cap (Biosemi ActiveTwo, 

Amsterdam, The Netherlands). We digitized the position of each electrode relative to the subject’s 

head using a digitizer (Zebris, Germany). All electrode offsets were <20 mV. We recorded EEG 

data at 512 Hz for all conditions. 

 

Subjects initially practiced stepping on the device at a range of resistances. We set the resistance 

to a level that the subjects deemed challenging but not uncomfortable. We secured a Velcro strap 

around the subject’s midsection to minimize torso movement and strapped the subject’s feet to the 

pedals (they remained strapped to the pedals for the two active leg conditions). We placed the EEG 

amplifier on a platform directly behind the subject and draped the electrode leads over a bar (Figure 

1). Directly in front of the subject, we placed a large mirror (79 cm X 168 cm). A screen above the 

mirror displayed visual cues that set the pace of the movement. We mounted a video camera at the 

subject’s eye level, approximately six inches to the left of the head, pointed at the mirror. This 

allowed us to record videos of the subject exercising from the subject’s viewpoint.  

 

Data Collection 

The subjects performed rhythmic arm and leg movement on the device (active conditions) and 

then sat quietly and viewed video playbacks of themselves and another individual performing the 

same movements (viewed conditions). During the active conditions, we also recorded position data 

based on the motor position signal of the recumbent stepper. (The maximum motor position signal 

corresponded to the right pedal being fully extended). We synchronized the data streams using a 

square wave of constant frequency sent simultaneously to all recording systems.  
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The subjects moved on the device in three different ways in the following order: 1) with both their 

arms and their legs, 2) with their legs only, and 3) with their arms only. During the legs only 

condition, the subjects moved with their hands folded comfortably in their lap. During the arms 

only condition, the subjects moved with their feet resting on the floor, or on foot rests for shorter 

subjects.  

 

The visual cues paced the subjects to moved at 70 arm or leg extensions per minute. The cues 

consisted of a pair of squares at opposite sides of a central fixation point. The squares shaded from 

white to black at a fixed rate (1.16 Hz) and were 180 degrees out of phase with each other. The 

subjects kept their eyes on the fixation point and moved so that the corresponding limb was fully-

extended when the left or right square turned black. For the combined arms and legs condition, 

legs were given precedent, and the subjects moved so that the corresponding leg was fully extended 

when a square turned black. The subjects were allowed to practice exercising in synchrony with 

the cues as needed. We recorded a five minute video of the subject exercising, as seen in the mirror, 

during each active condition. 

 

During the viewed conditions, we removed the mirror that had been in front of a video projection 

screen (84 cm X 165 cm) (Figure 1). On the screen, we then played a total of seven five-minute 

videos to the subject in a randomized order. The videos were: 1) playback of the subject exercising 

with both their arms and legs, 2) playback of the subject exercising with their legs only, 3) playback 

of the subject exercising with their arms only, 4-6) pre-recorded videos of another individual 

exercising in the three ways described above, 7) a control video of the recumbent stepper moving 

on its own, with no one seated in it. The video playback was adjusted to be life-size. During the 
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viewed conditions, we gave the subjects a fixation point on the center of the screen, roughly at the 

center of the torso of the individual in the video, to prevent large eye movements during viewing.    

 

 

 

Figure 4-1. Experimental setup. Subjects moved to the pace of visual cues with 1) both their 
arms and legs, 2) their legs only, and 3) their arms only. A video camera to the left on the 
subject’s head recorded videos of the subject exercising, as viewed in the mirror, for the three 
active conditions. For the viewed conditions, we removed the mirror, and projected life-size 
video playbacks of the subject or another individual exercising. The subjects remained seated in 
the stepping device during the viewed conditions. We recorded EEG during all conditions. 
 

Data Processing 

We post-processed the EEG signals using custom scripts in EEGLAB (Delorme and Makeig, 

2004). First, we merged the EEG recordings into a single dataset and high-pass filtered above 1 

Hz to remove drift. We rejected channels exhibiting substantial artifact based on the methods of 

Gwin and colleagues (Gwin et al., 2010). These rejection guidelines did not reject enough channels 
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to ensure good convergence of our ICA algorithm, therefore we altered the cutoffs slightly to reject 

an average of 140 channels per subject and re-referenced the remaining channels to a common 

average reference. Next, we rejected EEG time windows with high artifact across all channels 

based on visual inspection. To these cleaned datasets we applied infomax (Bell and Sejnowski, 

1995) independent component analysis (ICA) as implemented on GPU by CUDAICA (Raimondo 

et al., 2012). This parsed the data into spatially fixed, temporally independent component (IC) 

signals (Makeig et al., 1996). The EEGLAB DIPFIT function (Oostenveld and Oostendorp, 2002) 

modelled each IC as an equivalent current dipole within a boundary element head model based on 

the MNI brain (Montreal Neurological Institute, MNI, Quebec). ICs with a best-fit equivalent 

current dipole that accounted for less than 85% of the variance seen at the scalp were excluded 

from further analysis (Gwin et al., 2011).  

 

We clustered the remaining ICs from all ten subjects using a k-means clustering algorithm on 

vectors describing similarities in dipole location, scalp topography, and spectra (Gwin et al., 2011). 

If clusters contained ICs from five or fewer subjects or if their location and/or average scalp map 

were indicative of eye movement or muscle activity (Jung et al., 2000a;Jung et al., 2000b), we 

excluded them from further analysis. For each electrocortical cluster and condition, we created an 

event-locked plot of spectral power fluctuation (Makeig, 1993;Gwin et al., 2011). Our data epochs 

began at full extension for one arm or leg (active or viewed) and ended at subsequent full extension 

for the same arm or leg. For each epoch, we computed single trial spectrograms. To ensure that 

each extension event occurred at the same latency in every trial, we linearly warped each single 

trial spectrogram. We averaged these spectrograms over trials for each IC and over ICs for each 

cluster. For each cluster and condition, we subtracted the average log spectrum across all time 

points from the log spectrum for each individual time point, to easily visualize spectral changes 
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from baseline. These plots of spectral fluctuation are called event-related spectral perturbation 

(ERSP) plots. Bootstrapping methods available in EEGLAB (Delorme and Makeig, 2004) 

determined regions of significant difference from baseline for the ERSP plots (p<0.05). 

 

Connectivity Analysis 

We also performed effective connectivity analysis on the epochs of data described above. Using 

the EEGLAB-compatible SIFT toolbox (Delorme et al., 2011), we created a custom data analysis 

pipeline. The preprocessing pipeline involved first downsampling the data to 128 Hz and 

piecewise linearly detrending using a 330 ms window every 82.5 ms. Next, we used the Hannan-

Quinn, Swartz Baysian, and Akaike Information Criteria to determine the appropriate model 

order within a 200 ms sliding windows every 54.7 ms. A Vieira-Morf lattice algorithm available 

in SIFT fit the multivariate autoregressive (MVAR) model. Examining the eigenvalues of the 

MVAR coefficient matrix allowed us to determine if the model was stable. We checked the 

whiteness of the model by multiple measures including the Ljung-Box test, the Box-Pierce test, 

the McLeod-Li test, and the Autocorrelation Function (ACF) test. The smallest model order that 

lead to stability and whiteness was the desired outcome. A model order between 1 and 3 satisfied 

these criteria for our data for all subjects and all conditions. With these MVAR models, we 

calculated connectivity using directed transfer function (Kaminski and Blinowska, 1991). 

Directed transfer function is generally robust to both noise and indirect connections. To test the 

significance of the connectivity fluctuations, we used bootstrap significance testing with 200 

resamples.  

 

Furthermore, we wished to determine which cluster pairs and conditions had the greatest 

effective connectivity. We found the maximum connectivity value for each cluster pair at each 
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condition. We determined which cluster pair/condition combinations had maximum connectivity 

values at least a standard deviation greater than the mean for all cluster pair/condition 

combinations. These cluster pair/condition combinations are referred to as having “supratheshold 

connectivity.”  

 

We also wanted to quantify the rate at which the average connectivity in the cortical network 

changed over time. For each condition, we took fast Fourier transform of the connectivity values 

across time for each frequency.  Because our measure of interest was the relative power at 

different frequencies, we used a zero-padded window of 128 samples, and took the magnitude of 

the FFT value to determine the power spectrum for each frequency value from 0 to 18 Hz. We 

then took the mean of the resultant power spectrum over frequencies and component pairs to get 

an overall measure of the frequencies at which connectivity fluctuated for each condition. 

 

 

Results 

There were seven clusters of electrocortical sources that had at least five subjects represented 

(Figure 2). Three clusters were located in the right, left, and middle premotor and supplementary 

motor area. (Brodmann Area 6) (Figure 3). There were also clusters in the right anterior 

cingulate (Brodmann area 32), the middle anterior cingulate (Brodmann Area 24), the middle 

posterior cingulate (Brodmann area 31), and the middle parietal lobe (Brodmann area 7). (Figure 

4).  
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Figure 4-2. Electrocortical clusters. Clusters containing electrocortical sources from at least 5 
of 10 subjects. Yellow is left premotor and supplementary motor cortex, purple is middle 
premotor and supplementary motor cortex, green is right premotor and supplementary motor 
cortex, red is right anterior cingulate, white is middle anterior cingulate, blue is middle posterior 
cingulate, and pink is middle parietal cortex. From left to right, the top three images show the 
independent component dipoles for each cluster from a coronal, horizontal, and sagittal 
perspective, respectively. The bottom three images show the centroid locations for each cluster 
from the same three perspectives. 
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Table 4-1. Centroid location and IC breakdown for each cluster containing electrocortical 

sources from at least 5 of 10 subjects.  
 

Functional Area Brodmann Area of 
Centroid 

Subjects 
(#) 

ICs 
(#) 

Right Premotor and Supplementary Motor 
Cortex 

6 5 9 

Middle Premotor and Supplementary Motor 
Cortex 

6 9 22 

Left Premotor and Supplementary Motor 
Cortex 

6 7 17 

Middle Anterior Cingulate 24 6 14 

Right Anterior Cingulate 32 7 19 

Middle Posterior Cingulate 31 8 17 

Middle Parietal Cortex 7 7 11 

 

In the premotor and supplementary motor cortex, spectral fluctuations occurred during the active 

conditions in the theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30 Hz and above) 

bands (Figure 3). In the middle premotor and supplementary motor area, all active conditions 

elicited bilateral activity. Theta and low alpha band desynchronization occurred during 
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approximately the middle 50% of the extension phase for either arm in the arms only condition, 

for either leg in the legs only condition, and for either arm-leg pair in the arms and legs 

condition. In the right and left premotor and supplementary motor cortex, these alpha and theta 

spectral power fluctuations showed some lateralization. Prominent desynchronization occurred in 

right premotor and supplementary motor cortex during approximately the middle 50% of the 

extension phase when the left leg was extending in both the arms and legs condition and the legs 

only condition. Prominent desynchronization occurred in left premotor and supplementary motor 

cortex during approximately the middle 50% of the extension phase when the left arm was 

extending in the arms only condition and when the right leg was extending in the legs only 

condition. There were some similar spectral fluctuations during the self viewed arms condition, 

particularly in the middle premotor and supplementary motor cortex in the theta and low alpha 

band. However, overall, we did not detect robust or consistent fluctuations across similar pairs of 

conditions (i.e.,arms vs arms viewed). For the spectral fluctuation plots for all the viewed 

conditions, see Supplementary Figure 1.  
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Figure 4-3. Motor Cortex ERSPs. Event-related spectral perturbation (ERSP) plots showing 
change in spectral power during rhythmic arm and leg movement in the right, middle, and left 
premotor and supplementary motor cortex. From left to right, subjects moved with their arms 
only, both their arms and legs, their legs only, and viewed video playback of themselves moving 
with just their arms. Each row represents a cortical area, and each column represents a condition. 
For all plots, red represents a power increase from baseline, and blue represents a power decrease 
from baseline. We set non-significant differences to 0 dB (green). All ERSPs start and end with 
the same limb fully extended. The figure outlines on the x axis indicate the phase of movement, 
and the written labels indicate when each limb was extending. Note: for the arms and legs 
condition, the left leg and right arm extended together, and vice versa.  
 

In the cingulate and parietal areas, spectral fluctuations occurred during active movement in the 

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30 Hz and above) bands (Figure 

4). These fluctuations were much greater for both active arms conditions than for the active legs 
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condition. In the majority of areas, theta and low alpha band desynchronization occurred during 

approximately the middle 50% of the extension phase when either arm was extending in the arms 

only condition and when either arm-leg pair was extending in the arms and legs condition. Theta 

and low alpha synchronization occurred at the transition points for the two active arms 

conditions. Again, we did not detect highly similar spectral fluctuations for the active arms and 

self viewed arms conditions. For the spectral fluctuation plots for all the viewed conditions, see 

Supplementary Figure 1.  
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Figure 4-4. Cingulate Cortex ERSPs. Event-related spectral perturbation (ERSP) plots showing 
change in spectral power during rhythmic upper and lower limb movement in the right anterior 
cingulate, the middle anterior cingulate, the middle posterior cingulate, and the middle parietal 
cortex. From left to right, subjects moved with their arms only, both their arms and legs, their 
legs only, and viewed video playback of themselves moving with just their arms. Each row 
represents a cortical area, and each column represents a condition. For all plots, red represents a 
power increase from baseline, and blue represents a power decrease from baseline. We set non-
significant differences to 0 dB (green). All ERSPs start and end with the same limb fully 
extended. The figure outlines on the x axis indicate the phase of movement, and the written 
labels indicate when each limb was extending. Note: for the arms and legs condition, the left leg 
and right arm extended together, and vice versa.  
 

Connectivity Results 

For all conditions, pairs of cortical areas exhibited suprathreshold connectivity values (maximum 

connectivity values more than a standard deviation greater than the mean). Examining the 

connectivity patterns across all conditions (Table 2), a general picture of a movement-related 

neural network emerges. During every active and viewed movement condition, suprathreshold 

connectivity occurred between the middle anterior cingulate and the right premotor and 

supplementary motor cortex. For the majority of conditions, suprathreshold connectivity also 

occurred between several cortical areas (the middle premotor and supplementary motor cortex, 

the left premotor and supplementary motor cortex, and the middle posterior cingulate) and the 

right premotor and supplementary motor cortex, between the right premotor and supplementary 

motor cortex and the middle posterior cingulate, and between the right anterior cingulate and the 

middle posterior cingulate (Figure 5).  

 

There were also some differences between the conditions. The most suprathreshold connectivity 

values between pairs of cortical areas occurred during the self-viewed movement conditions (25 

pairs). The least suprathreshold connectivity values between pairs of cortical areas occurred 
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during the active movement conditions (15 pairs). The number of cortical pairs exhibiting 

suprathreshold connectivity was intermediate for the other-viewed movement conditions (18 

pairs). See Table 2 for all cortical pairs exhibiting suprathreshold connectivity for each 

condition.  

 

Table 4-2: Suprathreshold connectivity between pairs of cortical areas for the active 

movement the self-viewed movement, and the other-viewed movement conditions.  
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Figure 4-5. General Network Connectivity. Schematic of the cortical network active during 
active and viewed movement. Arrows between cortical areas indicate suprathreshold 
connectivities for at least half (5/10) of the conditions.  
 

Connectivity grids showing the strength of directed transfer function connectivity for all 

frequencies and time points within a stride revealed that significant connectivity fluctuations 

occurred between many cortical areas for all active and viewed conditions (Figures 6-9). For 

connectivity grids for all the additional viewed conditions, see Supplementary Figures 2-7. 
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Figure 4-6. Connectivity Active Arms. Diagram showing directed transfer function 
connectivity values between pairs of cortical areas while the subject performed ACTIVE 
rhythmic movement using only the ARMS. Each individual plot starts and ends with the right 
arm fully extended. The numbers on the x-axis indicate the % of the movement cycle. We set 
non-significant differences to 0 (blue).  
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Figure 4-7. Connectivity Active Arms and Legs. Diagram showing directed transfer function 
connectivity values between pairs of cortical areas while the subject performed ACTIVE 
rhythmic movement using the ARMS AND LEGS. Each individual plot starts and ends with the 
left leg fully extended. The numbers on the x-axis indicate the % of the movement cycle. We set 
non-significant differences to 0 (blue).  
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Figure 4-8. Connectivity Active Legs. Diagram showing directed transfer function connectivity 
values between pairs of cortical areas while the subject performed ACTIVE rhythmic movement 
using only the LEGS. Each individual plot starts and ends with the left leg fully extended. The 
numbers on the x-axis indicate the % of the movement cycle. We set non-significant differences 
to 0 (blue).  
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Figure 4-9. Connectivity Viewed Arms Self. Diagram showing directed transfer function 
connectivity values between pairs of cortical areas while the subjects VIEWED a video of 
themselves exercising with only the ARMS. Each individual plot starts and ends with the viewed 
right arm fully extended. The numbers on the x-axis indicate the % of the movement cycle. We 
set non-significant differences to 0 (blue).  
 

  
The fast Fourier transform analysis showed that the connectivity strengths in our cortical 

network fluctuated at a predictable rate for both the active movement and the viewed movement 

conditions. Connectivity fluctuated rapidly, with the greatest peaks occurring below 3 Hz for all 



100 
 

conditions. Peaks occurred at the harmonics of the movement frequency for both the active 

movement and the viewed movement conditions. For all conditions, a peak in connectivity 

fluctuation occurred at 0.5, 1, 1.5, and 2 times the movement frequency (1.17 Hz). Of particular 

interest is the fact that the peaks in connectivity fluctuation occurred at precisely the same 

frequencies for the active movement and the viewed movement conditions (Figure 10).  
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Figure 4-10. Fast Fourier Transform Results. Fast Fourier transform of the average 
connectivity over time across all IC pairs. The left column shows the values for the three active 
movement conditions, the middle column shows the values for the three self-viewed movement 
conditions, the right column shows the values for the four other-viewed movement conditions. 
The dotted lines show the subjects’ stepping frequency and the second harmonic of that 
frequency.  
 

Discussion 

A widely distributed cortical network exhibits fluctuations in spectral power and effective 

connectivity during active and viewed rhythmic limb movements. This network includes the 

premotor and supplementary motor cortex, the anterior and posterior cingulate, and the parietal 

cortex. In the cingulate areas and the parietal cortex, the spectral fluctuations were significantly 

smaller or nearly absent during the legs only movement condition compared to either arm 

movement condition. This evidence suggests that rhythmic arm movements induce more cortical 

spectral activity than rhythmic leg movements. Consistent spectral fluctuations were not evident 

during the viewed conditions. However, effective connectivity analysis revealed that the strength 

and direction of information flow was similar between active and viewed movement conditions. 

There was no strong difference in effective connectivity between the self viewed and other viewed 

movement conditions. For all the active and viewed conditions, the right premotor and 

supplementary motor cortex drove the network.  

 
In the premotor and supplementary motor areas, spectral power fluctuations occurred most 

prominently during active rhythmic movements and less so during viewed movements. We found 

that the premotor and supplementary motor areas exhibited theta and alpha desynchronization 

when the contralateral limb was extending and synchronization when the limbs were switching 

directions. The presence of desynchronization may reflect increased cortical activation for 
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movement production or sensorimotor processing (Pfurtscheller and Klimesch, 1991;Pfurtscheller 

et al., 1996;Pfurtscheller and Lopes da Silva, 1999). The presence of synchronization at the 

transition points may reflect recruitment of the muscles needed to transition from flexion to 

extension (Jain et al., 2013). There were some similar spectral shifts during the viewed conditions. 

However they were generally smaller, as in the middle premotor and supplementary motor area 

during the self viewed arm condition, but for the most part they were absent. This differs from 

previous EEG studies where spectral fluctuations were evident during viewed movement (Cochin 

et al., 1998;Cochin et al., 1999;Calmels et al., 2006;Avanzini et al., 2012;Cevallos et al., 2015), 

and it may be a limitation of our study.  

 
In the cingulate areas and the parietal area spectral fluctuations also occurred during the active 

conditions. Similar to the premotor and supplementary motor areas, theta and alpha 

desynchronization occurred when the contralateral limb was extending, and synchronization 

occurred when the limbs were switching directions. Interestingly the spectral fluctuations in these 

areas were mainly apparent when the subjects moved their arms, and were much smaller or 

completely absent when the subjects moved just their legs. This provides evidence that rhythmic 

leg movements induce less cortical activity than rhythmic arm movements, especially in the 

cingulate and parietal areas.  

 
There various reasons why the cingulate and parietal areas might have been less cyclically active 

during rhythmic leg movement compared to rhythmic arm movement in our study. The anterior 

cingulate area is primarily involved in error detection and correction (Bush et al., 2000;O'Connell 

et al., 2007;Walton et al., 2007). Past studies from our laboratory have shown activation changes 

in the anterior cingulate during human walking (Gwin et al., 2011;Sipp et al., 2013), however these 
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changes may have been primarily related to balance control during walking. Movement on a 

recumbent stepper does not involve a balance component, which may explain the limited cingulate 

activity during the active legs condition in the present study. The exact role of the posterior 

cingulate in rhythmic motion is not known, but it may be involved in the transition between rest 

and movement (Treserras et al., 2009). It may be that, once initiated, rhythmic leg movement is a 

continuous task controlled by spinal networks, whereas rhythmic arm movement is a discrete, 

cortically-mediated task. This would explain the increased posterior cingulate activity during 

rhythmic arm movement compared to rhythmic leg movement, if the posterior cingulate controls 

the transition between movement and rest for discrete movements. The middle parietal cortex is 

known to be involved in visuospatial processing (Harris et al., 2000). There are few occasions in 

everyday life when humans move the arms rhythmically without also moving the legs. Given the 

novelty of moving the arms rhythmically on their own, greater visuospatial processing may be 

required.  

 
In our study, the right premotor and supplementary motor cortex was the central hub of information 

flow. This right hemisphere dominance for our recumbent stepping task could be related to 

differences in hemisphere function for motor tasks. It has been theorized that the right hemisphere 

specializes in impedance control mechanisms for stabilizing the limbs and body in response to 

unpredictable mechanical conditions (Sainburg, 2014). This explanation fits with the mechanical 

conditions of our study, given that the recumbent stepper was a one-degree of freedom device with 

a preset kinematic movement pattern. Sainburg has also suggested that the left hemisphere is much 

more focused on predicting the effects of body and environment dynamics during movement 

(Sainburg, 2014). A previous study from our lab on human balance beam walking found a stronger 

electrocortical response in the left motor cortex compared to the right motor cortex when subjects 
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lost their balance (Sipp et al., 2013). Having the left motor cortex dominant during a challenging 

balance task fits with Sainburg’s hypothesis about lateralization. In our study, the subjects did not 

need to maintain their balance and there was no negative consequences for joint kinematic errors. 

The motion pattern was predominantly prescribed by the motion of the handles and pedals.  

 
Another possible explanation of why the right hemisphere was the center of connectivity is 

related to its role in spatial processing. It is well-established that the right hemisphere is the more 

spatially oriented of the two hemispheres (Joseph, 1988). The strongest evidence of this comes 

from patients who have suffered strokes on the right side of the brain. Hemineglect, or failure to 

perceive the contralesional side of the world, is typically more pronounced in patients with right 

hemisphere strokes than similar left hemisphere strokes (Bowen et al., 1999;Heilman et al., 

2000). This suggests that the right hemisphere is centrally involved in constructing our 

perception of the space around us. Furthermore, the right hemisphere may control shifts in 

attention while viewing a scene. Studies with fMRI have reported right-lateralized ventral fronto-

parietal activity during shifts in visual attention (Arrington et al., 2000;Corbetta et al., 2000). 

Seven of the ten conditions in this study involved a predominantly visual task with frequent 

shifts in attention from the left to right side of the viewed scene and vice versa. All of this may 

have accounted for the right hemisphere’s prominent role in coordinating the communication of 

the interacting brain areas. 

 
The results from our fast Fourier transform analysis of the connectivity data highlight similarities 

in the neural processing of the active movement and viewed movement conditions. The 

fluctuations in overall connectivity occurred at frequencies related to the movement. Specifically 

these fluctuations were prominent at 0.5, 1, 1.5, and 2 times the movement frequency. This 
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observation strongly supports the relevance of the connectivity analysis providing insight into the 

true brain activity during the conditions. The prominent frequencies for greater connectivity 

fluctuations were similar for both active movement and viewed movement. In the viewed 

movement, there was virtually no head motion to influence the EEG recordings. There has been 

considerable recent debate about the possibility of motion artifact corrupting EEG signals during 

human movement (Castermans et al., 2014;Kline et al., 2015). There was very little head 

movement during the active stepping condition, but virtually no head movement during the 

viewed conditions. The fast Fourier transform analysis of the connectivity found very similar 

outcomes for all the conditions. The similarity between conditions indicates that the 

communication within the cortical network was related to the pace of the active or viewed 

movement.  

 
Overall, the results of this study add new information to our understanding of human motor 

control. The results of our spectral analysis suggest that rhythmic arm movements are under 

greater descending cortical control, especially by the cingulate and parietal areas, than rhythmic 

leg movement. Furthermore, effective connectivity in a cortical network that is driven by the 

right premotor and supplementary motor cortex fluctuates at harmonics of the movement 

frequency during both active and viewed movement. These results suggest that a similarly 

interconnected neural network is in operation during both active and viewed movement. They 

illustrate that effective connectivity analysis can provide insight into brain network activity 

beyond what can be gained from traditional spectral analysis. 

 

Supplementary Figures 
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Supplementary Figure 4-1. All Viewed Movement ERSPs. Event-related spectral perturbation 
(ERSP) plots showing change in spectral power during viewed rhythmic arm and leg exercise in 
all electrocortical clusters. From left to right, in the first three columns subjects viewed 
themselves exercising with their arms only, with their arms and legs, and with their legs only. In 
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the next three columns, they viewed another person exercising with her arms only, with her arms 
and legs, and with her legs only. In the last column (far right) subjects viewed the recumbent 
stepper moving on its own, with no one seated on it.  Each row represents a cortical area 
(PM&SMC=Premotor and Supplementary Motor Cortex, AC=Anterior Cingulate, and 
PC=Posterior Cingulate), and each column represents an exercise condition. For all plots, red 
represents a power increase from baseline, and blue represents a power decrease from baseline. 
We set non-significant differences to 0 dB (green). All ERSPs start and end with the same limb 
fully extended. The written labels indicate when each limb was extending. RAE=Right Arm 
Extending, LAE=Left Arm Extending, LLE=Left Leg Extending, RLE=Right Leg Extending. 
Note: for the arms and legs condition, the left leg and right arm extended together, and vice 
versa. For the stepper condition, the labels indicate the limb that would have been extending, had 
a person been seated in the stepper.   
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Supplementary Figure 4-2. Connectivity Self Viewed Arms and Legs.  Diagram showing 
directed transfer function connectivity values between pairs of cortical areas while the subjects VIEWED 
a video of THEMSELVES exercising with their ARMS and LEGS. Each individual plot starts and ends 
with the viewed left leg fully extended. The numbers on the x-axis indicate the % of the movement cycle. 
We set non-significant differences to 0 (blue). 

 

 

 

Supplementary Figure 4-3. Connectivity Self Viewed Legs.  Diagram showing directed transfer 
function connectivity values between pairs of cortical areas while the subjects VIEWED a video 
of  THEMSELVES exercising with only the LEGS. Each individual plot starts and ends with the viewed 
left leg fully extended. The numbers on the x-axis indicate the % of the movement cycle. We set non-
significant differences to 0 (blue). 
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Supplementary Figure 4-4: Connectivity Other Viewed Arms. Diagram showing directed 
transfer function connectivity values between pairs of cortical areas for five second while the subjects 
VIEWED a video of ANOTHER PERSON exercising with only the ARMS. Each individual plot starts 
and ends with the viewed right arm fully extended. The numbers on the x-axis indicate the % of the 
movement cycle. We set non-significant differences to 0 (blue). 
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Supplementary Figure 4-5. Connectivity Other Viewed Arms and Legs.  Diagram showing 
directed transfer function connectivity values between pairs of cortical areas while the subjects VIEWED 
a video of ANOTHER PERSON exercising with their ARMS and LEGS. Each individual plot starts and 
ends with the viewed left leg fully extended. The numbers on the x-axis indicate the % of the movement 
cycle. We set non-significant differences to 0 (blue). 
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Supplementary Figure 4-6. Connectivity Other Viewed Legs. Diagram showing directed transfer 
function connectivity values between pairs of cortical areas while the subjects VIEWED a video of 
ANOTHER PERSON exercising with only the LEGS. Each individual plot starts and ends with the 
viewed left leg fully extended. The numbers on the x-axis indicate the % of the movement cycle. We set 
non-significant differences to 0 (blue). 
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Supplementary Figure 4-7. Connectivity Viewed Stepper.  Diagram showing directed transfer 
function connectivity values between pairs of cortical areas while the subjects VIEWED a video of the 
RECUMBENT STEPPER moving on its own, with no one seated in it. Each individual plot starts and 
ends with where the left leg would have been fully extended, had a person been seated in it. We set non-
significant differences to 0 (blue). 
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Chapter 5: Discussion and Conclusion 
 

The main purpose of this dissertation was to use high-density electroencephalography (EEG) and 

independent component analysis (ICA) to gain a deeper understanding of how the human brain 

coordinates movement. The specific goals of the projects contained herein were to: 1) Examine 

how multi-tasking walking and a complex cognitive task affects task performance and gait 

parameters across speed, 2) isolate and characterize just the gait-related movement artifact 

captured by EEG at a range of walking speeds and test methods of mitigating this artifact, and 3) 

quantify the relative amounts of cortical activation and cortical effective connectivity induced by 

active and viewed rhythmic exercise with varying levels of upper and lower limb effort. 

 

The main finding of study 1 was that walking did not affect the performance of a spatial cognitive 

task in young, healthy individuals. The subjects showed no change in response accuracy or reaction 

time for the Brooks spatial memory task across the range of speeds tested (0.0 m/s to 1.6 m/s). We 

detected strong electrocortical spectral fluctuations in the somatosensory association cortex around 

the time of memory encoding. These spectral fluctuations were also unchanged across walking 

speeds. The addition of the Brooks task to walking caused the subjects to adopt a significantly 

greater step width across all speeds. Wider steps have been associated with more stable gait (Bauby 

and Kuo, 2000; McAndrew Young and Dingwell, 2012) and may indicate high cognitive load. The 

results of this study are significant, because they indicate that young, healthy subjects have the 

cognitive capacities to perform challenging spatial tasks, even at high walking speeds, with no 

https://docs.google.com/document/d/1PkOZN4evOMnb4qdGWFwQDoOX3ZNv-ZiLQsbNIyBPq68/edit%23heading=h.2s8eyo1
https://docs.google.com/document/d/1PkOZN4evOMnb4qdGWFwQDoOX3ZNv-ZiLQsbNIyBPq68/edit%23heading=h.2s8eyo1


114 
 

decrease in task performance. This finding contradicts a popular view that walking while thinking 

can decrease thinking ability (Kahneman 2011) and supports the recent trends of walking meetings 

and treadmill desks. 

 

In study 2, the movement artifact patterns recorded by EEG electrodes on the novel interface 

showed strong gait-locked spectral fluctuations. These spectral fluctuations increased in amplitude 

and occurred in higher frequency bands as walking speed increased. Some, but not all, of the 

average artifact plots show decreased spectral power during the swing phase and increased spectral 

power during double support. This suggests that previous studies reporting spectral power 

increases during double support and spectral power decreases during swing (Gwin et al., 2011, 

Cheron et al., 2012, Severens et al., 2012) may have reported a combination of artifact and true 

neural activity. The results of these studies need to be interpreted with caution. 

  

Furthermore, the movement artifact in our study varied across subject, speed, and electrode 

location. The artifact was not similar to the spectral fluctuations captured by an accelerometer 

placed on the head, indicating that accelerometry cannot fully capture the movement artifact that 

pollutes EEG electrodes during walking. We applied some standard cleaning methods (wavelets, 

moving average subtraction, and a combination of both) to the artifact data, however these methods 

were insufficient to remove all artifact. These findings are important because they highlight and 

quantify limitations in current EEG techniques and data cleaning methods. 

 

The first main finding of study 3 was that cortical spectral fluctuations occurred in the motor and 

cingulate cortical areas when young, healthy subjects performed rhythmic exercise with 1) both 

their arms and legs, and 2) just their legs, and 3) just their arms. Desynchronization often occurred 
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in the alpha band when the contralateral limb was extending and was consistent with event-related 

desynchronization (Pfurtscheller and Lopes da Silva 1999; Pfurtscheller et al. 1996). However, 

cortical spectral fluctuations, especially in the alpha and beta band, were much larger during the 

arms exercise conditions than during the legs only exercise condition. This suggests that rhythmic 

arm exercise is much more dependent on descending cortical commands than rhythmic leg 

exercise. Contrary to our hypothesis, we did not detect robust spectral fluctuations, except in the 

gamma band, during the viewed motion conditions. Overall, these results are important because 

they suggest that adding upper limb effort to a lower limb rehabilitation task may increase cortical 

engagement and trigger neuroplasticity.  

 

The second main finding of study 3 was that cortical effective connectivity fluctuations occur in a 

similar brain network during active and viewed full-body movement. During most active and 

viewed conditions, the right premotor and supplementary motor cortex was the hub of information 

flow, receiving connections from the other two premotor and supplementary motor areas (middle 

and left) and from the middle anterior and posterior cingulate areas. This suggest a right 

hemisphere dominance for the control of full-body movement tasks with no balance requirements. 

During all active and viewed movement conditions, the overall connectivity between cortical areas 

fluctuated at 0.5, 1, 1.5, and 2 times the exercise frequency. This provides further evidence that 

cortical communication during actual and viewed motion is related to the pace of the movement. 

This finding adds to our understanding of how the cortex controls active full-body movement and 

processes viewed full-body movement.  

 

The studies contained in this thesis had several limitations, and more work needs to be done to 

advance this line of work. Study 1 only focused on young, healthy subjects and only tested one 
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cognitive task. To truly understand the interplay between walking speed and multi-tasking, many 

groups of individuals (young, elderly, subjects with neurological impairments, etc.) should be 

tested while walking with a diverse range of cognitive tasks of varying difficulty levels. Another 

limitation of study 1 is that there is no way to know if the wider stance adopted when the subjects 

walked with the cognitive task was indicative of true cognitive load or if it was related to the way 

the subjects responded to the cognitive task. The subjects typed the Brooks grids into the handheld 

keypad approximately 5-7 times per walking trial. They may have adopted a wider stance in order 

to better stabilize themselves while they walked and typed on the keypad. To eliminate this 

ambiguity, a future study could again have subjects walk with and without the Brooks task, but 

during the walking only trial subjects could be cued to type 9 random numbers into their keypad 

5-7 times per trial. 

 

Study 2 was limited by the fact that the wig/conductive gel interface did not precisely match the 

impedance of actual human scalp. A more exact match may have produced better results. The 

findings of study 2 could also be extended by creating an EEG system with coupled electrode 

pairs, one of which would measure just movement artifact and one of which would measure brain 

signal plus movement artifact. In the future, this could allow the subtraction of movement artifact 

from EEG data in real time.  

 

For study 3, we were not able to detect the robust spectral fluctuations that we hypothesized would 

occur in the viewed motion conditions. This may be because we gave our subjects a fixation point 

to prevent overt head movements, which did not allow their eyes to freely scan the scene during 

the viewed conditions. Also, we could not gage the subjects’ level of effort, so we had no way to 

know if they kept their attention focused on the viewed task. Future studies with no gaze 
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constraints and a way to gage subject effort may produce different results for the viewed 

conditions. Another limitation for study 3 is the fact that the increased anterior cingulate 

recruitment seen during the arms condition may have been due to larger shifts in the subjects’ 

center of mass when moving with the arms versus moving with the legs on the recumbent stepper. 

Because of this confounding factor, we cannot say with precision that rhythmic arm movement 

induces more anterior cingulate activity than rhythmic leg movement.  

 

Despite some drawbacks, the studies contained in this thesis advance our knowledge about how 

the human cortex functions during full-body motion. Young, healthy subjects are able to walk and 

perform a complex spatial cognitive task at many speeds with no change in task performance or 

task-related electrocortical spectral fluctuations. Spectral fluctuations induced by movement 

artifact can occur in the same frequency bands as true electrocortical spectral fluctuations, so 

studies of EEG and walking need to be interpreted with caution. The cortex is much more 

cyclically active during rhythmic arm movement than rhythmic leg movement, suggesting that 

human rhythmic arm motion is under stronger cortical control than rhythmic leg motion. Finally, 

effective connectivity in a network driven by the right premotor and supplementary motor cortex 

fluctuates at harmonics of the movement frequency during active and viewed full-body movement.  
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