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Abstract 

Study and Control of Nonlinearity in Large-Mode-Area Fibers 

By 

I-Ning Hu 

 

Chair: Almantas Galvanauskas 

 

Numerous practical advantages of high power fiber lasers make them important in 

many scientific and industrial applications. However, the relatively small mode-area and 

long propagation-length in an optical fiber also enhance nonlinear interactions, and pose 

limits on achievable average and peak powers of fiber lasers. In this dissertation, we 

explore such nonlinear effects and their control in chirally-coupled-core (CCC) fibers, an 

important and practical type of large-core effectively-single-mode fibers.  

Many laser applications require short wavelengths. We study use of four-wave-mixing 

(FWM) for wavelength conversion in CCC fibers. Our theoretical analysis shows that 

under proper conditions CCC fibers can be used for efficient and high-power wavelength 

conversion from ~1µm to yellow through red visible wavelengths.  

We study the use of the spectral filtering property of CCC fibers to suppress stimulated 

Raman scattering (SRS). SRS suppression has been experimentally achieved in two types 
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of spectrally-tailored CCC fibers, demonstrating an additional degree of design freedom, 

by combining core-size scalability with SRS suppression. 

Average powers in large-core amplifying fibers are limited by the thermally induced 

transverse mode instability (TMI). We show that TMI is essentially a two-beam coupling 

process, causing stimulated scattering from the fundamental to higher-order modes. We 

further show that increasing higher-order mode suppression in CCC fibers increases TMI 

threshold power. 

CCC fibers are low-birefringence fibers, in which fiber coiling and twisting produces 

externally induced linear and circular birefringence. The presence of the latter complicates 

nonlinear polarization evolution (NPE) at high peak powers, and can degrade polarization 

preservation at the amplifier or laser output. Our experimental and theoretical analysis 

shows that with proper signal excitation and fiber packaging conditions linear output 

polarization can be maintained over a wide range of output peak powers. 

Additionally, this dissertation includes a study of some design aspects of large-core 

polygonal-core CCC fibers, directly related to fiber modal properties that can be used in 

controlling nonlinear interactions. 

Results of this work are important for using CCC, as well as other types of flexible 

(i.e. non-rod type) effectively-single-mode fibers, in high power and energy fiber lasers.  
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Chapter I 

Introduction 

1.1 Current Status of Fiber Lasers 

High power fiber lasers are in demand for many industry, defense, energy solutions 

and scientific applications. In the last two decades, the output power of fiber lasers has 

been improved more than a thousand times, making fiber lasers applicable to a variety of 

fields such as material processing, aerosol monitoring, biomedical tomography and high 

field science, aerospace detection and, military purposes [1,2]. In fact, in the early 1990s, 

the output power of fiber lasers was on the order of 10W, while in the 2010s, 100kW output 

power has been achieved [3]. This remarkable power scalability is attributed to the high 

efficiency of fiber lasers and the development of relevant pumping schemes.  

A fiber laser is a laser in which the gain medium is an optical fiber, typically doped 

with rare-earth ions. Thus, fiber lasers inherently have the advantages of optical fibers, 

such as good beam quality, stability, compactness and robustness. In addition, high 

efficiency can be achieved in ytterbium-doped fiber (YDF) lasers. The light emission of 

YDF lasers is via a simple electronic transition (2F7/2  2F5/2), resulting in high quantum 

efficiency, minimization of the heat generation, and reduction of excited state absorption 

and non-radiative decay [4]. These advantages have made YDF lasers more preferred for 

high power operation than other rare-earth-doped fiber lasers and other types of lasers since 

1999 [5,6,7,8]. 
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An important innovation that enables power scalability in fiber lasers was the 

development of cladding pumping scheme [9,10]. In 1988, the issue of coupling low-

brightness pump light into small or low-NA active fiber cores was entirely resolved with 

double-clad structure. The essence of this approach is that an “inner” cladding, which is 

surrounded by an “outer” cladding, serves as a highly-multimode waveguide for the larger 

and lower-quality pump beam. This structure enables efficient coupling of pump light into 

single-mode or few-mode fibers. This technique can also be extended to the multiple-clad 

structure [11]. Moreover, other relevant pumping schemes such as the breaking of cladding 

rotational symmetry [12] for increasing the overall pump absorption or the tapered fiber 

bundle combiners [13] for further creating high brightness, high power pumping modules 

have also contributed to the tremendous achievement in high power fiber laser 

development. These designs have resolved the limitation on pump coupling and efficiently 

increased the power scalability of fiber lasers, but this also ushers in the next limitation, 

the threshold of nonlinear effects. 
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1.2 Limitation from nonlinear effects 

Improved power scaling leads to the onset of nonlinear optical effects in fiber lasers. 

The geometry of fiber lasers, which contributes most significantly to their superior 

performance, is associated to the enhancement of optical nonlinearities. The strength of 

nonlinear optical interactions is inversely proportional to the mode area and proportional 

to the optical path. This reveals that nonlinear effects are ultimately unavoidable in fiber 

lasers, especially at high power levels. In CW or pulsed fiber lasers, there are various types 

of nonlinear effects, and they can be classified into two categories, inelastic and elastic. 

The former includes stimulated Brillouin Scattering (SBS), stimulated Raman scattering 

(SRS), and transverse mode instability (TMI) specific to in high power fiber amplifiers, 

and the latter includes self-phase modulation (SPM), cross-phase modulation (XPM), four-

wave-mixing (FWM), and self-focusing (SF). The three scattering effects are inelastic 

because a delayed response in the light-matter interaction exists, thus, the signal frequency 

is downshifted and the lost energy is transferred to material waves (phonons). As for the 

four elastic effects, which are also called Kerr effects, since they are induced by a nearly 

immediate response of the power dependent refractive index, the energy of the optical 

waves is conserved. 

These nonlinear effects usually do not happen all together, since the threshold of the 

dominant nonlinear effect depends on both the properties of the material and the state of 

the optical waves. In the following content, the study of nonlinear effects with the relevant 

mitigation strategies is divided into three subsections, which in order of occurrence are 

SRS and SRS, the Kerr effects, and TMI. TMI is discussed separately because it only 

occurs in active media. 
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1.2.1 Stimulated Scattering Effects 

SBS and SRS are two similar nonlinear effects, since they are associated to the 

vibrational excitation modes of the fiber glass. In both scattering processes, when the 

threshold is reached, the energy in the signal wave is transferred to the Stokes wave. SBS 

develops from the acoustic waves (acoustic phonon) that are driven by the propagating 

waves via electrostriction [14]. If the bandwidth of the light waves is much smaller than or 

close to the acoustic vibration frequency of fiber glasses (~100 MHz [15]), SBS is the 

dominant effect. When the SBS threshold is reached, the propagating optical wave 

inelastically resonates with the induced acoustic waves and scattered backward due to the 

requirement of energy and momentum conservation. The energy in the propagating optical 

waves is partly transferred to the acoustic waves and the frequency of the backward 

scattered wave is downshifted by ~10 GHz [15]. This scattered wave can destabilize the 

whole laser system, and can even damage the oscillator or fiber ends. However, SBS only 

limits the achievable power of narrow-linewidth signals transmitting through a fiber laser. 

When the bandwidth of a signal is increased, the response time of acoustic waves cannot 

keep pace with the optical waves, reducing the peak gain and increasing the threshold of 

SBS by a factor of Bs   , where s  is the bandwidth of the signal and B  is 

the bandwidth of SBS gain. Therefore, for a broadband optical signal, the other inelastic 

nonlinear effect, SRS, takes over. 

SRS is the most significant limiting nonlinear effect for continuous-wave (CW) or 

quasi-CW high power fiber lasers. The onset of SRS is associated with the resonance of 

the glass lattice (optical phonon). The difference between SRS and SBS is that the scattered 

waves in the SRS process mainly propagate forward. Because of phase-mismatching and 
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the lack of excited optical phonons, the occurrence probability of backward SRS is much 

smaller than forward [16]. In the fused silica, SRS downshift the signal frequency by 13.2 

THz with an extension of 40 THz for signal wavelengths around 1 m [15]. While the 

threshold of SRS is surpassed as with SBS, the signal energy rapidly flows to the Stokes 

waves at longer wavelengths. 

Several methods of mitigating SBS and SRS have been demonstrated in 2000s. Since 

the emergence of SBS is due to the excitation of acoustic waves with limited bandwidth, 

mitigation strategies focus on broadening the spectrum of the light waves. This can be 

achieved by either modulating with pseudo-random signals [ 17 ] or naturally by the 

longitudinal temperature gradient in active fibers [18,19]. Moreover, an alternative method 

is to apply an acoustically anti-guiding profile on the fiber to reduce the overlap between 

the light wave and the acoustic modes [20]. As for the mitigation of SRS, the approaches 

are mainly based on spectral filtering techniques that can be achieved by inserting long-

period grating or by employing specialty fibers to attenuate the Stokes waves. This 

technique will be discussed in greater detail in Chapter III. 

 

1.2.2 Kerr Nonlinear Effects 

The Kerr effect is the power- or intensity-dependent nonlinear refractive index 

induced via the third-order nonlinearity 
)3( . In a silica medium, when the intensity of a 

light wave is high enough (>100 MW/cm2), the refractive index through which the light 

wave propagates is larger than at low intensity. Consequently, the Kerr effect mainly 

modifies the phase of propagating light waves through the nonlinearly-induced variation 

of the optical path. Therefore, unlike stimulated scattering processes, the energy of the light 
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waves is conserved. Categorized by the phenomenological facts and the light waves 

involved, the Kerr effect includes a variety of nonlinear effects such as SPM, XPM, SF, 

and FWM. 

SPM and XPM are influential when the signal pulse belongs to ultrafast regime (<50 

ps [15]), SPM can lead to symmetric broadening while XPM, which is attributed to the 

existence of the other waves, can lead to asymmetric broadening of the signal bandwidth. 

When a high-intensity ultrafast pulse goes through a segment of optical fiber, the 

bandwidth broadening caused by SPM and XPM accompanied with the existing dispersion 

leads to a distortion on its temporal profile. This distortion can reduce the quality of a 

recompression process in a chirp-pulse-amplification system. However, this distortion can 

be compensated by pre-modulation of the phase [21]. Incidentally, except the above 

mentioned nonlinear effects which are specifically influential in ultrafast pulses, if a 

constant polarization cannot be maintained along a high-intensity fiber laser, the two 

polarization modes of the signal can also induce XPM. This XPM can also lead to a 

nonlinear polarization evolution which can randomize the output polarization status. The 

detail of this process is given in Chapter V. 

Ultimately, power scalability is limited by self-focusing. This type of Kerr effect 

occurs in the spatial domain. Unlike the other types of Kerr effect, the threshold is 

determined by peak power rather than peak intensity. When the threshold is reached, the 

distribution of the local refractive index follows the beam shape and forms a focusing lens. 

This lens can focus the propagating beam to a tight spot which can irreversibly damage the 

fiber. Since currently there is no solution for this beam-collapsing effect, the upper limit of 

power scaling is about 4MW for linear polarized waves at 1-m wavelength [22]. The only 

method to mitigate SF is to operate at longer wavelength, since the SF threshold is 
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quadratically proportional to the wavelength [23].  

FWM is often described as a process in which two waves interact with a Kerr medium 

and produce the two other waves. However, one can also more generally view FWM as an 

interaction among four different waves. A complete FWM process involves SPM, XPM, 

and wavelength conversion which requires phase-matching to become efficient. Thus, 

SPM and XPM and wavelength conversion can also be viewed as three different types of 

FWM. SPM is a nonlinear process of mixing four waves at the same frequency; XPM is of 

mixing two waves at a common frequency with the two other waves at another common 

frequency; wavelength conversion is of mixing four waves, all at different wavelengths, 

and due to phase-matching requirement, efficient conversion can hardly be observed. As 

has been pointed out, SPM and XPM both hinders power-scalability in fiber lasers, and 

mitigating both of them is always in the scope of cutting edge designs. Contrarily, efficient 

generation of the wavelength conversion is ardently pursued in this field. The reason is that 

the application of fiber lasers, which only have limited selections of wavelength, can be 

further extended if a wide range of wavelength is available. The details concerning 

wavelength conversion is introduced in Chapter II. 

Broadly speaking, the most straightforward path to diminish these nonlinearities, 

including SBS, SRS, SPM, XPM, for the purpose of improving the power scalability of 

fiber lasers is to enlarge the core size of fiber lasers. The enlarged core size allows a large 

mode field area, proportionately reducing fiber nonlinearity. However, this intuitive 

solution raises another newly-found nonlinear effect, transverse mode instability (TMI).  
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1.2.3 Thermally-induced Stimulated Scattering: Transverse Mode Instability 

TMI is first observed in 2011 and is quickly recognized as the limitation of power 

scaling capability of fiber lasers [24]. TMI refers to a fluctuation of output transverse 

modes in high power fiber amplifiers. The phenomenon is illustrated in Fig. 1.2-1 [2], 

which shows the onset of TMI when the output power is just below the threshold and the 

fluctuation of the output mode at a power level above threshold. This fluctuation is on 

millisecond scale, which suggests that the origin of TMI is associated to the thermal 

diffusion. 

 

 

Fig. 1.2-1 Schematic of transverse mode instability [2] 

 

As with SBS and SRS, we recognized TMI as a threshold-like inelastic nonlinear 

scattering process which is attributed to the multi-mode performance of high power fiber 

amplifiers. When a fiber amplifier that can support more than one mode is operated at high 

average output (above TMI threshold), the coupling between fundamental mode (FM) and 

higher order modes (HOM) is stimulated. There are three phases of TMI status [25]: 1) 

below threshold where stable modal output is observed; 2) near, but above threshold where 
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periodic modal oscillation emerges; 3) well above threshold where chaotic modal 

oscillation dominates. These phenomena observed at the output end of high power fiber 

amplifiers, are broadly explained as the emergence of a thermally-induced grating (thermal 

phonon) which comes from the depletion of local population inversion due to the heat that 

is periodically generated with the modal beating pattern. The formation of this grating takes 

approximately a millisecond [26], a delay that further indicates the inelasticity of the TMI 

process and argues that TMI is a stimulated scattering process. Therefore, a frequency 

downshift between the coupled modes is expected. 

An alternative approach contends that TMI is not necessarily a stimulated scattering 

process. A non-adiabatic waveguide change is used to explain the onset of TMI in fiber 

amplifiers when the threshold is reached [27]. The key point of this statement is that above 

TMI threshold, the beam cannot adapt itself fast enough to the rapidly changing waveguide 

conditions due to the ongoing non-adiabatic heat flow thus a phase lag is induced between 

the thermal grating and the radiation beating. This explanation is fully accepted by the 

researchers who observe TMI in their simulations without considering the frequency 

difference between the coupled modes [28,29]. However, we noticed that the instability in 

TMI simulations that exclude frequency difference between modes is commonly caused by 

numerical truncation error. An explanation regarding this error will be discussed in Chapter 

IV. 

When the threshold of TMI is reached, the output beam quality degrades and the 

modal content fluctuates. Currently, this type of thermally-induced nonlinear effect still 

cannot be fully controlled or avoided. The reported strategies of mitigating TMI, like an 

active excitation of out-of-phase HOM [30] to wash out the thermally-induced grating, 

delocalization of HOM away from the FM [31], and confined doping to reduce pump 
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absorption [32], are still not very effective. Therefore, we believe an understanding of TMI 

is required, since the full picture of TMI is not yet clear. A detailed analysis of TMI and 

our scheme of increasing TMI threshold by enhancing higher-order mode suppression in 

chirally-coupled core fibers are introduced in Chapters IV and VI.  
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1.3 Chirally-Coupled Core Fibers 

In order to increase output power of fiber lasers and simultaneously mitigate TMI or 

control other nonlinear effects (except self-focusing), enlarging the core size while 

maintaining diffraction-limited output-beam quality is indeed required. Conventional 

large-mode-area (LMA) fibers can achieve this goal by external controls such as the 

technique of single-mode excitation [33] or the employment of fiber bending [34], but these 

methods can only be effective with smaller-core (<25m) multimode fibers and are very 

sensitive to external perturbation such as stress or imperfect alignment of signal injection. 

Moreover, fiber bending can hardly be applicable to the fiber with a larger core size or a 

lower numerical aperture to suppress higher-order mode (HOM), because the bending-

induced loss of fundamental mode (FM) and HOMs cannot be distinguished. Thus, 

specialty fibers provide alternative approaches to realize core scalability. The two 

important approaches to improve the power scalability of fiber lasers are photonic crystal 

fiber (PCF) [35] and large-pitch fibers (LPF) [36]. The main feature of PCF is the fiber 

core surrounded by an air-hole structure which lowers the refractive index of the cladding 

thus being able to guide waves in the core. By properly designing the photonic band-gap 

structure of the cladding, the numerical aperture can reach as small as 0.02, and this allows 

single-mode operation in a fiber structure with large core size. However, a significant 

concern is that this kind of PCF is not bendable when the core size exceeds 40m 

eliminating one of the essential advantages of optical fibers. As for LPF, the approach to 

realize single mode operation is based on HOM delocalization, which only occurs with a 

specific heat deposition. So LPF can only be applied to active fibers which are operated at 

a specific power level. As with larger-core PCF, LPFs are not bendable as well, even though 

its core scalability is indeed the largest in specialty fibers [37].  
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Since the common goal of the developed specialty fibers is to realize core scalability 

and to introduce a distinguished loss for HOMs while keeping the advantages of fiber laser 

technology, our research group has developed CCC fibers, which features single or multiple 

helical side cores around a modal guiding central core [38,39]. Based on quasi-phase-

matching of the modal coupling between the side cores and the central core or the intra-

core modal coupling from guided modes to leaky modes, HOMs in the central core can be 

attenuated thus realizing the effectively single-mode propagation and spectral control. 

Previous work in our group shows that CCC fibers can achieve the desired single-mode 

property with large core-size and without losing any of the conventional advantages of 

optical fibers [38,39]. Furthermore, the spinning fabrication process of CCC fibers also 

makes them free from intrinsic birefringence, a property that indicates CCC fibers are 

naturally polarization-maintaining fibers [40].  

With the special features described above, CCC fibers have the potential to control a 

variety of nonlinearities. TMI can be mitigated with CCC fibers by the property of effective 

single-mode propagation. SRS can be suppressed by the properties of core-size scalability 

and transmission spectral control. The wavelength conversion achieved by FWM can be 

realized with SRS being suppressed. The nonlinear polarization evolution (NPE) can be 

controlled by engineering the externally-induced birefringence since CCC fibers are free 

from intrinsic birefringence. Overall, the purpose of this dissertation is to study and control 

several critical types of nonlinearities emerging in CCC-fiber-based high power fiber lasers 

as well as in passive CCC fibers. Furthermore, in order to improve the capability of CCC 

fibers to control nonlinearities, the design principles governing polygonal-core CCC (P-

CCC) fibers are investigated and shown in Chapter VI. 
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1.4 Chapter Overview 

In this dissertation, the focus is on two parts: (1) the study of the following nonlinear 

effects: four-wave-mixing (FWM), stimulated Raman scattering (SRS), transverse mode 

instabilities (TMI), and nonlinear polarization evolution (NPE); (2) the control of these 

nonlinear effects with CCC fibers.  

In Chapter II, the analysis of wavelength conversion via FWM nonlinear effect is 

analyzed with 5 aspects: phase-matching, the generation of fundamental-mode signal, the 

competing SRS nonlinearity, the loss of idler signal, and the acceptable pump bandwidth. 

In Chapter III, the concept of suppressing SRS using spectrally tailored transmission in a 

CCC fiber and the demonstration of it with two different types of CCC fibers are introduced. 

In Chapter IV, the detailed physical process of thermally-induced gratings, a static and a 

time-dependent models of TMI, the origin of TMI, and the suppression of TMI with CCC 

fibers are discussed. In Chapter V, the study of nonlinear polarization evolution in CCC 

fibers, the stabilizing input polarization mode, and the demonstration of the preservation 

of linear polarization at the output of a 55-µm polygonal-core CCC fiber amplifier are 

introduced. In Chapter VI, some design aspects of P-CCC fiber and the effect of bending 

enhanced HOM suppression is investigated. 
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Chapter II 

Analysis of Wavelength Conversion in Large-Mode-

Area Fibers 

2.1 Introduction 

Present fiber lasers can only operate at few fixed wavelengths, as determined by the 

availability of the suitable rare-earth ions: Yb-doped fused silica fiber lasers operate at 1µm 

wavelength, Er-doped at 1.55µm, and Tm-doped at 2µm. However, a large variety of 

applications requires high power laser operation at other wavelengths, short (visible or UV) 

wavelengths in particular. Conventionally, laser beam wavelengths are converted by using 

χ(2) nonlinear interactions, such as parametric down-conversion, sum-frequency or 

harmonic frequency generation, in bulk nonlinear crystals. This is associated with two 

principal limitations: (1) such conversion schemes cannot be implemented as monolithic 

all-fiber systems thus including many unnecessary source of loss, and (2) material 

properties of the majority of available nonlinear crystals makes it difficult to use such 

schemes for high optical power operation (due to material lifetime and damage issues). 

Thus, we are exploring methods to use four-wave-mixing (FWM) through χ(3) nonlinear 

interactions in fused silica optical fibers to overcome these limitations since the wavelength 

conversion realized in optical fibers has important advantages related to the issue of life 

time and damage threshold. 
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Wavelength conversion of fiber laser output through FWM process has been explored 

from the end of last century [15]. However, all the explored approaches so far use small-

core single-mode optical fibers, such as highly nonlinear fiber (HNLF). Even the claimed 

large mode area (LMA) photonic crystal fibers (PCF) that are applied to an efficient FWM 

process can only be with <15µm core size [41-42]. This limits the power scalability of such 

conversion schemes. Our goal is to exploit properties of novel CCC fibers [38,39], which 

can provide single-mode operation at very large core sizes (with mode areas 5 times larger 

than that of conventional single-mode fibers, ~30µm). Most importantly, CCC fibers 

enable monolithic integration of such large-core fiber lasers while maintaining diffraction-

limited output beam quality.  

In the following sections, the analysis to assess an efficient wavelength conversion in 

LMA-CCC fibers is introduced.  
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2.2 Modeling of degenerate four-wave-mixing 

Four-wave-mixing is a complex of the 3rd order nonlinear optical processes, which 

involves self-phase modulation (SPM), cross-phase modulation (XPM), and wavelength 

conversion which requires the achievement of phase-matching. More generally speaking, 

each of SPM, XPM, and wavelength conversion is a specific type of FWM. This point of 

view can be revealed in the wave equation with the 3rd order nonlinear polarization [15].  
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Eq. (2.2-1) and Eq. (2.2-2) reveal that through the 3rd-order electric susceptibility, the 

interaction of three waves produces the fourth wave. Therefore, it is reasonable to identify 

FWM to be the most general 3rd-order nonlinear process which includes, SPM, XPM, 

wavelength conversion, and even third harmonic generation.  

The mathematical form of a linearly polarized electrical field of frequency  which 

includes four optical waves can be defined as 
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where A is the amplitude, F is the radially symmetric modal profile, and   is the modal 

propagation constant. In order to derive a scalar model of FWM, Eq. (2.2-2) is substituted 

into Eq. (2.2-1) with the optical waves shown in Eq. (2.2-3). The scalar model of FWM 

can then be derived as [15]  
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where f is the modal overlap factor, lk  is the phase mismatch and 2n  is the nonlinear 

refractive index coefficient. The effective area of the wave interaction can be defined by 
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The phase mismatch lk  is defined as 

lmknlk    (2.2-6) 

Thus, a scalar model of FWM involves Eq. (2.2-3) to Eq. (2.2-6). Eq. (2.2-3) defines 

the electrical fields of each of the four waves in the nonlinear mixing process. Eq. (2.2-4) 

is the coupled equations of FWM, which can be divided into three parts, SPM, XPM, and 

wavelength conversion. Eq. (2.2-5) shows the inverse proportionality of FWM nonlinearity 

to the effective area determined by the modal overlap. Therefore, the nonlinearities are 

different for SPM, XPM, and wavelength conversion due to the involvement of the 

different modes.  

According to the law of energy conservation, there are two types of FWM, which can 

be explained with the concept of the photon interaction. One is a process in which three 

photons generate one photon or vice versa, as shown in Fig. 2.2-1(a). This type of FWM is 

difficult to observe in optical fibers due to poor phase-matching. Therefore, this type of 

FWM is neglected in the above derivation. The second type of FWM is a process in which 

two photons become two other photons, as shown in Fig. 2.2-1(b). This type of FWM can 

only occur when the two input photons are in-phase or at least coherent. For the ease of 

experimentation, this type of FWM can be further simplified to degenerate four wave 

mixing (DFWM), as shown in Fig. 2.2-1(c). DFWM can be realized by a single pump wave, 

and conventionally, the output two waves are called signal at shorter wavelength and idler 

at longer wavelength. The phase-matching condition for this case is achievable, and will 
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be discussed in the next section. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.2-1 FWM described by energy levels. (a) Three photons exchange for one photon. (b) Two 

photons exchange for the other two photons. (c) Degenerate case of (b) 

 

To involve the influence of the competing nonlinearity, stimulated Raman scattering 

(SRS), a model of DFWM combined with the generation of the Stokes waves is derived. 

Due to the degeneracy of the two pumping wavelengths, the updated model can be quickly 

derived from Eq. (2.2-4) with this mathematical trick 121 22 AAA  . The following 

is the full scalar model of DFWM including the competing nonlinearity, SRS, for each 

wave:  
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where isA  is the amplitude of the SRS wave induced by iA , and sn  is the effective 

nonlinear refractive index of SRS [43].  

This model is numerically solved with the finite-difference method. The input 

condition of the signal wave 3A , and the idler wave 4A  are both determined by the 

vacuum fluctuation [44], and the input conditions of their Stokes waves sA3  and sA4  are 

the product of the Stokes photon energy and the effective bandwidth of stimulated Raman 

scattering [45].  
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2.3 The challenges to achieve efficient wavelength conversion FWM 

With Eq. (2.2-7) the wavelength conversion in large-mode-area optical fibers can be 

analyzed. The main challenges in attaining efficient FWM wavelength conversion in large-

core fibers are (1) phase-matching between pump, signal and idler wavelengths, (2) the 

generation of fundamental-mode signal, which influence the output beam quality of the 

converted wave, (3) achieving efficient wavelength conversion at peak powers well below 

the threshold of other competing nonlinearities (SRS in particular), and (4) high attenuation 

at the idler wavelength (>2µm) due to the material absorption of fused silica. Our initial 

exploration addressed all four issues and determined conditions under which the use of a 

28m-core LMA fiber with 0.07 NA can achieve efficient and power scalable wavelength 

conversion from ~1µm (Yb-fiber operation range) down to the visible wavelength range. 

  

2.3.1 Phase-Matching of Wavelength Conversion in LMA Fibers 

Phase-mismatch induced by the dispersion is associated to the efficiency of FWM-

wavelength conversion, and the dispersion can be from three different parts. The 

contribution of the phase-mismatch between the waves includes material dispersion, 

waveguide dispersion, and nonlinear phase modulation induced by SPM and XPM. Thus, 

the phase-mismatch can be written as NLWM kkkk  , where Mk , Wk , and 

NLk  are the phase-mismatch caused by material dispersion, waveguide dispersion, and 

nonlinear phase modulation respectively. 
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Fig. 2.3-1 The phase-matching diagram of a fused-silica fiber with 28-m core and 0.07 NA 

 

The fused silica dispersion characteristics favor the wavelength conversion from NIR-

pump to visible-signal and MIR-idler. In Fig. 2.3-1, the phase-matching diagram of a fused-

silica fiber with a 28-m core and 0.07 NA is calculated. Being divided by the black dashed 

degenerate curve, the upper curves show the phase-matched idler wavelengths versus pump 

wavelengths, and the lower curves show the signal one. Four different combinations of 

phase-mismatch, from material dispersion ( 0 Mk ), from material dispersion and 

nonlinear phase modulation at 300kW pumping ( 0 NLM kk ), from material and 

waveguide dispersion ( 0 WM kk ), and from all three dispersions 

( 0 NLWM kkk ), illustrate only slightly different signal and idler phase-matching 

curves. The overlapping condition of these phase-matching curves indicates the dominance 

of material dispersion. One reason is that the waves are confined in the core of a LMA fiber 

which is closer to bulk rather than waveguide, thus the waveguide dispersion in the LMA 

fiber can be ignored. The other reason is attributed to the diminished nonlinearity by the 
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~22m mode field diameter. Eq. (2.2-5) reveals that the nonlinearity is inversely 

proportional to the effective mode area, so the Kerr effect is diminished in a large-core 

fiber. Thus, with the exception of the phase-matching in the pumping wavelength range 

between 1.25m to 1.28m, the material dispersion alone can determine the phase-

matching wavelengths of signal and idler. Around the degenerate wavelength ~1.28m, 

which is also the zero dispersion wavelength, due to the phase-mismatch caused by the 

material dispersion is smaller or comparable to the Kerr nonlinear phase modulation, the 

degenerate point is split and this splitting is extended to the wavelength range of anomalous 

material dispersion. This condition is the so called modulation instability, which only 

occurs at wavelength in anomalous dispersion. All in all, as shown in Fig. 2.3-1, the 

material dispersion singly determines the phase-matching condition of wavelength 

conversion in a LMA fiber. 

The above analysis concludes the phase matching of wavelength conversion in large-

mode-area fibers. If the pump wave is launched from an ytterbium-doped fiber lasers which 

is usually operated between 1020-nm to 1080-nm wavelength (the blue marked area in Fig. 

2.3-1), the output signal is red light (~650 nm) and the idler is MIR (~3.5m). A significant 

result taken from this analysis is that as long as the pump wavelength is shorter than ~1.28 

m, the phase matching of wavelength conversion is definitely achievable. 

 

2.3.2 The Modal Overlapping 

In order to verify the output beam quality of the signal, the modal overlap is calculated 

with Eq. (2.2-5). The goal of this test is to confirm the nonlinearity of the wavelength 

conversion from the fundamental-mode (FM) pump wave to the FM signal wave and the 
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idler wave dominates. In the following calculation of modal overlap, the pump wave is 

assumed FM since the input excitation is always controllable. The idler wave is naturally 

FM due to the corresponding V-number at this wavelength is less than 2.405. Thus, the 

performance of multiple transverse modes can only happen to the signal wave. Fig. 2.3-2 

shows the modal overlap integral including both the pump and the idler wave as FMs while 

the signal waves has varied orders of HOM, LPlm. This figure shows the signal of FM (l +1 

= 1, and m = 1) within a FWM process dominates it of other HOMs. This result predicts 

the output beam of the signal is diffraction-limited FM. 

 

 
Fig. 2.3-2 Modal overlapping integral calculated with different modal numbers of the signal wave at 632 

nm (Overlapping  Overlap) 

 

The generation of single-mode signal is a critical factor to make use of this wavelength 

conversion technique for further applications. If the pump wave cannot maintain pure 

single-mode operation, both the efficiency of conversion and the output beam quality of 
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signal are degraded. Thus, the calculation, shown in Fig. 2.3-2, is especially meaningful 

when an effective single-mode fiber, such as a CCC fiber, is used as a medium to achieve 

the wavelength conversion, since the FM pump wave is naturally realizable.  

 

2.3.3 Idler Loss 

 The confinement loss of wavelengths above 2 m, which is the idler wavelength range, 

was believed too high, so no effort was made to further investigate the availability of 

efficient wavelength conversion by FWM in fused silica fibers. In Fig. 2.3-1, the 1064-nm 

pump wavelength determines the phase-matched signal is 632 nm, and the idler is 3372 

nm, at which the fused silica has a strong absorption. Fig. 2.3-3 is the absorption spectrum 

taken from Ref. [46]. As shown in this figure, the material absorption at 3372 nm is ~70 

dB/m. Thus, compared to the loss at this idler wavelength, that of the pump (~1 dB/km) or 

signal (<100 dB/km) is negligible.  

 

 
Fig. 2.3-3 The spectrum of fused silica absorption in the wavelength range of 3.2 nm-3.8 nm 
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This fact plausibly indicates a critical issue of efficient wavelength conversion by 

DFWM in fused silica fibers. However, the truth is that this level of idler absorption helps 

stabilize the generation of the signal wave, a characteristic that is verified with  

parametric oscillators [47]. The reason is conceptually explained as the following.  

 

 

 

Fig. 2.3-4 Scheme of stabilizing the generation of signal waves by strongly absorbed idler 

 

Due to the nonlinear phase modulation from SPM and XPM, the phase matching 

condition changes with the depletion of the pump waves as well as the increment of the 

signal and idler waves. Thus, when the power level of the pump waves is close to the signal 

and idler wave, the power flow is reversed due to the phase mismatch. This indicates a 

bidirectional process of the wavelength conversion in FWM, one is the nonlinear coupling 

from the pump to the signal and the idler and the other one is it from the signal and idler to 

the pump. This bidirectional process can be broken if one of the mixed waves is lossy. The 

scheme is shown in Fig. 2.3-4. The upper diagram depicts the generated waves of the signal 

and idler converted back to the pump wave due to the power-dependent nonlinear phase 
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modulation. The lower diagram shows that the back conversion is impeded due to the 

removed idler. This scheme can be applied in a limited range of idler losses (50-500 dB/m 

[42]), which indicates the 70 dB/m attenuation at 3372-nm idler wavelength actually favors 

the wavelength conversion to the visible signal.  

In the next subsection, this attenuation level is used to simulate the power progression 

of DFWM in a fiber with 28mm-core and 0.07 NA. In this simulation, the other critical 

factor, SRS, which unavoidably influences the availability of the wavelength conversion is 

considered as well. 

 

2.3.4 Competing Nonlinearity: Stimulated Raman Scattering 

 Stimulated Raman scattering is the other limitation of an efficient wavelength 

conversion by FWM. The two nonlinear processes, FWM and SRS, occur simultaneously 

in the fiber. Since SRS is automatically phase-matched, when the threshold of SRS is 

reached, the power would be downshifted by 13.2 THz. However, the nonlinear coefficient 

of FWM is larger than that of SRS by four times [15]. Thus, the FWM process is expected 

to be dominant within the small-signal-gain segment of the fiber [43]. In this segment, if 

the pump attenuation is not considered, the pump intensity is approximately undepleted. 

Thus, the nonlinear phase modulation, which is mainly determined by pump in this segment, 

is approximately constant. In other words, efficient wavelength conversion occurs due to 

the achievement of a stable phase-matching condition in this segment. 

Due to the complexity of FWM combined with SRS, the model derived in Sec. 2.2 is 

numerically solved by finite difference method. In this simulation, the result of two pump 

wavelengths, one is at 1064nm and the other is at 1030nm, are compared, and the relevant 
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idler loss is also included. The role of the idler loss can influence the small signal gain of 

both the signal and the idler, but as with the concept discussed in the last subsection, it can 

also help stabilize the generation of the signal. 

 Fig. 2.3-5 shows the normalized power progressions of the pump, the signal, the idler, 

and the associated Stokes waves in the LMA fiber which is pumped by a 100-kW 1064-nm 

wave. This power progression in linear scale is shown in (a), and in logarithmic scale in (b) 

for comparison. The dashed line in (a) marks the position at which the SRS threshold is 

reached. This position determines the length of the fiber to be used for wavelength 

conversion. From (b), the small signal gain of both the pump and the signal can be observed, 

and the coherence length is thus measured to be ~0.9 m. However, the selected fiber length 

is longer than this due to the stabilizing process involving the idler loss which occurs at the 

transition of the small signal gain to the large signal FWM interaction. Selecting this fiber 

length avoids both the conversion from the signal to its Stokes wave and the mixture of the 

pump-Stokes wave to the signal. Fig. 2.3-5 shows the stabilized generation of 632-nm 

signal due to the 70-dB/m absorption of the 3372-nm idler wave. In addition, >30% 

conversion efficiency from the pump to the signal is obtained. 

A contrasting group of simulations is shown in Fig. 2.3-6, where the pump wavelength 

is changed to 1030 nm, and the pump power is increased to 300 kW. Under this condition, 

the position, marked by the dashed line in (a), at which the signal generation is maximized 

is consistent with the fiber length with which the SRS is above threshold. This fact indicates 

that the domination of SRS is attributed to the loss of idler (~385 dB/m). This idler loss 

level effectively reduces the small signal gain of the signal and idler wave, and equalizes 

the generation of the signal and the Stokes wave from the pump in the large-signal-gain 

segment. Fig. 2.3-6 (b) shows that for the idler wave, the large signal gain of DFWM is 
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much smaller than its 385-dB/m absorption. Therefore, the generation is quickly saturated 

and all the other power is transferred to SRS, and the upper limit of the signal efficiency is 

confined by both SRS and the idler loss. 

 

 

(a) 

 

(b) 

Fig. 2.3-5 Normalized power progression in LMA fiber with 100 kW pump power at 1064 nm in (a) 

linear scale and (b) logarithm scale 

 

 

(a) 

 

(b) 

Fig. 2.3-6 Normalized power progression in LMA fiber with 300 kW pump power at 1030 nm in (a) 

linear scale and (b) logarithm scale 

 

From the above case study, the phase matching of DFWM, the proper loss level of the 

idler, and the suppression of SRS are three key factors for an efficient wavelength 
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conversion from near infrared- pump to visible-signal. This analysis helps to identify the 

avoidance of SRS by pumping at a particular wavelength range. Moreover, this analysis 

provides a systematic flow for determining the pump peak power and wavelength for the 

availability of achieving efficient FWM wavelength conversion with different fiber 

structures. However, in order to control the nonlinearity of FWM, the use of CCC fiber 

with tailored transmission spectrum and effective single mode performance is critical. The 

tailored transmission spectrum can be applied to suppress the competing nonlinearity SRS 

(introduced in the next chapter), and the effective single-mode performance can ensure a 

good beam quality for the converted signal. 

 

2.3.5 Acceptable bandwidth of pump waves 

The last factor which determines the conversion efficiency of the DFWM wavelength 

conversion is the bandwidth of the pump wave. In order to convert the pump wavelength 

to a specific signal wavelength with which the phase-matching is achieved, the bandwidth 

of the pump wave cannot be too broad. Otherwise, the phase-matching condition cannot be 

satisfied and the SRS would thus dominate DFWM. In the following paragraph, the 

acceptable bandwidth is derived from the small-signal-gain coefficient of the signal.  

The small-signal gain coefficient can be derived from the DFWM model [15], and is 

given by  

   22

1 2/  Pg  (2.3-1) 

where 1P  is the input pump power, and   is nonlinear coefficient which is given by 

c

fn 113412   (2.3-2) 
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Here we can equalize 1134f  to effA/1 , the reciprocal of FWM effective area.  is the 

entire phase mismatch 

12 Pk    (2.3-3) 

From this equation, we can conclude that g exists only if 

04 1  kP  (2.3-4) 

Assuming the wavelength of the signal and the idler are fixed, the range of k , shown in 

Eq. (2.2-4) determines the bandwidth of pump wave as 

p

pkk
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(2.3-5) 

, so that the effective bandwidth of the pump wave can be derived as 
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(2.3-6) 

Eq. (2.3-6) indicates that the acceptable pump bandwidth depends on the pump power 1P

and the effective area effA . The effective area is associated to the core diameter of a step-

index fiber. Thus, we can also use the core diameter to characterize the acceptable pump 

bandwidth. Fig. 2.3-7 shows the acceptable pump bandwidth characterized with both pump 

power and the core diameters of a 0.07-NA step-index fiber and operated at 1.064-m 

wavelength. 

The pump bandwidth indeed limits the availability of an efficient wavelength 

conversion by DFWM in LMA fibers. In general, the acceptable pump bandwidth is 

proportional to the pump power and inversely proportional to the core size with a fixed NA. 

Therefore, the generation of the signal wave is associated both to the design the pumping 

source and the pumped passive fiber. According to Fig. 2.3-7, the acceptable pump 

bandwidth is around 15-pm for a hundred kilowatt peak power pumping 30-m-core fiber. 
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Thus, one can estimate, from the time-bandwidth product 0.44 for Gaussian-shaped 

transform limited pulse [48], that depending on the fiber parameters, a high-peak-power- 

and hundreds of ps- transform-limited pulse is suggested as the pumping source. 

 

 

Fig. 2.3-7 Simulated acceptable pump bandwidth measured in picometer at different pump power and 

core diameter of a step-index fiber with 0.07 NA and operated at 1.064-m wavelength 

  

This calculation of the acceptable bandwidth is an approximation, since the above 

derivation is based on the small-signal gain of DFWM. In order to verify these equations, 

the acceptable bandwidths of the pump wave in two published experiments of DFWM in 

LMA fibers are calculated [41,42]. In Nodop’s experiment in 2009, the pump bandwidth is 

< 4 pm, and the conversion efficiency from 1064-nm pump light to 673-nm signal light is 

35%. With Eq. (2.3-6), the calculated acceptable bandwidth of the pump wave in this 

experiment is 72.3 pm, which is much larger than 4 pm. As for Jauregui’s experiment in 

2012, The bandwidth of the pump light is 6.6 pm, and the calculated acceptable bandwidth 

is 42.9 nm. In this experiment, 30% conversion efficiency to 672-nm signal is demonstrated. 
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As a result, it can be inferred that in order to achieve high conversion efficiency, the actual 

pump bandwidth needs to be much smaller than the acceptable bandwidth. The reason can 

be derived from the bandwidth broadening due to SPM. This factor indeed needs more 

investigation. 
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2.4 Summary 

In this chapter, a DFWM model combined with SRS and a systematic method of 

analyzing the availability of DFWM wavelength conversion in LMA fibers are built. The 

procedure of this analysis includes 5 aspects: 1) the availability of phase-matching between 

3 very different wavelengths, 2) the generation of FM-signal in a DFWM process, 3) the 

large idler loss, 4) the influence of SRS, and 5) the acceptable bandwidth of the pump wave. 

The dispersion characteristic of fused silica specifically favors the occurrence of DFWM, 

while waveguide dispersion and nonlinear dispersion can almost be ignored in LMA fibers. 

Thus, the phase matching of DFWM generation in LMA fused-silica fibers is achievable. 

A simple calculation of the modal overlap indicates the domination of FM-signal to other 

HOM-signals when the pump wave is excited as FM. The attenuation of the idler wave 

actually helps the stabilization of the signal generation due to the impeded bidirectional 

wavelength conversion caused by phase-mismatch caused by the depletion the pump wave. 

The detrimental SRS, by properly choosing the pump peak power and fiber length, can be 

avoided because the growth of SRS is weaker than DFWM in the small-signal-gain 

segment of the fiber, since the phase matching condition is automatically achieved. In order 

to further improve the performance of the wavelength conversion, the CCC technique of 

SRS-suppression, which will be introduced in the next section, is suggested for realizing 

more efficient DFWM. The analysis of the acceptable pump bandwidth indicates that the 

selection of the pump wave depends on both pumping power and the fiber structure. For 

achieving an efficient wavelength conversion, a high-peak-power, hundreds of pico-second 

transform-limited pulse is required. 
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Chapter III 

Suppression of Stimulated Raman Scattering in CCC 

Fibers 

3.1 Introduction 

In general, the achievable signal power in a fiber laser or amplifier is constrained by 

various optical nonlinearities occurring in an optical fiber at high optical intensities and 

sufficiently long propagation distances. There are many types of optical nonlinearities that 

can occur in high-power fiber lasers, amplifiers, or delivery fibers: stimulated Brillouin 

scattering, stimulated Raman scattering, self-phase modulation, thermal multimode 

instabilities, etc. Usually the type of dominant nonlinearity is primarily determined by a 

signal format. For example, for high power broadband signals, both continuous-wave and 

long pulse, dominant nonlinearity is stimulated Raman scattering (SRS) [15,49]. Once the 

SRS threshold is exceeded, most of the power will transfer to the unwanted Stokes wave 

at a longer wavelength, thus strongly degrading system performance.  

A straightforward path to increasing SRS threshold is to reduce fiber length, thus 

reducing nonlinear interaction length. This solution, however, leads to a trade-off in high 

power systems between increasing nonlinearity-limited achievable signal power or energy 

and the long fiber length required for effective heat dissipation. A somewhat less 

straightforward path is to increase fiber core size, thus reducing optical intensity. Since 
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increasing core size in conventional fiber structures eventually leads to an undesirable 

multimode performance, this path initiated development of several advanced large-core 

fiber designs specialized for preserving single mode operation [50,51,52] - a general 

approach to reducing nonlinear interactions. Over the last several years, however, a new 

approach had emerged specialized for increasing SRS threshold by inducing Stokes-wave 

loss in an optical fiber. Several approaches have been proposed and demonstrated such as 

bending-induced loss filtering [53], single-mode dual-hole-assisted fibers [54], W-type 

core fiber with fundamental mode cut-off [55], filter fiber based on the loss in coupled ring 

modes [56,57], and specially designed photonic bandgap fibers [58,59,60,61]. However, 

these schemes are not compatible with large-core single-mode preserving fiber designs, 

and, therefore, with a general technological direction of increasing core size for scaling up 

achievable powers and energies. 

Recently, a possibility to spectrally tailor the transmission in a single-side-core 

chirally coupled core (CCC) fiber to induce SRS Stokes-wave loss has been identified and 

explored theoretically [38,39], showing that one can design a large core fiber which 

combines both the effectively-single mode propagation and the SRS suppression. In this 

chapter we demonstrate this combined performance experimentally with two different 

types of CCC fibers: with a "conventional" single-side CCC fiber with approximately 33 

µm core, and with a polygonal-CCC fiber with 60 µm core. SRS suppression in the later 

structure represents a significant conceptual and quantitative extension of this previously 

work. 
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3.2 SRS Suppression by Induced Stokes-Wave Loss 

Many relevant techniques of SRS suppression in long optical fibers have been 

demonstrated in these several years. The common concept of these approaches is inserting 

Stokes-wave loss in optical fibers. As mentioned in the section of introduction, there are 

five primary schemes of inducing loss at Stokes wavelength. So far, these schemes indeed 

play important roles in approaching SRS suppression for various scientific purposes and 

applications. However, to implement SRS suppression through Stokes-wave loss, not only 

is the fiber needed to be lossy around Stokes wavelengths, but the loss spectral profile 

around the cut-off wavelength needs to be steep thus providing strong enough 

discrimination between pumping waves and corresponding Stokes waves. 

 

 

Fig. 3.2-1 Fiber attenuation profile for the concept of SRS suppression, which includes the profile of the 

Raman gain of silica material shown as the blue curve and three different degrees of SRS suppression 

showns as the red curves.  

 

In Fig. 3.2-1, the spectrum of the normalized Raman gain and it of three different 

types of fiber attenuation are shown. This figure conceptually shows the slope of the loss 
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spectrum is an important factor of achieving effective SRS suppression. The ideal spectrum 

of fiber attenuation is a step function which covers the whole gain spectrum of SRS while 

keeping the attenuation of the pump wave small. However, normal specialty fibers can only 

support finite slope of the attenuation. As shown in Fig. 3.2-1, the slope of the Stokes-wave 

attenuation should be as short as 13.2 THz (~50 nm) to provide enough pump-to-Stokes 

discrimination thus leading to an effective SRS suppression as the pump wavelength is 

around 1μm. When the slope is longer than 13.2 THz, the suppression decreases and is not 

capable of suppressing SRS effectively. Two good examples are associated to the method 

of bending normal step-index fibers [53] and W-type fibers [55] would lead to a large loss 

at the Stokes wavelength, but they cannot provide sharp cut-off edge between the pump 

wavelengths and its Stokes wavelengths. Therefore, bending makes the differentiation 

between the pump waves and the Stokes waves difficult. In addition to the attenuation slope 

of the Stokes waves, the peak attenuation is the other factor of achieving effective SRS 

suppression. Although dual-hole-assisted fibers [54], filter fibers [56,57] and PCF 

[58,59,60,61] favor steep cut-off edges between the pump wavelength and its Stokes 

wavelength, the SRS attenuation of these fibers is only mild ( <5dB/m). The reason of this 

judgment is based on a simple estimation. The peak power gain coefficient of SRS can be 

found as 0Ig R  [15], where  mWgR / 10~ 13  is the peak gain coefficient of SRS for 

fused silica, 0I  is the peak intensity of the pump wave. Therefore, the optimized 

attenuation for effective SRS suppression in fused silica fibers can be estimated as 

  010 34.4log10 0 Ige R

Ig

p
R 

 
(3.2-1) 

In Fig. 3.2-2, the estimated peak attenuation of the Stokes waves for effective SRS 

suppression is calculated. This figure shows that under <5 dB/m Stokes-wave attenuation, 
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even if the mode field diameter of the fiber is as large as 70 m, an effective SRS 

suppression can only occur around 10-kW pump power. For a normal 10-m-MFD 

photonic bandgap fiber, <5 dB/m Stokes-wave attenuation can only support to achieve 

effective SRS with below 1-kW pump power. 

On the other hand, all these five schemes are demonstrated with relative small-core 

fibers, and this issue leads them difficult to be implemented their SRS-suppression 

performance to high power or high energy regime. To explore the solution of realizing 

SRS-suppression in large-mode-area (LMA) optical fibers, we adopted the properties of 

spectrally-tailored transmission spectrum in chirally-coupled-core (CCC) fibers, which is 

demonstrated to have steep enough attenuation slopes as well as strong enough attenuation 

peaks at Stokes wavelengths. Moreover, since CCC fibers are also known as the 

effectively-single mode propagation with large core scale, its potential on high-power or 

high-energy applications is highlighted. 

 

 

Fig. 3.2-2 Estimation of the required peak attenuation of the Stokes waves for effective SRS suppression 
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3.3 SRS Threshold in LMA Fibers with Stokes-Wave Loss 

When a fused silica optical fiber is pumped with a high-intensity wave, stimulated 

Raman scattering seeded by spontaneously-generated Stokes waves occurs. In this process, 

the pump power is exponentially transferred to the Stokes wave, which is at 13.2 THz 

frequency lower than the pump. The threshold thP  of this phenomenon is defined as the 

power level of input pump wave which leads to that the output pump-wave power equals 

to the output Stokes wave [45]. Mathematically, this definition can be shown as 

  L

th

ALgPL

s
peffRths ePeP

 


/
0

 
(3.3-1) 

where Rg  is the Raman gain coefficient,  0sP  is the power of the Stokes wave 

generated from spontaneous Raman scattering, p  and s  are the loss of the pump 

wave and the Stokes wave, L is the fiber length, and effA  is the effective area of transverse 

mode supported in the fiber. For single-mode fibers, the solution of Eq. (3.3-1) with 

assuming equivalent attenuation of pump and signal waves (   pp ) gives the well-

known expression for SRS threshold 

effR

eff

th
Lg

A
P

16


 

(3.3-2) 

where effL  is the effective length defined by 



L

eff

e
L




1

 
(3.3-3) 

However, for large-mode-area fibers, the SRS threshold calculated with Eq. (3.3-1) 

cannot be precise anymore. The coefficient 16 in Eq. (3.3-2) should be corrected when the 

threshold of SRS in a LMA fiber is calculated. The updated coefficient in Eq. (3.3-2) can 
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be calculated by going through the derivation steps in [45] and substituting the LMA-fiber 

parameters. Fig. 3.3-1 shows the calculated coefficient at different mode-field diameters 

and threshold power. The curves in Fig. 3.3-1 reveal the coefficient is not sensitive to the 

mode field diameters as well as the threshold level. Therefore, a reasonable approximation 

of this coefficient for LMA fibers can be chosen from 27 to 30, and Eq. (3.3-2) is thus 

rewritten as 

effR

eff

th
Lg

CA
P 

 

(3.3-4) 

where C is from 27 to 30. The exact coefficient depends on the threshold level. 

 

 

Fig. 3.3-1 The updated coefficient in the formula of SRS threshold with different trial SRS threshold 

level 

 

When the Stokes wave experiences large loss while the attenuation of the pump wave 

is negligible, following the same process as above, Eq. (3.3-4) can be further modified as 

[62] 
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(3.3-5) 

Eq. (3.3-5) shows that the increment of the SRS threshold is independent of the Stokes 

wave attenuation. Therefore, the propagation length-independent SRS threshold 

R

effs

th
g

A
P


  is predicted as taking L  [ 62 ]. This concept recapitulates the 

importance of distinguished attenuation from the Stokes wave to the pump wave. 
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3.4 The Stokes Attenuation in CCC Fibers 

In this research work, a new technique of SRS suppression based on novel chirally-

coupled-core (CCC) fibers is proposed and is demonstrated. CCC fibers are constructed by 

a central core and at least one side core. Thus, it is a dual-waveguide system if all the side 

cores are viewed as an integrated waveguide in which the side-core modes interact with 

the central-core ones. Based on the phase-matching of inter-waveguide or intra-waveguide 

modal coupling [38,39], the helical system of CCC fibers allows a spectrally tailored 

transmission spectra for fundamental mode as well as higher-order modes. Therefore, 

effective single mode delivering can be achieved under appropriate structural design. The 

suppression of SRS is realized by manipulating the phase-matching condition at Stokes 

wavelength. At this wavelength, the Stokes wave generated in the central core would be 

coupled to the side cores. Due to the helical geometry of the side core, the frustrated total 

internal reflection leads to large attenuation of the propagating waves there. For example, 

if the coupling between the fundamental mode LP01 in the central core and the higher-order 

mode LP11 mode in the side core at the Stokes wavelength is phase-matched, the SRS 

generated by the signal of LP01-mode would be coupled to the side core as LP11 mode. This 

LP11 mode is efficiently dissipated via the frustrated total internal reflection thus resulting 

in SRS suppression. The ability of SRS suppression based on the individual characteristic 

of CCC fibers has been demonstrated numerically [62]. This literature mainly focuses on 

the concept of propagation-length-independent SRS threshold which is conceptually 

explained in Eq. (3.3-5). 

For the two specially-designed Ge-doped CCC fibers, one is with 33-μm and the other 

is with 60-μm core size, the fiber attenuation spectra of the FM are shown in Fig. 3.4-1. In 

this figure, the method of suppressing SRS in a 33-μm and a 60-μm spectrally-tailored 
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CCC fiber is shown with the SRS gain spectra. One can observe that in these two figures, 

the designed CCC fiber transmission spectrum matches the spectral profile of SRS gain 

coefficient in fused silica material for pump wavelengths at 1085 nm and 1040 nm 

respectively. In Fig. 3.4-1 (a), a distributed 30-dB loss covers the peak of the Raman gain 

and the ~40nm-long slope of the attenuation curves is qualified for the criteria of achieving 

effective SRS suppression. While in Fig. 3.4-1 (b), the estimated Raman-suppression loss 

is as high as 45-dB with a 20-nm attenuation band. As calculated from Eq. (3.2-1), the 

required peak attenuation for these two CCC fibers to suppress SRS is 37.6 and 43.8 dB/m 

respectively, so the SRS-suppression performance of these two CCC fibers is predicted. By 

exploiting the property of modal attenuation in these two CCC fibers with different core 

sizes, we present the first experimental verification of the SRS suppression in CCC fibers 

by comparing the output spectra of the launched high-peak power nanosecond pulses 

through these two CCC fibers, and each pumped by two different wavelengths, one with 

and another without Stokes-wave loss. 
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Fig. 3.4-1 (a) The 33m-core CCC fiber sample’s transmission spectrum from 1087nm to 1246nm with red 

solid line and vertical axis on the right is shown to match the Raman Stokes gain of pump wavelength at 

1087nm. (b) The 60m-core CCC fiber sample’s transmission spectrum from 1037nm to 1097nm with red 

solid line and vertical axis on the right is shown to match the Raman Stokes gain of pump wavelength at 

1040nm. Both figures are plotted as a function of wavelength with black solid line and vertical axis on the 

left.  
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3.5 Experimental Design 

The experimental layout is shown in Fig. 3.5-1. This setup consists of four parts: an 

oscillator, two stages of single-mode pre-amplifiers, a CCC fiber-based high power 

amplifier, and a passive fiber under test (FUT). The output beam from FUT is coupled to a 

single-mode fiber which is connected to an optical spectrum analyzer for measuring the 

output spectra. 

 

 

Fig. 3.5-1 Compact view of experimental setup: pulse generator, two stages of Ytterbium-doped fiber 

amplifiers, and the set-up of SRS-suppression test. (LD: laser diode, YDFA: ytterbium doped fiber 

amplifier, WDM: wavelength division multiplexing, AOM: acoustic optical modulator) 

 

In order to explore SRS suppression in CCC fibers at different wavelengths and varied 

ranges of peak power, a wavelength and repetition rate-tunable oscillator is required. The 

oscillator in the experimental setup, which provides ns-pulsed signals to the first stage of 

the pre-amplifier, consists of a gaining cavity, a rotatable laser-line filter made by Semrock 

and two acousto-optic-modulators (AOM). The tunable wavelength of the signal is 

achieved by rotating the laser-line filter to change the incident angle, and the tunability is 

YbD Fiber

Rotatable

SF
AOM 1 

AOM 2

0th 

1st Fiber Isolator

Rotatable

SF

0th 

1st

Laser Diode (LD)

WDM

W
D

M

Rotatable

SFIsolator

Isolator

WDM

4-m YbD CCC Fiber
LD

Passive CCC Fiber
OSA

YbD Fiber

YbD Fiber

[ns-pulse oscillator] [Two-Stage Fiber Amplifiers]

[SRS-Suppression Test]

Dichroic

Mirror 

Free Space

Passive Fiber

Active Fiber



 

46 

from 1064 nm down to 1020 nm when incident angle is changed from 0o to 35o. If the 

longer wavelength (>1064 nm) is needed, this Semrock filter can be replaced with a band-

pass filter which works at longer wavelength, such as of 1085 nm or 1095 nm. As for the 

repetition-rate tunability, it is attributed to the in-cavity AOMs which controls the cycle of 

the pulse. The other one is to filter the amplified-spontaneous-emission (ASE). Both AOMs 

are electrically controlled by the Stanford digital delay generator DG-535, with which the 

repetition rate can be changed from 1 mHz to 1MHz.  

The development of the nanosecond pulses resembles the ring-cavity regenerative 

amplification. The 1st-order beam from the intra-cavity AOM is used to close the ring loop, 

and the 0th-order beam is for dumping out the pulses. As depicted in Fig. 3.5-2, the detailed 

temporal electronic control of the optical-wave modulation is shown for both intra-cavity 

and extra-cavity AOMs. 

 

 

Fig. 3.5-2 The electronic control of both AOMs in each cycle. I: shaping the cintinuous-wave ASE as a 

pulse and sending back into the loop; II: closing the loop for a regenerative amplification of the pulse 

until the gain is saturated; III: reshaping the pulse and suppressing the background ASE   
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The ASE is carved out with the length of this period, and this carved pulse is sent back into 

the loop for a further amplification. This period is 10-20 ns. (II) The intra-cavity AOM that 

is turned on in this period permits several roundtrips of the self-seeded ASE pulse until the 

pulse energy saturates, and then the loop is opened for dumping the saturated pulse out of 

the cavity. The number of the round trips is dependent on the wavelength. Each round trip 

takes 110 ns. (III) The extra-cavity AOM is used to clean up the dumped pulse from the 

mixture of the ASE, and output as at the 1st-order beam. The generated pulse from this 

oscillator is down to 10 ns as a minimum, which is limited by the rise time of the intra-

cavity AOM. 

Since this oscillator was built for testing nonlinear phenomena in CCC fibers, even 

though it possesses the value of being researched further, its full performance was never 

thoroughly investigated. The tuning range of the wavelength is only demonstrated from 

1020nm up to 1090nm, and this range covers most of the useful Yb-doped fiber amplifier 

gain. The tuning range of the repetition rate was only demonstrated from 1 kHz to 10 kHz. 

Considering the trade-off between the influence of the ASE at low repetition rate and the 

achievable peak power in the amplifier stages at high repetition rate, 5 kHz is chosen in 

this SRS-suppression experiment. This oscillator allows an output around several hundred 

W up to few mW of average power at the demonstrated range of wavelengths and 

repetition rates. At the output end of this pulse generator, a rotatable wavelength filter is 

used to block the rest of ASE and SRS which cannot be eliminated by the 2nd AOM. 

The output pulse from the programmable oscillator serves as the signal seed and is 

further amplified in the next three stages of ytterbium-doped fiber amplifiers (YDFA). This 

amplification system is consist of two single-mode Yb-doped fiber preamplifiers and a 4-

m Yb-doped CCC fiber amplifier with 38-μm core size (30-μm mode-field diameter), 
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producing nanosecond pulses with a peak power up to 200 kW. The achievable peak power 

of this active-CCC fiber based amplifiers is also dependent on wavelength. Since this is the 

final stage of amplification and the output beam is used to characterize the SRS generation 

in a passive fiber, a SRS-free signal along this amplifier is important. The SRS threshold 

of this fiber amplifier is estimated by the highest gain which can be provided by the active 

Yb-doped CCC fiber. At 1040-nm wavelength, the highest gain is around 23dB, which 

corresponds to a 0.75 m effective length. Using Eq. (3.3-4), the threshold is calculated as 

290 kW, which is higher than the achievable output peak power. Moreover, the output 

spectrum of the strongest pulses at 1040 nm are also measured to doubly confirm this 

amplifier to be SRS-free. 

In order to more accurately demonstrate the SRS-suppression capability of CCC fibers, 

as shown in Fig. 3.5-1, a filter is placed at the output end of the CCC-fiber based YDFA to 

further block the small amount of SRS- and ASE- mixture. The output signal from the stage 

of CCC-YDFA is sent into the passive CCC fibers, and the output spectra from these 

passive fibers are measured by an optical spectrum analyzer (OSA). 
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3.6 Experiment Result and Analysis 

3.6.1 38- μm-core CCC Fiber 

 

 

(a) 

 

(b) 

Fig. 3.6-1 Output Spectrum versus coupled input peak power. (a) 1052nm pump wavelength with 7nm 

bandwidth. (b) 1087nm pump wavelength with 4nm bandwidth. The inset shows the transmission 

spectrum of the tested CCC fiber. 

 

The first passive CCC fiber under test is a 6-m long Ge-doped CCC fiber with the 

core size of 33 μm and the NA of 0.06. The measured mode-field diameter of this CCC 

fiber is 21 μm. The SRS threshold in this fiber is calculated as the following. The pump-

wave attenuation of these two wavelengths is 1dB/m, so the effective length is 3.1 m. The 

gain factor C in the SRS threshold formula is selected as 27. The Raman Stoke gain 

coefficient of Ge-doped fused silica is 2 times larger than usual fused silica fiber and is 

chosen to be 2×10-13 W/m [63,64], which is calibrated in all of the measurement. Using Eq. 

(3.3-4), the SRS threshold is estimated as 15.5 kW under no SRS suppression.  
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SRS suppression is demonstrated with this fiber by launching high peak power into 

the fiber at two different wavelengths. The pumping wavelength at 1087 nm is with SRS 

suppression, while it at 1052 nm is without SRS suppression. The measured output spectra 

are recorded and shown in Fig. 3.6-1. For clarifying the picture of the SRS-suppression, 

the transmission spectrum of this 33-m Ge-doped CCC fiber is placed on the top of the 

figure which shows the evolution of the output spectra versus different pumping peak 

powers at the two selected pump wavelengths. For both cases, the coupled peak powers 

into the CCC fiber is up to 30 kW, which exceeds the calculated SRS threshold, 15.5 kW. 

The spectra in this two cases shows significantly different characteristics. The SRS growth 

is shown at 1052-nm pumping, while a complete absence of observable SRS is shown at 

1087-nm pumping. In order to quantify this difference, for each spectrum shown in Fig. 

3.6-1 (a) and (b) respectively, an integral of the spectral power ratio of the wavelengths 

longer than the signal wavelength by 23 nm to it of the total measured spectrum is practiced 

for each power level, and shown in Fig. 3.6-2. This result shows that SRS is indeed 

suppressed at all tested peak powers by the tailored loss profile of this CCC fiber, while 

without suppression SRS power appears to grow starting from few-kW peak powers. 

Furthermore, what is also worthy of noting is the small amount of spectral broadening 

associated with non-phase-matched four-wave-mixing (FWM). This induced spectral 

broadening appears to be suppressed for 1087-nm pumping due to the fact that this signal 

is “sandwiched” between two spectral transmission “dips”. While for the case of 1052-nm 

pumping, due to the mixture of the sideband seeded non-phase-matched FWM and SRS at 

the integrated wavelengths, the fraction curve shows a quadratic growing in Fig. 3.6-2. 
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Fig. 3.6-2 The power fractions of the integrated components according to wavelength longer than 1075 

nm in fig 7 (a) and the integrated components according to wavelengths longer than 1110nm in fig 7 (b) 

versus coupled peak power  

 

 

3.6.2 60-μm-core CCC Fibers 

For the purpose of realizing SRS suppression with high-power facilitation, a CCC 

fiber with a doubled core size is put under test. This fiber was a 4-m long Ge-doped CCC 

fiber with a core size of 60 μm and NA of 0.06. The measured mode-field diameter around 

1-μm wavelength is 46 μm. The attenuation for both of these pump wavelengths, 1040 nm 

and 1060 nm, is 0.5dB/m, and this corresponds to 3.1-m effective length and 77-kW SRS 

threshold when no SRS suppression is onset. This SRS threshold is calculated with 

selecting the gain factor C as 29.  
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(a) 

 

(b) 

Fig. 3.6-3 Output Spectrum versus coupled input peak power. (a) 1060nm pump wavelength with 7nm 

bandwidth. (b) 1040nm pump wavelength with 4nm bandwidth. The inset shows the transmission 

spectrum of the tested CCC fiber. 

 

With a similar experimental process, the 60μm-core CCC fiber was tested with 

pumping wavelength at 1060 nm and 1040 nm respectively. Fig. 3.6-3 (a)-(b) show the 

evolution of the output spectra versus different pumping peak powers at the two selected 

pump wavelengths. For the experiment of 1060-nm pumping, the peak powers coupled into 

the fiber is up to 78 kW, while for 1040nm pumping, the coupled peak power is up to 138 

kW. The difference of these two power level is due to the varied achievable gain in Yb-

doped fiber amplifiers. In Fig. 3.6-3(a) and (b), significant SRS growth pumped by injected 

beam of 1060-nm wavelength and an effective suppression of SRS by injected beam of 

1040 nm are observed. Following the same procedure as in the case of the 33μm-core CCC 

fiber, this difference is quantified by the integral fraction of the wavelengths longer than 

the signal wavelength by 35 nm (approximately 9 Thz) for both signal wavelengths in Fig. 
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3.6-3 (a) and (b) to the spectral power of the total measured spectra. In this experiment, 

due to the doubled core size which leads to around 4 times less nonlinearity, the non-phase-

matched FWM amount which is included in the SRS power integration is smaller, and a 

more accurate theoretical fitting can be predicted. However, an additional issue which 

should be noticed is when pumping wavelength is at 1040 nm, large amount of the in-band 

ASE inevitably mixed with pulses energy is sent into the test fiber. Thus, in order to avoid 

ASE being counted in the integrals of the spectra power, the integrated power of the total 

spectra is calibrated with the measured pulse energy. Fig. 3.6-4 shows the obtained 

fractions of the power around the Stokes wavelength with respect to the total pulse power 

for both signal wavelengths and the relevant simulation result. This result shows that SRS 

is indeed suppressed by the tailored loss profile of this CCC fiber. Without suppression, the 

amount of SRS appears to grow starting from 45-kW peak power, while with suppression, 

the SRS amount starts to grow at 100-kW peak power. Thus, doubled SRS threshold is 

observed. The simulation curves is calculated from the frequency dependent coupled 

intensity equations of SRS [62] 
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(3.6-1) 

where Rg  is the Raman gain coefficient as a function of frequency shift  . One can 

observe the fit between experimental result and simulation result, because the side bands 

generated from non-phase-matched FWM is distinguishably separated from the Stokes 

waves. 
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Fig. 3.6-4 The power fractions of the integrated components according to wavelength longer than 1095 

nm in Fig. 3.6-3 (a) and the integrated components according to wavelengths longer than 1075nm in Fig. 

3.6-3 (b) versus coupled peak power 
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3.7 Conclusion 

We experimentally demonstrated SRS suppression due to the tailored transmission 

spectrum of specially-designed LMA-CCC fibers. Through selecting the pump 

wavelengths whose corresponding Raman gain peak is located at the phase-matched 

wavelength of the CCC fiber, no apparent SRS have been observed respectively for coupled 

peak powers of up to 30 kW in a 6-m long 33μm-core Ge-doped CCC fiber at 1087-nm 

signal wavelength and for coupled peak powers of up to 140 kW in a 4-m long 60-μm-core 

Ge-doped CCC fiber at 1040-nm signal wavelength where large Stokes-wave loss in the 

fiber is matching the spectral profile of Raman gain peak in this fiber. The comparison with 

the tests at non-suppressing signal wavelength indicates that a significant degree of SRS 

suppression has occurred. Potential practical significance of this finding can contribute to 

two aspects. One is the availability of using longer-length fibers to facilitate heat 

dissipation in high power fiber lasers and amplifiers without being limited by SRS 

threshold. The other one is the application to high power Raman-free long delivery fibers.  
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Chapter IV  

Study of Transverse Mode Instabilities in High Power 

Fiber Lasers 

4.1 Introduction 

Increasing average power from fiber lasers or amplifiers is associated with increasing 

fiber core size to mitigate nonlinear effects and facilitate high power pumping. However, 

as it was recently discovered experimentally, increasing power to between few hundred 

watts and up to approximately a kW in large mode area (LMA) fibers leads to a sudden 

degradation of the output mode [24,29,65 ], which limits the achievable power in a 

diffraction-limited beam. This phenomenon, known as transverse mode instability (TMI) 

is characterized by a threshold-like onset of coupling from the fundamental mode (FM) to 

the higher-order modes (HOM), and by a time-dependent periodic or chaotic oscillation at 

the kHz frequencies between the modes at powers above the threshold [25]. The degree of 

chaotic behavior increases with increasing power when it is beyond TMI threshold. 

By now the importance of thermally-induced refractive-index gratings caused by 

beating between the fundamental and a higher-order mode in producing TMI is well 

established [66]. Since the local heating, associated with the quantum defect between fiber 

pump and fiber signal wavelengths, is proportional to the local inversion, this grating 

follows a periodic longitudinal temperature variation resulting from spatially-varying 
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inversion due to the intensity variation in the intermodal beating pattern. Through thermo-

optic effect this will result in a refractive index grating. Period of the beating and, hence, 

the grating period, is determined by the propagation-constant difference of the two modes.  

As it is pointed out in [66], although such self-induced gratings always have the exact 

period to couple between the beating modes, an efficient power transfer between the FM 

and the HOM requires a phase lag between this grating and the intensity oscillation pattern 

of the two beating modes. In the same paper it was suggested that this phase lag could be 

produced by a moving refractive-index grating formed by the interference between two 

transversal modes with slightly different optical frequencies (typically in the kHz range). 

This has been confirmed theoretically by several authors using various coupled-mode 

equation models [66,67,68,69], which associate this mechanism with the thermally induced 

stimulated scattering processes. In addition, it has been also proposed that an alternative 

mechanism can be involved in producing this phase lag [27,28,70], in which the two 

interfering modes that induce TMI are at exactly the same frequency. Evidence for this was 

based primarily on the results of numerical simulations using integrated beam-propagation 

models, which demonstrated the onset of TMI with strictly monochromatic input fields. 

Although conceptual explanations of this mechanism have been attempted, but no 

theoretical model for it was ever proposed. 

In this chapter we present a general time-dependent coupled-mode theory describing 

TMI in terms of a general two-beam coupling (TBC) process, which reveals the physical 

noise, spontaneous emission, can produce the phase lag between the thermally-induced 

grating and a two-mode interference pattern. We also show that within the framework of 

the derived time-dependent TBC coupled-mode model, the origin of TMI can be described 

based on a spatially-dependent structure. In addition, this general model can be simplified 
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as a static model with which the threshold of TMI can be quickly calculated. Using this 

static model, the scheme of mitigating TMI with CCC fibers can be assessed. 

 

 
Fig. 4.1-1 Two beam coupling is a nonlinear process in which the interference pattern would be 

imprinted into a moving grating. 

 

In Sec. 4.2, the physical background of TMI is summarized, and this understanding 

of TMI will serve as the headlight to develop the time-dependent theory. This general time-

dependent model can be simplified to a static model of TMI, which we developed in 

parallel with both Hasen [68] and Dong [69], are used to characterize the threshold of TMI 

with different fiber parameters as well as to estimate the required HOM loss in CCC fibers 

to suppress TMI . In Sec. 4.4, the numerical implementation of the time-dependent theory 

is shown. In Sec. 4.5, the physical noise and issue of the non-physical noise occurring in 

the numerical simulation is discussed. With understanding the role of the noise in the 

dynamical behavior of TMI, in Sec. 4.6, the spatial phase shift induced by these noise 

sources reveals that the origin of TMI can be simply explained with the developed 

analytical model. Sec. 4.7 is the conclusion of our current study of TMI. 
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4.2 Physical Model of TMI in LMA-fiber Amplifiers 

The general procedure of modeling TMI is constructed as the following. Two modal 

fields are added to produce spatially and temporally varying irradiance. Through the 

interaction between the optical waves and the medium, this irradiance induces a refractive 

index change. The exact mechanism of this nonlinear refractive index change depends on 

particular physical phenomena involved, but the general feature is that it is associated with 

a finite response time of a medium. For example, in a medium with Kerr nonlinearity, 

standard Debye equation applies. In the case of thermally induced TMI, the analogical 

mechanism is more complex in that it involves local population inversion, thermal 

diffusion and thermo-optical effect. The standard theoretical framework of TBC can be 

applied to the TMI for a time-dependent dynamic model, and the thermally-induced modal 

coupling can be applied for the static model, which is simplified from the former and will 

serve as a tool to analyze TMI thresholds in a system. In order to understand the physical 

mechanism, the most general dynamical model will firstly be introduced. 

A general formulation of TBC can be strictly derived from the electromagnetic wave 

equation with the nonlinear refractive index modulated by the other control equation. The 

relevant control equations of the two well-known TBCs, namely SBS and SRS, are acoustic 

wave equation and atom oscillator equation respectively. When addressing temperature-

induced refractive index modulation, the thermal diffusion equation is the control equation 

to formulate the thermally-induced TBC. The procedure of rigorously deriving the time-

dependent TBC model for the thermally-induced TMI follows the same general theoretical 

framework described above, with the essential difference that the amplitudes are assumed 

to be both temporally and spatially varying. This makes it impossible to achieve coupled 

power equations, i.e. time-dependent coupled-amplitude equations become the final point 
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of the theoretical derivation. However, this time-dependent coupled-amplitude equations 

can be simplified to a pair of coupled-power equations with eliminating the time-

dependence of the amplitude. This simplified model is useful for predicting the threshold 

of TMI and for plotting the mitigating strategy. In the following subsections, this whole 

modeling procedure is introduced from a classical theory of TBC. 

 

4.2.1 Review of Two-Beam-Coupling Theory in Kerr Media  

The fundamentals of TBC is introduced in the well-known textbook of nonlinear 

optics Boyd [71]. Two waves with distance-varying amplitudes A(z) interfere, and the 

electric field can be formulized as  
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where A , k  and   are respectively the amplitude, propagation constant, and the 

carrier frequency of the two waves. In a Kerr-medium, the intensity of the interfering waves 
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ss EI  ) induces nonlinear index grating  tznNL , , and the medium responds within 

finite time τ. The response that is shown with the driven nonlinear refractive index can be 

described by Debye relaxation equation 
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The coupled-amplitude equations (CAEs) of these two waves are obtained by substituting  

 tznNL ,  and  tzEs ,  into the wave equation 
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, and then considering slowly-varying envelope approximation, a pair of coupled amplitude 

equations can be derived as 
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Fig. 4.2-1 Frequency dependence of the TBC gain [71] 

 

This CAEs can be transformed to a pair of coupled-intensity equations, revealing the 

presence of optical gain and stimulated-scattering threshold  
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(4.2-5) 

From Eq. (4.2-5), the wavelength-dependent conversion is plotted in Fig. 4.2-1, and the 

gain-peak frequency offset for the converted wave is determined by 1 peak . This 

relationship indicates that the strongest TBC occurs when the time scale of the beating 

between the two waves is consistent with the delay time. Furthermore, the full-width at the 

half maximum (FWHM) of the peak in Fig. 4.2-1 is the phonon life time of the material. 

 The significance of this theory is that it depicts the fundamental physic and the 

modeling process of TBC with the key factors including the beating pattern of the modes, 

the response function with finite delay time relative to the intensity of the waves, and the 

conversion from one wave to the other with the frequency-offset-dependent gain. These 
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four factors can be translated to model TMI as introduced in the following subsections. 

 

4.2.2 Time-dependent TMI Theory Based On Thermally-Induced TBC 

By following a similar path as the last subsection, the time-dependent theory of TBC 

for describing TMI in high power fiber amplifiers is developed. The scalar optical field 

which includes two transverse modes can be written as  
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where i  indicates the normalized modal profile (    




2

0 0

2
1,

br

i rdrdr ), either of FM or 

HOM, supported in the fiber amplifier with a known step-index structure. Ai is a slowly 

varying amplitude in both spatial and temporal domain and ki is the modal propagation 

constant. Since TMI is mainly attributes to the interaction between the fundamental LP01 

mode, and the 1st-order LP11 mode, only these two modes are considered in the following 

derivation. The purpose to add time dependence to the amplitude is for the generality of 

TBC. In a TBC process, the coupling from one wave to another is derived from the phase 

lag between the radiation beating pattern and the imprinted refractive index grating. As the 

aforementioned, this phase lag is induced from the frequency offset between the involved 

two waves. One thing to note is that in Eq. (4.2-6), this frequency difference is included in 

the time-dependent amplitude, and the carrier frequency of both modes are assumed the 

same. 

TMI is induced by the heat generated from the signal depleting population inversion 

with a quantum defect. If the amplification is far from being saturated, and the spontaneous 

emission and the re-absorption of the signal are assumed so small that they can be neglected, 
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the depleted population or the generated heat is linearly proportional to the signal intensity. 

Thus, the volume heat-generation density Q can be approximately expressed as  

   tzrIznNtzrQ s
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Ybes ,,,1)(,,, 
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where σes, NYb, nμ are the emission cross section at the wavelength of the signal, the doping 

density, and the ratio of the population inversion. λp(s) is the optical wavelength, and thus 

the ratio in the parentheses represents the quantum defect. Is is the signal intensity which 

includes the radiation beating pattern of the FM and the HOM, and it can be given by 

   jqzjqz

s eAAeAAAAcntzrI  12

*

1221

*

21

2

2

2

2

2

1

2

100
2

1
,,,   (4.2-8) 

where q is the difference of the propagation constants. For simplicity, Eq. (4.2-8) can be 

rewritten as  
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where  
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The volume heat-generation density Q in Eq. (4.2-7) serves as the source term in the 

thermal diffusion process, which is controlled by the thermal diffusion equation 
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where α and κ are the thermal diffusivity and the thermal conductivity respectively. Since 

the medium is a longitudinally-extended optical fiber, the diffusion along the z direction is 

neglectable. Eq. (4.2-7), integrated with Eq. (4.2-8)-(4.2-10), is substituted into Eq. (4.2-11) 

which can be solved by the separation of variables in the cylindrical coordinate system. 

Since the z dependence is not considered, Eq. (4.2-11) with only radial r and azimuth angle
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 dependence is solved, and the solution can be described as  
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where η is the thermal-optic coefficient. Jν is the first kind Bessel Function of order ν, Ybr  

is the doped radius, and N is the normalization function. βm is the eigen-value of the radial 

dependent differential equation which can be solved with the thermal boundary condition 

shown as  
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h is the effective heat transfer coefficient. In addition, 2  in Eq. (4.2-12) is defined by 
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Eq. (4.2-13) shows the decomposition of the heat generation profile derived from the 

intensity beating pattern by the eigen-mode of the diffusion equation in Eq. (4.2-11) in 

cylindrical coordinate. The purpose of this decomposition is to quantify the diffusion for 

each eigen-function of this diffusion equation, which is sourced by the heat generation. As 

the diffusion for each eigen-function is determined, these eigen-functions are recombined 

to acquire the total temperature difference. Therefore, Eq. (4.2-12) reveals the relaxation 

nature of a thermal diffusion process. In this equation, the integral also reveals the 

relaxation time of each eigen-function as  
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Therefore, the validity of deriving TBC to acquire a pair of coupled amplitude equation is 

confirmed.  

The nonlinear refractive index can be defined as  

TnNL   (4.2-17) 

Considering effective refractive index of the gain from the amplifier as ng, the total relative 

permittivity, which attributes to the gain and the nonlinearity, can be expressed as 
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since gn  and NLn  are much smaller than 0n . Eq. (4.2-6) and Eq. (4.2-18) can be 

substituted into the wave equation 0
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eliminate the transversal dependence of the mode. Then following the principle of spatially 

and temporally slowly-varying envelope approximation on  tzAi , , a pair of coupled 

mode advection equations can be derived as 
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where 
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where 1n  and 2n  are the effective refractive indices of the FM and the HOM. g is the 

gain coefficient associated to the active amplifier. Eq. (4.2-19)-(4.2-23) is an analytical 

model which describes the dynamic (time-dependent) coupling between the modes. Eq. 

(4.2-19)-(4.2-20) are a pair of the coupling amplitude equations. The left-hand-sides of 

these equations reveal the propagation nature of the two waves. This form is the so called 

advection equation which describes the “flow” of the waves from one end of a fiber to the 

other. The right-hand-sides by order indicate the thermally-induced phase variation, the 

modal coupling, and the gain from amplifiers. In other words, the pair of these two 

advection coupling amplitude equations explains that in the propagation process, when 

these two waves flow from the input end to the output end, they would experience the 

nonlinear phase variation and the mode coupling due to the diffused thermal distribution 

that results from the thermal loading on the medium. These phase variation and modal 

coupling terms are factorized with the integrated nonlinear refractive index Hijkl, which 

represents the thermal “holography”. H1111, H2222 refers to the nonlinear refractive indices 

of the self-phase modulation. H1122, H2211 refers to the nonlinear refractive indices of the 

cross-phase-modulation terms. H1221, H2112 refers to the nonlinear refractive indices of 

“four-wave-mixing”, in which two waves are at the current moment and two other waves 

are at the past moment. Overall, this model is consist of the propagation of the modes, the 

6 different terms of thermally-induced nonlinear refractive indices, and the amplification 

of the waves in the fiber.  
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4.2.3 Time-independent Model for TMI Threshold Calculation 

In the last section, the time-dependent model of the thermally-induced TBC in high 

power fiber amplifiers is derived. With this model, the temporal behavior of TMI can be 

simulated. However, this model is not convenient for obtaining the threshold of TMI, even 

though this information is indeed included. In order to create a quick path to calculate the 

threshold of TMI, the time-dependence in this model, formulizing in Eq. (4.2-19)-(4.2-21), 

is removed by making the following change on Eq. (4.2-6)  

    tj

i

tj

i
iezAetzA

 
0,  (4.2-24) 

where i  is the carrier frequency of one mode, and we assume 21    for counting the 

frequency offset ( 21   ) between the two modes. Thus, due to the lack of time-

dependence, the coupled amplitude equations can be further derived as a pair of coupled 

power equations. As a result, the model of stimulated thermal two beam coupling is derived 

from the model of time-dependent TBC and shown with the following three formulas 

1111211
1 )( PlgPPgP

dz

dP
   (4.2-25) 

2222212
2 )( PlgPPgP

dz

dP
   (4.2-26) 

where l1 and l2 are the modal loss of FM and HOM respectively. 
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  represents the amount of frequency downshift, g is the gain coefficient of the amplifier, 

and  is the modal overlap of each mode with the ion-doped area is the thermal nonlinear 

coefficient that is determined by the wavelength of the pump and the signal, the fiber 

parameters such as core size and NA, and the cooling conditions.  
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Fig. 4.2-2 Thermal nonlinear coefficient versus frequency offset 

 

In Eq. (4.2-27),  is expressed as a function of frequency offset between FM and HOM. 

This figure shows the frequency-downshift spectrum of this nonlinear coefficient for a step-

index LMA fiber with 60-m core, 400-m cladding, and 0.07-NA. (The detailed 

parameters in Table 4.5-1.) Note that at the zero frequency offset this static model gives no 

nonlinear gain. The negative segment of the frequency-downshift (  ) indicates the TBC 

loss on the HOM, while the positive one reveals the TBC gain on the HOM. The profile of 

shown in this figure is determined by the finite thermal response time of the field beating 

pattern between FM, which serves as the pump, and HOM, which serves as the signal. This 

is associated to the previously-mentioned phase lag between the beating patterns of the 

waves and the medium, predicting the frequency-downshift from the pump wave (FM) to 

the signal wave (HOM). In this figure, the gain peak is at 1-kHz frequency offset, which 

indicates the delay is around 1 ms. Moreover, the life time of the thermal phonon can also 

be estimated. The FWHM of the peak is around 5 kHz, so the thermal phonon life time is 
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close to 200 s. Both thermal delay and thermal phonon lifetime vary with the different 

thermal condition, which is associated to fiber core size, cladding size, doping area and 

density, cooling condition, and so on. 

The value of the static model is that it can be easily implemented to calculate the 

threshold of the TMI, and can provide a reference for the calculation result of the more 

sophisticated dynamical model. Coincidently, Hensen who was simultaneously working on 

this static theory of TMI and solved Eq. (4.2-25)-(4.2-27) to obtain the semi-analytic 

formula of SRS threshold which is given by [67]  
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  (4.2-28) 

where 0  and 0  are the maximum value of the thermal nonlinear coefficient χ and the 

corresponding frequency, "  is the second derivative of χ, and P(z) is the total output 

power. In this formula, thx  indicates the output power ratio of HOM to FM at which the 

TMI threshold is reached, and it is generally set 5%. Eq. (4.2-28) is solved by a numerical 

root-finding method to calculate the TMI threshold which is characterized by the output 

average power of a fiber amplifier. According to the relevant parameters in Eq. (4.2-28), 

TMI threshold is associated to the wavelength of pump and signal waves, filling ratio of 

the doped area ( coreYb rr  ), core size, NA, and cooling condition.  

One important note is that the TMI threshold calculated by Eq. (4.2-28) is not sensitive 

to the cooling condition, even if the cooling factor is included in the theory and the 

macroscopic temperature of the fiber amplifier is indeed varied in different cooling 

environment. This fact is definitely not consistent with the observation in the experiment 

in ref. [29]. The reason of this inconsistency is attributed to the idealized modeling in which 

only symmetric cooling is considered [ 72 ]. The temperature gradient induced in an 
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asymmetrically cooled fiber can distort the modal profile as well as the thermally-induced 

grating, and thus the TMI threshold is more dependent on the cooling condition. In addition, 

the thermal-relevant parameters including thermal conductivity, thermal diffusivity, density, 

heat capacity, and thermal-optic coefficient in Eq. (4.2-28) are all assumed temperature 

independent. These assumptions are definitely not realistic, since the temperature of the 

fiber is highly dependent on the cooling condition. The solution of this issue needs more 

investigation, and currently only a numerically intense beam-propagation model integrated 

with a 3-dimensional thermal diffusion formula can includes the above mentioned 

dependences, but this part is not in our scope here. 
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4.3 Role of HOM Suppression in Increasing TMI Threshold 

In this section, the static model is used to characterize the TMI threshold in step-index 

fibers with different NA and doped ratio to explain the difficulty of engineering the modal 

overlap with doped area for increasing TMI threshold. Then three types of mitigation 

strategies of TMI mitigation, which represent the current approaches to increase the TMI 

threshold, will be introduced. Following these approaches, we propose to use the effective-

single mode performance of CCC fibers to achieve the mitigation of TMI in high power 

fiber amplifiers. 

 

 

Fig. 4.3-1 TMI threshold of 400-m step-index Yb-doped fiber amplifiers operated at 1m wavelength 

with different core size and numerical aperature 

 

By using Eq. (4.2-28), TMI threshold can be characterized with the different fiber 

parameters such as the core size, NA, and the dopant filling ratio. This characterization 

result can serve as the first step of determining a scheme for TMI suppression. 
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Fig. 4.3-2 TMI threshold of 400-m Yb-doped fiber amplifiers with 0.07 NA operated at 1m 

wavelength with different core size and filling ratio of the doped region 

 

Fig. 4.3-1 shows the TMI threshold calculated by Eq. (4.2-28) with varied core size 

and numerical aperture in a 400-m Yb-doped step-index fiber that is operated at 1m 

wavelength. In this calculation, only two modes, the fundamental 01LP  mode and the 1st-

order 11LP  mode, are involved. This result reveals two facts: 1) small NA means the 

reduction of the modal beating pattern that is overlapped with the doped region thus 

reducing the strength of the thermal nonlinearity and increasing the TMI threshold; 2) TMI 

cannot occur in a single-mode fiber. According to Fig. 4.3-1, the TMI threshold can only 

be pushed by 1.5 times when the NA is changed from 0.09 to 0.02 at relatively smaller core 

fibers (<50 m). However, if the V-number ( NArcore 


2
) of the fiber amplifier is smaller 

2.405, TMI cannot occur and the threshold is infinite. For larger-core fibers, a smaller NA 

is needed to achieve single-mode operation, but concerning the stability of the amplifiers, 

NA cannot be unlimitedly reduced with the need to scale up the core size. As long as the 

fiber can support more than one mode, the issue of TMI cannot be avoided.   
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Fig. 4.3-2 shows the TMI threshold calculated by Eq. (4.2-28) with varied core size 

and filling ratio of the doped region in a 400-m Yb-doped step-index fiber with 0.07 NA 

and is operated at 1m wavelength. From the analysis shown in Fig. 4.3-1, we know that 

the reduction of NA leads to a small overlap of the modal beating pattern with the doped 

region thus increasing the TMI threshold. Therefore, a more straightforward scheme to 

increase TMI threshold is to reduce the filling ratio of the doped region in the core. In Fig. 

4.3-2, the five-fold of TMI threshold increase is observed when the ratio of the doped radius 

to the core radius decreases from 1 to 0.25. However, the price to pay is that longer active 

fibers should be applied to the amplifier in order to maintain the rate of pump absorption 

and signal amplification. For the case with the ratio equivalent to 0.25, a 16-times-longer 

active fiber should be used. This indicates a 16-times-smaller SRS or SBS threshold, 

leading to a serious trade-off. On the other hand, one thing which should be clarified is that 

reducing the doping density is different from this scheme, even if the side effect of both 

schemes are the need of increasing the fiber length. Basically, reducing the doping density 

cannot change the TMI threshold too much even if the local temperature of the fiber is 

indeed reduced, since the formation of the temperature grating is not influenced and the 

fiber length is also not relevant to the TMI threshold. 

In the above two cases of TMI threshold characterization, we can understand that 

modifying the fiber parameters for the purpose of TMI suppression can either only have a 

limited improvement (by reducing NA) or leads to a trade-off (by reducing Ybr ) associated 

to the other nonlinearities. Thus, an alternative method to efficiently mitigate TMI without 

leading to any extended issues is pursued by many researchers. In these two years, since 

the mechanism of TMI in high power fiber amplifiers is more understood, three mitigation 
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strategies are proposed and two of them are also experimental demonstrated. These three 

strategies are categorized as active extrinsic mitigation, passive extrinsic TMI mitigation, 

and passive intrinsic TMI mitigation respectively [73]. The active extrinsic mitigation, 

which indicates a scheme associated to an externally modulated seeding signal, is 

demonstrated by exploiting acousto-optic modulation to alternatively seed phase-shifted 

HOM into a fiber amplifier [30]. The purpose of this implementation is to wash out the 

thermal grating, and this operation has resulted in the increase of the TMI threshold by 3 

times. The passive extrinsic mitigation is mainly attributed to the reduction of quantum 

efficiency by making the wavelength difference between pump and signal smaller. This 

scheme is broadly used in tandem pumped fiber lasers, but the successful demonstration of 

TMI mitigation is still absent. The focus of the passive intrinsic strategy is on modifying 

the fiber structure to reduce the local heat load, which is relevant to the TMI threshold. Our 

calculation shown in Fig. 4.3-1 and Fig. 4.3-2 is a reference to approach this mitigation 

scheme. Experimentally, this scheme has been demonstrated in four different types of fiber 

lasers. In 2013, Jauregui etc. experimentally verified that a smaller core-to-cladding ratio 

leads to a higher TMI threshold when the total pump absorption was kept constant [73]. In 

2014, Robin etc. demonstrated modal instability-suppressing PCF amplifier with 811 W 

output power [32]. The doping area of this PCF was designed to favor the amplification of 

fundamental mode instead of HOM. Later on, Otto etc. used a four-core PCF to directly 

increase the TMI threshold by 4 times [74]. Even though these methods are effective of 

suppressing TMI, the improvement is still quite limited. Thus, here we proposed an 

alternative passive intrinsic strategy.  

The onset of TMI is attributed to the multi-mode operation in a high power fiber 

amplifiers. Thus, in order to suppress the stimulated coupling from FM to HOMs (mainly 
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LP11 mode), the most straightforward method is to increase the attenuation of HOMs. This 

attenuation determines the degree of TMI suppression. Since the achievable HOM loss in 

a specialty fiber cannot be infinite, knowing the level of the TBC gain on the HOM is an 

important reference for the design work of specialty CCC fibers. The following gives an 

example of the calculated TMI threshold of a 30-m-core double-clad Yb-doped fiber 

amplifier with HOM suppression. This calculation is executed with the modified form of 

Eq. (4.2-28) that is given by 
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where  is the loss coefficient of the HOM, and L is the fiber length. The relevant 

parameters are listed in Table 4.3-1. The calculated TMI threshold at different level of 

HOM attenuation using Eq. (4.3-1) is shown in Fig. 4.3-3. The result in this figure indicates 

two points: 1) the TMI suppression is more prominent in longer fibers, and this is only due 

to the overall HOM attenuation is larger. Basically, the increment of the TMI threshold 

versus total loss can be quantified as 1.6 W/dB; 2) for a 2.5-m fiber amplifier, a 100-dB/m 

HOM loss can lead to approximately tripled TMI threshold, and a 200-dB/m HOM loss 

can guarantee the 1-W input signal being amplified by 30 dB without reaching TMI 

threshold. Thus, the HOM attenuation in a fiber amplifier is expected to strongly mitigate 

TMI.  
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Table 4.3-1 Parameters of TMI threshold of a 30-m-core DC Yb-doped fiber amplifier with HOM 

suppression 

PARAMETER VALUE 

Fiber Size 400μm 

Core Size 30μm 

NA 0.07 

Pump Wavelength 0.976μm 

Signal Wavelength 1.064μm 

Modal Content LP01 & LP11 

FM Seed Power 1W 

Thermal B.C. H = 150W/m2K 

  

In addition, an important factor to mention is that the fiber length is associated to the 

pump absorption. Thus, in this calculation, the pump cladding size is automatically chosen 

to be inversely proportional to the square root of the fiber length to keep the total pump 

absorption constant thus ensuring the comparison shown in Fig. 4.3-3 is meaningful. 

  

 

Fig. 4.3-3 TMI threshold of 30-μm core double-clad Yb-doped fiber amplifier varied with different 

HOM suppression, and three different lengths of such fiber amplfier are compared. 
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4.4 Numerical Model for Simulating TMI Phenomenon 

The TMI threshold can be quickly calculated with either the full model described in 

Eq. (4.2-25) to Eq. (4.2-27) or the semi-analytic formula Eq. (4.2-28). Since TMI is a 

dynamical phenomenon, the static model cannot be used to analyze the temporal behavior. 

In order to understand the physics of TMI, the dynamical model, Eq. (4.2-19) to Eq. 

(4.2-23), needs to be solved. However, the implementation of the TMI calculation with Eq. 

(4.2-19) to Eq. (4.2-23) is numerically intense due to the mixture of two different time 

scales, i.e. the thermal diffusion is at millisecond level, while the optical transmission is at 

nanosecond level. Therefore, two simplifying methods are required to incorporate with the 

time-dependent model of modal instability. Firstly, in order to simplify the advection 

equations, the method of characteristics which is associated to the transformation of the 

laboratory coordinate to a moving coordinate is exploited. In this method, the new 

coordinate can be defined by the following three variables 

t  (4.4-1) 
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This coordinate transformation makes the pair of coupled partial differential equations 

(PDEs) in Eq. (4.2-19) and Eq. (4.2-20) simplified to a pair of coupled ordinary differential 

equations (ODEs). In addition, since the value of n1 is very close to n2, a further 

approximation ξ= ζ is assumed. Thus, Eq. (4.2-19)- (4.2-20) become  

    112122101221111110
1

2
A

g
AHjkAHHjk

d

dA



 (4.4-4) 

    221211202222211220
2

2
A

g
AHjkAHHjk

d

dA



 (4.4-5) 



 

78 

Secondly, the method of phase reduction is used to reduce the truncation error in 

numerical calculation. Since it is found that the self-phase modulation and cross phase 

modulation term in Eq. (4.4-4) to (4.4-5) are purely imaginary, and this fact indicates they 

are both from the “macroscopic” temperature change of the material. The magnitude of 

these terms are usually much larger than it of the modal coupling term and can make the 

simulated modes rapidly accumulate phase variation thus causing serious truncation errors. 

In addition, because only the relative phase variation between the FM and the HOM matters 

to the coupling of the modes, for the sake of reducing phase accumulation, Eq. (4.4-4) and 

(4.4-5) can be rewritten as 
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These two equations are the final forms of the coupled amplitude equations which are used 

to implement modal instability calculation.  

On the other hand, for the convenience of numerical calculation with finite difference 

method, Eq. (4.2-21) can be decomposed into the following equations  
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These four formulas forms an additional set of ODE which is used to calculate the 

temporal-varying thermal induced nonlinear refractive indices ijklH . Overall, Eq. (4.4-6) 

to Eq. (4.4-11) is the dynamical model of thermally induced TBC in the transformed 

coordinate , ξ and ζ with the format of ODEs. 

Moreover, in order to solve Eq. (4.4-6) to (4.4-7), a boundary condition and an initial 

condition are required. The initial condition is assigned as the condition of an un-pumped 

active fiber. This assignment indicates ijklH  is zeros in the very beginning of the 

simulation. As for the boundary condition, the time-dependent amplitude defined in Eq. 

(4.2-6) indicates that the amplitude of the input signals  tAi ,0  can include any types of 

frequency components with being modulated in time.  

In the next sections, the TMI simulation in time domain with spontaneous emission 

as the noise source is analyzed. The HOM is supplied with downshifted frequency 

component to onset TMI-modal oscillation. Moreover, a non-physical noise in the relevant 

simulation will also be discussed. In the section after, the physics of TMI is discussed based 

on these simulation result. 
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4.5 Role of Noise in Initiating TMI 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.5-1 The modulation of HOM seeding directly reflects on the output modal coupling. (a) 

Sinusiodal intensity modulation (b) Sinusoidal phase modulation (c) Random intensity modulation (d) 

Random phase modulation 

 

The above developed model is time-dependent, but it doesn’t include dispersion, and 

the modes in it are co-propagating along the fibers. Thus, the thermally-induced instability 

is dissimilar to modulation instability in anomalous dispersion or interference instability 

induced by counter-propagating beams [75,76,77]. Therefore, we audaciously predict that 

TMI can originate in noise. One reason is that the modulation of the FM- or HOM- seeding 

directly reflects on the output modal coupling. For example, if the amplitude or the phase 

of the seeding is sinusoidally modulated, the output modal coupling by time also fluctuate 

sinusoidally. The upper two figures (a) and (b) in Fig. 4.5-1 show the calculation result 
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with the sinusoidal modulation on the intensity and on the phase of the HOM seeding, 

while the lower two figures (c) and (d) show the calculation result with the random-walk 

modulation on the intensity and on the phase of the HOM seeding. These four types of 

modulation on the HOM seeding lead to the relevant fluctuation of the output modal 

content. In other words, the type of temporal modulation on the seeding modes determines 

the fluctuation of the output modes. Thus, the chaotic oscillation between the modes when 

the TMI threshold is reached can originates from a type of random-walk modulation on the 

FM, HOMs, or both.  

Moreover, the spectrum of the thermal nonlinear coefficient, shown in Fig. 4.2-2 

implies an important information. The blue-shifted frequency components in one mode 

would be coupled to the red-shifted frequency of the other mode. The chaotic oscillating 

noise provides the required frequency components, including both blue-shifted and red-

shifted frequency components, for both FM and HOM. This explains the bidirectional 

coupling when the TMI threshold is reached. The detail of this principle would be further 

demonstrated in the frequency-domain analysis of the output signals. Before then up, in 

order to have a preliminary understanding of the required noise level for TMI to emerge, 

we can use the thermal nonlinear coefficient shown in Fig. 4.2-2 and the coupled power 

equation of the HOM in Eq. (4.2-26) to estimate the gain of the thermally-induced TMI. If 

the modal loss is neglected, Eq. (4.2-26) can be further defined as 

    22
2 PzgPzg

dz

dP
AmpNL   (4.5-1) 

where 12 )( gPgNL    is the gain coefficient of the thermal nonlinearity, while 

ggAmp 2  is the gain coefficient from the fiber amplifier. The entire amplification of the 

HOM with the frequency at the gain peak can be calculated by the integral of the gain 
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coefficient     ''
0

dzzgzG
z

NLNL  , which is presented in dB-scale and shown in Fig. 4.5-2. 

The used parameters is listed in Table 4.5-1.  

 

 

Fig. 4.5-2 Power gain of thermally-induced two beam coupling in a 1-m fiber amplifier at different 

pump levels 

 

This figure shows the thermal nonlinearity supplies a larger gain (>100 dB/m for 

>200W pumping power) on the HOM than the amplifier (<25 dB/m) does. Even though 

this nonlinear gain varies for different fiber structure or cooling condition, the order of it is 

measured in hundreds of dB. With this level of thermally-induced gain on the HOM, as 

long as the power level of the in-mode noise is larger than 1010 W, this noise can be 

amplified to the power level of watt and be prominent enough to be observed. 

 The most relevant noise in a fiber amplifier is the spontaneous emission (SE) which 

is resulting from quantum noise. This noise source is integrated into our dynamical model 

for the understanding of TMI in high power fiber amplifiers. Moreover, we also found an 

unphysical noise derived from the limited number of digits which can be used in a 
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numerical computation. As knowing this type of noise, we highly doubted that the 

observation of the simulated TMI with only considering single frequency for both FM and 

HOM in few published literatures misinterpret this noise source as physical [28,29]. 

However, even if this type of noise created a mirage of TMI in the simulation, it reflected 

the same physical phenomenon: TMI originates from the nonlinear amplification of noise. 

The detailed amplification mechanism is explained in the next section. 

 

Table 4.5-1 Parameters used to simulate TMI in a 1-m high power Fiber Amplifier 

FIBER PARAMETER VALUE (UNIT) 

Fiber Type YbD SI Fiber 

Pump Configuration Counter-Pumping 

Fiber Size 400 μm 

Core Size 60 μm 

Inner Cladding Size 170 μm 

Doped Size 60 μm 

NA 0.07 

Fiber Length 1 m 

Doping Density 3.5x1025 m-3 
 

AMPLIFIER PARAMETER VALUE (UNIT) 

Pump Wavelength 0.976 μm 

Signal Wavelength 1.064 μm 

LP01 Seeding 10W 

LP11 Seeding  <10-3W 

 

THERMAL PARAMETER VALUE (UNIT) 

Thermo-Opto Coeff. 1x10-5 K-1 

Thermal Conductivity 1.38 W/(m·K) 

Thermal Diffusivity 8.92 x10-7 m2/sec 

Heat Transfer Coeff. 500 W/(m2·K) 
 

 

4.5.1 Role of the Spontaneous Emission 

In an active fiber providing a large gain, the optical waves from SE can be amplified 

to a high power level. These amplified optical waves are viewed as noises because of its 

randomness of polarization, modal content, and low temporal coherence. These properties 

make SE an ideal candidate for seeding FM or HOM with shifted frequency thus giving 

rise to the random coupling between them via thermally-induced TBC. Since the FM at the 
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input end of the fiber amplifier is assumed dominant, we only consider the SE which is 

incorporated into HOM. 

The SE power is calculated with the rate equation [78], and this increment of the 

power from SE is added into HOM with its phase being modulated by a random walk. Thus, 

the change of the HOM amplitude due to the incorporated SE is given by  

     tj

SE etzAtzA  ,,2  (4.5-2) 

where  t  is the phase modulation of a temporal random walk. An important note is that 

the frequency bandwidth of  tzASE ,  is equal to the simulation window 
t


1

 , where 

t  is the meshed grid size in time domain. Using the parameters listed in Table 4.5-1, 

simulation results calculated from the time-dependent CAE model, Eq. (4.4-6) to Eq. 

(4.4-7), are shown in Fig. 4.5-3. In these calculations, fiber amplifier pump is suddenly 

turned-on at the time t = 0. In Fig. 4.5-3, the left-hand panes show FM and HOM powers 

at the output of an LMA fiber amplifier over the time period of the first 250 ms after the 

pump power turn-on. The right-hand panes show frequency-domain pictures calculated by 

taking a Fourier-transform of the time-domain result from 50ms to 250 ms in the 

corresponding left-hand figures. In Fig. 4.5-3 (a) and (d), the modal power variation over 

the first 10 ms is associated with the transient thermal conditions in a fiber amplifier, and 

after this period, the thermal equilibrium is reached. This reveals the TMI threshold (230 

W signal power) is not reached, the FM is stably produced at the output end of the fiber 

amplifier. Note that in the frequency domain, a spectral broadening feature is observed in 

the HOM spectrum in Fig. 4.5-3 (d). This spectral broadening is associated with a temporal 

modulation, which is from the SE noise, imposed on the HOM beam. However, since the 

output HOM is negligible, an oscillation between the modes cannot be observed. Fig. 4.5-3 
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(b) and (e) shows the result at the TMI threshold. Resembling to the condition below 

threshold, both the FM and the HOM show chaotic amplitude fluctuation in the first 10 ms. 

After this period, a tiny fluctuation between the modes continues. In Fig. 4.5-3 (e), the 

spectrum indicates a spectral broadening also occurs in FM. Fig. 4.5-3 (c) and (f) shows 

the result above the TMI threshold. Rapid and chaotic power fluctuations are observed for 

both modes, and the spectra of both modes are prominently broadened. In Fig. 4.5-3 (d), 

(e), (f), the spectrum of the normalized thermal nonlinear coefficient is attached for the 

comparison of the coupling-induced broadening. The spectral broadening of the FM is due 

to the forth-and-back coupling to HOM, since FM is assumed not incorporated with 

spontaneous emission and it does not possess the red-shifted frequency components, while 

the broadening of the HOM is because part of the HOM is from the incorporation of the 

SE, the frequency components around the gain peak (1 kHz) is amplified via the process 

of the thermally-induced TBC. Moreover, if the pumping power keeps increasing, both FM 

and HOM spectra will be strongly broadened and peaked around 1-kHz downshift due to 

the entirely chaotic oscillation between these two modes. 
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Fig. 4.5-3 (a), (b) and (c) are the output power progression of FM and HOM with the total output power 

at 210-W, 230-W, and 250-W; (d), (e), and (f) are the output power spectral density at the corresponding 

three pumping levels. The red curve is the normalized thermal nonlinear coefficient which characterizes 

the gain or loss in frequency domain. 

 

The other aspect of demonstrating the TMI with HOM incorporated with SE is the 

transition from the spontaneous-scattering process to the stimulated-scattering process that 
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is occurring in the fiber amplifier. In Fig. 4.5-4, the Fourier-transform of the time-domain 

oscillation at 5 different locations of the fiber amplifier above TMI threshold is recorded. 

In the fiber segment from the seeding end (z = 0 m) to z = 0.55 m, the spectra of the HOM 

signal is evenly distributed. This indicates the spontaneous scattering of the HOM. At z = 

0.66 m, the frequency components around the gain peak are selected and starts to be 

amplified, and from this point to the end of the fiber (z = 1 m), this amplification becomes 

more prominent, and eventually, the frequency components around the gain peak dominate. 

This is associated to the stimulated scattering. Consequently, the simulation results shown 

in Fig. 4.5-3 and Fig. 4.5-4 demonstrate that noisy modal content of the HOM can lead to 

thermal stimulated scattering, producing chaotic oscillations between the spatial modes. 

 

 

Fig. 4.5-4 Amplified frequency components at different location of the fiber. The location marked with 

0.00 m is the seeding end, and it with 1.00 m is the pumping end. The red curve is the normalized 

thermal nonlinear coefficient which characterizes the gain or loss in frequency domain. 
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4.5.2 Role of the Numerical Noise on TMI Simulations 

The reason to consider spontaneous emission as the noise source of TMI is explained. 

According to the last subsection, the spontaneous emission with a phase modulation of 

random-walk is incorporated into the HOM, and this phase-modulated HOM induces the 

stimulated TMI. However, as observed in the simulation, even if the phase modulation term 

is eliminated, a chaotic oscillation between the FM and the HOM would still occurs once 

the threshold is reached. Fig. 4.5-5 shows a similar result as the case in which the increment 

portion of the HOM is phase-modulated. A frequency shifted HOM is amplified when 

propagating through the fiber, and this shift indicates the gain provided by thermal 

nonlinearity. However, the main difference between these two cases is the threshold of the 

latter is much higher. Other than this point, the other features are all the same as the 

simulation result shown in Fig. 4.5-3. Now that the phase modulation term is eliminated, 

both FM and HOM possesses no required frequency to couple or to be coupled ( equals 

zero). These clues indicate an important fact: a smaller noise source or modulating source 

still exists in the calculation.  

This noise is eventually found from the round-off error or the truncation error which 

is due to the finite precision representation of real numbers in numerical calculation. For 

double precision with chopping, only 16 decimal digits is usable [79]. Thus, the round-off 

error is usually at the level of 10-16. 
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Fig. 4.5-5 (a), (b) and (c) are the output power progression of FM and HOM with the total output power 

at 520-W, 540-W, and 560-W; (d), (e), and (f) are the output power spectral density at the corresponding 

three pumping levels. The red curve is the normalized thermal nonlinear coefficient which characterizes 

the gain or loss in frequency domain. 

  

The scenario of the numerical noise is mainly attributed to the calculation of the 

thermal equilibrium. In order to calculate the nonlinear refractive indices shown in Eq. 
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(4.2-21), the conversion from the integral equation to a differential equation (introduced in 

Sec. 4.4) is used. In principle, when thermal equilibrium is reached, Eq. (4.4-9) is equal to 

zero. However, due to the finite precision that can be reached, Eq. (4.4-9) can never be zero 

since the absolute values of the two terms at the right hand side are always slightly different. 

This error fluctuates and modulates the nonlinear refractive indices Hijkl, and these 

nonlinear refractive indices further modulates the signal. As a result, the signal of FM or 

HOM gains additional frequencies thus enabling the coupling to happen.  

 

 

(a) 

 

(b) 

Fig. 4.5-6 The time-averaged HOM ratio at different output power of signal. Three power levels of HOM 

excitation are considered. (a) The noise source is from spontaneous emission. (b) The noise source is 

from numerical round-off error.  

 

One method to distinguish this non-physical noise induced TMI from the physical 

noise induced TMI is by setting different input excitation of the HOM which has the same 

frequency as the FM. In Fig. 4.5-6, the time-averaged HOM ratio at different output power 

of signal is recorded. Fig. 4.5-6 (a) is the case in which the spontaneous emission serves as 

the noise source. Even if the power level of HOM excitation varies, the threshold and the 

HOM amount is kept the same. This is mainly because the thermal nonlinearity can only 
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amplify frequency-shifted HOM that is originated from the spontaneous emission. 

However, Fig. 4.5-6 (b) shows that the time-averaged HOM and the threshold of TMI is 

dependent on the input power level of HOM excitation. This result indicates the instability 

is from a non-physical noise, because the level of this noise depends on the process of 

reaching thermal equilibrium, and the thermal equilibrium is associated to the depleted 

population by the input signal. Consequently, the role of numerical noise can be confirmed.   
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4.6 Discussion of the Origin of Modal Content Fluctuation in TMI 

In the last section, two types of noise, one is physical and the other one is non-physical, 

are introduced. The physical one, spontaneous emission, serves as the most probable noise 

source which leads to the TMI in high power fiber amplifiers. However, a more 

fundamental mechanism, which is indeed the origin of TMI, can be explained with the 

dynamical model. In this mechanism, the role of noise is only for triggering a stimulated 

scattering process when the threshold is reached. As discussed previously, H1111 and H2222 

are the nonlinear refractive indices for self-phase modulation, H1122 and H2211 are the 

nonlinear refractive indices for cross-phase modulation, and H1221 and H2112 are the 

nonlinear refractive indices for modal coupling. The terms of self-phase modulation and 

cross-phase modulation cannot lead to modal coupling but only increase the phase variation 

of both FM and HOM due to the local thermal loading attributed to the quantum defect. 

The coupling terms, H1221 and H2112, can not only influence the coupling of the modes but 

the phase variation. The occurrence of the modal coupling is associated to the existence of 

the phase lag between radiation beating pattern and the temperature grating. Without this 

phase lag, the coupling terms are like the self-phase modulation and cross-phase 

modulation terms only causing phase variation. This fact is explained in the following 

content.  

If the gain from fiber amplifiers is neglected, Eq. (4.4-5) that is representing the phase 

variation and coupling of HOM is changed to 

    1211202222211220
2 AHjkAHHjk

A







 (4.6-1) 

Eq. (4.6-1) can be further transformed to the differential intensity equation of HOM as 

shown below 
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 (4.6-2) 

One aspect is that Eq. (4.6-2) again explains the modal coupling (the change of HOM 

intensity) is only associated to H1221 and H2112. Moreover, it indicates that the modal 

coupling exists only if the phase lag between the temperature grating, which is proportional 

to    
 





T Tt

dtetAtA
0

'

*

12 '',',  , and the radiation beating of the two mode, which is 

proportional to    TATA ,, *

21  , is not equal to zero or an integer number of 2. Thus, the 

existence of this phase lag is only attributed to the time-dependent amplitudes. If this 

dependence is eliminated, the thermal equilibrium is eventually reached, and the coupling 

between the modes would be ceased. This fact further clarifies the role of the noise source, 

which is most probably from spontaneous emission. The noise source perturbs the 

amplitude of both modes. In time domain, it spatially shifts the radiation beating from 

temperature grating and thus inducing the thermal nonlinear gain to one mode and the loss 

to the other, while in frequency domain, it means the frequency components around the 

gain peak is distinguishably amplified by the large gain around the fiber end. 

With understanding this insight of TMI’s origin, a more detailed analysis of time-

dependent TBC should be discussed. Fig. 4.6-1 shows the analysis of TMI above threshold 

(250 W total output signal) with the power progression of the FM and HOM in (a) and (b), 

the thermal nonlinear refractive index presented as gain and phase coefficient in (c) and 

(d), and the induced shift between thermal grating and radiation beating in (e) and (f) at 

two different time moment t = t1 and t = t2 (t1, t2 > 100 ms). Fig. 4.6-1 (a) and (b) show 
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modal power versus distance at the two moments. The stronger coupling from FM to HOM 

both onsets at 0.85 m, which locates the threshold of the thermally-induced TBC. However, 

in these two figures, one can still find the distribution of the modal power is different.  

Fig. 4.6-1 (c) and (d) shows at the two moments the normalized magnitude of 

]Im[ *

212112 AAH  and ]Re[ *

212112 AAH , which indicates the intensity gain and the phase 

variation experienced by the HOM. The blue curves represented the nonlinear 

amplification of HOM, which can be presented as the spatial phase shift between the 

temperature grating and the radiation interference in Fig. 4.6-1 (e) and (f). In the segment 

between 0.8 m to 0.85 m, one can observe that ]Re[ *

212112 AAH  is 1 while 

]Im[ *

212112 AAH  is 0. This means when thermal equilibrium is reached, due to the lack of 

the spatial shift between the two gratings, the coupling is ceased, and the two coupling 

terms H1221 and H2112 can only provide phase variation to the modes. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 

(f) 

Fig. 4.6-1 (Top) The power progression of FM and HOM, (middle) normalized nonlinear refractive 

index presented as gain and phase coefficient, and (bottom) phase shift between thermal grating and 

radiation beating pattern of the fiber amplifier at 250-W output signal at two different time moment. 

(a)(c)(e) is captured at t1, and (b)(d)(f) is captured at t2.  

 

The origin of TMI showing threshold-like chaotic oscillation between FM and HOM 

is explained. However, two other properties of TMI are still unexplainable in this field. The 
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first one is the harmonic oscillation between FM and HOM at the TMI threshold [25]. Even 

if this can be conceptually explained as an extrinsic modulation on the modes, the source 

of this modulation is still unknown. The second is about the built-up time of TMI when 

signal power is above threshold [26]. In the simulation with the dynamical model, the built-

up of TMI is indeed observed. However, even if the output signal power is below threshold, 

the built-up of TMI with a chaotic process of reaching the thermal equilibrium still appears. 

Both cases indicates one or more factors which are not included in our scope. Definitely, 

these two specific phenomena in TMI are pending for us to explore in advance.  

  



 

97 

4.7 Conclusions 

TMI is the newly found limitation on the power scalability of high power fiber lasers 

and amplifiers. When the threshold is reached, the output modal quality degrades and the 

oscillation between the FM and HOM appears. Based on the general TBC concept, an 

analytical theory was rigorously developed and shows that TMI is a particular case of it, 

and can be represented as a stimulated inter-modal scattering through thermally-induced 

nonlinear refractive index. Following the same steps as a general TBC theory presented in 

any standard textbook, a time dependent model of TMI is derived, and it can be further 

simplified to a static model. Advantage of the static model is that it allows calculating the 

TMI threshold, while the time-dependent model appears to reproduce key features of the 

TMI phenomenon that are observed experimentally.  

Since TMI is originated from the fact that the fiber amplifier can support more than 

one transverse modes, the effective-single mode performance of CCC fibers can help 

mitigate its onset. The static model, in which the HOM attenuation is incorporated, is used 

to predict the required loss level of HOM for mitigating TMI. Overall, the total HOM 

attenuation is linearly proportional to the TMI threshold. For a 30m-core step-index fiber 

amplifier with 0.07 NA, the TMI threshold increment versus total loss is 1.6W/dB. This 

indicates that in order to efficiently mitigate TMI in CCC fiber amplifiers, the scalability 

of HOM attenuation is the keynote.   

Time-dependent TMI model qualitatively agrees with all key published experimental 

and numerical results. First, it predicts the threshold-like onset of propagation- and time-

varying modal coupling with addition of spontaneous emission as the noise source. Second, 

kHz-frequency intermodal-coupling oscillations and the growing into broad-band chaos 

with increasing laser/amplifier power do occur. Third, the response time of the thermal 
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nonlinearity determines the kHz frequency offset between FM and HOM. Without 

considering this frequency offset, the unavoidable numerical noise is amplified in the high-

gain TBC process presenting a mirage of TMI oscillation. This numerical noise is attributed 

to the round-off error in the calculation of thermal equilibrium. 

The key feature of TBC energy couplings is due to the phase shift between the beating 

pattern of the modal intensity and the heat-load induced grating. This feature can be 

embodied by the onset of noise. Thus, the origin of TMI is inferred as the phase shift 

between the temperature grating and the radiation beating pattern triggered by the intrinsic 

noise, spontaneous emission, in high power fiber amplifiers. 
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Chapter V 

Nonlinear Polarization Evolution in CCC Fiber 

Amplifiers 

5.1 Introduction 

5.1.1 Motivation 

Polarization preservation at low peak power has been previously demonstrated in 

CCC fibers [ 80 , 81 ]. Recently, nonlinear polarization switching effects have been 

experimentally observed at high peak intensities in 35-µm core CCC fibers, which, 

depending on input polarization, can lead to either significant depolarization at the output 

or to a relatively well preserved linear output polarization with a fairly good polarization 

extinction ratio (PER) [82]. This prompted the need to explore, understand, and control 

this interesting phenomenon in all types of CCC fibers. 

From both experimental observation and theoretical analysis of similar nonlinear 

polarization degradation and preservation effects in a 55µm polygonal-core CCC fiber 

amplifier, we recognized that the observed phenomena are associated with the nonlinear 

evolution of the polarization eigen-modes in a coiled CCC fiber amplifier. It occurs in a 

low-birefringence fiber, such as a CCC fiber, due to the presence of both linear (due to fiber 

coiling) and circular (due to fiber twisting) birefringence. Contribution of circular 

birefringence is critical in the sense that it makes normal mode intensity-dependent. This 
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dependency can be reduced by reducing the twisting induced circular birefringence: if the 

circular birefringence does not exist, the preservation of linear output polarization in a high 

peak power CCC fiber amplifier can always be achieved by seeding a linear polarization 

along slow axis. We also show that even with a small circular birefringence present one 

can find initial seeding conditions in the vicinity of the normal mode of propagation, which 

would preserve linear polarization to a high degree and under wide range of signal 

intensities. This finding indicates that CCC fibers can not only be applied to maintain 

polarization state in passive beam delivery with its low-birefringence property, but also to 

an intensity-independent preservation of linear output polarization in a high power 

amplifier through packaging the fibers without circular birefringence. 

 

5.1.2 The Linear and Circular Birefringence in CCC-fiber Amplifiers 

CCC fibers have been demonstrated and explained as polarization-preservation fibers 

[40]. This performance is attributed to several factors. On one hand, this property of CCC 

fibers is due to the spinning process of the fabrication, and this makes CCC fibers low-

birefringent (Low-Bi) fibers. Such spun fibers help preserve the injected polarization status 

due to the randomly distributed intrinsic birefringence is averaged out along the fiber. On 

the other hand, the effective single-mode performance of CCC fibers help avoid the 

scattered higher-order modes which have different tracks of polarization evolution and 

different propagation velocity from the fundamental modes. However, the polarization-

preservation property of CCC fibers is a prerequisite to the condition in which external 

perturbations are not exerted to them. In other words, any kind of external perturbation 

would directly induce a relevant birefringence in CCC fibers. When a CCC fiber is bent or 
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coiled, the induced linear birefringence   with its fast axis parallel to the coiling plane 

can be quantified as [83] 

2

2

5.0
R

r
Cs  (5.1-1) 

where sC  is the strain-optic coefficient which is equal to 1.6×106 m-1 for fused silica 

medium operated at 1-m wavelength. r  is the fiber radius, and R  is the coiling radius.  

When a CCC fiber is twisted, the induced circular birefringence   is given by [84] 

hq  (5.1-2) 

where q  is the fiber twisted rate measured in radian per unit length, and h  is about 0.159 

for fused silica fiber operated at 1-m wavelength. 

Since CCC fiber is a Low-Bi fiber, when it is naturally packaged as a spool, externally 

induced linear birefringence due to bending can be comparable in magnitude to the circular 

birefringence due to twisting [40]. Therefore, an amplifier made with a packaged active 

CCC fiber can contain both linear and circular birefringence.  

 

5.1.3 Linear Polarization Evolution and Eigen-polarizations 

When an optical wave propagates through a medium, its polarization status can be 

changed due to the existence of birefringence. Birefringence means the two polarization 

modes which are consist of a polarization basis experience different refractive indices 

because the material response to the two modes is different. This kind of medium is defined 

as birefringent. A linear birefringent fiber indicates two linear polarization eigen-modes 

oscillating along the two fiber axes respectively; while for circular birefringent media, 

these two polarization eigen-modes are the two circular polarizations, right-handed circular 

polarization (RCP) and left-handed circular polarization (LCP). When an eigen-mode 
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optical waves propagates through a medium, its polarization status is maintained. When 

the launched polarization is not the eigen-mode, polarization evolution occurs. 

An optical waves propagating in a birefringent fiber can be written by 

  ..ˆˆ
2

1
0 cceyExEE
tj

yx 
 

 (5.1-3) 

where     zj

iii
ierzAE

   . iA  is the slowly varying amplitude along longitudinal 

direction, i  is the profile of the transverse mode supported by the fiber, i  is the 

corresponding propagation constant (i = x, y). Here, xEx
ˆ  and yE y

ˆ  are the two eigen-

modes of this birefringent optical fiber. The difference between x  and y  indicates the 

linear birefringence yx   . A similar concept of eigen-mode can also be applied 

to circular polarizations with circular birefringence.  

In the following paragraphs, a theoretical review of the polarization evolution 

attributed to both linear and circular birefringence is introduced. The field components 

propagating in the fiber must satisfy Maxwell's wave equation, 

0

2

2

2









 E

cdz

Ed




 

(5.1-4) 

  is a dielectric tensor. Assuming both linear and circular birefringence are considered, 

 can be shown as [85] 
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(5.1-5) 

The diagonal terms accounts for the linear birefringence ( yyxx   ), while the imaginary 
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off-diagonal terms represents the twist-induced circular birefringence.   is defined by 

0k

n
  , where 0k  is the wave number in vacuum and   is circular birefringence.  

If both types of birefringence exists ( 0 yyxx  , 0 ), by substituting Eq. (5.1-3) 

and Eq. (5.1-5) into Eq. (5.1-4), considering slowly-varying approximation, and further 

defining 
2

2
n

yyxx


 
 and nn

yyxx




2


, a pair of coupled amplitude equations can 

be derived as 

xy

yx
A

dz

dA
,

,

2


  (5.1-6) 

Eq. (5.1-6) concludes that circular birefringence couples the two components of linear 

polarization since they are not the eigen-modes. 

On the other hand, the field can also be resolved into complex circularly polarized 

components by explicitly writing the field amplitude and phase as 

 
   

2

zjEzE
ezE

yxikz


  (5.1-7) 

where k is the average of the propagation constants x  and y . Eq. (5.1-4) can also be 

expanded using the circularly polarized basis fields shown in Eq. (5.1-7). With a few 

algebra, a pair of coupled field equations is obtained for the two circularly polarized modes

E :  

 EiE
dz

dE

22

 
 

  (5.1-8) 

Eq. (5.1-8) shows that linear birefringence couples circular polarization modes.  

Even though either Eq. (5.1-6) accompanying with Eq. (5.1-3) and Eq. (5.1-8) can 

fully describe the polarization evolution in a birefringent medium, the polarization 

evolution is inconvenient to visualize using this description. While the use of Poincaré 
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Sphere can much ease this visualization. 

 

5.1.4 Poincaré Sphere and Stokes Vactors 

In order to visualize the polarization state of a light wave, a polarization ellipse is 

broadly used. As shown in Fig. 5.1-1 (a), the ellipse is the polarization state in the 

laboratory coordinates (x and y). The semi-major and semi-minor axes of this ellipse can 

also be used to define the other coordinate system (x’ and y’).  is the angle of rotation 

about z-axis from the laboratory coordinate system to elliptical coordinate system, and it 

defines the azimuth angle of this polarization state. The ellipticity angle  is defined by 

axial ratio of this ellipse. These two angles are known as Poincaré parameters, which can 

be directly applied to the Poincaré sphere. 

 

 

(a) 

 

(b) 

Fig. 5.1-1 (a) Polarization ellipse (b) Poincaré Sphere 

  

Fig. 5.1-1 (b) shows the Poincaré sphere. The Poincaré parameters defined in the 

polarization ellipse have a one-to-one mapping to the Poincaré sphere. The angle 2 and 
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2χ marks the longitude and latitude respectively. Thus, this configuration indicates the 

linear polarization states with different azimuth angle are around the equator, and the right-

handed and left-handed circular polarization are at the north and south poles respectively. 

All the other elliptical polarization states are between the poles and the equator. 

 Since each point on the Poincaré sphere can be described by the Poincaré parameters 

 and χ thus defining a system of Cartesian vectors, which is known as Stokes vector or S-

vector. A normal Stokes vector is constructed by the four components of Stokes parameters 

S0, S1, S2, and S3. If letting S0 = 1, the Poincaré sphere is a unit sphere, and only S1, S2, and 

S3 are needed to describe the polarization status of a light wave. The relationship between 

these parameters are listed as the following [86]: 

2

0

2

3

2

2

2

1

2

0 PSSSS 
 (5.1-9) 

where 

22

0 yx AAS   

(5.1-10) 

22

1 yx AAS   

 yx AAS *

2 Re2
 

 yx AAS *

3 Im2  

and 0P  is the total power of the optical wave, which is the physical meaning of 0S . If the 

optical waves is described by the basis of circular polarizations. The relationship in Eq. 

(5.1-7) can be used to convert Eq. (5.1-10) to  

22

0   AAS
 

(5.1-11) 

  AAS *

1 Re2  
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  AAS *

2 Im2  

22

3   AAS
 

Thus, from these expressions of the Stokes parameters, the physical meaning of them 

can be inferred. 1S  represents the power difference of x-polarized fraction from y-

polarized fraction of the optical wave. Thus, if 01 PS   means the optical wave is entirely 

polarized at x-direction, while 01 PS   means it is entirely polarized at y-direction. 2S  

represents the power difference of +45o-polarized fraction from -45o-polarized fraction of 

the optical wave. 3S  represents the power difference of RC-polarized fraction from LC-

polarized fraction of the optical wave. Since the Stokes parameters can be directly 

connected with the Poincaré sphere, Stokes vector  321 SSSS  , which is originated 

at the zero point in the Stokes coordinate, can be further defined on it to indicate a 

polarization state. The length of the Stokes vector is the total power. Thus, applying Eq. 

(5.1-11) to Eq. (5.1-8), we can use the displacement of a Stokes vector to describe a 

polarization evolution with the onset of birefringence on the Poincaré sphere. This step 

eases the visualization of nonlinear polarization evolution. 
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5.2 Nonlinear Polarization Evolution Description on the Poincaré Sphere 

When an optical wave with strong enough intensity passes through an optical fiber, 

nonlinear Kerr effect will change the local refractive index as well as the birefringence. 

Under this condition, the Maxwell’s equation is modified as [15]  

NLPE
cdz

Ed 2

0

2

2

2












  (5.2-1) 

The NLP  is the nonlinearly-induced material polarization. For optical fibers made by 

fused silica, the third susceptibility in an isotropic medium is considered. The nonlinear 

polarization components thus can be presented as 
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 (5.2-2) 

By substituting Eq. (5.2-2) into Eq. (5.2-1), considering slowly-varying approximation, and 

converting the linear-polarization basis into circular-polarization one with Eq. (5.1-7), the 

coupled amplitude equations with nonlinear birefringence included are given by  

  
 


 EEEiEiEi

dz

dE 22
2

3

2

22



 (5.2-3) 

where  is the nonlinear coefficient which is defined by 
cA

n

eff


 2 . This coefficient 

quantifies the strength of nonlinearity with nonlinear refractive index coefficient 2n  and 

effective mode area 
effA . In order to more clearly visualize the nonlinear polarization 

evolution, Eq. (5.2-3) can be converted into a vectorial differential equation with a Stokes 

vector  321 SSSS   and a birefringence vector W . This conversion results in a full 

description of the nonlinear polarization evolution which can be summarized as  
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SW
dz

Sd


 
(5.2-4) 

NLL WWW 
 

where   0LW  and 







 3

3

2
00 SWNL


. The vectorial differential 

equation in Eq. (5.2-4) describes the route of polarization evolution on the Poincaré sphere. 

This route is determined by the cross product of the birefringence vector and the Stokes 

vector. The three components in the birefringence vector represent three different types of 

birefringence. The first one is the linear birefringence, the second is the linear birefringence 

with 45o azimuth angle to the fiber axes, and the third one is the circular birefringence. One 

can see the complicated nonlinear refractive indices in Eq. (5.2-3) is replaced with a single 

term in NLW  and this term is proportional to S3. This proportionality indicates nonlinear 

ellipse rotation [15]. As long as an optical wave is elliptically polarized (S3 ≠ 0), the 

polarization is influenced by the nonlinear birefringence.  

In short, this model in “Stokes domain” largely simplifies the mathematical 

expression of nonlinear polarization coupling and can be easily applied on the Poincaré 

sphere for the purpose of visualization. Thus, the properties of nonlinear polarization 

evolution can be conveniently described. In the following subsections, the influence of 

linear birefringence and circular birefringence to nonlinear birefringence will be discussed.  

 

5.2.1 NPE in an optical fiber with only linear birefringence 

A birefringent fiber, such as a polarization-maintaining (PM) fiber or a bent CCC fiber 

without being twisted, is an optical fiber with linear birefringence. The linear polarization 

in this kind of fiber is preserved when the polarization azimuth angle is aligned with the 
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optic axis. When such a fiber is delivering an optical wave of high peak power, the 

birefringence vector that includes nonlinear birefringence in it is 







 3

3

2
0 SW


 . 

In order to find eigen-modes, i.e. fixed or stable points, on the Poincaré sphere, we need to 

solve 0
dz

Sd
.  

The cross product in Eq. (5.2-4) gives 
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 (5.2-5) 

The possible solutions of Eq. (5.2-5) are given by 

 

)#2Solution (

#1 Solutnio
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 (5.2-6) 

Solution #1 corresponds to linear polarized eigen-modes, which are represented by 

 000PS   on the Poincaré sphere. These two modes are present at any powers. The 

other solution refers to two other eigen-modes appearing due to the onset of nonlinear 

birefringence. If we define 




2

3' 
crP  ( 0  is always expected in coiled silica 

fibers.), by using Eq. (5.1-9), we can obtain the locations of these points on the Poincaré 

sphere. These two points given by  2'2

0

' 0 crcr PPPS   are symmetrically at the 

opposite sides about the fast axis. This result reveals that these two additional eigen-modes 

exist only if the total power P0 exceeds '

crP . Moreover, it also indicates  000PS   

is an unstable point which splits into three points. This occurs as a result of the 

disappearance of the birefringence due to the nonlinearly increased refractive index at the 

fast axis. In order to visualize this phenomenon, the polarization evolution is depicted in 
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Fig. 5.2-1. In this figure, (a) and (b) respectively show the trajectories of Stokes-vector 

motion on the front side and back side of the Poincaré sphere when the power level is lower 

than Pcr , while (c) and (d) shows them when the power level is higher than Pcr. These two 

sets of Poincaré sphere reveals that the fast axis (x-axis) is the eigen-mode which splits into 

three, i.e. two additional stable eigen-modes split from the unstable point at the fast axis. 

If the input wave is polarized along this fast axis, small changes in the input polarization 

will result in large changes at the output polarization. This is so called polarization 

instability which specifically happens at the fast axis [15]. The two new eigen-modes, split 

from the unstable eigen-mode, indicates the associated elliptical eigen-polarizations at 

which the nonlinear ellipse rotation is exactly balanced with the linear birefringence.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.2-1 Trajectories of Stokes-vector motion on the Poincaré sphere showing the splitting of the eigen-

modes when the power level is larger than Pcr. (a) and (b) are the case with  >0 and P0 = 0.5∙Pcr; (c) 

and (d) are the case with  >0 and P0 = 1.5∙Pcr 

 

5.2.2 NPE in a Coiled CCC Fiber 

According to the explanation in Sec. 5.1.3, because CCC fibers are spun fibers, the 

external perturbation is directly reflected on the induced birefringence. When such fibers 

are coiled, a comparable linear birefringence and circular birefringence can be induced 

simultaneously. This configuration of the induced birefringence should be distinguished 

from the case of twisted polarization-maintaining (PM) fibers. In a twisted PM fiber, the 

optical axis is rotated with the twisting, while in a coiled CCC fiber, the optical axis is kept 

parallel to the coiling plane. Thus, the birefringence structure is entirely different. Since 

the case of twisted PM fiber is already analyzed [ 87 ], we will only focus on the 

birefringence of coiled CCC fibers that has not been considered yet. 

Fast Axis Slow Axis

Fast Axis Slow Axis
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The birefringence vector W  in which linear birefringence, circular birefringence, 

and nonlinear birefringence are all included can be written as 
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3

2
0 SW


 . 

By setting 0
dz

Sd
, the eigen-modes on the Poincaré sphere can be solved. The derived 

equations are given by  
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In Eq. (5.2-7), 02 S  is easily observed. The other equation which need more algebra to 

solve is 0
3

2
3131  SSSS


 , which can be organized as 
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(5.2-8) 

In addition, since 02 S , the other implicit equation which indicates the energy 

conservation is 
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 (5.2-9) 

Therefore, we can combine these two equations, and obtain a quartic equation of 3S  as 
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(5.2-10) 

However, the solution of Eq. (5.2-10) can be implicitly reached by analyzing the transition 

of solution number with the method introduced later on. Our goal is to obtain the critical 

power at which one of the polarization eigen-mode becomes unstable and two more eigen-

modes are split. In other words, the path of solving this quartic equation is to look for the 

conditions in which the solution number of S3 becomes four from two. 
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Eq. (5.2-10) can be rewritten as 03

2

3

3

3

4

3  edScSbSaS , and the parameters are 

defined as 
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0 Pe  . The solution number of S3 in this equation can be judged from the discriminant 

of ∆ [88] 

 274 3

0

2

1  (5.2-11) 

where ∆0 and ∆1 are defined by  

aebdc 1232

0 
 (5.2-12) 

aceadebbcdc 72272792 223

1   (5.2-13) 

∆ < 0 indicates that Eq. (5.2-10) has 2 real roots, and ∆ > 0 indicates that Eq. (5.2-10) has 

four real roots. If we define 




2

3' 
crP  and the ratio of 0P  to '

crP  as , Eq. (5.2-12) 

and (5.2-13) becomes  
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Then from Eq. (5.2-11), we can obtain  

  3222222
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14108
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(5.2-16) 

Eq. (5.2-16) reveals that the solution of the critical power satisfies  

   014108
3222222   crcr  

 (5.2-17) 

Eq. (5.2-17) can be solved as a cubic equation of cr . If we define 






 , the solution 

of Eq. (5.2-17) is 
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 33 21  cr  (5.2-18) 

From (5.2-18), the critical power with considering both linear and circular birefringence 

thus can be given by  

 33 2' 1  crcr PP  (5.2-19) 

In Fig. 5.2-2, the trajectories of Stokes-vector motion on the Poincaré sphere with 

0   are depicted. (a) and (b) are the case with the launched power lower than 

this updated critical power by the amount of crP5.0 ; (c) and (d) are the case with the 

launched power above the critical power by the amount of crP5.0 . The evolution shown in 

these figures reveals the nonlinear polarization evolution in a coiled CCC fiber is no longer 

symmetrical concerning the interchange of RCP and LCP. This fact indicates that due to 

the existence of nonlinear birefringence, the entire circular birefringence in the upper 

hemisphere is enhanced while it at the lower hemisphere is suppressed. When the power 

level reaches crP , the splitting eigen-mode close to the fast axis is where both linear and 

circular birefringence are fully cancelled by nonlinear birefringence thus inducing an 

unstable eigen-mode, and is also where the polarization instability occurs. Any input 

polarization situated close to the unstable eigen-mode may evolve drastically when being 

slightly perturbed. When the power level is above crP , the eigen-mode split from the 

unstable point indicates where the circular birefringence is cancelled by nonlinear 

birefringence and linear birefringence is balanced. If the input power level is increased 

further, the entire polarization evolution would be close to the case without circular 

birefringence as discussed in Sec. 5.2.1. Two eigen-modes represent the elliptical eigen-

polarization would go closer to the two poles, and both the unstable (close to fast axis) and 

the stable (close to slow axis) eigen-modes would go closer to the equator. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5.2-2 Trajectories of Stokes-vector motion on the Poincaré sphere with - =  < 0. (a) and (b): P0 

= 0.5Pcr; (c) and (d): P0 = 1.5Pcr 

 

On the other hand, since the critical power is obtained, the splitting point around the 

fast axis can be derived. The combination of Eq. (5.2-8) and Eq. (5.2-9) gives the square 

of the normalized power level )( 
'

0

crP

P
  which can be expressed as  
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  (5.2-20) 

where '

)1(3)1(3 /S crPs   representing the 3S  normalized by '

crP . This critical power '

crP  

is the one without considering circular birefringence. Since we have known cr  occurs at 

the local minimum of  3sf , we can equate the derivative of  3sf  to zero and solve it 

Fast Axis Slow Axis

Fast Axis Slow Axis
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for the root to obtain the value of 3s  and the minimum of f. The solution is 

3
3  s  (5.2-21) 

Eq. (5.2-21) can be substituted into Eq. (5.2-20) to obtain cr  as Eq. (5.2-19) shows. 

Using Eq. (5.2-9), the form of 
1s  can also be obtained 

3 2

1 1 s  (5.2-22) 

Eq. (5.2-20) to Eq. (5.2-22) are applied to calculate the splitting eigen-mode on the 

Poincaré sphere.  

 

 

Fig. 5.2-3 Bifurcation diagram showing the normalized power level η versus the normalized S3 

coordinate of the critical points (with S2 = 0, S1 > 0) for four different birefringence ratio, δ= 0, 10-2, 0.2, 

and 1. (Solid line: stable eigen-mode; dashed line: unstable eigen-mode) 

 

Calculated by Eq. (5.2-20), Fig. 5.2-3 quantifies the eigen-mode evolution that is 

discussed in this section by showing the relationship between  and the normalized Stokes 
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parameter 3s  at four different  values with only the part of 01 s  being considered. 

The 3s  value of the relevant eigen-modes can be determined by the intersection of these 

curves with a constant power level, i.e η is a constant. The reason to only involve  of 

01 s  is because of the 3s  value and variation of the stable eigen-mode close to slow-

axis ( 01 s ), which is marked by slow mode, resembles them of the unstable eigen-mode 

close to fast-axis ( 01 s ), which is marked by fast mode. In other words, the value and 

variation of the fast mode represents them of the slow mode.  

Fig. 5.2-3 reveals an important fact: the intensity-independent eigen-modes only 

exists when circular birefringence is absent. When  is zero, the fast mode becomes 

unstable with two new symmetrical stable eigen-modes split from it at the critical power  

'

crP . This case is explained in the last subsection. It means without circular birefringence, 

two of the eigen-modes, the stable slow mode and the unstable fast mode, stay as intensity-

independent linear polarizations. For the case of =10-2, a slight amount of circular 

birefringence leads to a dramatic change of the “on-axis” slow and fast modes as the 

normalized power level  is close to one. The overall variation of the eigen-mode with the 

power level is quite similar to the case of  = 0. For the case of  0.2 or 1, the eigen-mode 

configuration highly depends on the power level and the occurrence of the unstable fast 

mode and the two split stable eigen-modes requires higher powerto achieve. If the power 

level is further increased, two stable eigen-modes can still move towards the pole ( 13 s ) 

of the Poincaré sphere, and the other two still move towards to the equator ( 03 s ). The 

above analysis recapitulates the process of eigen-mode splitting with different 
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birefringence ratios.   
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5.3 The Preservation of Linear Polarization Output in CCC Fiber Amplifiers 

According to the theory of the nonlinear polarization evolution introduced in Sec. 5.2, 

the polarization states of the fast and slow eigen-modes can be intensity-independent only 

if the circular polarization is zero. Thus robust, intensity-independent preservation of linear 

output polarization can be achieved in a CCC fiber amplifier only if its coiling-induced 

twisting is eliminated, and input light is launched into the slow eigen-mode (since fast 

eigen-mode is not stable). We did observe experimentally that preservation of linear output 

polarization can still be achieved within a wide range of output peak power when a specific 

seeding condition is satisfied, but since this is not associated with any eigen-mode, long-

term stability of this state cannot be ensured. We used this observation to “calibrate” the 

agreement between our theoretical model and experimental results, verifying good 

correspondence between the two. In the following two subsections, this experimental and 

modeling work is discussed in detail. 

 

5.3.1 Linear Polarization Preservation within a Wide Range of Output Peak Power 

The preservation of linear output polarization is demonstrated in a 55-m core CCC 

fiber amplifier shown that in a CCC fiber amplifier with a properly selected input 

polarization angle. The experimental setup is shown in Fig. 5.3-1. A 2.3m piece of 55m-

polygonal-core active CCC fiber coiled to 45cm diameter is used as the gain medium of a 

counter-pumped fiber amplifier. This fiber amplifier is seeded with a 12-ns pulse operated 

at 5 kHz repetition rate, and the pulse energy is 80 J (approximately 6.5 kW). The 

polarization controlling components, HWP 1, HWP 2, QWP, and PBS, are inserted at the 

seeding end, and the polarization measurement components, HWP 3 and PBS, are at the 
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pumping end. The beam blocker at the seeding end avoids the polarization controlling 

components from being heated by the pump through, and the beam blocker at the output 

end is to eliminate the cladding light which is close to unpolarized and can influence the 

signal polarization measurement. The output beam from the amplifier partially transmits 

through a wedge for power measurement and is partially coupled to a single mode fiber for 

pulse and spectra measurement. 

 

 

Fig. 5.3-1 Experimental layout for demonstrating the preservation of linear polarization output at high 

peak power in a 2.3-m 55-mm-core CCC fiber amplifier. 

 

In this experiment, an input linear polarization at two different azimuth angles, one 

can achieve the preservation of linear output polarization and one cannot, is seeded the 

CCC fiber amplifier. The output polarization extinction ratio (PER) and the azimuth angle 

are characterized. The experiment result is shown in Fig. 5.3-2, in which the two curves 

respectively represent the output PER versus the output peak power at the two seeding 
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azimuth angles of linear polarization. An output azimuth angle is marked by each data point. 

  

 

Fig. 5.3-2 The red markers show an intensity-independent output PER with negligible change of azimuth 

angle while the other curve shows a degraded PER with noticeable angle change when the peak power is 

getting higher. The output azimuth angle is marked by the data points. 

 

One can observe that the curve of 75o input azimuth angle shows a 16dB output PER 

is independent of the output peak powers and the variation of the output azimuth angle is 

within 5o. This fact indicates the linear output polarization is preserved at up to 400-kW 

peak power. As for the other input polarization angle, depolarization occurs at high peak 

power and the output PER is being degraded from 23 dB to 3 dB, accompanying with a 

23o-rotation of the output azimuth angle. This experimental result reveals that by selecting 

a proper input azimuth angle, like 75o in this case, the linear output polarization can be 

preserved.  
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5.3.2 Theoretical Modeling of Linear Polarization Preservation 

Here we compare the obtained experimental results with our theoretical model to 

validate the agreement between the two. First of all, the differential equation of the Stokes 

vector should be replaced with 

SgSW
dz

Sd
  (5.3-1) 

where g is the power gain coefficient from fiber amplifiers. If gain saturation is ignored, 

this gain coefficient indicates an exponential growth of the power in fiber amplifiers. 

 However, Eq. (5.3-1) reveals a trajectory on an expanding Poincaré sphere. In order 

to simplify it, we define   gzin eSzS  00 , and thus we can further define 

  )(/)(~
011 zSzSzs  ,   )(/)(~

022 zSzSzs  , and   )(/)(~
033 zSzSzs  . Therefore, Eq. (5.3-1) 

can be rewritten as 

sW
dz

sd ~
~

  (5.3-2) 

where       zszszss 321
~~~~

  and         zszzzW 3
~0   . Here, the 

parameters   defined in Sec. 5.2 is used, and the birefringence is assumed z-dependent. 

Using Eq. (5.3-2), the polarization evolution can be described on a unit Poincaré sphere. 

In order to model a nonlinear polarization evolution in a CCC-fiber amplifier, the 

birefringence of CCC fibers should be characterized. The following is the recapitulation of 

the birefringence in CCC fibers. A CCC fiber is a spun fiber, which eliminates all internal 

random birefringence perturbations making it a Lo-Bi fiber. Since this is a flexible fiber 

that is usually coiled when packaged, accurate model for nonlinear polarization evolution 

should include external-perturbation effects such as linear birefringence induced by coil-

bending, and circular birefringence induced by the twisting of the fiber. According to the 
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fiber coiling diameters shown in Fig. 5.3-1, the characterized linear and circular 

birefringence are both 0.45 m-1 respectively. In addition, since the MFD of this fiber is 

known as 42 m-2, using Eq. (5.2-19), the critical power can be calculated as 17.5 kW. It 

means the nonlinear eigen-mode splitting occurs at the very beginning end of the fiber.  

 

 

(a) (b) 

Fig. 5.3-3 Trajectories of Stokes-vector motion of different input pol. angle to the 55-mm-core CCC 

fiber amplifiers with 400 kW peak power output. (a) is the front side and (b) is the back side. 

 

Fig. 5.3-3 shows the numerical simulation result calculated by the modified model 

shown in Eq. (5.3-2) at 400 kW output peak power for three different input linear 

polarization angles. (a) shows the front side trajectories on the Poincaré sphere, while (b) 

shows the back side of the Poincaré sphere. This result again indicates when the launched 

azimuth angle is 75o, the trajectory of the polarization evolution goes around the slow-axis 

and preserved at the high-PER zone. While for the other input polarization angles, 30o or 

120o, the polarization state can easily evolve to elliptical state at the low-PER zone and 

experience a dramatic nonlinear ellipse rotation there. Usually, the degradation of the 
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output PER is not because the polarization state evolves to a low-PER zone, but because 

the polarization state rotates dramatically thus leading to a depolarization within a high 

peak power pulse. 

With this theoretical analysis, the existence of the input polarization state producing 

linearly-polarized and intensity-independent (within some peak-power range) output is 

confirmed, and in this specific case, this point has been verified close to the zone around 

75o azimuth angle. As long as the input polarization state is chosen around this point, within 

a range of output peak power, the output PER degradation and the azimuth angle rotation 

is negligible. The concept of such an input polarization state can be understood as the 

following property of nonlinear polarization evolution. The trajectory of the polarization 

evolution around the slow axis is relative stable. When the output power is larger than 

critical power (P > Pcr), trajectories starting from around the fast axis tend to proceed away 

from linear-polarization equator into the low-PER zone; while when starting from around 

the slow axis, the trajectories tend to remain close to linear polarization (i.e. high-PER). 

However, the above concept only gives the sense of achieving linear output 

polarization preservation at high peak power output, and a more detailed analysis is 

definitely needed. As the trajectory of the red curves (with 75o –input azimuth angle) in Fig. 

5.3-3 (b) shows, the turning of this curve tells the rotation of the polarization is initiated, a 

further push of the output peak power will lead to a degradation of the output PER due to 

the nonlinear ellipse rotation on the lower hemisphere of the Poincaré sphere. The result of 

numerical optimization tells that the input polarization state which can lead to the 

preservation of linear output polarization at high peak power is actually elliptical 

polarization instead of linear polarization, as shown in Fig. 5.3-4. In this figure, the left 

elliptical polarization at 75o azimuthal angle is found the optimized polarization state for 
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achieving the preservation of linear output polarization in a wide range of output peak 

power (3 to 500 kW). With 3 kW input peak power, the trajectories that indicates different 

output peak powers are overlapped and all end at the same point on the equator of the 

Poincaré sphere.   

  

 

Fig. 5.3-4 The simulation of nonlinear polarization evolution in the CCC-fiber amplifier shown in Fig. 

5.3-1 with optimized input polarization state (left elliptical polatization, LEP) for the preservation of 

linear output polarization (LP) at high peak powers  

 

The reason that elliptical polarization with 75o azimiuth angle leads to the preservation 

of linear polarization output is due to the existence of circular birefringence. Recalling the 

nonlinear polarization evolution discussed in Subsec. 5.2.1, the absence of circular 

birefringence makes the polarization state along the slow axis as an intensity-independent 

linear polarized slow mode. The 75o linear polarization is only applicable, within a limited 

power range, to a specific fiber amplifiers packaged with a comparable linear birefringence 

and circular birefringence. Assume that the circular birefringence is being reduced, this 

stabilizing point can be predicted moving toward 90o which is linear polarized slow mode, 
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as shown in Fig. 5.3-5. Therefore, the final comment is that in order to achieve the 

preservation of linear polarization output, the focus should alternatively be on the 

elimination of circular birefringence. According to the Low-Bi property of CCC fibers, an 

intuitive method of realizing zero circular birefringence is untwisting the CCC fiber 

amplifier by the amount that is concurrently induced by fiber coiling. However, the 

feasibility of this work is still unknown, and a further demonstration is in progress.  

 

 

Fig. 5.3-5 The relationship between the optimized input azimuth angle and the amount of circular 

birefringence in the coiled CCC-fiber amplifier shown in Fig. 5.3-1. The criteria of the optimized input 

azimuth angle is determined by <2o output azimuthal angle difference of 500kW-output case from 3kW-

output case. 
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5.4 Conclusion 

In a CCC fiber, since fiber is spun during fabrication, all internal birefringence 

contributions are effectively “erased”, and the fiber is inherently a low birefringent fiber. 

Since a flexible fiber is usually coiled when packaged, moderate amounts of “external” 

linear birefringence due to coil-bending, and circular birefringence due to the concurrent 

twisting of the fiber are thus induced in CCC fibers. This affects signal polarization at high 

peak powers due to the occurring nonlinear polarization evolution. Below the critical power, 

two eigen-modes (stable points), one is right-elliptical polarization and the other is left-

elliptical polarization, exist in the polarization evolution. Above the critical power, two 

additional eigen-modes, one is close to the fast axis (unstable) and the other one (stable) is 

close to the pole, appear in the polarization evolution and increasing the power moves two 

of the stable points towards each poles and one closer to the equator. Thus, the transition 

from 2 eigen-modes to 4 eigen-modes occurs when a polarized signal propagates along a 

high peak power CCC fiber amplifier. When a linearly polarized signal at a specific 

azimuthal angle is seeded, the preservation of the linear output polarization can be achieved 

while at other angles, the degradation of the linear output polarization occurs.  

We experimentally demonstrate the preservation of linear polarization output at a 

particular input azimuth angle 75o, which appears to be an effective stabilizing input 

polarization angle. Experiment agrees well with numerical simulations using nonlinear 

polarization evolution model. In general, this finding determines a correct input condition 

based on the ratio of linear and circular birefringence for achieving the preservation of 

linear output polarization from a coiled and concurrently twisted large-core effectively-

single-mode fibers with very low intrinsic birefringence. However, this approach can only 

be applicable within a limited output power range.  
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Strictly speaking, this operation condition is not associated with any polarization 

eigen-mode, and therefore cannot guarantee long-term stability. More robust solution for 

achieving robust linearly polarized output at any output peak power should be sought by 

launching input signal into a slow eigen-mode of a CCC fiber, which is packaged without 

any twist. However, experimental verification of this is in progress but has not been 

achieved yet. 
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Chapter VI 

Design Principe of Polygonal-core CCC Fibers 

6.1 Introduction 

In Chapter III, two types of chirally coupled core (CCC) fibers, one is with single-

side core and the other is with 8-side cores, are used to demonstrate the suppression of 

stimulated Raman scattering (SRS) through their tailored transmission spectra that are one 

important features of CCC fibers. An effective CCC fiber for SRS suppression requires at 

least 30 dB/m loss at the Stokes wave and <1 dB/m loss at the signal wave. In Chapter IV, 

CCC fibers are again proposed a solution to mitigate transverse mode instabilities (TMI) 

with the other important feature of CCC fibers, the effective single-mode (E-SM) operation. 

These two cases directly indicate that in order to control nonlinearities in passive large-

mode-area (LMA) fibers or in high power fiber amplifiers, the design work of CCC fibers 

plays a critical role. 

In CCC fibers, the HOMs are selectively leaked from the central core to the cladding, 

while the fundamental mode (FM) is kept in the central core with a negligibly small loss 

so that the E-SM performance can be achieved. E-SM operation is achieved only if the 

HOM loss is larger than 10’s of dB/m and the FM loss is smaller than 1 dB/m. This E-SM 

operation is achieved by the previously reported CCC fibers with a single side core through 

a quasi-phase-matched (QPM) coupling of HOM from the central core into the side core. 

The coupled light in the side core is attenuated due to the curvature of the side core, which 
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leads to the frustration of total internal reflection. For this type of CCC fibers, the core size 

can only be scaled up to 40μm diameter with E-SM performance being maintained [38]. 

The main reason of this limitation is due to the decrease of the modal overlap between 

central core and side core. The increased size of the central core leads to weaker HOM 

coupling into the side core. According to the calculation result in ref [89], the optimized 

suppression of LP11 mode in a CCC fiber degrades from >400 dB/m to <50 dB/m when the 

core size changes from 30μm to 100μm. 

In order to resolve the issue of weaker modal overlap with the increasing of the central 

core size, the 8-side and octagon-shaped central core CCC fibers are developed and are 

further demonstrated the capability of being operated as effectively single-mode with core 

sizes larger than 50µm diameter [39]. Being different from the old-type CCC fibers with a 

single side core, it couples central-core HOM into central-core leaky modes which are 

radiating directly into the cladding. Compared to the modal overlap between central-core 

mode and side-core mode, the modal overlap between central-core guided and leaky modes 

is much less dependent on the central-core size, so the core-size scaling of E-SM CCC 

fibers is available. This new type of CCC structure is shown in Fig. 6.1-1. The two major 

features which distinguish this structure from the old-type CCC geometry are: 1) the central 

core is polygonal (octagonal in particular); 2) the off-axis side cores are positioned around 

each vertex of the central core. Adding the 7 more side cores is to increase the perturbation 

to the central core thus enhancing the suppression of the HOM. Due to the spinning in the 

fabrication process of this type of CCC fibers, the central core acquires a twisted polygon 

shape, with a twisting period Λ, while the off-axis side cores become helically winding 

around the central core with the same period. Therefore, this new structure is labeled as 

“Polygonal-CCC” (P-CCC) fiber to distinguish it from the old-typed CCC fibers as 
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“Single-side CCC” (S-CCC) fibers.  

 

 

Fig. 6.1-1 The structure of polygonal-CCC fiber : the on-axis central core has a polygonal shape 

(octagon in this example), and each the side core (8 side cores in this case) is positioned at the vertices of 

this polygon.  

 

Since both S-CCC structure and P-CCC structure are helically symmetric, the 

invariance property of such structure indicates the modal interactions can only occur 

between the supported helically-symmetric modes which possess orbital angular 

momentum coming from modal field-distribution rotation and spin angular momentum 

coming from vectorial rotation of modal field. As previously reported, the QPM conditions 

for S-CCC is [38] 

01 22

2211
 KmRKmlml   (6.1-1) 

where 
11ml  is the propagation constants of fiber modal group 

11mlLP  in straight central 

core with modal number 1l  and 1m , 
22ml  is the propagation constants of fiber modal 

group 
22mlLP  in straight side core with modal number 2l , and 2m , the factor 221 RK  

is for a helical correction for the helically wound side core, slm   in which 
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21 lll   is associated to the orbital angular momentum degeneracy and geometrical 

perturbation, and s = -2, −1, 0, + 1, and + 2 (only 5 possible values) is associated to spin 

angular momentum degeneracy and anisotropic perturbation (i.e. localized linear and 

circular birefringence) between the central core and the single side core.  

The QPM intra-core modal coupling in P-CCC fibers only needs orbital angular 

momenta to achieve phase matching. Due to large separation distances between central 

core and side cores, anisotropic birefringence perturbation between them is too small to be 

exploited in P-CCC structure. The reduced overlap among the enlarged central-core mode, 

the side core mode, and the perturbation presented as an anisotropic birefringence cannot 

support an efficient QPM modal coupling in this new type of CCC structure. Consequently, 

singly accounting for orbital angular momentum and geometrical perturbations in the QPM 

conditions of P-CCC fibers is sufficient  

0
2211

 Klmlml   (6.1-2) 

where 
11ml  and 

22ml  are both from central core, and 21 lll   due to orbital 

angular momentum degeneracy and geometrical perturbation.  

However, even if the QPM condition of the in-core modal coupling in P-CCC fiber is 

predicted, the detailed principle of modal coupling and the relevant constraint needs more 

investigation. Basically, the known part is that P-CCC fibers produces HOM suppression 

through the following processes: the central core guided modes can be coupled into leaky 

modes through the helically symmetric core structure, which acts as a helical perturbation 

for the interacting modes. Because of this symmetry, this perturbation only lead to modal 

couplings between helical symmetric modes. Consequently, QPM description of CCC 

interactions still applies, i.e. phase-matching between the modes involves both modal 
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propagation constants and their angular momenta. However, if there is no need to consider 

both linear and circular birefringence, then only orbital angular momenta are involved, and 

circular polarization (i.e. spin-orbital angular momentum) is not relevant. Thus, the non-

zero overlap integral between the guided and the leaky modes over this perturbation 

determines the onset of modal coupling in P-CCC fibers. 

Based on the above fact, the principle of the modal coupling due to the polygonal 

symmetry are mathematically proved. In addition, because of the need to fully suppress 

HOMs, the bending-induced mixture of HOM helical modes are further analyzed. These 

works are highly associated to the suppression of nonlinearities such as SRS and TMI in 

P-CCC fibers. 
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6.2 Coupled mode theory in P-CCC fibers 

6.2.1 The Polygonal Perturbation 

In P-CCC fibers, guided core modes can couple into leaky modes. This coupling 

occurs via the perturbation from the helically-symmetric polygonal core structure. As 

shown in Fig. 6.2-1, the modal interactions occur in the octagonal core can be thought as 

among the modes supported by the inscribed round core (green) surrounded by the cladding 

(grey) that are perturbed by the octagonal structure (red), including the octagonal ring of 

the core and the existence of the 8 side cores. This perturbation can only lead to the modal 

coupling between helically symmetric modes since interacting modes must be invariant 

with helical translation. In the following content, this point is proved with the coupled 

mode theory. 

 

 

Fig. 6.2-1 The transverse profile of an octogonal-core CCC fiber is decomposed into two part. The 

polygonal ring and the 8 side cores (red) serve as the perturbation to the mode supported by the round 

core (green) surrounded by the clading (grey). 

 

The helical structure and the limited influence of local birefringence constraints the 

eigen-mode as linearly-polarized helical mode 

lmLP , where  means the two different 

rotation direction of modal wave front, and l, m are respectively the azimuthal and radial 

modal numbers. The optical waves of helical modes in fibers that are described in a helical 

FPerturbs 
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frame can be written as 
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(6.2-1) 

, where lmA  is the amplitude, lm  is the radial modal profile, lm  is the modal 

propagation constant,   is the pitch of the rotating period, l and m are both the modal 

index of the modes. In the helical frame, a perturbation of polygonal symmetry resembled 

the shown in Fig. 6.2-1 on the transverse plane which rotates and varies along the 

longitudinal direction can be mathematically described as 
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This perturbation is presented as an “arbitrary” function F which has N-fold rotational 

symmetry. This polygonal symmetry with N sides are described by the floor function which 

makes F a local function in the range of 
NN





 . For calculating the modal overlap 

with polygon-shaped perturbation, the radial dependence of the supported modes can be 

ignored ( llm AA   and llm   ), since the variation of such perturbation, as shown in 

Eq. (6.2-2), is only dependent on azimuthal angles.  

The coupled equations, incorporated with Eq. (6.2-1) and Eq. (6.2-2), can be written 

as [90] 
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where 'll  is the coupling coefficient, and it is defined as 
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where 'll   is presumed. This indicates the modal coupling between LP0x and LP0y (x≠y) 

is excluded, since they are orthogonal in their radial dependence. With this presumption, 

the radial integral of the beating pattern between the two modes in Eq. (6.2-4) would not 

vanish but only determines the magnitude of the coupling coefficient, thus we only need to 

analyze the integral along the azimuth angle for proving the existence of the modal 

coupling.  

 Eq. (6.2-3) indicates two required factors which determines the occurrence of the 

modal coupling through the polygonal symmetric perturbation. One is that the modal 

coupling coefficient 'll  should be nonzero, and the other one is the phase-matching of 

the modal coupling should be achieved ( 0k ). 

 

6.2.2 Modal Interactions in P-CCC Fibers 

In following derivation, 'll  is proved to be nonzero only if the value of 'll   

equals an integer number of N, which is the side number of the polygon-shaped core. Here, 

the difference of the modal number between any two modes are defined by 'lll  , so 

the coupling coefficient can be written as 
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By defining  
2

N
nn


  , where 1...3 ,2 ,1 ,0  Nn , Eq. (6.2-5) can be rewritten as 
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The summation of the N phasor terms in the above square parenthesis is given by 
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Thus, the 'll  can be determined as 
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Eq. (6.2-8) indicates the relationship between the geometry of the perturbation and the 

existence of modal coupling between two modes with modal number l and l’ respectively. 

For example, an octagonal core P-CCC fiber can couple the guided HOM to leaky modes 

with the modal number difference between them equaling to the multiples of 8, since the 

selection rule determined by the geometry of the octagon-shaped perturbation indicates an 

“octave” apart modal coupling. Table 6.2-1 shows the potential modal coupling from the 

first three orders of fiber modes to leaky modes via the octagon-shaped perturbation. 

Through the octagonal perturbation, LP11 mode can be coupled to LP9x mode or LP7x mode, 
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and LP21 mode can be coupled to LP10x mode or LP6x mode. In this scheme, HOMs such 

as LP11 mode or LP21 mode in the central core thus can be attenuated by directly radiating 

into the cladding. In principle, this intra-core coupling in P-CCC fibers is much stronger 

than the inter-core coupling in S-CCC fiber when the central core size is getting larger. 

 

Table 6.2-1 The first three orders of LP helical modes that are capable of being coupled to the leaky 

modes via the perturbation provided by an octogon-shapded core 

l
 

Guided Modes Leaky Modes 

0 LP01 LP8x 

1 LP11 

LP11
+ 

LP9x
+ 

LP7x
- 

LP11
- 

LP7x
+ 

LP9x
- 

2 LP21 

LP21
+ 

LP10x
+ 

LP6x
- 

LP21
- 

LP6x
+ 

LP10x
- 

 

 

This theory is interpreted as the selection rule of the coupling modes. This selection 

rule determines the achievable coupling between two modes, one is guided mode and the 

other can be leaky mode. When the modal number difference of two modes matches the 

perturbation symmetry, the coupling between them occurs. Thus, this selection rule reveals 

that when the modal coupling occurs, the beating pattern of these two modes must possess 

the same symmetry as the perturbation. This point of view can also be applied to the 

achieving of phase-matching condition. The phase matching condition of a modal coupling 

process is achieved when the beating of the coupled modes matches the rotation rate and 

direction of the helical structure. However, due to the constraint from the fiber structure of 
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single chirality, only one of the degenerate modes can be coupled to a higher-order mode, 

leaky mode in particular, fiber bending must be included in the design consideration for 

HOM suppression. 
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6.3 The Mixture of Helical Modes by Bending Fibers 

In the last section, the mechanism of modal coupling due to the onset perturbation of 

polygonal symmetry is modeled. According to the selection rule shown in Eq. (6.2-8), an 

octagonal perturbation can induce the modal coupling from 

11LP  mode to 

91LP  mode or 



71LP  mode, or from 


11LP  mode to 


91LP  mode or 


71LP  mode and so on. With this modal 

coupling mechanism, the main goal is to achieve effective single-mode (E-SM) operation 

by phase-matching HOMs to leaky modes in P-CCC fibers. However, due to the modal 

dispersion and single helicity of the structure, the modal coupling of both degenerate 

helical modes cannot happen at the same wavelength. For instance, as shown in Fig. 6.3-1, 

the modal coupling from 

11LP  mode to 


91LP  mode and to 


92LP  mode are respectively 

phase matched at 1.23m and 0.64m, while the modal coupling from 

11LP  to 

71LP  

mode is phase matched at 0.94m and to 

72LP  is phase matched at the wavelength longer 

than 1.75m. However, in order to achieve effective single-mode performance, the most 

significant requirement is that the 1st-order HOMs, including both 

11LP  and 

11LP  modes, 

are supposed to be fully suppressed by coupling to relevant leaky modes at the same 

wavelength. In the following content, the mechanism of bending fiber induced mixture of 

the helical HOMs is introduced and naturally conquer the above mentioned issue. 
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Fig. 6.3-1 The dispersion curves of LP11
, LP91

+, LP92
+, LP71

+, and LP72
+ in a 60-m core P-CCC fiber. 

These curves are seperated into two groups, LP11
+ and LP11

-, based on the availability of phase-matching 

condition. The intersection of the solid curve with the dashed one in the same group, marked by orange 

dot for LP11
+ group and green dot for LP11

- group, indicates the phase-matching condition is achieved. 

 

Accompanying the modal coupling induced by polygonal symmetry, bending optical 

fibers, which naturally occurs when packaging, can lead to an effective attenuation on the 

degenerate helical mode which is not coupled to leaky modes from the loss of the other 

one which is coupled to, and this effective attenuation is determined by the coupling 

strength between these two degenerate helical modes. The critical point of this scheme is 

removing the degeneracy between even- and odd- linear HOMs in a bent fiber. The lifted 

degeneracy of linear HOMs induces the coupling between two degenerate helical modes. 

In the following paragraphs, this bending induced effect on linear 11LP  mode and the 

inter-coupling onset between helical 11LP  modes will be mathematically demonstrated. 

Even if this is only a specific case, this demonstration fully covers the principle which can 

also be applied to the other orders of HOMs.  
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(a) 

 

(b) 

 

Fig. 6.3-2 (a) The transverse profile refractive of a bent step-index fiber with 2a core size (b) The 

distorted modal profile of odd and even LP11 mode due to fiber bending 

 

When a step-index fiber is bent, the asymmetry of the refractive index profile is 

induced, as shown in Fig. 6.3-2 (a), and this asymmetric refractive profile leads to the 

distortion of the mode. For example, Fig. 6.3-2 (b) shows the modal distortion of the odd 

and even 11LP  mode. Even though this bent fiber still supports even and odd 11LP  modes, 

due to the asymmetric refractive index profile and distorted modal field distribution, they 

possess different propagation constants. As a result, the degeneracy of linear 11LP  modes 

disappear. In a bent fiber, the electrical fields of these two modes can be shown as  
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where subscripts o and e denote even and odd modes and eo   . Both these two modes 

are still eigen-modes in this bent fiber. In other words, if these modes are lossless, they 

simply have phase variation when propagating along this fiber. Thus, we can express the 

generalized amplitudes  zAo  and  zAe  with the matrixed form of the relevant two 

differential equations as   
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In Eq. (6.3-2), these two linear modes form a basis of the 1st-order transverse modes in this 
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bent fiber. The degenerate helical modes can thus be converted with these two formulas 

that are given by  
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Applying Eq. (6.3-3) to Eq. (6.3-2) gives 
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where c  and l  indicates the mean and difference of the propagation constants of the 

non-degenerate linear modes. Here we find 
2

l  serves as the coupling coefficient of 

these two helical modes, so we can define 

2

l


  (6.3-5) 

Then, Eq. (6.3-4) can be further simplified by defining 
zj ceaA
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where 
2

cc 



 . The reason to keep   in Eq. (6.3-6) is for applying a 

mathematical trick later. One thing to note is that the former c  is the propagation 

constant of 
A , while the latter one is it from 

A . 

If the power loss of A  wave is considered, Eq. (6.3-6) can be modified as 
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In Eq. (6.3-7), one can notice the symmetry of the coupled mode equation is broken, and 
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this is associated to the solution of Eq. (6.3-7). Assuming the initial condition is  

    00 AA  and   00 A , the solution of Eq. (6.3-6) is given by [89]  
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where 
2

cc 



 , and the former c  is the propagation constant of 

A , while the 

latter one is it from A . This arrangement of parameters in Eq. (6.3-8) can help solve Eq. 

(6.3-7). Due to the modal loss considered for A  wave, the propagation constant of A  

wave is modified as 
2




 jcc . Therefore, the propagation constant difference and 

the averaged propagation constant thus become 
4




 j  and 
4




 jc  

respectively. As a result, the redundancy of keeping   in Eq. (6.3-6) and Eq. (6.3-7) is 

explained. Thus, the form of 
A  can be written as  
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As shown in Eq. (6.3-9), the loss of 
A  wave is associated to it of 

A  wave, and this is 

associated to the effective loss   which can be alternatively described as 
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. Thus, taking an absolute value of Eq. (6.3-9),   can be expressed 

as 
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Eq. (6.3-10) can also be written as 
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(6.3-11) 

Eq. (6.3-11) is plotted and shown in Fig. 6.3-3. 

 

 

Fig. 6.3-3 Effective loss + of the helical mode A+ that is not coupled to leaky modes. This effective loss 

is from the loss - of the degenerate helical mode A- that is coupled to leaky modes. The strength of + is 

determined by the coupling strength  between these two helical modes. 

 

In Fig. 6.3-3, the loss of both helical modes is characterized by   to show their 

dependence to the coupling strength. Since bending fibers eliminates the degeneracy of the 

even and odd linear 11LP  modes, the coupling between the helical 11LP  modes thus 

occurs. (This concept is analogical to the polarization coupling discussed in Subsec. 5.1.3) 

If one of these two helical modes is lossy (like coupling to the leaky modes or cladding 

modes), as shown in the above figure, the other mode is simultaneously suppressed. The 
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degree of this suppression is proportional to the coupling strength of these two helical 

modes. Therefore, we can conclude that the effective loss + is determined by coupling 

strength  , as shown in Eq. (6.3-11), the coupling strength   is determined by the 

propagation constant difference, as shown in Eq. (6.3-5), and the propagation constant 

difference is determined by coiling condition. In the following paragraphs, this chain rule 

is applied to 11LP  mode and numerically shown.    

In order to predict the magnitude of this suppression, the lifted degeneracy of the 

linear 11LP  modes for step-index fibers can be analytically calculated by the following 

formulas from Garth [91] 
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(6.3-12) 

with coiling diameters which are corrected by the bending induced stress [92]. 

8.0

ga
a 

 
(6.3-13) 

where   is the effective radius of the fiber core; a is the effective radius of the coiling 

and it is corrected from the physical radius of coiling ga ; V is the normalized frequency 

of the fiber; U and W are the normalized fiber parameters which satisfy 222 VWU  . In 

Fig. 6.3-4, for a step-index fiber with different core sizes, Eq. (6.3-12) and Eq. (6.3-13) is 

applied to plot the propagation constants difference of the two nondegenerate linear 11LP  

modes versus coiling diameter. 
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Fig. 6.3-4 The relationship between propagation constant difference between even and odd LP11 mode 

and the fiber coiling diameter at different core size (NA = 0.07). 

 

The understanding of Eq. (6.3-5) and Eq. (6.3-11) indicates the maximum effective 

loss is equal to this propagation constant difference, i.e.   2max . Thus, the 

maximum effective loss has the same relationship with the propagation constant difference, 

as shown in Fig. 6.3-5. In this figure, the core size of the fiber varies from 25 to 65-m and 

the effective loss is plotted in dB scale. 

Fig. 6.3-5 shows that 100-dB/m HOM suppression can be achieved when the coiling 

diameter of a 35-m-core fiber is smaller than 45 cm, the coiling diameter of a 45-m-core 

fiber is smaller than 70 cm, the coiling diameter of a 55-m-core fiber is smaller than 100 

cm, and the coiling diameter of a 65-m-core fiber is smaller than 125 cm. These 

estimations provide a fundamental basis to further design P-CCC fibers for the purpose of 

mitigating TMI or SRS.   
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Fig. 6.3-5 The relationship between the peak effective loss of uncoupled circular mode and the fiber 

coiling diameter at different core sizes (NA = 0.07). 
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6.4 Conclusion 

Compared to S-CCC fibers, an additional design flexibility exists in P-CCC fibers. 

This design flexibility imposed by the symmetry of the modal perturbation. When the 

modal number difference of two helical modes matches the perturbation symmetry, the 

coupling between them occurs. This indicates that the occurrence of the modal coupling in 

a P-CCC fiber is attributed to the non-zero overlap integral between the two helical modes 

over this perturbation and the achieved phase matching of these two modes along the 

longitudinally-twisted fiber structure.  

This modal coupling through the perturbation caused by the rotational and polygonal 

fiber structure is mathematically proved, and the developed selection rule can be applied 

to the design work of E-SM CCC fibers with phase matching the coupling of the first 

several order HOMs to leaky modes. However, since the phase matching condition can 

only be satisfied with one of the two degenerate helical modes coupling to leaky modes. 

Therefore, bending fiber induced mixture of helical HOMs is proposed. When a fiber is 

bent, the degeneracy of the two linear modes at the same order vanishes, and the coupling 

between two helical modes at this order is thus induced because they are not eigen-mode 

anymore. This coupling transfers the loss from the mode which coupled to a leaky mode 

to the uncoupled mode thus achieving the entire suppression of the mode at the same order. 

The analysis shows that a bent P-CCC fiber can potentially achieve an effective loss of 

>100 dB/m for 11LP  mode with the fiber being packaged with a proper coiling diameter. 

This level of attenuation is fairly enough to suppress transverse mode instability in high 

power fiber amplifiers. 
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Chapter VII 

Summary and Future Work 

7.1 Summary 

In the dissertation, a knowledge base of nonlinear optical effects in large-mode area 

(LMA) fibers and high pulse energy fiber amplifiers is built up. The included nonlinear 

effects are four-wave-mixing, stimulated Raman scattering, transverse mode instability, 

and nonlinear polarization evolution. In order to control these effects, a novel specialty 

optical fiber, chirally-coupled-core (CCC) fiber, is used as the medium of carrying optical 

waves.  

In Chapter II, a systematic process to study the use of DFWM for wavelength 

conversion in CCC fibers is built. The wavelength conversion via DFWM nonlinear effect 

in LMA fibers is analyzed with 5 aspects: 1) phase-matching condition, 2) the domination 

of fundamental-mode signal, 3) an efficient wavelength conversion at peak powers well 

below the threshold for other competing nonlinearities (stimulated Raman scattering in 

particular), 4) the detrimental effects associated with high loss of idler wave in fused silica 

at the wavelengths above ~2µm, and 5) the requirement of a high-peak-power, hundreds of 

picosecond pulse with pico-meter level bandwidth. Our initial exploration addressed all 

five issues and determined the condition under which the use of LMA CCC fibers can 

achieve an efficient and power scalable wavelength conversion from ~1µm (Yb-fiber 

operation range) down to the visible light. However, these 5 aspects are not independent, 
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especially in LMA CCC fibers. The phase matching condition determines the available 

pump, signal, and idler wavelength. The pump wavelength is associated to the acceptable 

pump bandwidth that is dependent on the dispersion at this wavelength. Moreover, the 

pump wavelength determines the Stokes wavelength which in transmission spectra of CCC 

fibers should be at a dip with >30 dB/m attenuation and <50 nm slope as discussed in 

Chapter III. At the signal wavelength, the fundamental mode attenuation is supposed to be 

<1dB/m in CCC fibers. The idler wavelength is directly associated to the IR molecular 

absorption which can dramatically vary in a small wavelength range. Thus, according to 

the above comments, the most critical factor of achieving an efficient wavelength 

conversion in CCC fibers is dispersion, which determines the phase-matched pump, signal, 

and idler wavelength. These three wavelengths should be able to match the design of CCC 

fibers. 

Chapter III is an extension of Chapter II, even if the scope of it is beyond that. In this 

chapter, the spectral filtering properties of CCC fibers is exploited to suppress SRS. This 

capability of CCC fibers is demonstrated in two types of CCC fibers, one is 30-m core 

and the other is 60-m core. This also demonstrated an additional degree of design freedom, 

combining core-size scalability with the Stokes-wave-loss SRS suppression for high power 

operation. 

In Chapter IV, based on the presumption that TMI is a stimulated scattering process, 

we rigorously model it with a fundamental theory of two-beam coupling, in which a FM 

and HOM couples through a thermally-induced grating imprinted by the beating between 

these modes. We show that previously postulated movement of this grating to phase-match 

the coupling between the modes naturally occurs due to a finite thermal-response time of 

a fiber. With considering HOM incorporated with spontaneous emission, the temporal 
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dynamics of TMI can be simulated and explained. From the simulation result, the noise is 

proved to be the triggering source of TMI, and the origin of TMI is proved the noise-

induced phase lag between the radiation beating pattern of the involved modes and 

temperature grating. Overall, this theory is consistent with experimental observations in 

that it accurately predicts the onset-like threshold and temporal instabilities in the kilohertz-

frequency range. Moreover, this general model can be simplified to a static model which 

eases the calculation of the TMI threshold. The static model is used to show that increasing 

higher-order mode suppression in CCC fibers increases TMI threshold power. 

In Chapter V, the theory and experiment of nonlinear polarization evolution (NPE) in 

a 55µm core polygonal-core CCC fiber amplifier reveals that both nonlinear polarization 

switching and linear polarization maintaining can be achieved depending on the input 

signal polarization. With proper signal excitation and fiber packaging conditions linear 

output polarization can be maintained under a wide range of output peak powers. Moreover, 

in a Low-Bi CCC fiber, the presence of the circular birefringence is confirmed to 

complicate NPE at high peak powers, which can degrade polarization preservation at the 

amplifier or laser output. A more robust preservation of linear polarization output is 

attributed to eliminate the twisted induced circular birefringence which shifts the 

stabilizing eigen-mode from the linear polarization along slow axis to an elliptical 

polarization with smaller polarized angle. 

In Chapter VI, the design principle of P-CCC fibers is mathematically investigated 

for an additional design flexibility and enhancing the control of nonlinearities in high 

power fiber amplifiers. The polygonal core can help couple the first several orders of 

helical HOMs to leaky modes via the rotationally symmetric perturbation. Due to the 

limitation on modal dispersion, only one of the two degenerate helical modes can be 
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coupled to leaky modes under phase-matching condition. Therefore, the unavoidable 

bending induced mixture of helical HOMs is exploited. A bent P-CCC fiber results in the 

energy interchange between the two helical modes thus introducing an effective attenuation 

to the degenerate helical mode which is not coupled to leaky modes. This scheme can 

potentially be applied to TMI or SRS suppression with providing an HOM attenuation up 

to the order of 100 dB/m. Overall, in this chapter, an additional design flexibility of CCC 

fibers in developed. 
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7.2 Future Work 

The topic of nonlinear optical effects in high power or high energy fiber amplifiers is 

a tremendous field. In this dissertation, we only selected a few currently critical topics to 

investigate. Thus, the entire research works in this dissertation are only small part of this 

field, even if we have tried to cover as much as we can. For each topic in this dissertation, 

an extension as future works is suggested.  

The wavelength conversion achieved by four wave mixing in large-core area fibers is 

demonstrated when pump, signal, and idler are at the same polarization and transverse 

modes, i.e. all three waves are LP01 mode and linearly polarized at a specific azimuth angle 

[41, 42]. This approach provides a simplest and straightforward path to efficiently generate 

red light. However, the achievable wavelength of the signal wave is only limited at 650m 

if the pumping wavelength is in the operateable range of an ytterbium-doped fiber lasers. 

This constraints the applicability of visible high power fiber lasers. In order to extend the 

wavelength range, two advanced phase-matching method can be investigated. Firstly, a 

fiber with built-in birefringence provides an additional option to achieve phase–matching 

between different wavelengths and the two polarization modes. If birefringence is further 

adjustable, the achievable wavelength range can be largely extended. This scheme is based 

on the engineering of waveguide dispersion. Secondly, HOMs can also be exploited to 

achieve phase-matching and efficient wavelength conversion. Since the modal loss can be 

controlled by the resonance of specialty fibers, for example CCC fibers, HOMs can also 

be involved in a four-wave-mixing process to extend the phase-matchable wavelengths.  

On the other hand, the other critical research work in this dissertation is the 

understanding of transverse mode instability in high power fiber amplifiers. In the last few 

years, even though so many researchers have contributed to understand the whole picture 
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of this newly found limitation on the power scalability of fiber lasers, a full explanation is 

still unavailable. The missed two pieces are the theoretical modeling of the build-up of 

TMI, and a theoretical explanation of the harmonics at TMI threshold. Even though the 

latter one is used to be explained as the modulation of pump or signal wave, the origin of 

this modulation still cannot be explained [ 93 ]. In addition, the other noise source, 

spontaneous thermal Rayleigh scattering, proposed by Smith [ 94 ] can be further 

investigated. The physics of this linearly scattering process, which is explained as the other 

triggering source of a TMI process, might be a key to understand the missed two pieces of 

TMI in high power fiber amplifiers. Other than these two parts associated to the 

understanding of TMI, a recently reported mitigation scheme based on the shift of the pump 

wavelength from 976 nm to the other wavelengths raises one more puzzling point [95]. The 

experimental results shows the pump wavelength is not only associated to the quantum 

defect but the dependency to the threshold of TMI as well as the modal oscillation 

frequency above threshold. These findings prove our understanding of TMI is very limited, 

and a further investigation is needed. Nonetheless, the focus of TMI research should be on 

the mitigation strategy for improving the power scalability of high average power fiber 

amplifiers. According to the calculation result introduced in Sec. 4.3 and 6.3, a bent P-CCC 

fiber is supposed a promising candidate to suppress TMI. Moreover, P-CCC fibers can also 

be applied to the suppression of SRS and the enhancement of DFWM. Thus, a well-

designed P-CCC fiber for the purpose of controlling different types of nonlinear 

interactions is desired. 

The third extendable topic is the nonlinear polarization evolution in high energy fiber 

amplifiers. The polarization evolution in a coiled high energy fiber amplifiers is not only 

dependent on the intensity distribution along the fiber and the coiled induced linear as well 
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as circular birefringence, but also on the thermal induced stress which is associated to the 

different thermal expansion coefficients of the doped core and un-doped cladding. 

Furthermore, the reason that the induced linear and circular birefringence in active CCC 

fiber is smaller than passive CCC fiber is still not clear. Overall, an in-depth knowledge on 

the mechanics of fused-silica fibers should be acquired.  

This section summarizes the direction to extend the research work in this dissertation. 
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