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Chapter 1  
Introduction1 

 

Abstract 
 

Fragile X spectrum disorders are a family of allelic syndromes caused by 

expanded trinucletide CGG repeats in the 5’ untranslated region (UTR) of the FMR1 

gene on the X chromosome.  The full mutation (greater than 200 CGG repeats) causes 

Fragile X Syndrome (FXS), the most common monogenic cause of autism and 

intellectual disability.  Premutation range repeats (50-200) cause the neurodegenerative 

disorder Fragile X-associated Tremor/Ataxia Syndrome (FXTAS).  As FXS is 

developmental and is implicated in a host of neuronal phenotypes, and FXTAS is an 

age-related degenerative disorder characterized by movement symptoms, the field has 

classically considered the pathogenesis of these two syndromes as separate despite 

their shared mutation.  While the mechanisms of neurodegeneration in FXTAS are likely 

distinct from those in FXS, recent work suggests younger premutation carriers may 

have an increased incidence of autistic- and ADHD-like symptoms.  Moreover, mouse 

models of both FXS and Fragile X premutation repeat expansions demonstrate shared 

molecular, behavioral and physiological phenotypes.  Together, these findings suggest 

that some mechanisms of neuronal dysfunction could be shared between FXS and 

premutation patients.  This report aims to explore the similarities and differences 

between FXS and FXTAS-based research, and encourage consideration of mechanistic 

overlap across the Fragile X spectrum. 

                                            
1 Portions of this chapter were originally published as: Renoux AJ, Todd PK.  2012.  Neurodegeneration 
the RNA way.  Prog Neurobiol.  97(2):173-89. 
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Fragile X Syndrome (FXS) is the most common known inherited cause of 

intellectual disability and monogenic autism which affects upwards of 1:4000 boys and 

1:7000 girls (Bhakar et al 2012, Hernandez et al 2009, Lozano et al 2014, Nelson et al 

2013, Rogers et al 2001, Santoro et al 2012).  FXS results from a large expansion of a 

CGG trinucleotide repeat in the 5’ untranslated region (UTR) of the FMR1 gene on the X 

chromosome (Fu et al 1991, Oberle et al 1991, Verkerk et al 1991, Yu et al 1991).  

CGG expansion to greater than 200 repeats induces hypermethylation of the repeat 

sequence and a neighboring CpG island within the FMR1 promoter, decreasing 

transcription of FMR1 mRNA and leading to the absence of the FMR1 protein product, 

FMRP (Figure 1.1C; (Bell et al 1991, Feng et al 1995, Pieretti et al 1991)).   

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative 

disorder which is often seen in the maternal grandfathers of children with Fragile X 

Syndrome (FXS).  While initially thought to be asymptomatic, carriers of a “premutation” 

range repeat of 55-200 CGGs have a distinct clinical and molecular phenotype (Figure 

1.1B; (Hagerman 2013, Hagerman et al 2001)).  FXTAS patients typically do not have 

prominent developmental delays early in life as seen in FXS patients, but they acquire a 

progressive neurodegenerative disorder characterized by action tremor, gait difficulties, 

neuropsychiatric symptoms, peripheral neuropathy and dementia which usually develop 

after the age of 50 (Basuta et al 2011, Hagerman 2013, Hagerman et al 2001).  Repeat 

expansions between 40 and 55 are deemed “gray zone” alleles, and recent work 

indicates these patients may also share some neurological symptoms with premutation 

carriers who have larger expansions (Hall et al 2009, Kenna et al 2013).  Work is 

ongoing to understand the prevalence of gray zone alleles, and the impact of these 

intermediate expansions on neurological function (Hall 2014). 

As younger premutation patients are identified, studies find increased incidence 

of autism and ADHD symptoms prior to the development of neurodegeneration (Clifford 

et al 2007, Farzin et al 2006, Grigsby et al 2006, Grigsby et al 2014, Lozano et al 2014, 

Wheeler et al 2014).  The prevalence of this premutation is estimated to be as high as 

1:250-810 males and 1:250-300 females (Dombrowski et al 2002, Lozano et al 2014, 
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Rousseau et al 1995).  However, the frequency of FXTAS is much lower, as a result of 

incomplete penetrance (Jacquemont et al 2004, Rodriguez-Revenga et al 2009).  This 

effect is associated with age, with 17-47% penetrance in premutation males between 50 

and 80 years of age, and upwards of 75% in males over the age of 80 (Jacquemont et 

al 2004). Females are partially protected as they have an additional X chromosome, 

and can display different symptoms depending on the ratio of X inactivation (Franke et 

al 1996, Nolin et al 2003, Wheeler et al 2014).  Estimates of penetrance in the female 

premutation carrier population are therefore also much lower, closer to 16.5% in 

individuals over the age of 50 (Rodriguez-Revenga et al 2009).  Despite the incomplete 

penetrance of FXTAS, the high estimates of premutation range frequencies mean that 

understanding the impact of this mutation will affect the relatively large population 

carrying this mutation.  

 

  
Figure 1.1: Molecular hallmarks of Fragile X family disorders. 
(A) The normal 5’UTR of Fmr1 contains <55 (CGG) repeats, which codes for normal 
Fmr1 mRNA and FMRP levels. (B) In FXTAS these repeats expand to between 55-200, 
which causes increased mRNA through histone acetylation, and altered local chromatin 
structure.  However, despite this increase in transcription, there is reduced FMRP. 
FXTAS patients at autopsy exhibit ubiquinated neuronal intranuclear inclusions in 
multiple brain regions, including the cerebellum. (C) Should the (CGG) repeats expand 
to greater than 200, the gene is hypermethylated and surrounding histones 
deacetylated, resulting in no Fmr1 mRNA nor FMRP made, culminating in FXS. 
 

Neurodegeneration in FXTAS 
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 Pathologically, FXTAS patients display widespread neurodegeneration and brain 

atrophy with intranuclear ubiquitin positive inclusions in neurons and astrocytes (Greco 

et al 2002, Iwahashi et al 2006).  Further, premutation CGG repeat expansions lead 

paradoxically to increased expression of FMR1 mRNA and decreased expression of 

FMRP, depending on the size of the repeat expansion and the tissue type sampled 

(Kenneson et al 2001b, Tassone et al 2000c).  The increase in expression of the CGG 

repeat mRNA is significant, often as high as 5-fold greater in patient derived cell lines or 

in animal models of the disease.  This increased FMR1 RNA expression results from 

greater FMR1 transcription and not from an increase in FMR1 mRNA stability 

associated with the enlarged repeat (Tassone et al 2007, Tassone et al 2000a).  

Evidence now suggests this augmented transcription is triggered by epigenetic 

alterations induced by the CGG repeat expansion itself as DNA (Mulvihill et al 2005, 

Todd et al 2010, Wang et al 1996).  Specifically, CGG repeat expansions elicit 

chromatin changes in vitro, in a drosophila model of the disease, and in patient derived 

cell lines.  Interestingly, these alterations in local chromatin structure are dynamic and 

modifiable by genetic and pharmacologic means, suggesting that agents aimed at 

chromatin remodeling might have therapeutic potential in FXTAS (Todd et al 2010). 

The concept that RNA itself acts as a primary toxic species in a neurological 

disorder was first proposed and established for Myotonic Dystrophy Type 1 (DM1).  

DM1 is the most common adult onset muscular dystrophy and the third most common 

overall (Kanadia et al 2003, Liquori et al 2001, Mankodi et al 2000, Philips et al 1998, 

Wheeler & Thornton 2007).  An autosomal dominant disorder, DM1 results from an 

expanded CTG repeat in the 3’UTR of the DMPK gene (Brook et al 1992, Fu et al 1992, 

Mahadevan et al 1992).  Initial evaluations tested whether this repetitive sequence 

impaired production of the DMPK protein which contained the repeat, or if it may alter 

the expression of the genes surrounding the locus of the mutation.  However, the 

expanded CTG repeats do not significantly alter DMPK protein expression and altered 

expression of neighboring genes did not recapitulate key features of the clinical disorder 

(Filippova et al 2001, Jansen et al 1996, Klesert et al 2000, Reddy et al 1996, Sarkar et 

al 2000).  However, expression of CTG repeats in isolation was capable of eliciting 

cytotoxicity and recapitulating many of the central aspects of the human disease 
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(Mankodi et al 2000, Taneja et al 1995).  In particular, CUG repeat mRNA form nuclear 

foci that co-localize with multiple members of the muscleblind-like (MBNL) splicing 

factor family in animal models and in affected tissues from patients (Mankodi et al 2003, 

Miller et al 2000, Taneja et al 1995).  MBNL binds to CUG RNA repeats and 

redistributes from a diffuse pattern of nuclear staining to punctate foci in both patient 

tissue samples and when co-expressed with CUG RNA in cell culture models (Mankodi 

et al 2000, Miller et al 2000, Taneja et al 1995).  Based on these findings, it was 

proposed that expanded repeats of CUG RNA might act to sequester MBNL and 

perhaps other key proteins as a primary disease mechanism (Mankodi et al 2000, 

Mankodi et al 2003, Miller et al 2000, Philips et al 1998, Taneja et al 1995).  In DM1 

tissues, there is mis-splicing of a number of MBNL target messages in a fashion that 

indicates loss of MBNL function (Mankodi et al 2002, Philips et al 1998, Savkur et al 

2001).  These include retention of a destabilizing splice variant in the chloride channel 

CIC1, which leads to myotonia; a splice variant of the glutamate receptor NMDAR1 that 

impairs proper dendritic targeting of the mRNA; and multiple splicing alterations in the 

microtubule-associated protein tau that may influence this proteins stability and 

aggregation properties (Dhaenens et al 2008, Dhaenens et al 2011, Ghanem et al 2009, 

Itoh et al 2010, Jiang et al 2004, Leroy et al 2006, Mankodi et al 2002, Sergeant et al 

2001, Wheeler et al 2007).   

However, MBNL1 sequestration is only part of the DM1 story.  In addition to 

causing splicing deficits, studies in patient derived tissues and multiple animal models of 

the disease demonstrate alterations in CUG Binding Protein 1 (CUGBP1) expression 

and activation (Philips et al 1998, Timchenko et al 2001).  CUGBP1 is also a splicing 

factor, but it has numerous other roles in RNA processing, transport, and translation 

within neurons.  Although CUGBP1 can bind to CUG RNA, it is not sequestered in RNA 

foci and instead appears to be activated by the presence of expanded CUG RNA 

expression.  Importantly, overexpression of CUGBP1 recapitulates some critical 

features of DM1 pathology (Ward et al 2010).  Together, these data suggest a 

concurrent role for MBNL and CUGBP1 in DM1 (Orengo et al 2008, Wang et al 2007a).   

RNA-binding protein sequestration is not unique to DM1 and DM2.  In total, 

sequestration of specific RNA binding proteins are proposed as a primary pathogenic 



6 
 

mechanism in at least five different RNA dominant disorders.  One recently described 

example of this is spinocerebellar ataxia Type 10 (SCA10).  SCA10 is a rare cerebellar 

ataxia and epilepsy syndrome that results from an ATTCT repeat expansion in the 

3’UTR of the E46L gene (Lin & Ashizawa 2003, Matsuura et al 2000, White et al 2010).  

In patient derived cells and in transfected cells, this RNA repeat drives formation of 

nuclear and cytoplasmic foci and cellular apoptosis (White et al 2010).  The RNA foci 

co-localize with the RNA binding protein hnRNP K and strongly bind to it in vitro and in 

vivo (White et al 2010).  Moreover, central aspects of the cellular RNA toxicity can be 

recapitulated by siRNA knockdown of hnRNP K (White et al 2010).  Future work will 

need to address whether interactions of AUUCU repeat RNA with hnRNP K are 

sufficient to explain the full clinical phenotype in animal models and whether 

overexpression of hnRNP K can suppress the cellular toxicity elicited by the AUUCU 

repeat RNA (White et al 2010). 

Another form of spinocerebellar ataxia has recently been described, SCA31 

(Sato et al 2009).  SCA31 arises from an inserted TGGAA repeat on chromosome 16.  

When this repeat is transcribed it forms nuclear inclusions and co-localizes with the 

serine/arginine-rich splicing factors (SFRS) 1 and 9 (Sato et al 2009).  While this finding 

does not yet directly link SFRS1 and 9 inactivity to the pathology associated with 

SCA31, it does indicate yet another neurological disorder may be associated with 

nucleotide repeats capable of mediating neurodegeneration by way of protein 

sequestration. 

FXTAS pathogenesis is hypothesized to result from a primary mRNA toxic gain 

of function mechanism akin to myotonic dystrophy type 1 (DM1; (Hagerman et al 2001, 

Todd & Paulson 2010)).  FMR1 mRNA but not FMR protein was found in FXTAS patient 

derived nuclear inclusions (Tassone et al 2004b). Further, ectopic expression of an 

expanded CGG repeat in the context of a heterologous transcript was sufficient to 

cause neurodegeneration and intranuclear inclusions in Drosophila (Jin et al 2003), 

transfected cells (Hashem et al 2009), and in murine purkinje cells (Hashem et al 2009).  

However, unlike DM1, the primary sequestered RNA binding protein in FXTAS remains 

unclear.   A proteomic analysis of the nuclear inclusions in FXTAS revealed a large 

number of proteins in the aggregates, including the RNA binding protein hnRNPA2/B1, 
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the nuclear envelope protein lamin A/C and the small heat shock protein αB-crystallin 

(Iwahashi et al 2006).  Importantly, a number of other potential toxic aggregating 

proteins were not seen in the inclusions, including α-synuclein and tau, however TDP-

43 is found in inclusions (He et al 2014).   Subsequently, Jin and colleagues identified 

two CGG repeat RNA binding proteins, Pur α and hnRNPA2/B1, by affinity 

chromatography (Jin et al 2007).  Both are present in FXTAS patient inclusions and co-

expression of either of these proteins suppresses CGG repeat mediated toxicity in a 

Drosophila model (Jin et al 2007, Sofola et al 2007).  Interestingly, hnRNPA2/B1 binds 

to CUGBP1 and overexpression of CUGBP1 suppresses the CGG repeat phenotype in 

Drosophila (Sofola et al 2007).  However, as the changes in CUGBP1 are in the 

opposite direction of those seen in DM1, the relevance of this finding to FXTAS 

pathogenesis remains unclear (Sofola et al 2007).  In addition to its interaction with 

CUGBP1, hnRNPA2/B1 overexpression itself can also rescue CGG toxicity (Muslimov 

et al 2011, Tan et al 2012).  Work from our group demonstrated that expression of TDP-

43, but not FUS, can rescue CGG-associated phenotypes through interactions with 

hnRNPA2/B1 (He et al 2014). 

TDP-43 is not the only splicing factor involved in models of FXTAS, but splicing 

in general appears to play a key role in its pathogenesis (Figure 2.1B-C).  Sam68 is 

another RNA binding protein identified within FXTAS human patient brain inclusions 

(Sellier et al 2010).  Sam68 binds to both RNA and DNA and is a known splicing factor 

which interacts with additional RNA binding proteins (Lukong & Richard 2003, Richard 

2010).  The absence of Sam68 causes a motor coordination phenotype in knockout 

mice (Lukong & Richard 2003). In cell culture, Sam68 is recruited to CGG repeat 

aggregates as an early event in pathogenesis.  This sequestration leads to altered 

splicing of a number of Sam68 target mRNAs, which are also mis-spliced in FXTAS 

model mice and human patient brain samples (Sellier et al 2010).  Moreover, 

knockdown of Sam68 prevented CGG RNA induced aggregate formation.  Sam68 does 

not bind directly to CGG RNA, but rather associates with DGCR8, a double stranded 

RNA-binding protein which binds directly to CGG repeats (Sellier et al 2013).  DGCR8 

normally recruits the miRNA processing protein, DROSHA, to primary miRNA 

transcripts to be cleaved into precursor miRNAs (Han et al 2004, Landthaler et al 2004, 
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Lee et al 2003, Wang et al 2007b).  When DGCR8 is bound to CGG repeats it then 

sequesters DROSHA, impairing the production of numerous miRNAs, and contributing 

to CGG-mediated toxicity (Sellier et al 2013). 

Although sequestration of Sam68, DROSHA, and other RNA binding proteins by 

CGG repeat RNA may be important aspects of FXTAS pathogenesis, other 

mechanisms likely contribute to neuronal dysfunction and neurodegeneration in this 

disorder.  Recent reports suggest a novel mechanism by which non-coding RNA 

repeats might lead to toxicity and neurodegeneration.  Zu et al first described an 

aberrant repeat-associated non-AUG (RAN) translation which generates polyglutamine, 

polyalanine, and polyserine tracts from otherwise non-coding CAG repeat mRNA 

messages (Zu et al 2011).  This was initially identified when transfection of a CAG 

repeat-containing Ataxin8OS construct lacking the ATG start site failed to prevent 

translation of the polyglutamine tract.  Further experiments using C-terminal epitope 

tags in differing reading frames demonstrated that this aberrant translation occurred in 

all three possible reading frames of the CAG repeat.  The effect of RAN translation was 

repeat length-dependent, in that constructs with 15 CAG repeats did not trigger AUG 

independent translation, but those with 45 or greater did.  This RAN translation only 

occurs when the repeat tract is complementary and forms a hairpin structure.  Zu et al 

further identified staining for these novel proteins in a spinocerebellar ataxia type 8 

(SCA8) mouse model, and in human SCA8 cerebellum using an antibody generated 

against the putative SCA8-GCA frame (polyalanine) peptide.  A similar approach 

demonstrated a novel polyglutamine protein in DM1, presumably as a result of RAN 

translation from an antisense transcript though the CTG/CAG repeat (Cho et al 2005, 

Zu et al 2011).   

Our group has demonstrated that RAN translation also occurs at expanded CGG 

repeat contexts, producing peptides in polyglycine and polyalanine reading frames 

(Todd et al 2013).  Expression of CGG repeats in cell culture Drosophila causes 

ubiquitin positive inclusions, which contain the polyglycine peptide generated from RAN 

translation through the repeat (Todd et al 2013).  In the context of the Fmr1 mRNA, a 

novel FMRpolyG protein is generated in mouse models and FXTAS human brain 

samples (Todd et al 2013).  Similarly, the recently described hexinucleotide GGGGCC 
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repeat in C9ORF72 which is the most common genetic cause of amyotrophic lateral 

sclerosis (ALS) and frontotemporal dementia (FTD) also triggers RAN translation and 

causes aberrant peptide synthesis (Ash et al 2013, DeJesus-Hernandez et al 2011, 

Mori et al 2013, Renton et al 2011).  These findings suggest a novel mechanism for 

aberrant protein synthesis from repetitive nucleotide sequences in the absence of an 

obvious open reading frame.  While further studies are required to establish whether 

RAN translation significantly contributes to pathogenesis in the disorders described, the 

potential extension of this mechanism to other nucleotide repeat disorders could 

dramatically change our understanding of what drives neurodegeneration in this class of 

diseases (Figure 1.2E; (Pearson 2011)). 



10 
 

 
Figure 1.2: Mechanisms underlying RNA mediated neurodegeneration in nucleotide 
repeat disorders. 
(A) Bidirectional transcription at loci with expanded nucleotide repeats leads to the 
generation of multiple potentially toxic products. (B and C) Sense transcripts of tri-
nucleotide CUG (shown here), CAG, or CGG repeats form secondary mRNA hairpin 
structures that can bind to and sequester RNA-binding proteins. The decreased 
availability of RNA binding proteins such as splicing factors leads to alterations in the 
splicing and expression of other mRNAs in trans. Transcription factors and other 
nucleotide associated proteins may also be sequestered with effects on neuronal 
homeostasis. (D) Antisense transcription through the repeats leads to the generation of 
other potentially toxic mRNA sequences. These antisense transcripts sometimes 
contain open reading frames through the repeat, leading to translation of potentially 



11 
 

toxic amino acid homopolymer production (e.g. polyglutamine containing proteins). (E) 
Homopolymer containing proteins may also be generated through a novel process 
known as repeat-associated non-AUG initiated (RAN) translation. Shown is the 
production of a polyglutamine peptide; however, alternative homopolymers in all three 
potential reading frames may be generated from each transcript. 

 

These mechanisms of protein sequestration and aberrant RAN translation likely 

both contribute to neuronal toxicity in FXTAS.  Protein quality control is also closely 

linked to both of these phenomena.  Both FXTAS model systems and patient samples 

show evidence of large proteinaceous ubiquitinated intranuclear inclusions, indicating 

alterations in the ubiquitin proteasome system (UPS) as a result of CGG-mRNA 

expression (Greco et al 2002, Willemsen et al 2003).  In a drosophila model of the 

disease, co-expression of the chaperone heat shock protein 70 (Hsp70) suppresses 

CGG repeat induced neurodegeneration (Jin et al 2003).  Similarly, in patient derived 

fibroblast cultures and in neuronal cultures from female heterozygous FXTAS model 

mice, there are significant markers of cellular stress, including elevated expression of 

multiple heat shock proteins, increased nuclear heterochromatin formation and 

decreased cellular viability (Chen et al 2009, Garcia-Arocena et al 2010).  In HEK cells 

stably transfected with 120 CGG repeats, gene activation triggers reduced cell viability 

and an increased sensitivity to drugs that impair protein quality control pathways (Handa 

et al 2005).  In transfected human neuroblastomas containing the FMR1 5’UTR with 88 

repeats preceding eGFP, there was a similar reduction in viability associated with gene 

activation and αB-crystallin positive (but ubiquitin negative) intranuclear inclusion 

formation at 72 hours after gene transfection (Arocena et al 2005).  Interestingly, in both 

patient derived fibroblasts as well as transfected cells, CGG repeat expression leads to 

alterations in the expression and distribution of Lamin A/C within the nuclear membrane 

(Arocena et al 2005, Garcia-Arocena et al 2010).  Given that Lamin A/C is found as a 

component of the intranuclear inclusions, the authors proposed that one component of 

FXTAS pathogenesis could be as a “laminopathy”, as occurs in Emory–Dreifuss 

muscular dystrophy and the premature aging disorder Progeria (Arocena et al 2005, 

Capell & Collins 2006, Garcia-Arocena et al 2010, Zaremba-Czogalla et al 2011).   

Recent work from our group has identified an overlap between the RAN peptides 

produced in CGG-expressing models and UPS impairment (Oh et al 2015).  In 
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drosophila and cell-based models, expression of CGG-containing mRNAs led to repeat-

dependent impairment of the UPS, and degeneration; this effect was suppressed by 

expression of the chaperone Hsp70 (Oh et al 2015).  Enhancing production of the CGG-

Fmr1 RAN peptide, FMRpolyG, caused increased UPS impairment, while blocking its 

translation ameliorated the associated phenotypes (Oh et al 2015).  These findings 

support a model in which production of at least one of the aberrant RAN peptides are 

linked to toxicity through disruption of UPS function.  Work is ongoing to identify similar 

mechanistic underpinnings in related expanded repeat disorders.   

 

FMRP expression in FXTAS 
 

Although FXTAS is a degenerative disease that affects primarily a geriatric 

population, a number of recent studies suggest that the CGG premutation also alters 

neuronal and synaptic development.  To understand the relevance of these findings, it is 

important to appreciate the normal functions of FMRP, the dynamics of FMR1 

translation under normal circumstances and the potential effect of the expanded CGG 

repeat on translational inefficiency.  FMRP is an RNA binding protein that regulates 

dendritic synthesis of proteins in response to synaptic stimulation (Ronesi & Huber 

2008, Zukin et al 2009).  Interestingly, one of the messages FMRP likely regulates at 

synapses is Fmr1, which is rapidly translated in response to metabotropic glutamate 

receptor (mGluR) stimulation (Hou et al 2006, Iliff et al 2013, Todd et al 2003a, Weiler et 

al 1997).  Thus, efficient translation of FMRP at synapses is an important part of the 

proteins basal function.  The CGG repeat in Fmr1 acts to impair translation by 

interfering with ribosomal scanning through the 5’UTR, preventing appropriate loading 

of CGG expanded FMR1 mRNA into polyribosomal complexes (Ludwig et al 2011, 

Ludwig et al 2009, Primerano et al 2002).  Although FMRP expression levels in patients 

with FXTAS have been widely reported as only slightly decreased (Kenneson et al 

2001, Primerano et al 2002, Singh et al 2007, Tassone et al 2000c), more recent 

reports on patient brain tissue indicates a significant decrease in neuronal FMRP levels 

(Ludwig et al 2014, Pretto et al 2014, Renoux et al 2014a).  Given evidence from mice 

that FMRP expression declines with age (Gaur & Prasad 2014, Iliff et al 2013, Ludwig et 
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al 2014, Singh et al 2007), a role for FMRP insufficiency in FXTAS, especially in 

patients with large CGG repeat expansions, deserves further consideration (Hessl et al 

2011).  

Most of the studies addressing a potential role for FMRP insufficiency have 

utilized one of two knock-in (KI) mouse models where a portion of the human 5’UTR 

from a premutation carrier has been inserted into the Fmr1 mouse locus (Bontekoe et al 

2001, Entezam et al 2007, Hashem et al 2009, Peier & Nelson 2002).  Both mice, as 

well as a YAC transgenic model mouse, demonstrate intra-generational instability, 

elevated Fmr1 mRNA expression and variably decreased FMRP expression at larger 

premutation repeat lengths (Brouwer et al 2008, Entezam et al 2007, Hashem et al 

2009, Iliff et al 2013, Ludwig et al 2014, Peier & Nelson 2002, Willemsen et al 2003).    

In the best characterized of the models, generated by a Dutch consortium 

(Berman & Willemsen 2009, Willemsen et al 2003), CGG KI mice show signs of 

hippocampal-dependent cognitive impairment at an early age that precedes frank 

neurodegeneration or inclusion formation (Hunsaker et al 2009).  These same mice also 

show signs of age-dependent cognitive decline in later life as measured by impaired 

visual-spatial learning and performance on the Morris water maze (Van Dam et al 

2005).  Interestingly, cultured hippocampal neurons from heterozygous female CGG KI 

mice demonstrate early developmental defects including delayed dendritic complexity 

and outgrowth (Chen et al 2010).  As a follow up to this study, Cunningham and 

colleagues identified significant delays in cortical development in CGG KI mice during 

embryogenesis characterized by migrational defects in the neocortex and altered 

expression of neuronal lineage markers (Cunningham et al 2010).  As these mice have 

relatively large CGG repeat expansions (~150 CGGs), they express only about 50% of 

basal FMRP levels in embryonic tissues.  Importantly, defects in neural stem cell 

proliferation, which have been reported in Fmr1 knockout mouse models (Tervonen et 

al 2009), were not present in these animals, suggesting the etiology of the 

developmental defects in the CGG KI mice may be more than just FMRP insufficiency 

(Cunningham et al 2010). 

In the more recently described of the two knock-in models, generated by a group 

at the NIH, the inefficiency of CGG-Fmr1 translation appears to be greater, for unknown 
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reasons (Entezam et al 2007, Iliff et al 2013, Qin et al 2011).  This translational 

inefficiency leads to lower FMRP levels for a given CGG repeat size, especially in 

certain brain regions, though greater basal CGG Fmr1 RNA expression (Entezam et al 

2007, Iliff et al 2013, Qin et al 2011).  Despite the increased amount of CGG-containing 

RNA produced, these mice generate few intranuclear inclusions, although they do 

demonstrate mild cerebellar and cortical neurodegeneration with age (Entezam et al 

2007).   Differences between cloning strategies to generate these two KI mice resulted 

in differential RAN translation between models.  Specifically, the Dutch CGG KI mice 

contain more of the human 5’UTR sequence, and undergo RAN translation as a result 

(Entezam et al 2007, Todd et al 2013, Willemsen et al 2003).  The production of a 

FMRpolyG peptide in the Dutch CGG KI model is likely responsible for the increased 

inclusion incidence when compared to the NIH KI model (Todd et al 2013). 

In a recent study, the NIH CGG KI mice were found to exhibit some features also 

seen in Fmr1 KO mice.  Most notably, they had decreased dendritic arborization and 

longer thin spines on histological analysis, along with increased regional brain protein 

synthesis rates (Qin et al 2011).   Taken together, these data suggest that therapeutic 

strategies aimed selectively at eliminating the toxic CGG repeat mRNA run a significant 

risk or exacerbating symptoms of FXTAS that may relate to decreased basal or activity 

dependent FMRP expression (Todd et al 2010). 

 

Neuronal function of FMRP 
 

 As FXS is caused by loss of the FMR protein, an extensive body of research into 

the function of FMRP has amassed.  As discussed above, FMRP is an RNA binding 

protein found associated with polyribosome complexes and target mRNAs (Darnell et al 

2005, Darnell et al 2011, Khandjian et al 2004, Stefani et al 2004, Zukin et al 2009).  

FMRP is phosphorylated basally by S6 kinase, and neuronal activity (specifically of 

mGluRs) causes FMRP to be dephosphorylated by PP2A (Narayanan et al 2007, 

Narayanan et al 2008).  This dephosphorylation causes FMRP to dissociate from its 

ribosome complex, leading to a local burst of new protein synthesis (Bassell & Warren 

2008, Ceman et al 2003, Waung & Huber 2009).  Recent work has gone on to show 
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that FMRP is ubiquitinated and degraded upon mGluR stimulation (Hou et al 2006, 

Nalavadi et al 2012).  One target transcript associated with FMRP is the Fmr1 mRNA 

(Ashley et al 1993, Schaeffer et al 2001).  As a result, FMRP is newly translated at the 

synapse with mGluR stimulation (Hou et al 2006, Iliff et al 2013, Todd et al 2003b, 

Weiler et al 1997). 

A large body of work aimed at identifying FMRP-regulated transcripts has 

revealed a long list of putative mRNA targets.  Initial work identified mRNA motifs and 

sequences associated with FMRP binding regions (Brown et al 2001, Chen et al 2003a, 

Darnell et al 2005, Darnell et al 2001, Miyashiro et al 2003, Schaeffer et al 2001, Zalfa 

et al 2003).  More recent work made possible with advances in high throughput and 

deep sequencing has identified over 100,000 potential targets (Ascano et al 2012, 

Darnell et al 2011).  Many transcripts coding for synaptic proteins were identified, 

indicating that FMRP plays a critical role in the regulation of synaptic composition 

(Ascano et al 2012, Darnell et al 2001).  While the majority of these transcripts have yet 

to be validated as FMRP targets, several critical transcripts have been evaluated, and 

found to be altered in Fmr1 KO cells.  These transcripts include the immediate early 

gene Arc, amyloid precursor protein (APP), and the postsynaptic scaffolding protein 

PSD95 (Ascano et al 2012, Muddashetty et al 2007, Niere et al 2012, Todd et al 2003a, 

Waung et al 2008, Westmark & Malter 2007).   

Synaptic translation of these key proteins is of particular interest as local 

translation is required for synaptic plasticity (Kelleher et al 2004, Klann & Dever 2004, 

Malenka & Bear 2004, Richter & Klann 2009, Sutton & Schuman 2006).  FMRP’s role 

as a translational regulator indicated that Fmr1 KO animals may have alterations in 

synaptic plasticity.  mGluR-dependent long term depression (LTD) is significantly 

enhanced in Fmr1 KO hippocampal slices (Huber et al 2002).  Interestingly, this 

enhanced synaptic weakening persisted in the absence of protein synthesis in Fmr1 KO 

animals (Nosyreva & Huber 2006).  The absence of FMRP basally causes an increase 

in key synaptic proteins independent of mGluR signaling (Bear et al 2004, Todd & 

Malter 2002).  Subsequent work has identified dendritic Arc expression to be increased 

basally in cultured hippocampal neurons lacking FMRP (Niere et al 2012).  This basal 

increase in proteins required for plasticity likely underlies the enhanced LTD phenotype, 
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and renders synaptic weakening independent of new protein synthesis (Bear et al 2004, 

Todd & Malter 2002). 

While mGluR-LTD in Fmr1 KO mice is enhanced and protein synthesis 

independent, another form of synaptic weakening, NMDA-LTD, is unchanged (Huber et 

al 2002).  Several groups have also evaluated the role of FMRP in long term 

potentiation (LTP); however the results have been inconsistent.  There are differences 

depending on the kind of LTP induction protocol used, and the brain region studied 

(Chung et al 2012, Godfraind et al 1996, Larson et al 2005, Lauterborn et al 2007, Lee 

et al 2011, Li et al 2002, Meredith et al 2007, Zhao et al 2005).  The stronger high 

frequency stimulation showed no change in hippocampal LTP, however a similar 

induction protocol in the cortex found significant impairments in Fmr1 KO mice 

(Godfraind et al 1996, Li et al 2002).  High frequency stimulation also found impaired 

LTP in the amygdala and anterior cingulate cortex in Fmr1 KO mice (Zhao et al 2005).  

However, a more subtle theta burst stimulation found impaired LTP in the hippocampus 

and in the anterior piriform cortex of older Fmr1 KO animals (Larson et al 2005, 

Lauterborn et al 2007, Lee et al 2011).  Spike timing LTP is also altered in the cortex of 

animals lacking FMRP (Meredith et al 2007). 

In addition to Hebbian LTP and LTD, FMRP also plays a role in homeostatic 

plasticity (HSP).  There are two types homeostatic plasticity: global HSP and local HSP. 

Global HSP is observed after chronic blockade (48 hours) of action potentials in 

cultured neurons with the voltage-gated sodium channel antagonist tetrodotoxin (TTX). 

Blocking neurons with TTX produces a compensatory increase in miniature excitatory 

postsynaptic current (mEPSC) amplitudes due to a transcription-dependent 

accumulation of GluR2-containing AMPARs (Gainey et al 2009). On the contrary, local 

HSP is observed by blocking NMDA receptors and action potentials (TTX+APV) in 

cultured hippocampal neurons (Sutton et al 2006). In turn, this leads to an increase in 

the amplitude of mEPSCs within 60 minutes (Sutton et al 2006).  AMPAR blockade in 

place of NMDAR blockade can lead to similar results, however this treatment also 

causes presynaptic changes (Henry et al 2012, Jakawich et al 2010).  

Interestingly, FMRP has been shown to play an important role in the mechanism 

of HSP (Soden & Chen 2010).  CA1 pyramidal neurons show increased mEPSC 
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amplitude following TTX+APV treatment, which was absent in Fmr1 KO neurons (Soden 

& Chen 2010).  Reduced FMRP expression causes a threshold-dependent reduction in 

surface GluR1-containing AMPARs at baseline (Nakamoto et al 2007).  Furthermore, 

postsynaptic expression of mutant FMRP which cannot bind target transcripts (I304N) in 

Fmr1 KO neurons reduces the total, surface, and synaptic levels of AMPA receptors, 

hence suggesting a role for FMRP-regulated protein translation in controlling synaptic 

AMPAR abundance (Soden & Chen 2010).  Remarkably little research has been 

performed to understand how HSP mechanisms may be impacted in the presence of 

the Fragile X premutation. While Hebbian mGluR-LTD is altered in premutation model 

mice, it is not clear whether the impaired activity-dependent FMRP production resulting 

from the expanded CGG repeat will also impact HSP (Iliff et al 2013).  

FMRP also regulates the translation of several key voltage-gated channels.  The 

L-type calcium channel subunit α1D is an FMRP-regulated protein, in addition to the 

voltage-gated potassium channels Kv4.2 and Kv3.1 (Chen et al 2003a, Gross et al 

2011, Lee et al 2011, Strumbos et al 2010).  Expression of the AMPA subunit GluR1 is 

also regulated by FMRP and the related protein FXR2 (Guo et al 2015, Li et al 2002, 

Muddashetty et al 2007).  Besides regulating the translation of proteins required for 

synaptic function and plasticity, FMRP also directly interacts with several important ion 

channels.  FMRP associates with the regulatory β4 subunit of BK potassium channels, 

increasing action potential duration in Fmr1 KO neurons (Deng et al 2013).   It also 

interacts with the sodium-activated potassium channel Slack to regulate its open 

probability (Brown et al 2010).  Taken together, these findings suggest a strong role for 

FMRP in the control of neuronal firing and plastic adaptation properties.  It’s likely all of 

these features converge to give way to the altered intellectual status and autistic 

symptoms seen in FXS patients.  As mentioned above, the role of reduced FMRP in 

premutation patients has not been widely examined for some of these same neuronal 

properties that have been described in Fmr1 KO animals and FXS human patients.   

 

Hypotheses and addressable questions 
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FXTAS is a complex disorder, comprised of a toxic RNA gain-of-function, a toxic 

protein gain of function and alterations in FMRP expression under basal and activity 

dependent conditions (Hagerman 2013, Nelson et al 2013).  Much of the work on this 

disorder has focused on the mechanisms of CGG-mediated toxicity, including protein 

sequestration which is linked to splicing and miRNA processing changes, and UPS 

impairment partially dependent on RAN translation of the repeat (Hagerman 2013, 

Hagerman & Hagerman 2013, Oh et al 2015, Sellier et al 2013, Sellier et al 2010, Todd 

et al 2013).  However, more recent work has begun to focus on the impact of reduced 

FMRP in FXTAS models and human patients.   

 As FMRP is a critical translational regulator involved in many neuronal functions, 

including neuronal signaling and plasticity, the question of what happens in the 

premutation population base, which is potentially very large, is of particular interest.  

The goal of this work is to explore the impact of the premutation in a mouse model of 

FXTAS and explore the differences and contributions of the increased CGG-mRNA and 

reduced FMRP levels.  Similarly, exploring and identifying key phenotypic overlaps 

between the Fmr1 KO mouse and the premutation mouse model could have the clinical 

advantage of applying therapeutics developed for FXS to symptomatic premutation 

carriers.  In addition, understanding how the premutation may affect neuronal function 

prior to neurodegeneration could help understand the sequence of events that lead up 

to the age and time-dependent features of neurodegeneration in FXTAS. 

  There is a significant amount of data now suggesting that the presence of 

an expanded CGG repeat in the 5’UTR of FMR1 results in functional outcomes that 

phenotypically overlap with those observed in the absence of FMRP.  This data 

suggests that at least a portion of the clinical phenotype observed in patients with 

premutation repeat expansions and in premutation model mice are a result of 

insufficient FMRP.   

 As expanded CGG repeats in Fmr1 impair the translation of FMRP, I hypothesize 

that activity dependent production of new FMRP in particular will be blocked in 

premutation model mice and patients with premutation expansions.  This inability to 

produce new FMRP in response to neuronal activity will alter synaptic function and 

plasticity, and these alterations in synaptic function will correlate with behavioral 
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phenotypes in these mice.  I expect that these alterations in synaptic and behavioral 

metrics will overlap with those described in Fmr1 KO mice and FXS patients.  I also 

hypothesize that FMRP target protein expression and its impact on ion channel function 

will also be altered in CGG KI model and FXTAS patient brain tissues.   

 To examine the questions and hypotheses above, I will use the CGG KI mouse 

generated by the NIH group to model animal behavior, slice physiology, and primary 

neuronal culture.  I have taken advantage of the fact that Fmr1 is on the X chromosome 

to produce an additional model which generates intra-animal WT and CGG KI neurons 

for better control in culture experiments.  By crossing a transgenic female animal with a 

GFP transgene knocked into the X chromosome to male premutation CGG KI/Y 

animals, the heterozygous females will be mosaic and express GFP+/WT Fmr1 

neurons, and GFP-/CGG KI Fmr1 neurons by way of X-inactivation.    

In all of the cases listed above, an alternative model is that increased CGG-

mRNA mediated toxicity is responsible for the phenotypes observed, as opposed to 

differential expression of FMRP.  To evaluate the mechanistic contribution of these two 

features, I will use WT rat hippocampal neurons and a lentivirus construct to 

overexpress CGG repeats in the background of normal FMRP levels.  Future work will 

utilize an shRNA vector against Fmr1 to reduce FMRP levels to those seen in CGG KI 

cells, and explore similar phenotypes observed in CGG KI animals. 
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Chapter 2  
Impaired activity-dependent FMRP translation and enhanced mGluR-dependent 

LTD in Fragile X premutation mice2  
 

Abstract 
 

Fragile X premutation-associated disorders, including Fragile X-associated 

Tremor Ataxia Syndrome, result from unmethylated CGG repeat expansions in the 

5’untranslated region of the FMR1 gene.  Premutation sized repeats increase FMR1 

transcription but impair rapid translation of the fragile X protein, FMRP, which is absent 

in Fragile X Syndrome. Normally, FMRP binds to RNA and regulates metabotropic 

glutamate receptor (mGluR) mediated synaptic translation, allowing for dendritic 

synthesis of several proteins.  FMRP itself is also synthesized at synapses in response 

to mGluR activation.  However, the role of activity-dependent translation of FMRP in 

synaptic plasticity and Fragile X-premutation associated disorders is unknown.  To 

investigate this question, we utilized a CGG knock-in mouse model of the Fragile X 

premutation with 120-150 CGG repeats in the mouse Fmr1 5’UTR. These mice exhibit 

increased Fmr1 mRNA production but impaired FMRP translational efficiency, leading 

to a modest reduction in basal FMRP expression.  Cultured hippocampal neurons and 

synaptoneurosomes derived from CGG KI mice demonstrate impaired FMRP translation 

in response to the group I mGluR agonist DHPG.  Electrophysiological analysis reveals 

enhanced mGluR mediated long term depression (mGluR-LTD) at CA3-CA1 synapses 

in acute hippocampal slices prepared from CGG KI mice relative to wild-type littermates, 
                                            
2 Most of this chapter was originally published as: Iliff AJ*, Renoux AJ*, Krans A, Usdin K, Sutton MA, 
Todd PK. 2013. Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in 
Fragile X premutation mice. Hum Molec Genet.  22(6):1180-92.  
(*Authors contributed equally.) 
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similar to Fmr1 knockout mice.  However, unlike mGluR-LTD in mice completely lacking 

FMRP, mGluR-LTD in CGG knock-in mice remains dependent on new protein 

synthesis.  These studies demonstrate partially overlapping synaptic plasticity 

phenotypes in mouse models of FXS and Fragile X premutation disorders and support a 

role for activity-dependent synthesis of FMRP in enduring forms of synaptic plasticity.    

 

Introduction 
 

Fragile X Syndrome (FXS) is the most common known monogenic cause of 

autism and intellectual disability, affecting upwards of one in 4000 boys and one in 8000 

girls (Hernandez et al 2009, Rogers et al 2001).  FXS results from expansion of a CGG 

microsatellite repeat in the 5' untranslated region of the FMR1 gene on the X 

chromosome.  In humans, this sequence is normally less than 45 CGG repeats.  

Expansions to greater than 200 repeats trigger hypermethylation of the repeat and 

FMR1 promoter, resulting in transcriptional silencing of the FMR1 gene and absence of 

the Fragile X mental retardation protein, FMRP (Bell et al 1991, Kremer et al 1991, 

Oberle et al 1991, Pieretti et al 1991, Verkerk et al 1991).   

  FMRP is an RNA binding protein that regulates activity-dependent translation of 

associated transcripts at the synapse (Bassell & Warren 2008).  Mice lacking FMRP 

(Fmr1 KO mice) exhibit specific defects in synaptic signaling mediated through group I 

metabotropic glutamate receptors (mGluRs; (Huber et al 2002)).  At CA3-CA1 synapses 

in the hippocampus, mGluR activation normally leads to a long term depression (LTD) 

of synaptic efficacy that requires new dendritic protein synthesis (Huber et al 2000, 

Nosyreva & Huber 2006, Park et al 2008, Shepherd et al 2006).  mGluR agonists trigger 

rapid FMRP dephosphorylation and degradation, which allows synaptic translation of 

FMRP associated transcripts (Hou et al 2006, Nalavadi et al 2012, Niere et al 2012).  In 

mice lacking FMRP,  mGluR LTD is enhanced and no longer requires new protein 

synthesis, and mGluR agonists fail to trigger translation of FMRP target mRNAs (Huber 

et al 2002, Muddashetty et al 2007, Niere et al 2012, Nosyreva & Huber 2006, Todd et 

al 2003a).  The absence of FMRP is thought to decouple mGluR 1/5 activity from 
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protein translation, such that basal dendritic translation of these target mRNAs is 

increased, but mGluR coupled dendritic translation is lost (Bear et al 2004).    

One of the dendritically-localized transcripts whose translation is regulated by 

mGluR signaling is FMRP itself (Antar et al 2004, Hou et al 2006, Todd et al 2003a, 

Weiler et al 1997).  Although the function of this newly synthesized FMRP is unknown, it 

has been proposed to act as a brake on local protein production, hence constraining 

LTD by limiting the new translation of LTD effector proteins (Bear et al 2004, Todd & 

Malter 2002).  A critical prediction of this model is that the magnitude of LTD should be 

enhanced by diminished mGluR-dependent translation of FMRP.  Despite its appeal, 

and its consistency with studies using the Fmr1 knockout mouse as an experimental 

model, this idea has never been directly tested.   

“Premutation” expansions at the FMR1 locus to between 55 and 200 CGG 

repeats are associated with the age-related neurodegenerative condition Fragile X-

associated Tremor Ataxia Syndrome ((FXTAS; (Berry-Kravis et al 2007, Bourgeois et al 

2009, Greco et al 2006, Sullivan et al 2005)).  This disorder, characterized clinically by 

gait ataxia, action tremor, dementia and neuropsychiatric symptoms, occurs in ~40% of 

male premutation carriers over the age of 50 (Jacquemont et al 2004).  However, 

premutation range repeats are relatively common in the population (estimates upwards 

of 1:813 males and 1:259 females (Jacquemont et al 2007, Seltzer et al 2012)), and 

have the potential to significantly influence the risk of other human diseases.  Recent 

studies in young premutation carriers demonstrate higher rates of autism and ADHD-

like symptoms in the absence of FXTAS symptoms (Clifford et al 2007, Farzin et al 

2006, Grigsby et al 2006, Loesch et al 2003a, Loesch et al 2002, Loesch et al 2004, 

Loesch et al 2007) and FXS phenotypes have been reported in larger premutation and 

unmethylated full mutation carriers who produce FMR1 mRNA but inefficiently translate 

FMRP (Allen et al 2005, Chonchaiya et al 2009, Feng et al 1995, Hagerman et al 1996, 

Jacquemont et al 2011, Tassone et al 2000a, Tassone et al 2000b).  

Unlike full mutation expansions, premutation sized repeats are unmethylated and 

over-transcribed, leading to a 2-8 fold elevation in production of FMR1 mRNA (Tassone 

et al 2007, Tassone et al 2000c, Todd et al 2010).  However, the CGG repeat 

expansion forms a hairpin loop in the 5′UTR of the RNA transcript that impairs 
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ribosomal scanning and induces significant translational inefficiency (Kaufmann et al 

1999, Ludwig et al 2011, Primerano et al 2002, Zumwalt et al 2007).  This leads to low-

normal or decreased basal FMRP expression in Fragile X-premutation carriers, 

depending on the repeat size (Kaufmann et al 1999, Tassone et al 2004a).  The 

neurodegeneration seen in FXTAS and other age-related premutation phenotypes are 

thought to result primarily from an RNA gain-of function mechanism (Hagerman 2012, Li 

& Jin 2012, Renoux & Todd 2012).  In contrast, work in two independently generated 

FMR1 premutation mouse models suggests an additional role for FMRP insufficiency in 

aspects of the premutation phenotype, especially in younger animals who do not yet 

demonstrate neurodegenerative sequelae (Berman & Willemsen 2009, Chen et al 2010, 

Cunningham et al 2011, Qin et al 2011).  Defects in these mice include alterations in 

neuronal migration, dendritic branching, synaptic activity in cultured neurons, and 

behavioral defects including altered performance on measures of anxiety and social 

interaction (Cao et al 2012, Cunningham et al , Qin et al 2005). 

Given the known critical roles for FMRP in synaptic function and the translational 

inefficiency induced by CGG repeat expansions, we hypothesized that mice with large 

un-methylated CGG repeat expansions would exhibit a specific defect in their ability to 

rapidly translate FMRP at synapses.  A defect in activity-dependent synthesis of FMRP 

would allow for analysis of the function of newly produced synaptic FMRP, including its 

role in long-lasting forms of synaptic plasticity.  We therefore evaluated dendritic FMRP 

synthesis and synaptic function in a premutation mouse model where a CGG repeat 

expansion has been knocked into the mouse Fmr1 locus (Entezam et al 2007, Qin et al 

2011).   

Here, we show that mice with 120-150 CGG repeats in the mouse Fmr1 5’UTR 

have modestly reduced basal FMRP expression despite elevated Fmr1 mRNA levels, 

consistent with a robust impairment in translational efficiency.  Strikingly, these animals 

exhibit impaired mGluR-dependent translation of dendritic FMRP.  Young CGG KI mice 

exhibit normal basal synaptic properties, but enhanced mGluR-LTD, as in Fmr1 KO 

mice (Huber et al 2002).  However, the mechanism underlying this functional alteration 

is distinct from Fmr1 KO animals, as mGluR-LTD in CGG KI mice remains dependent 

on new protein synthesis.  Our results provide a link between local FMRP synthesis and 
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mGluR-dependent synaptic plasticity, and raise the possibility that some aspects of the 

cognitive defects observed in premutation carriers and unmethylated FXS patients may 

result from altered activity dependent translation of FMRP. 

 

Results 
 

Reduced FMRP translational efficiency in premutation model mice 

To evaluate the neurobiological effects of “premutation” range CGG repeats in 

the Fmr1 gene, we utilized a mouse model of the Fragile X premutation which contains 

~120-150 CGG repeats knocked-in to the endogenous mouse Fmr1 5’UTR (CGG KI, 

(Entezam et al 2007), Figure 2.1A).  Similar to human premutation patients, the 

expression of Fmr1 mRNA is significantly increased in cortical tissue (Fmr1 2/4 exon 

junction WT 1 ± 0.27, KI 5.24 ± 0.98 P<0.05; Fmr1 16/17 exon junction WT 1 ± 0.24, KI 

4.46 ± 0.74; P<0.05, n=5; Figure 2.1B), as well as hippocampus (Fmr1 2/4 exon 

junction WT 1 ± 0.07, KI 4.04 ± 1.11 P<0.05; Fmr1 16/17 exon junction WT 1 ± 0.07, KI 

4.40 ± 1.99, data not shown) in CGG KI mice at 1 month of age (P28-37) compared to 

littermate controls (Figure 2.1B and data not shown).  Despite this increase in mRNA, 

FMRP expression is significantly reduced in both CGG KI cortex (P28-37, WT 100 ± 

10.09%, KI 37.50 ± 4.37%, P<0.05, n=5; Figure 2.1C) and hippocampus (P35-60, WT 

100 ± 17.00%, KI 44.93 ± 14.71%, P<0.05, n=5; Figure 2.1D) from young animals 

compared to littermate controls. To determine the relative translational efficiency of 

Fmr1 mRNA in cortical tissues, we created a ratio of total FMRP/relative Fmr1 mRNA 

from the same animals.  Using this analysis, we find that the efficiency of Fmr1 mRNA 

translation is dramatically reduced in young CGG KI mice compared to littermate 

controls (FMRP CTX/Fmr1 mRNA; WT 100 ± 21.26%, KI 7.60 ± 0.99%, P<0.05, n=5; 

Figure 2.1E).  

  Consistent with previous reports (Entezam et al 2007, Qin et al 2011), FMRP is 

also reduced in the cortex of older (6 month old) CGG KI mice (WT 100 ± 17.57%, KI 

18.57 ± 2.68%, P<0.05, n=3; Figure 2.1C) and, interestingly, as compared to WT 

littermates, the reduction in FMRP expression is greater in older CGG KI animals than 

in younger animals (1mo: KI 37.50 ± 4.37%, n=5; 6mo: KI 18.57 ± 2.68%,  n=3; 



25 
 

P<0.05).  This may reflect either a relatively greater decrease in FMR1 transcription in 

CGG KI vs WT mice with age or could result from somatic instability that is known to 

occur in these mice (Lokanga et al 2012, Singh et al 2007b). 

 
Figure 2.1: Elevated cortical Fmr1 mRNA and decreased FMRP in the fragile X 
premutation mouse. 
(A) PCR genotyping of CGG KI male mice and WT littermates showing the expanded 
CGG repeat.  KI band corresponds to ~120 repeats; WT band corresponds to 8 CGG 
repeats.  (B) Fmr1 mRNA levels in the cortex of p28-37 fragile X premutation male mice 
by qPCR using two different sets of primers against Fmr1.  Bar graph summarizes three 
experiments, n=5.   (C) Representative immunoblot to FMRP (1C3 1:1000) in p28-37 
male mouse cortices from the indicated genotypes.  Below: summary of three 
experiments.  Mean (±SEM) cortical FMRP in 1 month old (p28-38; n=5) and 6 month 
old (p177-181; n=3) CGG KI mice is decreased compared to littermate controls. The 
relative decrease between genotypes is greater in older animals.  (D) Representative 
immunoblot against FMRP (17722 1:1000) in hippocampi of p35 CGG KI animals 
compared to WT littermate controls.  Below: summary of three experiments.  Decreased 
hippocampal FMRP in p35-60 male CGG KI mice compared to WT littermate controls.  
Summary of three independent experiments; n=5.  (E) Translational efficiency of cortical 
Fmr1 RNA expressed as the ratio of FMRP to Fmr1 RNA levels in each individual 
animal, plotted on log10 scale; n=5.  *P<0.05, students t-Test. 
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Activity-dependent synaptic translation of FMRP is impaired in CGG KI mice 

 To examine the sub-cellular distribution of FMRP in CGG KI neurons, we 

generated dissociated hippocampal neurons from CGG KI and WT littermate controls 

(P1-3).  Neurons were probed with antibodies to FMRP on day in vitro (DIV) 14-17 

(Figure 2.2A), and FMRP expression in somatic and dendritic regions was assessed.  

FMRP expression was reduced in both the cell soma and proximal dendrite by similar 

amounts (soma: WT 100 ± 5.74%, KI 49.82 ± 2.69%, P<0.05; dendrite: WT 100 ± 

4.63%, KI 66.87 ± 2.94%, P < 0.05, n=23-24 neurons from 2 animals; Figure 2.2B-D), 

suggesting that, while FMRP expression is lower, what FMRP is expressed in CGG KI 

neurons is appropriately distributed.   

 The reduced efficiency of Fmr1 mRNA translation in CGG KI mice suggests that 

rapid, mGluR-dependent synthesis of FMRP might also be disrupted in the CGG KI 

mice.  To address this question, we first examined changes in FMRP expression upon 

mGluR1/5 simulation in synaptoneurosomes (SNs), a biochemical preparation enriched 

for synaptic components and often used as a means to examine protein synthesis at 

isolated synapses (Muddashetty et al 2007).  SNs were prepared from neocortex of 

P14-21 CGG KI mice and their WT littermates.  In all experiments, we verified the 

appropriate enrichment of the synaptic scaffolding protein PSD95 at different stages of 

SN preparation, and found that the enrichment of PSD95 was similar between WT and 

CGG KI mice (Figure 2.3A).  PSD-95 expression in SNs were similar in WT and CGG KI 

mice (WT 100±23.8%, CGG KI 99.2±24.8%, n=6).  Consistent with our 

immunocytochemical results (Figure 2.2), the expression of FMRP in unstimulated SNs 

was reduced in CGG KI, relative to WT mice (% WT, 42.92 ± 21.51%, P<0.05, n=5; 

Figure 2.3B).  We next examined changes in FMRP expression in response to mGluR 

stimulation: SNs were stimulated with the group 1 mGluR agonist, (RS)-3,5-DHPG 

(100µM) for either 10 or 30 min at 37˚C.  Similar to effects seen previously in WT SNs 

(Weiler et al 1997), DHPG induced significant increases in FMRP at both 10 and 30 min 

time points relative to controls (10 min: WT 199.77 ± 56.97%; 30 min: WT 202.13 ± 

54.83%, P<0.05, n=15; Figure 2.3C-D).  This increase was dependent on new protein 

synthesis (% 30 min untreated samples:  30min DHPG: 162.5±32.6%; 30min 

DHPG+Anisomycin: 124.5±15.1%, n=6, data not shown).    
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Figure 2.2: Reduced FMRP is distributed throughout dendrites in cultured CGG KI 
neurons. 
(A) DIV 14-17 cultured hippocampal neurons from male P1-3 CGG KI and littermate WT 
animals stained for FMRP (1C3 1:500).  (B) 3D surface plot of relative pixel intensity for 
the linearized images shown in A demonstrating reduced FMRP expression throughout 
the soma and dendrite.  (C) Total non-zero FMRP fluorescence intensity was quantified 
in soma, revealing CGG KI neurons have 50% of WT FMRP levels.  (D)  Summary of 
fluorescence intensity studies in dendrites (0-40µm), showing reduced FMRP in CGG KI 
neurons compared to WT neurons; n=23-24 neurons from 2 animals in each group. 
*P<0.05, students t-Test. 
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Figure 2.3: CGG KI synaptoneurosomes do not respond to mGluR stimulation. 
Synaptoneurosomes (SNs) were prepared from WT and CGG KI cortical homogenates. 
(A) Verification of SN preparation was confirmed by PSD-95 enrichment between initial 
homogenate (H), filtered sample (F), post-centrifugation supernatant (S), and final 
synaptoneurosome fraction (SN) in each WT and CGG KI preparation.  (B) 
Representative immunoblot against FMRP (17722 1:1000) in CGG KI SNs compared to 
littermate WT control.  (C) SNs treated with 100μM DHPG for 10 or 30 minutes. 
Samples were immunoblotted for FMRP (17722 1:1000) and actin (1:5000).  (D) 
Quantification of FMRP immunoreactivity normalized to untreated samples. WT n=15, 
CGG KI n=5, *P<0.05, Kruskal–Wallis one-way ANOVA. 
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By contrast, SNs prepared from CGG KI mice did not show changes in FMRP 

expression in response to DHPG stimulation, consistent with impaired mGluR-

dependent translation (Control: KI 42.92 ± 21.51%; 10 min: KI 31.16 ± 9.35%; 30 min: 

KI 40.84 ± 20.12%; NS, n=5; Figure 2.3C-D).  

To further assess mGluR-dependent FMRP translation in CGG KI neurons, we 

took advantage of mice expressing GFP on the X chromosome to generate 

hippocampal cultures where neurons harboring the premutation are intermingled with 

normal length CGG repeat WT neurons (Figure 2.4A-C).  This approach allows us to 

evaluate cell autonomous roles of the premutation by comparing CGG KI neurons with 

neighboring WT neurons in the same culture, a strategy similar to that used previously 

for other X-linked mutations (Hanson & Madison 2007, Niere et al 2012).  Mice 

expressing GFP on the X chromosome (Hadjantonakis et al 1998, Kalantry et al 2009) 
were crossed with CGG KI mice to generate heterozygous XGFP/CGG KI females 

(Figure 2.4A).  This cross generates females possessing one WT X chromosome with a 

normal copy of Fmr1 and GFP and one X chromosome with a premutation range CGG 

repeat knocked-in to the Fmr1 allele, but no GFP.  Due to X-inactivation, roughly half 

the neurons will inactivate the CGG KI X chromosome and express normal Fmr1 mRNA 

along with GFP.  The remaining neurons will inactivate the GFP-expressing 

chromosome and instead express the CGG KI Fmr1 allele (Hadjantonakis et al 1998).  

Analysis of dissociated neuronal cultures and histological staining of hippocampi shows 

roughly equal proportions of GFP+ and GFP- cells in both XGFP/WT and XGFP/KI 

female mice (Figure 2.4B and data not shown).   

We first confirmed the effects of CGG repeat expansions on basal FMRP 

expression in XGFP/CGG KI cultures.  GFP(-)/CGG KI(+) neurons exhibit reduced 

FMRP immunoreactivity in mixed XGFP/CGG KI cultured networks at DIV14-17 

compared to neighboring GFP(+)/FMR1 WT neurons (Figure 2.4C-E).  Consistent with 

studies in non-mosaic neuronal cultures (Figure 2.2), these effects were seen both in 

the soma (WT 100 ± 4.79%, KI 30.07 ± 1.70%, P<0.05, n=14-24 neurons; Figures 2.4D-

E) and in both proximal and distal dendritic segments of CGG KI GFP neurons (0-40µm: 

WT 100 ± 8.65%, KI 46.46 ± 7.03%; 40-80µm: WT 100 ± 17.22, KI 51.47 ± 5.92%; 80-

120µm: WT 100 ± 15.05%, KI 55.05 ± 5.36%, P<0.05, n=13-23 neurons; Figure 2.4D).  
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The total amount of FMRP detected decrements with distance from the cell soma in 

both control and CGG KI neurons.  However, the relative difference in expression of 

basal FMRP between WT and CGG KI neurons is smaller in proximal and distal 

dendritic compartments than in the cell soma, suggesting that decreases in FMRP 

reflect a primary failure in translational efficiency rather than a breakdown in FMRP 

transport into dendrites.  We next examined whether the premutation had a cell 

autonomous effect on mGluR-initiated translation of new FMRP.  XGFP/CGG KI 

cultures were stimulated with DHPG (100µM, 20 minutes) prior to FMRP and Map2 

immunostaining.  After mGluR activation, WT neurons showed a significant increase in 

dendritic FMRP immunoreactivity (Control: WT 100 ± 6.85%; DHPG: WT 133.74 ± 

11.46%, P<0.05; Figure 2.4F-H) and this effect was blocked by pretreatment with the 

protein synthesis inhibitor anisomycin (40µM, 30 min prior to and throughout DHPG 

application; Anisomycin+DHPG: WT 96.81 ± 7.75%; Anisomycin: WT 102.53 ± 7.50%; 

Figure 2.4H).  By contrast, DHPG did not alter FMRP expression in CGG KI neurons in 

the presence or absence of anisomycin (Control: KI 49.70 ± 4.33%; DHPG: KI 50.42 ± 

6.20%; Anisomycin+DHPG: KI 38.73 ± 2.74%; Anisomycin: KI 42.04 ± 3.20%; NS; 

Figure 2.4F-H).  These data support the hypothesis that premutation range expanded 

CGG repeats impair mGluR-dependent synthesis of FMRP in a cell-autonomous 

fashion. 
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Figure 2.4: CGG KI/XGFP heterozygous cultures reveal selective DHPG induction of 
FMRP in WT neurons. 
(A) Breeding scheme used to generate mosaic female mice with one WT (GFP+) X 
chromosome, and one CGG KI (GFP-) X chromosome.  (B)  Fluorescent nuclei staining 
(DAPI 1:10000) in coronal sections from an XGFP/WT female reveal GFP+ and GFP- 
cells in the hippocampus.  (C) Primary hippocampal neurons from mosaic XGFP/CGG 
KI mice allow both WT (GFP+) and KI (GFP-) neurons in culture.  (D) Quantitative 
analysis on soma from DIV14-17 XGFP/CGG KI neurons stained for Map2 (Sigma 
1:1000) and FMRP (17722 1:500).  CGG KI (GFP-) soma showed reduced basal FMRP 
fluorescence compared to WT (GFP-) neurons.  (E) Basal FMRP expression is 
maintained in proximal and distal dendrites of CGG KI mice. WT n=24, CGG KI n=14, 
*P<0.05, student’s t-Test.  (F) Cultures were treated with DHPG (100µM for 20 min) 
prior to FMRP and Map2 staining.  (G) Proximal dendrite segments showed selective 
FMRP immunofluorescence increases in WT (GFP+) neurons, but not in CGG KI  
(GFP-) neurons.  (H) The effects of DHPG are mitigated by pre-treatment with 
anisomycin (40µM for 30 min) in WT proximal dendrites.  There is no effect of DHPG or 
anisomycin on FMRP expression in the initial segment of CGG KI dendrites. WT n=15-
42 neurons from 1-2 animals, CGG KI n=7-25 neurons from 1-2 animals.  *P<0.05, one-
way ANOVA with Fishers-LSD.    
 

 

Enhanced mGluR-LTD in hippocampal slices prepared from CGG knock-in mice 

 Since mGluR-dependent translation is critical for certain forms of synaptic 

plasticity that are altered in FXS model mice, we next tested whether there was any 

overlap between the synaptic plasticity phenotypes in Fmr1 KO mice and CGG KI mice. 

We first examined basal synaptic properties at CA3-CA1 synapses in acute 

hippocampal slice preparations from young CGG KI mice with their WT littermates (P31-

35).  Field EPSPs were evoked by stimulating Schaffer collaterals and recording in 

stratum radiatum of area CA1.  In response to a series of stimulation pulses of 

increasing intensity, we found that the corresponding increase in fEPSP slope was 

nearly identical in WT and CGG KI mice (Figure 2.5A).  These largely overlapping 

input/output curves show that CGG KI mice do not exhibit alterations in basal synaptic 

efficacy relative to WT mice.  In addition, we tested whether paired pulse facilitation 

(PPF), a measure of short term synaptic plasticity and presynaptic function, was altered 

in CGG KI mice.  In response to pairs of stimulation pulses with varying inter-pulse 

intervals, WT and CGG KI mice exhibited similar robust facilitation of the second 

synaptic response at all intervals (Figure 2.5B), suggesting that neurotransmitter 
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release probability is largely similar between the two genotypes.  Hence, basal synaptic 

function is similar between CGG KI mice and their WT littermates. 

 

 
Figure 2.5: Basal syanptic function is unchanged in CGG KI mice.3 
(A) Hippocampal field EPSPs in response to Schaffer collateral stimulation of increasing 
strength show a similar input/output response curve in CGG KI animals compared to 
littermate WT controls.  n=19 (WT) and 19 (CGG KI). (B) No difference is detected in 
paired-pulse facilitation, a measure of basal neurotransmitter release probability, 
between CGG KI mice and littermate WT mice at any inter-stimulus interval, suggesting 
that neurotransmitter release probability at CA3-CA1 synapses is not altered by the 
premutation.  n=8 (WT) and 8 (CGG KI). 
 

 

Our results suggest that premutation range repeats impair FMRP translation 

even in young mice, raising the question of whether this loss of new FMRP synthesis 

might mimic aspects of the FXS phenotype.  To test this idea, we next examined 

mGluR-dependent long term depression (LTD) at these CA3-CA1 synapses.  After 

confirming that evoked fEPSPs were stable over time, LTD was induced by brief 

application of DHPG (100 µM, 10 min; Figure 2.6).  As previously described, DHPG 

treatment induced a sustained depression of fEPSPs in WT slices that persisted well 

beyond drug application (Figure 2.6).  Interestingly, we found that this mGluR-

dependent LTD was significantly exaggerated in slices from CGG KI mice (Figure 2.6A), 

a synaptic phenotype that is similar to Fmr1 KO mice (Huber et al 2002).  These results 

                                            
3 Experiments performed by AJ Iliff. 
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demonstrate that, even during early life, the expanded premutation CGG repeat in the 

Fmr1 gene leads to altered hippocampal synaptic plasticity.   

 

 
Figure 2.6: Exaggerated mGluR-LTD in CGG KI mice is protein synthesis dependent.4 
(A) Field EPSPs were recorded in CA1 stratum radiatum in response to Schaffer 
collateral stimulation. Addition of the group 1 mGluR agonist DHPG (100μM; 10 min) 
induced LTD at CA3-CA1 synapses; this mGluR-LTD was significantly enhanced in 
CGG KI mice. n=9 (WT) and 13 (CGG KI). Inset: Shown are representative averages of 
4 consecutive field potential waveforms from each group during the baseline period and 
one hour after LTD induction. (B)  mGluR LTD in FMR1 KO mice persists in the 
presence of the protein synthesis inhibitor anisomycin (20µM), as previously reported  
(Huber et al 2002). n=7 (control) and 8 (aniso). (C) In contrast, the enhanced mGluR-
LTD in CGG KI mice remains sensitive to protein synthesis inhibitors. n=13 (control) and 
7 (aniso).   
 

                                            
4 Experiments performed by AJ Iliff. 
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Enhancement of mGluR-LTD in premutation and FXS model mice are mechanistically 

distinct 

Like young CGG KI mice, Fmr1 KO mice also exhibit enhanced mGluR-LTD 

(Huber et al 2002).  Since this exaggerated mGluR-LTD in FXS model mice is thought 

to contribute to intellectual disability and/or autistic features in FXS, it was of interest to 

determine to what extent the exaggerated LTD in each case was due to similar or 

distinct mechanisms.  To explore this issue, we examined whether protein synthesis 

inhibitors would impair the induction of mGluR-LTD in CGG KI and Fmr1 KO mice.  In 

WT mice, mGluR-LTD requires rapid dendritic protein synthesis for its induction (Huber 

et al 2000), whereas mGluR-LTD in Fmr1 KO mice is completely resistant to protein 

synthesis inhibitors (Hou et al 2006, Nosyreva & Huber 2006).  Consistent with these 

findings, we found that the magnitude of mGluR-LTD in Fmr1 KO mice was not affected 

by blocking protein synthesis with anisomycin (Figure 2.6B).  In contrast, the enhanced 

mGluR-LTD seen in young CGG KI mice was significantly diminished with anisomycin 

(Figure 2.6C), indicating that mGluR-LTD remains dependent on new protein synthesis 

in these mice, as in WT mice.  Taken together, these results suggest that while young 

FXS and premutation model mice share the same exaggerated mGluR-LTD phenotype, 

the mechanism underlying this plasticity is distinct in the two mouse models. 
 

Discussion 
 

The roles of FMRP in both normal and aberrant control of synaptic function have 

received considerable attention in the past two decades.  This effort has been greatly 

facilitated by work in the Fmr1 KO mouse, which recapitulates several important 

features of FXS, and has been instrumental in the rapid development of novel 

therapeutic approaches (Bhakar et al 2012).   In addition, significant advances have 

been made in our understanding of the molecular consequences of premutation CGG 

repeat expansions, which enhance FMR1 transcription but impair FMRP translation and 

elicit toxicity directly as RNA (Renoux & Todd 2012).  By contrast, considerably less is 

known about the impact of premutation range CGG repeat expansions on neuronal 
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function.  Premutation expansions do not typically lead to overt intellectual disability, but 

they are increasingly linked to a broad range of important clinical phenotypes in 

patients, including neuropsychiatric symptoms and autistic features earlier in life (Berry-

Kravis et al 2007, Bourgeois et al 2009, Farzin et al 2006).  These clinical features are 

recapitulated in Fragile X premutation model mice, who exhibit altered social 

interactions and anxiety behaviors compared to littermate controls (Qin et al 2011).  We 

therefore examined neuronal function in young Fragile X premutation model mice, with 

a specific focus on the impact of the CGG repeat on activity-dependent FMRP 

translation.  Our results demonstrate that premutation model mice exhibit a dramatic 

decrease in the translational efficiency of Fmr1 mRNA that impairs rapid, activity-

dependent synthesis of FMRP in dendrites.  This defect in local FMRP synthesis is 

associated with exaggerated mGluR-dependent LTD, a phenotype first reported in Fmr1 

KO mice. This shared synaptic phenotype, however, is mechanistically distinct between 

Fmr1 KO and premutation model mice, as mGluR-dependent LTD in CGG KI mice 

remains dependent on new protein synthesis (Figure 2.6B-C).  Coupled with data 

demonstrating altered dendritic spine morphology and development in CGG KI mice 

(Chen et al 2010, Cunningham et al 2010, Qin et al 2011), our results reveal a shared 

defect in synaptic plasticity in FXS and premutation model mice and suggest an 

important role for activity-dependent FMRP synthesis at synapses in regulating the 

magnitude of synaptic strength. 

FMRP is an RNA-binding protein found associated with stalled ribosomes 

(Darnell et al 2011), where it acts primarily as a translational suppressor (Laggerbauer 

et al 2001, Li et al 2001, Qin et al 2005).  mGluR signaling induces dephosphorylation of 

FMRP, which then dissociates from polysome-transcript complexes and is rapidly 

degraded, leading to an activity-dependent burst of translation of FMRP target mRNAs 

(Figure 2.7A) (Nalavadi et al 2012, Narayanan et al 2007, Narayanan et al 2008).  

Intriguingly, FMRP also binds and regulates the translation of its own mRNA in vitro and 

FMRP is rapidly synthesized at synapses in response to mGluR activation in vivo (Hou 

et al 2006, Li et al 2001, Siomi et al 1994, Todd et al 2003a, Todd et al 2003b, Weiler et 

al 1997). The role of FMRP as a translation repressor, and the clear role of certain 

FMRP targets (e.g., activity-regulated cytoskeletal-associated protein; Arc) as mediators 
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of mGluR-LTD (Park et al 2008, Waung et al 2008), has bolstered the hypothesis that 

newly synthesized FMRP functions to provide negative feedback on further local 

translation, thus constraining the magnitude of LTD after mGluR activation (Figure 2.7A) 

(Bassell & Warren 2008, Bear et al 2004, Todd & Malter 2002).  This notion of newly 

synthesized FMRP as a “brake” on local translation is consistent with observations that 

mGluR-LTD and other forms of mGluR mediated plasticity require local protein 

synthesis in only a brief time window after induction (Huber et al 2000, Merlin et al 

1998).  In the complete absence of FMRP, mGluR-LTD is enhanced but no longer 

requires new protein synthesis (Huber et al 2002, Nosyreva & Huber 2006).  This has 

been interpreted as resulting from an uncoupling of mGluR activation and synthesis of 

critical mGluR-LTD effector proteins (Figure 2.7B) (Niere et al 2012, Park et al 2008, 

Waung et al 2008).  Thus, whereas synaptic levels of Arc and other LTD mediator 

proteins are low basally in WT neurons and increase as a result of mGluR-dependent 

synthesis, Arc in FMR1 KO neurons is basally elevated, but is no longer synthesized in 

response to mGluR activation (Figure 2.7B) (Niere et al 2012).   

In CGG KI mice, our results demonstrate that mGluR-LTD is exaggerated as in 

Fmr1 KO mice, but that this enhanced mGluR-LTD remains dependent on new protein 

synthesis, as occurs typically in WT animals (Figure 2.6C).  We suggest that this 

protein-synthesis dependent enhancement of mGluR-LTD occurs because of a specific 

failure in activity-dependent FMRP production (Figure 2.7C).  Although basal FMRP 

levels are lower in CGG KI mice, FMRP is maintained in both proximal and distal 

dendritic compartments at levels that are 40-60% of normal, which is above the 

threshold at which alterations in mGluR triggered AMPA receptor recycling occurs 

(Nakamoto et al 2007).  This suggests that basal synthesis of FMRP, although 

inefficient, is adequate to achieve suppression of translation of LTD effector proteins in 

the absence of mGluR activity (Figure 2.7C).  However, with mGluR activation, the rapid 

synthesis of dendritic FMRP is significantly impaired by the CGG repeat expansion.  

This means that there is inadequate new FMRP produced to halt ongoing translation of 

FMRP target mRNAs, leading to an over-production of these LTD effector proteins.  

This overproduction of LTD effector proteins presumably drives the enhanced LTD 

phenotype, but unlike FMR1 KO cultures, production of these proteins remains coupled 
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to mGluR activity, as release of FMRP cargo transcripts is still required to initiate the 

LTD (Figure 2.7C).  Within this framework, we propose that new translation of FMRP at 

synapses is critical for constraining mGluR-LTD, likely through limiting the sustained 

expression of LTD effectors by repressing their continued synaptic translation.  

However, some aspects of the effects observed here may also derive from either basal 

insufficiency of FMRP or from CGG repeat RNA mediated toxic effects.  Future 

experiments will be required to demonstrate altered synthesis of LTD effector proteins in 

CGG KI mice and to formally exclude contributions from these additional factors on 

synaptic function in CGG KI mice.   
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Figure 2.7: A working model of mGluR-LTD in WT, KO and CGG KI mice. 
Group I mGluR receptors are critical modulators of synaptic overactivity.  (A) Normally, 
FMRP bound transcripts, including Fmr1 mRNA, exist in stalled polyribosomal 
complexes at synapses.  i) Activation of group I mGluRs triggers internalization of 
AMPA receptors and the  dissociation/clearance of FMRP from target mRNAs. ii) This 
allows for the rapid translation of proteins required for maintenance of AMPA receptor 
internalization (LTD proteins), leading to long lasting changes in synaptic strength.  In 
parallel, FMRP is itself synthesized at synapses. iii) This new FMRP acts as a brake on 
further translation of mRNA targets. The end result is mGluR-LTD that requires a 
temporally constrained burst of local protein translation after receptor activation.  (B) In 
Fragile X Syndrome model mice, translation of FMRP target transcripts is uncoupled 
from mGluR signaling.  i) This results in a basal increase in production of LTD proteins.  
Upon mGluR activation, AMPA receptors are internalized normally but the presence of 
excess basal LTD effector proteins leads to enhancement of mGluR-LTD.  As the over-
synthesis of LTD effector proteins is not tied to mGluR activation, induction of mGluR-
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LTD in FXS model mice does not require new protein synthesis.  C) In Fragile X 
premutation model mice, there is adequate basal expression of FMRP to allow for 
localization of FMRP with associated transcripts at synapses.  i) mGluR activation 
triggers dissociation of FMRP from these transcripts normally.  ii) However, the CGG 
repeat expansion blocks rapid FMRP synthesis.  Without this new FMRP, there is no 
brake to prevent ongoing synthesis of FMRP target transcripts.  iii) The result is over-
production of LTD effector proteins and enhanced mGluR-LTD.  In contrast to FXS 
model mice, synaptic protein translation in premutation model mice remains coupled to 
mGluR activation and the mGluR-LTD is thus dependent on new protein synthesis.  
This working model makes a number of specific predictions which will be tested in future 
studies. 
 

 

In humans, the consequences of premutation range CGG repeats are age-

dependent.  Of relevance, a recent study examined mGluR-dependent synaptic 

plasticity in aged animals (10-13 months old), comparing wild-type animals and a 

different mouse model of the fragile X premutation (Hunsaker et al 2012). They found 

that aged premutation model mice exhibited weaker immediate synaptic depression 

following mGluR activation relative to their wild-type counterparts, but the level of 

sustained synaptic depression was similar across genotypes.  By contrast, in younger 

animals, we find no difference in acute synaptic depression driven by mGluR activation, 

but a significant increase in the magnitude of enduring synaptic depression following 

mGluR stimulation.  Although Hunsaker et al. (2012) used a different Fmr1 premutation 

mouse model than the one employed here, these results raise the interesting possibility 

that the impact of the Fmr1 premutation may evolve as a function of age.  One 

possibility is that the effects of enhanced mGluR-LTD on the development of childhood 

and early adult onset phenotypes in premutation carriers may be dissociable from the 

development of late-adult-onset FXTAS in premutation carriers, where RNA mediated 

toxicity and neurodegeneration might be expected to have a greater impact.   

In this work, we focused on the features of mGluR-LTD in young premutation 

model mice, given that exaggerated hippocampal mGluR-LTD in Fmr1 KO mice is 

widely considered relevant to the intellectual disability and autistic symptoms seen in 

FXS.  However, it is likely that Fmr1 premutation repeats may have a broader impact on 

neural excitability.  A recent series of in vitro studies demonstrated that neurons 

cultured from premutation mice develop abnormal firing properties (Cao et al 2012).  
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These neuronal networks exhibit clustered firing and increased Ca2+ oscillations, as well 

as disruptions in neurotransmitter transport machinery (Cao et al 2012).  Neurons 

derived from induced pluripotent stem cells (iPSCs) generated from premutation carrier 

fibroblasts exhibit a similar increase in Ca2+ dynamics (Liu et al 2012).  The authors 

speculated that the functional deficits arise from an improper excitation/inhibition ratio 

created by the altered transport of glutamate and GABA.  While changes in the ratio of 

excitation to inhibition would influence Ca2+ dynamics and thus the firing properties of 

neurons, we did not find evidence of altered basal synaptic transmission in our ex vivo 

experiments (Figure 2.5).   

Recent clinical evidence highlights potential points of confluence in symptoms 

found in young premutation carriers with FXS, suggesting that comparisons between 

FXS and premutation model mice may help to better identify specific behavioral and 

neurophysiological correlates of disease features.  Specifically, work by a number of 

groups has demonstrated increased rates of autism and ADHD in premutation carriers, 

as well as neuropsychiatric symptoms, and executive and amygdala dysfunction 

(Cornish et al 2005, Farzin et al 2006, Hessl et al 2007, Hessl et al 2005, Hessl et al 

2011, Hocking et al 2012, Hunter et al 2008, Kogan et al 2008, Loesch et al 2003b).  

This amygdala dysfunction and structural changes in premutation carriers without 

FXTAS correlate with lower blood FMRP expression (Hessl et al 2011). Consistent with 

this, two CGG KI mouse models exhibit numerous behavioral defects that mirror those 

observed in Fmr1 KO animals (Hunsaker et al 2012, Hunsaker et al 2009, Qin et al 

2011).  We find that FXS model mice and Fmr1 premutation model mice of similar ages 

share an important synaptic plasticity phenotype.  Our data raise the intriguing 

possibility that neuropsychiatric abnormalities, autism and ADHD-like symptoms in 

young premutation patients may be linked to the mGluR-dependent plasticity deficits 

examined in mouse models of these disorders.  However, it should be noted that the 

repeat sizes studied in CGG KI mice here and elsewhere are significantly larger than 

that seen in the average premutation carrier, as repeats become progressively less 

stable with expansions above 55 repeats.  These findings are therefore more relevant to 

those rare patients who have greater than 100 CGG repeats or who have an 

unmethylated full mutation.   This model may be particularly relevant to this latter 
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category as recent data suggesting both that a significant (>30 %) portion of FXS 

patients exhibit incomplete FMR1 DNA methylation and produce at least some FMR1 

RNA (Jacquemont et al 2011).  Importantly, this epigenetic alteration correlates with 

clinical severity and response to some experimental therapies (Jacquemont et al 2011).  

As clinical trials proceed in this patient population with agents that either directly or 

indirectly target the mGluR pathway (Bhakar et al 2012, Hagerman et al 2012, 

Jacquemont et al 2011), it will be important to understand how mechanistic differences 

in different mutation states elicit altered mGluR-LTD, and incorporate this knowledge 

into better practice and drug development.    

 

Materials and Methods 
 

Mice and Cell Culture 

Animal use followed NIH guidelines and was in compliance with the University of 

Michigan Committee on Use and Care of Animals. DNA was extracted from tail biopsies 

and isolated with DirectPCR lysis reagent (Viagen) and proteinase K (0.2 µg/µl, Roche), 

incubated overnight at 55˚C.  Proteinase K was heat inactivated and DNA samples were 

genotyped first with primers against the Y chromosome 

(5’GTGAGAGGCACAAGTTGGC, 5’GTCTTGCCTGTATGTGATGG) to determine the 

sex of each animal using Platinum® PCR Supermix (Invitrogen).  To amplify the 

knocked-in CGG repeat expansion, we targeted mouse specific Fmr1 allele 

(5’AGCCCCGCACTTCCACCACCAGCTCCTCCA, 

5’GCTCAGCTCCGTTTCGGTTTCACTTCCGGT) in male hemizygous animals using 

the Expand High Fidelity PCR System (Roche) supplemented with 2M Betaine (Sigma) 

and 5% DMSO (Fisher Scientific) as described previously (Tassone et al 2008).  As 

genotyping was performed on tail samples early in life, small expansions in repeat 

length may have occurred due to somatic instability in older animals (Lokanga et al 

2012).  Dissociated hippocampal neuron cultures were prepared from postnatal (P1-3) 

mice as previously described (Jakawich et al 2010).  Experiments were performed at 

14-17 days in vitro (DIV).   
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Drugs 

R,S-3,5-DHPG (Tocris) was prepared fresh each day in sterile water, or artificial 

cerebrospinal fluid (aCSF, in mM: 124 NaCl, 5 KCl,  1.25 NaH2PO4, 26 NaHCO3, 1 

MgCl2, 2 CaCl2, and 10 dextrose).  Anisomycin (Sigma) was prepared as a 1000x stock 

in DMSO, stored at -20°C, and diluted to final concentration in aCSF or conditioned 

media. 

 

Western Blotting 

Brain lysate samples were homogenized in RIPA buffer (50mM Tris-HCl, 150mM 

NaCl, 0.1% SDS, 1% NP-40, 0.5% deoxycholic acid-sodium salt, pH 7.4) containing 

Complete Mini protease inhibitor cocktail (Roche).  Samples were sonicated, 

centrifuged, and total protein content of the supernatant measured using a DC Protein 

assay (Bio-Rad).  Equal amounts of protein were mixed with 4x Laemmli buffer and 

boiled for 5 minutes before separation on 10 or 12% polyacrylamide gels.  Gels were 

transferred to PVDF membranes and blocked with Tris-buffered saline containing 0.1% 

Triton-X (TBST) and 5% nonfat milk for 60 min at RT, and incubated with an antibody 

against FMRP (Millipore mouse monoclonal 1C3 1:1000 or Abcam rabbit polyclonal 

17722, 1:1000) or PSD-95 (Abcam, 6G6-1C9, 1:2000) overnight at 4°C.  After washing 

with TBST, blots were incubated with a corresponding HRP-conjugated secondary 

antibody (anti-rabbit or anti-mouse 1:5000; Jackson Immunoresearch); this was 

followed by chemiluminescent detection (Western Lightning Plus-ECL, PerkinElmer). 

The same blots were reprobed with a mouse monoclonal antibody against β-tubulin 

(University of Iowa’s Developmental Studies Hybridoma Bank E7, 1:5000) or β-actin 

(Sigma 1:5000) to confirm equal loading.  Band intensity was quantified in the linear 

range with densitometry using NIH ImageJ.   

 

QPCR 

Dissected cortex or hippocampi from P28-60 male mice were flash frozen and 

stored at -80C.  RNA was extracted using TRIzol Reagent (Invitrogen), following 

manufacturer’s guidelines.  Equal amounts of extracted RNA (1µg) were used to 

generate cDNA (iScript™ cDNA synthesis kit, Bio-Rad).  QPCR was performed using 
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iQ™ SYBR© Green Supermix (Bio-Rad) and primers against the 2/4 

(5’CATGAAGATTCAATAACAGTTGC, 5’CACTTTAGCTAACCACCAACAG) or 16/17 

(5’CCGAACAGATAATCGTCCACG, 5’ACGCTGTCTGGCTTTTCCTTC) exons of 

mouse Fmr1, and actin (5’GGCATCCTCACCCTGAAGTA, 

5’AGAGGCGTACAGGGATAGCA).  Samples were run in triplicate, and Fmr1 

expression data normalized to actin expression for each sample. 

 

Translational efficiency calculation 

The translational efficiency ratio was calculated by deriving FMR1 mRNA 

expression levels determined by qRT PCR from one cortex while total protein lysates 

were prepared from the contralateral cortex from the same animal.  For each animal, 

cortical FMR1 mRNA expression (relative to actin) was normalized to the mean FMR1 

mRNA expression in control cortices.  Similarly, cortical FMRP levels were expressed 

as a ratio to actin expression and then normalized to the mean FMRP expression in 

control cortices.  These numbers were then expressed as a ratio of normalized FMRP 

expression/normalized FMR1 mRNA expression. Finally, the mean value of this ratio in 

WT animals was set at 100 and all individual animal values were expressed as a 

percentage of this number.    

 

Synaptoneurosomes 

Synaptoneurosomes (SNs) were prepared from male P14-21 WT and CGG KI 

mice as described previously (Hollingsworth et al 1985, Muddashetty et al 2007, 

Scheetz et al 2000).  Briefly, cortices were homogenized in 3 ml of homogenization 

buffer (containing (in mm): 118 NaCl, 4.7 KCl, 1.2 MgSO4, 2.5 CaCl2, 1.53 KH2PO4, 

212.7 glucose, and 1 DTT, pH 7.4), supplemented with Complete Mini protease inhibitor 

cocktail (Roche) on ice.  Samples were passed through a 100 μm nylon mesh filter, 

followed by two 10 μm nylon mesh filters (Millipore), followed by centrifugation at 1000g 

for 15 min at 4˚C. The pellets were suspended in 1.1 ml homogenization buffer per 

cortex.  SN preparations were divided into 10 x100µl aliquots for technical duplicates, 

and pre-warmed for 10 minutes at 37˚C before stimulation with (RS)-3,5-DHPG (Tocris, 

100µM).  After incubation with DHPG at 37˚C, samples were passed through a 28 
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gauge needle, and processed for western blotting as above.  Expression of all samples 

was normalized to unstimulated samples maintained at 37ºC for 60 minutes and 

statistical significance was determined using a Kruskal–Wallis one-way analysis of 

variance.  Similar results were observed when comparisons were done with pre-

stimulated samples (i.e., samples from the same SN prep that were never warmed to 

37ºC, data not shown).   

 

Immunohistochemistry 

Animals were anesthetized with 0.2 mg Ketamine/20 µg Xylazine per kilogram 

prior to transcardial perfusion (2 ml per minute) with 5-10ml of ice cold sterile PBS and 

5-10ml of 4% paraformaldehyde followed by brain dissection.  Brains were sunk in 30% 

sucrose in PBS at 4˚C prior to sectioning with a vibratome at 30 µm.  Free-floating 

sections were stored in cryostorage (30% sucrose, 33.33% ethylene glycol, 0.05 M PB 

pH 7.4) at -20˚C.  Sections were removed from cryostorage by rotating in PBS at 4˚C 

overnight.  Sections were permeabilized in 0.1% Triton X in PBS for 5 minutes, followed 

by staining with DAPI (1:10000) for 15 minutes at room temperature.  Sections were 

washed 2X with PBS, and mounted on slides in ProLong® Gold Antifade Reagent with 

DAPI (Invitrogen).  

 

Immunocytochemistry and Microscopy 

All experiments were conducted at 37ºC.  Neurons were treated with anisomycin 

(40 µM) or vehicle (DMSO 1:1000) for 30 minutes in conditioned media.  Cultures were 

then stimulated with DHPG (100 µM) for 20 minutes in the presence of anisomycin, or 

left as controls with vehicle, or with anisomycin alone.  After treatment, neurons were 

fixed with warmed 4% paraformaldehyde (PFA)/4% sucrose in phosphate buffered 

saline with 1 mM MgCl2 and 0.1 mM CaCl2 (PBS-MC), permeabilized (0.1% Triton X in 

PBS-MC, 5 min), blocked with 5% normal goat serum (NGS) in PBS-MC for 1 hour, and 

labeled with an antibody against FMRP (Millipore 1C3 1:200 or Abcam 17722 1:500). 

For co-labeling of dendrites, we used antibodies against Map2 (Sigma M4403 1:1000, 

Millipore AB5622 1:1000) for 60 minutes at RT, or overnight at 4˚C.  Secondary 
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detection was achieved with Alexa 488-, 555-, or 635-conjugated goat anti-rabbit or 

goat anti-mouse antibodies (1:500 or 1:1000) for 60 min at RT. 

All imaging was performed on an inverted Olympus FV1000 laser scanning 

confocal microscope with identical acquisition parameters for each treatment condition. 

Image analysis was performed on maximal intensity z-projected images using custom 

written analysis routines for ImageJ.  Statistical analysis utilized a one way ANOVA to 

detect differences across conditions within genotype. N≈20-40/condition across multiple 

individual experiments for each genotype. 

 

Electrophysiology 

Hippocampal slices were prepared from P35–42 male CGG KI mice and their 

male wild-type (WT) littermates.  Mice were lightly anesthetized with isofluorane before 

decapitation.  Then, the brain and hippocampal lobules were rapidly removed and 

placed in ice cold artificial cerebrospinal fluid (aCSF, containing in mM: 124 NaCl, 5 

KCl, 1.25 NaH2PO4, 26 NaHCO3, 1 MgCl2, 2 CaCl2, 10 dextrose, pH 7.4, saturated with 

95% O2, 5% CO2).  Transverse slices (400 µm) of the hippocampus were cut using a 

tissue chopper (Stoelting, Wood Dale, IL) and CA3 was surgically isolated from CA1 

with a scalpel.  Slices recovered for 2-5 hours at room temperature in a submersion 

chamber containing aCSF prior to recording.  For recording, hippocampal slices were 

transferred to a recording chamber and continuously perfused at 32⁰C with aCSF at a 

rate of 1-2 ml/min. 

Recording electrodes were pulled from borosilicate capillary glass (G150-4, 

Warner) and filled with aCSF.  The recording pipette was placed in the middle of 

stratum radiatum of CA1.  Synaptic responses were elicited using cluster stimulation 

electrodes (FHC, Bowdoin, ME) placed in CA1stratum radiatum, lateral to the recording 

electrode.  Current was delivered for 100 µs with an ISO-flex stimulator (AMPI, 

Jerusalem, Israel).  Stable baseline responses were collected every 30 sec (0.033 Hz) 

by using a stimulation intensity (20–140 μA) yielding ~50% of the maximal synaptic 

response.  The fEPSP signal was amplified 1000 times with a DAM-50 DC differential 

amplifier (WPI) and filtered at 3 kHz.  Recordings were collected at 10 kHz using 

Clampex 10.2 and analyzed using Clampfit 10.2 (Molecular Devices, Sunnyvale, CA).   
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For all experiments, the initial slope of each fEPSP was expressed as the percentage of 

the baseline average.  Pooled data represent mean fEPSP slope (+/- SEM).  Statistical 

significance was determined using independent t test, P<0.05. 
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Chapter 3  
Fragile X mental retardation protein expression in Alzheimer’s disease5 

 

Abstract 
 

The FMR1 protein product, FMRP, is an mRNA binding protein associated with 

translational inhibition of target transcripts.  One FMRP target is the amyloid precursor 

protein (APP) mRNA, and APP levels are elevated in Fmr1 KO mice.  Given that 

elevated APP protein expression can elicit Alzheimer’s disease (AD) in patients and 

model systems, we evaluated whether FMRP expression might be altered in 

Alzheimer’s autopsy brain samples and mouse models compared to controls.  In a 

double transgenic mouse model of AD (APP/PS1), we found no difference in FMRP 

expression in aged AD model mice compared to littermate controls.  FMRP expression 

was also similar in AD and control patient frontal cortex and cerebellum samples.  

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age related 

neurodegenerative disorder caused by expanded CGG repeats in the 5’UTR of the 

FMR1 gene.  Patients experience cognitive impairment and dementia in addition to 

motor symptoms.  In parallel studies, we measured FMRP expression in cortex and 

cerebellum from three FXTAS patients and found reduced expression compared to both 

controls and Alzheimer’s patient brains, consistent with animal models.  We also find 

increased APP levels in cerebellar, but not cortical, samples of FXTAS patients 

compared to controls.  Taken together, these data suggest that a decrease in FMRP 

expression is unlikely to be a primary contributor to Alzheimer’s disease pathogenesis. 

                                            
5 Most of this chapter was originally published as: Renoux AJ, Carducci NM, Ahmady AA, Todd PK.  
2014. Fragile X mental retardation expression in Alzheimer’s disease. Front Genet. 5:360. 
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Introduction 

 
Fragile X-associated disorders result from intergenerational instability in a CGG 

microsatellite repeat expansion located in the 5’ untranslated region (UTR) of the 

Fragile X mental retardation (FMR1) gene.  In the general population, the mean repeat 

length is 30 CGG repeats with a range from 4 to 55 (Strom et al 2007).  When this 

repeat expands beyond this normal range, it can cause symptoms associated with 

Fragile X spectrum disorders (Nelson et al 2013, Renoux & Todd 2012).  Greater than 

200 CGG repeats elicits transcriptional silencing of the FMR1 locus, with absent or 

markedly reduced FMR1 mRNA and FMR protein (FMRP) production (Bagni & Oostra 

2013).  These large expansions result clinically in Fragile X Syndrome (FXS), which is 

the most common monogenic cause of autism and intellectual disability (Hernandez et 

al 2009, Rogers et al 2001).   

In contrast, repeat expansions in the “premutation” range between 55 and 200 

CGG repeats cause a distinct set of human disorders, including Fragile X-associated 

Tremor/Ataxia Syndrome (FXTAS) and Fragile X-associated Premature Ovarian 

Insufficiency (FXPOI) (Berry-Kravis et al 2007, Hagerman 2013, Nelson et al 2013).  

FXTAS is an age-related neurodegenerative disorder characterized by gait difficulties, 

action tremor, and variably present Parkinsonism, dysautonomia, and dementia (Berry-

Kravis et al 2007).  Unlike the scenario in FXS, premutation sized CGG repeats elicit 

enhanced FMR1 transcription through alterations in the local chromatin structure 

(Hagerman & Hagerman 2013, Tassone et al 2007, Tassone et al 2000a, Todd et al 

2010).  However, this increase in FMR1 mRNA is paradoxically associated with a 

reduction in total and activity-dependent FMRP expression (Entezam et al 2007, Iliff et 

al 2013, Kenneson et al 2001, Ludwig et al 2014, Pretto et al 2014, Qin et al 2011, 

Tassone et al 2000b).  This decrease in FMRP likely derives from an alteration in FMR1 

mRNA translational efficiency, where the repeat forms a hairpin secondary structure 

that impairs ribosomal scanning (Chen et al 2003b, Feng et al 1995, Kenneson et al 

2001, Ludwig et al 2011, Primerano et al 2002).  Research into the mechanisms of 

neurodegeneration in FXTAS have largely focused on how the FMR1 mRNA might elicit 
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a gain of function toxicity, either through sequestration of RNA binding proteins or 

through triggered aberrant translation through the repeat of aggregate prone proteins 

that underlie the intranuclear inclusions observed in patients (Hagerman & Hagerman 

2004, Hagerman & Hagerman 2013, Iwahashi et al 2006, Jin et al 2007, Jin et al 2003, 

Renoux & Todd 2012, Sellier et al 2013, Sellier et al 2010, Sofola et al 2007, Todd et al 

2013, Todd & Paulson 2010).  However, more recent work has begun to explore 

whether a reduction in FMRP expression might contribute to aspects of disease 

pathogenesis in these individuals (Iliff et al 2013, Ludwig et al 2014, Pretto et al 2014, 

Renoux et al 2014a, von Leden et al 2014).  

The absence of FMRP causes the cognitive impairment seen in FXS and may 

contribute to some of the symptoms observed in FXTAS.  A significant body of work has 

explored the normal functions of FMRP (O'Donnell & Warren 2002, Santoro et al 2012, 

Wang et al 2012).  FMRP is an RNA binding protein found associated with poly-

ribosome complexes in soma and synapses (Ascano et al 2012, Chen et al 2014, 

Darnell et al 2005, Darnell et al 2011, Feng et al 1997, Tamanini et al 1996, Willemsen 

et al 1996, Zalfa et al 2003).  It is normally phosphorylated, and upon metabotropic 

glutamate receptor (mGluR) activation is dephosphorylated to allow its associated 

transcripts to be translated (Bear et al 2004, Ceman et al 2003, Muddashetty et al 2007, 

Nalavadi et al 2012, Narayanan et al 2008, Weiler et al 2004).  This allows FMRP to 

participate in temporal and spatial control of activity-dependent translation.  In an effort 

to understand how reduced levels of FMRP may alter synaptic function, many groups 

have identified possible FMRP target transcripts.  One transcript associated with FMRP 

is the amyloid precursor protein (APP) mRNA (Lee et al 2010, Westmark & Malter 

2007).  High-throughput sequencing of RNAs isolated by crosslinking 

immunoprecipitation (HITS-CLIP and PAR-CLIP) analysis on FMRP-associated 

transcripts identified APP mRNA (Ascano et al 2012, Darnell et al 2011).  This 

interaction appears to play a role in regulating APP translation, as APP synthesis in 

response to mGluR activation is increased in control mice (Westmark & Malter 2007).  

Moreover, a mouse model of FXS which lacks FMRP (Fmr1 KO) exhibit higher basal 

levels of APP, and of the pathogenic product of APP cleavage, β-amyloid (Aβ), and FXS 

patients show abnormal Aβ levels in plasma and brain tissues (Westmark & Malter 
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2007, Westmark et al 2011).  Overexpression of APP in Fmr1 KO mice increases 

mortality and seizure susceptibility (Westmark et al 2008).  Conversely, genetic 

reduction of APP in the Fmr1 KO mouse improved seizure activity, anxiety-associated 

behavior, spine morphology and altered mGluR-dependent long term depression (LTD), 

indicating a role for Aβ expression levels in FXS pathology (Westmark et al 2011).  

As there is evidence indicating FMRP participates in regulating APP production 

and that FMRP and APP interact genetically, we sought to explore the possibility that 

reduced FMRP levels may contribute to increased APP and Aβ levels in AD mouse 

models and spontaneous cases of AD.  This is especially relevant given evidence for 

decreased FMRP expression with age in mouse models (Gaur & Prasad 2014, Iliff et al 

2013, Ludwig et al 2014, Singh et al 2007).  Impaired FMRP expression in older 

individuals could lead to increased basal APP translation, increasing the amyloidogenic 

burden and thus serving as a contributor to AD pathogenesis.  We sought to test this 

hypothesis by measuring cortical FMRP levels by western blot and 

immunohistochemistry in a double transgenic AD mouse model (APP/PS1; (Haass et al 

1995, Prihar et al 1999)).  We also measured FMRP immunoreactivity in human cortex 

and cerebellum from control and confirmed AD samples.  Concurrently, we included 

samples from three FXTAS patients who exhibited reduced FMRP levels.  We found 

similar FMRP expression in AD model mice and AD human samples.  We further 

examined APP expression in FXTAS patient samples, and found a selective increase in 

cerebellar lysates, but not in frontal cortex or in CGG KI model mice.  Taken together, 

our data suggest that impaired FMRP expression is unlikely to contribute significantly to 

end-stage Alzheimer’s disease pathogenesis. 

 

Results 
 

To accurately evaluate the expression of FMRP in our experiments, we 

compared two commonly used antibodies for their specificity by western blot and 

immunohistochemistry.  To assess the sensitivity of each antibody, we compared FMRP 

levels in WT, littermate CGG KI, and Fmr1 KO mouse cortical lysates (Figure 3.1).  Both 

the 1C3 mouse anti-FMRP (Millipore) and the 17722 rabbit anti-FMRP (Abcam) show 



52 
 

reactivity in the Fmr1 KO samples (Figure 3.1A-B).  The largest band at ~75kD 

corresponds to FMRP and is absent in Fmr1 KO lysates with both antibodies.  This 

band was used for all measurements in subsequent figures.  However, a smaller band 

at ~71kD results at least partially from cross-reactivity with the related protein, 

FXR1(Ceman et al 1999, Tamanini et al 1997), is still reactive with both antibodies 

tested.  Similarly, we examined specificity of the 17722 anti-FMRP antibody in WT, 

CGG KI and Fmr1 KO coronal brain sections by immunohistochemistry (WT n=3, CGG 

KI n=3, Fmr1 KO n=4; representative images Figure 3.1C-D).  Conditions were 

optimized to minimize DAB reactivity in Fmr1 KO tissue.  We reliably observed reduced 

FMRP levels in CGG KI mice both by western analysis and immunohistochemistry, 

consistent with previous reports ((Entezam et al 2007, Iliff et al 2013, Kenneson et al 

2001, Ludwig et al 2014, Pretto et al 2014, Qin et al 2011, Tassone et al 2000a); Figure 

3.1). 

 

 
Figure 3.1: FMRP antibody specificity. 
(A) Mouse α-FMRP 1C3 (Millipore) 1:250 on cerebellar and combined cerebral cortex 
and subcortical brain lysates of WT (n=2), premutation model CGG KI (n=2), and Fmr1 
KO mice (n=2).  Arrow indicates the FMRP-specific band which is absent in Fmr1 KO 
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lysates. (B) Rabbit α-FMRP 17722 (Abcam) 1:1000 on the same brain lysates as in (A).  
(C) Immunohistochemistry with the 17722 α-FMRP antibody in WT (n=3), CGG KI (n=3) 
and Fmr1 KO (n=4) hippocampus.  (D) Cortical FMRP expression from identical animals 
as in (C) stained with the 17722 antibody.  Sections were counter-stained with 
hematoxylin to label nuclei. 
 

 

In an effort to probe a potential role of altered FMRP expression in Alzheimer’s 

disease pathogenesis, we evaluated FMRP in a double transgenic model of AD which 

contains an additional copy of the human APP gene carrying the familial Swedish 

(K670N/M671L) missense mutation (Haass et al 1995), and a deletion of exon 9 in the 

presenilin1 gene (Prihar et al 1999).  These double transgenic mice (APP/PS1; n=6: 6 

female) and age-matched control littermates (n=8: 4 male, 4 female) were compared at 

80-90 weeks of age for combined cortical and subcortical FMRP levels.  We performed 

western blot analysis in triplicate, averaging the percent control FMRP for each animal 

across blots to minimize error between experiments.  We find no difference in FMRP 

levels in APP/PS1 mice compared to controls (t=0.358, df=12, NS; Figure 3.2A).  

Cerebellar samples from the same animals demonstrated no significant difference in 

FMRP expression (t=1.300, df=12, NS; Figure 3.2A).  Any contribution of sex was 

evaluated in the control animals (as the APP/PS1 mice were all female), and FMRP 

expression was not significantly different between male and female control cortical 

values (male n=4, female n=4, t=0.717 df=6, NS; data not shown).  As several groups 

have found FMRP levels change with age (Gaur & Prasad 2014, Iliff et al 2013, Ludwig 

et al 2014, Singh et al 2007), we explored expression in young (8 week old) APP/PS1 

mice (WT n=3: 3 female; APP/PS1 n=3: 3 female).  We find no difference in cortical 

FMRP expression at this age (t=0.919, df=4, NS).  Cerebellar FMRP expression 

demonstrated a non-significant increase in AD model mice (t=2.627, df=4, NS; Figure 

3.2B).  We also compared age-dependent FMRP expression of the 8 week old and the 

80 week old animals, and did not find a significant difference in the cortex or the 

cerebellum (Cortex: 8wk n=3 females; 80wk n=8, 4 males, 4 females; t=0.342, df=9, 

NS; Cerebellum: 8wk n=3 females; 80wk n=8, 4 males, 4 females; t=1.188, df=9, NS; 

Figure 3.2C).  There was no significant difference between same sex 8 and 80 week old 

female FMRP expression (Cortex: 8wk female n=3, 80wk female n=4, t=1.034 df=5, NS; 
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Cerebellum: 8wk female n=3, 80wk female n=4, t=1.136 df=5, NS; data not shown).  We 

went on to probe FMRP levels by immunohistochemistry in 80 week old control and 

APP/PS1 mice.  Comparing cortex, hippocampus, and subcortical regions using the 

1C3 α-FMRP antibody, there were no differences detected (WT n=2, APP/PS1 n=3; 

Figure 3.2D-E).   
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Figure 3.2: FMRP expression in AD model APP/PS1 mice. 
(A) Cortical and subcortical, and cerebellar lysates from 80 week old APP/PS1 (n=6) 
and age matched controls (n=8) probed with the 17722 α-FMRP antibody and actin or 
tubulin.  (A1) FMRP/actin values were calculated and normalized to WT levels, and 
expressed as %WT in the quantification.  Results are the summary of values calculated 
in technical triplicate.  (B) 8 week old APP/PS1 (n=3) and WT littermate controls (n=3) 
were compared for FMRP expression in cortical and subcortical and cerebellar lysates.  
(B1) FMRP/tubulin values are expressed as %WT, and data are the summary of 
experiments performed in technical triplicate.  (C) 8 week old WT (n=3) and 80 week old 
WT (n=8) cortical and cerebellar lysates compared for FMRP expression.  (C1) 
FMRP/tubulin values are expressed as percentage of mean 8 week old samples, and 
data are the summary of experiments performed in duplicate. (D) Hippocampal FMRP 
expression using the 1C3 α-FMRP antibody in WT and APP/PS1 mice.  (E) Cortical 
FMRP in the same mice as in (D). 
 

 

As the mouse model we used was genetically modified to mimic some AD 

phenotypes, it may not recapitulate proximal pathogenic events that contribute to 

spontaneous cases of AD.  In an attempt to better answer the question of a possible 

role for FMRP in AD development, we obtained frontal cortex and cerebellar autopsy 

samples from control and AD patients (details included in Table 3.1).  As with our 

murine samples, we performed western blot analysis in technical triplicate to minimize 

variability in our measurements.  Using this technique, we found no difference in FMRP 

expression level in the frontal cortex (t=0.2836, df=18, NS; control n=10, AD n=10; 

Figure 3.3A, C).  As two of the control individuals were younger than the majority of the 

other donors (39 and 47 years old), we performed analysis excluding those values, and 

found no change in the result (t=0.3915, df=16, NS).  Similarly there was no difference 

in FMRP expression found in the cerebellar samples analyzed (t=0.2837, df=18, NS; 

control n=10, AD n=10; Figure 3.3B-C).  Again, excluding the youngest individuals did 

not impact the finding (t=0.3618, df=16; NS).  As there was a wide range in post-mortem 

interval (PMI) and age of the samples tested, we compared normalized values against 

these two variables, in addition to tissue pH (where available), and found a significant 

impact on FMRP levels with longer PMI (Age: r = -0.111, df=38, NS; PMI: r = -0.371, 

df=38, P<0.05; pH: r = 0.277, df=22, NS; Figure 3.3D, data not shown).  We also 

evaluated the impact of gender in this experiment by comparing the data with a two-way 

ANOVA, and found no significant difference of FMRP expression in any group in the 
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cortex (Gender: F(1, 16) = 0.3187, NS; Diagnosis: F(1, 16) = 0.05139, NS; Interaction: F(1, 16) 

= 0.02455, NS; data not shown).  Cerebellar samples similarly showed no significant 

impact of gender (Gender: F(1, 16) = 0.1176, NS; Diagnosis: F(1, 16) = 0.09488, NS; 

Interaction: F(1, 16) = 0.006407, NS; data not shown).  While these analyses only showed 

significant contributions of PMI on FMRP levels, the negative trends of decreasing 

FMRP with age and lower pH suggest that these variables should also be controlled for 

in future studies.   
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Figure 3.3: FMRP expression in Alzheimer's Disease cortex and cerebellum. 
(A) Frontal cortex lysates from control (n=10) and autopsy-confirmed AD patients (n=10) 
probed with α-FMRP 17722.  (B) Cerebellar lysates from the same patients as in (A) 
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were evaluated concurrently.  (C) Quantification of cortical and cerebellar FMRP/tubulin 
values performed in technical triplicate.  (D) Normalized FMRP values were compared 
to individual patient ages and post-mortem indices.  Diagnosis-independent best fit 
curves display overall trends in FMRP expression. 
 

We obtained samples from FXTAS patient brains, and compared FMRP levels to 

the controls, finding a decrement in FMRP immunoreactivity in two of the three samples 

tested, though the number of samples evaluated was not sufficient to discern a 

significant difference when the two youngest control samples were excluded (Cortex: 

t=2.161, df=9, NS; Cerebellum: t=1.793, df=9, NS; control n=8, FXTAS n=3; Figure 

3.4A-C).  Similarly, we compared the age and PMI as a factor which may alter FMRP 

levels, and found no significant difference of either variable (Age: r = -0.180, df=24, NS; 

PMI: r = 0.007, df=24, NS; data not shown). 

 

 
Figure 3.4: Cortical and cerebellar FMRP expression in FXTAS patients. 
(A) Frontal cortex lysates from FXTAS patients (n=3) and the same control tissues (n=8) 
probed with α-FMRP 17722.  (B) Cerebellar lysates from the same individuals as in (A).  
(C) Normalized FMRP expression as a percent of controls, performed in technical 
triplicate.   
 

To further test the hypothesis that reduced FMRP might enhance APP synthesis, 

we evaluated total full length APP expression in the same FXTAS patient samples.  

Despite the small sample size, we did find a selective increase in cerebellar APP 
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expression in FXTAS samples (t=4.704, df=11, P<0.05; control n=10, FXTAS n=3; 

Figure 3.5A-C).  However, APP levels were unchanged in frontal cortex samples 

compared to controls (t=0.4603, df=11, NS; control n=10, FXTAS n=3; Figure 3.5A-C).  

These results were not affected by the inclusion of the two youngest control samples 

(Cortex: t=0.2636, df=9, NS; Cerebellum: t=4.844, df=9, P<0.05).  This finding was not 

recapitulated in 12 month old CGG KI mice, which showed unchanged levels of APP in 

both the cortex and cerebellum (Cortex: t=1.877, df=5, NS; Cerebellum: t=1.131, df=5, 

NS; WT n=3, CGG KI n=4; Figure 3.5D-F).  To assess any age-dependent effects of 

APP expression we compared CGG KI and WT cortical and cerebellar lysates at 2 and 

16-18 months of age, and found no significant difference between genotypes (2mo 

cortex: WT = 100 ± 11.66, CGG KI = 99.86 ± 21.63; t=0.006, df=8, NS; WT n=5, CGG 

KI n=5; 16-18mo cortex: WT = 100 ± 15.31, CGG KI = 93.09 ± 6.1; t=0.367, df=5, NS; 

WT n=4, CGG KI n=3; 16-18mo cerebellum: WT = 100 ± 10.84, CGG KI = 75.75 ± 7.70; 

t=1.690, df=5, NS; WT n=3, CGG KI n=3; data not shown).  The C-terminal APP 

antibody used cannot detect Aβ fragments, so while total APP levels are unchanged, 

the relative processing or cleavage events may be altered. 
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Figure 3.5: APP expression in FXTAS patients and mouse models. 
(A) Frontal cortex lysates from control (n=10) and FXTAS patients (n=3) probed with a 
C-terminal αAPP antibody which detects the three primary isoforms of full length APP 
(100-125 kDa).  (B) Cerebellar lysates from the same individuals as in (A).  (C) 
Normalized APP expression relative to tubulin expressed as a percent of controls, 
performed in technical triplicate.  (D) 12 month old CGG KI (n=4) and WT littermate 
control (n=3) cortex and subcortical lysates probed with αAPP.  (E) Cerebellar lysates 
from the same animals as in (D).  (F) Normalized APP expression in CGG KI mice 
expressed as a percent of WT controls, performed in technical triplicate.  *P<0.05 
student’s t-test. 
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Discussion 
 

 FMRP is a synaptic mRNA binding protein implicated in Fragile X spectrum 

disorders.  FMRP normally acts to inhibit translation of target transcripts until synaptic 

transmission and mGluR activation cause its dissociation, allowing for a burst of rapid 

local translation.  One FMRP target is APP, the precursor to the amyloidogenic Aβ 

peptide (Westmark et al, 2007).  APP expression is enhanced in mouse models that 

lack FMRP (Westmark et al, 2007).  FMRP expression is reported to decline with age in 

mouse models and might follow a similar trajectory in humans (Gaur & Prasad 2014, 

Ludwig et al 2014, Singh et al 2007).  We hypothesized that a natural age-related 

decline in FMRP might trigger an increase in basal APP synthesis in neurons, leading to 

enhanced Aβ-42 production and possibly serving as a proximal trigger of AD 

pathogenesis.  Moreover, as AD pathogenesis progresses, we hypothesized that 

neuronal dysfunction and toxicity might further impair FMRP expression and hence 

enhance APP translation, creating a feed-forward loop that could drive AD pathogenesis 

and lower FMRP expression in AD models and patient tissues. To test this hypothesis, 

we examined FMRP expression in a double transgenic mouse model of AD (APP/PS1), 

and found no significant difference between AD model and control animals.  

Furthermore, we tested control and AD patient samples, and found no difference in 

cortical or cerebellar FMRP expression.  In contrast, we observed a decrease in FMRP 

levels in the two of the three FXTAS patients tested, consistent with published results 

(Ludwig et al 2014, Pretto et al 2014), and found increased cerebellar levels of APP in 

these same FXTAS patients, suggesting an impact of lower FMRP on APP expression 

in humans. Taken together, these data indicate that decreased FMRP expression is not 

a common finding in AD and suggests that a primary deficiency in FMRP expression is 

unlikely to play a proximal role in most cases of AD.  However, manipulation of FMRP 

expression and activity retains the potential to influence APP expression and aspects of 

AD pathogenesis.   

FMRP’s regulatory function is dependent on phosphorylation by S6K, and 

dephosphorylation by PP2A (Narayanan et al 2007, Narayanan et al 2008).  Recent 

work has described a function for FMRP degradation upon mGluR activation, and 

dephosphorylation by PP2A (Nalavadi et al 2012).  While the goal of this study was to 
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examine total FMRP expression levels, alterations in FMRP phosphorylation would 

impact its regulatory function, and therefore the control of target protein translation.  

While we did not observe large alterations in FMRP levels, it is possible that relative 

phosphorylation state could play a role in AD pathogenesis.  Further studies comparing 

phospho-FMRP would be required to examine this possibility. 

Our group and others have observed decreases in FMRP expression with age 

(Gaur & Prasad 2014, Iliff et al 2013, Ludwig et al 2014, Singh et al 2007).  However, 

we observed no significant difference in FMRP levels between 8 and 80 week old WT 

mice evaluated in this study (Figure 3.2C).  The reason for this difference is not 

immediately clear, although the smaller number of young animals evaluated and the 

significant variance observed in older animals may explain the discrepancy.  Other 

groups have evaluated various time points ranging from neonate to adult (20 weeks of 

age; (Gaur & Prasad 2014, Ludwig et al 2014, Singh et al 2007)), and as old as 60-70 

weeks of age (Gaur & Prasad 2014, Singh et al 2007).  Both groups have observed 

cerebellar expression to steadily decrease in older animals (Gaur & Prasad 2014, 

Ludwig et al 2014), though cortical FMRP expression may be more complex during 

postnatal development into adulthood (Ludwig et al 2014).  While we and others have 

studied animals near 4-6 weeks of age (Gaur & Prasad 2014, Iliff et al 2013, Ludwig et 

al 2014, Singh et al 2007), the specific 8 week time point utilized here has not been 

compared directly to old animals previously.   

Our study is likely underpowered to detect subtle changes in human FMRP 

expression. We observed a wide range of FMRP expression levels in both the control 

and patient samples, consistent with published results (Ludwig et al 2014, Pretto et al 

2014).  This variance was not completely explained by patient age, tissue pH, or PMI 

(Figure 3.3), although all of these variables demonstrated a trend towards lower FMRP.  

This leaves open the possibility that lower basal or activity dependent FMRP expression 

could still contribute to altered APP expression in a subset of patients or in certain brain 

regions.   

Impaired FMRP expression in FXTAS model mice and patients have been 

described previously (Entezam et al 2007, Iliff et al 2013, Kenneson et al 2001, Ludwig 

et al 2014, Pretto et al 2014, Qin et al 2011, Tassone et al 2000a).  Similarly, we find 
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reduced FMRP levels in two of the three FXTAS patient samples tested (Figure 3.4).  

Symptomatic FXTAS patients can develop cognitive impairment in addition to motor 

behavior symptoms (Berry-Kravis et al 2007, Leehey 2009).  While early studies 

suggested that pathologic hallmarks of Alzheimer’s Disease are rare in FXTAS (Greco 

et al 2002), recent studies in female premutation carriers with dementia demonstrated 

plaque and neurofibrillary tangle development consistent with AD pathology (Tassone et 

al 2012).   However, a recent study examining AD patient populations for FMR1 CGG 

expansions did not find a significant association (Hall et al 2014).   

To test whether FMRP insufficiency might lead to increased APP synthesis in 

FXTAS, we evaluated APP levels in our patient samples (Figure 3.5).  We detected an 

increase in cerebellar, but not cortical APP expression in FXTAS patients and no 

differences in a mouse model of FXTAS (Figure 3.5).  The C-terminal antibody used for 

this study does not detect Aβ fragments, so it remains possible that APP processing is 

altered in FXTAS or CGG premutation models.  However, in the context of the 

published studies noted above, a strong direct relationship between CGG repeats and 

induction of amyloid pathology appears unlikely.  

The group 1 mGluR, mGluR5, has been identified as a receptor of the APP 

peptide Aβ42 (Hamilton et al 2014, Renner et al 2010, Sokol et al 2011, Um et al 2013).  

A recent report explored the role of increased mGluR5 signaling in the double 

transgenic APP/PS1 model of AD (Hamilton et al 2014).  Genetic modulation of mGluR5 

improved behavioral learning performance, and decreased amyloid plaques found in the 

APP/PS1 mice (Hamilton et al 2014).  Furthermore, cortical FMRP expression was 

increased in 12 month old APP/PS1 mice compared to WT controls, presumably due to 

increased mGluR5 signaling, which generates a positive feedback loop leading to 

increased APP production and cleavage (Hamilton et al 2014).  The reason for differing 

results in our study is not entirely clear, however the animals examined in this report 

were significantly older (18 months old compared to 12 months old), and the procedures 

for tissue isolation and lysate generation were different  (Hamilton et al 2014).  Of note, 

the increase observed in (Hamilton et al 2014) is consistent with our observations of 

human AD cerebellar samples which showed increased FMRP expression compared to 

controls (Figure 3.3).   
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While reduced FMRP might contribute to neuronal dysfunction in FXTAS 

patients, it is unlikely to be a primary cause of neurodegeneration in FXTAS.  

Expression of CGG repeats as RNA in heterologous contexts is sufficient to elicit 

toxicity in Drosophila, cells, and mice (Hagerman 2013, Hagerman & Hagerman 2004, 

Hashem et al 2009, Iwahashi et al 2006, Jin et al 2007, Jin et al 2003, Renoux & Todd 

2012, Sellier et al 2013, Sellier et al 2010, Sofola et al 2007, Todd & Paulson 2010).  

However, FMRP insufficiency may nonetheless contribute to the cognitive decline 

observed in mouse models and patients with FXTAS.  In addition to the potential 

differential amyloidogenic burden, reduced FMRP likely impacts synaptic function in 

premutation mouse models (Hunsaker et al 2012, Iliff et al 2013, von Leden et al 2014).  

Synaptic dysregulation is thought to precede neurodegeneration, and contribute to the 

onset of symptoms prior to gross neuronal loss (Dong et al 2009, Milnerwood & 

Raymond 2010).  Delineating the role of FMRP insufficiency in FXTAS thus remains an 

important objective going forward given the implications for therapeutic development in 

patients.     

In summary, we find no evidence to support a direct link between lower basal 

FMRP expression and Alzheimer’s disease pathogenesis.  Future work will be needed 

to define whether changes in FMRP activity influence Alzheimer’s disease development, 

given the known roles of FMRP in APP processing and neuronal function. 

 

Materials and Methods 
 

Mice  

Animal use followed NIH guidelines and was in compliance with the University of 

Michigan Committee on Use and Care of Animals. Fmr1 KO (Bakker et al 1994) and 

CGG KI (Entezam et al 2007) mice were genotyped as described previously (Iliff et al 

2013, Renoux et al 2014b).  APP/PS1 mouse (Haass et al 1995, Prihar et al 1999) 

genotypes were confirmed with western analysis for the human APP transgene (clone 

6E10 1:2000; Millipore). 

 

Patient Donor Samples 
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All human tissues were obtained and distributed under oversight by appropriate 

institution specific review boards. Frontal cortex and cerebellar tissue from 10 control 

and 10 clinically probable Alzheimer’s disease patients were obtained from the 

University of Michigan Alzheimer’s Disease Brain Bank.  All AD cases were confirmed 

at autopsy.  Brain tissues from two previously described FXTAS patients (Louis et al 

2006, Todd et al 2013) and an additional clinically definite FXTAS patient were used as 

controls for reduced FMRP expression.  CGG repeat size was determined in FXTAS 

patients by DNA isolation followed by PCR using C and F primers. See Table 3.1 for 

PMI, age, and sex of each individual. 

 

Table 3.1: Patient donor information.   
Diagnosis, age at death, post mortem interval (PMI) in hours for all patients, and FMR1 
5’UTR CGG length for FXTAS patients included below.  N.D. indicates not determined. 
Diagnosis Sex Age PMI (hrs) FMR1 Repeats 
Control F 82 21 n.d. 

Control M 39 22 n.d. 

Control M 47 23 n.d. 

Control M 69 24 n.d. 

Control M 72 23 n.d. 

Control F 86 18 n.d. 

Control F 87 9 n.d. 

Control F 74 6 n.d. 

Control M 59 12 n.d. 

Control M 81 6 n.d. 

AD F 78 2 n.d. 

AD M 69 12 n.d. 

AD F 75 24 n.d. 

AD F 66 9 n.d. 

AD M 82 9 n.d. 

AD M 73 3 n.d. 

AD F 86 15 n.d. 
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AD M 80 21 n.d. 

AD F 75 24 n.d. 

AD M 69 13 n.d. 

FXTAS M 78 3.5 90 CGGs 

FXTAS M 74 3 102 CGGs 

FXTAS M 80 6.5 116 blood/180 cheek 

 

Western Blot Analysis  

Western blotting was performed as described previously (Iliff et al 2013).  Briefly, 

brain tissue samples (cerebral cortex and subcortical regions from mice, or frontal 

cortex from human, and cerebellum) were homogenized in RIPA buffer containing 

Complete Mini protease inhibitor cocktail (Roche). Samples were sonicated and 

centrifuged, and total protein content of the supernatant measured using a DC Protein 

assay (Bio-Rad).  Equal amounts of protein were mixed with 6X Laemmli buffer and 

boiled for 5 min before separation on 8% polyacrylamide gels. Gels were transferred 

and blocked with Tris-buffered saline containing 0.1% Triton-X (TBST) and 5% non-fat 

milk for 60 min at RT, and incubated with an antibody against FMRP (Millipore mouse 

monoclonal 1C3 1:1000 or Abcam rabbit polyclonal 17722, 1:1000), or against the C-

terminal of APP (Invitrogen 51-2700, 1:500) and β-tubulin (University of Iowa’s 

Developmental Studies Hybridoma Bank E7, 1:5000) overnight at 4°C.  Blots were 

incubated with corresponding fluorescent secondary antibody (1:15000; IRDye® 680RD 

or 800CW, LI-COR) for 60 min at RT, and imaged with the Odyssey® Imaging System 

(LI-COR).  

Band intensity was quantified in the linear range with densitometry using LI-COR 

Image Studio™ Software.  Experiments were performed in technical triplicate, and 

FMRP/tubulin or APP/tubulin ratios to two control samples included in every experiment 

were combined.  These ratios were averaged, normalized to control values for each 

experiment, and expressed as %Control in experiments. 

 

Immunohistochemistry 
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Antibody control experiments were performed on mice aged 50-75 weeks (n=6 

WT, n=5 CGG KI, n=1 Fmr1 KO), and experimental analysis on 80-90 week old mice 

(n=2 WT, n=3 APP/PS1) which were anesthetized with 0.2 mg Ketamine/20 µg Xylazine 

per kilogram prior to transcardial perfusion with 15-20 mL PBS and 15-20 mL 4% PFA 

in PBS. Brains were dissected, fixed overnight in 4% PFA, and then sunk in 30% 

sucrose in PBS at 4°C. Brains were sectioned at 30μm and placed in a cryostorage 

solution of 30% sucrose/33.33% ethylene glycol/0.05 M PBS until needed.   

Prior to staining, slices were rotated in PBS overnight at 4°C to remove 

cryostorage solution, then basic antigen retrieval was performed by placing the slices in 

0.01M sodium citrate (pH 8.5) at 80°C for 10 minutes followed by three 5-minute 

washes in PBS. The slices were then placed in 1% H2O2 in Tris to block endogenous 

peroxidases. Slices were permeabilized in 0.1% Triton-X/.05% BSA in Tris for 30 

minutes at room temperature (RT) and blocked in 5% normal goat serum (NGS) for 1 

hour at RT. Slices were then incubated overnight in anti-FMRP antibody (1:3500). 

Following two washes, slices were incubated in horseradish peroxidase-conjugated 

secondary antibody (1:1000) in 5% NGS in Tris. Prior to peroxidase development, slices 

were treated with the Vectastain ABC kit (Vector) to increase DAB visibility. Following 

washes, slices from all genotypes were placed simultaneously in ImmPACT DAB 

solution (Vector) for 10-15 seconds until they just started to turn brown. Following 

washes, slices were mounted, allowed to dry overnight then either counterstained in 

Gill’s 1:2 hematoxylin for 45-60 seconds, or immediately dehydrated in an alcohol 

gradient and mounted.   

 

Microscopy  

A slide scanning microscope (Zeiss) was used to image all DAB stained tissue. 

Fields of view were selected in the hippocampus and cortex to be easily reproducible 

across multiple sections.  Images were taken using the same exposure settings for all 

genotypes. 

 

Statistical Analysis 
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All values are expressed as the mean ± standard error of the mean.  Western 

blot immunoreactivity for each sample was measured in technical triplicate, and 

combined as a ratio of %control for each blot.  These combined values were averaged, 

and compared using a Student’s T-test, with significance indicated by a P value <0.05. 

FMRP expression compared to age, PMI, and pH were evaluated using a Pearson’s 

correlation coefficient on combined cortical and cerebellar FMRP values from either 

control and AD samples, or combined control and FXTAS cortical and cerebellar values, 

with significance indicated by P<0.05.  Comparison of donor gender in FMRP 

expression was performed using a two-way ANOVA with posthoc Sidak’s multiple 

comparison test. 
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Chapter 4  
Impaired sensorimotor gating in Fmr1 knock out and Fragile X premutation model 

mice6 
 
 

Abstract 
 

Fragile X syndrome (FXS) is a common inherited cause of intellectual disability 

that results from a CGG repeat expansion in the FMR1 gene. Large repeat expansions 

trigger both transcriptional and translational suppression of Fragile X protein (FMRP) 

production. Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is an allelic 

neurodegenerative disease caused by smaller “pre-mutation” CGG repeat expansions 

that enhance FMR1 transcription but lead to translational inefficiency and reduced 

FMRP expression in animal models. Sensorimotor gating as measured by pre-pulse 

inhibition (PPI) is altered in both FXS patients and Fmr1 knock out (KO) mice. Similarly, 

FXTAS patients have demonstrated PPI deficits. Recent work suggests there may be 

overlapping synaptic defects between Fmr1 KO and CGG knock-in premutation mouse 

models (CGG KI). We therefore sought to interrogate PPI in CGG KI mice. Using a quiet 

PPI protocol more akin to human testing conditions, and a background noise protocol 

based on previously published literature, we find that Fmr1 KO animals have 

significantly impaired PPI. Using the quiet protocol, we find CGG KI mice demonstrate 

an age-dependent impairment in PPI compared to wild type (WT) controls.  

Furthermore, we find a significant increase in WT and CGG KI PPI when animals are 

treated with the mGluR5 antagonist, fenobam.  This study describes a novel phenotype 
                                            
6 Most of this chapter was originally published as: Renoux AJ*, Sala-Hamrick KJ*, Carducci NM, Frazer 
M, Halsey KE, Sutton MA, Dolan DF, Murphy GG, Todd PK.  Impaired sensorimotor gating in Fmr1 knock 
out and Fragile X premutation model mice. Behav Brain Res. 2014. 267:42-5.  
(*Authors contributed equally.) 



71 
 

in CGG KI mice that can be used in future therapeutic development targeting 

premutation associated symptoms. 

 

Introduction 
 

Fragile X Syndrome (FXS) is the most common known inherited cause of 

intellectual disability (Rogers et al 2001).  FXS patients exhibit motor developmental 

delays, executive dysfunction, and 30-50% of patients qualify for a DSM-IV diagnosis of 

autism (Rogers et al 2001).  FXS is caused by expansion of a CGG trinucleotide repeat 

in the 5’ untranslated region (UTR) of the FMR1 gene on the X chromosome to more 

than 200 repeats.  This large expansion inhibits production of the FMR1 protein product, 

FMRP, by triggering hypermethylation of the repeat and FMR1 promoter region, 

resulting in transcriptional silencing of FMR1. When FMR1 methylation is incomplete 

and FMR1 mRNA is transcribed, the CGG repeat expansion inhibits FMRP translation, 

presumably by impairing ribosomal scanning through the repeat in the 5’UTR (Feng et 

al 1995). 
Associated with FXS is the allelic age-related neurodegenerative condition, 

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS).  FXTAS patients display 

cognitive and neurological signs with age but are typically asymptomatic until age 50.  

The main features of FXTAS include action tremor and ataxia, with cognitive decline in 

a significant fraction of patients.  FXTAS patients have an intermediate “premutation” 

repeat expansion between 55 and 200 CGGs (Nelson et al 2013).  In premutation 

carriers, the CGG repeat expansion triggers enhanced transcription, resulting in an 

increase of FMR1 mRNA (Todd et al 2010).  However, as in unmethylated FXS 

patients, the repeat RNA forms a hairpin loop that impairs FMRP translation (Farzin et 

al 2006, Iliff et al 2013).  This effect is repeat length dependent, such that larger CGG 

repeats elicit greater impairments in translational efficiency and lower FMRP levels 

(Ludwig et al 2014, Nelson et al 2013, Pretto et al 2014).  Consistent with reduced 

FMRP levels, younger premutation carriers can develop symptoms more commonly 

associated with FXS, such as higher rates of autistic and attention deficit hyperactivity 

disorder (ADHD)-like symptoms (Clifford et al 2007, Farzin et al 2006).   
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One phenotype observed in both FXS patients and mouse models is 

sensorimotor gating abnormalities.  This is the process by which an acoustic startle 

response (ASR) is modulated, as measured by pre-pulse inhibition (PPI) (Powell et al 

2012).  FXS patients show impaired PPI, suggesting a basal failure in sensorimotor 

gating (Hessl et al 2009).  Similarly, mice lacking FMRP (Fmr1 KO) also show 

disruptions in PPI, although the direction of change is variable (Baker et al 2010, Chen 

& Toth 2001, de Vrij et al 2008, Frankland et al 2004, Nielsen et al 2002, Paylor et al 

2008, Veeraragavan et al 2012).  

Our group has recently demonstrated that premutation model mice exhibit 

deficits in a form of synaptic plasticity (mGluR-LTD) that is also implicated in Fmr1 KO 

mice (Iliff et al 2013).  Additionally, symptomatic FXTAS patients exhibit altered ASR 

and PPI (Schneider et al 2012).  We therefore sought to define whether premutation 

model mice, which have 120 CGG repeats knocked in to the murine Fmr1 5’UTR (CGG 

KI; (Iliff et al 2013)), exhibit alterations in their ASR or PPI.  Establishing a phenotypic 

readout in premutation model mice that has direct correlation with patient findings would 

greatly aid in preclinical testing and development of novel therapeutics for FXTAS.  

Furthermore, identifying areas of phenotypic overlap between CGG KI and Fmr1 KO 

mice may allow cross-application of therapeutic strategies developed for FXS patients 

to be applied to premutation carriers. 

Here we show that Fmr1 KO mice exhibit reduced PPI using two different 

protocols.  In older CGG KI mice, we see a similar impact on sensorimotor gating, with 

altered ASR and reduced PPI compared to controls.  However this phenotype in 

premutation model mice is age-dependent, as younger CGG KI mice show normal PPI.  

We also find significant increases in WT and CGG KI PPI with acute fenobam 

administration.  This study establishes altered PPI as a shared phenotype in CGG KI 

and Fmr1 KO mice that may be amenable to pharmacologic intervention.  

 

Results 
 

To ensure that hearing function was not affecting our experiments, we evaluated 

ABRs in the mice we tested.  Using three tonal frequencies (12 kHz, 24 kHz, 48 kHz), 
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there was a significant effect of frequency across all genotypes, consistent with 

published studies in C57BL/6 mice (Johnson et al 1997).  In the younger (3-5 month 

old) Fmr1 KO and WT littermate controls, we found no difference in thresholds between 

genotypes (all ABR thresholds are in dB SPL; WT: 12 kHz = 26.3 ± 0.92, 24 kHz = 35 ± 

2.39, 48 kHz = 60.1 ± 3.79; Fmr1 KO: 12 kHz = 25 ± 2.19, 24 kHz = 34.2 ± 4.06, 48 kHz 

= 48.1 ± 8.07; F(1, 54)= 2.060, not significant (NS), n=10 for each group; data not shown).  

Similarly, we found no difference in younger CGG KI mice compared to WT controls 

(WT: 12 kHz = 26 ± 2.83, 24 kHz = 28 ± 3.62, 48 kHz = 68 ± 8.87; CGG KI: 12 kHz = 

37.25 ± 13.59, 24 kHz = 39.75 ± 14.33, 48 kHz = 76 ± 17.30; F(1, 18)= 1.624, NS, n=4 for 

each group; data not shown).  In older (7-8 months old) CGG KI and WT littermates, we 

observed a significant elevation in ABR thresholds for the CGG KI mice compared to 

WTs at higher frequencies (WT: 12 kHz = 23.14 ± 2.14, 24 kHz = 24.71 ± 4.16, 48 kHz 

= 46 ± 13.39, n=7; CGG KI: 12 kHz = 27 ± 1.74, 24 kHz = 40.22 ± 5.27, 48 kHz = 77.78 

± 2.54; F(1, 42)= 14.99, P<0.05, n=9; interaction between genotype and frequency, F(2, 

42)= 3.380, P<0.05; data not shown).  As ABR profiles were similar across all genotypes 

at the 12 kHz frequency, we restricted our analysis to either BBN or 12 kHz stimulation.    

We first evaluated the ASR and PPI in Fmr1 KO mice and littermate controls. 

Basal ASR in animals over a range of intensities (60-120 dB SPL) demonstrated no 

significant difference between Fmr1 KO animals compared to WT (Figure 4.1A; F(1, 108)= 

0.088, NS, n=7 for each group).   

In an effort to better mimic the PPI testing conditions used in patient studies 

(Hessl et al 2009, Schneider et al 2012), we recorded PPI using an established protocol 

with minimal background noise (Dolan et al 2012).  Using this protocol we found a 

significant decrease in the %PPI of Fmr1 KO animals compared to WT controls (Figure 

4.1B; F(1, 48)= 6.864, P<0.05; post-hoc Fisher’s LSD at 65 dB t=2.887, P<0.05, n=8).  

While these results are consistent with studies in FXS patients and some trials in Fmr1 

KO mice (de Vrij et al 2008, Frankland et al 2004, Hessl et al 2009), other studies have 

observed an opposite effect, with enhanced PPI in Fmr1 KO mice (Baker et al 2010, 

Chen & Toth 2001, Frankland et al 2004, Nielsen et al 2002, Paylor et al 2008, 

Veeraragavan et al 2012).  It is notable that we observed some habituation in both WT 
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and Fmr1 KO animals tested.  However, this effect was not different between 

genotypes, therefore did not affect the overall results.   

 

 
Figure 4.1: Auditory startle response and reduced pre-pule inhibition in Fmr1 KO 
animals. 
(A) Startle response curves reveal that Fmr1 KO mice (n=7) ages 2–3 months have 
normal responses compared to littermate WTs (n=7). (B) WT mice (n=10) show a 
significantly higher %PPI than Fmr1 KO mice (n=8) when tested with a 12 kHz, 100 dB 
startle and 45–65 dB pre-pulses. (C) The same animals as in (B) were tested in a 
protocol with 70 dB BBN background noise.  WT mice continue to show a significantly 
higher %PPI than KO mice when tested in background noise with a 100 dB BBN startle 
and 74, 78, 82, 86, and 90 dB BBN pre-pulses. *P<0.05 main effect of genotype by two-
way ANOVA; #P<0.05 post hoc Fisher's LSD. 
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While these results are consistent with studies in FXS patients and some trials in 

Fmr1 KO mice (de Vrij et al 2008, Frankland et al 2004, Hessl et al 2009), other studies 

using force generation as a measure of acoustic startle have exhibited an opposite 

phenotypic effect, with an enhancement of PPI in Fmr1 KO mice (Baker et al 2010, 

Chen & Toth 2001, Frankland et al 2004, Nielsen et al 2002, Paylor et al 2008, 

Veeraragavan et al 2012).  As we were using a different testing protocol, we assessed 

whether the observed differences might result from technical alterations in our testing 

conditions.  We therefore created a second protocol to mimic testing conditions reported 

in published literature examining Fmr1 KO mice that included constitutive background 

70 dB SPL BBN sound, with testing of pre-pulses at 74-86 dB (Baker et al 2010, Chen & 

Toth 2001, Frankland et al 2004, Nielsen et al 2002, Paylor et al 2008, Veeraragavan et 

al 2012).   

Using a new cohort of animals, we assessed both protocols, alternating which 

animals received each protocol first.  Studies using our “silent” protocol demonstrated 

similar results to our initial evaluations (data not shown).  Using our second protocol in 

the setting of background noise, we observed similar trends to our initial evaluations, 

with significant effects for pre-pulse intensity and a sustained impairment of PPI in Fmr1 

KO mice compared to littermate controls (Figure 4.1B; WT: 74 dB = 67.47 ± 2.25, 78 dB 

= 82.31 ± 1.92, 82 dB = 69.87 ± 1.81, 86 dB = 66.53 ± 2.03, 90 dB = 61.44 ± 1.66 n=10; 

Fmr1 KO: 74 dB = 59.25 ± 7.56, 78 dB = 69.41 ± 10.49, 82 dB = 59.65 ± 8.09, 86 dB = 

56.03 ± 7.94, 90 dB = 51.17 ± 6.94, F(4, 80)= 4.018, P<0.05 for pre-pulse intensity and 

F(1, 80)= 10.51, P<0.05 for genotype, two-way ANOVA. Post-hoc Fisher’s LSD was not 

significantly different for individual prepulse intensities, n=8).  This indicates a consistent 

phenotype across different protocols that mimics the impairment in PPI observed in FXS 

patients (Frankland et al 2004, Hessl et al 2009). 

We next evaluated PPI and ASR in premutation CGG KI mice.  We measured 

basal ASR in younger (2-5 month old) CGG KI and WT littermate controls, and 

observed a significant reduction in startle amplitude in CGG KI mice (Figure 4.2A; F(1, 

112)= 9.916, P<0.05, n=10 KI, 6 WT; t=2.164, P<0.05 for 105 dB point by Fisher’s LSD).  

However, we observed no significant difference in PPI between premutation and control 

animals (Figure 4.2B; F(1, 42)= 0.2025, NS, n=10 KI, 6 WT).   
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Figure 4.2: Auditory startle response and age-dependent pre-pulse inhibition in CGG KI 
mice. 
(A) Startle response curves show that 2–5 month old CGG KI mice (n=10) have altered 
ASR compared to littermate controls (n=6). (B) PPI in younger CGG KI mice revealed 
no difference. (C) Startle response curves in older 7–8 month old CGG KI mice (n=8) 
have altered ASR compared to WTs (n=4). (D) Older CGG KI mice (n=14) show 
significantly impaired PPI compared to littermate controls (n=7). *P<0.05 main effect of 
genotype by two-way ANOVA; #P<0.05 post hoc Fisher's LSD. 
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In patients, symptomatic male premutation carriers have altered PPI (Schneider 

et al 2012).  We therefore chose to evaluate older male CGG KI and littermate controls 

(7-8 months old), hypothesizing that they may have age-related alterations in 

sensorimotor gating.  We saw altered basal ASR in aged CGG KI animals compared to 

WTs (Figure 2C; F(1, 90)= 6.958, P<0.05, n=8 KI; no individual point was significant by 

Fisher’s LSD).  In contrast to our findings, symptomatic human premutation carriers are 

reported to have reduced basal startle response (Schneider et al 2012).  Our 

observation may be a hyperacusis-elicited response to age-related hearing impairment 

in mice as previously described (Ison et al 2007).  We found a significant decrease in 

CGG KI %PPI compared to littermate controls (Figure 2D; F(1, 57)= 4.312, P<0.05, n=14 

KI, 7 WT; t= 2.285, P<0.05 for 65 dB pre-pulse, post-hoc Fisher’s LSD), indicating some 

time-dependent phenotypic overlap between Fmr1 KO and CGG KI animals. 

PPI is a behavior task which has been used previously to compare the effects of 

possible therapeutic intervention in FXS and Fmr1 KO mouse models (Berry-Kravis et al 

2009, de Vrij et al 2008, Hessl et al 2009).  In particular, several mGluR5 antagonists 

have been tested for symptomatic amelioration, such as 2-Methyl-6-

(phenylethynyl)pyridine (MPEP;  (de Vrij et al 2008)) and fenobam (Berry-Kravis et al 

2009, Montana et al 2009).  As we identified a behavioral task with phenotypic overlap, 

we next evaluated the impact of acute fenobam administration in young (3-5 month old) 

CGG KI and WT animals (Figure 3).  Basal ASR was not affected by fenobam in either 

WT (F(1, 32)= 0.2623, NS, n=3) or CGG KI (F(1, 128)= 2.130, NS, n=9) groups, however the 

significant difference between genotypes was maintained in vehicle and fenobam 

(Figure 3A; Vehicle: F(1, 80)= 27.85, P<0.05, n=3 WT, 9 KI; 100 dB t= 2.689, 105 dB t= 

3.453, 110 dB t= 2.562, 120 dB t= 2.817, P<0.05 post-hoc Fisher’s LSD; Fenobam: F(1, 

80)= 14.72, P<0.05, n=3 WT, 9 KI; 100 dB t= 2.412, 105 dB t= 2.161, 110 dB t= 2.090, 

P<0.05 post-hoc Fisher’s LSD).  PPI was significantly increased with administration of 

fenobam in both WT (F(1, 6)= 11.61, P<0.05; matching subjects F(6, 6)= 9.615, P<0.05, 

n=3; 50 dB t= 3.668, P<0.05 post-hoc Bonferroni) and CGG KI (F(1, 24)= 5.782, P<0.05; 

matching subjects F(24, 24)= 5.026, P<0.05, n=9) groups (Figure 3B-C).  However, as in 

Figure 2, PPI between young WT and CGG KI animals was not significantly different 
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(Figure 3B; Vehicle: F(1, 30)= 1.092, NS, n=3 WT, 9 KI; Fenobam: F(1, 30)= 0.079, NS, n=3 

WT, 9 KI).  The overall increase in %PPI of both groups with an mGluR antagonist 

(Figure 3C) is consistent with previously published results (de Vrij et al 2008).  

Additional experiments are required to determine if fenobam administration could 

restore the impaired PPI seen in older CGG KI animals. 

 

 
Figure 4.3: Auditory startle response and increased pre-pulse inhibition with fenobam 
administration. 
(A) Startle response curves show that young (3-5 month old) CGG KI mice (n=9) have 
significantly reduced acoustic startle responses compared to WT littermate controls 
(n=3).  Fenobam (30mg/kg administered 30min prior to testing) does not significantly 
alter ASRs.  (B) There is no significant effect of genotype between vehicle- or fenobam-
treated animals (WT n=3, CGG KI n=9).  However, there is an overall significant 
increase in PPI with fenobam across all prepulse intensities in both genotypes.  (C) 
Significantly increased individual animals’ PPI with fenobam at each prepulse intensity. 
*P<0.05 main effect of genotype by two-way ANOVA; #P<0.05 post hoc Bonferroni.  
 

Discussion 
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In this study we demonstrate a new behavioral phenotype in premutation model 

mice.  Both CGG KI and Fmr1 KO mice exhibit impaired PPI, a measure of 

sensorimotor gating, which mimics what is seen in Fragile X spectrum disorder patients 

(Frankland et al 2004, Hessl et al 2009, Schneider et al 2012).  We observed 

impairment in sensorimotor gating as measured by PPI using two different protocols in 

Fmr1 KO mice.  While similar to studies in human FXS patients, this finding differs from 

previous reports where Fmr1 KO mice exhibit enhanced PPI (Baker et al 2010, Chen & 

Toth 2001, Frankland et al 2004, Nielsen et al 2002, Paylor et al 2008, Veeraragavan et 

al 2012).  The reason for these differences is unclear, although minor modifications in 

testing protocols may be responsible.  We attempted to control for this feature by 

creating a similar protocol to published studies, but this did not significantly alter the 

degree or direction of change in PPI between Fmr1 KO mice and littermate controls 

(Figure 1).  Alternatively, environmental variance or genetic drift in the Fmr1 KO 

background on C57BL/6 may be a contributing factor.  One previous study in Fmr1 KO 

mice, using eye blink to measure startle similar to human tests, also demonstrated 

impaired PPI, which is typically observed in patients (de Vrij et al 2008). 

The impaired PPI observed in Fmr1 KO and older CGG KI mice indicates an 

additional behavioral phenotype in common between these models.  Recent work 

demonstrates that these CGG KI mice exhibit a number of features originally thought to 

be specific to Fmr1 KO animals.  Specifically, hyperactivity, decreased anxiety in open 

field and elevated zero maze assays, and social behavior alterations (Qin et al 2011).  

However, not all mouse models of FXTAS exhibit these phenotypes (Nelson et al 2013), 

so the generalizability for these findings to other models remains unknown.   

The mechanism for altered PPI in FXTAS patients and CGG KI mice is unclear.  

These mice do not exhibit significant neurodegeneration within the ages used here, but 

there could be an age-dependent decline in neuronal function which impacts 

sensorimotor gating.  Of note, the age-dependent hearing loss in C57BL/6 mice is 

unlikely to be a major contributor to the change in PPI, as age-related deafness typically 

enhances rather than suppresses PPI at lower frequencies, opposite of what we 

observe (Willott et al 1994).   
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An alternative explanation for the observed PPI alterations is the reduced FMRP 

expression in CGG KI mice.  Work by our group and others demonstrate that CGG 

premutation model mice express reduced levels of basal FMRP and impaired activity-

dependent FMRP translation (Iliff et al 2013, Ludwig et al 2014, Qin et al 2011).  This 

defect is coupled to enhanced mGluR-dependent synaptic weakening (Iliff et al 2013), a 

phenotype also seen in Fmr1 KO mice (Huber et al 2002).   

Interestingly, in both Fmr1 KO mice and in FXS patients, alterations in PPI are 

reversible with mGluR 1/5 antagonists (Berry-Kravis et al 2009, de Vrij et al 2008).  We 

explored the impact of one mGluR5 antagonist, fenobam on PPI in a small group of 

young CGG KI and WT controls (Figure 3).  We observed a significant increase in PPI 

with acute fenobam administration in both WT and CGG KI animals.  Whether older 

CGG KI mice or premutation patients will benefit similarly from mGluR antagonists will 

be an important area of future study.   

These data, along with behavioral and electrophysiological assessments in 

premutation model mice, suggest that there are significant areas of pathophysiologic 

overlap in these models.  The progress in treating FXS may also be applicable to 

premutation carriers and may have important implications for therapeutic development 

across the Fragile X disorder spectrum. 

 

Materials and Methods 

 

Mice 

Mouse handling regulations were followed in accordance to NIMH/NIH 

Guidelines on the Care and Use of Animals and the University Committee and the Use 

and Care of Animals at the University of Michigan (UCUCA).   

Mice were maintained on a C57BL/6 background.  CGG KI mice were obtained 

from the Usdin laboratory at the NIH (Bethesda, MD (Entezam et al 2007, Iliff et al 

2013)).  CGG KI and littermates were genotyped as described previously (Iliff et al 

2013).  Fmr1 KO mice were received from Cara Westmark (University of Wisconsin) 

and Jim Malter (UT Southwestern).  Genotyping was performed as described previously 

(Consortium 1994). 
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Prepulse Inhibition 

Kinder Scientific Startle Monitor equipment and software was used to measure 

acoustic startle reflexes (http://www.kinderscientific.com).  The testing chamber was 

fixed on a movement sensor within a small padded chamber (to mute reverberation) 

housed within a larger sound proof cabinet.   

On day one, basal startle response was measured with a startle input-output 

program run in succession with a 15 minute break between trials.  Noise was played for 

40ms four times each in a pseudo-random order with no pre-pulse between stimuli. 

Fmr1 KO cohort n=7 KO, 7 WT; young CGG KI cohort n=10 KI, 6 WT; old CGG KI n=8 

KI, 4 WT.   

PPI trials began on day two and continued for four testing days.  The quiet PPI 

protocol consisted of two sessions using 100 dB SPL acoustic startle and 50ms pre-

pulses of narrow-band or broad band noise at 40, 50, or 65 dB SPL played 100ms 

before the startle with 5-9 seconds inter-trial intervals played in a pseudo-random order.   

Fmr1 KO cohort n=8 KO, 10 WT; young CGG KI n=10 KI, 6 WT; old CGG KI n=14 KI, 7 

WT.  Ambient sound for the quiet protocol was measured at 49.3 dBA SPL, with the 

majority of spectral energy falling below 1.8 kHz (Quest model 2200 sound level meter).  

Ambient background sound levels above 1.8 kHz (murine auditory range is 2.5-70 kHz 

(Taberner & Liberman 2005)) did not exceed 25 dB.   

An additional PPI protocol was performed in 70 dB SPL broad band noise (BBN) 

with bandwidth of 2-20 kHz to manufacture a pseudo-“white noise” as detailed 

previously (de Vrij et al 2008, Paylor et al 2008).  Two sessions of 100 dB SPL startles 

with BBN pre-pulses of 74, 78, 82, 86, and 90 dB SPL were played in a pseudo-random 

order.  Stimulus durations, inter-trial intervals, inter-stimulus intervals were the same as 

those in the quiet protocol above.   

The Fmr1 KO cohort run in both the quiet and background noise protocols were 

separated into two groups, one of which received the quiet protocol first followed by the 

background noise protocol, and vice versa. 
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%PPI was calculated as follows: 100 − [(response to pre-pulse plus startle 

stimulus/startle response alone) × 100].  The average %PPI value of each session per 

mouse was combined for final values compared between genotypes. 

Following all testing, the hearing ability of the animals was verified using Auditory 

Brainstem Response Testing (ABR) as described previously (Karolyi et al 2007).  

 

Drug Treatment 

 Young (3-5 month old) CGG KI (n=9) and WT (n=3) littermate controls were used 

to evaluate the impact of the mGluR5 antagonist fenobam (Tocris) on PPI.  Fenobam or 

equal volume of vehicle (dimethyl sulfoxide, DMSO) was injected intraperitoneally at 

30mg/kg 30 minutes prior to experimentation. 

Half the animals began testing on fenobam, the other half on vehicle (DMSO), 

and switched after the completion of each set of experiments: 4 trials of the quiet PPI 

protocol as outlined above.  Startle input-output curves were measured prior to and 

following all PPI testing for each animal treated with fenobam and vehicle.   

 

Statistical Analysis 

Values are reported as mean ± SEM.  Data were compared by two-way ANOVA 

comparing genotype and stimulation intensity.  A significant effect of stimulation 

intensity was expected in all experiments.  Interactions are noted in the results where 

applicable; * indicates an overall difference in genotype of P<0.05.  Significant effects of 

genotype were followed with a Fisher’s LSD or Bonferroni correction for multiple 

comparisons as post-hoc analysis on individual points (# indicates P<0.05). 
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Chapter 5  
Axonal protein expression and homeostatic plasticity are altered in Fragile X 

premutation model mice  
 

Abstract 
 

Neuronal FMRP expression is critical for synaptic function, as its absence causes 

Fragile X Syndrome and cognitive dysfunction in patients.   Fragile X premutation 

patients also suffer cognitive decline with age, along with neurodegeneration and 

executive dysfunction.  Premutation patients and mouse models both show reduced 

FMRP expression, likely owing to impaired translational efficiency of the CGG-

containing Fmr1 mRNA.  Our group has previously identified enhanced mGluR-

dependent long term depression (LTD) in a CGG knock-in (CGG KI) premutation mouse 

model.  However, the relative contribution of increased CGG-containing mRNA and 

reduced FMRP expression in this synaptic plasticity phenotype remain unclear.  Here 

we show a selective decrease in the voltage-gated sodium channel Nav1.2 and 

scaffolding protein ankyrin G in CGG KI axon initial segments.  Additionally, CGG KI 

neurons show alterations in homeostatic plasticity induced by application of the AMPA 

receptor antagonist, CNQX.  This effect may be at least partially dependent on CGG-

containing mRNA, as exogenous expression in WT rat neurons show a similar trend 

after CNQX treatment.  Together these data suggest premutation model neurons have 

altered axonal composition and homeostatic plasticity, both of which indicate network 

activity may be altered as a result of reduced FMRP and increased CGG-containing 

mRNA. 
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Introduction 
 

Protein synthesis in dendrites is important for enduring forms of synaptic 

plasticity necessary for normal neuronal function, learning, and memory.  Conversely, 

improper control of local translation may contribute to cognitive dysfunction and 

neuropsychiatric symptoms associated with certain forms of intellectual disability and 

autism. One protein known to be critical to synaptic function and dendritic protein 

translation is FMRP.  FMRP binds to and inhibits the translation of numerous transcripts 

at synapses (Ascano et al 2012, Darnell et al 2011, Laggerbauer et al 2001).  Activation 

of metabotropic glutamate receptors (mGluRs) triggers FMRP dissociation and 

degradation resulting in rapid, dendritically-localized protein synthesis (Nalavadi et al 

2012, Narayanan et al 2007, Narayanan et al 2008, Weiler & Greenough 1999, Weiler 

et al 1997, Weiler et al 2004).  However, this pulse of translation is temporally 

constrained, such that mGluR dependent forms of plasticity require translation for only a 

few minutes after activation, despite the conferral of long lasting changes in synaptic 

strength (Huber et al 2000, Merlin et al 1998).  Among the many mRNA binding targets 

of FMRP is the Fmr1 transcript itself, which is rapidly translated at synapses upon 

mGluR stimulation (Hou et al 2006, Iliff et al 2013, Li et al 2001, Siomi et al 1994, Todd 

et al 2003a, Todd et al 2003b, Weiler et al 1997). The function and importance of this 

newly produced FMRP, however, remains unknown (Bear et al 2004).   

FMRP plays important functional roles in the pathogenesis of two allelic human 

diseases.  Fragile X Syndrome (FXS), the most common known inherited cause of 

autism and cognitive impairment (Hernandez et al 2009, Rogers et al 2001).  In FXS, a 

normally small (~30 in average individuals) CGG repeat tract in the 5’UTR of the FMR1 

gene expands to a large repeat (>200) resulting in methylation of the gene, and 

transcriptional silencing of FMR1 (Bell et al 1991, Kremer et al 1991, Oberle et al 1991, 

Pieretti et al 1991, Verkerk et al 1991).  This disorder is caused by the absence of 

FMR1’s functional protein product, FMRP.  In contrast, Fragile X-associated 

Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder associated with 

dementia, psychiatric symptoms and gait difficulties (Jacquemont et al 2004).  It results 

from premutation-range expanded (CGG) repeats in the 5’UTR of the fragile X gene, 
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FMR1, which causes a counterintuitive increase in transcription of FMR1 (Tassone et al 

2007, Tassone et al 2000a, Tassone et al 2000c, Todd et al 2010).  However, the large 

CGG repeat forms an mRNA hairpin that impairs rapid FMRP translation, leading to 

lower basal and activity-dependent FMRP expression (Entezam et al 2007, Iliff et al 

2013, Ludwig et al 2014, Pretto et al 2014, Qin et al 2011, Renoux et al 2014a). 

 The absence of FMRP is associated with a variety of neuronal phenotypes in 

animal models of FXS (Fmr1 KO), including increased cortical activity, epileptogenesis 

and susceptibility to audiogenic seizures, indicating altered network behavior (Gibson et 

al 2008, Hays et al 2011, Musumeci et al 2000, Musumeci et al 2007).  Both 

connectivity and network activity are altered in mouse models of the premutation (CGG 

KI; (Chen et al 2010, Cunningham et al 2011, D'Hulst et al 2009, Qin et al 2011)) and 

human premutation patient induced pluripotent stem cell (iPSC)-derived neurons (Liu et 

al 2012).  Furthermore, CGG KI model mice show increased mRNA levels of 

components of the GABAergic system, suggesting altered inhibitory tone (D'Hulst et al 

2009).  FMRP also regulates the translation of a myriad of proteins involved in 

excitability and action potential generation, including Kv3.1(Strumbos et al 2010), Kv4.2 

(Gross et al 2011, Lee et al 2011), and putatively Nav1.6, Nav1.2, and ankyrin G 

(Darnell et al 2011).  FMRP is also able to alter channel function through direct 

interaction, as in the case of the potassium BK and Slack channels (Brown et al 2010, 

Deng et al 2013).  Taken together, these findings indicate a potential role for FMRP’s 

involvement in neuronal excitability which may impact disease pathogenesis.  

In addition to intrinsic excitability, work by many groups has established that loss 

of FMRP alters mGluR-dependent synaptic plasticity, and it is thought that such 

plasticity defects contribute to the cognitive disability and autistic symptoms associated 

with FXS (Bear et al 2004, Huber et al 2002, Huber et al 2000).  Specifically, in Fmr1 

KO mice there is an enhancement of mGluR-dependent long-term synaptic depression 

(LTD) at CA3-CA1 synapses in the hippocampus (Huber et al 2002).  While mGluR-LTD 

is dependent on local dendritic protein synthesis in wild-type (WT) animals, this 

enhanced LTD in Fmr1 KO animals occurs even in the absence of new protein 

synthesis (Huber et al 2002). To understand the role of newly synthesized FMRP, our 

previous work examined the related physiological example of FXTAS (Iliff et al 2013).  
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In a CGG KI mouse model of the premutation, we identified enhanced mGluR-LTD, 

which was still dependent on new protein synthesis (Iliff et al 2013).  This synaptic 

phenotype is correlated with impaired activity-dependent FMRP production; however 

the relative contribution of FMRP haploinsufficiency and increased CGG-containing 

Fmr1 mRNA remains unknown.   

 

While the function of FMRP in Hebbian mGluR-LTD is relatively well studied, its 

role in homeostatic plasticity (HSP) is less clear.   HSP refers to the ability of neurons to 

regulate their own excitability relative to the neuronal network.   Neurons have a 

preferred firing pattern, and if there is any deviation from this pattern, neurons can 

compensate to return to that set point (Davis & Bezprozvanny 2001, Desai et al 1999, 

Golowasch et al 1999, Marder & Prinz 2002, Turrigiano et al 1994).  Theoretical 

networks that operate purely by Hebbian plasticity rules have been shown to be 

inherently unstable due to the positive feedback nature of LTP and LTD, as there is no 

way to control for excessive coincidental presynaptic input (Miller 1996). 

Interestingly, FMRP has been shown to play an important role in the mechanism 

of HSP (Soden & Chen 2010).  CA1 pyramidal neurons show increased mEPSC 

amplitude following TTX+APV treatment, which was absent in Fmr1 KO neurons (Soden 

& Chen 2010).  Reduced FMRP expression causes a threshold-dependent reduction in 

surface GluR1-containing AMPARs at baseline (Nakamoto et al 2007).  Furthermore, 

postsynaptic expression of mutant FMRP which cannot bind target transcripts (I304N) in 

Fmr1 KO neurons reduces the total, surface, and synaptic levels of AMPA receptors, 

hence suggesting a role for FMRP-regulated protein translation in controlling synaptic 

AMPAR abundance (Soden & Chen 2010).  Remarkably little research has been 

performed to understand how HSP mechanisms may be impacted in the presence of 

the Fragile X premutation. While Hebbian mGluR-LTD is altered in premutation model 

mice, it is not clear whether the impaired activity-dependent FMRP production resulting 

from the expanded CGG repeat will also impact HSP (Iliff et al 2013).  

Here, we aimed to explore hippocampal neuronal properties in CGG KI model 

mice, and compare the relative contribution of FMRP haploinsufficiency and toxic CGG-

containing mRNA in this model.  We describe altered basal axonal neuronal properties 
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in cultured hippocampal neurons from CGG KI and Fmr1 KO model mice, in addition to 

evaluating two forms of synaptic plasticity.  Ongoing work will describe the role of CGG-

RNA or reduced basal FMRP levels in the generation and maintenance of mGluR-LTD 

and homeostatic plasticity. 

 

Results 
 

Axonal protein expression and intrinsic excitability 

 

 As a recent report identified potential presynaptic mRNAs as targets of FMRP, 

we began by examining their expression in CGG KI cultured hippocampal neurons 

(Darnell et al 2011).  Primary hippocampal neurons were isolated from XGFP/CGG KI 

female animals, which allowed GFP-positive WT neurons and GFP-negative CGG KI 

neurons from the same animal owing to X-inactivation (Hadjantonakis et al 1998, 

Hanson & Madison 2007, Iliff et al 2013, Kalantry et al 2009, Niere et al 2012).  Cultured 

neurons were fixed and probed with antibodies for ankyrin G (AnkG) and Map2, Nav1.2 

and AnkG, Nav1.1 and AnkG, or Pan-Nav and AnkG to identify Map2-negative or AnkG-

positive axon initial segments (AIS).  We found significant decrements in AnkG and 

Nav1.2 in the first 10µm of the AIS in CGG KI neurons (AnkG: WT = 100 ± 3.70, CGG 

KI = 83.77 ± 3.07; t=3.396 df=107, P<0.05; WT n=47, CGG KI n=62; Nav1.2: WT = 100 

± 4.42, CGG KI = 88.57 ± 3.01; t=2.173 df=104, P<0.05; WT n=36, CGG KI n=70; 

Figure 5.1A-B).  However, Nav1.1 was not different in CGG KI AIS (Nav1.1: WT 100 ± 

2.64, CGG KI = 108.9 ± 5.24; t=1.630 df=87, NS; WT n=51, CGG KI n=38), nor was 

total Nav content altered, as measured by a Pan-Nav antibody (Pan-Nav: WT = 100 ± 

13.84, CGG KI = 91.97 ± 6.78;  t=0.579 df=29, NS; WT n=12, CGG KI n=19; Figure 

5.1C-D). 
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Figure 5.1: AIS protein expression in XGFP/CGG KI neurons 
Dissociated hippocampal neurons from XGFP/CGG KI female mice stained for axonal 
proteins at DIV14-17.  (A) Ankyrin G expression in Map2-negative projections.  AnkG 
fluorescence intensity in the first 10µm of the AIS are significantly reduced in CGG KI 
neurons.  WT n=47, CGG KI n=62. (B)  Nav1.2 expression in AnkG-positive projections 
show significant reduction in the proximal AIS.  WT n=36, CGG KI n=70. (C) Nav1.1 
levels in AnkG-positive AIS are unchanged in CGG KI neurons.  WT n=51, CGG KI 
n=38. (D) Total Nav content as measured by a pan-Nav antibody in Map2-negative 
projections show no overall change in CGG KI neurons.  WT n=12, CGG KI n=19.  
Students t-test, *P<0.05. 
 
 We also evaluated these AIS proteins in Fmr1 KO neurons using the same 

XGFP/Fmr1 KO strategy to generate both WT and KO neurons from the same female 

animals.  We found a similar decrement in Nav1.2 expression in Fmr1 KO AIS (Nav1.2: 

WT = 100 ± 3.77, Fmr1 KO = 87.83 ± 2.68; t=2.702 df=73, P<0.05; WT n=33, Fmr1 KO 

n=42; Figure 5.2A), however AnkG expression was unchanged (AnkG: WT = 100 ± 

13.10, Fmr1 KO = 104.9 ± 7.51; t=0.335 df=52, NS; WT n=15, Fmr1 KO n=39; Figure 

5.2B). 
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Figure 5.2: Axonal protein expression in XGFP/Fmr1 KO cultures 
Dissociated hippocampal neurons from XGFP/Fmr1 KO female mice stained for axonal 
proteins at DIV14-17.  (A) Nav1.2 expression in Map2-negative projections is 
significantly reduced in the first 10µm of the AIS in Fmr1 KO neurons.  WT n=33, Fmr1 
KO n=42. (B)  Ankyrin G expression is unchanged in Fmr1 KO AIS.  WT n=15, Fmr1 KO 
n=39.  Students t-test, *P<0.05. 
 
 

 As we found significant alterations in the composition of critical voltage-gated 

sodium channels necessary for action potential generation, we evaluated intrinsic 

excitability in cultured hippocampal neurons from XGFP/CGG KI and XGFP/Fmr1 KO 

mice.  We counted the number of actions potentials fired in response to increasing 

500ms depolarizing current injections in pharmacologically isolated neurons (10µM 

CNQX, 20µM APV, 10µM bicuculline) as a metric of excitability (Figure 5.3).  

Importantly, input resistance was unchanged between CGG KI and Fmr1 KO neurons 

compared to their intradish WT controls (XGFP/CGG KI: WT = 176.8 ± 7.84, n=34; 

CGG KI = 191.2 ± 7.05, n=41; t=1.368 df=73, NS.  XGFP/Fmr1 KO: WT = 165.6 ± 8.87, 
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n=22; Fmr1 KO = 164.3 ± 6.57, n=36; t=0.118 df=56, NS.  Figure 5.3B-C).  Despite 

significant alterations in AnkG and Nav expression, neither CGG KI nor Fmr1 KO 

neurons showed altered action potential generation with increasing current injections 

steps (XGFP/CGG KI: No significant effect of genotype F(1, 1825)=0.322, or interaction 

F(24, 1825)=0.239, NS.  Significant effect of current injection F(24, 1825)=46.85, P<0.05.  WT 

n=34, CGG KI n=41.  XGFP/Fmr1 KO: No significant effect of genotype F(1, 1399)=1.988, 

or interaction F(24, 1399)=0.159, NS.  Significant effect of current injection F(24, 1399)=26.41, 

P<0.05.  WT n=22, Fmr1 KO n=36.  Figure 5.3B-C). 

 These results were surprising following our evaluation of protein composition in 

the AIS of both these animal models.  However, we did not evaluate the other voltage-

gated sodium channels also expressed in the AIS, and it is possible these are 

upregulated to compensate for reduced Nav1.2 and AnkG expression to maintain 

normal excitability. 
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Figure 5.3: Intrinsic excitability in CGG KI and Fmr1 KO neurons 
Cultured hippocampal neurons from XGFP/CGG KI and XGFP/Fmr1 KO female mice 
were recorded from between DIV14-21.  (A) Example traces of changes in membrane 
potential with increasing current injection.  (B) Input resistance and intrinsic excitability 
are not significantly altered in CGG KI neurons.  WT n=34, CGG KI n=41.  (C) Input 
resistance and intrinsic excitability are not significantly altered in Fmr1 KO neurons.  WT 
n=22, Fmr1 KO n=36.  Students t-test, two-way ANOVA. 
 

mGluR-LTD in cultured neurons 

 

 Previous work from our group identified enhanced, protein synthesis-dependent 

mGluR-LTD in acute hippocampal slices from CGG KI animals (Iliff et al 2013).  We 

hypothesized this phenotype was a result of impaired activity-dependent synthesis of 

new FMRP, which results in increased translation of proteins required for LTD.  

However, the presence of basal amounts of FMRP regulates basal LTD proteins, 

allowing the requirement of new protein synthesis (Iliff et al 2013).  The relative 

contribution of the toxic CGG-containing mRNAs in altered synaptic function is not clear, 

and a model in which genetic manipulation could be combined with mGluR-LTD studies 

was necessary to explore this question.  Expression of various target genes or 

constructs is attainable in cultured neurons, by ether transfection or viral infection.  As a 

result, we decided to measure mGluR-LTD in cultured neurons by measuring mEPSCs 

after DHPG stimulation.  Basal mEPSC amplitude and frequency were unaltered in 

CGG KI neurons (Amplitude (pA): WT = 17.21 ± 1.13, n=18; CGG KI = 14.72 ± 0.74, 

n=13; t=1.684 df=29, NS.  Frequency (Hz): WT = 1.00 ± 0.11, n=18; CGG KI = 0.87 ± 

0.14, n=13; t=0.7770 df=29, NS; Figure 5.4A-B).  Basal amplitude was significantly 

increased in Fmr1 KO neurons, while the frequency was unchanged compared to WT 

intradish controls (Amplitude (pA): WT = 15.47 ± 0.86, n=18; Fmr1 KO = 20.43 ± 1.25, 

n=13; t=3.336 df=32, P<0.05.  Frequency (Hz): WT = 1.06 ± 0.14, n=18; Fmr1 KO = 

0.97 ± 0.07, n=13; t=0.5780 df=32, NS; Figure 5.4A, C).   

To induce synaptic depression, cultures were treated with DHPG (100µM) and 

TTX (1µM) for 10min in conditioned media, and exchanged to recording HBS (1µM 

TTX, 10µM bicuculline).  Time post-DHPG was marked when a cell was recorded from 

(Figure 5.4D-E).  DHPG caused a significant decrease in mEPSC frequency in 15-
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60min post-DHPG treated cells (XGFP/CGG KI cultures: Frequency (Hz): WT Control = 

1.00 ± 0.11, n=18; WT DHPG = 0.61 ± 0.10, n=8; CGG KI Control = 0.87 ± 0.14, n=13; 

CGG KI DHPG = 0.74 ± 0.10, n=13.  Significant effect of drug F(1, 48)=4.344, P<0.05; not 

significant effect of genotype F(1, 48)=0.002, or interaction F(1, 48)=1.118.  XGFP/KO 

cultures: Frequency (Hz): WT Control = 1.06 ± 0.14, n=18; WT DHPG = 0.75 ± 0.09, 

n=14; Fmr1 KO Control = 0.97 ± 0.07, n=16; Fmr1 KO DHPG = 0.76 ± 0.10, n=15.  

Significant effect of drug F(1, 59)=6.213, P<0.05; no significant effect of genotype F(1, 

59)=0.071, or interaction F(1, 59)=0.370.  Figure 5.4).  This decrease in frequency was not 

accompanied by a change in mEPSC amplitude, in agreement with previously published 

findings (Snyder et al 2001, Waung et al 2008, Xiao et al 2001).  This reproducible 

decrease in mEPSC frequency likely corresponds to a complete loss of synaptic AMPA 

receptors, leading to postsynaptic failures.  While DHPG elicited a decrease in mEPSC 

frequency, this effect was not enhanced in CGG KI nor Fmr1 KO neurons (Figure 5.4).  

There is the caveat of a floor effect in measuring decreases in the already low mEPSC 

frequencies in this experiment.  Observing a further significant decrement in frequency 

from WT DHPG levels (near 0.7 Hz) is very difficult and would require a large sample 

size to reach significance. 
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Figure 5.4: mGluR-LTD in cultured neurons 
Dissociated hippocampal neurons from XGFP/CGG KI and XGFP/Fmr1 KO female 
animals were recorded from between DIV15-28.  (A) Example traces of mEPSCs from 
each genotype.  (B) Basal amplitude and frequency are normal in CGG KI neurons.  WT 
n=18, CGG KI n=13.  (C) mEPSC amplitude is significantly increased in Fmr1 KO 
neurons compared to WT neurons, but frequency is unchanged.  WT n=18, Fmr1 KO 
n=13.  (D) Each neuron recorded from after DHPG (100µM) + TTX (2µM) treatment for 
10min is plotted with the time post-DHPG.  mESPC frequencies were evaluated 
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between 15-60min post-DHPG.  There was a main effect of DHPG treatment, though no 
difference between genotypes.  WT n=8, CGG KI n=13.  (E)  All Fmr1 KO neurons and 
WT controls plotted as a function of time post-DHPG.  Binned data between 15 and 
60min after DHPG treatment show a significant effect of DHPG, though no significant 
difference between genotypes.  WT n=14, Fmr1 KO n=15.  Student’s t-test, two-way 
ANOVA with posthoc Bonferroni, *P<0.05. 
 

Homeostatic plasticity in cultured neurons 

  

 mGluR-dependent LTD is but one form of synaptic plasticity.  In addition to this 

metric of Hebbian plasticity, there is also homeostatic plasticity.  FMRP also plays a 

pivotal role in regulating proteins required for homeostatic plasticity, however this finding 

was only evaluated in Fmr1 KO animals (Soden & Chen 2010).  We hypothesized that 

activity-dependent FMRP production may also play a role in homeostatic plasticity, and 

that CGG KI animals may demonstrate altered synaptic scaling as a result.  

 Homeostatic plasticity was induced by treating XGFP/CGG KI cultures with the 

AMPAR antagonist CNQX (40µM) for 6 hours in conditioned media.  Cultures were then 

live-labeled with an antibody against the AMPAR subunit GluR1 as a metric of surface 

AMPAR levels.  Neurons were co-stained for the synaptic marker, PSD95, and GluR1 

fluorescence intensity in PSD95 puncta was analyzed between groups (Figure 5.5).  We 

found a significant difference between WT and CGG KI neurons in their response to 

AMPAR blockade with CNQX (WT Control = 100 ± 6.84, n=35; WT CNQX = 106 ± 6.94, 

n=55; CGG KI Control = 163.51 ± 23.9, n=30; KI CNQX = 285.26 ± 50.54, n=46.  

Significant effect of drug F(1, 162)=4.398, P<0.05; significant effect of genotype F(1, 

162)=15.56, P<0.05; no significant interaction F(1, 162)=3.509, NS.  Posthoc Bonferroni test 

revealed a significant difference between WT Control and CGG KI CNQX (t=4.298), 

Control KI and CNQX KI (t=2.699), and WT CNQX and KI CNQX (t=4.646); Figure 

5.5B).    

 This experiment was repeated with XGFP/Fmr1 KO cultures, and we did not find 

a significant difference in the response of Fmr1 KO neurons (WT Control = 100 ± 7.37, 

n=10; WT CNQX = 167 ± 28.67, n=9; Fmr1 KO Control = 116.69 ± 35.67, n=3; KO 

CNQX = 253.15 ± 156.28, n=3.  Significant effect of drug F(1, 21)=4.558, P<0.05; no 
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effect of genotype F(1, 21)=1.149, NS; nor interaction F(1, 21)=0.522, NS.  Posthoc 

Bonferroni test showed no significant difference between any two groups.  Figure 5.5C). 

 This discrepancy from previously published findings may result from differences 

in homeostatic plasticity induction protocols.  Previous findings evaluated synaptic 

scaling as a result of TTX+APV treatment in neurons from hippocampal slices (Soden & 

Chen 2010).  The mechanism of synaptic AMPAR insertion varies depending on the 

neuronal silencing used: chronic TTX treatment to block all network activity, or faster 

AMPAR blockade (Aoto et al 2008, Henry et al 2012, Jakawich et al 2010, Sutton et al 

2006, Wang et al 2011).  These data indicate FMRP is playing a role in homeostatic 

plasticity of chronic network silencing, but not in the more rapid response to AMPAR 

blockade. 
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Figure 5.5: Homeostatic plasticity in CGG KI and Fmr1 KO neurons 
(A) Cultured hippocampal neurons stained for surface GluR1 levels between DIV14-17 
following 6hrs CNQX treatment (40µM).  Merged image includes GFP expression of WT 
neurons.  (B) CGG KI neurons express significantly more surface GluR1 compared to 
WT controls following CNQX treatment.  Control WT n=35, CGG KI n=30; CNQX WT 
n=55, CGG KI n=46.  (C) A main effect of CNQX was seen, though no significant 
difference was found between Fmr1 KO and WT GluR1 levels.  Control WT n=10, Fmr1 
KO n=3; CNQX WT n=9, Fmr1 KO n=3.  (D) mEPSCs were recorded following AMPAR 
blockade from WT and CGG KI neurons.  (E) No significant difference between 
genotypes was found in either mEPSC amplitude or frequency.  Control WT n=3, CGG 
KI n=3; CNQX WT n=2, CGG KI n=4.  Two-way ANOVA, posthoc Bonferroni test, 
*P<0.05. 
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 As CGG KI neurons demonstrated a significant difference in surface GluR1 

levels after CNQX treatment, we hypothesized this would correspond to increases in 

mEPSC amplitude and frequency.  mEPSCs were recorded from XGFP/CGG KI treated 

immediately following washout of CNQX (40µM, 6hrs).  While we did not find a 

significant difference between genotypes, we found a strong trend towards impaired 

synaptic strengthening seen in WT neurons (Amplitude (pA): WT Control = 15.23 ± 

0.84, n=3; WT CNQX = 16.94 ± 0.10, n=2; CGG KI Control = 23.49 ± 7.24, n=3; CGG KI 

CNQX = 14.79 ± 0.48, n=4.  No significant difference: Interaction F(1, 8)=1.897, genotype 

F(1, 8)=0.655, drug F(1, 8)=0.856, NS.  Frequency (Hz): WT Control = 0.9 ± 0.26, n=3; WT 

CNQX = 0.9 ± 0.30, n=2; CGG KI Control = 0.62 ± 0.08, n=3; CGG KI CNQX = 0.70 ± 

0.18, n=4.  No significant difference: Interaction F(1, 8)=0.035, genotype F(1, 8)=1.282, 

drug F(1, 8)=0.036, NS.  Figure 5.5D-E).  The number of cells evaluated was small in this 

study, and future work may reveal a significant alteration in homeostatic plasticity in 

CGG KI neurons. 

 Any significant difference in homeostatic scaling as measured by surface GluR1 

levels, or mEPSC increases in premutation model neurons could be the result of either 

reduced FMRP levels, or increased toxic CGG-containing mRNA.  In an attempt to 

isolate the relative contribution of these two features, we designed a lentiviral construct 

containing 100 CGG repeats in an engineered 5’UTR upstream of GFP (LV-CGG-GFP).  

WT rat hippocampal cultures were infected with this virus or a control GFP-only 

lentivirus (LV-GFP), for 2 days prior to induction of synaptic strengthening with CNQX 

(40µM, 3hrs).  GFP-positive neurons were recorded from following CNQX washout.  

While we find no significant difference in either the amplitude (LV-GFP Control = 15.45 

± 0.89, n=4; LV-GFP CNQX = 16.95 ± 1.74, n=8; LV-CGG-GFP Control = 17.26 ± 1.09, 

n=8; LV-CGG-GFP CNQX = 16.10 ± 0.75, n=10.  No significant difference: Interaction 

F(1, 26)=1.031, genotype F(1, 26)=0.135, drug F(1, 26)=0.017; Figure 5.6B) or the frequency 

(LV-GFP Control = 2.53 ± 0.70, n=4; LV-GFP CNQX = 2.45 ± 0.30, n=8; LV-CGG-GFP 

Control = 2.05 ± 0.27, n=8; LV-CGG-GFP CNQX = 2.03 ± 0.45, n=10.  No significant 

difference: Interaction F(1, 26)=0.003, genotype F(1, 26)=1.078, drug F(1, 26)=0.014; Figure 

5.6C), we see a similar trend to that of CGG KI neurons (Figure 5.5D-E).  Additional 
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experiments will be needed to confirm this finding, though these results indicate CGG-

containing mRNA expression itself may have an impact on synaptic function. 

 

 
Figure 5.6: Homeostatic plasticity in CGG-expressing neurons 
(A)  WT rat hippocampal cultures were infected with lentiviral constructs containing 100 
CGG repeats upstream of a GFP reporter, or a GFP control on DIV17-19.  Homeostatic 
plasticity was induced using CNQX (40µM, 3hrs), and mEPSCs recorded following 
washout.  (B) No significant change in mEPSC amplitude or frequency was measured 
between CGG-expressing and control GFP positive neurons.  Control LV-GFP n=4, LV-
CGG-GFP n=8; CNQX LV-GFP n=8, LV-CGG-GFP n=10.  Two-way ANOVA. 
 

Discussion 
 
 In this chapter, we explore additional synaptic impacts of the premutation in 

cultured rodent hippocampal neurons, with the primary aim of evaluating the relative 

contribution of increased CGG-mRNA expression seen in CGG KI model mice.  We find 

altered axonal protein expression in both the CGG KI and Fmr1 KO neurons, though 

intrinsic excitability is spared in both models.  We go on to measure mGluR-dependent 

LTD using mEPSCs, and find similar induction of LTD in both CGG KI and Fmr1 KO 

cells.  The lack of differentiation between genotypes is likely a result of already low 

frequencies in the neurons recorded from, resulting in the inability to detect enhanced 
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synaptic weakening in the mutants tested.  We compare another form of synaptic 

plasticity, homeostatic scaling, and find altered surface GluR1 levels in CGG KI neurons 

following CNQX treatment, though preliminary results were not sufficient to detect 

differences in mEPSC amplitude or frequency.  In an attempt to separate the reduced 

FMRP levels from CGG repeat expression, we compared homeostatic plasticity in WT 

rat cultures infected with a CGG-containing lentivirus, and find a similar trend in mEPSC 

amplitude following AMPAR blockade as seen in CGG KI neurons.  These findings 

indicate that both axonal protein expression, and HSP are altered in premutation model 

neurons, perhaps in part due to increased CGG-containing mRNA levels. 

 Previous work has shown FMRP localizes presynaptically, and contributes to 

normal synaptic function (Akins et al 2012, Hanson & Madison 2007, Till et al 2011).  

Additionally, FMRP is found associated with, or regulating the translation of, a variety of 

presynaptic and axonal channels, including Slack and BK potassium channels, and N-

type calcium channels (Brown et al 2010, Deng et al 2013, Ferron et al 2014, Myrick et 

al 2015, Zhang et al 2012).  Our finding of significantly reduced levels of Nav1.2 and 

AnkG in CGG KI neurons suggests that premutation models may also have alterations 

in neuronal excitability.  However, we found intrinsic excitability to be unaltered in CGG 

KI and Fmr1 KO neurons (Figure 5.3).  This suggests some level of compensation 

between Nav1.2 and the other voltage-gated sodium channels, which include Nav1.1, 

Nav1.3, and Nav1.6 (Catterall et al 2005).  We were able to examine Nav1.1 levels, and 

found normal expression in CGG KI neurons (Figure 5.1).  It is possible Nav1.3 or 

Nav1.6 are upregulated to maintain normal action potential firing despite reduced levels 

of Nav1.2 and AnkG.  It is also noteworthy that intrinsic excitability was measured under 

basal conditions.  It is possible that the altered AIS protein composition would cause 

changes in action potential generation under different conditions, such as situations of 

high neuronal activity, or as the cell ages.   Future experiments would be needed to 

address these possibilities. 

 Our group previously identified enhanced protein synthesis-dependent mGluR-

LTD in CGG KI model acute hippocampal slices (Iliff et al 2013).  Acute hippocampal 

slices are not as readily manipulable, so we aimed to study mGluR-LTD in cultured 

neurons.  Several other groups have used this approach previously, though with mixed 
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results in mouse or rat cells (Niere et al 2012, Snyder et al 2001, Waung et al 2008, 

Xiao et al 2001).  One study examined decreases in mEPSC frequency as a metric of 

mGluR-LTD in Fmr1 KO mouse neurons, which was enhanced compared to WT 

controls, though the WT neurons were unchanged after DHPG stimulation (Niere et al 

2012).  In contrast, our results show significant decrements in mEPSC frequencies in 

both WT and Fmr1 KO as well as CGG KI neurons after DHPG stimulation (Figure 5.4).  

However, we did not find a significant enhancement in this metric of synaptic weakening 

in mutant neurons compared to WT.  This difference may be due to differences in 

experimental solutions or conditions; however our observance of mGluR-dependent 

depression in WT neurons suggests adequate parameters.  The inability to differentiate 

between Fmr1 KO or CGG KI neurons compared to WT is possibly due to a floor effect 

in measuring frequencies.  The WT mEPSC frequencies drop by roughly 25% (1 Hz to 

0.7 Hz; Figure 5.4), and an additional decrease in measurable frequency becomes more 

difficult to discern.  This result suggests that while mGluR-LTD can be measured in 

culture, it is a difficult system to manipulate to test mechanistic underpinnings of this 

phenotype. 

 In addition to mGluR-LTD, we examined homeostatic plasticity in Fmr1 KO mice, 

and premutation model animals.  While we found differences in synaptic scaling using 

immunocytochemistry for surface GluR1 levels, this did not correspond to significant 

changes in mEPSCs (Figure 5.5).  Recordings of mEPSCs are relatively preliminary, 

and will need to be repeated to verify that homeostatic plasticity is intact in premutation 

model mice.  While significant differences in mEPSCs cannot be detected, the trend of 

amplitude changes with CNQX treatment is interesting; basal increase in mEPSC 

amplitude, and no expected increase with AMPAR blockade (Figure 5.5).  FMRP 

expression is correlated with surface GluR1 levels, wherein less FMRP corresponds to 

less synaptic GluR1 (Nakamoto et al 2007).  Our results do not agree with this finding, 

though the previous work was performed in WT neurons transfected acutely with a 

construct to knock down FMRP levels incompletely (Nakamoto et al 2007).  It may be 

that developmental or chronic reduction of FMRP activates a compensatory mechanism 

to restore AMPAR content at synapses, and perhaps even super inflate the surface 

AMPAR levels.   
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 In an effort to discern between the basal reduction in FMRP and CGG-containing 

mRNA in premutation model neurons, we designed a lentiviral construct to exogenously 

overexpress a CGG transcript.  We asked what the consequence on synaptic function 

of this increased trinucleotide repeat RNA would be assessing mEPSCs following 

CNQX treatment.  While we did not find any significant changes in either amplitude or 

frequency, the trend in increased basal amplitude which is resistant to AMPAR blockade 

exists (Figure 5.6).  These results are preliminary, and need to be repeated to validate 

this effect. 

 In this chapter we have evaluated several key metrics of neuronal function in the 

absence of FMRP, and in the context of the Fragile X premutation.  We identified 

several shared phenotypes and functional profiles between FXS and premutation model 

neurons, further indicating potential mechanistic overlap between these two disorders.  

The hope is that the mechanistic overlap between these disorders will allow for the 

successful cross-application of emerging therapies for FXS to premutation patients. 

 

Materials and Methods 
 

Mice and Cell Culture 

Animal use followed NIH guidelines and was in compliance with the University of 

Michigan Committee on Use and Care of Animals. DNA was extracted from tail biopsies 

and isolated with 5mM NaOH incubated for 0.5-1 hr at 90˚C.  Samples were neutralized 

with 0.5M Tris pH 8.0, and DNA samples were genotyped with primers against the Y 

chromosome (5’GTGAGAGGCACAAGTTGGC, 5’GTCTTGCCTGTATGTGATGG) to 

determine the sex of each animal using Platinum® PCR Supermix (Invitrogen).  

Dissociated hippocampal neuron cultures were prepared from postnatal (P1-3) mice, or 

WT rats (P0-2) as previously described (Jakawich et al 2010).  Experiments were 

performed at 14-17 days in vitro (DIV) for immunocytochemistry, or 15-28DIV for 

electrophysiology.   

 

Drugs 
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Tetrodotoxin (TTX; Tocris) was solubilized in sterile water (1mM), stored at -

20°C, and aliquots diluted as needed in conditioned media or HBS (1µM).  Bicuculine 

(Tocris) was diluted in DMSO (50mM), and stocks stored at -20°C prior to dilution in 

HBS (10µM).  D-(-)-2-Amino-5-phosphonopentanoic acid (APV; Tocris) was solubilized 

in sterile water (20mM), and stored at -20°C until diluted in HBS (20µM).  6-Cyano-7-

nitroquinoxaline-2,3-dione disodium salt hydrate (CNQX; Sigma) was diluted in sterile 

water (10mM), stored at -20°C until use in conditioned media or HBS for intrinsic 

excitability recordings (10µM), or induction of homeostatic plasticity (40µM).  R,S-3,5-

DHPG (Tocris) was prepared fresh each day in sterile water (10mM), and diluted in 

conditioned media as needed (100µM). 

 

Immunocytochemistry and Microscopy 

 Basal protein expression 

All experiments were conducted at 37ºC.  Neurons were washed with warmed 

phosphate buffered saline with 1mM MgCl2 and 0.1mM CaCl2 (PBS-MC), fixed with 4% 

paraformaldehyde (PFA)/4% sucrose in PBS-MC for 15 min, permeabilized (0.1% Triton 

X in PBS-MC, 5 min), blocked with 5% normal goat serum (NGS) or 2% bovine serum 

albumin (BSA) in PBS-MC for 1 hour, and labeled with antibodies against the target of 

interest: Ankyrin G (NeuroMab 75-146, clone N106/36; 1:500), Nav1.2 (NeuroMab 75-

024, clone K69/3; 1:500), Nav1.1 (NeuroMab 75-023, clone K74/71; 1:200), pan-Nav 

(Sigma S8809; 1:500), Map2 (Millipore AB5622; 1:1000).   

Live GluR1 staining 

Cultures were treated with CNQX (40µM) for 3 or 6 hours in conditioned media, 

followed by live labeling with a rabbit polyclonal antibody recognizing surface epitopes 

of GluR1 (Calbiochem PC246; 1:10) for 15min at 37ºC.  Cells were then fixed with 

2%PFA/2% sucrose in PBS-MC for 15min at room temp (RT), and blocked in 2% BSA 

in PBS-MC for 20min.  Secondary anti-rabbit Alexa 555-conjugated antibody 

(Invitrogen, 1:500) was incubated on cultures for 60min at RT.  Cells were then 

permeabilized with 0.1% Triton X in PBS-MC for 5min, and blocked with 2% BSA for 

60min at RT.  Synapses were labeled with co-staining for PSD95 (Millipore MAB1596, 
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1:1000) overnight at 4ºC, and labeled with secondary anti-rabbit Alexa 635-conjugated 

antibody (Invitrogen, 1:1000). 

All imaging was performed on an inverted Olympus FV1000 laser scanning 

confocal microscope.  Prior to image collection, the acquisition parameters for each 

channel were optimized to ensure a dynamic signal range and to ensure no signal 

bleed-through between detection channels.  Identical acquisition parameters were used 

for each treatment condition in an experiment.  Image analysis was performed on 

maximal intensity z-projected images using custom written analysis routines for ImageJ.  

For surface GluR1 analysis, ’synaptic’ GluR1 was defined as a particle that occupied 

greater than 10% of the area defined by a PSD95 particle, and the average integrated 

intensity (total # of non-zero pixels * intensity) of synaptic GluR1 particles was 

calculated.   

 

Electrophysiology 

Whole-cell patch-clamp recordings were made with an Axopatch 200B amplifier 

from cultured hippocampal neurons bathed in HEPES-buffered saline (HBS; containing, 

in mM: 119 NaCl, 5 KCl, 2 CaCl2, 2 MgCl2, 30 Glucose, 10 HEPES, pH 7.4). Whole-cell 

pipette had resistances ranging from 3-5 MΩ.  Intrinsic excitability internal solution 

contained (in mM): 115 KMeSO4, 15 KCl, 5 NaCl, 0.02 EGTA, 1 MgCl2, 10 Na2‐

Phosphocreatine, 4 ATP‐Mg, 0.3 GTP‐Na, pH 7.2.  Cultured neurons with a pyramidal‐

like morphology were voltage‐clamped at –70 mV.  Membrane potentials were recorded 

in current clamp.  Input resistance was measured using a hyperpolarizing 25 pA current 

step. Intrinsic excitability was assessed in pharmacologically isolated neurons using a 

series of 500 ms current injections to depolarize the soma from resting membrane 

potential.  Action potential properties and intrinsic excitability data were analyzed using 

Clampfit. 

Internal solution for mEPSCs contained (in mM): 100 cesium gluconate, 0.2 

EGTA, 5 MgCl2, 2 ATP-Mg, 0.3 GTP-Na, 40 HEPES, pH 7.2. mEPSCs were recorded at 

−70 mV from neurons with a pyramidal-like morphology in the presence of 1 μM TTX 

and 10 μM bicuculline and analyzed off-line using Synaptosoft mini analysis software.  
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Statistical analysis 

 All values are reported as the mean ± SEM.  A student’s t-test, or two-way 

ANOVA with posthoc Bonferroni was used to identify significant differences.  A P value 

of less than 0.05 was considered significant.   
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Chapter 6  
Conclusions and Future Directions 

  

Summary and significance 
 

 Fragile X disorders are caused by a CGG trinucleotide repeat expansion in the 

5’UTR of the FMR1 gene on the X chromosome.  Fragile X Syndrome (FXS) is the most 

common inherited cause of autism and intellectual disability, which is elicited by the 

absence of the FMR protein.  Premutation range repeats cause Fragile X-associated 

Tremor/Ataxia Syndrome (FXTAS), which is an age-related neurodegenerative disorder 

characterized by increased CGG-containing FMR1 mRNA, and reduced FMRP.  FXTAS 

is a relatively recently described disorder, but more current work suggests that 

premutation carriers may share some neurologic features with FXS patients prior to 

degeneration and the development of FXTAS (reviewed in (Grigsby et al 2014, Wheeler 

et al 2014)).  FMRP is an RNA-binding protein required regulation of synaptic protein 

translation and mGluR-dependent long term depression (LTD).  FMRP regulates its own 

synaptic translation in response to mGluR stimulation, and this new FMRP is 

hypothesized to function as a brake on new translation, thus capping production of 

proteins required for mGluR-LTD.  The goal of this work was three fold: test the 

hypothesis that newly translated FMRP is regulating mGluR-LTD by controlling synaptic 

translation using a mouse model of the premutation; test for novel behavioral 

phenotypes in CGG KI mice which may be correlated to translation and plasticity; 

examine additional forms of synaptic plasticity and neuronal function in CGG KI 

neurons.  Evaluating the synaptic effect of expanded CGG repeats in Fmr1 is a critical 

goal, as relatively little is known about what impact the premutation has in this 

potentially very large carrier population.   
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 There are several important discoveries made in this body of work.  We tested 

the hypothesis that new FMRP functions as a translational brake in the context of the 

premutation, as the large CGG hairpin prevents mGluR-activated translation of new 

FMRP.  This was an ideal model to test this hypothesis, as the Fmr1 KO model has a 

distinct phenotype owing to the absence of FMRP to control basal translation of its 

targets.  The premutation model, however, still expresses basal FMRP, though we 

discovered that the activity-dependent production of new FMRP was blocked in these 

animals.  This allowed us to more accurately ask what happened to synaptic plasticity 

without new FMRP being translated, and we found that this resulted in a similar 

enhancement of mGluR-LTD to that seen in Fmr1 KO mice.  However, the LTD in CGG 

KI mice was still dependent on new protein synthesis, as existing FMRP is likely able to 

regulate basal translation of proteins required for LTD.  These data support the 

hypothesis that the absence of new FMRP leads to increased production of LTD 

proteins which mediate the enhanced synaptic weakening observed.  Additionally, this 

was one of the first reports to examine synaptic plasticity in a model of the premutation.  

A similar phenotype to that seen in Fmr1 KO mice suggests there are more similarities 

between these models, and was a key piece of evidence indicating that premutation 

carriers may have more in common with FXS patients than considered previously. 

 We performed preliminary experiments to explore which, if any, LTD proteins 

might be mediating this synaptic deficit.  Examination of Arc, PSD95, and Shank1-3 did 

not show any major trend of super-induction in CGG KI neurons after mGluR stimulation 

as we had hypothesized.  Arc expression does appear to be differentially regulated in 

CGG KI neurons, as we found a basal increase in dendritic Arc compared to WT 

neurons, which was resistant to mGluR stimulation.   

An additional FMRP target is the amyloid precursor protein (APP).  We examined 

APP expression levels in CGG KI mice and FXTAS human brain tissues.  We found 

increased APP levels in the cerebellum of human samples, but no change in patient 

cortical tissue, nor in the mouse model of FXTAS.  These data likely speak more to the 

age-related features of FXTAS, and indicate that while APP expression may not be a 

primary cause of pathogenesis, work in FXS and Fmr1 KO animals indicate that amyloid 

processing is a key effector in the absence of FMRP. 
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As the CGG KI mice have altered synaptic scaling which is correlated to impaired 

new FMRP synthesis, we hypothesized that there would be a behavioral corollary which 

may also be shared between Fmr1 KO and CGG KI animals.  We found impaired 

prepulse inhibition (PPI) in CGG KI mice, which was very similar in the degree and 

direction to that observed in Fmr1 KO mice.  This experiment was particularly useful as 

PPI is altered in human FXS and FXTAS patients in addition to Fmr1 KO mice, and is 

an easy behavior to test potential therapeutics.  Therapeutic development for FXS has 

grown dramatically in the last several years, and there have been numerous clinical 

trials testing mechanistic findings discovered in Fmr1 KO models (reviewed in (Gross et 

al 2015b)).  We took advantage of this to test one such potential drug, fenobam, which 

is an mGluR antagonist.  As expected, fenobam treatment increased PPI in both WT 

and CGG KI animals, however the age of mice tested was prior to the development of a 

PPI phenotype in CGG KI animals.  This proof of principle experiment demonstrates 

that PPI is an easily performed task which could be used to evaluate other therapeutic 

targets currently under development, with the benefit of potentially treating premutation 

symptoms which may be shared with FXS patients. 

There is relatively limited research into FMRP’s function presynaptically 

(reviewed in (Wang et al 2012)).  Examination of putative FMRP target transcripts 

suggested that several important components of the axon initial segment may be 

regulated by FMRP (Ascano et al 2012, Darnell et al 2011).  We examined expression 

of the voltage-gated sodium channels Nav1.1 and Nav1.2, as well as the scaffolding 

protein ankyrin G in axon initial segments (AIS) of cultured hippocampal neurons.  We 

found significantly reduced levels of Nav1.2 and AnkG in CGG KI neurons, and reduced 

Nav1.2 in Fmr1 KO neurons.  These results suggested that intrinsic excitability may be 

altered in these cells, however action potential number with step-wise current injection 

showed normal action potential dynamics.  While this result is surprising, it suggests 

that there is some compensation likely occurring to maintain normal action potential 

generation.  This could occur from expression of other voltage-gated sodium channels, 

such as Nav1.6.  The overall result remains that the protein composition of the AIS in 

CGG KI neurons is significantly altered, and likely have an impact on neuronal firing 

under different conditions.   
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The novel phenotypes and mechanistic insights discovered in this work are still 

hampered by the question of what role reduced FMRP and increased CGG-mRNA 

expression is playing.  To compare these relative contributions, we needed a synaptic 

paradigm which was easily testable in cell culture models which are more easily 

genetically manipulated.  To that end, we measured a proxy of mGluR-LTD in cultured 

neurons by recording mEPSC frequency after DHPG stimulation.  Overall, DHPG 

caused a significant decrease in mEPSC frequency due to synaptic silencing, however 

the values obtained were relatively low which made detection of enhanced LTD 

between genotypes very difficult.  FMRP also functions in homeostatic plasticity, and we 

sought to compare the effects of AMPAR blockade on homeostatic potentiation in Fmr1 

KO and CGG KI cells.  By recording mEPSCs, we found a trend toward impaired 

synaptic scaling in the CGG KI neurons.  Using a lentiviral vector to express expanded 

CGG repeats in WT rat neurons, we found a similar trend toward attenuated 

homeostatic potentiation.   

This body of work is unique as it attempts to examine the younger premutation 

model, and find phenotypic overlap with the Fmr1 KO mouse.  The Fragile X field has 

long treated FXS and FXTAS as two distinct disorders, however this work makes a 

strong case for the consideration of the Fragile X spectrum.  Previous work has 

demonstrated that FMRP expression is inversely linked with CGG repeat number, and it 

follows that symptoms would also vary based on repeat and FMRP expression (Ludwig 

et al 2014).  This work also indicates that symptomatic premutation carriers may also 

benefit from treatments developed for FXS patients, as they share several key 

mechanistic overlaps. 

 

Outstanding questions 

 

Are premutation phenotypes the result of CGG repeat expression or FMRP 

haploinsufficiency? 

 

The results described in Chapter 5 of this thesis suggest that the CGG mRNA 

may have an autonomous role in synaptic function, independent of FMRP levels.  This 
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is a very intriguing idea, and indicates that there may be unexplored phenomena 

underlying the synaptic defects we see in CGG KI model neurons.  How these CGG 

repeats may be eliciting changes in synaptic function is not immediately clear, but 

several possibilities exist.  The repeats may be sequestering proteins required for 

additional cellular processes, altering cell-wide protein expression, or splice isoforms of 

various proteins required for the fine modulation of synaptic strength.  This possibility 

seems relatively likely overall, in particular in light of recent data examining CGG-

binding proteins, and the downstream effects of their altered behavior in the presence of 

increased CGG mRNA expression (Sellier et al 2013, Sellier et al 2010).  However the 

relatively short time (2 days) of CGG expression before observing this phenotype 

indicates a more rapid effect than long protein turnover and modification of alternate 

pathways required for the above scenario.  Alternatively, the CGG mRNA may be 

directly interacting with synaptic components to modify either signal relays, or the direct 

recycling of AMPA receptors in this experiment.   

Examination of reduced FMRP levels on homeostatic plasticity will also be 

required to better understand the molecular events happening in premutation model 

neurons.  Using a knockdown approach in WT neurons to reduce FMRP levels to those 

seen in CGG KI neurons would be an excellent way to compare the impact of basally 

reduced FMRP.  This approach would also mimic the reduced activity-dependent 

expression of new FMRP if performed acutely while the construct used to knockdown 

expression was still present and able to block Fmr1 translation.  This approach could be 

used to compare the role of absent FMRP without the complication of additional CGG-

mRNA expression. 

 

What impact, if any, is the RAN peptide FMRpolyG having on synaptic function? 

 

The recently discovered phenomenon of repeat associated non-AUG (RAN) 

translation in FXTAS and CGG-expression cell models raises the possibility that 

FMRpolyG may also be playing a novel role in synaptic function.  There is precedence 

for other toxic aggregate-prone peptides altering synaptic function in Alzheimer’s 

disease (Aβ peptides; reviewed in (Palop & Mucke 2010)) and Parkinson’s disease (α-
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synuclein; reviewed in (Cheng et al 2011)).  Understanding the impact of this novel 

phenomenon is still in its early stages, and as a result it’s not known where or under 

what circumstances RAN translation happens.  It is very possible RAN translation can 

occur at synaptic locations, producing FMRpolyG locally at synapses basally, or even 

under activity-dependent circumstances.  It is probable that this RAN peptide may 

regulate FMRP itself, or interact with any other of the numerous proteins required for 

normal synaptic function and plasticity.  

Identification of endogenous FMRpolyG in the Dutch CGG KI or YAC 

premutation model neurons would allow the interrogation of conditions and locations of 

the RAN peptide, which might elucidate its function.  Testing the role of FMRpolyG in 

synaptic function could also be accomplished by exogenously expressing the peptide in 

WT cultured neurons, and examining synaptic function and plasticity by recording 

mEPSCs or staining for surface GluR1 levels.  It will be important to investigate the 

impact of FMRpolyG expression in the context of the premutation, isolate of its role in 

inclusion formation and proteosomal inhibition. 

 

Do CGG KI animals show additional autism/ADHD phenotypes similar to Fmr1 KO 

mice? 

 

 Behavioral tasks which are designed to test autistic-like behavior are important to 

the FXS field, as any therapeutic intervention which can improve those behaviors would 

target potentially helpful treatment for FXS patients.  Similarly, examining these more 

social and complex tasks in CGG KI mice would provide a more complete 

understanding of the impact of the premutation in network and output behaviors.  Social 

preference and nest-building assays are both altered in Fmr1 KO animals (Gross et al 

2015a, Oddi et al 2015, Pietropaolo et al 2011, Udagawa et al 2013).  These same 

tasks should be evaluated in CGG KI mice to see if there are more similar phenotypes 

shared with the Fmr1 KO mice. 

 

Are the phenotypes observed in CGG KI animals age dependent, or change over time? 
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 We found an age-dependent phenotype in CGG KI PPI sensorimotor gating, 

indicating some of the cellular and biochemical effects observed do not immediately 

correlate to network and behavior dysfunction.  Potentially, these cellular and molecular 

events must accumulate to some threshold before animal behavior is affected.  It is also 

possible that the network is able to compensate for individual neurons which are 

functioning differently, and that either single dysfunctional neurons decline enough to 

alter behavior; alternatively, a greater population of neurons in the network may become 

dysfunctional and ultimately change behavior.  Comparing cell and slice CGG KI 

phenotypes at different ages could assess these two possibilities.  Cell work is 

hampered by the young age required for healthy cultures.  However, whole cell slice 

work and animals behavior can be performed from animals at various ages.  This would 

also allow comparison of events which may precede FXTAS-associated symptoms.  

Pairing histological analysis to look for neurodegenerative features such as gliosis and 

inclusion formation would provide a better understanding of when and where some of 

these events may be happening. 

 

 

 

 

 

 
 



115 
 

 
 

 
 
 
 
 
 

 
 
 

Appendices 
 

Appendix A: Arc expression in CGG KI hippocampal neurons 

Arc/Arg3.1 is an activity-regulated cytoskeletal protein, which is an immediate 

early gene involved in synaptic plasticity (Bramham et al 2008, Chowdhury et al 2006, 

Panja et al 2009).  Arc is an FMRP target, and dendritic Arc expression is increased 

basally in Fmr1 KO neurons (Niere et al 2012a). 



116 
 

 
Figure A.1: Arc expression in CGG KI neurons  
(A) Primary hippocampal neurons (DIV14-17) from male CGG KI and WT littermate 
controls.  (B) Cultures were treated with 100µM DHPG for 5 min and probed with mouse 
anti-Arc (Santa Cruz C-7, 1:50 or 1:100) and Map2 (Sigma 1:1000) to label dendrites.  
(C) The proximal 40µm of dendrites were analyzed and expressed as %WT control.  
Significant effect of drug (F(1, 524) = 7.919, P<0.05), and significant interaction (F(1, 524) = 
14.01, P<0.05).  Posthoc Bonferroni test showed significant effect of DHPG in WT 
neurons (t=4.862, P<0.05), but no change in Arc expression in CGG KI neurons with 
DHPG treatment (t=0.6294, NS).  WT control n=138, DHPG n=150; CGG KI control 
n=117, DHPG n=123. 
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Appendix B: PSD95 expression in XGFP/CGG KI neurons 

PSD95 is an FMRP-regulated synaptic protein (Todd et al 2003a), and its expression is 

linked to multiple forms of synaptic plasticity (McGee & Bredt 2003, Sheng & Kim 2002). 
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Figure A.2: PSD95 in XGFP/CGG KI neurons 
(A) XGFP/CGG KI cultured hippocampal neurons (DIV14-17) stained with mouse anti-
PSD95 (Abcam, 1:500).  (B) Cultures were treated with 100µM DHPG for 5 or 30 min, 
and the first 100µm of dendrites analyzed.  No significant change by 2-way ANOVA.  
WT control n=16, 5min DHPG n=17, 30min DHPG n=18; CGG KI control n=11, 5min 
DHPG n=13, 30min DHPG n=21. 
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Appendix C: UBE3A expression in CGG KI mice 

UBE3A is an E3 ubiquitin ligase which mediates ubiquination of Arc (Greer et al 2010).  

Ube3a mRNA expression is significantly increased in HEK cells expressing expanded 

CGG repeats (Handa et al 2005).  As basal expression and the induction of Arc 

synthesis is altered in CGG KI neurons, we wanted to probe UBE3A expression levels. 
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Figure A.3: UBE3A levels in CGG KI mice 
(A) WT and littermate CGG KI hippocampal lysates from P58 animals were probed by 
western blot for UBE3A (Sigma E6AP 1:2000) and Tubulin (Iowa Hybridoma Bank 
mouse anti-tubulin E7-s, 1:5000).  No significant difference in UBE3A expression.  WT 
n=5, CGG KI n=4. (B) XGFP/CGG KI cultured hippocampal neurons (DIV14-17) treated 
with 100µM DHPG for 20 or 40 minutes and probed for UBE3A (Sigma E6AP, 1:1000) 
and Map2 (Sigma, 1:1000).  (C) Soma and the first 40µm of the dendrite were analyzed.  
CGG KI neurons showed no significant difference in UBE3A expression.  WT control 
n=6, 20min DHPG n=5, 40min DHPG n=5; CGG KI control n=13, 20min DHPG n=10, 
40min DHPG n=14. 
 



121 
 

 

 

 

 

 

 

 

Appendix D: Shank 3 expression in CGG KI mice 

Shank proteins are scaffolding proteins required for mGluR localization.  Mutations in 

Shank proteins are associated with autism (Guilmatre et al 2014), and Shank3 

heterozygous animals phenocopy the protein synthesis-dependent enhanced mGluR-

LTD we see in CGG KI mice (Bangash et al 2011).  Additionally, all three shank mRNAs 

are putative targets of FMRP (Darnell et al 2011). 
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Figure A.4: Shank 3 levels in CGG KI mice 
(A) WT and littermate CGG KI hippocampal lysates from P58 animals were probed by 
western blot for Shank3 (NeuroMab, 1:2000) and Tubulin (Iowa Hybridoma Bank mouse 
anti-tubulin E7-s, 1:5000).  No significant difference in Shank3 expression.  WT n=5, 
CGG KI n=4.  (B) XGFP/CGG KI cultured hippocampal neurons (DIV14-17) treated with 
100µM DHPG for 20 or 40 minutes and probed for Shank3 (NeuroMab, 1:500) and 
Map2 (Sigma, 1:1000).  (C) Soma and the first 100µm of the dendrite were analyzed 
and expressed as %WT control values.  CGG KI neurons showed no significant 
difference in Shank3 expression.  WT control n=4, 20min DHPG n=5, 40min DHPG n=5; 
CGG KI control n=9, 20min DHPG n=5, 40min DHPG n=7. 
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