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Abstract 

Heat shock protein 70 (Hsp70) is an essential regulator of protein homeostasis. 

Dysfunction of protein homeostasis is directly linked to many diseases, including cancer 

and neurodegeneration. Thus, an understanding of Hsp70’s roles in this process is 

expected to provide insights into the mechanisms of disease and, potentially, provide 

new opportunities for therapies. However, Hsp70 is also involved in essential cellular 

functions, so it is not clear how to safely target it. In this thesis, I first review how Hsp70 

cooperates with co-chaperones to enable its many activities. Hsp70 binds to distinct co-

chaperones to form complexes that have individual functions in protein folding, 

degradation and trafficking, suggesting that inhibition of the protein-protein interactions 

(PPIs) between Hsp70 and its co-chaperones might be one promising way to safely 

modulate this system. In Chapter 2, I performed a comprehensive, comparative study on 

how five TPR domain-containing co-chaperones bind to Hsp70 in vitro. These 

experiments highlighted the opportunities and challenges of targeting this PPI. In Chapter 

3, I demonstrate how allosteric networks in Hsp70 can be manipulated, using both 

chemical and genetic approaches, in order to regulate binding to co-chaperones and tune 

chaperone activity in unexpected ways. Taking all this information together, I show in 

Chapter 4 that allosteric inhibitors of Hsp70 have surprisingly potent antibiotic activity in 

drug-resistant bacteria, which seem to rely on robust protein homeostasis. By better 
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understanding allostery and PPIs in the Hsp70 network, I made new insights into Hsp70 

biology and also discovered new lead compounds for therapeutic development.   
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Chapter 1 

Heat shock protein 70 complexes as drug targets 

 

1.1 Abstract  

Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target 

for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 

has proven challenging and, in some cases, may not be the most productive way to redirect 

Hsp70 function. Another approach is to inhibit Hsp70’s interactions with important co-

chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide 

repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and 

guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones 

have been shown to have specific functions, such as pro-folding, pro-degradation, and pro-

trafficking. Thus, a promising strategy may be to block protein-protein interactions (PPIs) 

between Hsp70 and its co-chaperones or to target allosteric sites that disrupt or alter these 

contacts. Such an approach might shift the balance of Hsp70 complexes and reshape the 

proteome and it has the potential to restore healthy proteostasis. In this chapter, I discuss 

specific challenges and opportunities related to those goals.  

 

1.2 Diversity of Hsp70 functions 
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Hsp70 is a molecular chaperone that plays a central role in protein quality control [1, 2]. 

Hsp70 binds to protein substrates to assist with their folding [3, 4], degradation [5-7], 

transport [8], regulation [9, 10], and aggregation prevention [11]. The capacity of Hsp70 to 

carry out these widely divergent functions arises, in part, from three features. First, 

evolution has given rise to multiple homologous Hsp70 genes [12, 13]. The resulting Hsp70 

proteins populate the major subcellular compartments. For example, the cytosol of human 

cells has two major Hsp70 paralogs, a stress-inducible form (Hsp72/HSPA1A/B) and a 

constitutive form (Hsc70/HSPA8). Additionally, BiP (HSPA5) is the Hsp70 paralog in the 

endoplasmic reticulum (ER), while mortalin (HSPA9) is found in the mitochondria. For the 

purposes of this chapter, “Hsp70” will often be used to broadly refer to these chaperones 

because they are thought to, in many cases, have similar biochemical properties. Another 

source of functional diversity is Hsp70’s cooperation with other chaperones, such as the 

heat shock proteins Hsp90 and Hsp60 [4]. Cooperation between Hsp70 and Hsp90, for 

example, is critical to the function of nuclear hormone receptors [8]. Finally, the full 

diversity of Hsp70’s activities is achieved by collaborating with a large network of co-

chaperones [1, 14], including J proteins, NEFs, and TPR domain-containing proteins [15]. 

These factors bind to Hsp70 and guide its many chaperone activities. These co-chaperones 

provide further diversification because each category (e.g. J proteins, NEFs, TPR proteins) 

is composed of multiple members, as discussed in more detail in subsequent sections 

(Figure 1.1). 

 

1.3 Hsp70 as a therapeutic target 
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Hsp70 has been implicated in multiple diseases, such as neurodegenerative disorders [16], 

cancer [17], and infectious disease [18] and the evidence linking Hsp70 to disease has been  

recently reviewed [19-21]. Despite this strong connection, relatively little progress has 
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been made in bringing Hsp70 inhibitors to the clinic. One of the contributing factors to this 

lack of translational progress is that Hsp70’s functional promiscuity makes it difficult to 

predict potential off-target effects. As discussed above, Hsp70 is involved in many key 

processes in the cell; thus, it is not clear how therapeutics could be used to rebalance some 

pathological Hsp70 functions without impacting global proteostasis. One attractive 

possibility may be to target the interactions between Hsp70 and its co-chaperones because 

these factors are thought to diversify Hsp70’s functions. 

 

A major focus of this chapter is to review the structure and function of Hsp70 multi-protein 

complexes and evaluate recent progress in identifying compounds that selectively target 

the assembly/disassembly of these complexes. The underlying model is that each complex 

composed of an Hsp70 (e.g. Hsc70, Bip, etc.) bound to a specific set of co-chaperones (e.g. 

J protein, NEF, or TPR domain-containing protein) might be involved in a discrete aspect of 

chaperone biology (e.g. clathrin uncoating, protein folding, degradation, etc.). Thus, if small 

molecules selectively disrupted an interaction between Hsp70 and a specific co-

chaperone, then only a subset of Hsp70 biology might be impacted. In other words, the 

complexity of this chaperone network provides a unique opportunity to influence specific 

subsets of protein quality control while leaving the rest unperturbed. The challenge of this 

strategy is that it has been notoriously difficult to target PPIs [22-24], such as those 

between Hsp70 and its co-chaperones. However, new advances in high-throughput 

screening (HTS) methodology are rapidly changing the landscape of discovery in this area. 
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In fact, Hsp70 might be a particularly attractive target for deploying these methods, owing 

to its high number of protein-protein contacts that are important in guiding Hsp70 biology. 

 

1.4 Structure and function of Hsp70 and its complexes 

 1.4.1 The domain architecture and substrate binding activity of Hsp70 

Hsp70 consists of two domains, a 45 kDa N-terminal nucleotide binding domain (NBD) and 

a 25 kDa C-terminal substrate binding domain (SBD), which are connected by a short 

flexible linker [25-27]. The NBD of Hsp70 is further divided into two subdomains, lobes I 

and II, which are each divided into an “A” and “B” region (Figure 1.2). These lobes form a 

cleft that binds ATP with a nucleotide binding cassette that is related to hexokinase and 

actin [28]. Hsp70’s SBD is composed of a 15 kDa β-sandwich subdomain with a hydrophobic 
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groove for polypeptide binding and a 10 kDa α-helical region which forms a “lid” over the 

polypeptide binding site [29]. Hsp70 preferentially binds hydrophobic regions of proteins 

and can therefore bind newly synthesized linear peptides or exposed regions on partially 

unfolded proteins [3, 30]. Additionally, a lack of strong sequence specificity allows Hsp70 

to bind a variety of client proteins including signal transduction proteins, clathrin, nuclear 

hormone receptors, and cytoskeletal proteins [31, 32].   

 

1.4.2 The ATPase cycle of Hsp70 

The ATPase cycle of Hsp70 has been largely studied for the prokaryotic DnaK ortholog. In 

this chaperone, ATP hydrolysis involves critical allostery between the NBD and SBD. In the 

ATP-bound state, Hsp70 has a low affinity for substrate and retains an “open” substrate-

binding cleft, but conversion to the ADP-bound state causes the α-helical lid region to 

“close” (Figure 1.3) [33]. In DnaK, this crosstalk between the NBD and SBD appears to be 
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bidirectional, because substrate binding also promotes nucleotide hydrolysis [33, 34].  

Thus, ATP hydrolysis in Hsp70 is thought to be a major determinant of chaperone function. 

For example, mutations in the ATP binding cassette have dramatic effects on chaperone 

function in vitro and in vivo [35]. However, recent mutagenesis studies have further shown 

that the relationship between ATP hydrolysis and chaperone function is indirect [35]. For 

example, some mutations in DnaK that dramatically reduce ATP turnover have only modest 

effects on luciferase refolding. In the context of this review, these observations suggest 

that inhibiting the ATPase activity of Hsp70 might not always directly lead to proportional 

changes in functional outcomes, such as reduced client stability. Rather, modifying the 

interactions with co-chaperones might have a more predictable effect on chaperone 

functions [35]. 

 

1.4.3 Co-chaperones regulate Hsp70 structure and activity 

The major families of co-chaperones bind to distinct interaction surfaces on Hsp70 (Figure 

1.1). The J protein co-chaperones bind protein substrates and interact with Hsp70 at lobes 

IA and IIA of the NBD. This interaction results in an accelerated rate of ATP hydrolysis [36]. 

The NEF co-chaperones bind lobes IB and IIB of Hsp70’s NBD and facilitate the release of 

ADP, which has also been shown to accelerate Hsp70’s ATPase rate [37]. TPR domain-

containing co-chaperones bind Hsp70’s C-terminus and have been shown to modulate the 

fates of Hsp70 substrates [38]. Thus, these major families of co-chaperones bind Hsp70 to 

regulate its enzymatic activity, its choice of substrates and its triage decisions. These 

systems will be discussed in more detail below.  
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1.5 Approaches to targeting Hsp70 

1.5.1 Competitive nucleotide analogs  

What is the best way to chemically target Hsp70? One possible approach is to inhibit 

ATPase activity with competitive nucleotide analogs [20], as has been done with Hsp90 

inhibitors [39]. The nucleotide binding cleft of Hsp70 is well defined and relatively deep, 

suggesting that it might be suitable for development of inhibitors. However, Hsp70 has a 

relatively tight affinity (mid-nanomolar) for nucleotide, 300-fold better than Hsp90 [40-

43]. Because the cellular concentration of ATP is typically 1-5 mM, protein targets with a 

high affinity for ADP and ATP are much more difficult to inhibit than those with a lower 

affinity. Further, the ATP binding cassette in Hsp70 is highly homologous in actin and other 

abundant proteins. Thus, selectivity for the chaperone might be challenging. Despite these 

challenges, innovative work performed by Vernalis has produced competitive, orthosteric 

inhibitors of Hsp70, using structure-based design [44]. Consistent with their design, these 

compounds inhibit cancer cell viability [44] and this group has even been successful at 

selectively targeting BiP [45]. Additionally, a cell-based screen of molecules that trigger 

apoptosis resulted in the discovery of the compound Apoptozole. This molecule has been 

shown to bind to the NBD of Hsp70. Computational studies suggest that Apoptozole might 

directly compete with nucleotide for binding to Hsp70 [46, 47]. However, confirmation of 

this binding site by mutagenesis, competition, and/or structural studies has yet to be 

reported. However, Massey has reported that the path towards competitive inhibitors of 

Hsp70 is quantitatively more challenging than the parallel path to other related targets, 
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such as Hsp90 [43]. Given these hurdles, it seems prudent to pursue additional routes to 

the design and discovery of potent and selective small molecule modulators targeting 

Hsp70.  

 

1.5.2 Inhibitors of substrate binding  

Targeting the substrate binding cleft of Hsp70 is the next logical avenue, given the depth 

of the site and its known affinity for relatively low molecular mass peptides. This approach 

has been taken by Chaperone Technologies in their development of antibiotics. For 

example, a series of 18-20 amino acid peptides, including drosocin, pyrrhocoricin, and 

apidaecin, are known to interact with DnaK [18]. Of these peptides, pyrrhocoricin exhibited 

broad-spectrum antibacterial activity. Competition experiments indicated that this peptide 

has two binding sites on DnaK, one of which is thought to be adjacent to the substrate 

binding pocket. Interestingly, pyrrhocoricin has activity against bacteria but not 

mammalian cells [48], suggesting that the SBD could be leveraged to gain selectivity 

between different homologs of Hsp70. While this work highlights the usefulness of SBD-

targeted compounds as antibiotics, it is unclear whether this strategy could be 

implemented in the development of therapeutics for different Hsp70 related diseases. Of 

particular interest is whether enough selectivity could be generated in the peptide binding 

groove to avoid widespread disruption of the proteome. 

 

1.5.3 Peptide aptamers as chemical modulators of Hsp70  



 

 10 

One promising, unbiased approach has been recently reported by Garrido and colleagues, 

in which they used a yeast-two hybrid experiment to identify peptide aptamers that bind 

either the NBD or SBD of Hsp70. These aptamers sensitize cancer cells to anti-cancer drugs 

in vivo [49, 50], strongly suggesting the potential of this approach. Thus far, it isn’t clear 

whether these aptamers compete with nucleotide or peptide substrates or whether they 

have another mechanism of action. Given that these molecules were identified in a cell-

based screen, it seems likely that they do not directly compete with the abundant 

nucleotide or substrates. 

 

1.5.4 Targeting co-chaperones and their interactions with Hsp70 

Given the significant challenges associated with the targeting of either the nucleotide or 

substrate binding regions of Hsp70, additional strategies are worth pursuing. A number of 

additional Hsp70 inhibitors have been identified, but their effects on co-chaperone 

interactions are not known yet [51-59]. To supplement this collection of compounds, 

targeting the PPIs between Hsp70 and its many co-chaperones may be an effective 

approach. In the following sections, I discuss each co-chaperone class in more detail and 

outline some of the successes and challenges associated with targeting these PPIs.  

 

1.6 Opportunities for drugging J proteins and their interactions with Hsp70 

1.6.1 Structure and function of J proteins  

J proteins are a class of Hsp70 co-chaperones whose diversity in structure and function are 

crucial to the flexibility of the Hsp70 machinery. Evolution has dramatically expanded the 
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cellular repertoire of J proteins relative to Hsp70s, such that humans have over 40 J protein 

encoding genes, but only 13 Hsp70 genes [60, 61]. Moreover, the co-existence of many J 

proteins within the cytosol and nucleus suggests that they have evolved for distinct 

functions [62, 63]. All J proteins share a conserved J domain but they diverge in other 

regions, perhaps providing the functional diversity needed to recruit Hsp70 into many 

different cellular activities. Accordingly, various J proteins have been linked extensively 

with a wide array of pathological conditions including cancer, neurodegeneration, 

muscular dystrophy, and viral infection [64-68]. Thus, J proteins may be interesting 

pharmacological targets because they have the potential to impact a subset of Hsp70-

dependent functions. 

 

1.6.2 The interaction of J proteins with Hsp70 

The J domain is a highly conserved structure that consists of four α-helices. The J domain 

interacts directly with the NBD of Hsp70 to stimulate ATP hydrolysis and allosteric 

conversion into a high affinity substrate binding conformation (Figure 1.3) [69-71]. For the 

bacterial DnaJ-DnaK interaction, the interface consists of the positively charged helix II of 

the J domain interacting electrostatically with the negatively charged NBD in lobes IA and 

IIA [36, 72-74]. Additionally, J domains include an invariant His-Pro-Asp (HPD) motif in the 

loop between helices II and III that is required for function. Though the overall four-helix 

architecture of the J domain is largely conserved among J proteins, subtle structural 

differences suggest that some functional diversity may arise from J domain interactions 

with Hsp70 [75]. For example, mutants in the NBD of the yeast BiP disrupt interactions with 
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only a subset of available J proteins [76, 77]. Although speculative, these findings suggest 

that it might be possible to independently target specific J domains at the contact surface 

with Hsp70. 

 

1.6.3 Classification of J proteins 

 J proteins have been traditionally grouped into three classes based on structural homology 

to the Escherichia coli DnaJ (Figure 1.4). Class A consists of an N-terminal J domain, a 

glycine-phenylalanine (G/F) rich region, a zinc finger-like region (ZFLR), a barrel topology 

C-terminal domain (CTD) and a dimerization domain [78, 79]. Class B has the N-terminal J 

domain and G/F region, but lacks a ZFLR. Additionally, this class is more structurally variable 

at the C-terminus, but often contains two CTDs (CTDI and CTDII) [61]. Class C, the largest 

class, consists of proteins containing a J domain and no other structural homology to DnaJ.  

More recently, Kampinga and Craig have provided a revised classification system based 

more closely on function [79]. This classification represents an important new paradigm in 

thinking about J proteins and it highlights the roles of J proteins in directing the activity of 

Hsp70. 
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1.6.4 J proteins with known specialized functions  

Specific functions have been described for only some J proteins. More work is needed to 

clarify this area. However, some convincing and illustrative examples include auxilin 

(DNAJC6), which has a C-terminal J domain and a clathrin-binding domain. This J protein is 

exclusively involved in the Hsp70-dependent uncoating of clathrin-coated vesicles [80-82], 

an activity not readily redundant with other J proteins. Similarly, DNAJC7 interacts with 

both Hsp70 and Hsp90 and seems to play a “recycling” role in the chaperoning of specific 

substrates, such as the progesterone receptor [83]. In the ER, ERdj3 (DNAJB11) works with 

BiP to assist with ER-associated degradation (ERAD) [84, 85]. These and other examples 

[86] lead to a speculative model in which individual J proteins might be responsible for 

each of Hsp70’s specific functions. In support of this idea, a systematic study of human J 

proteins found that a subset are able to refold luciferase, while others inhibit aggregation 

of heat-denatured luciferase [63], further suggesting that these co-chaperones may be 

specialized. 

 

1.6.5 The interaction of J proteins with substrate 

One prevailing model is that J proteins may bind to substrates and present them to Hsp70. 

While this concept is likely oversimplified when applied to the large family of J proteins, 

the interaction of these co-chaperones with substrates seems to play a crucial role in some 

cases. For example, Lu and coworkers deleted the J domain of Ydj1 (yeast DNAJA1) and 

found that the remaining portion suppresses rhodanese aggregation on its own [87]. Later 

work identified a shallow hydrophobic depression on the CTDI of Sis1 (yeast DNAJB1). Four 
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point mutants in this domain inhibited luciferase binding and refolding [88]. These studies 

suggest that J proteins can bind directly to substrates. Further insight into how J proteins 

bind to their substrates has largely been gained from peptide microarray experiments. 

These studies have revealed that the prokaryotic DnaJ binds ~8mer peptides enriched in 

hydrophobic residues [89]. Interestingly, DnaJ does not discriminate between L-peptides 

and D-peptides, indicating that peptide binding involves side chain interactions [89, 90]. 

However, a crystal structure of the Ydj1 C-terminus bound to the peptide GWLYEIS 

suggests that the peptide forms a β-strand alongside a β-sheet in CTDI and several contacts 

are made with the peptide backbone [91]. This discrepancy may be due to species 

differences and the fact that the general rules for J protein-substrate interactions are not 

yet clear. However, it is reasonable to hypothesize that formation of Hsp70-J protein-

substrate complexes may be important in directing Hsp70 to “choose” specific substrates. 

 

1.6.6 J proteins interact with disease-relevant substrates  

The interaction between J proteins and substrates appears to be important for several 

disease-relevant proteins [92]. For example, DNAJB1 and DNAJB6 inhibit the aggregation 

and toxicity of mHtt, which is involved in Huntington’s disease [93-95].  However, another 

J protein, DNAJA1, co-localizes with mHtt aggregates [96] and its over-expression increases 

mHtt aggregation [97]. These observations suggest that individual J proteins, such as 

DNAJB1 and DNAJA1, might have unique roles in protein quality control. This concept is 

further illustrated by studies on the Hsp70 substrate, tau [98], in which DNAJB1 inhibits 

aggregation of tau in vitro [99], while DNAJA1 over-expression causes the proteasomal 
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degradation of tau [100]. Together, these observations suggest that the interactions 

between J proteins and their substrates might be interesting drug targets, but that more 

information is needed about how this network is assembled. 

 

1.6.7 The J protein and Hsp70 interaction can be chemically modulated  

While the interactions between J proteins and their substrates have not been 

pharmacologically targeted, several compounds impact the ability of J proteins to act on 

Hsp70s. This PPI is an attractive drug target because of the importance of J proteins 

regulating Hsp70’s ATP turnover. The first of the compounds to interfere with this PPI was 

15-deoxyspergualin (15-DSG), a modified natural product that stimulates cytosolic Hsp70 

ATP hydrolysis [101-103]. Chemical screens for structurally similar molecules identified 

R/1, a compound that specifically inhibits the J protein-stimulated ATPase activity of the 

yeast cytosolic Hsp70, Ssa1 [104] (Figure 1.5). These findings suggested that drug-like 

molecules could be identified that alter interactions between J proteins and Hsp70s. In 

further support of this idea, an unrelated class of molecules, the sulfogalactosyl ceramide 

(SGC) mimics, were developed. SGC is a cell surface receptor that binds the NBD of multiple 

members of the Hsp70 family [105, 106]. Park and coworkers developed a soluble mimic 

of SGC called adamantylSGC (AdaSGC). AdaSGC inhibits the J protein-stimulated ATPase 

activity of Hsp70, but not its intrinsic (i.e. unstimulated) activity, suggesting that it may 

directly inhibit the J domain-Hsp70 interaction [107].  
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1.6.8 Dihydropyrimidines as chemical modulators of the J protein-Hsp70 complex 

More recent HTS efforts have identified a broader range of compounds that specifically 

influence J protein-stimulated Hsp70 ATPase activity. For example, screening of a 

collection of dihydropyrimidines identified MAL3-101, which had no effect on intrinsic 

Hsp70 ATP turnover, but inhibited J protein-stimulated turnover [108]. Subsequent 

screening and structural studies confirmed this outcome and showed that the 

dihydropyrimidines bind to a region at the J protein-Hsp70 interface [109-111]. Moreover, 
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these studies also found that some dihydropyrimidines promote J protein activity, while 

others are inhibitory. For example, 115-7c is able to stimulate the ATPase activity of Hsp70 

synergistically with DnaJ [109]. 115-7c binds better to the DnaJ-DnaK complex than DnaK 

alone. Additionally, nuclear magnetic resonance (NMR) studies found that 115-7c binds 

adjacent to the J domain binding site on DnaK. However, the related compound 116-9e, 

which (similar to MAL3-101) has a diphenyl substitution on the dihydropyrimidine ring 

(Figure 1.5), inhibits DnaJ stimulation of ATPase activity, without impacting NEF function 

[109]. Interestingly, MAL3-101 seems to discriminate between J proteins because it inhibits 

Ssa1 stimulation by SV40 large T Antigen (TAg), a viral J protein, but had less potent activity 

against the combination of Ssa1 and Ydj1. This finding suggests that it may be possible to 

achieve J protein specific inhibition even by targeting the J protein-Hsp70 interface. MAL3-

101 was subsequently found to have potent anti-cancer effects in a multiple myeloma cell 

line and mouse model [112], while other dihydropyrimidines have been found to control 

the stability of other Hsp70 substrates, including tau, polyglutamine proteins, and Akt [52, 

83, 113, 114]. This growing body of work suggests that targeting the Hsp70-J protein 

interface may be a productive approach for guiding Hsp70 functions. Importantly, these 

compounds are not generally cytotoxic and they do not activate a stress response [52, 113, 

114], consistent with the idea that disrupting PPIs in the Hsp70 complex may be relatively 

well tolerated. 

 

1.6.9 Allosteric inhibitors of the J protein-Hsp70 complex 
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Other chemical series also appear to have activity against the Hsp70-J protein interaction. 

Interestingly, some of these compounds have mechanisms different than the 

dihydropyrimidines. For example, a HTS effort against the DnaK-DnaJ pair identified the 

flavinoid myricetin (Figure 1.5), which inhibits DnaJ-stimulated ATPase and substrate 

binding activities, without affecting intrinsic or NEF stimulated activity [52, 115]. NMR 

revealed that myricetin binds the NBD in a region between the IB and IA subdomains, which 

is more than 20 Å away from the J domain binding site [115]. However, myricetin blocks 

binding of DnaJ to DnaK, suggesting that it acts across a long distance allosteric pathway. 

Additional HTS efforts have shown that methylene blue (MB) blocks J stimulation of ATP 

turnover in vitro (Figure 1.5). However, like myricetin, MB’s effects in cells and animals are 

complex and it is likely to have targets other than Hsp70s [52, 83, 116]. Despite this 

complexity, MB and myricetin have clearly shown Hsp70-dependent effects on 

pathological substrates in cellular and animal models [52, 83, 117] and they reduce Akt 

levels in cancer cells [114]. Interestingly, these effects are blocked by co-administration of 

115-7c, the dihydropyrimidine activator of J protein function [52], further suggesting that 

the Hsp70-J protein contact is critical. Finally, a larger HTS effort using more than 55,000 

compounds identified zafirlukast as an inhibitor of the DnaK-DnaJ combination [118] and 

a screen of more than 300,000 compounds identified an inhibitor of TAg [119]. These 

efforts further illustrate that a screening strategy employing reconstituted chaperone 

complexes can be used to identify specific inhibitors of a PPI in the Hsp70 system.  

 



 

 19 

The effects of small molecules on disease-relevant Hsp70 substrates are an initial 

indication that this is a promising avenue of investigation. However, J protein biology is 

complex and more work is needed to rationally refine these studies to focus on specific J 

protein-Hsp70 pairs. More specifically, if a discrete Hsp70-J protein pair can be clearly 

attributed to a distinct pathobiology, then HTS approaches might be employed to 

selectively disrupt (or even promote) the key PPIs.  

 

1.7 Opportunities for drugging NEFs and their interactions with Hsp70 

1.7.1 Human NEFs are unique in structure and function  

NEFs provide another potential “handle” for targeting the Hsp70 chaperone complex. NEFs 

bind Hsp70 and help to facilitate the exchange of ADP for ATP. The biochemistry of the NEF 

family of co-chaperones has classically been investigated using the prokaryotic NEF, GrpE, 

as a model [120]. However, the eukaryotic cytosol does not contain a GrpE homolog. 

Rather, there are three main subclasses of human NEFs: Hsp110, HspBP1, and the BAG 

proteins, all of which are structurally distinct with little to no sequence homology. 

Consistent with their diverse structures, they also differ in their mode of binding to Hsp70s 

and their roles in guiding Hsp70 biology (Figure 1.6). For example, BAG2 is associated with 

proteasomal degradation of the Hsp70 substrate, tau, while BAG1-Hsp70 is linked to 

increased tau stability [121, 122]. These observations suggest that the formation of specific 

NEF-Hsp70 complexes may help decide the fate of Hsp70-bound substrates. Additionally, 

these findings illustrate that differential disruption of specific Hsp70-NEF contacts might 

be beneficial in disease. For example, members of the NEF family are differentially 



 

 20 

expressed in multiple diseases, including cancer, Alzheimer’s, cardiomyopathies, and 

ischemia [123-126], highlighting the rationale for developing chemical modulators of NEF-

Hsp70. 

 

1.7.2 Human Hsp110 has multiple isoforms  

Hsp110 was originally observed and classified as a heat shock protein based on the 

appearance of a 110 kDa band in the lysates of Chinese Hamster Ovary cells upon heat 

shock [127]. In humans the major cytosolic Hsp110 protein is called Hsp105 (HSPH1). 
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Hsp105 has two major isoforms α and β [128].  Hsp105β results from alternative splicing 

at exon 12 and lacks 43 amino acids from its C-terminus. Recently, a mutant of Hsp110 that 

skips exon 9 and results in a truncated form of Hsp110, Hsp110ΔE9, has also been 

described [129]. This truncated Hsp110ΔE9 is able to act as a dominant negative mutant, 

abrogating Hsp110 chaperone activity and sensitizing cancer cells to chemotherapy 

treatments [129]. Since Hsp110 has been shown to protect cancer cells against apoptotic 

death [130], strategies to block its function or its interactions with Hsp70 could be 

promising cancer therapies. 

 

1.7.3 Domain architecture and chaperone function of Hsp110  

Hsp110 is a relative of the Hsp70 family of chaperones. Therefore, it has very similar 

domain architecture, with the main differences including a longer acidic loop region 

between the β-sandwich and α-helical lid of the SBD and a larger unstructured C-terminal 

extension [131, 132].  Despite the structural similarity, Hsp110 only functions as a holdase 

and has no ability to refold substrates without the help of the Hsp70 machinery [132-136]. 

Furthermore, while Hsp110 homologs bind nucleotide, this function seems to be 

dispensable for their NEF activity [137]. The crystal structure of the complex between 

Hsp70 and yeast Hsp110, Sse1, shows that the interaction covers a large surface area 

involving their respective NBDs [138, 139]. This interaction between Hsp70 and Hsp110 

causes several rotations in Hsp70’s NBD, especially in lobe IIB [140], allowing ADP release 

(Figure 1.6). 
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1.7.4 Strategies for targeting the Hsp110-Hsp70 interaction  

The large buried surface area between Hsp70 and Hsp110 may make targeting this 

interaction difficult. The problem in PPI systems like this is that binding energy is often 

distributed across a large and complex topology, precluding easy inhibition by small (<500 

Da) molecules. However, inhibiting PPIs with large surface areas is not unprecedented and 

compounds with potency values in the low nM range have been reported [141]. A common 

feature of previous successful strategies is that the small molecules tend to target so-called 

“hotspots” of the PPI, meaning the inhibitor binds in a region on one partner containing a 

small number of residues that are responsible for the majority of the binding strength [142, 

143]. Thus, it will be important to identify residues that are critical to the Hsp70-NEF 

interaction. Another common feature of successful PPI inhibitors is that they bind in 

allosteric sites to impact the topology of protein-protein contact surfaces from a distance 

[143]. This approach lets the small molecule bind in a relatively concise pocket and impact 

larger surfaces to block PPIs. It seems likely that similar mechanisms will need to be 

employed to target the Hsp110-Hsp70 interaction.  

 

1.7.5 The structure of HspBP1 and its interactions with Hsp70 

Similar issues should be considered when designing inhibitors for the other major classes 

of NEFs. For example, HspBP1 is a 40 kDa protein that is composed of two structural 

domains, a largely unstructured N-terminal domain and a C-terminal domain that is mostly 

α-helical and is responsible for HspBP1 binding to Hsp70 [144].  This C-terminal region has 

been shown to be sufficient for eliciting Hsp70 nucleotide release [144, 145] and co-crystal 
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structures suggest that HspBP1’s C-terminal domain interacts with lobe II of Hsp70’s NBD 

(Figure 1.6) [145]. Importantly, this interaction is not the same as the PPI between Hsp70 

and Hsp110, suggesting that this contact might be selectively inhibited. This goal might be 

attractive because of HspBP1’s links to cancer and chemotherapy resistance [146]. 

 

1.7.6 The BAG family of NEFs and their interactions with Hsp70 

Additional lessons about how to potentially target the Hsp70-NEF interaction are 

illustrated by the BAG family of co-chaperones, which includes BAG1-6. BAG proteins are 

defined by a characteristic C-terminal BAG domain that binds lobe IB and IIB of Hsp70’s 

NBD and facilitates nucleotide release [147, 148]. This BAG domain typically consists of 110 

to 124 amino acids and forms a three-helix bundle with the second and third helices 

providing the binding interface for Hsp70 [37, 149]. The association between the BAG 

domain and Hsp70 causes a 14° rotation in lobe II, which results in an opening of the 

nucleotide binding cleft and promotes ADP release (Figure 1.6) [37]. Interestingly, while all 

BAG proteins interact with Hsp70 through their conserved BAG domains, their N-terminal 

region is highly variable (Figure 1.7). This diversity is likely to be key for pathway specificity. 

BAG proteins may use these domains to determine the timing and location of nucleotide-

dependent delivery of Hsp70-bound cargo.  

 

One of the major questions in this field is whether the structural differences between the 

major NEF classes can be exploited to produce selective inhibitors of the various families. 

Similarly, can different members of the BAG family be individually targeted? Further, it is 
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not yet clear how many NEF functions are dependent on Hsp70 and how many are 

independent.  

 

 

1.8 Opportunities for drugging TPR proteins and their interactions with Hsp70 

1.8.1 The structure of TPR domains  

Hsp70 also cooperates with a number of TPR domain-containing proteins. The TPR motif is 

defined by a degenerate 34 amino acid sequence that forms an amphipathic antiparallel 

α-helix [40, 150-153] and a TPR domain is typically assembled from 3 to 16 tandem TPR 

motifs. Although first identified in subunits of the anaphase promoting complex [154, 155], 

the TPR domain has since been found to be a common feature of PPs, including those 

between Hsp70 and its co-chaperones.  
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1.8.2 TPR co-chaperones have diverse cellular functions  

Members of the family of TPR co-chaperones, as a whole, share little homology outside 

their TPR domains and they typically have regions involved in functions unrelated to 

Hsp70/Hsp90 binding [40, 150-153]. For example, the TPR co-chaperone CHIP (carboxyl 

terminus of Hsc70 interacting protein) is an ubiquitin E3 ligase with an effector Ubox 

domain [156]. This co-chaperone directs ubiquitination of Hsp70-bound substrates, 

marking them for proteasome-mediated degradation [157, 158]. In contrast, the TPR co-

chaperone Hop (Hsp70/Hsp90 organizing protein) has three TPR domains: TPR1, TPR2A, 

and TPR2B. Of these domains, TPR1 and TPR2A mediate the association with Hsp70 and 

Hsp90, respectively [159, 160]. Thus, Hop facilitates the coordination of Hsp70 and Hsp90, 

ultimately allowing for the transfer of substrate between these two chaperone systems 

[161, 162]. This coordination allows Hop to play a central role in the folding of proteins, 

such as nuclear hormone receptors [163, 164]. Thus, when Hop and CHIP compete for 

binding to Hsp70 through their TPR domains, they establish a choice between two 

opposing fates: folding vs. degradation. These findings highlight the field’s current model 

for combinatorial assembly of Hsp70 complexes, in which mutually exclusive binding of 

Hsp70 to specific co-chaperones dictates the fate of substrates [165-167]. Taken together, 

these features suggest that chaperone complexes may have the potential to be chemically 

modulated in order to “tune” the proteome.      

 

1.8.3 TPR co-chaperones bind to the C-terminal EEVD of Hsp70/90  
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TPR co-chaperones interact with the disordered C-terminus of Hsp70. Mutagenesis studies 

[160, 168, 169] and co-crystal structures of the TPR domains of Hop and CHIP with Hsp70 

C-terminal peptides [159, 170] illustrate the importance of the C-terminal EEVD amino 

acids in mediating these PPIs [168, 171]. Based on these findings, the EEVD motif of Hsp70 

has been generalized as the minimal binding site for TPR co-chaperones. This motif is also 

present in the extreme C-terminus of the evolutionarily unrelated molecular chaperone 

Hsp90, but not in the prokaryotic DnaK, mitochondrial or ER-resident Hsp70 homologs. 

These observations highlight the role of the EEVD motif as a recruitment element that 

anchors TPR co-chaperones to the cytoplasmic Hsp70 and Hsp90 chaperone systems. 

However, there is not much known about how TPR co-chaperones “compete” for binding 

to Hsp70. Thus, compounds that block the EEVD-TPR interaction might be exciting probes 

for understanding chaperone biology and these compounds may serve as leads for drug 

discovery. This possibility will be the subject of my thesis work in chapter 2. 

 

The importance of EEVD-TPR domain contacts in facilitating PPIs between Hsp70/90 and 

TPR co-chaperones is well appreciated within the chaperone field. However, much less 

attention has been paid to interaction surfaces outside this canonical binding site. 

Immunoprecipitation experiments as well as in vitro binding studies performed on the 

Hsp70-Hop complex, demonstrate that binding involves secondary contacts outside the 

EEVD motif [160, 172]. Recent structural work illustrates that the TPR domain of CHIP 

engages with both the lid of Hsp70’s SBD and the EEVD motif. NMR binding studies indicate 

that these secondary lid contacts are very weak (KD >100 uM) [173]. Additionally, 
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sequences outside of the TPR domain of Hop, CHIP, and other TPR co-chaperones cause 

differential binding to Hsp90 mutants [174, 175]. Together, these findings suggest that 

interactions between TPR proteins and Hsp70 are more complex than the minimal TPR-

EEVD interactions. Thus, many key fundamental questions remain unanswered: What are 

the molecular interactions between Hsp70 and TPR co-chaperones? Do these interactions 

differ among TPR co-chaperones? What molecular events influence the choice to bind one 

TPR protein over another? Because TPR co-chaperone structures are divergent in nature, 

additional contacts outside the EEVD-TPR binding site may provide an avenue for the 

development of chemical probes that can modulate specific TPR-chaperone interactions. 

Such compounds would be useful in further dissecting the complex mechanisms of Hsp70 

and individual TPR co-chaperones in protein quality control. 

 

1.8.4 Small molecule inhibitors of Hsp70/90-TPR co-chaperone complexes 

The development of small molecule modulators of Hsp70-TPR complexes is still in its 

infancy. However, in the Hsp90 system, Yi and co-workers have targeted the TPR domain 

of Hop and identified pyrimidotriazinediones as inhibitors of that PPI [176]. Additionally, 

derivatives of the natural product sansalvamide A have been shown to modulate Hsp90 

interactions with TPR co-chaperones [177, 178]. Taken together, this work suggests that 

the Hsp70-TPR interactions may also be amenable to inhibition. However, further studies 

are still needed because the binding sites and mechanisms of these molecules are not yet 

clear. Compared to the other PPIs (e.g. J proteins and NEFs), the interactions between TPR 

domains and Hsp70s are relatively more concise, which might accelerate discovery in that 
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area. The challenges will be in understanding how to engender selectivity and guide the 

“choice” of TPR partner. 

 

There are compelling reasons to target the PPIs between Hsp70 and its co-chaperones. 

These contacts help shape Hsp70 activities and, as such, they might be targeted to redirect 

the protein quality control system. Molecules that disrupt the assembly and disassembly 

of the Hsp70 complex might supplement other types of Hsp70 inhibitors, such as 

competitive inhibitors of ATP and substrate binding, providing a more complete suite of 

chemical probes and potential therapeutics. However, the number of PPIs in the Hsp70 

complex means that there are a large number of contacts yet to be explored.   

 

1.9 Analysis and prospectus 

1.9.1 Assays are needed for characterizing chemical modulators of Hsp70 complexes  

PPIs are notoriously difficult to inhibit and the specific interactions involved in binding to 

Hsp70 are particularly challenging, given their large buried surface areas. What strategies 

might be used to disrupt these contacts? Based on growing evidence from other PPI 

inhibitor discovery programs [22-24], it seems likely that compounds that are able to bind 

to allosteric sites might be in the best position to target the types of PPIs in the Hsp70 

system. Another key tool will likely be the development of HTS platforms that are 

specifically suited to finding inhibitors of PPIs. Recent developments in this area include 

AlphaLISA, flow cytometry protein interaction assay (FCPIA), and gray box screening [115, 

118]. These assay platforms might lower the barrier to uncovering suitable compounds. 
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Also, the creation of chemical libraries enriched for more complex small molecules (natural 

product-like) may further accelerate discovery in this area [179]. A clever combination of 

these methods might overcome the challenges associated with targeting the Hsp70 

complex. 

 

1.9.2 Targeting Hsp70 multi-protein complexes could have global effects on the proteome 

One major question that looms large over this field is how the global proteome will respond 

to inhibitors of Hsp70 (both orthostatic and allosteric). This concept has not been 

rigorously tested and it remains uncertain how cells will respond to different types of 

Hsp70 inhibitors. What will happen to protein stability and turnover when Hsp70 function 

is blocked or even “tuned”? The answers to this question may depend on how the molecule 

works (e.g. competitive inhibitor of ATP binding, allosteric inhibitor of J proteins, etc.) and 

whether it is selective for specific Hsp70 paralogs. It seems likely that the only way to 

address these significant concerns is to develop potent inhibitors and then use them to 

develop empirical models.  

 

1.9.3 Thesis outline  

In this thesis, I first characterize Hsp70-TPR domain-containing co-chaperone interactions 

with the goal of understanding whether these PPIs might serve as good drug targets 

(chapter 2). Then, I study how allostery within the Hsp70 system translates to effects on 

co-chaperone binding, revealing an interesting control network in the NBD (chapter 3). 

Finally, I apply that knowledge of Hsp70 co-chaperone dynamics to a translational 
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objective, identifying potent new antibiotics that target the bacterial DnaK system (chapter 

4). The impact of these new findings and their implications for future work are discussed 

in chapter 5. 

 

Notes  

Portions of this chapter were published as “Hsp70 Protein complexes as drug targets” 2013 

Current Pharmaceutical Design, 19(3), 404-17. Victoria A. Assimon, Anne T. Gillies, Jennifer 

N. Rauch, and Jason E. Gestwicki contributed to this review. 



 

 31 

1.10 References 

1. Mayer, M.P. and B. Bukau, Hsp70 chaperones: cellular functions and molecular 
mechanism. Cell Mol Life Sci, 2005. 62(6): p. 670-84. 

2. Bukau, B., J. Weissman, and A. Horwich, Molecular chaperones and protein quality 
control. Cell, 2006. 125(3): p. 443-51. 

3. Frydman, J., Folding of newly translated proteins in vivo: the role of molecular 
chaperones. Annu Rev Biochem, 2001. 70: p. 603-47. 

4. Hartl, F.U., A. Bracher, and M. Hayer-Hartl, Molecular chaperones in protein folding 
and proteostasis. Nature, 2011. 475(7356): p. 324-32. 

5. Bercovich, B., et al., Ubiquitin-dependent degradation of certain protein substrates 
in vitro requires the molecular chaperone Hsc70. J Biol Chem, 1997. 272(14): p. 
9002-10. 

6. Arndt, V., C. Rogon, and J. Hohfeld, To be, or not to be--molecular chaperones in 
protein degradation. Cell Mol Life Sci, 2007. 64(19-20): p. 2525-41. 

7. Kettern, N., et al., Chaperone-assisted degradation: multiple paths to destruction. 
Biol Chem, 2010. 391(5): p. 481-9. 

8. Pratt, W.B. and D.O. Toft, Regulation of signaling protein function and trafficking by 
the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood), 2003. 
228(2): p. 111-33. 

9. Gamer, J., H. Bujard, and B. Bukau, Physical interaction between heat shock proteins 
DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. 
Cell, 1992. 69(5): p. 833-42. 

10. Rodriguez, F., et al., Molecular basis for regulation of the heat shock transcription 
factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell, 2008. 32(3): p. 347-58. 

11. Tyedmers, J., A. Mogk, and B. Bukau, Cellular strategies for controlling protein 
aggregation. Nat Rev Mol Cell Biol, 2010. 11(11): p. 777-88. 

12. Daugaard, M., M. Rohde, and M. Jaattela, The heat shock protein 70 family: Highly 
homologous proteins with overlapping and distinct functions. FEBS Lett, 2007. 
581(19): p. 3702-10. 

13. Brocchieri, L., E. Conway de Macario, and A.J. Macario, hsp70 genes in the human 
genome: Conservation and differentiation patterns predict a wide array of 
overlapping and specialized functions. BMC Evol Biol, 2008. 8: p. 19. 

14. Hohfeld, J., D.M. Cyr, and C. Patterson, From the cradle to the grave: molecular 
chaperones that may choose between folding and degradation. EMBO Rep, 2001. 
2(10): p. 885-90. 

15. Meimaridou, E., S.B. Gooljar, and J.P. Chapple, From hatching to dispatching: the 
multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol 
Endocrinol, 2009. 42(1): p. 1-9. 

16. Broadley, S.A. and F.U. Hartl, The role of molecular chaperones in human misfolding 
diseases. FEBS Lett, 2009. 583(16): p. 2647-53. 

17. Mosser, D.D. and R.I. Morimoto, Molecular chaperones and the stress of 
oncogenesis. Oncogene, 2004. 23(16): p. 2907-18. 



 

 32 

18. Otvos, L., et al., Interaction between heat shock proteins and antimicrobial peptides. 
Biochemistry, 2000. 39(46): p. 14150-14159. 

19. Evans, C.G., L. Chang, and J.E. Gestwicki, Heat shock protein 70 (hsp70) as an 
emerging drug target. J Med Chem, 2010. 53(12): p. 4585-602. 

20. Brodsky, J.L. and G. Chiosis, Hsp70 molecular chaperones: emerging roles in human 
disease and identification of small molecule modulators. Curr Top Med Chem, 2006. 
6(11): p. 1215-25. 

21. Patury, S., Y. Miyata, and J.E. Gestwicki, Pharmacological targeting of the Hsp70 
chaperone. Curr Top Med Chem, 2009. 9(15): p. 1337-51. 

22. Gestwicki, J.E. and P.S. Marinec, Chemical control over protein-protein interactions: 
beyond inhibitors. Comb Chem High Throughput Screen, 2007. 10(8): p. 667-75. 

23. Berg, T., Modulation of protein-protein interactions with small organic molecules. 
Angew Chem Int Ed Engl, 2003. 42(22): p. 2462-81. 

24. Arkin, M.R. and J.A. Wells, Small-molecule inhibitors of protein-protein interactions: 
progressing towards the dream. Nat Rev Drug Discov, 2004. 3(4): p. 301-17. 

25. Bertelsen, E.B., et al., Solution conformation of wild-type E. coli Hsp70 (DnaK) 
chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A, 2009. 
106(21): p. 8471-6. 

26. Zhuravleva, A. and L.M. Gierasch, Allosteric signal transmission in the nucleotide-
binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. 
Proceedings of the National Academy of Sciences of the United States of America, 
2011. 108(17): p. 6987-6992. 

27. Kityk, R., et al., Structure and Dynamics of the ATP-Bound Open Conformation of 
Hsp70 Chaperones. Molecular Cell, 2012. 48(6): p. 863-874. 

28. Bork, P., C. Sander, and A. Valencia, An ATPase domain common to prokaryotic cell 
cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad 
Sci U S A, 1992. 89(16): p. 7290-4. 

29. Wang, H., et al., NMR solution structure of the 21 kDa chaperone protein DnaK 
substrate binding domain: a preview of chaperone-protein interaction. 
Biochemistry, 1998. 37(22): p. 7929-40. 

30. Zhu, X., et al., Structural analysis of substrate binding by the molecular chaperone 
DnaK. Science, 1996. 272(5268): p. 1606-14. 

31. Young, J.C., J.M. Barral, and F. Ulrich Hartl, More than folding: localized functions of 
cytosolic chaperones. Trends Biochem Sci, 2003. 28(10): p. 541-7. 

32. Gaestel, M., Molecular chaperones in signal transduction. Handb Exp Pharmacol, 
2006(172): p. 93-109. 

33. Mayer, M.P., et al., Multistep mechanism of substrate binding determines 
chaperone activity of Hsp70. Nat Struct Biol, 2000. 7(7): p. 586-93. 

34. Vogel, M., M.P. Mayer, and B. Bukau, Allosteric regulation of Hsp70 chaperones 
involves a conserved interdomain linker. J Biol Chem, 2006. 281(50): p. 38705-11. 

35. Chang, L., et al., Mutagenesis reveals the complex relationships between ATPase 
rate and the chaperone activities of Escherichia coli heat shock protein 70 
(Hsp70/DnaK). J Biol Chem, 2010. 285(28): p. 21282-91. 



 

 33 

36. Ahmad, A., et al., Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex 
employs an unusual dynamic interface. Proc Natl Acad Sci U S A, 2011. 108(47): p. 
18966-71. 

37. Sondermann, H., et al., Structure of a Bag/Hsc70 complex: convergent functional 
evolution of Hsp70 nucleotide exchange factors. Science, 2001. 291(5508): p. 1553-
7. 

38. Liu, F.H., et al., Specific interaction of the 70-kDa heat shock cognate protein with 
the tetratricopeptide repeats. J Biol Chem, 1999. 274(48): p. 34425-32. 

39. Whitesell, L. and S.L. Lindquist, HSP90 and the chaperoning of cancer. Nature 
Reviews Cancer, 2005. 5(10): p. 761-772. 

40. Allan, R.K. and T. Ratajczak, Versatile TPR domains accommodate different modes 
of target protein recognition and function. Cell Stress & Chaperones, 2011. 16(4): 
p. 353-367. 

41. Borges, J.C. and C.H.I. Ramos, Spectroscopic and thermodynamic measurements of 
nucleotide-induced changes in the human 70-kDa heat shock cognate protein. 
Archives of Biochemistry and Biophysics, 2006. 452(1): p. 46-54. 

42. Williamson, D.S., et al., Novel Adenosine-Derived Inhibitors of 70 kDa Heat Shock 
Protein, Discovered Through Structure-Based Design. Journal of Medicinal 
Chemistry, 2009. 52(6): p. 1510-1513. 

43. Massey, A.J., ATPases as drug targets: insights from heat shock proteins 70 and 90. 
J Med Chem, 2010. 53(20): p. 7280-6. 

44. Massey, A.J., et al., A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates 
Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer 
Chemother Pharmacol, 2011. 66(3): p. 535-45. 

45. Macias, A.T., et al., Adenosine-derived inhibitors of 78 kDa glucose regulated protein 
(Grp78) ATPase: insights into isoform selectivity. J Med Chem, 2010. 54(12): p. 
4034-41. 

46. Williams, D.R., et al., An apoptosis-inducing small molecule that binds to heat shock 
protein 70. Angewandte Chemie-International Edition, 2008. 47(39): p. 7466-7469. 

47. Cho, H.J., et al., A Small Molecule That Binds to an ATPase Domain of Hsc70 
Promotes Membrane Trafficking of Mutant Cystic Fibrosis Transmembrane 
Conductance Regulator. Journal of the American Chemical Society, 2011. 133(50): 
p. 20267-20276. 

48. Kragol, G., et al., The antibacterial peptide pyrrhocoricin inhibits the ATPase actions 
of DnaK and prevents chaperone-assisted protein folding. Biochemistry, 2001. 
40(10): p. 3016-3026. 

49. Rerole, A.L., et al., Peptides and aptamers targeting HSP70: a novel approach for 
anticancer chemotherapy. Cancer Res, 2011. 71(2): p. 484-95. 

50. Rerole, A.L., G. Jego, and C. Garrido, Hsp70: anti-apoptotic and tumorigenic protein. 
Methods Mol Biol, 2011. 787: p. 205-30. 

51. Williams, D.R., et al., An apoptosis-inducing small molecule that binds to heat shock 
protein 70. Angew Chem Int Ed Engl, 2008. 47(39): p. 7466-9. 

52. Jinwal, U.K., et al., Chemical manipulation of hsp70 ATPase activity regulates tau 
stability. J Neurosci, 2009. 29(39): p. 12079-88. 



 

 34 

53. Cellitti, J., et al., Small molecule DnaK modulators targeting the beta-domain. Chem 
Biol Drug Des, 2009. 74(4): p. 349-57. 

54. Hassan, A.Q., et al., The Novolactone Natural Product Disrupts the Allosteric 
Regulation of Hsp70. Chemistry & Biology, 2015. 22(1): p. 87-97. 

55. Rodina, A., et al., Identification of an Allosteric Pocket on Human Hsp70 Reveals a 
Mode of Inhibition of This Therapeutically Important Protein. Chemistry & Biology, 
2013. 20(12): p. 1469-1480. 

56. Taldone, T., et al., Heat Shock Protein 70 Inhibitors. 2. 2,5 '-Thiodipyrimidines, 5-
(Phenylthio)pyrimidines, 2-(Pyridin-3-ylthio)pyrimidines, and 3-
(Phenylthio)pyridines as Reversible Binders to an Allosteric Site on Heat Shock 
Protein 70. Journal of Medicinal Chemistry, 2014. 57(4): p. 1208-1224. 

57. Rodina, A., et al., Affinity Purification Probes of Potential Use To Investigate the 
Endogenous Hsp70 Interactome in Cancer. Acs Chemical Biology, 2014. 9(8): p. 
1698-1705. 

58. Howe, M.K., et al., Identification of an Allosteric Small-Molecule Inhibitor Selective 
for the Inducible Form of Heat Shock Protein 70. Chemistry & Biology, 2014. 21(12): 
p. 1648-1659. 

59. Daguer, J.P., et al., DNA display of fragment pairs as a tool for the discovery of novel 
biologically active small molecules. Chemical Science, 2015. 6(1): p. 739-744. 

60. Qiu, X.B., et al., The diversity of the DnaJ/Hsp40 family, the crucial partners for 
Hsp70 chaperones. Cell Mol Life Sci, 2006. 63(22): p. 2560-70. 

61. Kampinga, H.H., et al., Guidelines for the nomenclature of the human heat shock 
proteins. Cell Stress Chaperones, 2009. 14(1): p. 105-11. 

62. Caplan, A.J., D.M. Cyr, and M.G. Douglas, YDJ1p facilitates polypeptide translocation 
across different intracellular membranes by a conserved mechanism. Cell, 1992. 
71(7): p. 1143-55. 

63. Hageman, J., et al., The diverse members of the mammalian HSP70 machine show 
distinct chaperone-like activities. Biochem J, 2011. 435(1): p. 127-42. 

64. Sterrenberg, J.N., G.L. Blatch, and A.L. Edkins, Human DNAJ in cancer and stem cells. 
Cancer Lett, 2011. 312(2): p. 129-42. 

65. Kalia, S.K., L.V. Kalia, and P.J. McLean, Molecular chaperones as rational drug 
targets for Parkinson's disease therapeutics. CNS Neurol Disord Drug Targets, 2010. 
9(6): p. 741-53. 

66. Mitra, A., L.A. Shevde, and R.S. Samant, Multi-faceted role of HSP40 in cancer. Clin 
Exp Metastasis, 2009. 26(6): p. 559-67. 

67. Harms, M.B., et al., Exome sequencing reveals DNAJB6 mutations in dominantly-
inherited myopathy. Ann Neurol, 2012. 71(3): p. 407-16. 

68. Knox, C., et al., Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. 
Virus Res, 2011. 160(1-2): p. 15-24. 

69. Langer, T., et al., Successive action of DnaK, DnaJ and GroEL along the pathway of 
chaperone-mediated protein folding. Nature, 1992. 356(6371): p. 683-9. 

70. Wall, D., M. Zylicz, and C. Georgopoulos, The conserved G/F motif of the DnaJ 
chaperone is necessary for the activation of the substrate binding properties of the 
DnaK chaperone. J Biol Chem, 1995. 270(5): p. 2139-44. 



 

 35 

71. Szabo, A., et al., The ATP hydrolysis-dependent reaction cycle of the Escherichia coli 
Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A, 1994. 91(22): p. 
10345-9. 

72. Greene, M.K., K. Maskos, and S.J. Landry, Role of the J-domain in the cooperation 
of Hsp40 with Hsp70. Proc Natl Acad Sci U S A, 1998. 95(11): p. 6108-13. 

73. Gassler, C.S., et al., Mutations in the DnaK chaperone affecting interaction with the 
DnaJ cochaperone. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15229-34. 

74. Suh, W.C., et al., Interaction of the Hsp70 molecular chaperone, DnaK, with its 
cochaperone DnaJ. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15223-8. 

75. Hennessy, F., et al., Not all J domains are created equal: implications for the 
specificity of Hsp40-Hsp70 interactions. Protein Sci, 2005. 14(7): p. 1697-709. 

76. Awad, W., et al., BiP mutants that are unable to interact with endoplasmic reticulum 
DnaJ proteins provide insights into interdomain interactions in BiP. Proc Natl Acad 
Sci U S A, 2008. 105(4): p. 1164-9. 

77. Vembar, S.S., et al., J domain co-chaperone specificity defines the role of BiP during 
protein translocation. J Biol Chem, 2010. 285(29): p. 22484-94. 

78. Cheetham, M.E. and A.J. Caplan, Structure, function and evolution of DnaJ: 
conservation and adaptation of chaperone function. Cell Stress Chaperones, 1998. 
3(1): p. 28-36. 

79. Kampinga, H.H. and E.A. Craig, The HSP70 chaperone machinery: J proteins as 
drivers of functional specificity. Nat Rev Mol Cell Biol, 2010. 11(8): p. 579-92. 

80. Holstein, S.E., H. Ungewickell, and E. Ungewickell, Mechanism of clathrin basket 
dissociation: separate functions of protein domains of the DnaJ homologue auxilin. 
J Cell Biol, 1996. 135(4): p. 925-37. 

81. Xing, Y., et al., Structure of clathrin coat with bound Hsc70 and auxilin: mechanism 
of Hsc70-facilitated disassembly. EMBO J, 2010. 29(3): p. 655-65. 

82. Bocking, T., et al., Single-molecule analysis of a molecular disassemblase reveals the 
mechanism of Hsc70-driven clathrin uncoating. Nat Struct Mol Biol, 2011. 18(3): p. 
295-301. 

83. Wang, A.M., et al., Inhibition of hsp70 by methylene blue affects signaling protein 
function and ubiquitination and modulates polyglutamine protein degradation. J 
Biol Chem, 2010. 285(21): p. 15714-23. 

84. Nakanishi, K., et al., Localization and function in endoplasmic reticulum stress 
tolerance of ERdj3, a new member of Hsp40 family protein. Cell Stress Chaperones, 
2004. 9(3): p. 253-64. 

85. Shen, Y. and L.M. Hendershot, ERdj3, a stress-inducible endoplasmic reticulum DnaJ 
homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Mol 
Biol Cell, 2005. 16(1): p. 40-50. 

86. Fan, C.Y., et al., Exchangeable chaperone modules contribute to specification of type 
I and type II Hsp40 cellular function. Mol Biol Cell, 2004. 15(2): p. 761-73. 

87. Lu, Z. and D.M. Cyr, The conserved carboxyl terminus and zinc finger-like domain of 
the co-chaperone Ydj1 assist Hsp70 in protein folding. J Biol Chem, 1998. 273(10): 
p. 5970-8. 



 

 36 

88. Lee, S., et al., Identification of essential residues in the type II Hsp40 Sis1 that 
function in polypeptide binding. J Biol Chem, 2002. 277(24): p. 21675-82. 

89. Rudiger, S., J. Schneider-Mergener, and B. Bukau, Its substrate specificity 
characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. 
EMBO J, 2001. 20(5): p. 1042-50. 

90. Feifel, B., H.J. Schonfeld, and P. Christen, D-peptide ligands for the co-chaperone 
DnaJ. J Biol Chem, 1998. 273(20): p. 11999-2002. 

91. Li, J., X. Qian, and B. Sha, The crystal structure of the yeast Hsp40 Ydj1 complexed 
with its peptide substrate. Structure, 2003. 11(12): p. 1475-83. 

92. Arawaka, S., Y. Machiya, and T. Kato, Heat shock proteins as suppressors of 
accumulation of toxic prefibrillar intermediates and misfolded proteins in 
neurodegenerative diseases. Curr Pharm Biotechnol, 2010. 11(2): p. 158-66. 

93. Jana, N.R., et al., Polyglutamine length-dependent interaction of Hsp40 and Hsp70 
family chaperones with truncated N-terminal huntingtin: their role in suppression 
of aggregation and cellular toxicity. Hum Mol Genet, 2000. 9(13): p. 2009-18. 

94. Zhou, H., S.H. Li, and X.J. Li, Chaperone suppression of cellular toxicity of huntingtin 
is independent of polyglutamine aggregation. J Biol Chem, 2001. 276(51): p. 48417-
24. 

95. Chuang, J.Z., et al., Characterization of a brain-enriched chaperone, MRJ, that 
inhibits Huntingtin aggregation and toxicity independently. J Biol Chem, 2002. 
277(22): p. 19831-8. 

96. Hay, D.G., et al., Progressive decrease in chaperone protein levels in a mouse model 
of Huntington's disease and induction of stress proteins as a therapeutic approach. 
Hum Mol Genet, 2004. 13(13): p. 1389-405. 

97. Wyttenbach, A., et al., Effects of heat shock, heat shock protein 40 (HDJ-2), and 
proteasome inhibition on protein aggregation in cellular models of Huntington's 
disease. Proc Natl Acad Sci U S A, 2000. 97(6): p. 2898-903. 

98. Miyata, Y., et al., Molecular chaperones and regulation of tau quality control: 
strategies for drug discovery in tauopathies. Future Med Chem, 2011. 3(12): p. 
1523-37. 

99. Sahara, N., et al., Molecular chaperone-mediated tau protein metabolism 
counteracts the formation of granular tau oligomers in human brain. J Neurosci Res, 
2007. 85(14): p. 3098-108. 

100. Abisambra, J.F., et al., DnaJA1 Antagonizes Constitutive Hsp70-Mediated 
Stabilization of Tau. J Mol Biol, 2012. 

101. Nadler, S.G., et al., Interaction of the immunosuppressant deoxyspergualin with a 
member of the Hsp70 family of heat shock proteins. Science, 1992. 258(5081): p. 
484-6. 

102. Brodsky, J.L., Selectivity of the molecular chaperone-specific immunosuppressive 
agent 15-deoxyspergualin: modulation of Hsc70 ATPase activity without 
compromising DnaJ chaperone interactions. Biochem Pharmacol, 1999. 57(8): p. 
877-80. 



 

 37 

103. Nadeau, K., et al., Quantitation of the interaction of the immunosuppressant 
deoxyspergualin and analogs with Hsc70 and Hsp90. Biochemistry, 1994. 33(9): p. 
2561-7. 

104. Fewell, S.W., B.W. Day, and J.L. Brodsky, Identification of an inhibitor of hsc70-
mediated protein translocation and ATP hydrolysis. J Biol Chem, 2001. 276(2): p. 
910-4. 

105. Mamelak, D., et al., Hsp70s contain a specific sulfogalactolipid binding site. 
Differential aglycone influence on sulfogalactosyl ceramide binding by recombinant 
prokaryotic and eukaryotic hsp70 family members. Biochemistry, 2001. 40(12): p. 
3572-82. 

106. Mamelak, D. and C. Lingwood, The ATPase domain of hsp70 possesses a unique 
binding specificity for 3'-sulfogalactolipids. J Biol Chem, 2001. 276(1): p. 449-56. 

107. Park, H.J., et al., A soluble sulfogalactosyl ceramide mimic promotes Delta F508 
CFTR escape from endoplasmic reticulum associated degradation. Chem Biol, 2009. 
16(4): p. 461-70. 

108. Fewell, S.W., et al., Small molecule modulators of endogenous and co-chaperone-
stimulated Hsp70 ATPase activity. J Biol Chem, 2004. 279(49): p. 51131-40. 

109. Wisen, S., et al., Binding of a small molecule at a protein-protein interface regulates 
the chaperone activity of hsp70-hsp40. ACS Chem Biol, 2010. 5(6): p. 611-22. 

110. Chang, L., et al., High-throughput screen for small molecules that modulate the 
ATPase activity of the molecular chaperone DnaK. Anal Biochem, 2008. 372(2): p. 
167-76. 

111. Wisen, S., et al., Chemical modulators of heat shock protein 70 (Hsp70) by 
sequential, microwave-accelerated reactions on solid phase. Bioorg Med Chem 
Lett, 2008. 18(1): p. 60-5. 

112. Braunstein, M.J., et al., Antimyeloma Effects of the Heat Shock Protein 70 Molecular 
Chaperone Inhibitor MAL3-101. J Oncol, 2011. 2011: p. 232037. 

113. Walter, G.M., et al., Ordered assembly of heat shock proteins, Hsp26, Hsp70, Hsp90, 
and Hsp104, on expanded polyglutamine fragments revealed by chemical probes. J 
Biol Chem, 2011. 286(47): p. 40486-93. 

114. Koren, J., 3rd, et al., Facilitating Akt clearance via manipulation of Hsp70 activity 
and levels. J Biol Chem, 2010. 285(4): p. 2498-505. 

115. Chang, L., et al., Chemical screens against a reconstituted multiprotein complex: 
myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chem 
Biol, 2011. 18(2): p. 210-21. 

116. Congdon, E.E., et al., Methylthioninium chloride (methylene blue) induces 
autophagy and attenuates tauopathy in vitro and in vivo. Autophagy, 2012. 8(4). 

117. O'Leary, J.C., 3rd, et al., Phenothiazine-mediated rescue of cognition in tau 
transgenic mice requires neuroprotection and reduced soluble tau burden. Mol 
Neurodegener, 2010. 5: p. 45. 

118. Miyata, Y., et al., High-throughput screen for Escherichia coli heat shock protein 70 
(Hsp70/DnaK): ATPase assay in low volume by exploiting energy transfer. J Biomol 
Screen, 2010. 15(10): p. 1211-9. 



 

 38 

119. Seguin, S.P., et al., High-throughput screening identifies a bisphenol inhibitor of 
SV40 large T antigen ATPase activity. J Biomol Screen, 2012. 17(2): p. 194-203. 

120. Harrison, C., GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones, 
2003. 8(3): p. 218-24. 

121. Carrettiero, D.C., et al., The cochaperone BAG2 sweeps paired helical filament- 
insoluble tau from the microtubule. J Neurosci, 2009. 29(7): p. 2151-61. 

122. Elliott, E., P. Tsvetkov, and I. Ginzburg, BAG-1 associates with Hsc70.Tau complex 
and regulates the proteasomal degradation of Tau protein. J Biol Chem, 2007. 
282(51): p. 37276-84. 

123. Souza, A.P., et al., HspBP1 levels are elevated in breast tumor tissue and inversely 
related to tumor aggressiveness. Cell Stress Chaperones, 2009. 14(3): p. 301-10. 

124. Elliott, E., O. Laufer, and I. Ginzburg, BAG-1M is up-regulated in hippocampus of 
Alzheimer's disease patients and associates with tau and APP proteins. J 
Neurochem, 2009. 109(4): p. 1168-78. 

125. Knoll, R., et al., The cardiac mechanical stretch sensor machinery involves a Z disc 
complex that is defective in a subset of human dilated cardiomyopathy. Cell, 2002. 
111(7): p. 943-55. 

126. Nakamura, J., et al., Targeted disruption of Hsp110/105 gene protects against 
ischemic stress. Stroke, 2008. 39(10): p. 2853-9. 

127. Subjeck, J.R., et al., Heat shock proteins and biological response to hyperthermia. Br 
J Cancer Suppl, 1982. 5: p. 127-31. 

128. Ishihara, K., K. Yasuda, and T. Hatayama, Molecular cloning, expression and 
localization of human 105 kDa heat shock protein, hsp105. Biochim Biophys Acta, 
1999. 1444(1): p. 138-42. 

129. Dorard, C., et al., Expression of a mutant HSP110 sensitizes colorectal cancer cells 
to chemotherapy and improves disease prognosis. Nat Med, 2011. 17(10): p. 1283-
9. 

130. Hosaka, S., et al., Synthetic small interfering RNA targeting heat shock protein 105 
induces apoptosis of various cancer cells both in vitro and in vivo. Cancer Sci, 2006. 
97(7): p. 623-32. 

131. Liu, Q. and W.A. Hendrickson, Insights into Hsp70 chaperone activity from a crystal 
structure of the yeast Hsp110 Sse1. Cell, 2007. 131(1): p. 106-20. 

132. Oh, H.J., et al., The chaperoning activity of hsp110. Identification of functional 
domains by use of targeted deletions. J Biol Chem, 1999. 274(22): p. 15712-8. 

133. Dragovic, Z., et al., Molecular chaperones of the Hsp110 family act as nucleotide 
exchange factors of Hsp70s. EMBO J, 2006. 25(11): p. 2519-28. 

134. Goeckeler, J.L., et al., Overexpression of yeast Hsp110 homolog Sse1p suppresses 
ydj1-151 thermosensitivity and restores Hsp90-dependent activity. Mol Biol Cell, 
2002. 13(8): p. 2760-70. 

135. Oh, H.J., X. Chen, and J.R. Subjeck, Hsp110 protects heat-denatured proteins and 
confers cellular thermoresistance. J Biol Chem, 1997. 272(50): p. 31636-40. 

136. Yamagishi, N., et al., Characterization of stress sensitivity and chaperone activity of 
Hsp105 in mammalian cells. Biochem Biophys Res Commun, 2011. 409(1): p. 90-5. 



 

 39 

137. Shaner, L., et al., The function of the yeast molecular chaperone Sse1 is 
mechanistically distinct from the closely related hsp70 family. J Biol Chem, 2004. 
279(21): p. 21992-2001. 

138. Schuermann, J.P., et al., Structure of the Hsp110:Hsc70 nucleotide exchange 
machine. Mol Cell, 2008. 31(2): p. 232-43. 

139. Polier, S., et al., Structural basis for the cooperation of Hsp70 and Hsp110 
chaperones in protein folding. Cell, 2008. 133(6): p. 1068-79. 

140. Hendrickson, W.A. and Q. Liu, Exchange we can believe in. Structure, 2008. 16(8): 
p. 1153-5. 

141. Wilson, C.G. and M.R. Arkin, Small-molecule inhibitors of IL-2/IL-2R: lessons learned 
and applied. Curr Top Microbiol Immunol, 2011. 348: p. 25-59. 

142. DeLano, W.L., et al., Convergent solutions to binding at a protein-protein interface. 
Science, 2000. 287(5456): p. 1279-83. 

143. Wells, J.A. and C.L. McClendon, Reaching for high-hanging fruit in drug discovery at 
protein-protein interfaces. Nature, 2007. 450(7172): p. 1001-9. 

144. McLellan, C.A., D.A. Raynes, and V. Guerriero, HspBP1, an Hsp70 cochaperone, has 
two structural domains and is capable of altering the conformation of the Hsp70 
ATPase domain. J Biol Chem, 2003. 278(21): p. 19017-22. 

145. Shomura, Y., et al., Regulation of Hsp70 function by HspBP1: structural analysis 
reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell, 2005. 
17(3): p. 367-79. 

146. Tanimura, S., et al., Anticancer drugs up-regulate HspBP1 and thereby antagonize 
the prosurvival function of Hsp70 in tumor cells. J Biol Chem, 2007. 282(49): p. 
35430-9. 

147. Takayama, S., Z. Xie, and J.C. Reed, An evolutionarily conserved family of 
Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem, 1999. 274(2): p. 781-6. 

148. Takayama, S., et al., BAG-1 modulates the chaperone activity of Hsp70/Hsc70. 
EMBO J, 1997. 16(16): p. 4887-96. 

149. Briknarova, K., et al., Structural analysis of BAG1 cochaperone and its interactions 
with Hsc70 heat shock protein. Nat Struct Biol, 2001. 8(4): p. 349-52. 

150. Goebl, M. and M. Yanagida, THE TPR SNAP HELIX - A NOVEL PROTEIN REPEAT MOTIF 
FROM MITOSIS TO TRANSCRIPTION. Trends in Biochemical Sciences, 1991. 16(5): p. 
173-177. 

151. Lamb, J.R., S. Tugendreich, and P. Hieter, Tetratrico peptide repeat interactions: to 
TPR or not to TPR? Trends in Biochemical Sciences, 1995. 20(7): p. 257-259. 

152. Blatch, G.L., et al., Isolation of a mouse cDNA encoding mSTI1, a stress-inducible 
protein containing the TPR motif. Gene, 1997. 194(2): p. 277-282. 

153. D'Andrea, L.D. and L. Regan, TPR proteins: the versatile helix. Trends in Biochemical 
Sciences, 2003. 28(12): p. 655-662. 

154. Sikorski, R.S., et al., A repeating amino acid motif in CDC23 defines a family of 
proteins and a new relationship among genes required for mitosis and RNA 
synthesis. Cell, 1990. 60(2): p. 307-317. 

155. Hirano, T., et al., Snap helix with knob and hole: Essential repeats in S. pombe 
nuclear protein nuc2 +. Cell, 1990. 60(2): p. 319-328. 



 

 40 

156. Zhang, M., et al., Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 
ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell, 2005. 20(4): p. 525-38. 

157. Connell, P., et al., The co-chaperone CHIP regulates protein triage decisions 
mediated by heat-shock proteins. Nat Cell Biol, 2001. 3(1): p. 93-6. 

158. Qian, S.B., et al., CHIP-mediated stress recovery by sequential ubiquitination of 
substrates and Hsp70. Nature, 2006. 440(7083): p. 551-5. 

159. Scheufler, C., et al., Structure of TPR domain-peptide complexes: Critical elements 
in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell, 2000. 101(2): p. 
199-210. 

160. Brinker, A., et al., Ligand discrimination by TPR domains - Relevance and selectivity 
of EEVD-recognition in Hsp70 center dot Hop center dot Hsp90 complexes. Journal 
of Biological Chemistry, 2002. 277(22): p. 19265-19275. 

161. Chen, S. and D.F. Smith, Hop as an adaptor in the heat shock protein 70 (Hsp70) 
and hsp90 chaperone machinery. J Biol Chem, 1998. 273(52): p. 35194-200. 

162. Morishima, Y., et al., Stepwise assembly of a glucocorticoid receptor.hsp90 
heterocomplex resolves two sequential ATP-dependent events involving first hsp70 
and then hsp90 in opening of the steroid binding pocket. J Biol Chem, 2000. 275(24): 
p. 18054-60. 

163. Hutchison, K.A., et al., Proof that hsp70 is required for assembly of the 
glucocorticoid receptor into a heterocomplex with hsp90. J Biol Chem, 1994. 269(7): 
p. 5043-9. 

164. Smith, D.F., Dynamics of heat shock protein 90-progesterone receptor binding and 
the disactivation loop model for steroid receptor complexes. Mol Endocrinol, 1993. 
7(11): p. 1418-29. 

165. Young, J.C., J.M. Barral, and F.U. Hartl, More than folding: localized functions of 
cytosolic chaperones. Trends in Biochemical Sciences, 2003. 28(10): p. 541-547. 

166. Meimaridou, E., S.B. Gooljar, and J.P. Chapple, From hatching to dispatching: the 
multiple cellular roles of the Hsp70 molecular chaperone machinery. Journal of 
Molecular Endocrinology, 2009. 42(1-2): p. 1-9. 

167. Hohfeld, J., D.M. Cyr, and C. Patterson, From the cradle to the grave: molecular 
chaperones that may choose between folding and degradation. Embo Reports, 
2001. 2(10): p. 885-890. 

168. Wu, S.J., et al., Different combinations of the heat-shock cognate protein 70 (hsc70) 
C-terminal functional groups are utilized to interact with distinct tetratricopeptide 
repeat-containing proteins. Biochemical Journal, 2001. 359: p. 419-426. 

169. Ballinger, C.A., et al., Identification of CHIP, a novel tetratricopeptide repeat-
containing protein that interacts with heat shock proteins and negatively regulates 
chaperone functions. Molecular and Cellular Biology, 1999. 19(6): p. 4535-4545. 

170. Wang, L., et al., Molecular Mechanism of the Negative Regulation of Smad1/5 
Protein by Carboxyl Terminus of Hsc70-interacting Protein (CHIP). Journal of 
Biological Chemistry, 2011. 286(18). 

171. Liu, F.H., et al., Specific interaction of the 70-kDa heat shock cognate protein with 
the tetratricopeptide repeats. Journal of Biological Chemistry, 1999. 274(48): p. 
34425-34432. 



 

 41 

172. Carrigan, P.E., et al., Multiple domains of the co-chaperone Hop are important for 
Hsp70 binding. Journal of Biological Chemistry, 2004. 279(16): p. 16185-16193. 

173. Zhang, H.Q., et al., A Bipartite Interaction between Hsp70 and CHIP Regulates 
Ubiquitination of Chaperoned Client Proteins. Structure, 2015. 23(3): p. 472-482. 

174. Cheung-Flynn, J., et al., C-terminal sequences outside the tetratricopeptide repeat 
domain of FKBP51 and FKBP52 cause differential binding to hsp90. Journal of 
Biological Chemistry, 2003. 278(19): p. 17388-17394. 

175. Chen, S.Y., et al., Differential interactions of p23 and the TPR-containing proteins 
Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress & Chaperones, 
1998. 3(2): p. 118-129. 

176. Yi, F., et al., An AlphaScreen (TM)-Based High-Throughput Screen to Identify 
Inhibitors of Hsp90-Cochaperone Interaction. Journal of Biomolecular Screening, 
2009. 14(3): p. 273-281. 

177. Vasko, R.C., et al., Mechanistic Studies of Sansalvamide A-Amide: An Allosteric 
Modulator of Hsp90. Acs Medicinal Chemistry Letters, 2010. 1(1): p. 4-8. 

178. Ardi, V.C., et al., Macrocycles That Inhibit the Binding between Heat Shock Protein 
90 and TPR-Containing Proteins. Acs Chemical Biology, 2011. 6(12): p. 1357-1366. 

179. Schreiber, S.L., Target-oriented and diversity-oriented organic synthesis in drug 
discovery. Science, 2000. 287(5460): p. 1964-9. 

  
 



 

42 
 

Chapter 2 

Specific binding of tetratricopeptide repeat (TPR) proteins to Hsp70 and Hsp90 is regulated 

by affinity and phosphorylation 

 

2.1 Abstract  

The heat shock proteins Hsp70 and Hsp90 require the help of tetratricopeptide repeat 

(TPR) domain-containing co-chaperones for many of their functions. Each monomer of 

Hsp70 or Hsp90 can only interact with a single TPR co-chaperone at a time and each 

member of the TPR co-chaperone family brings distinct functions into the complex. Thus, 

competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone 

activity. Recent structural and biophysical efforts have improved our understanding of 

chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both 

chaperones. To better understand these important protein-protein interactions (PPIs) on 

a wider scale, I measured the affinity of five TPR co-chaperones, CHIP, Hop, DNAJC7, 

FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, 

Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity 

amongst the chaperone-TPR pairs, including the selective binding of FKBP51/52 to 

Hsp90α/β. These results also revealed that other TPR co-chaperones are only able to 

weakly discriminate between the chaperones or between their paralogs. I also explored 

whether mimicking phosphorylation of serine and threonine residues near the EEVD motif 
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might impact TPR co-chaperone affinity. The results suggested that phosphorylation 

selectively shapes TPR interactions, with dramatic effects on CHIP, but not other co-

chaperones. Together, these findings suggest that both intrinsic affinity and post-

translational modifications tune the interactions between Hsp70/90 and the TPR co-

chaperones. 

 

2.2 Introduction 

2.2.1 Hsp70 and Hsp90 require the help of TPR co-chaperones for many of their functions 

The molecular chaperones Hsp70 and Hsp90 are essential regulators of cellular protein 

quality control, where they use ATP turnover to play broad roles in protein folding, 

trafficking, and degradation [1-6]. In part, Hsp70 and Hsp90 are able to engage in so many 

different pathways because they collaborate with co-chaperones [7]. Co-chaperones, 

including the tetratricopeptide repeat (TPR) domain-containing proteins, bind to 

chaperones and help determine whether “clients” will be folded, degraded, or sent to 

other fates. Thus, active chaperone complexes are often considered to include both the 

core chaperone (e.g. Hsp70 or Hsp90) and its associated co-chaperones. Because of this, 

there is great interest in studying the protein-protein interactions (PPIs) between 

chaperones and co-chaperones in order to better understand how these complexes form, 

how they are regulated, and how “decisions” are made. This knowledge is important 

because imbalances in protein quality control have been linked to a range of diseases, 

including cancer and neurodegeneration [8-13].  
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2.2.2 Structure and diverse functions of TPR domain-containing co-chaperones 

TPR domains are comprised of tandem 34 amino acid motifs, which form amphipathic 

antiparallel α-helix hairpins that stack on one another [14]. Two of the most well studied 

TPR domain-containing proteins are Hop (Hsp70/Hsp90 organizing protein) and CHIP 

(carboxyl terminus of Hsc70 interacting protein) [15-18]. Like all co-chaperones of this 

class, Hop and CHIP have no homology outside of the TPR domain. It is this diversity that 

allows the TPR co-chaperones to bring unique capabilities into chaperone complexes. For 

example, Hop uses multiple TPR domains to bind both Hsp70 and Hsp90 at the same time, 

coordinating these two chaperone systems and favoring client folding [19-24]. In contrast, 

CHIP is an ubiquitin E3 ligase with a TPR domain and an effector U-box domain [25]. This 

co-chaperone favors addition of polyubiquitin chains to Hsp70/90-bound clients, 

promoting their proteasomal degradation [26, 27]. Other important TPR proteins include 

FKBP51 and FKBP52, which work with Hsp70 and Hsp90 during the maturation and 

trafficking of steroid hormone receptors [28-30], and DNAJC7, which contains a J-domain 

[31, 32]. Together, these observations suggest that the ultimate fate of chaperone-bound 

clients (e.g. whether they are folded, degraded, trafficked, or matured) may be guided, in 

part, by the “choice” of which TPR co-chaperone is bound.  

 

2.2.3 TPR domains bind to the C-termini of cytosolic Hsp70s and Hsp90s  

The constitutive and heat-inducible paralogs of Hsp70 in the cytoplasm, termed Hsc70 

(HSPA8) and Hsp72 (HSPA1A) respectively, contain a highly conserved EEVD motif at their 

respective C-termini. This four amino acid sequence binds to the concave face of the TPR 
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domains, as revealed by mutagenesis and structural studies [33-35]. In the bound form, 

key contacts are made between the chaperone’s carboxy terminus and conserved cationic 

residues in the TPR domain. Like Hsp70s, both paralogs of Hsp90 in the cytosol (Hsp90α 

and Hsp90β) contain this same conserved, C-terminal EEVD motif. The striking thing about 

this observation is that, outside of this small motif, the two Hsp90s share no structural or 

sequence homology with the Hsp70s. Yet, the sequence of all four chaperones terminates 

with the same four amino acids, EEVD. In contrast, the other paralogs of Hsp70 and Hsp90, 

which are located in the endoplasmic reticulum, mitochondria and chloroplast, do not have 

EEVD motifs, suggesting that the TPR interactions may have evolved to specifically mediate 

quality control in the cytosol and nucleus.  

 

2.2.4 An all-inclusive study of Hsp70/90-TPR protein interactions has not been preformed 

More information about the PPIs between TPR co-chaperones and cytoplasmic 

Hsp70s/Hsp90s, might help us understand a key step in protein quality control. Indeed, 

pioneering studies by multiple groups have examined the structures and affinities of 

important TPR-EEVD interactions, including Hop-Hsp70/90 [3, 36, 37], PP5-Hsp70/90 [38, 

39], CHIP-Hsp70/90 [40-43], and FKBP52-Hsp90 [44]. However, a comprehensive study of 

PPIs has not yet been reported. Such a side-by-side comparison is important because the 

competition for TPR-domain proteins in the cytosol appears to be a major determinant of 

quality control.  In this study, I used a fluorescence polarization (FP) platform to 

systematically compare the affinities of five different human TPR co-chaperones (Hop, 

CHIP, DNAJC7, FKBP51, and FKBP52) for the C-termini of the four cytosolic Hsp70s/90s. I 
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found that some co-chaperones, such as FKBP51 and FKBP52, have a strong preference for 

Hsp90s over Hsp70s. Other chaperones, including Hop, CHIP, and DNAJC7, have a modest 

(~2-fold) preference for Hsp70s. Using chimeric peptides, I found that a single residue 

adjacent to the EEVD motif was important for some of this selectivity. Interestingly, none 

of the TPR co-chaperones could discriminate between the paralogs of Hsp70 or Hsp90, 

suggesting that they might work with both forms equally. Finally, I confirmed that 

mimicking phosphorylation of the C-termini of Hsp70s and Hsp90s dramatically alters their 

affinity for CHIP, while also finding that this is not the case for other TPR co-chaperones. 

Together, these studies provide a resource for understanding how interactions in this 

system are regulated.  

 

2.3 Results and discussion  

2.3.1 The binding of Hsp70 to TPR co-chaperones is mediated by Hsp70’s EEVD motif 

Previous work had suggested that the EEVD motif provides the majority of the TPR 

interaction affinity, with less affinity (typically <20%) coming from secondary contacts [42, 

45-48]. Secondary contacts are potentially appealing because they might provide a means 

of selectively targeting specific Hsp70-TPR co-chaperone complexes with small molecule 

inhibitors. However, in the systems studied previously, the secondary affinities were 

relatively weak (KD >100 µM) [42]. To ask whether this was also the case in other TPR-

chaperone complexes, I generated a mutant Hsp72 construct that lacked an EEVD motif 

(Hsp72ΔEEVD). This mutant was normal in binding nucleotide (Appendix 2.6.1A) and a 

client peptide derived from the MHC class I antigen HLA-B2702 (Fam-HLA) (Appendix 
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2.6.1B), showing that the EEVD motif does not directly contribute to these activities. I next 

tested whether this otherwise functional Hsp72ΔEEVD mutant could compete with the 

Hsp72 tracer (Fam-GSGPTIEEVD) for binding to TPR co-chaperones (Appendix 2.6.2). I 

found that Hsp72ΔEEVD was unable to compete for tracer binding, even at 40 µM, whereas 

wild-type (wt) Hsp72 could (Appendix 2.6.2B). These results suggest that interactions 

outside of the canonical EEVD-TPR binding site are relatively weak, consistent with recent 

structural studies on Hsp70 and CHIP [42]. Based on this result, I decided to focus strictly 

on the C-termini of Hsp70s and Hsp90s to further understand their interactions with 

TPR proteins.  

 

2.3.2 Preferences of the TPR co-chaperones for binding to Hsp70 and Hsp90 

In an effort to understand what factors influence binding to the molecular chaperones, I 

first determined the affinity of chaperone C-termini for full-length TPR proteins using a FP 

assay. In these studies, I focused on some of the best-studied TPR co-chaperones: CHIP, 

Hop, DNAJC7, FKBP51, and FKBP52. In addition, I included HIP as a negative control 

because this co-chaperone binds Hsp70s in a region outside the EEVD motif [49]. For our 

FP experiments, I measured the ability of TPR proteins to interact with fluorescently 

labeled peptides corresponding to the C-termini of Hsc70 (Fam-SSGPTIEEVD), Hsp72 (Fam-

GSGPTIEEVD), Hsp90α (Fam-DDTSRMEEVD), and Hsp90β (Fam-EDASRMEEVD). Using this 

platform, I found that CHIP, Hop, and DNAJC7 bound to both Hsp70s and Hsp90s (Figure 

2.1A). Of these complexes, CHIP had the tightest affinity, binding Hsc70 with a KD of 0.62 ± 

0.06 µM and Hsp72 with a KD of 0.51 ± 0.03 µM. I also found that CHIP, Hop, and DNAJC7                       
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bound Hsc70 and Hsp72 with ~2-fold tighter affinity than Hsp90α and Hsp90β (Figure 2.1 

and Appendix 2.6.3). Interestingly, I found that the FKBP51  and  FKBP52  did  not interact  

with  appreciable  affinity  (KD >75 µM)  with  Hsp70s. Rather, they specifically bound to 

Hsp90α and Hsp90β with KD values between 1 and 2 µM (Figure 2.1 and Appendix 2.6.3). 

Another important observation was that no specificity was observed between paralogs (i.e. 

Hsc70 versus Hsp72), suggesting that TPR co-chaperones do not discriminate between 

them. The negative control, Hip, did not interact with any of the C-terminal tracers, as 

expected. Finally, a reversed Hsp90 peptide (Fam-DVEEM) had no affinity for any of the 

TPR co-chaperones (Appendix 2.6.4), consistent with previous results [41].  

 

2.3.3 The Met residue of the Hsp90 C-terminus (MEEVD) influences binding preferences 

Some of the TPR co-chaperones appeared to bind Hsp70s slightly tighter than Hsp90s (see 

Figure 2.1). To understand the origin of this difference, I first aligned the amino acid 

sequences of cytosolic Hsp70s, revealing conservation of either IEEVD or VEEVD. A similar 

alignment of eukaryotic Hsp90 sequences showed that these proteins all terminate with 

MEEVD. Thus, it appeared that the identity of the residue immediately adjacent to the 

EEVD (Ile or Met) might account for some of the binding preferences, consistent with 

previous models [35]. To test this hypothesis, I first generated a chimeric mutant in which 

the Ile residue of an Hsp70 tracer was replaced with a Met (Fam-GSGPTMEEVD). This 

chimera had a weakened interaction with CHIP, Hop, and DNAJC7 (Figure 2.2A and 2.2C), 

instead having an “Hsp90-like” affinity. This result suggested that the Met residue of 

Hsp90s might be important in the affinity differences between Hsp70s and Hsp90s. 
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However, placing the Met in the context of Hsp70 C-terminus was not able to provide 

binding to FKBP51 and FKBP52 (KD > 75 µM) (Figure 2.2C and Appendix 2.6.5), so other 

features must be responsible for the selectivity of FKBP51/52 for Hsp90s. To further 

explore the role of the Ile/Met residues, I generated the corresponding mutant Hsp90α 

tracer in which I switched the Met residue to an Ile (Fam-DDTSRIEEVD) and tested its 
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binding. FKBP51 and FKBP52 no longer bound the mutant Hsp90α (KD >25 µM) (Figure 2.2C 

and Appendix 2.6.5), reducing the affinity by at least 12-fold compared to wt Hsp90α. Co-

crystal structures of FKBP52 bound to a MEEVD peptide show the Met of MEEVD forms a 

critical hydrogen bond with Lys-282 of FKBP52’s TPR domain, which is important in 

stabilizing the binding of this peptide [44]. Similarly, the mutant had other binding 

preferences that mirrored those of Hsp70’s. For example, CHIP and DNAJC7 had increased 

affinity (≥2-fold) for the mutant in comparison to the wt (Figure 2.2C and Appendix 2.6.5). 

However, the mutant did not bind Hop (KD >25 µM), so residues other than the Ile/Met 

must be critical. Taken together, these data illustrate that the Ile/Met position is a major 

contributor to differences between the binding affinities for Hsp70s and Hsp90s. 

 

2.3.4 Polar contacts dominate binding of TPR co-chaperones to Hsp70/Hsp90 

 The EEVD motif is strongly electronegative and the corresponding surface of the TPR 

domain tends to be electropositive (Figure 2.3A) [25, 35, 50]. To explore the role of possible 

polar interactions in selectivity, I mutated the last Glu of the EEVD motif to either a neutral 

Ala (Fam-DDTSRMEAVD) or a cationic Lys (Fam-DDTSRMEKVD). Using FP, I found that all of 

the TPR proteins had slightly decreased affinity for the Ala mutant tracer (Figure 2.3C). 

FKBP51 was most sensitive to this change, binding the Ala mutant with a KD of 4.63 ± 0.38 

µM, a ~4-fold decrease in affinity. The mutant Lys tracer (Fam-DDTSRMEKVD) had 

significantly decreased affinity for all TPR proteins (≥3-fold). Again, FKBP51 and FKBP52 

were most sensitive to this change (KD > 25). Next, I performed additional FP assays in 

which binding of wt Hsp70 and Hsp90 C-terminal tracers to TPR co-chaperones was 
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measured at elevated pH. All of the TPR co-chaperones had reduced affinity at high pH 

(Figure 2.3D and Appendix 2.6.6), supporting the idea that polar contacts are critical for    

the formation of EEVD-TPR domain complexes. However, the binding preferences did not 

dramatically switch, so pH seems unlikely to regulate TPR preferences.  

 

2.3.5 TPR1 and TPR2A of Hop selectively bind to the C-termini of Hsp70 and Hsp90 

Hop is unique among the TPR co-chaperones studied here in that it contains three TPR 

domains that are termed: TPR1, TPR2A, and TPR2B (Figure 2.4A). Previous co-

crystallographic and in vitro binding studies have shown that TPR1, when studied as an 

isolated protein, prefers to bind the C-terminus of Hsp70, whereas the isolated TPR2A 

domain binds tighter to Hsp90’s C-terminus [35]. In the co-crystal structures, the N-

terminal portions of the peptides seemed to dictate selectivity by occupying different 

hydrophobic patches within their respective TPR domains. I wanted to test whether this 

discrimination was preserved in full length Hop because it seemed possible that the 

binding properties could be significantly altered in the context of the multi-domain protein, 

instead of isolated domains. Accordingly, I introduced single point mutations into full-

length Hop that disrupt the critical “carboxylate clamps” required for EEVD binding. Two 

of the point mutations (K8A and R77A) were in the TPR1 domain, while the other mutations 

(N223A and R305A) were in Hop’s TPR2A domain (Figure 2.4A and 2.4B). Using my FP assay, 

I tested the ability of these mutant proteins to interact with Hsp70 and Hsp90 tracers. 

HopK8A and HopR77A did not interact with appreciable affinity (KD >25 µM) to Hsp70, but had 

normal affinity for Hsp90s (KD values ~ 6 to 8 µM) (Fig 2.4C and Appendix 2.6.7). 
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Conversely, TPR2A mutants, HopN223A and HopR305A, selectively interacted with Hsp70 (KD 

of 2-4 µM) but not Hsp90s. Taken together, this work supports the conclusions made from 

studying individual domains of Hop.  

 

2.3.6 Phosphorylation of Hsp70/Hsp90 C-termini dramatically affects binding to CHIP 

It has recently been shown that phosphorylation of serine and threonine residues in the C-

termini of Hsp70 and Hsp90 influences binding to CHIP [51]. Thus, I wondered if 

phosphorylation might be a general regulatory mechanism for TPR binding. To test this 

idea, I generated FP tracers that mimicked phosphorylation (Figure 2.5A) and measured 

their binding to TPR proteins. Consistent with previous data [51], the affinity of CHIP for 

the mutant Hsc70 Fam-SSGPTEIEEVD and Hsp90α Fam-DDTERMEEVD tracers was reduced 

by more than 8-fold (Figure 2.5A). Also, Hop had mildly enhanced binding (~2-fold) to 

pseudophosphorylated Hsp70 and Hsp90 C-termini (Figure 2.5B). Interestingly, the binding 

of DNAJC7, FKBP51, and FKBP52 to either chaperone was unaffected (Figure 2.5B). Thus, 

mimicking phosphorylation of the C-termini of Hsp70 and Hsp90 seemed to tune the 

affinity for select TPR co-chaperones but not others.  

 

2.4 Conclusions 

2.4.1 Specific binding of TPR co-chaperones to Hsp70 and Hsp90 is influenced by affinity 

and phosphorylation 

The molecular chaperones Hsp70 and Hsp90 work with TPR co-chaperones to mediate 

protein triage and quality control. In this study, I characterized how TPR co-chaperones, 
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including CHIP, Hop, DNAJC7, FKBP51, and FKBP52, bind the C-termini of four cytosolic  

human Hsp70s and Hsp90s in vitro. Some TPR co-chaperones showed a preference for 

chaperones. For example, CHIP, Hop, and DNAJC7 had a 2-fold overall preference for 

Hsp70s over Hsp90s. Using point mutants, I learned that the Ile/Met residue adjacent to 

the EEVD motif was one feature that gives rise to these differences. Moreover, I found that 

mimicking phosphorylation of Ser/Thr residues in the C-termini reduced affinity for CHIP 

and modestly enhanced affinity for Hop, but that this modification had little effect on the 

interactions with other TPR proteins. This result was surprising, given the dramatic increase 

in size and charge at these sites and their proximity to the EEVD-TPR contact. Finally, no 

specificity was observed when comparing chaperone paralogs (i.e. Hsc70 versus Hsp72) in 

any of these platforms. This was also surprising because the expression of the paralogs is 

regulated by quite different mechanisms and a few reports have started to identify 

pathways that rely on one and not the other [52-54]. However, from the TPR’s point of 

view, they appear to be degenerate. Together, these studies expand our understanding of 

chaperone-TPR PPIs. It is important to emphasize that some of these conclusions have 

been suggested by previous studies (vide infra). The comprehensive approach taken here 

was designed to provide the full spectrum of interaction affinities and reveal broader 

patterns. Some of the surprising results from this approach include the findings that 

FKBP51 and FKBP52 do not bind Hsp70s and that pseudophosphorylation has no effect on 

binding to DNAJC7, FKBP51, and FKBP52. Thus, TPR interactions are perhaps tuned by 

unexpected ways. 
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2.4.2 Features other than affinity of the EEVD-TPR contacts could influence complex 

formation between TPR co-chaperones and Hsp70/90 

What are the implications of these results for understanding chaperone-mediated quality 

control? Before this work, one formal possibility was that different TPR co-chaperones 

might display a clear hierarchy of affinity constants. This scenario would have suggested a 

model in which certain TPR co-chaperones could effectively outcompete others to drive 

quality control “decisions.” However, with a few exceptions (e.g. FKBP51/52 binding 

exclusively to Hsp90s and selectivity within Hop TPR domains), there were not dramatic 

differences between the observed affinity constants (see Figure 2.1). So, what other factors 

might contribute to selectivity in this system? One possibility is that secondary contacts 

(e.g. those outside the EEVD motif) might help tune the interactions. However, there 

appears to be comparatively little energy in these interactions, so their contributions might 

be expected to be relatively small. Another possibility is that the expression levels of the 

individual TPR domain co-chaperones, rather than their intrinsic affinity values, may 

dominate which complexes are most likely to form. For example, Hop expression is known 

to be induced in response to certain stress conditions, such as infection [55], which could 

reshape the dynamics of which TPR interactions are favored. However, this model seems 

unsatisfying by itself. Rather, an addition to this model is suggested by the observations 

that mimicking phosphorylation dramatically weakens the affinity of the CHIP-

Hsp70/Hsp90 complexes, while enhancing the corresponding Hop complexes. Specifically, 

it seems plausible that post-translational modifications (PTMs) might help guide which TPR 

co-chaperone is bound by the specific chaperone. In the case of phosphorylation, contact 
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with CHIP is apparently disfavored, while interactions with other TPR co-chaperones are 

spared or even enhanced (in the case of Hop). This mechanism is appealing because it 

would allow quality control “decisions” to be shaped by signaling pathways, providing a 

way for cells and organisms to adjust their proteomes in response to cues or changing 

conditions. Even this model seems rather incomplete, so I also favor the idea that other 

features might ultimately be found to contribute to the choice of which TPR co-chaperone 

is bound. These features might include the structure of the client, whether it directly 

interacts with co-chaperones, and the subcellular co-localization of all the components. 

Future work will need to explore how these factors guide the selection of TPR-chaperone 

pairs. These results suggest that, except for the special cases of FKBPs and individual Hop 

domains, features other than affinity of the EEVD-TPR contacts might play dominant roles. 

 

2.4.3 Strategies for targeting Hsp70/90-TPR co-chaperone complexes 

There has been great interest in targeting these PPIs to treat diseases [56-60]. Many of 

these strategies are focused on inhibiting EEVD-TPR contacts, such as that between Hop 

and Hsp70/90, which are important in cancer. However, our results suggest that such 

approaches may have unintended consequences. For example, androgen receptor (AR) is 

dependent on Hop-Hsp70 for its maturation [61], but it also requires CHIP-Hsp70 for its 

degradation [62, 63]. Thus, it is not clear what effect an EEVD-TPR inhibitor might 

ultimately have on levels of that client. One might conceivably achieve greater selectivity 

by developing inhibitors of the secondary contacts between chaperones and TPR co-

chaperones, which presumably occur at sites that are less degenerate than the EEVD-TPR 
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contact. However, like others [42], I found that the energy contributed by secondary 

contacts (e.g. those outside the EEVD) contribute relatively little binding free energy. Thus, 

it may be difficult to identify compounds that compete with the PPIs by binding at these 

secondary contacts. Despite this challenge, some progress has been made with derivatives 

of the natural product sansalvamide A, which inhibit some Hsp90-TPR interactions but not 

others [59, 60]. Although the mechanisms are not yet clear, these molecules are thought 

to act at allosteric sites on Hsp90, avoiding the problem of weak affinity in the secondary 

contacts. It is becoming more widely appreciated that allosteric inhibitors are effective 

against otherwise “undruggable” PPIs [64]. Our results support the continued focus on 

allosteric sites, rather than TPR-EEVD inhibitors, in the pursuit of reagents for fine-tuning 

protein quality control. 

 

2.5 Experimental procedures  

2.5.1 Plasmids 

Human CHIP, Hop, FKBP51, and FKBP52 were expressed from a pET151 vector such that 

they contained an N-terminal His-tag and TEV cleavage site. Site-directed mutagenesis for 

Hop mutants (K8A, R77A, N223A, and R305A) was performed using the Phusion Site-

Directed Mutagenesis Kit protocol (New England Biolabs, Ipswich, MA). Human DNAJC7, 

Hsc70 (HSPA8), Hsp72 (HSPA1A), and Hsp72ΔEEVD were expressed from a pMCSG7 vector 

with an N-terminal His-tag and TEV cleavage site. Lastly, HIP was expressed from a pET28a 

vector with an N-terminal His-tag and Thrombin cleavage site. 
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2.5.2 Protein expression and purification 

Hsc70, Hsp72, Hsp72ΔEEVD proteins were expressed in E. coli BL21 (DE3) cells. Liter 

cultures of terrific broth were grown at 37 °C until an OD600 of 0.6. Cultures were cooled 

to 25 °C and induced with isopropyl β-D-1-thiogalactopyranoside (IPTG; final concentration 

of 500 µM). Afterwards, cultures were grown overnight at 25 °C. For protein purification, 

cell pellets were re-suspended in His-binding buffer (50 mM TRIS, 10 mM Imidazole, 500 

mM NaCl, pH 8) supplemented with protease inhibitors. Cells were lysed by sonication, 

pelleted by centrifugation, and the supernatant was applied to Ni-NTA His-Bind Resin 

(Novagen, Darmstadt, Germany). The resin was washed with His-binding buffer, followed 

by His-washing buffer (50 mM TRIS, 30 mM Imidazole, 300 mM NaCl, pH 8). The protein 

was then removed from the resin using His-elution buffer (50 mM TRIS, 300 mM Imidazole, 

300 mM NaCl, pH 8). Before further purification by an ATP-agarose column (Sigma), MgCl2 

and KCl was added to the eluted sample (final concentration: MgCl2 = 10 mM, KCl =10 mM). 

The sample was then applied to the ATP-agarose column, was first washed with buffer A 

(25 mM HEPES, 5 mM MgCl2, 10 mM KCl, pH 7.5) and then was washed with buffer B (25 

mM HEPES, 5 mM MgCl2, 1M KCl, pH 7.5). The column was then washed a third time with 

buffer A and then eluted in buffer A containing 3 mM ATP. The pure protein was 

concentrated and exchanged into buffer A for storage. Note that the N-terminal His-tags 

were not removed.  

 

Human CHIP, Hop, Hop mutants, FKBP51, and FKBP52 were expressed in E. coli BL21 (DE3) 

cells. Liter cultures of terrific broth were grown at 37 °C until an OD600 of 0.6. Cultures were 
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cooled to 18 °C before induction with IPTG (final concentration of 500 µM) and then grown 

overnight. For protein purification, cell pellets were lysed and first purified using the batch 

Ni-NTA His-Bind resin protocol described above. The N-terminal His-tag was then removed 

using TEV protease. The sample was then further purified by size exclusion 

chromatography using a prep grade XK 16/100 Superdex 200 column (GE Healthcare Life 

Sciences) in a 50 mM HEPES, 10 mM NaCl, pH 7.4 buffer. Human HIP was purified using 

previously described methods [65].  

 

The human TPR protein DNAJC7 was expressed in E. coli BL21 (DE3) cells. Liter cultures of 

terrific broth were grown at 37 °C until an OD600 of 0.6 was reached. Cultures were then 

cooled to 18 °C before induction with IPTG (500 µM) and then grown overnight. Cell pellets 

were re-suspended in DNAJC7 His-binding buffer (50 mM TRIS, 10 mM Imidazole, 750 mM 

NaCl, pH 8) supplemented with protease inhibitors. Cells were lysed by sonication, 

subjected to centrifugation, and the supernatant was then applied to Ni-NTA His-Bind 

Resin (Novagen, Darmstadt, Germany). The resin was washed with the DNAJC7 His-binding 

buffer, followed by an extensive wash with DNAJC7 His-washing buffer 1 (50 mM TRIS, 30 

mM Imidazole, 750 mM NaCl, 3% ethanol, pH 8). The resin was washed a third time with 

DNAJC7 His-washing buffer 2 (50 mM TRIS, 30 mM Imidazole, 100 mM NaCl, 3% ethanol, 

pH 8). Finally, the protein was then removed from the resin with the His-elution buffer (50 

mM TRIS, 300 mM Imidazole, 300 mM NaCl, pH 8). The purified protein was concentrated 

and exchanged into a 50 mM TRIS, 300 mM NaCl, pH 7.4 buffer for storage. Note that the 

N-terminal His-tag was not removed.  
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2.5.3 Preparation of apo Hsp70 protein 

Hsp70 protein was made apo (e.g. nucleotide free) using extensive dialysis in 3 mL 

cassettes (catalog number = 66330, Life Technologies). First, the protein was dialyzed into 

25 mM HEPES, 10 mM KCl, 5 mM EDTA, pH 7.5 at 4 °C for two days. Next, it was dialyzed 

into 25 mM HEPES, 10 mM KCl, pH 7.5 at 4 °C for another two days and then stored at -80 

°C. Fresh buffers were made daily. 

 

2.5.4 Fluorescence polarization assays 

2.5.4.1 General procedures 

All Experiments were performed in 384-well, black, low volume, round-bottom plates 

(catalog number = 4511, Corning, NY). Polarization values in millipolarization units (mP) 

were measured at an excitation wavelength at 485 nm and an emission wavelength at 

530 nm using a Molecular Devices Spectramax M5 plate reader (Sunnyvale, CA). For 

binding experiments, equilibrium-binding isotherms were constructed by plotting FP 

readings as a function of the protein concentration at a fixed concentration of a tracer. All 

experiments were performed at least twice in triplicate. Results are shown as the average 

and standard error of the mean (SEM). All experimental data were analyzed using 

GraphPad Prism 6 software.  

 

2.5.4.2 TPR co-chaperones binding to Hsp70/90 C-terminal probes 

Fluorescent C-terminal Hsp70 and Hsp90 peptides were custom ordered from GenScript 

(Piscataway, NJ) and designed to have an N-terminal 5-Carboxyfluorescein (5-Fam) via a 6-
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carbon spacer (aminohexanoic acid). These probes were stored as 5 mM DMSO stocks at  

-30 °C. Before use, the tracer solutions were diluted in the assay buffer (50 mM HEPES, 10 

mM NaCl, 0.01% Triton X-100, pH 7.4 or 9.4) to a working concentration of 0.1 µM. Note 

that 5-Fam (pKa ~6.4) has pH-sensitive fluorescence, so no binding experiments were 

performed at low pH values. To each well was added 16 µL of a TPR co-chaperone (CHIP, 

Hop, DNAJC7, FKBP51, FKBP52, or HIP) from a 2-fold dilution series made using the assay 

buffer. Final concentrations of protein ranged from 0 to 125 µM. Next, 4 µL of a 0.1 µM 5-

Fam-labeled C-terminal Hsp70/90 peptide was added to each well, to give a final 

concentration of 20 nM and a total assay volume of 20 µL. The plate was covered from 

light and allowed to incubate at room temperature for 30 minutes, which was determined 

to be at equilibrium.  

 

2.5.4.3 FP competition experiment with C-terminal Hsp70/90 probes 

I also determined the ability of full length Hsp72 or Hsp72ΔEEVD to compete with the C-

terminal Hsp72 probe (5Fam-GSGPTIEEVD) for binding to a TPR protein (CHIP, Hop, or 

DNAJC7). First, 6 µL of a TPR co-chaperone was added to each well (final concentration: 

CHIP = 0.5 µM, Hop = 2.5 µM, or DnaJC7 = 2.5 µM). This amount equals the concentration 

of the TPR co-chaperone at which 50% of the FP probe (5Fam-GSGPTIEEVD) is bound, 

based on binding experiments. Next, 10 µL of Hsp72 or Hsp72ΔEEVD from a 2-fold dilution 

made using the assay buffer (50 mM HEPES, 10 mM NaCl, 0.01% Triton X-100, pH 7.4) was 

added. Final concentrations of Hsp72/Hsp72ΔEEVD ranged from 0 to 40 µM. Finally, 4 µL 

of a 0.1 µM 5Fam-GSGPTIEEVD was added to each well, to give a final concentration of 20 
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nM and a total assay volume of 20 µL. The plate was covered from light and allowed to 

incubate at room temperature for 30 minutes.  

 

2.5.4.4 Binding of a fluorescent ATP analog to Hsp72/Hsp72ΔEEVD 

The fluorescent ATP analog, Fam-ATP (N6-(6-Amino)hexyl-ATP-5Fam), was purchased from 

Jena Bioscience (catalog number = NU-805-5FM, Jena, Germany). To a plate, was added 

10 µL of a 2-fold dilution series of protein (Hsp72 or Hsp72ΔEEVD). Dilution series were 

made using the assay buffer (100 mM TRIS, 20 mM KCl, 6 mM MgCl2, 0.001% Triton X-100, 

pH 7.4). Final concentrations of proteins ranged from 0 to 25 µM. Apo (nucleotide free) 

Hsp72/Hsp72ΔEEVD must be used in order to achieve substantial and reproducible binding 

to the Fam-ATP probe. Next, 6 µL of a 3.3 mM solution of ATP or ADP was added to each 

well, to give a final concentration 1 mM.  Finally, 4 µL of a 0.1 µM Fam-ATP was added to 

each well, to give a final concentration of 20 nM and a total assay volume of 20 µL. The 

plate was allowed to incubate at room temperature covered from light for 30 minutes.  

 

2.5.4.5 FP competition experiment with Fam-ATP 

I also determined the ability of unlabeled ATP to compete with the Fam-ATP probe for 

binding to Hsp72/Hsp72ΔEEVD. First, apo Hsp72 or Hsp72ΔEEVD was added to each well 

to give a final concentration 0.5 µM. This amount equals the concentration of 

Hsp72/Hsp72ΔEEVD at which 50% of the FP probe (Fam-ATP) is bound based on binding 

experiments. Next, a 2-fold dilution of ATP made using the assay buffer (100 mM TRIS, 20 

mM KCl, 6 mM MgCl2, 0.001% Triton X-100, pH 7.4). Final concentrations of ATP ranged 
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from 0 to 300 µM. Finally, Fam-ATP was added to each well, to give a final concentration 

of 20 nM and a total assay volume of 20 µL. The plate was covered from light and allowed 

to incubate at room temperature for 30 minutes in order to reach equilibrium.  

 

2.5.4.6 Binding of Fam-HLA substrate to Hsp72/Hsp72ΔEEVD 

HLA substrate FP probe was custom ordered form the University of Michigan Proteomics 

& Peptide Synthesis Core. This probe was designed to have a 5-Fam N-terminal of the 

following sequence: RENLRIALRY. This probe the stored as 5 mM DMSO stocks at -30 °C. 

Before use, probes were diluted in the assay buffer (100 mM TRIS, 20 mM KCl, 6 mM MgCl2, 

0.001% Triton X-100, pH 7.4) to a working concentration of 0.1 µM. To a plate, was added 

10 µL of a 2-fold dilution series of protein (Hsp72, Hsp72ΔEEVD, or CHIP). Dilution series 

were made using the assay buffer. Final concentrations of the protein ranged from 0 to 25 

µM. Apo (nucleotide free) Hsp72/Hsp72ΔEEVD must be used in order achieve substantial 

and reproducible binding to the Fam-HLA probe. Next, 6 µL of a 3.3 mM solution of ATP or 

ADP was added to each well, to give a final concentration 1 mM.  Finally, 4 µL of a 0.1 µM 

Fam-HLA was added to each well, to give a final concentration of 20 nM and a total assay 

volume of 20 µL. The plate was allowed to incubate at room temperature covered from 

light for 1 hour.  

 

Notes  

This chapter has be submitted for publication as “Specific binding of tetratricopeptide 

repeat (TPR) proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) 
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is regulated by affinity and phosphorylation” to Biochemistry. Victoria A. Assimon and 

Jason E. Gestwicki designed the experiments. Victoria A. Assimon conducted all 

experiments. We thank Dr. Daniel R. Southworth (University of Michigan) for his generous 

gift of CHIP, Hop, FKBP51, and FKBP52 expression vectors. We would also like to thank Dr. 

Yoichi Osawa (University of Michigan) for his generous gift of the Hip expression vector.  
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2.6 Appendix 

2.6.1 Hsp72ΔEEVD is able to engage with nucleotide and substrate 
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2.6.2 The binding of Hsp70 to TPR co-chaperones is mediated by Hsp70’s EEVD motif 
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2.6.3 TPR co-chaperones differentially interact with the C-termini of cytosolic Hsp70s/90s  
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2.6.4 The orientation of the EEVD is important for the interaction between TPR co-

chaperones and the C-termini of Hsp70/90 
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2.6.5 The Ile of the C-terminus Hsp70 (GSGPTIEEVD) and the Met of the C-terminus 

Hsp90α (DDTSRMEEVD) strongly influence binding preferences of TPR co-chaperones 
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2.6.6 The binding of TPR co-chaperones to Hsp70/90 involves polar contacts 
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2.6.7 Hop’s TPR1 and TPR2A domains selectively interact with the C-termini of Hsp70 and 

Hsp90, respectively 
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Chapter 3  

Mutagenesis of Hsp70 reveals a complex and tunable allosteric network: Connecting drug 

binding sites to function and protein-protein interactions  

 

3.1 Abstract  

Hsp70 plays important roles in maintaining the integrity of the proteome and thus, is an 

emerging target for multiple diseases. In models of neurodegeneration, such as Spinal-

Bulbar Muscular Atrophy (SBMA), MKT-077 and its analogs have been shown to bind 

selectively to an allosteric pocket on Hsp70 and relieve disease phenotypes. However, the 

molecular mechanism by which these molecules modulate Hsp70’s functions has not been 

fully elucidated. In this chapter, I performed alanine-scanning mutagenesis on MKT-077’s 

binding pocket and studied the effects of these mutations using a host of in vitro chaperone 

assays. I found that mutations within the MKT-077 binding pocket of Hsp70 dysregulate 

key allosteric networks, which ultimately leads to the trapping of Hsp70 in an ADP-like 

conformation where it can no longer refold substrates. These findings provide new 

strategies for how to tune Hsp70’s functions in order to treat diseases of protein 

misfolding.  

 

3.2 Introduction  

3.2.1 Allosteric inhibitors as an alternative approach to targeting Hsp70 complexes 
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As introduced in chapter 1, the molecular chaperone Hsp70 has important roles in 

maintaining protein homeostasis and it is associated with diseases of protein misfolding. 

Thus, Hsp70 is considered to be a promising new drug target. The goal of my thesis is to 

explore ways of safely manipulating this chaperone. Towards that goal I performed a 

comprehensive study of how TPR co-chaperones interact with Hsp70 (chapter 2). An 

important conclusion of this study was that it would be very challenging to directly 

interfere with TPR-Hsp70 interactions using small molecules (e.g. orthosteric inhibitors). 

However, another way to manipulate Hsp70 and its co-chaperones would be to interfere 

with allostery. As discussed in chapter 1, Hsp70 is a highly allosteric machine and its co-

chaperone interactions are allosterically controlled. Indeed, the Gestwicki laboratory has 

performed multiple, unbiased chemical screens to identify inhibitors of Hsp70 complexes, 

leading to the identification of molecules that appear to act at allosteric sites [1-4]. 

Additionally, we have validated and optimized compounds, based on the rhodacyanine dye 

MKT-077, that are known to interact with an allosteric site on Hsp70. The goal of this 

chapter is to understand the mechanism of these molecules and to explore how they might 

tune functions of Hsp70 complexes. 

 

3.2.2 Allosteric inhibitors of Hsp70 have promising activity in models of neurodegeneration 

Work by the Gestwicki laboratory and its collaborators has suggested that MKT-077 

analogs have promise for the treatment of multiple diseases. For example, in collaboration 

with Chad A. Dickey (University of South Florida), we demonstrated that an MKT-077 

analog, YM-1, reduced the accumulation of microtubule-binding protein tau (MAPT) and 
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rescued long-term potentiation (LTP) deficits in hippocampal slices from a mouse model of 

Alzheimer’s disease (rTg4510 mice) [5]. Additionally, Andrew P. Lieberman’s group 

(University of Michigan) found that YM-1 treatment reduced the accumulation of 

polyglutamine-expanded androgen receptor (polyQ-AR) in cellular and Drosophila 

melanogaster models SBMA [6]. In both cases, the activity of YM-1 was dependent on 

Hsp70, illustrating that this chaperone is a major cellular target. Taken together, these data 

suggest that YM-1 and more recent analogs might serve as potential drug leads [7, 8]. The 

emergence of these molecules also presented a unique opportunity for my thesis work. 

Specifically, these molecules could provide a blueprint for how to target Hsp70 complexes. 

In other words, I wanted to use MKT-077 molecules to understand how allostery controls 

chaperone functions in the Hsp70 system.  

 

3.2.3 ATP hydrolysis involves critical allostery between Hsp70’s domains 

Allosteric networks span both domains of Hsp70. As previously discussed in chapter 1, 

Hsp70 consists of two domains, a nucleotide binding domain (NBD) and substrate binding 

domain (SBD). These domains are connected by a short flexible linker [9-11]. The NBD of 

Hsp70 is further divided into two subdomains, lobes I and II, which are each divided into 

an “A” and “B” region (Figure 1.2). These lobes form a cleft that binds ATP with a nucleotide 

binding cassette [12]. Hsp70’s SBD is composed of a β-sandwich subdomain with a 

hydrophobic groove for polypeptide binding and an α-helical region which forms a “lid” 

over the peptide binding site. In the ATP-bound state, Hsp70 has an “open” substrate-

binding cleft and a low affinity for substrates. However, conversion to the ADP-bound state 
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causes the α-helical lid region to “close,” increasing Hsp70’s affinity for substrates (Figure 

1.3) [13]. Thus, ATP hydrolysis involves critical allostery between the NBD and SBD.  

 

3.2.4 Structural and experimental studies reveal allosteric hotspots on Hsp70 

A wealth of structural and computational data has provided mechanistic clues that help to 

explain why transitioning through different nucleotide states affects conformational 

changes in Hsp70. For example, in collaboration with Heather Carlson (University of 

Michigan) we performed molecular dynamics simulations of the NBD in its ATP, ADP, and 

apo forms and found a nucleotide dependent rotation of the IIB subdomain. This 

movement involved “hinge” residues, such as Hsc70G229 (DnaKG228), at the interface of the 

IIB and IIA subdomains (Figure 3.1) [14]. The motion of this residue, along with its nearby 
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neighbors, tended to move in coordination during conversion from the ATP- to the ADP(Pi)-

bound state. Similarly, highly conserved proline (Hsc70P147/DnaKP143) and arginine 

(Hsc70R155/DnaKR151) residues are thought to adopt different conformations in response to 

the nucleotide state of Hsp70 and together act as a “switch” that controls the opening and 

closing of the SBD (Figure 3.1) [15]. Mutations of catalytic residues (Hsc70E175/DnaKE171 and 

Hsc70D206/DnaKD201), located between lobes IA and IIA, have also been shown to impair 

nucleotide-induced changes in conformation (Figure 3.1) [16, 17]. Further, mutating any of 

these highly conserved allosteric residues disrupts chaperone function. Interestingly, all 

these residues are located at the interfaces of the lobes (IA, IIA, IB, and IIB) of the NBD. 

Thus, these studies suggest that nucleotide-dependent conformational changes are 

controlled by a handful of allosteric networks and that these residues are linked to 

reorientations of the NBD subdomains [18, 19].  

 

 Further insights into the allosteric pathways of Hsp70 come from studies aimed at 

understanding PPIs with co-chaperones, especially in the prokaryotic DnaK-DnaJ-GrpE 

system. For example, mutations in the IB subdomain, such as DnaKK55, have been shown 

to block GrpE binding [20, 21]. Other residues in this region are also thought to be 

important for modulating nucleotide exchange [20-22] (Figure 3.1). Additionally, 

mutagenesis has been used to study residues on DnaK involved in DnaJ binding, such as 

DnaKE217 [23] (Figure 3.1). These mutations have been extensively studied and been  shown 

to impair DnaK’s ATPase activity and ability to refold model substrates [22], suggesting that 

the allosteric networks in Hsp70/DnaK are closely linked to PPIs with co-chaperones. 
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Finally, the linker region, which connects the NBD and SBD, has been shown to influence 

long-range allostery between Hsp70’s domains. For example, the linker stimulates ATPase 

activity when present on a truncated NBD construct by binding to a hydrophobic cleft 

between subdomains IA and IIA [24]. Additionally, mutations in the linker region of DnaK 

impair DnaJ-stimulated ATP hydrolysis and dysregulate DnaK’s ability to release substrate 

in response to ATP. Taken together, these studies illustrate that there are multiple 

allosteric hotspots, both within subdomains and between subdomains. 

 

3.2.5 How do allosteric Hsp70 inhibitors work?  

Using NMR and computational approaches, Erik R. P. Zuiderweg (University of Michigan), 

Saurav Misra (Case Western University), and Giorgio Colombo (ICRM, Milano Italy) have all 

shown that MKT-077 and its analogs interact with an allosteric site on the NBD of Hsp70. 

This site is located at the interface between lobes IA and IIA, adjacent to, but not 

overlapping with, the nucleotide pocket (Figure 3.1) [25]. Interestingly, MKT-077 only 

interacted with Hsp70’s NBD in its ADP-bound form and not its apo- or ATP-bound states 

[25, 26]. Molecular dynamics studies suggest that the allosteric site in lobes IA/IIA is only 

open enough to allow compound binding in the ADP-bound state. Based on this knowledge 

and the promising activity of the compounds in disease models, I wanted to further probe 

the mechanism of action (MoA). This goal was important because optimization of the 

molecules would benefit from additional knowledge of the MoA. The Gestwicki laboratory 

has developed a battery of biochemical assays (e.g. ATP binding, ATP turnover, substrate 
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binding, substrate refolding, etc.) (Figure 3.2) that seemed ideally suited for this type of 

inquiry. Unfortunately, the fluorescent properties of MKT-077 analogs precluded their use 

in most of our biochemical assays (data not shown). Thus, an alternative approach was 

needed to better elucidate MKT-077’s MoA.  

 

3.3 Results and discussion 

3.3.1 Using mutagenesis to study the mechanism of allosteric Hsp70 inhibitors  

To better understand how MKT-077 might regulate the structure and function of Hsp70 

complexes, I performed alanine-scanning mutagenesis on MKT-077’s binding pocket 

(Figure 3.3). Protein engineering, particularly alanine-scanning mutagenesis, has proven to 

be a powerful method for elucidating the protein function, including the discovery of 

allosteric networks [27]. The strategy that I took was to systematically replace each residue 

that the Zuiderweg group had identified in NMR titration studies with MKT-077, as 

discussed above (Figure 3.3). These residues were predicted to contact MKT-077 and to 

communicate the allosteric effects of compound. Thus, I made the following mutants in 

full length Hsc70: R76A, Y149A, Y149W, F150A, D206A, T222A, T222M, D225A, T2226A, 
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H227A, and L228A. The Y149W and T222M mutants were designed to block the binding of 

MKT-077 molecules to Hsp70. These mutations could be particularly useful (i.e. serve as 

dominant-negatives) in future cellular studies. Each of the mutant proteins expressed in E. 

coli and were purified using the standard wt Hsc70 procedure (Appendix 3.6.1). My strategy 

was to test each of the mutants in a battery of biochemical tests for chaperone functions, 

including ATP binding, ATP turnover, co-chaperone interactions, and client refolding 

(Figure 3.2). As discussed in Chapter 1, Hsp70 structure-function relationships are complex, 

so I will systematically describe the design and results of each assay and reserve 

interpretations until all of the parameters are measured. My hypothesis is that some of the 

residues chosen for mutation might link the MKT-077 binding site to known allosteric 

networks in Hsp70. Conversely, other residues might be important for binding to MKT-077, 

but these might not be directly involved in allosteric communication. It is important to 
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differentiate between these possibilities, because it could help guide the design of next-

generation Hsp70 inhibitors. Further, this approach may reveal a new allosteric network in 

the Hsp70 system.  

 

3.3.2 Hsc70 mutants bind nucleotide  

Using these mutants, I first assessed whether they had normal affinity for nucleotide. I 

measured this interaction by fluorescence polarization (FP) using a fluorescently labeled 

ATP analog (Fam-ATP) (Figure 3.4). The NBD of wt Hsc70 was used as the positive control 

and the SBD of wt Hsc70 was used as a negative control (Figure 3.4A). Wt Hsc70 bound to 

the tracer with a KD of 0.75 ± 0.07 µM and SBD did not bind, as expected. The majority of 

the Hsc70 mutants had an affinity that was similar to wt Hsc70 (high nanomolar to low 

micromolar) (Figure 3.4C and Appendix 3.6.2). Only H227A had a significantly reduced 

binding affinity (KD >10µM). Thus, most of the mutants exhibited normal binding to 

nucleotide. This result is consistent with the location of the MKT-077 binding site, which is 

not overlapping with ATP-binding residues.  

 

3.3.3 NEFs promote the release of nucleotide from Hsc70 mutants 

As discussed is chapter 1, NEFs cause nucleotide dissociation from Hsp70. I next wanted to 

explore whether my mutations affected NEF activity by measuring the release of 

nucleotide. Towards this goal, I employed a competitive FP assay that measures release of 

Fam-ATP in the presence of human NEFs (i.e. BAG1, BAG2, or BAG3). We found that a 

subset of the mutants (D206A, T226A, H227A, and L228A) had a modest dynamic range 
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(<60 mP units) for binding the Fam-ATP (Appendix 3.6.2). Thus, these mutants were 

precluded from this study. Consistent with previous results, BAG1 (EC50 = 0.69 ± 0.27 µM), 

BAG2 (EC50 = 0.63 ± 0.12 µM), and BAG3 (EC50 = 0.37 ± 0.08 µM) all promoted the release 

of Fam-ATP from wt Hsc70 [28] (Figure 3.5 and Appendix 3.6.3). Similarly, all the Hsc70 
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mutants that were tested were sensitive to the BAG proteins. The potency of the BAG 

proteins was nearly the same as wt for most of the Hsc70 mutants (R76A, T222A, T226A, 

and D225A). Interestingly, Y149W and F150A mutants were even more susceptible to 
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nucleotide release by BAG proteins (EC50 = 0.05 – 0.20 µM). Thus, with some exceptions, 

most of the mutants had normal responses to BAG proteins.  

 

3.3.4 Hsc70 mutants hydrolyze ATP  

As mentioned in chapter 1, the ATPase rate of Hsp70 is stimulated by J proteins. Thus, I 

wanted to measure the ability of a J protein (DNAJA2) to stimulate turnover of ATP for each 

Hsc70 mutant. Towards this 

goal, I calculated the Km and 

Vmax values for DNAJA2-

mediated stimulation of wt 

Hsc70 and mutants (Table 3.1 

and Appendix 3.6.4), using a 

standard malachite green 

assay. With the exception of 

D206A and T222M, I found 

that the mutants had little 

impact on DNAJA2-mediated 

ATPase activity. Using Km as an approximation of binding to Hsc70, I found the affinities of 

most mutants for DNAJA2 were similar to wt Hsc70 (Km = 34.0 ± 11.0 nM). Two mutants, 

D206A and T222M, were only weakly stimulated by DNAJA2, such that the curves could 

not be reliably fit (Table 3.1 and Appendix 3.6.4). With the exception of Y149W (Vmax = 4.8 

± 0.5 µM) and the ATPase dead mutants (D206A and T222M), the maximum stimulation 
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(Vmax) of the mutants by DNAJA2 was within 3-fold of wt Hsc70 (Vmax = 20.3 ± 1.9 µM) (Table 

3.1 and Appendix 3.6.4). Thus, with some exceptions, most of the point mutants within the 

MKT-077 binding site had only modest effects on ATP turnover.  

 

3.3.5 Hsc70 mutants do not bind substrate in a nucleotide-dependent manner 

The NBD and SBD of Hsp70 are normally in allosteric communication, such that ATP binding 

in the NBD triggers conformational changes that weaken the SBD’s affinity for client 

peptides. Hydrolysis of nucleotide causes the lid region of the SBD to “close,” which greatly 

increases Hsp70’s affinity for clients by slowing the off-rate of these substrates (Figure 1.3) 

[13]. To explore if the mutations had any effect on this communication, I measured binding 

to a model client and tested whether different nucleotides could affect the apparent 

affinity. Specifically, I developed a FP platform in which I measured the binding of an Hsc70 

protein to a fluorescently labeled client peptide derived from the MHC class I antigen HLA-

B2702 (Fam-HLA). As expected, wt Hsc70 had no appreciable affinity for Fam-HLA in the 

presence of ATP (KD >25 µM), but bound the tracer with low micromolar affinity in the 

presence of ADP (KD = 5.51 ± 0.97 µM) (Figure 3.6B). Only two out of the eleven mutants, 

Y149A and H227A, behaved like the wild-type protein. Instead, most of them bound the 

Fam-HLA tracer with low micromolar affinity in the presence of either ATP or ADP. 

Moreover, one mutant (Y149W) bound the Fam-HLA better in the presence of ATP (Figure 

3.6C and Appendix 3.6.5), which is the opposite of wild-type. This was my first indication 

that the MKT-077 binding site might be important for allosteric communication.  
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3.3.6 Hsc70 mutants are deficient in their ability to refold substrates 

One of the main roles of Hsc70 is to facilitate protein folding [29, 30]. This activity is often 

measured in vitro using a standard luciferase refolding assay, in which denatured firefly 

luciferase is restored to its active state by Hsc70 and a J protein in the presence of ATP 

[31]. Consistent with previous reports, low concentrations of DNAJA2 stimulated the ability 

of wt Hsc70 to refold luciferase in this platform. The same behavior was also observed for 

the F150A, T222A, D225A, and L228A mutants. Interestingly, the L228A mutation 

enhanced the refolding ability of the Hsc70-DNAJA2 complex. All of the other mutants 

where completely deficient at refolding (Figure 3.7B and Appendix 3.6.6). This result is 

consistent with the apparent defects in allosteric communication between the NBD and 

SBD, which is known to be required for proper client interactions. Next, we tested whether 
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BAG1 could stimulate these complexes. At low concentrations of BAG1, the activity of wt 

Hsc70 and the T222A mutant was indeed enhanced. However, the other ten mutants were 

not stimulated by the NEF (Figure 3.7B and Appendix 3.6.7). These results suggest that 

allosteric networks in the NBD and SBD might be decoupled by the mutations.  

 

3.3.7 Many Hsc70 mutants are trapped in an ADP-like conformation  

The decoupling of allosteric networks in Hsc70 suggested that the MKT-077 binding pocket 

might regulate nucleotide-dependent conformational transitions. To test this hypothesis, 

I utilized a partial proteolysis assay. It has been previously shown that trypsin digestion of 

Hsp70 results in distinct patterns that 

are indicative of the chaperone’s 

nucleotide state (ATP-bound vs. ADP-

bound) [32]. Thus, this platform is a 

simple way to analyze the gross 

structure of Hsc70 mutants. For wt 

Hsc70, the most apparent difference in 

digestion patterns between nucleotide 

states was observed around 60 kDa 

(Figure 3.8). Specifically, there were 

two bands when Hsc70 was in an ADP-

bound state and three bands when the 

chaperone was in an ATP-bound state. 



 96 

Six of the eleven mutants (Y149A, F150A, T222A, D225A, H227A, and L228A) had similar 

patterns. All other mutants (R76A, Y149W, D206A, T222M, and T226A) assumed an ADP-

bound conformation (two bands around 60 kDa) even in the presence of ATP (Figure 3.8 

and Appendix 3.6.8). This observation is consistent with the previous finding that MKT-077 

binds exclusively to the ADP-bound state of Hsc70 [25]. Together, these data suggest that 

this allosteric site in Hsc70 controls nucleotide-dependent communication.  

 

3.4 Conclusions  

3.4.1 The MKT-077 binding site controls inter-domain allostery in Hsp70 

MKT-077 and its analogs work through Hsp70 to relieve disease phenotypes in models of 

neurodegeneration [5, 6]. Based on these findings, I set out to understand the mechanism 

by which these molecules modulate Hsp70’s functions. To do this, I performed 

mutagenesis on MKT-077’s binding pocket and studied the effects of these mutations using 

a host of in vitro chaperone assays. The results of these studies are summarized in Figure 

3.9. Interestingly, mutations within the MKT-077 binding pocket tended to have little effect 

on Hsp70’s ability to bind, release, and turnover nucleotide. These results suggest that the 

MKT-077 binding site is not directly linked to the nucleotide-binding cleft. Moreover, most 

of the Hsc70 mutants responded normally to co-chaperones. For example, their response 

to DNAJA2 in ATPase assays and BAG proteins in nucleotide release assays was largely 

normal. Thus, the PPIs with J proteins and NEFs are not strongly coupled to the MKT-077 

binding site. However, MKT-077 binding site mutations generally impaired, and in some 

cases abolished, the ability of Hsp70 to refold luciferase. Luciferase folding requires the 
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coordination of the NBD and SBD. Further, this process requires stimulation by J proteins 

and multiple rounds of ATP turnover [31, 33, 34]. Thus, the MKT-077 binding site seems to 

be selectively coupled with the allosteric networks that allow this activity. In further 

support of this idea, I observed that these mutations prevented Hsp70 from binding 

substrates in a nucleotide-dependent manner, another function that requires inter-

domain allostery.  

 

3.4.2 The MKT-077 binding site is linked to allosteric hotspots in Hsp70 

What specific allosteric networks could be linked to the MKT-077 binding pocket? One clue 

comes from the location of the site, which is near the proline “switch,” a subset of catalytic 

residues, and the “hinge” region (Figure 3.1). As mentioned in the introduction to this 

chapter, these three regions are closely linked to inter-domain allostery. For example, 

residues Y149 and F150 are located in the MKT-077 binding site and they sit adjacent to a 

small loop that includes the proline “switch” (Hsc70 residues V146-P147-A148-Y149-F150) 
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in subdomain IA (Figures 3.1 and 3.3). Crystal structures illustrate that the carbonyl oxygen 

of P147 is stabilized by the guandinium group of R155 through hydrogen bonding. 

Additionally, P147 is in close proximity (<3.6 Å) to E175 and K71, which are catalytic 

residues. The catalytic residue K71 positions a water molecule for the nucleophilic attack 

of the γ-phosphate of ATP (Figure 3.10) [15]. It is suggested that this network responds to 

the nucleotide state of Hsp70, possibly via proline cis-trans isomerization, to trigger long 

range conformational changes in the SBD, such as lid opening and closing [15]. My 

mutagenesis results suggest that residues adjacent to this proline, such as Y149 and F150, 

are also part of this allosteric network. For example, mutating Y149 to either an alanine or 

tryptophan impairs Hsc70’s ability to refold luciferase. It is important to note that these 

mutants behaved differently when measuring their binding to a model client. Like wt 

Hsc70, the Y149A mutant had no appreciable affinity for the client FP tracer in the presence 

of ATP, but bound it with low micromolar affinity in the presence of ADP. However, the 
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Y149W mutant bound the tracer probe significantly better in the presence of ATP. My 

partial proteolysis results indicated that the Y149W mutant is permanently trapped in an 

ADP-like conformation. Based on the structural analysis described above, the increase in 

size of the side chain from mutating the Y149 to a tryptophan likely changes the orientation 

of P147, which in turn disrupts key stabilizing hydrogen bond interactions between 

residues of the “switch” network. This model suggests that the bulkiness of this mutation 

triggers the “switch” to be stuck in an “on mode,” causing the protein to be no longer 

responsive to nucleotide and locked in an ADP-like conformation. Future structural studies 

will attempt to explore this possibility.  

 

In addition to the proline “switch,” MKT-077 analogs seem to engage other allosteric 

hotspots on the NBD of Hsp70, such as the “hinge” region (Figure 3.1). As discussed 

previously, the nucleotide-dependent rotation of the IIB subdomain is regulated by “hinge” 

residues at the interface of the IIB and IIA subdomains, such as G229 [14]. Mutating 

residues adjacent to this glycine, H227 and L228, impairs some Hsp70 functions, such as 

NEF mediated refolding of substrates. This suggests that MKT-077 molecules engage this 

allosteric network. Like G229, I suspect that H227 and L228 are involved in properly 

orientating the IIB subdomain in response to nucleotide. However, mutating these residues 

to alanine does not engender the same biochemical profile in our chaperone assays (Figure 

3.9). For example, the H227A mutant exhibits a nucleotide-dependence when binding 

substrate, but the L228A mutant does not. This finding supports the idea that networks 

within the MKT-077 binding pocket are connected and tunable. 
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These results have important implications for building better MKT-077 analogs. My 

hypothesis prior to starting these studies is that some of the regions of MKT-077 might be 

important for triggering allosteric effects, while other regions are more important for 

binding. Unlike orthosteric inhibitors, not all regions of an allosteric inhibitor are 

necessarily linked to function and the binding affinity of a compound is not necessarily 

linked to its potency. Rather, allosteric compounds are defined by their ability to trigger a 

proper series of conformational changes (e.g. side chain swiveling, changes in dynamics, 

etc.) that produces the outcome. Thus, optimizing an allosteric inhibitor can be more 

challenging. The studies described here are important for building better MKT-077 analogs 

because they focus attention on the regions of the molecule located near the residues 

Y149, F150, H227, and L228. With additional structural data, it might be possible to 

rationally design MKT-077 analogs to act on particular allosteric networks of Hsp70. 

Moreover, the goal of my thesis is to identify ways of targeting Hsp70 complexes, so this 

finding is of special importance. 

 

3.5 Experimental procedures  

3.5.1 Plasmids 

All proteins were expressed from a pMCSG7 vector that contained an N-terminal His-tag 

and TEV cleavage site. Site-directed mutagenesis for Hsc70 mutants (R76A, Y149A, Y149W, 

F150A, D206A, T222A, T222M, D225A, T226A, H227A, and L228A) was performed using 

the Phusion Site-Directed Mutagenesis Kit protocol (New England Biolabs, Ipswich, MA). 
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3.5.2 Protein expression and purification  

Full length Hsc70 proteins, as well as Hsc70 NBD, were expressed, purified, and made apo 

(nucleotide free) using the same procedure as described for full length wt Hsp72 in chapter 

2. Human DNAJA2 was expressed and purified using the same procedure as described for 

DNAJC7 in chapter 2. Human BAG proteins were expressed and purified using a previously 

described method [28].  

 

Hsc70 SBD was expressed in E. coli BL21 (DE3) cells. Liter cultures of terrific broth were 

grown at 37 °C until an OD600 of 0.6 was reached. Cultures were cooled to 18 °C before 

induction with IPTG (final concentration of 500 µM) and then grown overnight. Cells were 

lysed by sonication, pelleted by centrifugation, and the supernatant was applied to Ni-NTA 

His-Bind Resin (Novagen, Darmstadt, Germany). The resin was washed with His-binding 

buffer (50 mM TRIS, 10 mM Imidazole, 300 mM NaCl, pH 8), followed by His-washing buffer 

(50 mM TRIS, 30 mM Imidazole, 300 mM NaCl, pH 8). The protein was then removed from 

the resin using His-elution buffer (50 mM TRIS, 300 mM Imidazole, 300 mM NaCl, pH 8). 

The N-terminal His-tag was then removed using TEV protease. The sample was then further 

purified by size exclusion chromatography using a prep grade XK 16/100 Superdex 75 

column (GE Healthcare Life Sciences) in a 25 mM HEPES, 5 mM MgCl2, 10 mM KCl, pH 7.5 

buffer.  

 

3.5.3 Fluorescence polarization assays 
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All experiments were performed in 384-well, black, low volume, round-bottom plates 

(catalog number = 4511, Corning, NY). Polarization values in millipolarization units (mP) 

were measured at an excitation wavelength at 485 nm and an emission wavelength at 

530 nm using a Molecular Devices Spectramax M5 plate reader (Sunnyvale, CA). For 

binding experiments, equilibrium-binding isotherms were constructed by plotting FP 

readings as a function of the protein concentration at a fixed concentration of a tracer. All 

experiments were performed at least twice in triplicate. Results are shown as the average 

and SEM. All experimental data were analyzed using GraphPad Prism 6 software. The 

binding of Hsc70 proteins to the fluorescent ATP analog (Fam-ATP) and the fluorescent 

substrate peptide (Fam-HLA) was performed using the procedures described for wt Hsp72 

in chapter 2. Additionally, I also determined the ability of BAG proteins to promote the 

release of the Fam-ATP probe from Hsc70 proteins. First, an apo Hsc70 protein was added 

to each well. The concentration of protein added equals the concentration of 

Hsc70/mutant at which 50% of the FP probe (Fam-ATP) is bound based on binding 

experiments. Next, a 2-fold dilution series of a NEF (BAG 1,2, or 3), made using the assay 

buffer (100 mM TRIS, 20 mM KCl, 6 mM MgCl2, 0.001% Triton X-100, pH 7.4), was added. 

Final concentrations of the NEF ranged from 0 to 25 µM. Finally, Fam-ATP was added to 

each well, to give a final concentration of 20 nM and a total assay volume of 20 µL. The 

plate was covered from light and allowed to incubate at room temperature for 30 minutes 

in order to reach equilibrium.  

 

3.5.4 ATPase assays 
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These experiments were performed using previously described methods with minor 

modifications [1, 22]. Stocks of malachite green (0.081% w/v), polyvinyl alcohol (2.3% w/v), 

and ammonium heptamolybdate tetrahydrate (5.7% w/v in 6 M HCl) were prepared and 

mixed with water in a 2:1:1:2 ratio to make the malachite green reagent. All experiments 

were performed in 96-well clear plates. Intrinsic ATPase rates of Hsc70 proteins were 

determined in the absence of co-chaperones. A 2-fold dilution series of Hsc70 was added 

to wells; final concentrations ranged from 0 to 7 µM. For co-chaperone stimulation assays, 

Hsc70 (final concentration of 1 µM) and various concentrations of DNAJA2 were added to 

the wells. Next, ATP (final concentration of 1 mM) was added to each well, bringing the 

reaction volume to 25 µL. Reactions were incubated for 1 h at 37 °C, developed with the 

addition of 80 µL malachite green reagent, and then immediately quenched with 10 µL of 

32% (w/v) sodium citrate. Assays were incubated at 37 °C for 15 minutes and then 

measured at OD620 using a Molecular Devices Spectramax M5 plate reader (Sunnyvale, CA). 

Additionally, background signal from non-specific ATP hydrolysis in controls was 

subtracted. A phosphate standard curve of potassium dibasic phosphate was used to 

calculate pmol Pi/chaperone µM/min. Stimulation curves were fit to a modified Michaelis 

Menten equation (y = VmaxX/(Km+x)+b). All experiments were performed at least twice in 

triplicate. All experimental data were analyzed using GraphPad Prism 6 software. 

 

3.5.5 Luciferase refolding assays  

Experiments were performed as described previously [31]. Briefly, working stocks of 

denatured luciferase were prepared by mixing 10 µL of 203 µM native luciferase (Promega) 
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with 30 µL of 8 M GnHCl for 1 h at room temperature. Denatured luciferase stocks were 

stored at -80 °C until use. To white 96-well plates, was added denatured luciferase (final 

concentration of 100 nM), Hsc70 (final concentration of 1 µM), and various concentrations 

of DNAJA2 and/or BAG1 to give a final volume of 25 µL in refolding buffer (23 mM HEPES, 

120 mM KAc, 1.2 mM MgAc, 15 mM DTT, 61 mM creatine phosphate, 35 U/mL creatine 

kinase, 5 ng/µL BSA, pH 7.4). The reaction was initiated by adding 10 μL of 2.5 mM ATP to 

give a final concentration of 1 mM. Plates were covered and incubated at 37 °C for 1 h. 

Next, 25 μL of Steady-Glo reagent (Promega) was added to each well and luminescence 

values were measured immediately using a Molecular Devices Spectramax M5 plate reader 

(Sunnyvale, CA). 

 

3.5.6 Partial proteolysis  

Partial proteolysis experiments were performed using previously described procedures 

[22]. Samples of 6 µM Hsc70/mutant were prepared in a partial proteolysis buffer (40 mM 

HEPES, 20 mM NaCl, 8 mM MgCl2, 20 mM KCl, 0.3 mM EDTA, pH 8.0) with either 1 mM 

ATP or ADP. Samples were allowed to incubate at room temperature for 30 minutes. Next, 

Trypsin (EC 3.4.21.4, Sigma) was added at 1:4 (Trypsin:Hsc70/mutant) molar ratio, bringing 

the reaction volume to 50 µL. Proteolysis was carried out over a 40 minute time span. 

Reactions were quenched at 5, 10, 20, and 40 minute time intervals with 25 µL of SDS 

loading buffer (240 mM TRIS, 6% (w/v) SDS, 30% (v/v) glycerol, 16% (v/v) β-

mercaptoethanol, 0.6 mg/mL bromophenol blue, pH 6.8) and then heated at 95 °C for 3 

minutes. Samples were then subjected to SDS-PAGE using 10% Mini-PROTEAN TGX Precast 
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Gels (cat # =4561036, BioRad). Gels were run for ~40 minutes at 200V and then stained 

with Coomassie blue.  

 

Notes  

Experiments in this chapter were designed by Victoria A. Assimon and Jason E. Gestwicki. 

Zapporah T. Young conducted ATPase and refolding assays. All other experiments were 

conducted by Victoria A. Assimon.  
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3.6 Appendix  

3.6.1 Analysis of purified Hsc70 mutants by SDS-PAGE 
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3.6.2 Hsc70 mutants can engage with nucleotide   
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3.6.3 BAG proteins promote the release of nucleotide from Hsc70 mutants 
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3.6.4 J proteins stimulate ATP turnover in wt Hsc70 and mutants 
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3.6.5 Hsc70 mutants do not recognize substrate in a nucleotide-dependent manner  
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3.6.6 Hsc70 mutants are deficient in their J-mediated refolding of substrates  
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3.6.7 Hsc70 mutants are deficient in their NEF-mediated refolding of substrates 
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3.6.8 Partial proteolysis patterns of Hsc70 mutants 
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Chapter 4 

Discovery of antibiotics targeting Hsp70 

 

4.1 Abstract  

A rise in antibiotic resistance has created an urgent need for new drug targets. The 

prokaryotic heat shock protein 70 (Hsp70), DnaK, is a highly conserved molecular 

chaperone that limits protein aggregation and favors folding. Deletion of dnaK produces 

strains of Staphylococcus aureus that have diminished survival in host infection models, 

suggesting that this chaperone might be a new antibacterial target. However, until 

recently, few selective inhibitors of Hsp70/DnaK were known, so this hypothesis has been 

under explored. The Gestwicki laboratory has recently developed potent new Hsp70/DnaK 

inhibitors based on the rhodacyanine MKT-077. In chapter 3, I described how these 

compounds bind to an allosteric site in Hsc70 and I used mutagenesis to understand how 

they inhibit specific chaperone functions. That work suggested that MKT-077 analogs 

might have antibiotic activity. In this chapter, I first confirmed that this allosteric network 

is conserved in DnaK and then tested ~300 analogs of MKT-077 for activity against 

pathogenic Gram-positive and Gram-negative bacterial strains. I found that several MKT-

077 derivatives had promising activity against Gram-positive bacteria, with minimum 

inhibitory concentration (MIC) values ranging from 8 to < 0.125 µg/mL. These results 

validate Hsp70/DnaK as a possible new antibiotic target for Gram-positive infections. 
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Moreover, MKT-077 analogs appear to be useful chemical probes for studying the role of 

DnaK in bacterial pathogenesis.  

 

4.2 Introduction  

4.2.1 The prokaryotic Hsp70, DnaK, is a promising antibacterial target 

The prokaryotic Hsp70, DnaK, is essential for the survival of bacterial cells under various 

cellular pressures, such as extreme temperatures and oxidative stress. At times of cellular 

stress, many proteins are susceptible to unfolding or aggregation. A major function of DnaK 

is to bind to these misfolding clients and prevent them from aggregating [1-3]. Upon a 

return to normal conditions, DnaK is also active in the refolding of these proteins [4, 5]. 

Consistent with these functions, Escherichia coli and Staphylococcus aureus ΔdnaK strains 

have reduced viability at intermediate temperatures (30 °C) and are not able to grow under 

heat shock conditions (>42°C) [6-8]. Similarly, knockdown of DnaK in Streptococcus mutans 

results in cell growth defects at elevated temperatures [9]. In addition to thermal 

sensitivity, ΔdnaK strains have increased susceptibility to antibiotics. For example, E. coli 

dnaK or dnaJ null strains are more sensitive to fluoroquinolones [10, 11] and a ΔdnaK 

methicillin-resistant S. aureus (MRSA) strain has increased susceptibility to the cell wall 

active antibiotics oxacillin and methicillin [6]. Intracellular pathogens, such as Salmonella 

enterica and Listeria monocytogenes, also require DnaK for growth and proliferation in 

macrophages [12, 13]. Most importantly, deletion of dnaK produces strains of S. aureus 

and S. enterica that have diminished survival in host infection models [6, 12]. Taken 

together, this genetic data illustrates that DnaK is critical for the survival, pathogenicity, 
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and virulence of bacteria, suggesting that this chaperone might be a new antibacterial 

target.  

 

4.2.2 DnaK’s refolding activity is linked to its ability to promote survival in response to stress   

As discussed in the previous chapters, Hsp70/DnaK has many different activities, including 

ATP turnover, client refolding, and client binding. Which of these activities should be 

inhibited to create a potent antibiotic? Are they all required? In other words, what does an 

inhibitor need to block to be an antibiotic? Two previous members of the Gestwicki 

laboratory, Lyra Chang and Andrea Thompson, explored this question. Specifically, they 

created a library of point mutants in DnaK, which they introduced into ΔdnaK E. coli to 

understand which ones could complement the loss of function under heat shock 

conditions. They also measured the activities of the purified mutant proteins in common 

chaperone assays, such as ATP turnover and luciferase refolding. Interestingly, they found 

that the capacity of these mutants to refold luciferase was much more predicative of their 

in vivo activity than these mutants’ ATPase rates [14]. Specifically, mutants that are 

deficient in their ability to refold substrates fail to rescue ΔdnaK E. coli cells. Based on this 

finding, I hypothesized that compounds that inhibit DnaK’s refolding function might be the 

best situated to promote bacterial cell death. However, this question had not been 

addressed, largely because chemical inhibitors were not available. 

 

4.2.3 A chemical biology approach to exploring DnaK’s role in bacterial pathogenesis    
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 As discussed throughout this thesis, there has been interest in developing compounds that 

target Hsp70/DnaK [15-17]. Recent efforts from the Gestwicki laboratory and others have 

led to discovery of inhibitors that bind to different regions in the NBD and SBD [16-18] 

(Figure 4.1). Because these molecules bind to different regions of the chaperone, it is 

thought that they might have distinct effects on co-chaperone interactions, ATP turnover, 

and substrate refolding. However, the mechanisms of only a handful have been studied. 

Based on my work in chapter 3, I was particularly interested in using MKT-077 analogs to 

explore the role of DnaK in bacterial survival because I had found that the MKT-077 binding 

site controlled inter-domain interactions in Hsp70. Indeed, mutants that disrupted this 

inter-domain allostery had a dramatic effect on chaperone-mediated luciferase refolding 
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in vitro. Thus, of all of the available Hsp70 inhibitors, I wanted to focus on MKT-077 analogs 

as potential antibiotics. 

 

4.3 Results and discussion 

4.3.1 Human Hsc70 and E. coli DnaK have conserved allosteric networks that are 

modulated by MKT-077 analogs  

There is high sequence conservation between Hsc70 and DnaK, including in the allosteric 

site I described in chapter 3. However, Hsc70 and DnaK do not always have the same 

allosteric control mechanisms. For example, client binding stimulates the ATPase activity 

of DnaK, but not Hsp70. Thus, my first step in this project was to explore whether the MKT-

077 binding site and its associated allosteric networks were conserved in E. coli DnaK. 

Accordingly, I made mutations in the analogous residues of full length DnaK: Y145A, Y145K, 

D201A, T221A, and T225A (Appendix 4.6.1). Then, I tested each mutant in the same 

biochemical assays used to study Hsc70 mutants in chapter 3. The results are summarized 

in Figure 4.2 and the raw data can be found in Appendix 4.6.2-9. These results showed that 

these allosteric networks are conserved between the orthologs. For example, DnaKD201A 

behaved similarly to Hsc70D206A: it bound nucleotide, it was not stimulated by a J protein, 

and it was not able to refold luciferase. Like I found in the human system, mutations within 

the MKT-077 binding pocket have a minor effect on DnaK’s ability to bind, release, or 

turnover nucleotide (Figure 4.2 and Appendix 4.6.2-5). Instead, they impaired, and in some 

cases abolished, refolding activity (Appendix 4.6.6 and 4.6.7). These results suggest that 

the allosteric networks controlling inter-domain allostery are conserved. Moreover, these 
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results suggest that MKT-077 and its analogs might block the essential chaperone function 

of DnaK in pathogens.   

 

4.3.2 Screening MKT-077 analog library for antibacterial activity 

A focused library of 124 MKT-077 analogs was synthesized by a former postdoctoral 

scholar in the Gestwicki laboratory, Xiaokai Li. He designed these molecules to have 

improved metabolic stability (Figure 4.3C), which was a significant liability of the parent 

molecule. Each compound was screened using a 96-well plate OD600 turbidity platform at 
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a single concentration (16 μg/mL) in triplicate against six bacterial strains, including two 

Gram-negatives (E. coli and Haemophilus influenzae) and four Gram-positives (Bacillus 

anthracis, Bacillus cereus, Bacillus subtilis, and S. aureus) (Figure 4.3A). I defined the 
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negative control as the growth of each bacterial strain in the presence of 5% DMSO. The 

positive control was bacterial growth in the presence of 16 μg/mL tetracycline. Compounds 

that significantly decreased turbidity relative to DMSO were considered “active” (Figure 

4.3B and Appendix 4.6.10). Of the 124 molecules in the MKT-077 library, only 54 

compounds were sufficiently soluble in this screening format. From these soluble 

compounds, 31 were active against at least one of the six bacterial strains (Figure 4.4A).  

Additionally, 18 molecules were active against both Gram-negatives and Gram-positives 

(Figure 4.4B). Compounds that were active tended to have electron withdrawing groups 

on the benzothiazole and bulky aromatics appended to the pyridine (Figure 4.4C).  

 

4.3.3 MKT-077 analog, JG97, has antibacterial activity in liquid and solid media  

The 31 compounds that were active against at least one of the six bacterial strains were 

then subjected to confirmatory retesting to determine their minimum inhibitory 

concentration (MIC) values (Table 4.1). Interestingly, none of the compounds tested were 

active against E. coli (MIC > 16 μg/mL) upon retesting. Five compounds (JG43, JG70, JG73, 
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JG83, and JG97) had MIC values < 16 μg/mL against five of the six bacterial strains. The 

best of these compounds, JG83 and JG97, had MIC values between 4 and 16 μg/mL (Table 

4.1). JG97 has better solubility properties than JG83, so it was chosen for further study. 
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This compound was resynthesized and its activity was reconfirmed in the MIC assay. Next, 

I tested JG97 activity in solid agar and found that it dose-dependently inhibited the growth 

of all strains, except E. coli (Figure 4.5 and Appendix 4.6.11). Thus, this screening effort 

yielded JG97 as a particularly promising lead.  

 

4.3.4 Second generation JG97 analogs have potent antibacterial activity   

With this promising result, I wanted to explore the structure activity relationships (SAR) 

around compound JG97. Together, with Xiaokai Li, I assembled a collection of 197 analogs 
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of JG97. This library was designed with the intention of improving both compound 

solubility and potency. Specifically, we largely focused on functionalizing the thiazole group 

(ring 3) (Figure 4.6). Each library member was tested in the MIC assay against S. aureus. 

Only seven molecules (4% of the library) exhibited poor solubility in this assay, which was 

a substantial improvement on the primary screen. Of ~200 compounds tested, 13 had MIC 

values < 2 µg/mL and thus were chosen for further study. The structures of these 

compounds can be seen in Appendix 4.6.12. Next, I tested these compounds in liquid broth 

cultures and found that they all dose-dependently inhibited the growth of S. aureus 

(Appendix 4.6.13). Additionally, using this assay, I identified four compounds (JG220, 

JG296, JG319, and JG314) that dose-dependently increased the lag time of E. coli growth 

(Figure 4.7), a sign that they had some bioactivity in this model. These compounds were 

especially aliphatic, suggesting that physical properties might be used to enhance broad-

spectrum antibacterial activity in the future.  

 

Finally, I wanted to test the activity of our lead molecules against a wider panel of bacterial 

strains. In collaboration with the Sylvie Garneau-Tsodikova laboratory (University of 
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Kentucky), we determined the MICs of thirteen compounds against pathogenic bacterial 

strains, including clinical isolates of MRSA and vancomycin-resistant enteroccoci (VRE). At 

the same time, we tested JG-237, which is a structurally related negative control molecule 

that does not interact with Hsp70/DnaK (Appendix 4.6.12 and 4.6.14). As expected JG237 
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did not exhibit any antibacterial activity (MIC > 64 µg/mL). Additionally, with few 

exceptions, JG97 analogs were not active against the Gram-negative bacteria, such as S. 

enterica or Pseudomonas aeruginosa (MIC > 64 µg/mL). Instead, Gram-positive bacteria 

were much more susceptible to compound treatment. The activity against MRSA (MIC 

values ranging between ~0.125 and 1 µg/mL) and VRE (MIC values ranging between 0.25 

and 16 µg/mL) was particularly promising (Appendix 4.6.14). These MIC values are 

comparable to those of newly approved antibiotics linezolid (MIC = 0.25 – 1 µg/mL) and 

daptomycin (MIC = 0.064 – 1.5 1 µg/mL) against MRSA [19]. This finding is particularly 

important, because the increasing frequency of resistant pathogens, such as MRSA and 

VRE, is presenting a therapeutic problem due to limited drug options [20, 21].  Based on 

these results, MKT-077 analogs appear to be useful chemical probes for studying the role 

of Hsp70/DnaK in bacterial pathogenesis. Further, these compounds might serve as leads 

for the development of antibiotics with a new target and a new mechanism of action.   

 

4.4 Conclusions 

4.4.1 DnaK is an antibacterial drug target  

A wealth of genetic data strongly suggests that DnaK could be an antibacterial drug target. 

However, it was not clear what activity of DnaK should be inhibited to achieve the same 

result with a small molecule. Previous work from our group had suggested that inter-

domain allostery and luciferase refolding might be especially important to bacterial 

survival. This observation, combined with my work on MKT-077 in chapter 3, suggested 

that these molecules might be particularly attractive as antibiotics. In this chapter, I first 
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used mutagenesis to show that the MKT-077 binding site controls a conserved allosteric 

networks in both human and prokaryotic Hsc70/DnaK. I found that interruption of these 

networks impairs refolding of luciferase, suggesting that MKT-077 analogs might indeed 

be antibiotics. Next, I tested analogs of MKT-077 for activity against pathogenic Gram-

positive and Gram-negative strains. I found that several MKT-077 derivatives had 

promising activity against Gram-positive strains, including drug resistant pathogens, with 

MIC values ranging from 8 to < 0.125 µg/mL. These results validate DnaK as an antibacterial 

target. More specifically, these results clarify that the refolding activity of DnaK is a key 

function required for bacterial growth. 

 

We found that some of the most dangerous pathogenic strains, such as MRSA and VRE, 

were especially susceptible to MKT-077 analogs. This observation raises the interesting 

possibility that DnaK might be especially important in pathogens, which often express 

virulence factors. Existing in this heightened pathogenic state might create a stress on the 

bacteria that creates an “addiction” to DnaK, analogous to what has been observed in 

human cancers and Hsp70 (as discussed in chapter 1). Thus, one interesting future 

direction for this project is to use MKT-077 analogs as chemical probes to better 

understand the relationships between DnaK and virulence factors. 

 

4.5 Experimental procedures 

4.5.1 Plasmids 
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All proteins were expressed from a pMCSG7 vector that contained an N-terminal His-tag 

and TEV cleavage site. Site-directed mutagenesis for DnaK mutants (Y145A, Y145K, Y145W, 

D201A) was performed using the Phusion Site-Directed Mutagenesis Kit protocol (New 

England Biolabs, Ipswich, MA). 

 

4.5.2 Protein expression and purification  

Full length DnaK proteins were expressed, purified, and made apo (nucleotide free) using 

the same procedure as described for full length wt Hsp72 in chapter 2. E.coli GrpE was 

expressed in E. coli BL21 (DE3) cells. Liter cultures of terrific broth were grown at 25 °C 

until an OD600 of 0.6 was reached. Cultures were cooled to 18 °C before induction with 

IPTG (final concentration of 200 µM) and then grown overnight. Cells were lysed by 

sonication, pelleted by centrifugation, and the supernatant was applied to Ni-NTA His-Bind 

Resin (Novagen, Darmstadt, Germany). The resin was washed with His-binding buffer (50 

mM TRIS, 10 mM Imidazole, 500 mM NaCl, pH 8), followed by His-washing buffer (50 mM 

TRIS, 30 mM Imidazole, 300 mM NaCl, pH 8). The protein was then removed from the resin 

using His-elution buffer (50 mM TRIS, 300 mM Imidazole, 300 mM NaCl, pH 8). The N-

terminal His-tag was then removed using TEV protease. Next, the protein was dialyzed in 

His-binding buffer and the remaining cleaved His-tag was removed by a second Ni-NTA 

column. The purified protein was dialyzed into 25 mM HEPES, 5 mM MgCl2, 10 mM KCl, pH 

7.5 buffer before storage.  
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E.coli, DnaJ was expressed in E. coli BL21 (DE3) cells. Liter cultures of terrific broth were 

grown at 37°C until an OD600 of 0.6. Cultures were cooled to 18 °C before induction with 

IPTG (final concentration of 200 µM) and then grown overnight. Cell pellets were re-

suspended in DnaJ His-binding buffer (25 mM TRIS, 10 mM Imidazole, 500 mM NaCl, pH 8) 

supplemented with protease inhibitors. Cells were lysed by sonication, subjected to 

centrifugation, and the supernatant was then applied to Ni-NTA His-Bind Resin (Novagen, 

Darmstadt, Germany). The resin was washed with the DnaJ His-binding buffer, followed by 

an extensive wash with DnaJ His-washing buffer 1 (25 mM TRIS, 30 mM Imidazole, 500 mM 

NaCl, 3% ethanol, pH 8). The resin was washed a third time with DnaJ His-washing buffer 

2 (25 mM TRIS, 30 mM Imidazole, 100 mM NaCl, 3% ethanol, pH 8). Finally, the protein 

was then removed from the resin with the His-elution buffer (25 mM TRIS, 300 mM 

Imidazole, 300 mM NaCl, pH 8). The purified protein was concentrated and exchanged into 

a 25 mM HEPES, 5 mM MgCl2, 150 mM KCl pH 7.4 buffer for storage. Note that the N-

terminal His-tag was not removed. 

 

4.5.3 Fluorescence polarization assays 

All experiments were performed in 384-well, black, low volume, round-bottom plates 

(catalog number = 4511, Corning, NY). Polarization values in millipolarization units (mP) 

were measured at an excitation wavelength at 485 nm and an emission wavelength at 

530 nm using a Molecular Devices Spectramax M5 plate reader (Sunnyvale, CA). For 

binding experiments, equilibrium-binding isotherms were constructed by plotting FP 

readings as a function of the protein concentration at a fixed concentration of a tracer. All 
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experiments were performed at least twice in triplicate. Results are shown as the average 

and SEM. All experimental data were analyzed using GraphPad Prism 6 software. The 

binding of DnaK proteins to the fluorescent ATP analog (Fam-ATP) and the fluorescent 

substrate peptide (Fam-HLA) was performed using the procedures described for wt Hsp72 

in chapter 2. Additionally, we also determined the ability of GrpE to promote the release 

of the Fam-ATP probe from DnaK proteins. First, an apo DnaK protein was added to each 

well. The concentration of protein added equals the concentration of DnaK at which 50% 

of the FP probe (Fam-ATP) is bound based on binding experiments. Next, a 2-fold dilution 

series of GrpE made using the assay buffer (100 mM TRIS, 20 mM KCl, 6 mM MgCl2, 0.001% 

Triton X-100, pH 7.4), was added. Final concentrations of GrpE ranged from 0 to 15 µM. 

Finally, Fam-ATP was added to each well, to give a final concentration of 20 nM and a total 

assay volume of 20 µL. The plate was covered from light and allowed to incubate at room 

temperature for 30 minutes in order to reach equilibrium.  

 

4.5.4 ATPase assays 

These experiments were performed using previously described methods with minor 

modifications [14, 22]. Stocks of malachite green (0.081% w/v), polyvinyl alcohol (2.3% 

w/v), and ammonium heptamolybdate tetrahydrate (5.7% w/v in 6 M HCl) were prepared 

and mixed with water in a 2:1:1:2 ratio to make the malachite green reagent. All 

experiments were performed in 96-well, clear plates. Intrinsic ATPase rates of DnaK 

proteins were determined in the absence of co-chaperones. A 2-fold dilution series of 

Hsc70 was added to wells and final concentrations ranged from 0 to 7 µM. For co-
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chaperone stimulation assays, DnaK (final concentration of 1 µM) and various 

concentrations of DnaJ and/or GrpE was added to the wells. Next, ATP (final concentration 

of 1 mM) was added to each well, bringing the reaction volume to 25 µL. Reactions were 

incubated for 1 h at 37 °C, developed with the addition of 80 µL malachite green reagent, 

and then immediately quenched with 10 µL of 32% (w/v) sodium citrate. Assays were 

incubated at 37 °C for 15 minutes and then measured at OD620 using a Molecular Devices 

Spectramax M5 plate reader (Sunnyvale, CA). Additionally, background signal from non-

specific ATP hydrolysis in controls was subtracted. Phosphate standard curve of potassium 

dibasic phosphate was used to calculate pmol Pi/chaperone µg/min. Stimulation curves 

were fit to a modified Michaelis Menten equation (y = VmaxX/(Km+x)+b). All experiments 

were performed at least twice in triplicate. All experimental data were analyzed using 

GraphPad Prism 6 software. 

 

4.5.5 Luciferase refolding assays  

Experiments were performed as described previously [23]. Briefly, working stocks of 

denatured luciferase were prepared by mixing 10 µL of 203 µM native luciferase (Promega) 

with 30 µL of 8 M GnHCl for 1 h at room temperature. Denatured luciferase stocks were 

stored at -80 °C until use. To white 96-well plates, was added denatured luciferase (final 

concentration of 100 nM), DnaK (final concentration of 1 µM), and various concentrations 

of DnaJ and/or GrpE to give a final volume of 25 µL in refolding buffer (23 mM HEPES, 120 

mM KAc, 1.2 mM MgAc, 15 mM DTT, 61 mM creatine phosphate, 35 U/mL creatine kinase, 

5 ng/µL BSA, pH 7.4). The reaction was initiated by adding 10 uL of 2.5 mM ATP to give a 
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final concentration of 1 mM. Plates were covered and incubated at 37 °C for 1 h. Next, 25 

uL of Steady-Glo reagent (Promega) was added to each well and luminescence values were 

measured immediately using a Molecular Devices Spectramax M5 plate reader (Sunnyvale, 

CA). 

 

4.5.6 Partial proteolysis  

Partial proteolysis experiments were performed using previously described procedures 

[14]. Samples of 6 µM DnaK were prepared in a partial proteolysis buffer (40 mM HEPES, 

20 mM NaCl, 8 mM MgCl2, 20 mM KCl, 0.3 mM EDTA, pH 8.0) with either 1 mM ATP or 

ADP. Samples were allowed to incubate at room temperature for 30 minutes. Next, Trypsin 

(EC 3.4.21.4, Sigma) was added at 1:4 (Trypsin:Hsc70) molar ratio, bringing the reaction 

volume to 50 µL. Proteolysis was carried out over a 40 minute time span. Reactions were 

quenched at 5, 10, 20, and 40 minute time intervals with 25 µL of SDS loading buffer (240 

mM TRIS, 6% (w/v) SDS, 30% (v/v) glycerol, 16% (v/v) β-mercaptoethanol, 0.6 mg/mL 

bromophenol blue, pH 6.8) and then heated at 95 °C for 3 minutes. Samples were then 

subjected to SDS-PAGE using 10% Mini-PROTEAN TGX Precast Gels (cat # =4561036, 

BioRad). Gels were run for ~40 minutes at 200V and then stained with Coomassie blue.  

 

4.5.7 Growth and maintenance of laboratory bacterial strains   

The following bacterial strains were used in the primary screen: Bacillus anthracis 34F2 

Sterne, Bacillus cereus ATCC 11778, Bacillus subtilis 168, Escherichia coli K-12 (MG1655), 

Haemophilus influenzae ATCC 51907, and Staphylococcus aureus RN4220. H. influenzae 
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was grown in Brain Heart Infusion (BHI) media supplemented with hemin and β-

nicotinamide adenine dinucleotide hydrate [24]. Broth cultures of H. influenzae were 

prepared by scraping bacteria from agar plates and suspending into fresh supplemented 

BHI medium to the desired OD600. B. anthracis 34F2 Sterne, B. cereus ATCC 11778, B. 

subtilis 168, and E.coli K-12 (MG1655) were grown in Luria–Bertani (LB) medium. Inoculum 

for liquid culture assays was prepared by diluting an overnight LB broth culture, grown at 

37 °C with shaking (200 rpm), into fresh liquid medium to the desired OD600. All other 

bacterial strains were maintained by the Sylvie Garneau-Tsodikova laboratory according to 

procedures defined by the Clinical & Laboratory Standards Institute [25].  

 

4.5.8 Antibacterial screening assay  

Bacterial inoculum of each strain was prepared to an OD600 of 0.1 as described above. Next, 

100 μL of each dilute culture was added in triplicate to a sterile non-treated CytoOne 96-

well clear bottom plate. To each well, was added 5 μL of either compound in DMSO or 

DMSO alone. The final concentration of compound was 16 μg/mL and the concentration 

of DMSO was 5%. The plates were covered and incubated at 37 °C with shaking (200 rpm) 

for 6 hours. Afterwards, bacterial growth was recorded by measuring OD600 using a 

SpectraMax M5 plate reader. 

 

4.5.9 Minimum inhibitory concentration assay 

MIC experiments were performed using the double dilution method. Briefly, inoculum of 

B. anthracis 34F2 Sterne, B. cereus ATCC 11778, B. subtilis 168, E. coli K-12 (MG1655), H. 
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influenzae ATCC 51907 or S. aureus RN4220 was prepared to an OD600 of 0.1 as described 

above and 200 μL of each dilute culture was added to a sterile non-treated CytoOne 96-

well clear bottom plate. To the plated dilute cultures, was added 10 μL of compound from 

a 2-fold dilution series. The final concentrations of the compounds were in the range of 16 

to 0.25 μg/mL. Plates were covered and incubated at 37 °C with shaking (200 rpm) for 24 

hours before MIC values were determined. These experiments were performed at least 

twice in triplicate. For all other bacterial strains, MIC experiments were performed by the 

Sylvie Garneau-Tsodikova laboratory according to procedures defined by the Clinical & 

Laboratory Standards Institute[25].  

 

4.5.10 Bacterial growth assay in liquid culture 

Bacterial cultures were prepared to an OD600 of 0.1 as described above and 200 μL of each 

dilute culture was added to the wells of sterile non-treated CytoOne 96-well clear bottom 

plates. Compounds (10 μL) from a 2-fold dilution series were then added to a final 

concentration between 32 and 1 μg/mL. Plates were covered and incubated at 37 °C with 

shaking (200 rpm). Bacterial growth was recorded every ~30 minutes by measuring OD600 

using a SpectraMax M5 plate reader.  

 

4.5.11 Spot titer assays  

Bacterial cultures were prepared to an OD600 of 0.5 as described above. These cultures 

were then serially diluted 10-fold in sterile phosphate buffered saline and spotted (1 μL) 
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on pre-warmed LB agar plates containing various concentrations of JG97. Finally, colonies 

were counted after incubation for 24 hours at 37 °C. 

 

Notes  

Experiments in this chapter were designed by Victoria A. Assimon and Jason E. Gestwicki. 

Isabelle R. Taylor performed ATPase and refolding assays. Daniel Nguyen assisted with the 

primary antibacterial screen. Xiaokai Li synthesized all MKT-077 analogs. MIC experiments 

against pathogenic bacterial strains were performed in collaboration with the Sylvie 

Garneau-Tsodikova laboratory (University of Kentucky). All other experiments were 

performed by Victoria A. Assimon.  
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4.6 Appendix  

4.6.1 Analysis of purified DnaK mutants by SDS-PAGE. 
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4.6.2 DnaK mutants can engage with nucleotide 
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4.6.3 GrpE promotes the release of nucleotide from DnaK mutants  
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4.6.4 The ATPase activity of DnaK mutants 
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4.6.5 Co-chaperones mediate the stimulation of ATP turnover in wt DnaK and mutants 
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4.6.6 DnaK mutants are deficient in their DnaJ-mediated refolding of substrates  
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4.6.7 DnaK mutants are deficient in their GrpE-mediated refolding of substrates  
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4.6.8 DnaK mutants do not bind substrate in a nucleotide-dependent manner 
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4.6.9 Partial proteolysis pattern of DnaK mutants 
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4.6.10 Bacterial growth inhibition screens 
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4.6.11 JG97 inhibits the growth of bacteria on solid media 
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4.6.12 The structures of JG97 analogs with potent antibacterial activity  
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4.6.13 JG97 analogs exhibit a dose-dependent inhibition of S. aureus growth  
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4.6.14 Minimum inhibitory concentrations of JG97 analogs against pathogenic bacteria    
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Chapter 5 

Conclusions and future directions: Progress towards understanding how to modulate the 

Hsp70 chaperone system  

 

5.1 Abstract  

The Hsp70 system is a model for the next generation of difficult drug targets. It is 

composed of multiple protein components and it conducts many different biochemical and 

cellular activities, making it challenging to understand the best way of turning this 

chaperone system “on” or “off” with small molecules. Throughout this thesis, I developed 

an approach to this problem that involved comprehensive measurement of Hsp70’s 

functions, such as ATPase rate, substrate binding, and co-chaperone interactions. Indeed, 

this systematic probing has enriched our understanding of allostery and protein-protein 

interactions (PPIs) within the Hsp70 system and revealed ways of interrupting function. 

Additionally, this work has been particularly important in connecting Hsp70’s in vitro 

biochemical activities to its cellular chaperone functions. Together, these findings have led 

to new insights on how to safely target Hsp70. In this chapter, I discuss some of the 

remaining challenges associated with targeting Hsp70 and I speculate about how new 

approaches can be employed to modulate this chaperone. In addition, I also discuss how 

my thesis work might be leveraged in order to develop even more informative in vitro 
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screening strategies. These concepts might have broader relevance to other multi-protein 

complexes.  

 

5.2 Conclusions 

Hsp70 is a central triage chaperone that binds to protein substrates to assist with their 

folding, degradation, transport, and solubility [1-6]. Therefore, Hsp70 is considered to be 

an essential regulator of protein homeostasis and its dysregulation is thought to be 

associated with diseases of protein misfolding. By understanding how Hsp70 makes these 

triage “decisions,” previous and current members of the Gestwicki laboratory have made 

progress towards learning how to best leverage Hsp70 as a therapeutic drug target. The 

major goal of my thesis was to gain a better understanding of what factors within the 

Hsp70 system direct this chaperone’s cellular functions and how such factors could be 

chemically modulated (Figure 5.1).  

 

When I joined the Gestwicki laboratory in 2010, Lyra Chang and Yoshi Miyata had 

performed the first high-throughput screen (HTS) against the ATPase activity of Hsp70/co-

chaperone complexes [7, 8]. These screens led to the identification of new chemical tools, 

which the laboratory has used to probe different aspects of Hsp70’s biology. However, 

many important co-chaperones, such as TPR proteins, do not alter Hsp70’s ATPase activity 

(V. A. Assimon and J. E. Gestwicki unpublished results). Thus, an alternative approach was 

needed to study these Hsp70 complexes.  Based on this finding, I was interested in 

developing a new assay that would permit the discovery of compounds that modulate the 
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physical interaction between Hsp70 and a TPR co-chaperone. Thus, in chapter 2, I 

developed a fluorescence polarization (FP) platform that allowed me to characterize the 

how various TPR co-chaperones (CHIP, Hop, DNAJC7, FKBP51, and FKBP52) bind the C-

termini of cytosolic human Hsp70s and Hsp90s in vitro. Using this FP platform, I found that 

TPR co-chaperones do not display a clear hierarchy of affinity constants for chaperones. 

Instead, with a few exceptions (i.e. FKBP51/52 binding exclusively to Hsp90s), I found 

limited differences between the observed affinity constants of various Hsp70/90-TPR 

complexes. Based on these findings, I concluded that it would be very challenging to 

directly interfere with a specific Hsp70-TPR co-chaperone complex using small molecules 

(e.g. orthosteric inhibitors) without inhibiting all of them. Instead, a HTS using this platform 

would likely lead to the discovery of pan-specific TPR inhibitors. This work, and evidence 

from PPI inhibitor discovery programs [9-11], suggests that compounds that are able to 

bind to allosteric sites might be the best option to target the Hsp70 system in a specific 

manner.  
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Next, my focus shifted to understanding how to identify and tune allosteric networks 

within the Hsp70 system in order to manipulate this chaperone’s various functions in a 

specific manner. As discussed above, the Gestwicki laboratory has performed multiple 

unbiased chemical screens to identify inhibitors of Hsp70 complexes, leading to the 

identification of many molecules that appear to act at allosteric sites [7, 8, 12, 13]. 

Additionally, Yoshi Miyata and Xiaokai Li have validated and optimized compounds that are 

based on the rhodacyanine dye MKT-077, which are known to interact with an allosteric 

site on Hsp70 [14-16]. I became particular interested in this class of molecules because in 

multiple models of neurodegeneration, such as Spinal-Bulbar Muscular Atrophy (SBMA), 

MKT-077 and its analogs have been shown to bind selectively to an allosteric pocket on 

Hsp70 and relieve disease phenotypes [15]. However, the molecular mechanism by which 

these molecules modulate Hsp70’s functions had not been fully elucidated. In part, this 

was because the fluorescent properties of MKT-077 analogs precluded their use in most 

biochemical assays. To circumvent this problem, I performed point mutagenesis on MKT-

077’s binding pocket and studied the effects of these mutations using a host of in vitro 

chaperone assays. Mutations within the MKT-077 binding pocket tended to have little 

effect on Hsp70’s ability to bind, release, and turnover nucleotide. These results suggest 

that the MKT-077 binding site is not directly linked to the nucleotide-binding cleft. I found 

that mutations within the MKT-077 binding pocket of Hsp70 dysregulate key allosteric 

networks, which ultimately leads to the trapping of Hsp70 in an ADP-like conformation 

where it can no longer refold substrates. Thus, in chapter 3, I described how MKT-077 
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analogs bind to a conserved allosteric site in Hsp70/DnaK and used mutagenesis to 

understand how they inhibit specific chaperone functions. 

 

My findings from chapter 3 provided new strategies for how to tune Hsp70’s functions 

(Figure 5.1). I next wanted to see if these strategies could be employed to treat bacterial 

infections. A wealth of genetic data strongly suggests that Hsp70/DnaK could be an 

antibacterial drug target. I became particularly interested in using MKT-077 analogs to 

explore the role of Hsp70/DnaK in bacterial survival. In addition to my work, this interest 

was based on previous studies from Lyra Chang and Andrea Thompson. They illustrated 

that Hsp70/DnaK mutants that are deficient in their ability to refold substrates fail to 

rescue ΔdnaK E. coli cells [17]. Thus, it seemed likely that compounds that inhibited 

Hsp70/DnaK’s refolding function, such as MKT-077 analogs, would promote bacterial cell 

death. I tested ~300 analogs of MKT-077 for activity against pathogenic Gram-positive and 

Gram-negative strains. I found that several MKT-077 derivatives had promising activity 

against Gram-positive strains, including the drug resistant pathogens MRSA and VRE, with 

MIC values ranging from 8 to < 0.125 µg/mL. Thus, my results in chapter 4 validated 

Hsp70/DnaK as an antibacterial target and further illustrated that the refolding activity of 

Hsp70/DnaK is a key function required for bacterial growth. 

 

5.3 Future directions  

5.3.1 The prospectus of MKT-077 analogs for therapeutic development 



 

160 
 

As discussed throughout this these thesis, Hsp70 is a potential drug target for many 

diseases. However, it is not clear how to safely achieve this goal. It also is not clear if the 

same Hsp70 inhibitor would be safe and effective in all disease settings. In chapter 4, I used 

MKT-077 analogs to confirm Hsp70/DnaK as an antibacterial drug target. While this was an 

important first step, more work needs to be done to validate these compounds as potential 

leads for therapeutic development. One major concern is the high sequence conservation 

between different orthologs of Hsp70. For example, the E. coli Hsp70 (DnaK) and the 

constitutively expressed human Hsp70 (Hsc70/HSPA8) are ~46% identical to each other at 

the amino acid level. Moreover, nearly every residue involved in the binding of MKT-077 

analogs to these proteins is conserved. Thus, it unclear if MKT-077 analogs could be used 

to treat bacterial infections in humans without deleterious side-effects. A postdoctoral 

scholar in the Gestwicki laboratory, Hao Shao, has collected initial safety data for our most 

potent MKT-077 analogs. Initial results of solubility, metabolic stability, and toxicity studies 

have focused our attention on the MKT-077 analog JG199 (Appendix 4.6.12). JG199 has 

MIC values of 0.125 µg/mL (210 nM) against MRSA, a relatively long lifetime in liver 

microsomes (t1/2 > 60 min), and minimal toxicity in human fibroblasts (EC50 ~ 2.3 µM in MTT 

viability assays). Maximum tolerated dose and pharmacokinetics studies on JG199 and 

other promising MKT-077 analogs in adult CD1 mice are ongoing. Regardless of the results 

of these experiments, I anticipate that MKT-077 analogs will be, at the very least, useful 

chemical probes for studying the role of DnaK in bacterial pathogenesis. 
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5.3.2 The substrate binding domain has the potential to be leveraged for specific inhibition 

of bacterial DnaK 

In addition to MKT-077 molecules, numerous other scaffolds have been used to 

pharmacologically manipulate Hsp70 functions (Figure 4.1). These molecules have 

different binding sites and are likely to have different mechanisms. It is unclear whether 

some of these compounds might be safer than others in normal human cells. Because 

Hsp70 is a core mediator of protein homeostasis, one major concern is how the global 

proteome will respond to inhibitors of this chaperone. Inhibitors of other “housekeeping” 

factors in the proteostasis network, such as the proteasome and Hsp90, have had clinical 

success [18, 19], suggesting that at least some of the inhibitors of Hsp70 might also be 

tolerated. However, an even safer approach towards antibacterials might be to create 

molecules that target locations on Hsp70 homologs (i.e. DnaK vs. human Hsp70) that are 

not well conserved. Recent computational studies have identified hot spot residues in the 

substrate binding domain (SBD) that might fit this criteria [20]. In order to properly exploit 

these differences, it will be necessary to understand these how hot spot residues regulate 

the structure and function of the Hsp70 system. A protein engineering strategy, such as 

the one I employed in chapter 3, might be a powerful way to elucidate the roles of these 

residues. Specifically, each hot spot residue should be mutated and effects of these 

mutations should be evaluated using in vitro chaperone assays. This strategy, in 

combination with site-directed ligand discovery methodology [21], could result in the 

discovery of chemical modulators that are specific to bacterial DnaK. Such molecules could 

be exciting new antibiotic candidates.  
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5.3.4 Developing new screening strategies for Hsp70 

My thesis work suggests new strategies for high-throughput screening of Hsp70. Previous 

screening efforts have focused on the discovery of molecules that inhibit Hsp70’s ATPase 

activity, but my work suggests that other biochemical measures might be more 

appropriate. For example, my work in chapter 3 suggests that substrate binding might be 

an even better surrogate of important chaperone functions. As discussed previously, ATP 

binding in the NBD triggers conformational changes that weaken the SBD’s affinity for 

client peptides. My studies suggest that preventing Hsp70 from binding to its substrates in 

a nucleotide-dependent manner would result is bacterial cell death (chapter 4).  In chapter 

3, I used a FP platform to monitor the binding of a fluorescently labeled substrate to Hsp70. 

This platform seems ideally suited for the discovery of inhibitors. The assay could even be 

optimized to allow for the discovery of molecules that enhance Hsp70’s ability to bind 

substrate in the presence of high concentrations of ATP (Figure 5.2A). This particular 

screening strategy would be expected to select for molecules that dysregulate Hsp70’s 

inter-domain allostery, perhaps increasing the likelihood of discovering Hsp70 modulators 

with antibacterial activity. Alternatively, a Förster resonance energy transfer (FRET) assay 

could be developed. Previously, FRET pairs have been used to detect structural changes in 

E. coli DnaK under different nucleotide states [22]. I would design a FRET pair between the 

lid and the SBD of DnaK and screen for molecules that stabilize ADP-like (lid-closed) 

conformation under high concentrations of ATP (Figure 5.2B). Together, these new 
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screening strategies have the potential to uncover new Hsp70 modulators with greater 

mechanistic specificity.  

 

5.4 Broader implications 

The Hsp70 system is only one of many multi-protein systems that control important 

biology. Despite the prevalence of multi-protein complexes, very few inhibitors specifically 

target them. In this thesis, I have used the Hsp70 system as a model for tackling such 

problems. As expected, I found that multi-protein complexes are much more complex than 

individual targets. For example, inhibition of a kinase is relatively straightforward (at least 

in concept): one develops a molecule that competes for binding to the natural enzyme 

substrate. However, in multi-protein complexes the possible scenarios for inhibition is 
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much larger. For example, in the Hsp70 system, a small molecule might change enzyme 

turnover, but it might also impact allostery and/or PPIs. In part, my thesis work provides a 

possible template on for how this complexity might be categorized and systematically 

addressed. I found that a comprehensive strategy was needed, in which many biochemical 

assays were assessed in parallel before conclusions could be drawn. In addition, I found 

that a combination of small molecules and point mutants could be used to help clarify 

mechanisms. The small molecules were helpful because they can be used in both in vitro 

and cellular experimental platforms. Point mutants were helpful because they have high 

selectivity in cellular systems. I hope that these studies are helpful to others in thinking 

about their programs. 

 

5.5 Final thoughts 

In this chapter, I have briefly summarized my progress towards understanding allostery 

and PPIs in the Hsp70 system and outlined possible ways to target this chaperone in a safe 

manner. In this effort, I used both mutagenesis and small molecules to probe Hsp70 

biology. This approach required me to, at times, assume the role of a synthetic chemist, 

generating new organic molecules (see thesis appendix). I also took on the role of a protein 

biochemist, understanding the interactions between components of the chaperone sub-

network in vitro (chapters 2 and 3). Finally, I had to incorporate the tools of the drug 

discovery scientist, using chemical probes to validate a drug target and understand its 

mechanism of action (chapter 4). I am proud of the integration of these skills, which was 

critical to the success of my doctoral studies. I strongly believe that an interdisciplinary 
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approach to science, integrating synthetic chemistry and molecular biology, will aid in the 

discovery of the mechanisms of disease and permit innovative ways to treat or cure 

disease.  
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Appendix 

Concise synthesis of spergualin-inspired molecules with antibiotic activity 

 

A.1 Abstract  

The molecular chaperone Hsp70 is an essential regulator of cellular protein quality control. 

For example, Hsp70 has roles in primary folding, the stabilization of proteins under stress 

conditions, and the clearance of misfolded proteins. As discussed in chapters 1 and 2, it is 

thought that complexes formed between Hsp70 and TPR co-chaperones direct Hsp70’s 

various activities during protein quality control. However, the molecular mechanisms that 

influence which TPR co-chaperone will bind with Hsp70 remain uncharacterized. This is an 

important question because the “choice” of bound TPR co-chaperone is thought to be 

critical in regulating cellular quality control decisions.  

 

My original goal was to understand how the combinatorial assembly of TPR co-chaperones 

with Hsp70 drives protein quality control decisions. It has been suggested that a derivative 

of the natural product spergualin may bind to the C-terminal EEVD motif of Hsp70 [1]. As 

discussed in chapter 2, the C-terminal EEVD motif of Hsp70/90 is the major binding epitope 

for TPR co-chaperones. Based on these observations, I postulated that spergualin analogs 

could serve as useful chemical tools for tuning the formation of Hsp70 complexes with TPR 



169 

 

co-chaperones. Using the Ugi multicomponent reaction, I assembled spergualin-inspired 

molecules in a single step, dramatically improving the overall yield in comparison to 

previous synthetic schemes. Using this strategy, I generated 43 new analogs. Preliminary 

data suggested that these molecules did indeed block interactions between TPR co-

chaperones and Hsp70. However, the binding of TPR co-chaperones to Hsp70 is dominated 

by electrostatic interactions between conserved lysine residues of TPR domains and the C-

terminal EEVD motif of Hsp70/90. Due to the conserved and concise nature (small surface 

area) of Hsp70-TPR co-chaperone binding interfaces (Chapter 2), I was not able to 

engender selectivity from these molecules. Thus, these molecules where pan-specific and 

not useful tools for tuning the formation of specific Hsp70-TPR co-chaperone complexes.  

 

Despite this result, I was able to repurpose these compounds. The natural product 

spergualin was previously shown to have promising antibacterial activity. But, its 

challenging synthesis had limited further exploration. I tested my small library of 

spergualin-inspired molecules for antibacterial activity against two Gram-negative and four 

Gram-positive bacterial strains. I found that the most potent analog, compound 6, had MIC 

values between 4 and 32 μg/mL against the six strains. This study serendipitously provided 

a concise route to a broad-spectrum antibiotic with a novel chemical scaffold. 

 

A.2 The natural product spergualin has antibacterial activity and is difficult to synthesize 

Spergualin was first isolated from culture broths of Bacillus laterosprus in 1981 and was 
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shown to have broad-spectrum antibacterial activity. This compound has a modular 

structure consisting of a guanidino 

group and a spermidine-like 

polyamine linked through a peptoid 

(Figure A.1) [2].  Spergualin is 

structurally distinct from other 

antibiotics used in the clinic, which 

prompted my interest in revisiting 

this privileged scaffold [3-5].  

Moreover, there has been limited 

exploration of this molecule since 

the 1990s [6]. One of the major 

reasons is that the synthesis of 

spergualin is protracted. Typical 

routes produce spergualin and its analogs in low yield (0.3 to 18%) over at least 10 steps 

[7, 8]. Additionally, spergualin has poor stability. It hydrolyzes in aqueous buffers and 

consequently has a short lifetime in vivo [9]. 

 

A.3 The Ugi multicomponent reaction is an efficient way to assemble spergualin analogs  

The Gestwicki laboratory recently reported an improved synthetic approach that features 

the Ugi multicomponent reaction [10]. This route increased the overall yield of spergualin 
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derivatives, reduced the number of synthetic transformations (by 4 or 5 steps), and 

expanded the scope of accessible analogs. The stability issue has previously been 

overcome through removing the hydroxyl at position 15, to produce 15-deoxyspergualin 

(15-DSG) and installing a bulky group at position 11 (Figure A.1) [7, 8, 10]. While these initial 

efforts were informative, I hoped to support the creation of a greater number of analogs 

by further reducing the number of synthetic transformations.  

 

A.4 Results 

A.4.1 Synthesis of spergualin-inspired library using the Ugi multicomponent reaction 

The overall yields of spergualin analogs were not optimized, with the major losses coming 

during purification and workup setups. I envisioned a route to spergualin-like analogs that 

might improve access through the use of the Ugi multicomponent reaction (Table A.1). 

Early studies showed that benzyl protection of the amine at position 12 dramatically 

improved the ease of purification without negatively impacting biological activity (data not 

shown).  Thus, I designed the library to include this feature. Specifically, the Ugi reaction 

proceeded through the condensation of benzylamine with a variety of isocyanides, 

carboxylic acids, and aldehydes to probe the requirements in the guanidine (R–), 11 

position aromatic (R1–) and polyamine (R2–) regions (Table A.1). Most of the components 

were commercially available or accessible in a single step.  
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The individual components were combinatorially assembled to generate a library of 43 

molecules (Table A.1). Briefly, benzylamine (1 equivalent) and an aldehyde (1 equivalent) 

were mixed in methanol at room temperature until imine formation was detected by thin 

layer chromatography (~30 minutes). The reaction was then purified by column 

chromatography on silica gel using a hexane and ethyl acetate gradient, resulting in 

compounds 1 and 13–43. Compounds 2–12, which were derived from tert-butyl (4-

isocyanobutyl) carbamate [11], were first subjected to a boc deprotection prior to 

purification by column chromatography on basic alumina oxide using an ethyl acetate 

gradient and methanol gradient. The final purified yields ranged from 20 to 96% (see 

Appendix A.7.5 and A.7.6 for synthesis and characterization), representing a dramatic 

increase in overall yield compared to previous reports. 

  

A.4.2 Screening spergualin analog library for antibacterial activity 

To explore the antibacterial activity of these compounds, I tested them for the ability to 

suppress bacterial growth using a 96-well OD600 turbidity platform. Each library member 

was initially screened at a single concentration (200 μM) in triplicate against six bacterial 

strains, including two Gram-negatives (Escherichia coli and Haemophilus influenzae) and 

four Gram-positives (Bacillus anthracis, Bacillus cereus, Bacillus subtilis, and 

Staphylococcus aureus) (Figure A.2A). I defined the negative control as the growth of each 

bacterial strain in the presence of 5% DMSO. The positive control was bacterial growth in 

the presence of 200 μM ampicillin. Compounds that decreased turbidity relative to DMSO 
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were considered “active” (Figure A.2B and Appendix A.7.1). I found that 21 molecules were 

active against at least one of the six bacterial strains. B. anthracis was the most susceptible, 

while only two compounds were active against E. coli (Figure A.2C and A.2D). 

 

A.4.3 Compound 6 has potent broad-spectrum antibacterial activity  

The ten molecules with activity against both Gram-negatives and Gram-positives (Figure 

A.2D) were then subject to confirmatory retesting to determine their minimum inhibitory 

concentration (MIC) values. Only two compounds (6 and 12) had MIC values < 256 μg/mL 

against all six bacterial strains (Figure A.3A and A.3B). The best of these, compound 6, had 

MIC values between 4 and 32 μg/mL. These MIC values are even better than those of 
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spergualin (MIC values between 6.25 and 50 μg/mL), so compound 6 was chosen for 

further study (Figure A.3C). This compound was first resynthesized and its activity 

confirmed in the MIC assay. Next, I tested compound 6 in liquid broth cultures (Figure A.3D) 

and found that it also dose-dependently inhibited bacterial growth of all six strains in that 

platform (Appendix A.7.2). In control experiments, we confirmed that none of the synthetic 

precursors to compound 6 (i.e. benzylamine, 3-mercaptopropionic acid, 4-

bromobenzaldehyde or spermidine, an alkyl polyamine) were active (Appendix A.7.3), 

suggesting that the functionalized peptoid is the relevant pharmacophore. 

 

A.4.4 The peptoid region of compound 6 appears to be the pharmacophore  

To explore the potential structure activity relationships (SAR) around compound 6, I 

purchased structurally similar molecules (compounds 6a–d) (Appendix A.7.7) and tested 

their activity against the six strains. None of these analogs were significantly active (MIC 

>128 μg/mL) (Appendix A.7.7). However, this information in combination with the previous 

results, helped to refine my understanding of compound 6’s pharmacophore. Specifically, 

the minimal pharmacophore appears to be the peptoid region with pendant aromatic 

groups at the C11 and N12 positions (Figure A.1). Short, flexible alkyl chains terminated 

with electron rich groups, such as thiols and amines, were preferred at either end. Future 

work should explore the SAR in more detail. For example, it would be interesting to 

specifically explore the effects of stereochemistry at position 11 on potency, as all the 

molecules reported here are racemic mixtures. Previous work suggested that the 
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stereochemistry at this position has modest effects on anti-tumor activity [12], but this 

issue needs to be resolved for antibacterial activity. 

 

A.4.5 Compound 6 has a bactericidal mode-of-action  

Finally, I wanted to explore whether compound 6 was bactericidal or bacteriostatic. S. 

aureus cultures were treated for 24 hours at the MIC value (8 μg/mL) or 2x the MIC value 

(16 μg/mL) and the resulting samples were plated on solid agar to count colony forming 

units (CFUs). At both concentrations, compound 6 was clearly bactericidal (>3 log10 

decrease in CFUs) (Figure A.4). Taken together, these results suggest that compound 6 is a 

promising scaffold for further development.  

 

A.5 Discussion 

A.5.1 The concise assembly of compound 6 could prompt the discovery of antibacterials 
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The natural product spergualin has promising antibacterial activity, but its cumbersome 

synthesis and limited stability have hindered its use. Using a synthetic route that features 

the Ugi multicomponent reaction, I generated a small library of synthetically tractable 

analogs and tested them for antibacterial activity. The results showed that short and 

flexible alkyl chains terminated with electron rich groups at either end of the peptoid 

pharmacophore were necessary for activity. Most notably, I found that compound 6 had 

particularly promising broad-spectrum antibacterial activity. The concise and convergent 

assembly of compound 6 is expected to accelerate discovery of new antibacterial 

molecules. 

 

A.5.2 Compound 6 warrants further exploration 

The mechanism of action (MoA) of spergualin is not yet known and its targets in bacteria 

are unclear. Thus, the spergualin-inspired analogs reported here could additionally serve 

as useful chemical probes. To this point, MoA studies with spergualin have not been 

practical because of its poor stability and its tendency to rapidly hydrolyze. Compound 6 

represents a chance to possibly identify the target responsible for broad-spectrum 

bactericidal activity. This next step will be particularly powerful because the structure of 

compound 6 has significantly diverged from that of the natural product. After the MOA 

and target are identified, it will be essential to explore whether compound 6 and its analogs 

share the same profile as spergualin. Finally, although the activity of compound 6 is 

promising, the potency of this series needs to be further improved. Because MIC values of 
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4 μg/mL were obtained using a relatively small library of ~40 analogs, I am optimistic about 

the possibility of improving the potency of this scaffold with more medicinal chemistry. 

However, the relatively narrow scope of the SAR suggests that dramatic changes to the 

pharmacophore may not be tolerated. Regardless, the improved route and preliminary SAR 

provided here warrant further exploration. 

 

A.6 Materials and methods  

A.6.1 Synthesis of tert-butyl(4-isocyanobutyl)carbamate 

The preparation of this isocyanide was based on literature precedent [11]. Specifically, to 

a 500 mL 3-necked RBF equipped with an addition funnel and purged with N2(g) was added 

1,4-diaminobutane (15 g, 170.2 mmol) dissolved in 60 mL of dioxane. Using the addition 

funnel, boc anhydride (3.7 g, 17.02 mmol) dissolved in 60 mL of dioxane was added 

dropwise over 1.5 hours. The addition of boc anhydride resulted in the formation of a white 

precipitate. The reaction was allowed to stir overnight at RT. The next morning, the solvent 

was removed under vacuum resulting in a white solid to which 100 mL of water was added. 

The resulting insoluble material was removed by gravity filtration. The filtrate was then 

extracted with DCM (3 × 100 mL). The organic layers were dried with anhydrous sodium 

sulfate and concentrated to give N-boc-1,4-diaminobutane, a light yellow oil, in 80–89% 

yield. Next, to a 100 mL RBF purged with N2(g) was added N-boc-1,4-diaminobutane (2.8 

g, 14.9 mmol) diluted in 25 mL of DCM. The reaction was then cooled using an ice bath. 

Once cooled, DIC (2.3 mL, 14.9 mmol) was added dropwise and the resulting white mixture 
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was allowed to stir overnight at RT. The next morning, the reaction was subjected to gravity 

filtration. The resulting filtrate was washed with 2 × 50 mL of saturated sodium 

bicarbonate. The organic layers were pooled, dried with anhydrous sodium sulfate, and 

concentrated to give the intermediate tert-butyl(4-formamidobutyl)carbamate. Next, in a 

100 mL RBF purged with N2(g) was added tert-butyl(4-formamidobutyl)carbamate (1 g, 4.6 

mmol) dissolved in 10 mL of DCM and TEA (1.9 mL,13.8 mmol). This reaction was cooled 

using an ice bath. Once cooled, phosphoryl chloride (0.44 mL, 4.6 mmol) was added 

dropwise, causing the reaction mixture to turn orange. This mixture was allowed to stir at 

RT for 30 minutes. Afterwards, potassium carbonate (6.4 g, 4.6 mmol) dissolved in water 

was added dropwise and the reaction was allowed to stir for an additional 30 minutes. The 

reaction was then transferred to a separatory funnel, the organic layer was removed and 

saved. The remaining aqueous layer was extracted with 5 × 20 mL of DCM. The combined 

organic layers were dried with anhydrous sodium sulfate and then concentrated under 

vacuum. This crude product was purified by column chromatography on silica gel using a 

hexane:ethyl acetate gradient. The purified product eluted at 50:50 hexane:ethyl acetate. 

Solvent removal resulted in a yellow oil in 20–43% yield. 1H NMR (500 MHz, chloroform-d) 

δ 4.65 (s, 1H), 3.42 (t, J = 6.5 Hz, 1H), 3.16–3.13 (m, 2H), 1.74–1.68 (m, 2H), 1.65–1.59 (m, 

2H), 1.43 (s, 9H). 

 

A.6.2 General synthesis for guanidylated acids 
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The preparation of guanidylated acids was based on literature precedent [13]. To a 3-

necked RBF equipped with a condenser and N2(g) inlet, was added either pentanoic, 

hexanoic, or octanoic acid (1 mmol). The flask was purged with N2(g). Afterwards, 8 mL of 

anhydrous DCM was added and the flask was heated to 55–60 °C using an oil bath. Once 

heated, N-methyl-N-(trimethylsilyl)trifluoroacetamide (0.4 mL, 2.2 mmol) was added 

dropwise. The resulting cloudy mixture was allowed to reflux for 2 hours. Afterwards, the 

reaction was removed from heat and was allowed to cool to RT. TEA (0.15 mL, 1.1 mmol) 

was added, followed by 1,3-di-boc-2-(trifluoromethylsulfonyl)guanidine (0.430 g, 1.1 

mmol) and an additional 2 mL of DCM. The reaction flask was re-purged with N2(g) and 

allowed to stir for 4–5 hours at RT. During this time the reaction mixture clarified. 

Afterwards, the reaction was washed in the following manner: 2 × 8 mL brine, 1 × 8 mL 

water, and 1 × 8 mL 10% citric acid. The combined organic layers were dried with 

anhydrous sodium sulfate and then concentrated under vacuum. This crude product was 

purified by column chromatography on silica gel using a hexane:ethyl acetate gradient. The 

purified product eluted at 50:50 hexane:ethyl acetate. (Z)-5-(2,3-bis(tert-

butoxycarbonyl)guanidino) pentanoic acid. White solid in 48.3% yield. 1H NMR (400 MHz, 

chloroform-d) δ 8.48 (s, 1H), 3.48 (s, 2H), 2.41 (t, J = 6.9 Hz, 2H), 1.75–1.59 (m, 4H), 1.49 

(s, 18H). (Z)-6-(2,3-bis(tert-butoxycarbonyl)guanidino)hexanoic acid. White solid in 41% 

yield. 1H NMR (400 MHz, chloroform-d) δ 8.36 (s, 1H), 3.41 (q, J = 8.0 Hz, 2H), 2.34 (t, J = 

7.4 Hz, 2H), 1.71–1.61 (m, 2H), 1.61–1.54 (m, 2H), 1.48 (d, J = 2.7 Hz, 18H), 1.44–1.34 (m, 

2H). (Z)-8-(2,3-bis(tert-butoxycarbonyl)guanidine)octanoic acid. White solid in 63% yield. 
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1H NMR (400 MHz, chloroform-d) δ 8.28 (s, 1H), 3.36 (q, J = 7.2 Hz, 2H), 2.31 (t, J = 7.5 Hz, 

2H), 1.65–1.57 (m, 2H), 1.56–1.50 (m, 2H), 1.47 (d, J = 2.4 Hz, 18H), 1.31 (s, 6H). 

 

A.6.3 General synthesis of spergualin-inspired analogs  

In a 50 mL RBF, benzylamine (1 mmol), an aldehyde (1 mmol), and 5 mL of methanol were 

mixed at RT until imine formation was detected by thin layer chromatography (~30 

minutes). Next, a carboxylic acid (1 mmol) and an isocyanide (1 mmol) were added and 

allowed to react overnight. This reaction was then purified by column chromatography on 

silica gel using a hexane and ethyl acetate gradient, resulting in compounds 1 and 13–43. 

Molecules 2–12, compounds that contained the tert-butyl(4-isocyanobutyl) carbamate 

starting material, were then subjected to a boc deprotection before purification. Briefly, 

the boc protected peptoid was dissolved in DCM (10 mL) and treated with 85% phosphoric 

acid (3 equivalents). This mixture was allowed to stir overnight at RT. Afterwards, 10 mL of 

water was added and then the reaction mixture's pH was neutralized using 10% NaOH. This 

mixture was quenched with saturated sodium bicarbonate and then extracted with 3 × 10 

mL of ethyl acetate. The combined organic layers were dried, concentrated, and the 

subjected to column chromatography on basic alumina oxide using an ethyl acetate and 

methanol gradient. Compound yields ranged from 20–96%. See the Appendix A.7.4 – A.7.6 

for additional details and characterization. 

 

A.6.4 Growth and maintenance of laboratory bacterial strains   
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The following bacterial strains were used: Bacillus anthracis 34F2 Sterne, Bacillus cereus 

ATCC 11778, Bacillus subtilis 168, Escherichia coli K-12 (MG1655), Haemophilus influenzae 

ATCC 51907, and Staphylococcus aureus RN4220. H. influenzae was grown in Brain Heart 

Infusion (BHI) media supplemented with hemin and β-nicotinamide adenine dinucleotide 

hydrate [14]. Broth cultures of H. influenzae were prepared by scraping bacteria from agar 

plates and suspending into fresh supplemented BHI medium to the desired OD600. All other 

bacterial strains were grown in Luria–Bertani (LB) medium. Inoculum for liquid culture 

assays was prepared by diluting an overnight LB broth culture, grown at 37 °C with shaking 

(200 rpm), into fresh liquid medium to the desired OD600. 

 

A.6.5 Antibacterial screening assay  

Bacterial inoculum of each strain was prepared to an OD600 of 0.1 as described above. Next, 

100 μL of each dilute culture was added in triplicate to a sterile non-treated CytoOne 96-

well clear bottom plate. To each well, was added 5 μL of either compound in DMSO or 

DMSO alone. The final concentration of compound was 200 μM and the concentration of 

DMSO was 5%. The plates were covered and incubated at 37 °C with shaking (200 rpm) for 

6 to 7 hours. Afterwards, bacterial growth was recorded by measuring OD600 using a 

SpectraMax M5 plate reader. 

 

A.6.6 Minimum inhibitory concentration assay 
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MIC experiments were performed using the double dilution method. Briefly, inoculum of 

each strain was prepared to an OD600 of 0.1 and 200 μL of each dilute culture was added 

to a sterile non-treated CytoOne 96-well clear bottom plate. To the plated dilute cultures, 

was added 10 μL of compound from a 2-fold dilution series. The final concentrations of the 

compounds were in the range of 256 to 2 μg/mL. Plates were covered and incubated at 37 

°C with shaking (200 rpm) for 24 hours before MIC values were determined. All 

experiments were performed at least twice in triplicate. 

 

A.6.7 Bacterial growth assay in liquid culture 

Bacterial cultures were prepared to an OD600 of 0.1 and 200 μL of each dilute culture was 

added to the wells of sterile non-treated CytoOne 96-well clear bottom plates. Compounds 

(10 μL) from a 2-fold dilution series were then added to a final concentration between 32 

and 1 μg/mL. Plates were covered and incubated at 37 °C with shaking (200 rpm). Bacterial 

growth was recorded every 30 minutes by measuring OD600 using a SpectraMax M5 plate 

reader. All experiments were performed at least twice in triplicate. 

 

A.6.8 Assay of bactericidal/bacteriostatic activity  

Time-kill studies were performed using 5 mL cultures of S. aureus (OD600 = 0.1) treated with 

either 250 μL of compound 6 or DMSO. Final compound concentrations were 8 to 16 

μg/mL. Samples (100 μL) of each culture were removed after 0, 4, and 24 hours, serially 
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diluted 10-fold in sterile phosphate buffered saline and spotted (2 μL) on LB agar plates. 

Finally, colonies were counted after incubation for 24 hours at 37 °C. 

 

A.6.9 Compound 6 analogs  

Compound 6a (4-cyano-N-2-oxo-2-(piperazin-1-yl)ethyl-N-(3-phenylpropyl)benzamide) 

was purchased from ChemDiv. Compound 6b (N-(2-(benzylamino)-2-oxoethyl)-4-

isopropylcyclohexane-1-carboxamide) was purchased from Vitas-M Laboratory. 

Compound 6c (N-benzyl-2-(2-(isopropylthio)acetamido)acetamide) and compound 6d (N-

(2-(4-benzylpiperazin-1-yl)-2-oxoethyl)-methylbutanamide) were purchased from 

Enamine. Mass spectrometry was used to validate the identity of each purchased 

compound (Appendix A.7.7). 

 

Notes  

This work was published as “Concise synthesis of spergualin-inspired molecules with 

broad-spectrum antibiotic activity” 2015 MedChemComm 6: 912-918. Victoria A. Assimon 

and Jason E. Gestwicki designed experiments. Victoria A. Assimon conducted the 

experiments. In this study, Hao Shao resynthesized the lead compound. The Bacillus 

anthracis strain was a generous gift from Dr. Phil Hanna (University of Michigan). The 

Bacillus cereus and Haemophilus influenzae strains were kind gifts from Dr. Sylvie Garneau-

Tsodikova (University of Kentucky). 
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A.7 Appendix 

A.7.1 Bacterial growth inhibition screens 
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A.7.2 Compound 6 shows a dose-dependent inhibition of bacterial growth 
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A.7.3 The peptoid region of compound 6 appears to be pharmacophore of this molecule     
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A.7.4 Exploration of the structure activity relationships around compound 6 
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A.7.5 Resynthesis and characterization of compound 6 

In a 50 mL RBF, benzylamine (1 mmol), 4-bromobenzaldehyde (1 mmol), and 5 mL of 

methanol were mixed at RT until imine formation was detected by thin layer 

chromatography (~30 minutes). Next, 3-mercaptopropionic acid (1 mmol) and tert-butyl 

(4-isocyanobutyl)carbamate (1 mmol) were added and allowed to react overnight. This 

reaction was then purified by column chromatography on silica gel using a hexane and 

ethyl acetate gradient. Next, a solution of HCl (3M, 0.3 mL) was added to this intermediated 

in 3 mL of methanol. This mixture was stirred at 80 °C for 3 hr. The mixture was purified 

using prepared HPLC to yeild the desired product. White solid (20%). 1H NMR (400 MHz, 

Methanol-d4) δ 7.34 (d, J = 8.4 Hz, 2H), 7.28 – 7.02 (m, 5H), 6.94 (d, J = 6.4 Hz, 2H), 5.90 (s, 

1H), 4.76 (d, J = 17.8 Hz, 1H), 4.49 (d, J = 17.8 Hz, 1H), 3.26 – 3.05 (m, 2H), 3.05 – 2.47 (m, 

6H), 1.70 – 1.44 (m, 4H). 13C NMR (100Hz, Chloroform-d) δ 173.68, 170.13, 136.24, 

131.81, 128.60, 127.38, 126.00, 123.17, 63.59, 39.59, 38.65, 33.73, 33.23, 25.54, 

24.23. LCMS (ESI+): m/z [M + H]+ calculated for C22H29BrN3O2S, 478.11, find 478.10. 
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A.7.6 Compound characterization of spergualin-inspired library  

Compound 1. 1H NMR (400 MHz, Chloroform-d) δ 7.24 (d, J = 8.4 Hz, 2H), 7.16 – 7.04 (m, 

5H), 6.89 (d, J = 7.1 Hz, 2H), 6.66 (s, 1H), 5.86 (s, 1H), 4.87 (s, 1H), 4.72 – 4.41 (m, 2H), 3.23 

– 3.04 (m, 2H), 2.97 (s, 2H), 2.37 – 2.09 (m, 2H), 1.58 – 1.49 (m, 2H), 1.34 (s, 9) 1.18 – 1.14 

(m, 4H), 0.745 (t, J = 7.2 Hz, 3H). 
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Compound 2. 1H NMR (400 MHz, Chloroform-d) δ 7.33 (d, J = 8.0 Hz, 2H), 7.21 – 7.08 (m, 

5H), 6.97 (d, J = 7.4 Hz, 2H), 6.37 (s, 1H), 5.62 (s, 1H) 4.78 (s, 1H), 4.67 (d, J = 17.5 Hz, 1H), 

4.42 (d, J = 17.6 Hz, 1H), 3.26 – 2.95 (m, 5H), 2.57 – 2.19 (m, 2H), 1.76 – 1.61 (m, 2H), 1.63 

– 1.50 (m, 2H), 1.31 – 1.11 (m, 4H). 
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Compound 3. 1H NMR (500 MHz, Chloroform-d) δ 7.31 (d, J = 8.1 Hz, 2H), 7.24 – 7.07 (m, 

5H), 6.95 (d, J = 7.3 Hz, 2H), 4.72 (d, J = 17.7 Hz, 2H), 4.53 (d, J = 17.7 Hz, 1H), 3.85 (s, 2H), 

3.30 – 3.08 (m, 2H), 2.79 – 2.56 (m, 2H), 2.28 (ddt, J = 52.7, 15.6, 7.6 Hz, 2H), 1.65 – 1.42 

(m, 6H), 1.31 – 1.10 (m, 4H), 0.82 (t, J = 6.8 Hz, 3H). 
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Compound 4. 1H NMR (500 MHz, Chloroform-d) δ 7.34 (dd, J = 18.1, 7.7 Hz, 2H), 7.26 – 7.10 

(m, 5H), 7.01 (s, 2H), 4.81 – 4.63 (m, 2H), 4.46 (d, J = 17.6 Hz, 2H), 3.50 – 2.95 (m, 5H), 2.61 

-2.14 (m, 2H), 1.79 – 1.07 (m, 14H). 
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Compound 5. 1H NMR (500 MHz, Methanol-d4) δ 7.53 – 7.49 (m, 3H), 7.45 (s, 4H), 7.36 (d, 

J = 8.1 Hz, 4H), 7.22 (s, 2H), 7.13 – 7.07 (m, 5H), 6.88 (s, 2H), 4.40 (d, J = 16.7 Hz, 1H), 3.25 

– 3.15 (m, 3H), 2.76 (s, 2H), 1.53 (s, 6H). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



197 

 

Compound 6. 1H NMR (400 MHz, Methanol-d4) δ) δ 7.34 (d, J = 8.4 Hz, 2H), 7.28 – 7.02 (m, 

5H), 6.94 (d, J = 6.4 Hz, 2H), 5.90 (s, 1H), 4.76 (d, J = 17.8 Hz, 1H), 4.49 (d, J = 17.8 Hz, 1H), 

3.26 – 3.05 (m, 2H), 3.05 – 2.47 (m, 6H), 1.70 – 1.44 (m, 4H).  
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Compound 7. 1H NMR (500 MHz, Methanol-d4) δ 7.36 (d, J = 8.5 Hz, 2H), 7.22 – 7.06 (m, 

5H), 6.95 (d, J = 7.2 Hz, 2H), 6.01 (s, 1H), 4.82 (d, J = 17.9 Hz, 1H), 4.54 (d, J = 18.0 Hz, 1H), 

3.32 (p, J = 1.6 Hz, 3H), 3.26 – 3.09 (m, 3H), 2.63 (t, J = 6.9 Hz, 3H), 2.53 – 2.28 (m, 2H), 

2.20 – 2.16 (m, 2H), 2.11 (td, J = 7.1, 2.6 Hz, 2H), 1.81 – 1.65 (m, 3H), 1.55 – 1.41 (m, 10H). 
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Compound 8. 1H NMR (500 MHz, Methanol-d4) δ 7.38 – 7.33 (m, 2H), 7.23 – 7.06 (m, 5H), 

6.94 (d, J = 7.2 Hz, 2H), 6.03 (d, J = 4.4 Hz, 1H), 5.77 – 5.66 (m, 1H), 4.96 (d, J = 15.1 Hz, 

2H), 4.81 (d, J = 17.9 Hz, 1H), 4.53 (d, J = 18.0 Hz, 1H), 3.19 (hept, J = 6.8 Hz, 3H), 2.62 (t, J 

= 6.9 Hz, 2H), 2.50 – 2.24 (m, 2H), 2.02 (q, J = 7.5 Hz, 3H), 1.80 – 1.63 (m, J = 6.7 Hz, 3H), 

1.57 – 1.38 (m, 7H). 
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Compound 9. 1H NMR (500 MHz, Methanol-d4) δ 7.36 (d, J = 8.5 Hz, 2H), 7.24 – 7.05 (m, 

5H), 6.94 (d, J = 7.2 Hz, 2H), 4.83 (d, J = 18.0 Hz, 1H), 4.54 (d, J = 18.0 Hz, 1H), 3.18 (dp, J = 

12.7, 6.7 Hz, 4H), 2.62 (t, J = 6.9 Hz, 2H), 2.49 – 2.20 (m, 2H), 1.70 – 1.57 (m, 4H), 1.56 – 

1.37 (m, 6H), 1.25 (t, J = 7.1 Hz, 2H), 1.02 – 0.92 (m, 2H), 0.89 (t, J = 7.4 Hz, 4H). 
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Compound 10. 1H NMR (500 MHz, Methanol-d4) δ 7.36 (d, J = 8.2 Hz, 2H), 7.23 – 7.05 (m, 

5H), 6.95 (d, J = 6.5 Hz, 2H), 6.09 -5.3 (m, 2H), 4.82 (d, J = 17.9 Hz, 1H), 4.53 (d, J = 18.0 Hz, 

1H), 3.28 – 3.17 (m, 2H), 3.14 (t, J = 6.5 Hz, 2H), 2.81 (t, J = 7.3 Hz, 1H), 2.71 – 2.65 (m, 1H), 

2.44 (t, J = 7.1 Hz, 3H), 1.93 (s, 3H), 1.69 – 1.56 (m, 4H), 1.56 – 1.41 (m, 8H), 1.41 – 1.27 

(m, 4H), 1.00 – 0.87 (m, 1H). 
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Compound 11. 1H NMR (500 MHz, Methanol-d4) δ 7.60 (d, J = 15.4 Hz, 1H), 7.37 (d, J = 8.1 

Hz, 3H), 7.29 – 7.09 (m, 10H), 7.00 (d, J = 7.4 Hz, 3H), 6.92 – 6.73 (m, 5H), 6.17 (s, 1H), 5.01 

(d, J = 18.1 Hz, 1H), 4.65 (d, J = 18.1 Hz, 1H), 3.28 – 3.14 (m, 2H), 3.04 (t, J = 6.6 Hz, 2H), 

1.36 – 1.21 (m, 3H), 1.00 – 0.85 (m, 2H). 
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Compound 12. 1H NMR (400 MHz, Methanol-d4) δ 7.50 – 7.27 (d, J = 8.0 Hz, 2H), 7.27-7.02 

(m, 5H), 6.94 (d, J = 8.0 Hz, 2H), 5.84 (s, 1H), 4.78 (d, J = 18.0 Hz, 1H), 4.47 (d, J = 18.0 Hz, 

1H), 3.28 – 3.06 (m, 2H), 2.91 (t, J = 7.2 Hz, 2H), 2.50 – 2.25 (m, 2H), 1.71 – 1.48 (m, 6H), 

0.88 (t, J = 7.2 Hz, 3H). 
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Compound 13. 1H NMR (400 MHz, Chloroform-d) δ 7.33 (d, J = 8.1 Hz, 2H), 7.21 – 7.06 (m, 

5H), 6.99 (d, J = 7.6 Hz, 2H), 5.86 (s, 1H), 5.78 (s, 1H), 4.71 (d, J = 17.6 Hz, 1H), 4.52 (d, J = 

17.4 Hz, 1H), 3.23 (tt, J = 12.9, 6.6 Hz, 2H), 2.39 – 2.29 (m, 1H), 2.28 – 2.19 (m, 1H), 1.65 

(d, J = 7.4 Hz, 2H), 1.42 (p, J = 7.3 Hz, 2H), 1.26 (dd, J = 15.3, 7.7 Hz, 2H), 0.87 (t, J = 7.3 Hz, 

6H). 
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Compound 14. 1H NMR (400 MHz, Chloroform-d) δ 7.34 (d, J = 8.1 Hz, 2H), 7.24 – 7.14 (m, 

5H), 6.99 (d, J = 7.3 Hz, 2H), 5.79 (s, 1H), 4.71 (d, J = 17.6 Hz, 1H), 4.52 (d, J = 17.4 Hz, 1H), 

3.31 – 3.12 (m, 2H), 2.40 – 2.21 (m, 2H), 1.66 – 1.57 (m, 2H), 1.42 (q, J = 7.2 Hz, 2H), 1.32 

– 1.18 (m, 6H), 0.90 – 0.81 (m, 6H). 
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Compound 15. 1H NMR (400 MHz, Chloroform-d) δ 7.40 (d, J = 8.4 Hz, 2H), 7.28 – 7.18 (m, 

5H), 7.03 (d, J = 7.5 Hz, 2H), 5.88 (s, 1H), 5.85 (s, 1H), 4.76 (d, J = 17.6 Hz, 1H), 4.57 (d, J = 

17.4 Hz, 1H), 3.39 (t, J = 6.8 Hz, 2H), 3.36 – 3.19 (m, 3H), 2.49 – 2.37 (m, 1H), 2.37 – 2.24 

(m, 1H), 1.84 (q, J = 7.2 Hz, 2H), 1.67 (q, J = 7.1, 6.6 Hz, 3H), 1.53 – 1.39 (m, 4H), 1.32 (q, J 

= 7.4 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H). 
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Compound 16. 1H NMR (400 MHz, Chloroform-d) δ 7.34 (d, J = 8.4 Hz, 2H), 7.27 – 7.12 (m, 

5H), 6.99 (d, J = 8.0 Hz, 2H), 5.86 (s, 1H), 5.82 (s, 1H), 4.73 (d, J = 17.7 Hz, 1H), 4.52 (d, J = 

17.6 Hz, 1H), 3.30 – 3.18 (m, 2H), 2.82 – 2.71 (m, 3H), 2.71 – 2.67 (m, 1H), 2.62 – 2.55 (m, 

1H),1.65 (t, J = 8.3 Hz, 1H), 1.42 (q, J = 7.5 Hz, 2H), 1.30 – 1.20 (m, 3H), 0.87 (t, J = 7.3 Hz, 

3H). 
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Compound 17.  1H NMR (400 MHz, Chloroform-d) δ 7.35 (d, J = 8.1 Hz, 2H), 7.22 – 7.13 (m, 

5H), 6.98 (d, J = 7.1 Hz, 2H), 5.81 (s, 1H), 5.65 (d, J = 8.1 Hz, 1H), 4.70 (d, J = 17.7 Hz, 1H), 

4.50 (d, J = 17.6 Hz, 1H), 3.80 – 3.71 (m, 1H), 3.34 (t, J = 6.8 Hz, 2H), 2.40 – 2.30 (m, 1H), 

2.30 – 2.19 (m, 1H), 1.91 – 1.82 (m, 3H), 1.78 (t, J = 7.3 Hz, 3H), 1.72 – 1.52 (m, 7H), 1.44 – 

1.22 (m, 5H), 1.09 (p, J = 12.0 Hz, 3H). 
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Compound 18. 1H NMR (400 MHz, Chloroform-d) δ 7.35 (d, J = 8.1 Hz, 2H), 7.21 – 7.13 (m, 

5H), 7.00 (d, J = 7.0 Hz, 2H), 5.83 (s, 1H), 5.65 (d, J = 8.1 Hz, 1H), 4.74 (d, J = 17.7 Hz, 1H), 

4.50 (d, J = 17.7 Hz, 1H), 3.81 – 3.71 (m, 1H), 2.80 (q, J = 6.8, 2H), 2.74 – 2.64 (m, 1H), 2.61 

– 2.52 (m, 1H), 1.87 (d, J = 12.1 Hz, 2H), 1.66 (t, J = 8.4 Hz, 2H), 1.58 (s, 4H), 1.37 – 1.23 (m, 

4H), 1.08 (q, J = 11.8 Hz, 3H). 
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Compound 19. 1H NMR (400 MHz, Chloroform-d) δ 7.33 (d, J = 8.1 Hz, 2H), 7.23 – 7.10 (m, 

5H), 6.99 (d, J = 7.0 Hz, 2H), 5.78 (s, 1H), 5.68 (d, J = 7.1 Hz, 1H), 4.71 (d, J = 17.5 Hz, 1H), 

4.50 (d, J = 17.4 Hz, 1H), 3.86 – 3.65 (m, 1H), 2.44 – 2.29 (m, 1H), 2.29 – 2.17 (m, 1H), 1.86 

(s, 2H), 1.72 – 1.50 (m, 7H), 1.41 – 1.21 (m, 3H), 1.07 (q, J = 12.0 Hz, 3H), 0.87 (t, J = 7.4 Hz, 

3H). 
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Compound 20. 1H NMR (400 MHz, Chloroform-d) δ 7.33 (d, J = 8.1 Hz, 2H), 7.23 – 7.15 (m, 

5H), 6.98 (d, J = 7.1 Hz, 2H), 5.79 (s, 1H), 5.74 – 5.66 (m, 1H), 4.71 (d, J = 17.6 Hz, 1H), 4.50 

(d, J = 17.6 Hz, 1H), 3.94 – 3.52 (m, 1H), 2.34 (dt, J = 15.3, 7.6 Hz, 1H), 2.29 – 2.21 (m, 1H), 

1.86 (s, 2H), 1.68 – 1.53 (m, 7H), 1.38 – 1.16 (m, 7H), 1.08 (q, J = 12.4 Hz, 3H), 0.83 (t, J = 

6.7 Hz, 3H). 
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Compound 21. 1H NMR (400 MHz, Chloroform-d) δ 7.45 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.4 

Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.27 – 7.12 (m, 3H), 7.07 – 6.99 (m, 2H), 5.59 (s, 1H), 5.37 

(s, 1H), 4.67 (d, J = 16.6 Hz, 1H), 4.41 (d, J = 16.9 Hz, 1H), 3.86 – 3.71 (m, 1H), 1.85 (dd, J = 

26.1, 12.0 Hz, 2H), 1.72 (s, 1H), 1.68 – 1.50 (m, 3H), 1.41 – 1.17 (m, 3H), 1.17 – 0.77 (m, 

4H). 
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Compound 22. 1H NMR (400 MHz, Chloroform-d) δ 7.35 (d, J = 8.1 Hz, 2H), 7.23 – 7.12 (m, 

5H), 6.98 (d, J = 7.0 Hz, 2H), 5.82 (s, 1H), 5.65 (s, 1H), 4.71 (d, J = 17.7 Hz, 1H), 4.50 (d, J = 

17.4 Hz, 1H), 3.75 (s, 1H), 3.31 (t, J = 6.3 Hz, 2H), 2.46 – 2.19 (m, 2H), 1.96 – 1.51 (m, 12H), 

1.43 – 1.20 (m, 2H), 1.08 (q, J = 12.0 Hz, 3H), 0.81 (s, 1H).  
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Compound 23. 1H NMR (400 MHz, Chloroform-d) δ 7.34 (d, J = 8.2 Hz, 2H), 7.24 – 7.12 (m, 

5H), 6.98 (d, J = 7.0 Hz, 2H), 5.84 (s, 1H), 5.80 (s, 1H), 4.70 (d, J = 17.6 Hz, 1H), 4.51 (d, J = 

17.4 Hz, 1H), 3.22 (dp, J = 19.4, 6.6 Hz, 2H), 2.32 (ddt, J = 45.1, 15.4, 7.4 Hz, 2H), 2.11 (td, J 

= 7.1, 2.7 Hz, 2H), 1.89 (s, 1H), 1.72 (p, J = 7.9, 7.5 Hz, 2H), 1.56 – 1.36 (m, 4H), 1.26 (q, J = 

7.5 Hz, 2H), 0.87 (t, J = 7.3 Hz, 3H). 
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Compound 24. 1H NMR (400 MHz, Chloroform-d) δ 7.34 (d, J = 8.2 Hz, 1H), 7.23 – 7.12 (m, 

5H), 6.97 (d, J = 5.4 Hz, 2H), 5.88 (s, 1H), 5.80 (s, 1H), 5.68 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 

4.99 – 4.86 (m, 1H), 4.70 (d, J = 17.6 Hz, 1H), 4.51 (d, J = 17.4 Hz, 1H), 3.22 (qq, J = 13.3, 

6.8 Hz, 2H), 2.30 (ddt, J = 42.9, 15.6, 7.5 Hz, 2H), 2.00 (q, J = 7.2 Hz, 2H), 1.80 – 1.62 (m, 

2H), 1.41 (q, J = 7.4 Hz, 2H), 1.32 – 1.19 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H). 
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Compound 25. 1H NMR (400 MHz, Chloroform-d) δ 7.45 (s, 1H), 7.32 (d, J = 8.0 Hz, 1H), 

7.26 (d, J = 7.3 Hz, 1H), 7.23 – 7.10 (m, 3H), 7.07 (t, J = 7.9 Hz, 1H), 6.99 (d, J = 7.2 Hz, 2H), 

5.95 (s, 1H), 5.85 (s, 1H), 4.73 (d, J = 17.6 Hz, 1H), 4.55 (d, J = 17.5 Hz, 1H), 3.23 (qq, J = 

13.3, 6.7 Hz, 2H), 2.31 (ddq, J = 30.8, 15.4, 7.5 Hz, 2H), 1.62 (t, J = 7.4 Hz, 2H), 1.43 (p, J = 

7.2 Hz, 2H), 1.35 – 1.15 (m, 6H), 0.95 – 0.75 (m, 6H). 
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Compound 26. 1H NMR (400 MHz, Chloroform-d) δ 7.44 (s, 1H), 7.31 (d, J = 8.0 Hz, 1H), 

7.26 (d, J = 6.0 Hz, 1H), 7.23 – 7.10 (m, 4H), 7.06 (t, J = 7.9 Hz, 1H), 6.98 (d, J = 7.2 Hz, 2H), 

6.02 (s, 1H), 5.87 (s, 1H), 4.74 (d, J = 17.6 Hz, 1H), 4.55 (d, J = 17.6 Hz, 1H), 3.22 (th, J = 

13.3, 6.7 Hz, 2H), 2.30 (ddq, J = 30.3, 15.4, 7.7 Hz, 2H), 1.65 (h, J = 7.7, 7.3 Hz, 2H), 1.43 (p, 

J = 7.2 Hz, 2H), 1.34 – 1.18 (m, 3H), 0.95 (t, J = 7.4 Hz, 1H), 0.87 (t, J = 7.3 Hz, 6H). 
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Compound 27. 1H NMR (400 MHz, Chloroform-d) δ 7.45 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 

7.26 (d, J = 7.7 Hz, 1H), 7.23 – 7.12 (m, 3H), 7.08 (t, J = 7.9 Hz, 1H), 6.98 (d, J = 7.3 Hz, 2H), 

5.85 (s, 1H), 4.72 (d, J = 17.7 Hz, 1H), 4.54 (d, J = 17.5 Hz, 1H), 3.34 (t, J = 6.8 Hz, 2H), 3.23 

(tp, J = 13.3, 6.6 Hz, 2H), 2.44 – 2.22 (m, 2H), 1.78 (p, J = 6.9 Hz, 2H), 1.64 (p, J = 7.2 Hz, 

2H), 1.40 (dp, J = 23.2, 7.4 Hz, 4H), 1.31 – 1.18 (m, 3H), 0.87 (t, J = 7.3 Hz, 3H).  
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Compound 28. 1H NMR (400 MHz, Chloroform-d) δ 7.44 (s, 1H), 7.31 (d, J = 8.3 Hz, 1H), 

7.25 (d, J = 7.3 Hz, 1H), 7.22 – 7.10 (m, 3H), 7.06 (t, J = 7.9 Hz, 1H), 6.99 (d, J = 7.4 Hz, 2H), 

5.83 (s, 1H), 4.73 (d, J = 17.7 Hz, 1H), 4.52 (d, J = 17.6 Hz, 1H), 3.23 (qq, J = 13.3, 6.8 Hz, 

2H), 2.86 – 2.72 (m, 2H), 2.71 – 2.64 (m, 1H), 2.63 – 2.51 (m, 1H), 1.76 – 1.59 (m, 2H), 1.42 

(p, J = 7.2 Hz, 1H), 1.31 – 1.15 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H). 
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Compound 29. 1H NMR (400 MHz, Chloroform-d) δ 7.34 – 7.26 (m, 2H), 7.21 – 7.08 (m, 3H), 

6.94 (d, J = 7.1 Hz, 2H), 6.88 (t, J = 8.5 Hz, 2H), 6.02 (s, 1H), 5.92 (s, 1H), 4.71 (d, J = 17.8 Hz, 

1H), 4.55 (d, J = 17.7 Hz, 1H), 3.22 (dp, J = 19.3, 6.7 Hz, 2H), 2.32 (t, J = 7.5 Hz, 2H), 2.23 

(dt, J = 15.5, 7.6 Hz, 1H), 1.68 – 1.54 (m, 4H), 1.42 (p, J = 7.3 Hz, 2H), 1.34 – 1.15 (m, 12H), 

0.91 – 0.78 (m, 9H). 
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Compound 30. 1H NMR (500 MHz, Chloroform-d) δ 7.33 (dd, J = 8.4, 5.3 Hz, 2H), 7.22 – 7.13 

(m, 3H), 6.98 (d, J = 7.4 Hz, 2H), 6.91 (t, J = 8.4 Hz, 2H), 5.88 (s, 1H), 4.74 (d, J = 17.6 Hz, 

1H), 4.56 (d, J = 17.5 Hz, 1H), 3.34 – 3.17 (m, 2H), 2.44 – 2.19 (m, 2H), 1.85 (s, 1H), 1.74 – 

1.61 (m, 2H), 1.45 (p, J = 7.0 Hz, 2H), 1.35 – 1.22 (m, 2H), 0.89 (t, J = 7.3 Hz, 6H). 
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Compound 31.  1H NMR (400 MHz, Chloroform-d) δ 7.31 (dd, J = 8.5, 5.3 Hz, 2H), 7.21 – 

7.10 (m, 3H), 6.95 (d, J = 7.3 Hz, 2H), 6.89 (t, J = 8.5 Hz, 2H), 5.87 (s, 1H), 5.80 (s, 1H), 4.70 

(d, J = 17.8 Hz, 1H), 4.53 (d, J = 17.5 Hz, 1H), 3.34 (t, J = 6.8 Hz, 2H), 3.22 (tp, J = 13.1, 6.4 

Hz, 2H), 2.45 – 2.19 (m, 2H), 1.82 – 1.71 (m, 2H), 1.70 – 1.56 (m, 2H), 1.52 – 1.32 (m, 4H), 

1.31 – 1.18 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H). 
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Compound 32. 1H NMR (500 MHz, Chloroform-d) δ 7.38 – 7.30 (m, 2H), 7.23 – 7.13 (m, 3H), 

7.00 (d, J = 7.4 Hz, 2H), 6.92 (t, J = 8.6 Hz, 2H), 5.90 (s, 1H), 5.78 (s, 1H), 4.76 (d, J = 17.8 Hz, 

1H), 4.55 (d, J = 17.8 Hz, 1H), 3.27 (qq, J = 13.4, 6.8 Hz, 2H), 2.82 (p, J = 7.5, 7.1 Hz, 2H), 

2.73 (dt, J = 16.3, 6.3 Hz, 1H), 2.63 – 2.55 (m, 1H), 1.69 (t, J = 8.1 Hz, 2H), 1.46 (p, J = 7.2 

Hz, 2H), 1.34 – 1.23 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H). 
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Compound 33. 1H NMR (500 MHz, Chloroform-d) δ 7.24 – 7.14 (m, 5H), 7.14 – 7.06 (m, 2H), 

7.02 (d, J = 7.5 Hz, 2H), 6.93 (t, J = 8.3 Hz, 1H), 5.97 (s, 1H), 5.88 (s, 1H), 4.75 (d, J = 17.6 Hz, 

1H), 4.59 (d, J = 17.4 Hz, 1H), 3.34 – 3.17 (m, 2H), 2.43 – 2.22 (m, 3H), 1.70 – 1.59 (m, 2H), 

1.53 – 1.41 (m, 2H), 1.36 – 1.17 (m, 7H), 0.87 (dt, J = 19.7, 7.2 Hz, 6H). 
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Compound 34. 1H NMR (500 MHz, Chloroform-d) δ 7.25 – 7.14 (m, 4H), 7.13 – 7.06 (m, 2H), 

7.03 (d, J = 7.4 Hz, 2H), 6.92 (t, J = 7.6 Hz, 1H), 5.91 (s, 1H), 5.86 (s, 1H), 4.76 (d, J = 17.7 Hz, 

1H), 4.58 (d, J = 17.4 Hz, 1H), 3.39 – 3.16 (m, 2H), 2.45 – 2.20 (m, 2H), 1.79 (s, 1H), 1.68 

(dq, J = 15.8, 8.0 Hz, 2H), 1.45 (p, J = 7.4 Hz, 2H), 1.29 (h, J = 7.4 Hz, 2H), 0.90 (td, J = 7.4, 

3.9 Hz, 6H). 
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Compound 35. 1H NMR (400 MHz, Chloroform-d) δ 7.24 – 7.13 (m, 4H), 7.08 (t, J = 9.3 Hz, 

2H), 7.00 (d, J = 7.3 Hz, 2H), 6.91 (t, J = 8.6 Hz, 1H), 5.84 (s, 1H), 4.72 (d, J = 17.6 Hz, 1H), 

4.55 (d, J = 17.3 Hz, 1H), 3.34 (t, J = 6.0 Hz, 2H), 3.25 (td, J = 14.5, 13.9, 6.6 Hz, 2H), 2.44 – 

2.22 (m, 2H), 1.78 (p, J = 7.1 Hz, 2H), 1.74 – 1.58 (m, 4H), 1.40 (dp, J = 23.6, 7.7, 7.3 Hz, 

4H), 1.28 (p, J = 8.3, 7.8 Hz, 2H), 0.87 (t, J = 7.3 Hz, 3H). 
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Compound 36. 1H NMR (400 MHz, Chloroform-d) δ 7.23 – 7.12 (m, 4H), 7.09 (t, J = 9.2 Hz, 

2H), 7.02 (d, J = 7.6 Hz, 2H), 6.92 (t, J = 8.4 Hz, 1H), 5.86 (s, 1H), 4.75 (d, J = 17.7 Hz, 1H), 

4.55 (d, J = 17.6 Hz, 1H), 3.25 (p, J = 7.1 Hz, 2H), 2.78 (p, J = 7.2 Hz, 2H), 2.73 – 2.67 (m, 

1H), 2.64 – 2.52 (m, 1H), 1.67 (s, 2H), 1.43 (q, J = 7.4 Hz, 2H), 1.35 – 1.19 (m, 2H), 0.88 (t, J 

= 6.4 Hz, 3H). 
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Compound 37. 1H NMR (500 MHz, Chloroform-d) δ 7.31 (d, J = 8.2 Hz, 2H), 7.27 – 7.18 (m, 

5H), 7.03 (d, J = 7.2 Hz, 2H), 5.89 (s, 1H), 5.86 (s, 1H), 4.76 (d, J = 17.6 Hz, 1H), 4.57 (d, J = 

17.4 Hz, 1H), 3.28 (dhept, J = 20.1, 6.8 Hz, 2H), 2.47 – 2.25 (m, 2H), 1.66 (q, J = 5.8, 5.3 Hz, 

2H), 1.48 (p, J = 7.4 Hz, 2H), 1.40 – 1.17 (m, 6H), 0.90 (dt, J = 19.3, 7.2 Hz, 6H). 
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Compound 38. 1H NMR (400 MHz, Chloroform-d) δ 7.26 (d, J = 6.8 Hz, 2H), 7.22 – 7.12 (m, 

5H), 6.98 (d, J = 7.0 Hz, 2H), 5.89 (s, 1H), 5.82 (s, 1H), 4.71 (d, J = 17.7 Hz, 1H), 4.53 (d, J = 

17.3 Hz, 1H), 3.22 (tq, J = 13.3, 6.7 Hz, 2H), 2.45 – 2.18 (m, 2H), 1.65 (h, J = 7.7 Hz, 2H), 1.42 

(p, J = 7.3 Hz, 2H), 1.27 (h, J = 7.3 Hz, 2H), 0.87 (t, J = 7.3 Hz, 6H). 
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Compound 39. 1H NMR (400 MHz, Chloroform-d) δ 7.26 (d, J = 8.1 Hz, 2H), 7.22 – 7.12 (m, 

5H), 6.97 (d, J = 7.1 Hz, 2H), 5.82 (s, 1H), 4.70 (d, J = 17.7 Hz, 1H), 4.52 (d, J = 17.4 Hz, 1H), 

3.33 (t, J = 6.8 Hz, 2H), 3.29 – 3.15 (m, 2H), 2.47 – 2.18 (m, 2H), 1.77 (p, J = 7.0 Hz, 2H), 

1.62 (p, J = 7.7 Hz, 2H), 1.39 (dp, J = 23.1, 7.6 Hz, 4H), 1.26 (q, J = 7.6 Hz, 2H), 0.87 (t, J = 

7.3 Hz, 3H). 
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Compound 40. 1H NMR (500 MHz, Chloroform-d) δ 7.30 (d, J = 8.5 Hz, 2H), 7.26 – 7.16 (m, 

5H), 7.03 (d, J = 6.6 Hz, 2H), 5.87 (s, 1H), 5.83 (s, 1H), 4.77 (d, J = 17.7 Hz, 1H), 4.55 (d, J = 

17.7 Hz, 1H), 3.28 (qq, J = 13.4, 6.9 Hz, 2H), 2.89 – 2.79 (m, 2H), 2.79 – 2.70 (m, 1H), 2.61 

(dt, J = 16.2, 6.6 Hz, 1H), 1.70 (t, J = 8.4 Hz, 1H), 1.52 – 1.40 (m, 2H), 1.34 – 1.22 (m, 2H), 

0.91 (t, J = 7.3 Hz, 3H). 
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Compound 41. 1H NMR (500 MHz, Chloroform-d) δ 7.41 – 7.35 (m, 2H), 7.31 – 7.12 (m, 6H), 

7.02 (d, J = 7.3 Hz, 2H), 5.94 (s, 1H), 5.83 (s, 1H), 4.76 (d, J = 17.7 Hz, 1H), 4.58 (d, J = 17.7 

Hz, 1H), 3.38 – 3.18 (m, 2H), 2.43 – 2.34 (m, 1H), 2.30 – 2.21 (m, 1H), 1.72 – 1.60 (m, 2H), 

1.47 (p, J = 8.3, 7.3 Hz, 2H), 1.37 – 1.17 (m, 6H), 0.89 (dt, J = 19.1, 7.2 Hz, 6H). 
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Compound 42. 1H NMR (500 MHz, Chloroform-d) δ 7.40 – 7.32 (m, 2H), 7.29 – 7.11 (m, 6H), 

7.03 (d, J = 7.3 Hz, 2H), 5.91 (s, 1H), 5.76 (s, 1H), 4.77 (d, J = 17.7 Hz, 1H), 4.58 (d, J = 17.7 

Hz, 1H), 3.28 (qq, J = 13.4, 6.9 Hz, 2H), 2.49 – 2.11 (m, 2H), 1.84 – 1.63 (m, 2H), 1.47 (p, J = 

7.5 Hz, 2H), 1.31 (h, J = 7.4 Hz, 2H), 0.91 (t, J = 7.4 Hz, 6H). 
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Compund 43. 1H NMR (401 MHz, Chloroform-d) δ 7.37 – 7.26 (m, 2H), 7.26 – 7.07 (m, 6H), 

6.97 (d, J = 7.2 Hz, 2H), 5.91 (s, 1H), 5.77 (s, 1H), 4.71 (d, J = 17.8 Hz, 1H), 4.54 (d, J = 17.7 

Hz, 1H), 3.32 (t, J = 6.8 Hz, 2H), 3.28 – 3.14 (m, 2H), 2.42 – 2.13 (m, 2H), 1.76 (p, J = 7.0 Hz, 

2H), 1.69 – 1.54 (m, 2H), 1.51 – 1.30 (m, 4H), 1.30 – 1.17 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H). 
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A.7.6 Characterization starting materials 
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A.7.4 Mass spectrometry to validate the identity of purchased compound 6 analogs 
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