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ABSTRACT

Hardware considerations for signal processing systems: A step toward the
unconventional

by

Phil Knag

Chair: Zhengya Zhang

As we progress into the future, signal processing algorithms are becoming more com-

putationally intensive and power hungry while the desire for mobile products and low

power devices is also increasing. An integrated ASIC solution is one of the primary

ways chip developers can improve performance and add functionality while keeping

the power budget low. This work discusses ASIC hardware for both conventional

and unconventional signal processing systems, and how integration, error resilience,

emerging devices, and new algorithms can be leveraged by signal processing sys-

tems to further improve performance and enable new applications. Specifically this

work presents three case studies: 1) a conventional and highly parallel mix signal

cross-correlator ASIC for a weather satellite performing real-time synthetic aperture

imaging, 2) an unconventional native stochastic computing architecture enabled by

memristors, and 3) two unconventional sparse neural network ASICs for feature ex-

traction and object classification. As improvements from technology scaling alone

slow down, and the demand for energy efficient mobile electronics increases, such

optimization techniques at the device, circuit, and system level will become more

xiii



critical to advance signal processing capabilities in the future.
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CHAPTER I

Introduction

Signal processing algorithms are at the core of everyday life. As embedded ap-

plications continue to demand both high performance and low power consumption,

the hardware acceleration of these algorithms will become more critical. This work

discusses hardware for both conventional and unconventional signal processing sys-

tems and how integration, error resilience, emerging devices, and new algorithms can

be leveraged by signal processing systems to further improve performance and enable

new applications.

Hardware acceleration of signal processing algorithms has enabled new applica-

tions that require efficient, real-time processing of high bandwidth input in power

constrained environments such as satellites powered by solar panels of limited size

or mobile phones with limited battery capacity. At the same time, signal process-

ing algorithms are becoming more and more compute heavy and power hungry while

the desire for mobile products and low power devices is also increasing. In order

to accommodate the high performance and low power requirements of new applica-

tions, developers move from software based solutions such as central processing units

(CPU), general purpose computing on graphics processing units (GPGPU), and dig-

ital signal processors (DSP) to more custom hardware solutions such as application

specific integrated circuits (ASIC) and field programmable gate arrays (FPGA).
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In an ideal world, traditional scaling improvements associated with Moore’s law [7]

would lead to exponential performance and energy improvements in CPUs to accom-

modate the demands for new lower power and higher performance signal processing

applications. However, as transistors have become smaller, they have also become

leakier, which has made it difficult to further reduce threshold voltage in new process

generations. Therefore, in order to maintain performance, supply voltages cannot

be scaled linearly with smaller transistor feature sizes, and consequently the power

density of newer process nodes has increased while speed improvements have slowed.

The maximum performance of modern processors is largely limited by the processor’s

ability to dissipate heat. The term dark silicon has been used to describe the gen-

eral trend toward more chip area becoming inactive in order to meet thermal design

constraints [8].

The stagnation of energy and performance gains from process scaling alone has

led to a number of important changes in digital circuit design. One notable trend

is the use of parallelism to increase or maintain performance while lowering chip

clock speeds. Generally, reducing supply voltage leads to a quadratic reduction in

power consumption and linear reduction in speed, while reducing clock frequency

has a linear effect on power consumption. Therefore, energy efficiency can be im-

proved linearly by using parallelism in place of higher clock frequencies. This insight

has led to trends such as the use of multi-core processors in desktops and phones,

and GPGPU computing in supercomputing applications to improve energy efficiency

while improving performance. However, one major downside to parallelism is that

many applications are not easy to parallelize, and in the extreme case where they are

completely serial, the software may actually run slower on modern multi-processor

hardware than on a comparable single-core machine. In response to the need for

better single threaded performance, technologies such as turbo-boost from Intel [9]

allow for higher frequency operation if only a single core is in use. Turbo-boost takes

2



advantage of the extra thermal margin left by the reduced core activity, but this

technique provides marginal improvements. New innovations are needed to continue

this trend of exponential performance improvements in new process nodes.

In addition to trends in parallel processing solutions, there has also been a large

amount of growth in mobile devices including smartphones and tablets. Unlike desk-

tops and servers, mobile devices are constrained by limited battery energy storage and

thermal power dissipation limits. Device form factors, capabilities, and battery life are

often more critical selling points in the mobile space than raw processing horsepower.

These mobile design constraints have led to specialized, highly integrated mobile pro-

cessors that utilize low power techniques such as power gating, clock gating, and big

little architectures to extend battery life. One particularly important power saving

and cost saving technique has been the use of system-on-chip (SoC) processors. These

SoC processors integrate multiple specialized processing units for functions such as

audio/video decoding, image processing, and modem on a single chip. Specialized

hardware allows tasks to be performed much more efficiently by offloading intensive

CPU tasks to optimized hardware blocks. By integrating optimized hardware blocks

on a single die, power hungry IO in a multi-chip printed circuit board (PCB) solution

can be removed to further reduce power consumption. These optimized ASIC hard-

ware blocks are one of the primary ways chip developers can improve performance

and add functionality while keeping the power budget low.

This dissertation discusses ASIC design for both conventional and unconventional

signal processing systems, and how integration, error resilience, emerging devices,

and new neural network algorithms can be leveraged by signal processing systems

to further improve performance and enable new applications. Specifically this work

describes three case studies that are outlined below.
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1.1 A 64x64 Cross-Correlator with 128 Integrated ADCs for

Real-Time Synthetic Aperture Imaging

This work presents a 64x64 massively parallel mix signal correlator ASIC to

be used on a synthetic aperture microwave radiometry weather satellite in geosyn-

chronous orbit. The geostationary synthetic thinned array radiometer (GeoSTAR)

is a new type of microwave sounder that produces hourly three-dimensional images

of tropospheric temperature and humidity profiles from geostationary Earth orbit

(GEO). GeoSTAR builds upon the work of previous low Earth orbit (LEO) sounders

such as AMSU and SSM/T, and fills the gap left by current GEO infrared (IR)

sounders, which have difficulties with cloud cover. Normally, a GEO microwave ra-

diometer requires a massive scanning antenna with several meters of aperture to

achieve high-resolution real-time imaging. However, mechanical constraints and cost

constraints render this solution impractical. Alternatively, a geostationary synthetic

thinned aperture radiometer (GeoSTAR), which uses a 2-dimensional array of small

antennas to synthesize a large aperture, is more practical for high-resolution real-time

imaging. Due to the limited power budget of weather satellites, this correlator ASIC

is an enabling technology for this application and cannot be replaced by FPGA or

microprocessor based solutions.

In close collaboration with Prof. Michael Flynn’s group, we have demonstrated a

65nm CMOS, 17.9mm2, 1.5GHz 64x64 cross-correlator with 128 on-chip ADCs that

enables real-time synthetic aperture imaging. The design supports analog in and

digital correlation out, removing nearly 10W of power that would otherwise be needed

for I/O between separate ADC and digital correlator ICs. The prototype 1.5GS/s,

6.144Tcorrelation/s 64x64 correlator IC is designed for satellite-based radiometric

imaging of water in the atmosphere. The massively parallel design integrates 128

2b flash ADCs with tunable thresholds and 4096 algorithmically optimized digital
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correlators to reduce the measured energy consumption to 0.61pJ/correlation/cycle

at 1.5GHz, or 0.35pJ/correlation/cycle at 1GHz. A correlation efficiency greater than

90% is achieved for input signal levels above -30dBm.

As part of the 64x64 correlator development, two 65nm bulk complementary

metal-oxide-semiconductor (CMOS) digital application-specific integrated circuit (ASIC)

chips were designed, then tested in a heavy ion accelerator to characterize single-event

effects (SEE) to guide design decisions [4]. Test chip 1 was designed by my group

member Dr. Chia-Hsiang Chen, and I developed test chip 2. Test chip 1 incorporates

multiple simple hardened and unhardened test structures, and test chip 2 implements

a hardened and an unhardened small scale digital cross-correlator core. Our testing

results reveal the radiation effects on the low-voltage and high-frequency operations

of the ASIC chips. At a low supply voltage of 0.7 V, cross sections increase by a

factor of 2 to 5 at low linear energy transfer (LET), while the increase in cross section

at high LET is almost negligible. This small change in cross section suggests that the

charge conveyed by heavy ion has far exceeded the critical charge and that tuning the

supply voltage is not effective. Increasing the clock frequency increases the relative

importance of single-event transients (SET) compared to single-event upsets (SEU),

especially in hardened designs due to their better SEU immunity. The hardened DSP

core experiences a factor of 2 increase in cross section when its clock frequency is

increased from 100 MHz to 500 MHz. We were able to conclude from radiation test-

ing that the deep-submicron 65nm process works well in space environments, and the

64x64 cross-correlator is expected to incur about 1 error per week, which is acceptable

for this application.
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1.2 A Native Stochastic Computing Architecture Enabled by

Memristors

A two-terminal memristor device is a promising digital memory for its high in-

tegration density, substantially lower energy consumption compared to CMOS, and

scalability below 10nm. However, a memristor is an inherently stochastic device, and

extra energy and latency are required to make a deterministic memory based on mem-

ristors. Instead of enforcing deterministic storage by these costly measures, we take

advantage of the nondeterministic memory for native stochastic computing. In native

stochastic computing, the randomness required by stochastic computing is intrinsic

to the devices and does not require expensive stochastic number generation [10]. To

evaluate the technical approaches, we show by simulation a memristor-based stochas-

tic processor for gradient descent optimization and k-means clustering. The native

stochastic computing system based on memristors demonstrates key advantages in

energy and speed, and it will be best positioned for compute-intensive, data-intensive

and probabilistic applications.

1.3 Neural Network ASICs utilizing Sparsity for Feature Ex-

action and Object Classification

Artificial neural networks utilizing sparsity have emerged as a new powerful way

to preform feature detection and object classification for images and video. However,

state-of-the-art artificial neural network algorithms require high memory bandwidth,

and are inherently parallel. Therefore, neural network algorithms are poorly suited for

conventional Von Neumann computing architectures. As a result, CPU and GPGPU

software based implementations still remain relatively slow and power hungry for

real-time computing applications. A neural network ASIC solution is a much higher

performance and lower power implementation, and by utilizing sparsity, performance
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can be dramatically increased while memory bandwidth and communication can be

reduced.

1.3.1 A Sparse Coding Neural Network ASIC utilizing Sparsity for Fea-

ture Exaction and Object Classification

In this work, we present an ASIC that is designed to learn and extract features

from images and videos [11][12]. This work was a joint effort with my group members

Jungkuk Kim and Thomas Chen. My key contributions to this work were in initial

algorithm development and back-end synthesis and layout of the ASIC. The ASIC con-

tains 256 leaky integrate-and-fire neurons connected in a scalable two-layer network

of 8×8 grids linked in a 4-stage ring. Sparse neuron activation and the relatively small

grid keep the spike collision probability low to save access arbitration. The weight

memory is divided into core memory and auxiliary memory, such that the auxiliary

memory is only powered on for learning to save inference power. High-throughput

inference is accomplished by the parallel operation of neurons. Efficient learning is

implemented by passing parameter update messages, which is further simplified by

an approximation technique. A 3.06 mm2 65nm CMOS ASIC test chip is designed to

achieve a maximum inference throughput of 1.24 Gpixel/s at 1.0 V and 310 MHz, and

on-chip learning can be completed in seconds. To improve the power consumption

and energy efficiency, core memory supply voltage can be reduced to 440 mV to take

advantage of the error resilience of the algorithm, reducing the inference power to

6.67 mW for a 140 Mpixel/s throughput at 35 MHz.

1.3.2 A Sparse Deep Learning Processor for Object Classification

Recently, deep learning has grown to be a popular technique for object classifi-

cation. However, deep learning on a CPU is not practical for real-time applications

because of its computational requirements, especially in embedded applications. A
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common approach used in deep learning is a convolutional restricted Boltzmann ma-

chine (CRBM), in part because of the relatively lower computational and memory

requirements associated with convolutional networks compared to fully connected

networks. One interesting aspect of CRBMs is their use of sparse neuron activa-

tion in order to prevent the learning of trivial features. This use of sparse neuron

activation for learning better features has also been used in other neural network algo-

rithms, such as SAILnet and locally competitive algorithm (LCA) [13][14]. This use

of sparsity not only leads to better features but also very efficient high performance

hardware implementations since computational and memory bandwidth requirements

can be reduced by skipping zeros in the sparse vectors. However, hardware accelera-

tion through the use of sparsity comes at a cost of irregular data access patterns and

control flow that are unsuitable for parallel and streaming architectures with limited

independent random access memories.

This work demonstrates an architecture that smooths out the irregular access pat-

terns, and balances memory bandwidth and random access requirements in convolu-

tional neural networks to achieve a 3.3X power reduction and 1.74X area reduction

when compared to a dense architecture. The 1.40mm2 40nm CMOS core implements

a two-layer convolutional restricted Boltzmann machine (CRBM) for inference and

a support vector machine (SVM) classifier, and is capable of processing 1080p video

at 30 frames per second (fps). At the nominal supply voltage of 0.9V and 240MHz,

the processor achieves 261.6GOPS, equivalent to 898.2GOPS done by a non-sparse

processor while dissipating 140.9mW power. This work was a joint effort with my

group member Chester Liu.

1.4 Outline

Chapter II describes the 64x64 cross-correlator architecture developed for the

GEOstar synthetic aperture imaging weather satellite, which is a more conventional
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signal processing ASIC. The key design insights that lead to major power and area

savings will be discussed. Such improvements include a highly integrated mixed signal

design and the ability to use conventional unhardened D flip-flops while maintaining

acceptable error rates for the application.

Chapter III describes radiation testing of the two test chips used to guide design

decisions and predict the expected error rates of the 64x64 cross-correlator ASIC.

Chapter IV proposes an unconventional computing system that utilizes the ran-

dom temporal behavior of memristor devices, normally considered a device weakness,

to efficiently perform stochastic computing in a native architecture that removes the

need for costly pseudo-random number generators.

Chapter V presents a sparse coding neural network ASIC used to learn and ex-

act features from images and videos. The new and unconventional vision processing

hardware is based on the SAILnet algorithm. This algorithm has computing advan-

tages over more traditional vision processing algorithms, and is well suited for a fully

parallel ASIC implementation.

Chapter VI describes a sparse deep learning ASIC for object classification. A

sparse convolutional architecture significantly reduces the overhead of parallel random

access required for sparse parallel processing to achieve an area and power efficient

implementation capable of processing 1080p video at 30fps.

Chapter VII concludes this work, and summaries key takeaways from each chapter.
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CHAPTER II

A 64x64 Cross-Correlator with 128 Integrated

ADCs for Real-Time Synthetic Aperture Imaging

2.1 Introduction

A passive microwave radiometer for deployment on the next generation geostation-

ary (GEO) weather satellites will revolutionize the measurement of temperature and

water vapor density [15]. Because microwaves easily penetrate both clouds and precip-

itation, a microwave radiometer functions in all weather conditions. The deployment

at GEO provides continuous coverage over very large regions. Despite the all-weather

continuous wide coverage such a radiometer provides, a GEO microwave radiometer

requires a massive scanning antenna with several meters of aperture to achieve high-

resolution real-time imaging, which renders the solution impractical. Alternatively,

a geostationary synthetic thinned aperture radiometer (GeoSTAR), which uses a 2-

dimensional array of small antennas to synthesize a large aperture, is more practical

for high-resolution real-time imaging [15]. In this GeoSTAR scheme, every antenna

from the 2-dimensional array senses the microwave band thermal radiation from the

atmosphere and synthesizes a large aperture by measuring cross-correlations between

various pairs of antennas. In practice, signals received at the antennas are down-

converted to IF, digitized, and then cross-correlated to compute interference pattern
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for spatial frequencies that are determined by the spacing between antenna pairs.

Since each cross-correlation represents a coefficient of the spatial Fourier transform

of the image, real-time images can be obtained through an inverse Fourier transform.

Obtaining high resolutions images requires a large number of antennas. Given

the limited power budget, the large amount of processing needed to calculate all the

cross-correlations at a GHz IF frequency becomes the limiting factor. In previous

work, a 1b 64-channel digital correlator without ADCs was designed [16], but the

power-hungry 3.6GHz I/Os and signal routing create a huge bottleneck. In this

work, we present the first fully integrated 2b 128-channel 6.14Tcorrelation/s 64x64

cross-correlator with 128 on-chip ADCs, achieving analog in and digital correlation

out removing nearly 10W of power that would otherwise be needed for I/O between

separate ADC and digital correlator ICs. The massively parallel design integrates 128

2b flash ADCs with tunable thresholds and 4096 algorithmically optimized digital

correlators to reduce the measured energy consumption to 0.61pJ/correlation/cycle

at 1.5GHz, or 0.35pJ/correlation/cycle at 1GHz. A correlation efficiency greater than

90% is achieved for input signal levels above -30dBm.

This work was developed in close collaboration with multiple students from Prof.

Zhang’s group and Prof. Flynn’s group. Prof. Flynn’s students Chunyang Zhai

and Yong Lim jointly developed the ADC arrays, and John Bell developed the PCB

test board for final packaged design. Shuanghong Sun developed the 64x64 digital

correlator core with some guidance from myself. Back-end integration and verification

was done by myself with support from Thomas Chen. Initial chip testing FPGA

verilog developement was done Justin Correll with guidance from John Bell and

myself. Final chip testing and measurements was a joint effort by John Bell, Thomas

Chen, and myself. My most important contribution to this work was in back-end

integration and verification of the design.
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2.2 Architecture

The system level block diagram Fig. 2.1shows the millimeter wave receiver com-

posed of a 2D array of antennas mixing the 128 500MHz signals down to baseband

that then feed into 64x64 correlator with on-chip ADCs. Integrating ADCs and a dig-

ital correlator core on the same die eliminates the 384 LVDS power-hungry high-speed

I/Os that would otherwise be needed for data and clock routing,, saving at least 10W

of power. The 128 1GS/s 2b resolution radiation hardened ADCs digitize the 128

analog inputs to an 8b equivalent noise level, and 3 DACs in each ADC provide offset

correction and variable gain adjustment. The core uses 4096 correlators operating in

parallel at 1GHz to compute the cross-correlations between 2 sets of 64 inputs every

clock cycle. These correlations are accumulated over a 10ms integration window. To

capture signal statistics for calibrating the GeoSTAR instrument, the core uses 128

totalizers, 1 for each of the 128 ADCs, to produce a histogram over the integration

window. The cross-correlations and signal statistics are read out via a 16b readout

bus within 1ms after each integration window. The 64x64 cross-correlator ASIC also

had to be designed as a flip chip in order to support the 576 IO pins needed for both

signaling and power delivery.

The digital correlator core dominates the overall power consumption. To reduce

complexity and power, we use a simplified correlation by scaling and rounding to

reduce the correlation bit width from 5b to 3b. The simplification has a very minor

impact on SNR and can be compensated by a 2% longer integration window. To

improve frequency, the correlator is pipelined by breaking up the critical correlation

accumulation into a short 3b LSB stage, and a 24b MSB stage implemented as a

serial counter as shown in Fig. 2.2. Correlation output of each cycle is accumulated

by the LSB stage that produces a carry as the enable to the MSB counter. To reduce

the capacitive loading on the correlator, the readout bus is hierarchically structured

to limit the loading seen by each correlator, significantly improving the maximum
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Figure 2.1: Top-level block diagram of the 64x64 cross-correlator chip integrated with
128 ADCs.

frequency. The hierarchical readout bus runs at a divided clock rate to meet the 1ms

readout, reducing switching power and allowing drivers and buffers to be downsized

to save power and area.

2.3 Design for Test

Multiple scan chains and linear feedback shift registers (LFSR) were added to the

design to facilitate testing and verification by providing observability and isolation

between the analog and digital designs. Boundary and internal scan chains in the

digital core allow for verification of low speed digital circuit functionality in complete

isolation from analog components. The boundary scan also provided low speed ob-

servability of ADC outputs isolated from the digital system. The LFSRs provided

the ability to generate high speed test vectors for at speed verification of the digital

system isolated from the analog system. These test structures were also quite useful

in initial chip bring-up and debugging.
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Figure 2.2: Corelator cell design and simplified correlation arithmetic.

2.4 Radiation Testing Conclusions

The correlator core design needs to ensure robust operation in the space envi-

ronment, where abundant high-energy particles induce soft errors due to single-event

effects (SEE). The 150Kb registers on-chip storing correlations and signal distribu-

tion are the most vulnerable. Conventional radiation hardening techniques, such as

dual interlocked storage cell (DICE) [1, 2] and triple modular redundancy (TMR),

incur extra power that challenges the viability of the GeoSTAR system. We carried

out heavy-ion radiation tests to measure the error sensitivity of small-scale 5x5 cross-

correlator test chips [4]. By fitting the test data, as shown in Fig. 2.3, and applying

the CREME tool [17], we predict that an unhardened 64x64 correlator core operating

in GEO will experience approximately 0.163 errors/day, while the hardened version

using DICE and TMR will experience 0.0057 errors/day. The higher error rate of

the unhardened design is still sufficiently low for GeoSTAR as long as the chip is

resettable, and unhardened design consumes significantly lower power. Therefore,

we choose the unhardened digital core design. However, the ADC latches are still
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Figure 2.3: Error sensitivity measurement obtained from the heavy-ion radiation test-
ing of a 5x5 correlator test chip. Soft error rate of the 64x64 correlator is
predicted based on the fitting.

hardened due to the fewer number of ADCs and the negligible cost.

2.5 Chip Measurements

The 1GHz 128-channel correlator IC is fabricated in 65nm CMOS, and occupies

17.9mm2, with 5.9mm2 of digital correlators and totalizers in the center and 128

ADCs divided into 4 sections along the periphery. The device is flip chip bonded to

a custom-designed 576 pin 8-layer substrate. The large pin count supports the large

analog I/O requirement for the 128 ADCs and large number of power and ground

pins. To characterize the effectiveness of the correlators for the GeoSTAR instrument,

we measure the correlation efficiency as the ratio of correlations obtained from the

test chip to ideal correlation values. Fig. 2.4 shows that the correlation efficiency

exceeds 90% when the signal levels are above -30dBm.

At 1.0V and 1.5GHz, the chip digitizes 128 analog inputs with 2b ADCs, and
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Figure 2.4: Correlation efficiency of the test chip.(r = 100% represents when the two
channels receive 100% correlated inputs; r = 10% represents the two chan-
nels receive 10% correlated inputs.)

performs 6.144T 2b correlation/s, consuming 3.73W or 0.61pJ/correlation/cycle. To

meet the required 1GHz operation, the supply voltage can be reliably scaled down to

775mV, reducing the power to 1.44W and energy to 0.35pJ/correlation/cycle. The

power and frequency measurements are shown Fig. 2.5. Compared to prior work [16]

(Table 2.1), this design doubles the number of correlators, doubles the bit width from

1b to 2b, and integrates ADCs on chip to achieve analog in and digital correlation

out. Note that doubling the bit width to 2b significantly improves sensitivity and

reduces correlation time [18]. The die photo is shown in Fig. 2.6. By dramatically

reducing total power consumption and substantially increasing integration, this work

helps make passive radiometry practical in GEO.
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Figure 2.5: Measured power consumption of the IC and the power consumption of
the digital correlator core.

Table 2.1: Comparison with Prior Work

[15]
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Figure 2.6: Chip microphotograph
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CHAPTER III

Soft Error Testing of Small Scale Test Structures

for the 64x64 Cross-Correlator ASIC

3.1 Introduction

To establish a proof of concept and to mitigate risks of the full scale 64x64 corre-

lator development for the radiation of a space environment, two test chips that were

fabricated in a Taiwan Semiconductor Manufacturing Company (TSMC) 65 nm bulk

CMOS technology [4]. My fellow group member, Chia-Hsiang Chen, designed test

Chip 1, and I designed test Chip 2. Radiation testing was carried out jointly. Chip 1

contains common ASIC building blocks, including unhardened flip-flops of different

sizes, and custom-designed hardened dual-interlocked storage cell (DICE) flip-flops

(Fig. 3.1(a)) [1, 2] and triple modular redundant (TMR) flip-flops (Fig. 3.1(b)) [19],

and various combinational depths and sizes. Chip 2 contains two small scale 5x5

digital correlator cores, one built using unhardened flip-flops and the other using

hardened DICE and TMR flip-flops. Heavy-ion radiation testing was carried out at

the Texas A&M University K500 superconducting cyclotron facility [20]. Our mea-

surements cover an array of heavy ions from neon to gold for chip 1 and from helium

to silver for chip 2. The two test chips allow us to characterize single-event effects

(SEE) at both circuit and system level.

19



Single-event effects (SEE), including single-event upset (SEU), multiple bit upset,

single-event transients (SET), and latchup, present a major challenge to the function

and reliability of integrated circuits in spaceflight systems [21, 22]. Research has been

conducted in the past to characterize SEE [23, 24], and overcome SEE through circuit

design, e.g., by increasing the critical charge, or Qcrit, through upsizing and circuit

topology [25], by adding circuitry to prevent upsets following temporal or logical

masking principles [26, 27], or by adding redundant information for error checking

[28, 29].

A comprehensive heavy-ion radiation experiment of 180 nm to 28 nm flip-flops

shows that as CMOS technology scales, D flip-flop SEU cross sections decrease and

approach those of the hardened flip-flops [30]. Without additional layout spacing,

the difference between unhardened and hardened flip-flops is narrowing. Therefore it

is plausible to use unhardened flip-flops in deep submicron ASIC designs to achieve

better area and energy efficiency. The effect of supply voltage and clock frequency

on 28 nm flip-flops and combinational circuits [31] were investigated in an alpha par-

ticle radiation experiment. Two important conclusions were drawn: (1) the supply

voltage has a strong impact on the alpha particle SEU of flip-flops, while the com-

binational circuits are relatively unaffected by supply voltage variations, and (2) the

clock frequency has a much stronger impact on SET compared to SEU [32]. Therefore

low-voltage and high-frequency chips will most likely incur higher error rates due to

both SEU and SET.

Recent studies have demonstrated the radiation effects of 65 nm and sub-65 nm

CMOS circuits [30, 31], but the heavy-ion testing results are not entirely available.

This work fills in the blanks, e.g., voltage scaling effect in heavy-ion testing, which

is important for low-power operations. We also evaluate the effectiveness of common

radiation hardening techniques in a heavy-ion radiation environment to show the

vulnerabilities of hardened designs, e.g., hardened storage cells could be more error
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sensitive due to the change of clock frequency than unhardened ones.

3.2 Test Chip 2

Test chip 2 measures 1.5 mm × 1.0 mm in size, and it consists of two digital signal

processing (DSP) cores, an unhardened core and a hardened core, that compute cross-

correlations. Test chip 2 was developed as part of the geostationary synthetic thinned

aperture radiometer (GeoSTAR) project [33, 34] led by the Jet Propulsion Laboratory.

Each DSP core computes the cross-correlations of 5 inputs with another set of 5 inputs

every clock cycle, and accumulates the correlations for 10 ms. Following each 10-ms

integration cycle, the correlation values are read out, and the values are reset for the

next integration cycle.

Test chip 2 was synthesized using standard cells of logic gates and flip-flops. The

unhardened core uses unhardened flip-flops, while the hardened core incorporates

custom-designed hardened DICE flip-flops for datapath and TMR flip-flops for control

to provide stronger SEE protection. The layouts of DICE and TMR flip-flops were

drawn to ensure adequate spacing between sensitive nodes. These standard cells

were used as the basic units for synthesis, place and route. Test chip 2 provides self

test capability by generating test vectors on chip using linear feedback shift registers

(LFSR). The layout and microphotograph of test chip 2 are shown in Fig. 3.2. The

unhardened core measures 0.28 mm × 0.28 mm and the hardened core is 0.33 mm ×

0.33 mm. The area outside the cores is filled with tie cells, filler cells and power and

ground routing.

3.3 Test Setup

The ion beam testing was carried out in two 16-hour windows. In ion beam testing,

a test chip is mounted on a test board that is connected to a field-programmable gate
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Figure 3.3: Radiation test setup.

array (FPGA) board using a high-speed connector. During the radiation testing,

the lids of the test chips are removed and the chips are fully uncovered as shown in

Fig. 3.3.

σ(LET) =
N

MΦ
(3.1)

where σ is cross section per bit as a function of LET, N is the number of observed

upsets, M is the number of flip-flops or bits, and Φ is the time-integrated flux or

fluence.

The average flux applied in our tests ranges from 1.17×105 to 2.63×105 ions/cm2·s

for chip 1, and from 2.76×105 to 1.42×106 ions/cm2·s for chip 2. The ions used and

their LET values are listed in Table 3.1.

Chip 2 was tested at a 100 MHz and a 500 MHz clock frequency using random

input vectors generated by on-chip LFSRs. Each test run consists of 10,000 10-

ms integration cycles, each followed by a readout. The continuous testing requires

frequent readouts from the ASIC. To automate the testing, we used a Python script
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Table 3.1: Ions applied in radiation testing and their nominal LET

Ion LET(MeV-cm2/mg) Ion LET(MeV-cm2/mg)

He 0.106 Kr 36.2

N 1.4 Ag 44.5

Ne 2.8 Xe 54.7

Ar 8.9 Au 88.4

to pre-compute the expected outputs in each run and store them in the memory

on FPGA before each run. The Python script also controls the supply voltage and

clock frequency of the ASIC. Unlike in the test of chip 1, the FPGA clock is not

synchronized with the chip 2 clock. To start each 10-ms integration cycle, the FPGA

activates a set of control signals to chip 2, and chip 2 will then run independently of

the FPGA. The FPGA polls the status of the integration complete signal from chip 2.

Upon detecting integration complete, the FPGA checks the ASIC outputs for errors

by comparing with the pre-computed expected outputs stored in memory. An error

is recorded if any bit in a set of cross-correlation values is wrong. Error counters are

accumulated before another integration cycle is initiated. Each test run consists of

10,000 10-ms integration cycles, or 1 minute and 40 seconds. After each test run, the

error counters are downloaded from the FPGA, and the ion beam or the beam angle

is changed before the next run. The automated test setup is illustrated in Fig. 3.4.

An error recorded in the radiation testing of chip 2 can be caused by a single

SEE occurrence or multiple occurrences during a 10-ms integration cycle. The error

count is an indication of the effect of SEE on this particular DSP core over a given

time period, rather than a measure of the number of SEE occurrences. We report

the test chip 2 results in cross section per bit by normalizing the number of errors by

the number of flip-flops in the design and the fluence over the integration cycle as in

equation (3.1). The reported cross section per bit is lower than the actual number

of SEE occurrences as multiple upsets would only be seen as one. However, it is a
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Figure 3.4: Illustration of automated testing of chip 2.

reasonable estimate since in most of the integration periods, we had no or very few

errors.

3.4 Radiation Hardening by Redundancy

Radiation-hardened DICE [1, 2] and TMR flip-flops [3] are commonly used in

spaceflight systems to offer better protection against SEE. In low-LET neon (2.8

MeV-cm2/mg) and argon (8.9 MeV-cm2/mg) testing of chip 1, DICE and TMR flip-

flops provide at least one order of magnitude improvement in cross section per bit

compared to the unhardened D flip-flops [4]. At higher LET levels (above 50 MeV-

cm2/mg), DICE and TMR become less effective, which is partly due to the lack of

additional layout spacing between redundant storage nodes [30] and partly due to the

increasing multiple bit upsets. Heavier ions such as xenon (54.7 MeV-cm2/mg) and

gold (88.4 MeV-cm2/mg) deliver much more energy and likely induce more multiple

bit upsets [35], making DICE and TMR less effective at high LET levels.

In general, scaling makes DICE and TMR less effective because scaling shrinks the

circuit layout and redundant copies in DICE and TMR are physically placed closer to

the primary copy [30]. Therefore it becomes more likely for both the redundant and
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primary copies to be affected by a particle strike, especially at high LET levels. To

make DICE and TMR more effective, redundant copies need to be placed further apart

for isolation at the cost of area. Cell interleaving [36, 37] is a promising approach,

but it adds extra overhead for metal routing. The extra and longer wiring increases

the average capacitive loading, resulting in a higher power consumption, longer delay,

and lower clock speed.

3.5 Angle Effects

Due to the limitation of the setup and the way that the ASIC board is connected

to the FPGA board, we were only able to change the tilt angle at a fixed 90◦ roll

angle for chip 1, and a fixed 0◦ roll angle for chip 2. We observe that increasing the

tilt angle for chip 1 has no consistent effect on the chip 1 results, but increasing the

tilt angle for chip 2 increases its cross sections. The difference is attributed to the

roll angles. Standard cells are placed in rows. At a 90◦ roll angle, the ion beam path

is perpendicular to the standard cell rows, while at a 0◦ roll angle, the ion beam path

is parallel to the standard cell rows, making multiple bit upsets more likely.

3.6 Latchup and Total Ionization Dose

Compared to the recent reports on latchup in deep submicron processes [38, 39,

40, 41], latchup was not observed in our testing. There are three possible reasons to

explain the absence of latchup in our testing: (1) the supply voltage in our testing

was 1.0 V or 0.7 V, low enough that latchup may never occur. In [38, 39, 40, 41], a

nominal 1.2 V supply voltage was used; (2) our testing was done at room temperature

(20◦C); and (3) tie cells (body contacts) are placed at regular intervals and extra tie

cells are used as fillers in our designs. Our results also indicate that the two 65 nm

test chips built in a bulk CMOS process are immune to total ionization dose (TID)
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effects above 100 krad(Si) TID. TID effects such as thresholds shifts, latchup events

or permanent damages have been a problem in older CMOS technology nodes. Chip 2

was tested up to a TID of 1950 krad(Si) with no noticeable degradation in the chip

functionality, performance or power consumption.

3.7 Supply Voltage Scaling

Supply voltage scaling reduces Qcrit and makes circuits more vulnerable to upsets.

The results of 100 MHz dynamic testing of chip 2 at 1.0 V and 0.7 V are illustrated

in Fig. 3.5. The hardened DSP core equipped with DICE flip-flops for datapath and

TMR flip-flops for control exhibits an order of magnitude lower cross section per bit

than the unhardened DSP core at low LET levels, but the difference is diminished

at high LET levels. Voltage scaling makes a less pronounced difference, and the

difference also becomes negligible at high LET levels. Attempts to increase Qcrit by

increasing the supply voltage have little effect at high LET levels because the injected

charge by the heavy ions is already much higher than Qcrit. The insight confirms that

supply voltage scaling does not necessarily lead to a large increase in cross section,

making it a viable option for power reduction in spaceflight ASIC chips if a small

increase in cross section is acceptable.

3.8 Clock Frequency Effects

Clock frequency affects the cross section following two mechanisms: at a high

frequency, frequent sampling causes more SET-induced errors; at a lower frequency,

fewer SETs are registered (known as temporal masking), but flip-flops need to retain

data for a longer period, which makes them more vulnerable to SEUs. Frequency

shifts the relative importance of SET and SEU. SEU dominates at a lower frequency,

and more SET-induced errors are expected at a higher frequency.
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Figure 3.5: Cross section per bit of unhardened and hardened DSP cores at supply
voltage of 1.0 V and 0.7 V (clock frequency of 100 MHz).

The results of chip 2 frequency testing are shown in Fig. 3.6. In the unhardened

DSP core, increasing the clock frequency from 100 MHz to 500 MHz has little effect

at low LET levels, indicating the dominance of SEU at low LET. At high LET levels,

the cross section per bit at 500 MHz is slightly higher than at 100 MHz, which is

attributed to the combined effect of more SETs under high energy particle impact

and high frequency sampling that causes more SET-induced errors.

The hardened DSP core shows a stronger frequency dependence than the unhard-

ened core across a wide range of LET levels. The DICE and TMR flip-flops in the

hardened core offer a better protection against SEUs, thus the SEU is noticeably

lower than in the unhardened core, especially at low LET levels. Increasing the clock

frequency in the hardened core causes SET-induced errors to become relatively more

significant.

The high frequency test results suggest that hardening flip-flops alone is insuffi-

cient for ASIC chips operating at 100 MHz or higher clock frequency. SET-induced

errors play an important role at a high clock frequency, and it is necessary to incor-
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Figure 3.6: Cross section per bit of unhardened and hardened DSP cores at 100 MHz
and 500 MHz (1.0 V supply voltage).

porate techniques to detect and overcome SET for the complete protection.

3.9 Comparison to Test Chip 1

The results from test chip 1 were in good agreement with test chip 2, confirming

the validity of the findings [4]. Test chip 1 also did not see any latchup or degradation

in the chip functionality, performance or power consumption up to its tested TID of

634 krad(Si). Also, test chip 1 saw similar weak voltage scaling effects on cross section

when scaling supply voltage from 1.0 V to 0.7 especially at higher levels as shown in

Fig. 3.7 [4].

The test structures in test chip one also allowed for additional findings such as

the ineffectiveness of flip-flop upsizing, the weak dependence on logic depth on cross-

section when testing at 50MHz, and a asymmetric SEE behavior in flip-flops favoring

0-to-1 upsets over 1-to-0 upsets [4]. Chip 1 also allowed for the comparison of different

flip-flop structures directly since any given test structure did not mix together flip-flop
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designs.

3.10 Conclusion

We evaluate SEE using two 65 nm bulk CMOS ASIC test chips. Test chip 1 con-

tains shift register chains as test structures to evaluate the effectiveness of hardening,

sizing, and the relative influence of SET. Test chip 2 contains DSP cores to evaluate

the impact of SEE on system errors.

Our test results show the heavy-ion radiation effect on the low-voltage and high-

frequency operations of the ASIC chips. At a low supply voltage of 0.7 V and low

LET, the cross sections of flip-flops and DSP cores increase by a factor of 2 to 5.

At high LET, the increase in cross sections is almost negligible, suggesting that the

charge conveyed by heavy ion strikes has far exceeded the critical charge and tuning

the supply voltage is ineffective. Increasing the clock frequency increases the relative

importance of SET especially in hardened designs due to their better SEU immunity.
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The cross section of the hardened DSP core increases by a factor of 2 when its clock

frequency is increased from 100 MHz to 500 MHz, whereas the cross section of the

unhardened DSP core increases by a much smaller amount at a higher clock frequency.

The results from chip 1 agree with chip 2, confirming the validity of the findings.
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CHAPTER IV

A Native Stochastic Computing Architecture

Enabled by Memristors

4.1 Introduction

Continued scaling of CMOS technology to the nanometer scale faces challenges

of increasing power dissipation due to leakage and escalating variations [42]. To

sustain scaling beyond CMOS, unconventional device structures and new materials

have been proposed with the expectation that they may be able to complement or

replace CMOS devices in the future. To incorporate new devices and materials in

functional electronic circuits, two common approaches are usually taken: (1) new

nanoscale materials or devices used as a channel replacement to improve the mobility

of an otherwise conventional transistor geometry, but problems with transistor scaling

including power consumption, integration density, and interconnect complexity still

remain; (2) non-transistor architectures based on new materials and devices that hold

the promise of breaking the barriers of transistor scaling by enabling new computing

paradigms are used. A crossbar structure [43, 44, 45, 46] is one such architecture

that is made using two sets of nanowire electrodes that cross each other and form an

interconnected network of two-terminal devices (Figure 4.1).

A two-terminal device can be made of a pair of top and bottom electrodes and
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Figure 4.1: Current-voltage curve of a digital memristor showing hysteretic resistive
switching characteristic with high dynamic range.

an active material sandwiched in-between. Proper choice of the material can lead

to hysteretic resistance switching [47, 48, 49, 50, 51, 52, 53, 54] as illustrated in

Figure 4.1. Such a device essentially acts as a nonlinear resistor with memory, and

has been termed “memristor” [55, 56, 47].

4.1.1 Digital memristor device

This work focuses on the use of “digital” memristors as described in [57]. A digital

memristor stores binary information, i.e., the low resistance on-state = “1” and the

high resistance off-state = “0”, with abrupt resistance changes with on/off ratio on

the order of 106 as shown in Figure 4.1. These digital memristors are “digital” in

the sense that they typically have two stable resistance states at given programming

conditions, and the switching transition from the high resistance off-state to the low

resistance on-state is abrupt.

The high dynamic range of the memristor devices simplifies the read and write op-

erations and improves the robustness. To write a “1” to a memristor, a programming

pulse of sufficient duration and voltage VDDwrite is applied to switch the memris-
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Figure 4.2: Read, write and erase a digital memristor device.

tor to the on state. To erase a memristor, i.e., write a “0”, a negative VDDerase

voltage is applied to return the memristor to the off state. To read the memristor’s

value, a reading resistor is connected in series with the VDDread supply as shown in

Figure 4.2. The high resistance dynamic range allows the memristor values to be

read to a nearly full swing digital voltage with a simple resistor divider circuit. Note

that VDDread is usually much lower than VDDwrite to minimize the possibility of

disturbing a memristor’s state.

The digital memristors can be built using a M/I/M structure with two conducting

electrodes sandwiching a thin insulator in the middle. The abrupt switching char-

acteristic is the result of the formation of a conducting filament that grows when a

voltage is applied as shown in Figure 4.1. When this filament bridges the gap, the

memristor has a low resistance. When a voltage applied in the opposite direction, the

filament will shrink and eventually break, putting the memristor in a high resistance

state.

Recent results have demonstrated functional prototypes of digital memristor de-

vices at feature sizes below 10 nm, switching times below 10 ns, endurance over 1012
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write/erase cycles, retention time on the order of years, and low programming current

under 1 µA, but without the same problems plaguing transistor scaling [50, 53, 58, 54].

Memristor crossbar structures promise key advantages over CMOS transistor circuits

in ultra-high density storage, high-bandwidth connectivity, and convenient reconfig-

uration. Of particular interest is that memristor devices are CMOS compatible [59],

thus a memristor-CMOS structure can be built to take advantage of memristor-based

high-density storage and routing and efficient CMOS logic circuits. A functional

memristor-CMOS prototype has already been demonstrated, consisting of a high-

density memristor crossbar vertically integrated on top of CMOS logic circuits, that

can be reliably programmed [60].

4.1.2 Memristor as an inherently stochastic device

Memristor devices, based on thin metallic wire electrodes and amorphous or oxide

switching layers, are expected to suffer from lower yield and larger variation than

conventional devices based on crystalline silicon. Common variation sources include

electrode line-edge roughness causing device to device variations, and film thickness

irregularity leading to device parameter uncertainty. These spatial variations can be

mitigated through variation-aware methods which has been a well studied topic in

nanometer circuit designs.

Compared to spatial variations, the more challenging problem with memristor

devices is the significant randomness from temporal variations. A memristor’s re-

sistance switching is stochastic [5, 61, 62, 63], rather than deterministic as in con-

ventional transistor-based devices. For a “digital” memristor that provides a large

dynamic range between logic levels, the change in resistance is associated with the

formation and rupture of a dominant, nanoscale conducting filament (either caused

by metallic bridge formation [48, 49, 64] or by stoichiometric change in the switch-

ing material [65, 66]). Such a resistance switching can now be predicted by physics
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Figure 4.3: Histogram of the measured switching time from a single 100nm memristor
device. Blue line is a Poisson fit [5].

models, which show that the ion oxidation and transport processes during filament

formation are thermodynamically driven and are stochastic in nature for a given fila-

ment [48, 5, 61, 62, 63, 67]. That is, even for the same filament in the same device with

the same applied voltage, the switching time is broadly distributed with a statistical

average of tsw. This hypothesis has been confirmed by experimental studies that also

shown that the switching time follows a Poisson distribution with a characteristic,

average time τ (Figure 4.3) [5, 61]. These results all point to the fact that memristors

are inherently stochastic devices, and the same operation of the same exact memrsitor

device will be accompanied by significant, inherent temporal variations.

Improving memristor’s reliability is an active research area, and several approaches

have already been proposed: (1) a feedback mechanism to check the output upon

every write and adjust the programming voltage and pulse width [68]; (2) error-

control coding (ECC) to correct possible errors due to variations [69, 70]; (3) excess

programming voltage and long pulse width to guarantee the correctness of each write.

Each approach has its own drawback: feedback checking in each write increases the
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write delay; ECC becomes ineffective when the error rate is high; and the brute-

force approach of excess programming voltage and long pulse width costs energy and

reduces device lifetime. The extra overhead of the above approaches diminishes the

memristor’s advantages in density and energy efficiency.

Instead of trying to force the non-deterministic device to operate deterministically,

a more promising approach is to design a stochastic computing paradigm to cope with,

and even take advantage of, the non-determinism, which is the rationale behind this

work [10].

4.1.3 Stochastic computing: preliminaries and challenges

Stochastic computing was invented in 1967 as a low-cost form of computing based

on probabilistic bit streams [71, 72, 73]. For example, the number 0.5 can be repre-

sented in stochastic computing by a stream of 8 bits {0, 1, 1, 0, 1, 0, 0, 1} such that

the probability of finding 1 in a bit is 0.5. In the same way, the number 0.25 can

be represented by {0, 1, 0, 0, 0, 1, 0, 0}. Compared to the common binary numeral

system, the probabilistic bit stream representation is not unique, but a longer bit

stream provides a higher precision. The bit stream is more error-tolerant than the

conventional binary system, as a bit flip introduces an equivalent least significant

bit (LSB) error. To use stochastic computing in a binary system, binary numbers

are first converted to bit streams and the output of stochastic computing has to be

converted to binary.

Stochastic computing fills the niche of low-cost computing, as arithmetic opera-

tions can be efficiently implemented. As an example, the multiplication of a and b

can be done using an AND logic gate, as shown in Figure 4.4. The operation can

be understood as follows: by definition of probabilistic bit streams, Pa represents the

probability of any bit in stream a being 1; similarly Pb represents the probability

of any bit in stream b being 1; and the bitwise AND operation of the two streams
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Pa = 0.5

Pb = 0.25

Pa × Pb = 0.125

Figure 4.4: Stochastic multiplication by a logic AND gate.

produces an output stream, in which the probability of having 1 at a bit position is

Pa × Pb, thereby completing the multiplication. The above calculation assumes that

the two input bit streams are independent. Correlation between the streams degrades

the accuracy of stochastic computing. For example, if we multiply two identical bit

streams represented by a using an AND gate, the product will be Pa, not Pa × Pa.

The independence assumption requires the bit streams to be randomized via

stochastic number generator (SNG), as shown in Figure 4.5 [6]. The randomiza-

tion cost presents a significant overhead in stochastic computing, sometimes as high

as 80% of the total resource usage [74]. Note that not only the inputs need to be

randomized, reshuffling is also necessary at intermediate stages to mitigate the corre-

lations introduced by reconvergent fanouts. The necessity of randomizing bit streams

by numerous SNGs partially defeats the simplicity of stochastic computing.

The extra cost of randomization and binary conversion, along with limited preci-

sion, have indeed prevented the adoption of stochastic computing. Despite the slow

progress, continued research has made the following advances: (1) a large collection

of logic, arithmetic and matrix operations can now be done in stochastic computing

[74, 6, 75, 76, 77, 78], all of which share the elegance of very simple designs; and (2)

special applications, including artificial neural networks [79, 80, 81], image processing

[74, 82], and decoding of low-density parity-check (LDPC) codes [83, 84] have been

successfully demonstrated using stochastic computing. Note the common character-

istics among these special applications: (1) error-tolerant and (2) compute-intensive,

and the low-cost stochastic computing promises substantial reduction in complexity.
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These special applications are of growing importance, as they are closely related

to the most rapidly growing application domains including multimedia (image and

video), informatics (sensor and social networks), and intelligence (recognition and

learning), all of which demand orders of magnitude improvement in compute capa-

bility and energy efficiency. High-density, energy-efficient post-CMOS devices such

as memristor offer the potential of overcoming the mounting challenges, but the en-

suing problem of nondeterministic switching needs to be addressed in a scalable and

cost-efficient way.
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4.2 Memristor-Based Native Stochastic Computing

We develop a “native” stochastic computing to exploit the non-determinism in

memristor switching for stochastic computing, as opposed to the conventional at-

tempts to fix the non-determinism [69, 70, 68]. The proposed stochastic computing

is “native”, as the randomness needed in stochastic computing will be intrinsic to

the devices and no special addition is needed to generate or ensure randomness. In

doing so, we not only obtain the randomness for stochastic computing for free, but

also eliminate all the extra energy and complexity required for the deterministic use

of memristors. The native stochastic computing based on memristors enables a fun-

damentally efficient system that is not possible with either memristor or stochastic

computing alone.

The envisioned native stochastic computing system is pictured in Figure 4.6. The

system consists of memristor memories integrated with stochastic arithmetic circuits

in CMOS. The system accepts analog input to be converted to bit stream by a mem-

ristor memory. Basic concepts of stochastic bit stream generation have been recently

demonstrated experimentally by us [85, 86]. Stochastic computing is performed based

on bit streams and the output bit stream is written to memristor memory. Every write

to memristor memory allows a new bit stream to be produced (assume that memris-

tor memory is reset before write). The self-contained system described by Figure 4.6

is entirely based on bit streams and the binary to bit stream conversions are elim-

inated. In this way, the native stochastic computing overcomes two hindrances of

classic stochastic computing: (1) the large overhead of stochastic number generation,

as randomness does not naturally exist in purely CMOS circuits and must be created

algorithmically [87, 74], and (2) the extra conversion steps between binary and bit

streams, as the prior designs were never intended to be self-contained systems.

The native stochastic computing system takes advantage of both emerging mem-

ristor devices and simple stochastic arithmetic circuits. Since no excess voltage or
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Figure 4.6: A native stochastic computing system using memristor-based stochastic
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timing margins are needed to ensure determinism, good energy efficiency can be

achieved. Simple stochastic arithmetic circuits can be easily parallelized in a flat

topology to deliver high performance. The lack of dependence between bits in a bit

stream, in contrast to the bit-level dependence in a binary system, shortens the critical

paths and simplifies wiring (an illustration is shown in Figure 4.7, where parallelizing

a binary adder results in a complex structure and wiring as in Figure 4.7(a), com-

pared to a parallel stochastic multiplier that can be efficiently implemented in a flat

topology with simple wiring as in Figure 4.7(b)). The native stochastic computing is

inherently error-resilient, as the stochastic memory and arithmetic provide tolerance

against runtime variations and soft errors.

Note that the native stochastic computing is an end-to-end system that accepts

analog inputs directly. Analog inputs may need to be conditioned, e.g., amplified,

and a sample and hold is also needed for writing to the memristor. In comparison,

the classic stochastic computing is an entirely digital system that requires analog-to-

digital conversion to accept analog inputs.

In the following sections, we elaborate on the new technical approaches for each

of the three important parts of a native stochastic computing system: (1) creating

probablistic bit stream using memristors, (2) writing bit stream to memristors, and

(3) carrying out native stochastic computing for practical applications. These three

parts are annotated in Figure 4.6.
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Figure 4.7: (a) Binary Kogge-Stone look-ahead adder; (b) parallel stochastic multi-
plier.

4.3 Stochastic Programming

A memristor stores 0 in its off (high resistance) state and 1 in its on (low resistance)

state. Before programming, the memristor must be reset by appling a negative voltage

bias until the memristor enters the high resistance 0 state. To write 1 to a memristor

in the 0 state, a positive voltage pulse is applied to turn on the memristor. Energy

is consumed in this process, and even after the memristor completes the switching,

static current remains on as long as the pulse is on. It is therefore desirable to turn

off the pulse whenever the memristor turns on.

Memristor switching is a stochastic process. Based on prior research, the time to

switch follows a Poisson distribution [5]. Given a programming voltage V and pulse

width t, the probability of switching is P (t) = 1− e−t/τ , shown in Figure 4.8, where

τ is the characteristic switching time that depends on the programming voltage:

τ(V ) = τ0e
−V/V0 (τ0 and V0 are fitting parameters) [5, 61]. For an intuitive idea,

if we use a pulse width of t = τ , P (τ) = 0.632, the success rate is too low for a
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Figure 4.8: Memristor switching probability.

functional memory. If we increase the pulse width to t = 10τ , P (10τ) = 0.99995, the

success rate improves but the programming speed is 10 times slower and a significant

amount of energy is wasted. Alternatively, we can increase the programming voltage

V to shorten the necessary pulse width, but it also consumes extra energy and a high

voltage accelerates device wearout and shortens its lifetime.

4.3.1 Group write

Instead of trying to ensure a deterministic programming, we opt for an energy-

efficient, high-speed stochastic programming using a lower voltage and shorter pulse.

Suppose we write 1 to a memristor cell with a pulse width of τ , the success rate is

only P (τ) = 0.632. If we apply the pulse to two cells simultaneously, each cell has

a 0.632 success rate (assuming each cell switches independently) and the expected

number of 1’s written to the 2 cells is 0.632 × 2 = 1.264. If we expand the write

to an array of 16 cells, the expected number of 1’s is 0.632 × 16 = 10.112. In the

process of writing to an array of memristor cells, we have essentially accomplished

the conversion of the number 0.632 to a stream of 16 bits whose expected number of

1’s approximates the given number. We call the write to an array of memristor cells
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Figure 4.9: (a) Writing to a column of memristor cells; (b) stochastic group write
to memristor using pulse train; (c) voltage pre-distortion; (d) parallel
single-pulse write.

group write. An illustration of group write is shown in Figure 4.9(a) and the basic

concept was recently demonstrated [85].

Group write reduces the voltage and time required to program memristors which

leads to a low energy consumption. The approach is different from duplication, as

write to a larger group of cells yields a higher resolution. For example, group write

to 16 cells in Figure 4.9(a) produces a 4-bit resolution in a probabilistic fashion. The

probabilistic distribution of the stored value depends on the write group size (or bit

stream length), as illustrated in Figure 4.10. A shorter bit stream sees a larger spread,

but it can still be made useful in some practical applications. An added advantage of

group write is the resilience against dynamic variations and soft errors, as occasional

upsets are unlikely to distort the distribution and cause functional failures.

Group write saves the cost of stochastic number generators (SNG) used in classic

stochastic computing. The SNGs are commonly implemented using linear feedback

shift register (LFSR) as in Figure 4.5(b) [74]. The SNGs generate probabilistic bit

streams based on binary inputs, and they are also needed throughout the datapaths

to reshuffle bit streams, e.g., at every reconvergent fanout that introduces correla-
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Figure 4.10: Distribution of values using an array of 16, 64, and 256 bits (from top
to bottom) assuming 0.632 is programmed.

tions as one source branches to different paths before reconverging. Reshuffling is

done by first converting a bit stream to binary, followed by a SNG to generate a new

bit stream. The extensive deployment of SNGs easily overtakes core arithmetic logic

as the dominant cost of classic stochastic computing. In comparison, the stochas-

tic programming of an array of memristor cells exploits the randomness native to

memristors, thereby eliminating the entire conversion and reshuffling overhead.

Spatial variations in memristors will degrade the accuracy of stochastic number

generation by group write. A recent experimental study has showed that the memris-

tor fabrication process can be well controlled, and it also successfully demonstrated

stochastic bit stream generation in the space domain [85]. In Section IV, we will

further analyze the effects of variation and noise, and demonstrate in Section V the

reliable operation through simulations with random voltage noise.
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4.3.2 Power estimate

Stochastic programming simplifies stochastic number generation and reduces the

power consumption. A 100 MHz SNG made with a 32-bit LFSR and comparator syn-

thesized in a 65nm CMOS technology is estimated to consume 80.2 µW. The CMOS

SNG generates one stochastic bit every clock cycle. The memristor-based stochastic

computing generates stochastic bits by simply reading the stochastically programmed

memristor values. With a 1 V read supply voltage, a memristor read consumes a static

power of 10 µW to read a “1” (i.e., a memristor in the low-resistance state with Ron

= 100 kΩ), and 10 nW to read a “0” (i.e., a memristor in the high-resistance state

with Roff = 100 MΩ). Ron and Roff are based on fabricated memristor devices. Note

that the static power is expected to dominate the total power consumption. With a

feedback mechanism, the static current can be turned off early, thus the above power

estimates are very conservative. Assuming an equal number of “1” and “0”, the aver-

age power to generate a stochastic bit using stochastic programming is approximately

5 µW, a 16× reduction compared to a CMOS SNG.

The classic CMOS stochastic computing system converts stochastic bits to binary

numbers to be stored in memory. The conversion is done using an up counter. A

100 MHz 32-bit up counter synthesized in a 65 nm CMOS technology is estimated

to consume 61.4 µW. In a native stochastic computing, the up counter is eliminated

and stochastic bits are stored in memristors directly.

The static power for writing a “1” to a memristor is estimated to be 160 µW at

a 4 V write supply voltage after the memristor turns on (Ron = 100 kΩ). Writing

a “0” consumes negligible static power as Roff is much higher. Assuming an equal

number of “1” and “0”, then the average write power is 80 µW. With a feedback

mechanism, the static current can be turned off early, which will result in a much

lower power consumption. Erase power is similar to write power considering the

same static current consumption for the respective states except that erase naturally
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has a cutoff mechanism when the memristors enter the “0” state with a high Roff

resistance.

The above comparisons demonstrate the potential power efficiency of the memristor-

based native stochastic computing over the classic CMOS stochastic computing. We

expect the efficiency of using memristors for stochastic computing will continue to

improve with improved memristor devices supporting a lower supply voltage and fast

feedback mechanisms to limit static current.

4.3.3 Erasing memristors

Erasing memristors to restore the high resistance state before each write is neces-

sary for the proper operation. Erasing, or reseting, is done by applying a programming

voltage of the opposite polarity until the memristor enters the high resistance state.

Note that the off→on and on→off switching thresholds are unequal, as shown in Fig-

ure 4.1, and the characteristic switching times are different. We use off→on switching

to stochastically program memristors; and use on→off switching to deterministically

erase memristors by adding extra time margin to ensure a correct erase operation.

The extra time margin needed to erase increases the latency if the same memristor

memory location is continuously being written to. Writing to the same memory loca-

tion also leads to an uneven wear-out. Therefore, we propose using an erasing scheme

similar to what is used in flash memory where new data is always written to a fresh

memory location and the locations storing stale data are queued to be erased [88].

Erasing will be done on a large block at a time to reduce overhead. This scheme both

hides the latency of erasure and ensures an even wear-out by spreading writes evenly

to all memory cells.
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4.4 Compensation of Nonlinear Write to Memristor Memory

In a self-contained stochastic computing system, bit streams are generated from

memristor memory for stochastic computing, and the output bit streams of stochas-

tic computing are written to memristor memory. To write a bit stream to memristor

memory, we can take one of two approaches: deterministic or stochastic. In a deter-

ministic write, each bit of the stream is written to one memristor cell in a one-to-one

mapping; in a stochastic write, the bit stream is applied to an array of memristor

cells using group write. The difference is that the deterministic write produces an

exact copy, while a stochastic write reshuffles the bit stream as an elegant way of

introducing randomness without the extra reshuffling overhead.

Suppose we apply group write to write a bit stream in the form of pulse train to

an array of memristor cells as shown in Figure 4.9(b). Assume an 8-bit stream with

two 1’s (two pulses) to represent 0.25. To preserve the value, we set the pulse voltage

for a switching probability of 1/8 = 0.125. After the first pulse is applied to an array

of 8 memristor cells, we get on average 1 of the 8 cells to switch on. After the second

pulse is applied, the effect of two pulses is experimentally verified to be equivalent

to one pulse of twice the width [5]. Based on the model presented in the previous

section, the switching probability after each pulse is described in Figure 4.11. The

relationship between switching probability and number of pulses applied is nonlinear:

two pulses give a switching probability of 0.234, slightly below the ideal probability of

0.25. In the extreme case when we apply a train of 8 pulses, the switching probability

only goes up to 0.656 instead of 1, i.e., only 5.25 of the 8 cells will switch on, resulting

in a large error. Therefore, a compensation scheme is needed to undo the nonlinearity.

4.4.1 Voltage pre-distortion

The nonlinear pulse train write can be compensated using voltage pre-distortion,

illustrated in Figure 4.9(c), for an approximation of the ideal linear relationship be-

48



0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Number of pulses

S
w

it
c
h
 p

ro
b
a
b
ili

ty

Figure 4.11: Probability of switching with number of pulses.

tween switching probability and number of pulses. If a suitably large number of

voltage levels are used, voltage pre-distortion could provide nearly perfect compensa-

tion. However, the solution based on numerous voltage levels is expensive. To reduce

the cost, we can apply piecewise approximation made from nonlinear functions to

reduce the number of voltage levels. A 3-piece approximation is shown in Figure 4.12

with a relative error limited to 2.5%. Decreasing the error comes at the cost of ad-

ditional voltage levels, shown in Figure 4.13. Compared to a look up table based

approach, the piecewise approximation will be especially handy in long bit streams,

while sacrificing only small errors.

Note that voltage pre-distortion requires a serial write operation, i.e., the pulses

have to be applied sequentially. Serializing the write operation presents a potential

bottleneck in an inherently parallelizable stochastic computing architecture.

4.4.2 Downscaled write and upscaled read

Maintaining numerous voltage levels can be expensive and serial programming

slows down the write operation. Futhermore, in the absence of any nonlinear com-

pensation method, the accuracy of pulse train write degrades drastically as the input
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Figure 4.12: Piecewise approximation of linear switching probability. The example
uses three voltages for less than 2.5% error.

approaches 1 or full range. This is not surprising since writing a 1 requires the mem-

ristor cells to switch with 100% certainty, essentially turning into a deterministic

write that is not easily guaranteed in stochastic programming. A downscaled write

circumvents this problem by mapping the input to a lower range, e.g., downscaling by

a factor of 2 limits the input range from [0, 1] to [0, 0.5]. Within a lower input range,

the nonlinearity error becomes much smaller even without compensation. A scalar

gain function as described in [5] can be applied in readout, called upscaled read, to

undo the downscaled write. The downscaled write and upscaled read approach uses

a single voltage, requires fewer memristors than the parallel single-pulse write, and

is also parallelizable. However, this approach degrades the precision due to round-off

errors in downscaled mapping.

4.4.3 Parallel single-pulse write

Parallel single-pulse write (Figure 4.9(d)) uses a single pulse voltage in a parallel

write. Instead of applying pulses one by one as in voltage pre-distortion, the entire

pulse train will be applied in parallel to a memristor memory. The train is divided
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Figure 4.13: Number of voltage levels needed to remain under a given error bound
using piecewise approximation. Three cases are considered: no voltage
noise (stdev = 0), zero-mean Gaussian voltage noise with standard devi-
ation of 0.1V (stdev = 0.1), and zero-mean Gaussian voltage noise with
standard deviation of 0.2V (stdev = 0.2).

into individual pulse segments and each segment is applied to one column of memory.

In this way, each column of cells is subject to at most one pulse, thus the name single-

pulse. Similiar to the downscaled write and upscaled read approach, this scheme takes

advantage of the fact that the nonlinear cumulative probability function is relatively

linear at the lower end.

The parallel write expands the bit stream representation from a one-dimensional

array to a two-dimensional matrix, and an OR function is applied to each row to

compress the expanded representation to one single bit stream, as in Figure 4.9(d).

The given example happens to work perfectly, but a slight problem arises when OR’ing

multiple 1’s in a row, e.g., OR of two 1’s is 1, thus one 1 is lost. The probability of

having multiple 1’s in a row, or the conflict probability, can be computed beforehand

and the knowledge used to stochastically compensate the output bit stream for a

possible loss in value. Alternatively, a stochastic scaled adder followed by a stochastic

scalar gain function could be used to correctly read out the stored value. The parallel
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Figure 4.14: Memristor switching probability assuming no voltage noise, and zero-
mean Gaussian voltage noise of standard deviation = 0.1V and 0.2V.

single-pulse approach has an advantage in terms of implementation cost over the

voltage pre-distortion approach, and it does not suffer from the precision issues of

downscaled write and upscaled read, but more memory is used.

4.4.4 Variations, noise, and calibration

One fundamental difference between the native and the classic stochastic comput-

ing is in stochastic number generation. In the classic stochastic computing, stochastic

numbers are generated using SNG; whereas in the proposed system, the stochastic

numbers are generated by the native stochastic switching of memristors. The mem-

ristor switching is affected by variation and noise. In the following, we will analyze

the effects of variation and noise, and demonstrate in the next section the reliable

operation through simulations with random voltage noise.

The proposed system can be calibrated to accommodate die-to-die process varia-

tions and temperature. Process variations manifest themselves in changes of the fit

parameters τ0 and V0 in the switching probability equation. The effects of die-to-die

process variations and temperature can be calibrated out by adjusting the program-
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ming voltage, or the width of the programming pulse, or both. Within-die local device

variations can also be calibrated out, but at a higher cost. Therefore within-die local

variations should be minimized.

Memristor devices on the same die can share close correlations in their device

parameters, but note that the correlations in device parameters do not affect the

independent switching of each device, i.e., each device will switch independently of

the others even though the device parameters are the same or correlated. Indepen-

dent switching of memristor devices is the basis of the proposed native stochastic

computing.

The effect of programming voltage noise can also be calibrated out. Given that

the voltage noise vn follows a defined statistical distribution f(vn), a memristor’s

switching probability function is given by

Pn =
∫∞
−∞ f(vn)(1− e

− t

τ0e
−(V+vn)/V0 ) dvn,

where f(vn) is the probability density function of the voltage noise, V is the nominal

programming voltage, and τ0 and V0 are the fit parameters used in the original switch-

ing probability equation. As an example, Figure 4.14 shows the memristor switching

probability due to Gaussian voltage noise. Random voltage noise changes Pn, but

the same nonlinear compensation techniques can be used to fit an updated Pn curve.

For example, if voltage pre-distortion is used, the number of voltage levels needed to

remain under a given error bound is given by Figure 4.13. Voltage noise will have

no effect on the proposed system, as long as the noise distribution is known. Also

note that since the switching probability translates into whether a digital memristor

is switched on or off, only the mean switching probability Pn is relevant.

Erratic voltage variations, such as occasional voltage droops and oscillations, can-

not be calibrated out and they cause inaccuracies in computation. Erratic voltage
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variations potentially limits the noise floor of stochastic computing. However, the al-

gorithms designed for stochastic computing are often error-tolerant and if such voltage

variations happen only intermittently, the system will have a chance to reconverge to

the expected accuracy.

4.5 Applications of Native Stochastic Computing

Native stochastic computing by the integration of memristor memory and stochas-

tic arithmetic circuits offers a new energy-efficient and high-performance computing

paradigm. We take advantage of native stochastic computing for data-intensive pro-

cessing with a soft quality metric – data-intensive so that high-density memristor

memory and easily parallelizable stochastic arithmetic circuits can be put to good

use, and a soft quality metric provides the necessary tolerance for a low-cost imple-

mentation.

We demonstrate native stochastic computing for two applications: a gradient

descent solver and a k-means clustering processor. The results are obtained using

three memristor programming techniques: (1) ideal write, (2) voltage pre-distortion,

and (3) downscaled write and upscaled read. We also intentionally add voltage noise

to test the robustness of the system.

4.5.1 Gradient descent solver

Gradient descent is a first-order optimization algorithm used to find the minimum

of a cost function [89]. The algorithm repeats two simple steps: (1) calculate the

gradient of a given cost function at the current position; (2) move in the negative

direction of the gradient by a step proportional to the magnitude of the gradient. If

the cost function is well conditioned, the minimum can be obtained by this iterative

gradient descent algorithm.

The block diagram of a gradient descent solver is illustrated in Figure 4.15(a).
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Figure 4.15: Stochastic implementation of (a) a gradient descent solver, and (b) a
k-means clustering processor.

The design can be readily translated to a stochastic implementation using memristor

memory and stochastic arithmetic circuits. Input positions are stored in memristor

memory and the readout is in bit streams. The gradient is calculated using stochastic

computing circuits including multiply and add; and step size is obtained by scalar

multiply. The position is updated by the step and stored in memristor memory for

the next iteration. Known stochastic designs are available to perform add, multi-

ply and subtract [71, 72, 73, 75, 77]. Note that all the arithmetic processing and

memory remain in the bit stream domain and no binary conversion is necessary, thus

permitting a highly efficient native stochastic computing system.

The design is simulated using 32Kbit and 256Kbit stochastic bit streams to rep-

resent bipolar stochastic numbers in the range of [-1, 1]. The experiments are based

on the cost function of f(x, y) = 1
24

((x + 0.5)2 + (x + 0.5)y + 3y2). Three different

memristor programming techniques, ideal write, voltage pre-distortion, and down-

scaled write and upscaled read, produce satisfactory results shown in Figure 4.16(a),

Figure 4.16(b), and Figure 4.16(c), respectively. Even after voltage noise is added,

the computation is shown to be robust as in Figure 4.16(d) and Figure 4.16(e).

4.5.2 k-means clustering processor

In cluster analysis, a set of data points are placed into different clusters whose

members are similar based on a certain metric [90]. Clustering is essential to many

55



RMS Error =0.054

−1 0 1
−1

−0.5

0

0.5

1

Start

End

(a)

RMS Error = 0.072

−1 0 1
−1

−0.5

0

0.5

1

(b)

RMS Error =0.181

−1 0 1
−1

−0.5

0

0.5

1

(c)

RMS Error =0.053

−1 0 1
−1

−0.5

0

0.5

1

(d)

RMS Error =0.384

−1 0 1
−1

−0.5

0

0.5

1

(e)

Figure 4.16: Stochastic gradient descent algorithm using (a) 32Kbit stochastic bit
stream with ideal write, (b) 32Kbit stochastic bit stream with volt-
age pre-distortion, (c) 256Kbit stochastic bit stream with downscaled
write and upscaled read, (d) 32Kbit stochastic bit stream with voltage
pre-distortion and zero-mean Gaussian voltage noise of 0.2V standard
deviation, and (e) 256Kbit stochastic bit stream with downscaled write
and upscaled read and zero-mean Gaussian voltage noise of 0.2V stan-
dard deviation. The RMS errors from the exact solutions are given for
comparison.

applications including image processing, bioinformatics, and machine learning. k-

means is a popular clustering algorithm [91] and it is done in three steps: (1) select k

cluster centers (centroids); (2) place each data point in one of the clusters to minimize

the distance between the data point and the cluster centroid; (3) recompute the

centroid of each cluster as the average of all the data points in the cluster. Steps (2)

and (3) are repeated until a convergence condition is met.

The block diagram of a k-means processor is illustrated in Figure 4.15(b), assum-

ing that k = 3 and L1 distance is used as the similarity metric. Data points and
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Figure 4.17: 256-point k-means clustering with 4Kbit stochastic bit stream using (a)
ideal write, (b) voltage pre-distortion with number of voltage levels cho-
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centroids are stored in memristor memory and the readout is in bit streams. The L1

distance between a data point and each of the centroids is calculated by stochastic

subtraction and absolute value operation, the results of which are compared using

stochastic subtraction and comparison. The data point is written to the respective

cluster memory based on the shortest L1 distance. Once a round of clustering is done,

stochastic averaging is carried out to update the cluster centroids.

Examples of the k-means clustering using stochastic computing and memristor

programing techniques are simulated using 4Kbit stochastic bit streams to represent

bipolar stochastic numbers in the range of [-1, 1]. 256-point data sets are placed in
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three clusters such that the L1 distance is minimized to the cluster centroids. The two

different memristor programming techniques, ideal write and voltage-predistortion,

produce satisfactory results shown in Figure 4.17. The computation is robust against

voltage noise, as seen in Figure 4.17(d).

4.6 Conclusion

Two-terminal memristor devices are inherently stochastic devices that require

extra energy and latency to enforce deterministic behavior. This work takes advan-

tage of the memristor’s stochastic behavior to produce random bit streams needed

in stochastic computing. In the proposed approach, memristors replace stochastic

number generators in a native stochastic computing architecture.

We present group write to program the memristor memory cells in arrays to gener-

ate the random bit streams for stochastic computing. To enable linear write to mem-

ristor memory, we propose compensation techniques including voltage pre-distortion,

downscaled write and upscaled read, and parallel single-pulse write. We evaluate the

native stochastic computing architecture by simulating a gradient descent solver and

a k-means clustering processor. Group write together with nonlinearity compensa-

tion techniques are shown to be effective for stochastic memristor programming. The

proposed native stochastic computing architecture takes advantage of the key bene-

fits of both stochastic computing and memristor devices to enable a new low-energy,

high-performance, and low-cost computing paradigm.
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CHAPTER V

A Sparse Coding Neural Network ASIC with

On-Chip Learning for Feature Extraction and

Encoding

5.1 Introduction

One key component in many classification algorithms involves developing and

identifying relevant features from raw data. For some raw data types, e.g. image

pixels, audio amplitudes, there is often a set of features that more naturally describe

the data. Sparse feature encoding helps reduce the search space of the classifiers by

modeling high dimensional data as a combination of only a few active features, and

hence can reduce the computation required for classification.

Sparse coding [92] is a class of unsupervised learning algorithms that attempt to

both learn and extract the unknown features that exist within an input dataset under

the assumption that any given input can be described by a sparse set of features that

it learns. The original Sparsenet algorithm that attempts to find sparse linear codes

for natural images develops a complete family of features that are similar to those

found in the primary visual cortex [92]. (The features are also known as receptive

fields, and we will use feature and receptive field interchangeably.) It was shown in

[93] that a layer of Hebbian units connected with anti-Hebbian feedback connections
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learns a sparse code. Research in sparse coding has further evolved in recent years.

The sparse-set coding (SSC) network forms efficient visual representations using a

small number of active features [94]. The locally competitive algorithm (LCA) im-

plements sparse coding based on neuron-like elements that compete to represent the

input [14]. The sparse and independent local network (SAILnet) implements sparse

coding using biologically realistic rules involving only local updates [95]. SAILnet was

demonstrated to learn the receptive fields that closely resemble those of the primary

visual cortex simple cells [95].

The latest sparse coding algorithms are capable of extracting biologically relevant

features through unsupervised learning, and use inference to encode image using a

sparse set of features, therefore they accomplish the two important pre-processing

tasks for object classification, namely feature extraction and encoding. The sparse

coding algorithms are naturally mapped to a network of neurons, where the neuron

activity is kept sparse, an ideal property for low power implementation. The sparse

coding algorithms produce sparse representation of an input image for faster and

lower power classification. The unsupervised learning of features, the sparse activa-

tion of neurons, and the biologically inspired sparse encoding are the key advantages

of sparse coding compared to conventional methods, such as scale-invariant feature

transform (SIFT) [96]. The primary objective of this work is to achieve high per-

formance and low power feature extraction and encoding, which will be important

for emerging embedded vision applications ranging from personal mobile devices to

micro unmanned aerial vehicles.

Sparse coding algorithms differ in their neural network implementation and learn-

ing rules. Some algorithms are non-spiking, i.e., neurons communicate via analog

signals [93, 14] and require off-line computation [14], while some recent algorithms

are spiking [95, 97], and the learning rules require only the knowledge of local in-

formation [95]. In this work, we take advantage of the biologically plausible and
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implementation friendly SAILnet algorithm [95] for the design of the sparse coding

ASIC [11]. The sparse coding ASIC is intended to be used in embedded vision appli-

cations, including image encoding, feature detection, and as a front end to a object

recognition system [98, 99]. However, this work or variations of it can be potentially

extended to non-visual classification tasks such as speech recognition.

The design of the sparse coding ASIC leverages many prior works on neural net-

work hardware, yet this ASIC is unique as all aspects of its design are optimized

for low-power and high-throughput sparse coding. In the most recent literature,

SpiNNaker [100] and Neurogrid [101] are general-purpose hardware. SpiNNaker is

a massively parallel ARM processor based, packet-switched system designed to pro-

vide a flexible simulator for neuroscience experiments [100]. Neurogrid is designed to

perform arbitrary mathematical computations using neurocores communicating via

packets [101]. In comparison, our design is a dedicated ASIC that is optimized for

sparse coding. In a related work, ConvModule is an event-driven 2D convolution

neural network processor for object recognition [102]. Despite the similarity of the

application, our sparse coding ASIC uses a completely different algorithm that learns

features to perform sparse image encoding. Mixed-signal neural netework designs

have been presented in [103, 104] with highly efficient analog neurons and digital

time-multiplexing bus, while digital designs [105, 106] exhibit software-equivalent

deterministic behavior, better noise immunity, and scalability to newer technology

nodes, though not necessarily as efficient as mixed-signal designs. The neurosynapic

core [105] implements digital neurons and crossbar connectivity, and uses SRAM to

store offline-trained weights. [106] uses a transposable SRAM array to implement

crossbar connectivity and on-chip learning based on spike-timing-dependent plastic-

ity (STDP). In this work, we propose a two-layer network to take advantage of the

sparse spiking for a further simplification of the connectivity, and rate-based learning

is used instead of time-based learning.
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In parallel with neural network developments, significant advancements have been

made in recent years in making object recognition processors. An object recognition

processor in [107] uses a cellular neural network based visual attention engine, together

with key point extraction and object database matching. A multi-object recognition

processor in [108] was designed using a perception engine based on neural-fuzzy logic,

SIFT descriptor and object database matching. A SIFT object recognition processor

in [109] was proposed with a top-down visual attention feedback loop implementing

neural-fuzzy inference to improve visual attention. The latest neural-fuzzy object

recognition processor in [110] was designed to perform inference and learning using

neural-fuzzy algorithms. Impressive performance and energy efficiency have been re-

ported. In comparison, this work uses a completely neural network approach as a

promising alternative to the state-of-the-art for learning and extracting salient fea-

tures, and performing sparse encoding.

In this work, we present an ASIC that is designed to learn and extract features

from images and videos [11, 12]. This work was a joint effort with my group members

Jungkuk Kim and Thomas Chen. My key contributions to this work were in initial

algorithm development and back-end synthesis and layout of the ASIC.

In the following, we present an introduction of the sparse coding algorithm in

Section II, followed by a detailed discussion of the architectural features and chip

design in Section III. The test chip measurement results are presented in Section IV.

Section V concludes this work.

5.2 SAILnet Sparse Coding Algorithm

A conceptual illustration of the biologically inspired sparse coding processor is

shown in Figure 5.1[11, 111]. The sparse coding processor mimics the feature ex-

traction performed by the primary visual cortex. Each neuron in the sparse coding

processor develops its receptive field, or feature, through unsupervised learning. A
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Sparse coding

Input

Reconstruction

Figure 5.1: Sparse coding mimicking sparse neural activities in primary visual cortex.
The input is reconstructed by weighted sum of receptive fields of model
neurons.

neuron is activated and generates a spike when its receptive field is highly correlated

with the input. The spikes are kept very sparse through lateral inhibition. The spikes

constitute the sparse code that represents the input image. To check the quality of

sparse coding, the input image can be reconstructed by the sparse code and the re-

ceptive fields. Figure 5.2 shows a whitened input image example, neuron receptive

fields learned by the SAILnet algorithm, and the reconstructed image using the sparse

code and the receptive fields. The close resemblance of the reconstructed image to

the input image demonstrates the effectiveness of the SAILnet algorithm.

In this work, we quantitatively measure the quality of the reconstructed image

using a normalized root mean square (NRMSE) metric. NRMSE is the root mean

square error normalized to the range. It is mathematically defined by equation (5.1).

NRMSE =

1
Np

∑Np
i=1(X̂i −Xi)

2

maxi X̂i −mini X̂i

, (5.1)

where Xi is the i-th pixel of the input image, X̂i is the i-th pixel of the reconstructed

image, Np is the number of pixels in the image. As an example, The NRMSE of the

reconstructed image in Figure 5.2 is 0.085.
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Figure 5.2: Sparse coding of (a) an input image using (b) 256 receptive fields of model
neurons, and (c) neuron spikes and receptive fields are used to reconstruct
the input.

5.2.1 Algorithm Overview

The SAILnet sparse coding algorithm [95] tries to find a sparse set of basis vectors

known as receptive fields or features to represent an input image. The SAILnet algo-

rithm is naturally mapped to a network of neurons, and one basis vector is associated

with one neuron. The SAILnet algorithm describes two operations, learning and in-

ference [95]. In learning, the basis vectors are first initialized to random values, and

through iterative gradient descent, the algorithm converges to a dictionary of basis

vectors that allows for an accurate representation of images similar to the training

images using a small number of the learned dictionary elements. Learning is done

in the beginning to set up the weights and occasionally afterwards to update the

weights if the dictionary poorly models new input data, so no real-time constraint is

placed on learning. However, inference needs to be done in real time. In inference,

the algorithm generates neuron spikes to indicate the activated basis vectors from

an input image. Generally, the library size, or alternatively the number of neurons

needed by this algorithm, is no less than the number of pixels in the input image, as
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Figure 5.3: Feed-forward excitatory connections between neurons and pixels, and
feedback inhibitory connections between neurons.

the overcomplete library tends to capture more intrinsic features and the sparsity of

neuron activity improves with an overcomplete library [95].

5.2.2 Neuron Connectivity and Dynamics

The neurons are fully connected to each other and each pixel to implement the

SAILnet algorithm. A weight is associated with each connection. The feed-forward

connections between neurons and pixels are excitatory, and the associated weights

are called Q weights. The feedback connections between neurons are inhibitory, and

the associated weights are called W weights. An illustration is shown in Figure 5.3

[95].

The neural network develops Q weights and W weights through learning. After

learning converges, the Q weights of the feed-forward connections from a particular

neuron represent one basis vector in the dictionary. The W weights represent the

strength of directional inhibitions between neurons, which allow neurons to dampen

the responses of other neurons if their basis vectors are all highly correlated with an

input. The lateral inhibition forces the neurons to diversify and differentiate their
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basis vectors, and minimizes the number of active neurons.

The SAILnet algorithm is based on leaky integrate-and-fire neurons [112]. The

neuron activity with respect to an input image is represented by the firing rate of the

neurons. The synchronous digital description of a neuron’s operation is given by the

equation (5.2) [95], where Vi is the voltage of neuron i, and n is the time index. η

is the update step size, Np is the number pixels in the input image patch, and N is

the number of neurons in the network. Xk is the value of pixel k in the input image

patch, and yj is the binary output of neuron j. Q is a N × Np matrix that stores

the feed-forward connection weights, and Qik stores the weight of the feed-forward

connection between neuron i and pixel k. W is aN×N matrix that stores the feedback

conection weights, and Wij stores the weight of the feedback connection from neuron

j to neuron i (directional). Neuron voltage increases due to input excitation through

the feed-forward connections and decreases due to lateral inhibitions and a constant

leakage term proportional to the neuron voltage.

Vi[n+ 1] = Vi[n] + η

(
Np∑
k=1

QikXk −
N∑

j=1,j 6=i

Wijyj[n]− Vi[n]

)
. (5.2)

When the neuron voltage exceeds a threshold voltage, θ, the neuron generates a binary

spike output and the neuron voltage is reset to a zero. The threshold voltage θ is a

learned parameter specific to each neuron.

yi[n] =


1 (and Vi[n] is reset to 0) if Vi[n] ≥ θ

0 if Vi[n] < θ

(5.3)

5.2.3 Local Learning Rules

Q weights, W weights, and θ for each neuron are learned parameters. In practice,

a batch of training images are given as inputs to generate neuron spikes. The spike
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counts, si, where i is the neuron ID (NID), are then used in parameter updates

following the equations below [95].

Q
(m+1)
ik = Q

(m)
ik + γsi(Xk − siQ(m)

ik ),

W
(m+1)
ij = W

(m)
ij + β(sisj − p2),

θ
(m+1)
i = θ

(m)
i + α(si − p). (5.4)

In above equations, m is the update iteration number, and α, β, γ are tuning param-

eters to adjust the learning speed and convergence. p is the target firing rate in units

of number of spikes per input image per neuron. p is used to adjust the sparsity of

neuron spikes. One key advantage of the SAILnet learning rules is their locality [95].

Q and θ updates for any particular neuron only involve the spike count and firing

threshold of that neuron, and W update only involves the pair of neurons that are

part of the lateral connection.

5.3 Scalable Network Architecture

The SAILnet algorithm can be mapped to a fully connected neural network that

consists of simple homogeneous neurons [95]. It is straightforward to parallelize the

neurons. However, the communication necessary for sharing the outputs of neurons

is one limiting factor [111]. The direct implementation of a fully interconnected

network will result in a routing nightmare. In this work, we present a scalable two-

layer network architecture that cleanly fits the communication requirements of the

sparse coding algorithm. In this architecture, the routing complexity is reduced by

replacing all one-to-one connections within a small cluster of neurons with a single

bus. The communications between clusters are carried by an upper layer systolic ring

connecting the clusters. The network architecture is described in Section 5.3.1.

A further complication is that memory to store Q weights grows at O(NpN) and
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W weights grows at O(N2), where Np is the number of pixels and N is the number of

neurons. As a result, the memory costs significant area and power for a large enough

neural network. In this work, we optimize the word length of the weights to reduce the

memory storage, and partition the memory into two parts, so that during real-time

inference, only one part of the memory is powered on to reduce power consumption.

The memory optimization is described in Section 5.3.3.

The results of this work are demonstrated in a 256-neuron sparse coding proces-

sor for a 16×16 input image patch. For a larger image, the image is divided into

overlapping patches for processing.

5.3.1 Two-Layer Sparse Spiking Neural Network

To implement the SAILnet algorithm, low-latency communication for broadcast-

ing neuron spikes to all neurons needs to be done for each inference step. Since each

step is directly dependent on the previous step, significant delays in communication

will alter the dynamics of the algorithm and worsen the image encoding quality [111].

Interestingly, the sparse coding algorithm produces a very low spike rate, making it

possible to use an efficient communication fabric.

In a conventional bus structure [113, 114], communication is a one-to-many broad-

cast and has low latency for small networks. However, a bus does not scale well with

network size. The high fan-out and wire loading of a bus lead to large RC de-

lays. Larger neural networks also produce more spikes and thus higher spike collision

probability. Spike collisions need to be arbitrated [104, 103], and to serve many si-

multaneous spikes in a large network, the bus needs to run at a higher speed than

the neurons, increasing the power consumption.

In a conventional ring structure [115], the on-chip interconnects are all local,

spikes propagate serially, and spike collisions are eliminated. Since there are no spike

collisions, no arbitration is needed, fan-out is low, and the local wire capacitance
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Figure 5.4: Two-layer network. Four grids are connected in a 4-stage systolic ring,
and the snooping core is attached to the ring to record spikes.

does not grow with the network size. Therefore, a ring structure is highly scalable.

However unlike the bus structure, the serial communication along a ring incurs high

latency and alters algorithm dynamics. Significant communication latency degrades

the image encoding quality and yields unacceptable results [111].

We create a two-layer hybrid structure, shown in Figure 5.4 [11], to combine the

unique advantages of the bus and ring structures. At the lower layer, a small cluster

of neurons are connected in a bus. The size of the bus, N1, is chosen to keep the

fan-out and wire loading low, so that a low-latency broadcast bus can be achieved. A

small bus also keeps the spike collision probability low, so that spike collisions can be

discarded and arbitration removed with minimal impact on the image reconstruction

error. At the upper layer, a ring is used to connect multiple buses together into a

larger network. The length of the ring, N2, is chosen to keep a low communication

latency.
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Figure 5.5: Effect of ring length (N2) on image encoding quality. Note that the bus
size N1 is chosen such that N1N2 = 256.

The sizes of the two layers of the hybrid architecture need to meet the requirement

that N1N2 = N , where N is the size of the neural network (N = 256 in this work).

There is a trade-off between N1 and N2. The image reconstruction error is measured

in simulation as we sweep the size of each (N1, N2) pair as shown in Figure 5.5. A large

N1 (small N2) increases the error due to spike collisions, while a large N2 increases

the communication latency. We choose N1 = 64 and N2 = 4 to balance the trade-off.

Note that in this and subsequent simulations, we used 1 million 16×16 image patches

for training the network. The inference results (image reconstruction error) are based

on 16K 16×16 image patches.

5.3.2 Local Grid Structure

In our implementation, each 64-neuron bus is further optimized into a grid struc-

ture [103, 101]. The fan-out and wire loading seen by each neuron is quadratically

reduced compared to a flat bus. The grid is constructed of static combinational logic

blocks, as opposed to a tri-state based approach that was found to be slower and

more power consuming.
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Figure 5.6: Illustration of a 64-neuron 2D grid connected with Q and W memory.

The spike outputs of the 8×8 grid of neurons are OR’ed together in every row and

column as shown in Figure 5.6. The OR structure simplifies encoding of spikes to NID

to be transmitted to the network. A single spike results in one row and one column

output to be activated. The spike is encoded using the address of the activated row

and column together with the grid ID and a request bit, i.e., NID = {[1b REQ] [2b

grid ID] [3b row address] [3b column address]}.

The grid also allows the detection of spike collisions. Multiple spikes will result

in two or more rows and columns to be activated. A simple collision detection logic

is used to monitor the number of activated rows and columns. Since collisions occur

very infrequently, detected collisions are discarded with negligible loss in image recon-

struction error. Removing collision arbitration reduces the complexity and improves

the throughput.

5.3.3 Core and Auxiliary Memory Partition

The 256-neuron network requires a 64K-word Q memory to store Q weights and a

64K-word W memory to store W weights. Memory size and power are constraining

71



10 12 14 16 18 20
0.05

0.06

0.07

0.08

0.09

0.1

N
R

M
S

E

Q Word Length for Learning
(Number of Bits per Weight)

(9b W) (13b W)

(10b W)

(11b W)

(12b W) (14b W)

(8b W)

(7b W)

(6b W)

Figure 5.7: Q and W weight quantization for learning.

factors in the hardware implementation. To reduce the word length, we performed

an empirical analysis of the fixed-point quantization effects on the image reconstruc-

tion error. Given that the input pixels are quantized to 8b, results show that the

word length can be reduced to 13b per Q weight and 8b per W weight for a good

performance as shown in Figure 5.7. Longer word lengths produce only marginal

improvements.

Furthermore, we found that the word length required by learning and inference

differ significantly. Learning requires a relatively long word length, i.e., 13b per Q

weight and 8b per W weight to allow for a small enough incremental weight update

to ensure convergence, whereas the word length for inference can be reduced to 4b

per Q weight and 4b per W weight for a good image reconstruction error as shown

in Figure 5.8. To save power, the memory is partitioned into a core memory to store

4b MSB of each Q weight and each W weight, and an auxiliary memory to store 9b

LSB of each Q weight and 4b LSB of each W weight as shown in Figure 5.9. This

partition results in a 512Kb main memory (256Kb to store Q weights and 256Kb
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Figure 5.8: Q and W weight quantization for inference.

to store W weights) and a 832Kb auxiliary memory (576Kb to store Q weights and

256Kb to store W weights). Once the network has been properly trained, the larger

auxiliary memory is powered down.

The access bandwidth of the core and auxiliary memory also differ. The core

memory is needed for both inference and learning. In every inference step, a neuron

spike triggers the simultaneous core memory access by all neurons to the same address

corresponding to the NID of the spike. Therefore, the core memory of all neurons in a

local grid are consolidated to support the wide parallel memory access by all neurons.

The auxiliary memory is powered on only during learning. Since learning does

not need to be in real time, it is implemented in a serial way. Moreover, we imple-

ment approximate learning to update weights and thresholds only for the most active

neurons, so the fully parallel random access to the auxiliary memory is unnecessary.

Hence, the auxiliary memory of all neurons in a local grid are consolidated into a

larger address space to improve area utilization.
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Figure 5.9: Illustration of Q and W memory partition. MSB values are stored in core
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in auxiliary memory that is powered on during learning.

5.3.4 Parallel and Pipelined Inference

A total of 256 neurons are used in this architecture to perform parallel leaky

integrate and fire to generate spikes for inference. Inference is done over a number

of inference steps, ns, that is chosen based on the neuron time constant τ and the

inference step size η: i.e., ns = w/(ητ), where w is the inference period. For a low

image reconstruction error, w is chosen to be long enough, e.g., w = 2τ , and the

inference step size is chosen to be small enough, e.g., η = 1
32

. With these choices, the

number of inference steps is ns = 64.

The leaky integrate and fire described by equation (5.2) has two main parts,

namely excitation,
∑Np

k=1QikXk, and inhibition,
∑N

j=1,j 6=iWijyj[n]. Excitation com-

putation is a vector dot product (256 4b×8b multiplies in inference, 256 13b×8b

multiplies in learning) and it results in a constant scalar being accumulated in every

inference step, so excitation is computed first using a multiply-accumulate in each

neuron.

The inhibition computation is driven by spike events over the inference steps.

Since the yj[n] term in equation (5.2) is binary, the inhibition computation is imple-
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Figure 5.10: Effect of spike communication latency (when no pipeline halt is imple-
mented).

mented with an accumulator, requiring no multiplication. The inhibition computation

is triggered by neuron spikes, i.e., after receiving an spike NID. It takes up to 3 clock

cycles for an NID to travel along the 4-stage ring to be received by every neuron, so a

cycle-accurate implementation halts the inference for 3 cycles after an NID is trans-

mitted. In this way, the inhibition computation over the 64-step inference requires up

to 4× 64 = 256 cycles, assuming one spike per inference step. To reduce the latency,

we propose to remove the halt to implement approximate inference. In approximate

inference, an NID will be received by neurons in different grids at different times,

triggering inhibition computations at different times. Excessive spike latency may

worsen the image encoding quality. However, since the latency is limited to 3 cycles,

the fidelity is maintained as shown in Figure 5.10. Using approximation inference,

the inhibition computation over the 64-step inference requires exactly 64 cycles.

The inference operation of this chip is divided into two phases: loading and infer-

ence. Each step is done in 64 cycles, so that the two steps can be interleaved. The

timing chart is shown in Figure 5.11. The pipelined processing enables the inference
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Figure 5.11: Inference timing chart.

of a 16×16 image patch every 64 cycles, or TP = 256fclk
ns

pixel/s, where fclk is the

clock frequency and ns = 64 in our design.

5.3.5 Learning Using Message-Passing Snooping Core

Learning is implemented on chip with a snooping core that is attached to the ring

to snoop spike events. To improve efficiency, parameter updates in learning are done

in a batch fashion – spike events are accumulated in a cache for a batch of up to 50

training image patches, followed by batch parameter updates based on the recorded

spike counts [95].

Our experimental evidence indicates that active spiking neurons, i.e., neurons

with high spike counts, affects learning the most, and active spiking neurons also

tend to spike early on. We take advantage of this insight to approximate learning by

allocating a small cache to store the spike counts of the first batch of neurons to fire.

The approximation reduces the cache memory size and the frequency of parameter

updates in order to speed up learning. Based on simulations, we chose a 10-word

cache for the snooping core. It is also possible to use a larger cache to improve the

image reconstruction error even further.

Of the three types of parameter updates done in learning, Q, W, and θ, Q up-

date is the most costly computationally, as it involves updating the Q weights of all

feed-forward connections from the active spiking neurons. To simplify the control of
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parameter updates, we use a message-passing approach. In the Q update phase, the

snooping core sends a Q update message for each of the most active neurons recorded

in the cache. The message takes the form of {[1b REQ] [8b NID] [4b SC]}, where

REQ acts as a message valid signal and SC is the spike count. Messages are passed

around the ring and broadcasted through the grids. A small Q update logic is placed

inside each grid to calculate the Q weight update based on equation (5.4) when the

NID of the message belongs to the grid. The updated weight is saved in the 9b wide Q

auxiliary memory. Occasional carry out bit from the update will result in an update

of the 4b wide Q core memory. The Q updates in all four grids can execute in parallel

to speed up the updates.

W update involves calculating the correlation of spike counts between pairs of the

active spiking neurons. The snooping core implements W update by generating a W

update message for each active spiking neuron pair. The W update message is in the

form of {[1b REQ] [8b NID1] [8b NID2] [4b SC1] [4b SC2]}, where NID1 and NID2 are

the pair of active spiking neurons, and SC1 and SC2 are the respective spike counts.

A small W update logic in the snooping core calculates the W weight update. The

updated weight is saved in the 4b wide W auxiliary memory, and the carry out bit

is written to the 4b wide W core memory.

Similarly, θ update is implemented by passing a θ update message in the form

of {[1b REQ] [8b NID] [4b SC]}. θ updates are done by the respective neurons in

parallel.

5.4 Chip Measurement Results

We incorporate the architectural and algorithmic ingredients described above in

an ASIC test chip implemented in a TSMC 65nm CMOS technology [11]. The mi-

crophotograph of the test chip is shown in Figure 5.12 with key parts of the design

highlighted. The test chip has four separate power rails for four macro blocks: core
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Figure 5.12: Chip microphotograph.

logic (including neurons, grid and ring logic, and snooping core), 512Kb core memory

implemented in 16 256×128b register files, and 832Kb auxiliary memory implemented

in 4 2048×72b SRAM to store Q weights and a 2048×128b SRAM to store W weights,

and a voltage-controlled oscillator as the clock source.

The test chip is limited in the number of input and output pads, therefore the

input image is scanned bit-by-bit into the SRAM. After the scan is complete, the

chip can operate in its full speed. We have made the implicit assumption that the

throughput of the ASIC chip is not bounded by its input. We envision this ASIC chip

to be integrated with an imager, so that the image input can be provided directly

on-chip, and not limited by expensive off-chip input and output.

5.4.1 Power and Performance

The test chip is fully functional. The measured inference power consumption

is plotted in Figure 5.13, where each point in the plot corresponds to the power
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Figure 5.13: Inference power consumption and breakdown.

consumption at the lowest supply voltage at the given clock frequency. The auxiliary

memory is powered down in inference to save power. At room temperature and

1.0 V core logic and core memory supply, the test chip operates at a maximum clock

frequency of 310 MHz for inference, consuming 218 mW. At 310 MHz, the chip carries

out inference at 1.24 Gpixel/s (Gpx/s) at 176 pJ/pixel (pJ/px). At 35 MHz and a

reduced throughput of 140 Mpx/s, the core logic supply can be scaled to 530 mV

and core memory supply can be scaled to 440 mV. The voltage and frequency scaling

reduce the power consumption to 6.67 mW and improve the energy efficiency to

47.6 pJ/px.

The measured learning power is shown in Figure 5.14. Similarly, each point cor-

responds to the power at the lowest voltage at the given frequency. The auxiliary

memory is powered on in learning. At room temperature and 1.0 V core logic, core

memory, and auxiliary memory supply, the test chip achieves a maximum clock fre-

quency of 235 MHz for learning, consuming 228 mW. At 235 MHz, the test chip

processes training images at 188 Mpx/s. A large training set of 1 million 16×16
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Figure 5.14: Learning power consumption and breakdown.

image patches can be processed in 1.4 s. Learning requires writing to memories,

which requires a minimum supply of 580 mV for the core memory and 600 mV for

the auxiliary memory. At the minimum supplies, the learning power consumption is

reduced to 6.83 mW at 20 MHz. The energy efficiency and performance metrics are

summarized in Table 5.1.

The test chip is the first reported work of dedicated silicon for sparse coding. As

a fully digital ASIC implementation, it is most relevant to the prior works on fully

digital neural networks [105, 106], both of which contain 256 neurons. Table 5.2

compares the key features. Note that the algorithms used are different, so a direct

comparison is not very meaningful.

5.4.2 Error Tolerance

One interesting aspect of the sparse coding algorithm is its resilience to errors in

the stored memory weights. This resilience stems from the inherent redundancy of

the network and the ability to correct errors through on-line learning. In order to
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Table 5.1: Chip Summary
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Fig. 10. Normalized RMSE with memory bit error rate (Inference is enabled)

TABLE I

CHIP SUMMARY

Technology TSMC 65nm GP CMOS

Core Area

1.75mm × 1.75mm

(Core logic: 1.16mm2,

Core mem: 1.01mm2,

Aux. mem: 0.89mm2)

Chip Area 2.11mm × 2.11mm (4.45mm2)

Inference Learning

Frequency (MHz) 35 310 20 235

Core logic (V) 0.53 1.00 0.50 1.00

Core mem (V) 0.44 1.00 0.58 1.00

Aux. mem (V) 0.00 0.00 0.60 1.00

Throughput (Mpixel/s) 140 1240 16 188

Power (mW) 6.67 218 6.83 228.1

Energy Efficiency (pJ/pixel) 47.6 175.8 426.9 1213

August 26, 2014 DRAFT

Table 5.2: Comparison with Prior Work

[106] [107]
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Figure 5.15: Trade-off between image reconstruction error and memory power con-
sumption.

explore the benefit of this error tolerance, we looked at voltage over-scaling of the

core memory in inference for potential energy savings to exploit the potential trade-off

possible with this system.

Although no dedicated test structure was created in the test chip for the precise

measurement of the error rate seen by the internal circuitry during runtime, we tried

to approximate the memory bit error rate using the scan chain interface to first write

and verify the correct known values at the nominal 1.0 V supply, and then lower the

supply voltage, run inference, and read out the values for comparison. Figure 5.15

shows the increase of the NRMSE and the reduction of memory power dissipation at

supply voltages down to 330 mV and memory bit error rate up to about 10−2. The

NRMSE curve is relatively flat up to bit error rate of 10−4. The rapid increase of

NRMSE occurs when bit error rate is above 10−3. The error tolerance measurements,

though approximate, highlight the potential for use of low-power unreliable memory

elements in the implementation of sparse coding processors.
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5.5 Conclusion

We present a 256-neuron ASIC design for sparse coding. To solve the commu-

nication bottleneck, a two-layer network is designed to link four 64-neuron grids in

a ring to balance capacitive loading and communication latency. The sparse neuron

spikes and the relatively small grid keep the spike collision probability low enough

that collisions are discarded with only slight effect on the image reconstruction error.

To reduce memory area and power, we divide memory into a core memory and an

auxiliary memory that is powered down during inference to save power.

The parallel neural network permits a high inference throughput. Parameter up-

dates in learning are serialized to save the implementation overhead, and the number

of updates is reduced by an approximate approach that considers only the most active

neurons. A message passing mechanism is used to run parameter updates without

costly controls.

The test chip performs inference at 1.24 Gpx/s at 1.0 V and 310 MHz, and on-chip

learning can be completed in seconds. The error resilience of the sparse coding algo-

rithm provides extra margin for voltage over-scaling. At 440 mV core memory supply,

the inference power consumption is reduced to 6.67 mW for an energy efficiency of

47.6 pJ/px.
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CHAPTER VI

A Sparse Deep Learning Processor for Object

Classification

6.1 Introduction

Deep learning is a powerful technique for big data analytics, and can be used for

a wide array of applications, including text, object, and voice recognition. However,

performing deep learning on a CPU is not practical for many real-time applications,

and GPUs may also exceed the limited power budget of an embedded system. Cus-

tom ASICs have been shown to accelerate deep learning by orders of magnitude with

high efficiency up to 1.93 tera-operations per watt (TOPS/W) [116] [117]. In addition

to architectural acceleration, recent work has demonstrated the use of sparsity (i.e.,

sparse neuron activation) to enable efficient neuromorphic computing [118]. Sparsity

is a brain-inspired property, and the enforcement of sparsity during learning helps to

create better features for inference and classification [13] [14]. Despite the advantages

that sparsity offers, the effective use of sparsity requires skipping zeros at random

locations, which produces irregular data access patterns and control flows that result

in the under-utilization of highly parallel architectures. In this work, we apply ar-

chitectural optimizations in designing a deep learning processor with efficient sparse
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convolution. Previous work based on the SAILnet spiking neural network algorithm

achieved very high performance by utilizing sparsity inherent in the algorithms to

reduce communication overhead and computation [12]. This work complements and

advances previous work by utilizing sparsity in a new neural network algorithm not

based on integrate and fire dynamics.

This work is demonstrated in a 1.40mm2 40nm CMOS core that implements a

two-layer convolutional restricted Boltzmann machine (CRBM) for inference and a

support vector machine (SVM) classifier. By making use of sparsity, we reduce the

silicon area by 1.74 times and power consumption by 3.3 times. At the nominal

supply voltage of 0.9V and 240MHz, the processor achieves 261.6GOPS, equivalent

to 898.2GOPS done by a non-sparse processor, while dissipating 140.9mW of power.

In this paper, we define an operation as an 8b multiply or a 16b add. The chip

incorporates latch-based memory to reduce the footprint of weight storage by 25%,

and uses dynamic clock gating to save memory buffer power by 47%.

6.2 Background

A class of neural networks called convolutional neural networks has emerged as

one of the best techniques today for image feature extraction and object recognition.

This class of algorithms is usually based on restricted Boltzmann machines (RBMs)

invented by Paul Somolnsky in 1986 [119]. When these single layer networks are

connected into a multi-layer hierarchy of convolutional or fully connected layers, the

overall technique is referred to as deep learning [120]. Deep learning algorithms are

based on unsupervised learning, and learn to represent data with multiple levels

at different levels of abstraction. Recently, deep learning has received heightened

attention, due to work in 2006 from Hinton [121]. In this work, Hinton introduced a

fast learning algorithm that greedily trains stacked network of restricted Boltzmann

machines referred to as a Deep Belief Networks (DBN).
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Figure 6.1: Convolutional deep belief network architecture composed of two layers of
convolutional restricted Boltzmann machine (CRBM) layers and a sup-
port vector machine (SVM).

Convolutional neural networks have origins in Fukushima’s Neocognitron [122]

which used local neuron connections in a hierarchical structure. Later work from Le-

Cun trained a convolutional neural network using back-propagation to achieve state-

of-the-art performance in pattern recognition tasks [123] [124].

More recently, a convolutional restricted Boltzmann machine (CRBM) has been

proposed by Honglak Lee [125]. When CRBMs are stacked in a multilayer network,

the network is called a convolutional deep belief network (CDBN). A CDBN performs

unsupervised learning to create a hierarchical representation of the data. This hier-

archical network utilizes sparse neuron activation to prevent the learning of trivial

features such as feature detectors representing single pixels [125]. In addition, this

algorithm provides an easily stackable hierarchical approach for feature extraction.

These hierarchical features combine lower level features to create more complex higher

level features. This hierarchical representation leads to very expressive and memory
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efficient models. For example, the layer 2 weights in Figure 6.1 can be thought of as

a weighted combination of the layer 1 weights. In addition, the use of convolution

reduces the memory needed for weights when compared to fully connected networks

because weights are shared across multiple neurons.

CRBMs get their name from restricted Boltzmann machines, which are Boltzmann

machines with the restriction that the neurons making up a network are treated as two

layers with weight connections between the layers, but no lateral connection within a

layer [120]. The lack of lateral weight connections makes this implementation easier

to parallelize. The two layers are referred to as the visual layer and hidden layer. A

Boltzmann machine is a stochastic variant of Hopfield networks, which can be thought

of as a neural network implementation of a content addressable memory. Like Hopfield

networks and Boltzmann machines, CRBMs also define an energy function where the

local minima in this energy function define the content stored in the network [120]. By

updating the binary neuron states using Gibbs sampling, the network will eventually

converge to a state corresponding to a local minimum in the energy function. Gibbs

sampling involves calculating the probability that a binary neuron is one given the

state of the rest of the network and then stochastically updating the state of that

binary neuron to one or zero using that probability. Block Gibbs sampling used in

RBMs refers to this probabilistic update rule when applied as a parallel update of all

the hidden unit states given the state of all the visual units or vice versa.

6.3 Algorithm

The sparse deep learning processor in this work is made up of two CRBMs followed

by an SVM layer for classification shown in Figure 6.1. An illustration of a single

CRBM network is shown in Figure 6.2. The network is composed of a visible input

layer V , weight connections W , a hidden layer H, and pooling layer P .

The visual layer V is made up of NV ×NV ×C elements where NV is the width
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Figure 6.2: Convolutional RBM containing a NV×NV pixel by C channel visible layer,
a NH×NH pixel by K channel hidden layer, and a NP×NP pixel by K
max pooling layer performing d×d max pooling. The K features of W
are composed of Nw×Nw by C channel pixels for each feature.

and height of the square image, and C is the number of channels in the image. The

weights W are made up of NW×NW×C×K elements where NW is the width and

height of the square feature, C is the number of channels per kernel feature, and K

is the number of kernel features. The hidden layer H is made up of NH×NH×K

elements where NH is the width and height of the square image, and K is the number

channels. The max pooling layer P is made up of NP×NP×K elements where NP is

the width and height of the square image, and K is the number of channels.

The uppercase notation (V , W , H, P ) will be used to refer to all elements while

the lowercase notation (vc, wkc , h
k, pk) refers to a subset of the respective elements.

The notation vc refers to the cth channel of V , and vcij refers to a single element at

location (i, j) in vc. The notation wkc refers to the cth channel of the kth kernel of W ,

and wk refers to all the channels of the kth kernel of W . The notation hk refers to

the kth channel of H, and hkij refers to a single element at location (i, j) in hk. Lastly,

the notation pk refers to the kth channel of P .

For the first layer, the input channels of V can be thought of as the three RGB
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color channels making up the image. However, a channel in a hidden layer corresponds

to the output of a kernel feature generated by convolving the input image V with a

given kernel wk in the store weights. The input layer V , weights wk, and a bias are

use to create the hk hidden layer outputs where Nh = Nv−Nw + 1. The max pooling

layer P performs d×d max pooling where d is a small integer and Np = Nh/d. This

max pooling layer is created by taking d×d non-overlapping patches from H and

reducing each of them to a single element using a type of max operation. The use

of max pooling between layers makes the algorithm invariant to small translations of

the input and also reduces the input dimension and computational requirements for

the next layer.

Performing inference involves computing the probability of an output hidden layer

unit hkij is one given V using equation (6.1). In the equation, ∗ denotes convolution, w̃kc

denotes reversing wkc vertically and horizontally, and σ denotes the sigmoid function

given by equation (6.3). After the network is trained, inference is typically performed

by using the neuron activation probabilities directly as outputs in a single feed forward

pass. This method has been shown to produce results comparable to or better than

inference methods based on block Gibbs sampling [121]. Furthermore, a deterministic

max pooling operation could also be used in place of probabilistic soft max operation

with only a minor effect on classification results.

However, while inference was able to use the neuron probabilities directly, learning

requires neuron updates using block Gibbs sampling. Block Gibbs sampling requires

both forward and backward passes. Therefore, learning requires a backward pass from

H to V to compute the reconstruction of V given H. The backward reconstruction

pass is computed using equation (6.2).

P (hkij = 1 | V ) = σ
(∑

c

(
w̃kc ∗ vc

)
ij

+ bk

)
(6.1)
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P (vcij = 1 | H) = σ
(∑

k

(
wkc ∗ hk

)
ij

+ ak

)
(6.2)

σ(s) =
1

1 + exp(−s)
(6.3)

In this process of forward and backward sampling, we take the initial input V (0)

and calculate probabilities Q(0) = P (H | V (0)), which are used to sampled H(0).

Similarly, we can use H(0) to calculate a new sampled V (1) from P (V | H(0)). The

process can then repeat using V (1), and ends with the generation a final sample of

V (Ncd) and H(Ncd) for Ncd passes (Ncd = 1 works well in practice). The results can

then be used to perform the contrastive divergence learning rules given by equa-

tions (6.4) (6.5) (6.6) (6.7). Once again, we use uppercase Q and lowercase q con-

vention to refer to the full set vs subset of the Q. In these equations, ∆wkc refers

to the weight update, ∆bk refers to the hidden layer bias update, and ∆ak refers to

the visual layer bias update. Sparsity is achieved using equation (6.6) to adjust the

hidden layer bias to reach a target sparsity of p.

∆wkc ∝
1

N2
H

(
q̃(0),k ∗ v(0),c − q̃(Ncd),k ∗ v(Ncd),c

)
(6.4)

∆bk ∝
1

N2
H

∑
ij

(
q
(0),k
ij − q(Ncd),kij

)
+ ∆bsparsityk (6.5)

∆bsparsityk ∝ p− 1

N2
H

∑
ij

P (hkij = 1 | V ) (6.6)

∆ak ∝
1

N2
V

∑
ij

(
v
(0),k
ij − v(Ncd),kij

)
(6.7)
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6.4 Requirements

The sparse deep learning processor implements a CDBN using a configuration

that supports common object recognition tasks. An input frame is partitioned into

100x100 pixel patches in 8b grayscale for processing. As illustrated in Figure 6.1, the

sparse deep learning processor consists of three layers: 1) Layer 1 (L1) is a CRBM

that extracts basic features from a 100x100x1 (AxBxC represents C channels of AxB

images) input using 16 8x8 kernels. The output of L1 is 3x3 max-pooled to 31x31x16

(H1); 2) Layer 2 (L2) is a CRBM that extracts more complex features from H1 using

64 8x8 kernels. The output of L2 is 2x2 max-pooled to 12x12x64 (H2); 3) Layer 3

(L3) is a SVM that performs classification using the sum of each of the 64 channels

from H2. The majority of the workload is carried by L2 followed by L1, with L2

performing nearly 76M OP and L1 performing 18M OP per input patch. To support

1920x1080 video input at 30 frames/s (fps), the architecture needs to perform at least

580GOPS, requiring a high power consumption.

With sparsity regularization [125] in L1 and L2, the outputs H1 and H2 become

sparse, as illustrated in Figure 6.1. We set the sparsity target of H1 and H2 to no

less than 87.5% (i.e., 87.5% of H1 are zeros), which not only provides an excellent

classification performance but also opens up an opportunity for significant efficiency

improvement. However, the input to L1 cannot be assumed to be sparse. Therefore,

L1 needs to perform dense convolutions, but the more computationally intensive L2

can use sparse convolutions to save significant silicon area, power, and processing

latency. Balancing the workload between L1 and L2 allows for efficient pipelined

operation with L1 and L2 handling two inputs simultaneously.

Both L1 and L2 need to be massively parallelized to meet the high throughput

requirement. However, parallelizing the architecture may lead to inefficient memory

segmentations and bandwidth bottlenecks. Suppose we use a conventional 8x8 tree

convolver with 64 parallel multipliers followed by a tree adder as one processing
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Figure 6.3: Comparison of three types of parallel architectures: pixel-parallel (P-
parallel), kernel-parallel (K-parallel) and channel-parallel (C-parallel).

element (PE) and a 200MHz clock frequency. L1 needs to convolve the 100x100

grayscale input with each of the 16 8x8 kernel weights. Given the input is 1080p

30fps grayscale , the time it should take to process a 100×100 patch is 1002/(1080×

1920 × 30) = 692µs . Given that a pipelined tree convolver produces one output

every cycle at 200MHz, the first stage takes (100 − 8 + 1)2 × 16 × 1/200MHz =

161µs to finish a patch with 1 PE. Therefore, d692/161e = 5 PEs are needed for

the first stage. Similarly the second stage needs to convolve the 31x31x16 multi-

channel H1 inputs with 64 8x8x16 kernel weights, thus the second stage would take

(31− 8 + 1)2× 16× 64× 1/200MHz = 2949µs to finish a patch with 1 PE. Therefore

stage 2 requires d2949/161e = 19 PEs. In summary, L1 and L2 need to instantiate

at least 5 PEs and 19 PEs, respectively, to meet the throughput target and balance

the workload.
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6.5 Parallelism

The natural ways to parallelize (i.e., to allocate PEs) is along the three primary

dimensions: pixel (P), kernel (K), or channel (C) with different bandwidth tradeoffs as

illustrated in Figure 6.3. A P-parallel architecture processes multiple input pixels in

parallel. Therefore, it requires a high input bandwidth, but the weights can be shared

between PEs and the output bandwidth is low. A K-parallel architecture performs

convolutions of one input pixel with multiple kernels, which saves input bandwidth,

but requires high weight and output bandwidth. A C-parallel architecture processes

multiple channels in parallel, requiring both high input and weight bandwidth, but

the outputs from multiple channels are combined, reducing output bandwidth. Since

the input to L1 has only 1 channel, we choose a 3-way P-parallel and 2-way K-parallel

architecture for L1 using 6 PEs to balance the input, weight, and output bandwidth.

With sparse inputs, naive forms of parallel architectures will run into significant

stalling and synchronization issues due to irregular completion times and data depen-

dencies between parallel threads. The 31x31x16 H1 input to L2 is sparse in the pixel

dimension and channel dimension (i.e., many zero entries). The location of non-zero

elements in H1 and H2 is not uniform. Non-zero elements are often clustered. There-

fore some regions of H1 and H2 may contain many more non-zero elements, and some

channels of H1 and H2 can be sparser than others. This irregular sparsity across P

and C (as shown in H1 & H2 in Figure 6.1) makes P-parallel and C-parallel archi-

tectures inefficient because some PEs will be stalling while waiting for busy PEs to

complete. A K-parallel architecture is the optimal choice to process sparse inputs as

it keeps all PEs busy and maintains the uniform progress by all PEs, but a K-parallel

architecture requires high weight and output bandwidth. Therefore we choose a 16-

way K-parallel and 2-way P-parallel architecture for L2 using 32 PEs to aggressively

minimize stalling due to sparse inputs. Note that we select 2-way P-parallel to reduce

the weight and output bandwidth by 50% at the cost of an 11% stalling rate.
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6.6 Dense Processing

While sparse convolutional architectures can outperform architectures for dense

convolution (convolution with non-sparse inputs), dense processing has many advan-

tages. Notably, unlike sparse processing, dense operations have deterministic memory

access, data flow, and execution times. Since memory access, data flow, and execution

times are deterministic, common architecture bottlenecks and stalling can be avoided

through preemptive measures like memory pre-fetching and execution scheduling prior

to runtime. For these reasons, many parallel architecture options can efficiently per-

form dense operations. Three specific architectures will be briefly highlighted.

6.6.1 Multiprocessor

A multiprocessor approach can be easily scaled up to a many core architecture

to meet the throughput requirements for dense processing. Because of regular deter-

ministic memory access and execution time, all three forms of parallelism P, C, and

K shown in Figure 6.3 can be performed in a way with little or no stalling. How-

ever, because multiprocessors require an almost completely replicated datapath for

each processor, the approach has multiple replicated resources such as data caches,

instruction decoders, controllers, and memory interfaces that cannot be shared be-

tween processors. Therefore a multiprocessor is flexible but less efficient than other

architectures such as a systolic array or tree convolver.

6.6.2 Systolic Array Convolver

A systolic array convolver can be constructed from an array of multiply-add units

with fixed weight multipliers and regular hard wire connections between them as

depicted in Figure 6.4. In this architecture, partial results are shifted to the right

and then down the array leading to a completed result exiting the bottom right

multiply-add unit. This systolic array approach requires minimal additional hardware
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Figure 6.4: A 3x3 systolic array convolver performing the convolution of the Nv = 5
width input X and the Nw×Nw kernel weights W (Nw = 3). In this struc-
ture partial results move to the right and then down with fixed weights at
each multiplier. Note the additional Nw(Nv−Nw) shift registers required
for temporary storage.

components such as a single controller and FIFO to complete the parallel architecture.

One beneficial property of the systolic array is that it only requires a single input pixel

every cycle and produces a single output pixel every cycle. Notable drawbacks of this

architecture are the fairly long initial pipeline latency and the need for an internal

FIFO. The internal FIFO is needed to store the many temporary partial results

propagating through the pipeline.

6.6.3 Tree Convolver

The tree convolver implements a form of single instruction multiple data (SIMD)

processing using an array of multipliers followed by an adder tree as shown in Fig-

ure 6.5. Like the systolic array, an architecture based on a tree convolver requires

few additional hardware components such as a centralized controller and memory to

control the very parallel execution path. One significant benefit of a tree convolver is
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registers reduce the input bandwidth from Nw×Nw input elements per
cycle to Nw inputs per cycle. The green square moving over the input
image X corresponds to the current state of the shift registers, and the
next cycle X input pixels are labeled at the input.

the reduced temporary storage required for pipelining when compared to the systolic

array. This structure requires a Nw×Nw input pixels every cycle, which creates high V

memory bandwidth requirements. However, as consecutive input patches are simply

shifted versions of previous input patches, an array of shift registers can be used to

reduce the input bandwidth to Nw pixels every cycle by reusing previous input values.

The input bandwidth overhead can be further reduced by amortizing the cost across

multiple parallel tree convolvers since much of the input can be shared. For these

reasons, a tree convolver was chosen as the dense convolutional processing element in

this work.
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6.7 Sparse Processing

In single threaded processing, the full speedups from sparse computation can be

extracted. In order to achieve real-time video processing, highly parallel process-

ing must be used to accelerate computation. However, parallel processing leads to

memory contention and synchronization issues, which reduces the effective speedup

of parallelism.

6.7.1 Multiprocessor

In a multiprocessor style approach, parallelism requires independent random ac-

cess to both input and kernel memory, which comes at a significant area penalty for

implementing many shallow memory banks. In addition, this approach will likely

lead to significant stalling due to irregular completion times and data dependencies

between threads. As discussed earlier, the flexibility of this approach also makes it a

less efficient architecture.

6.7.2 Patch Based Sparse Convolver

In a vector processing or SIMD style approach, sparse processing can no longer

use an array of multipliers followed by an adder tree because this structure does not

benefit at all from a sparse input vector. Instead a direct sparse SIMD implemen-

tation leads to a structure where a block of multipliers produce a patch of partial

results from a single non-zero input element. These partial results are then added to

the values in the output memory. We will refer to this implementation as a patch

based sparse convolver. Unlike the tree convolver which takes many input pixels to

produce one output, the patch based sparse convolver takes one input pixel to pro-

duce many outputs. As shown in Figure 6.6, each non-zero input element creates a

square of partial results that require very wide single cycle random overlapping access

to output memory (a non-overlapping block storage approach would require multiple
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Input Output

Figure 6.6: Example output from processing a sparse input image containing 3 non-
zero elements that are color coded to indicate their corresponding output
patch. Note how each pixel creates a square output patch after convolu-
tion with a kernel. The overlapping regions of output patches represent
summation.

cycles). This very wide single cycle random memory access significantly decreases the

performance and efficiency of the approach. This method also potentially requires

multiple revisits of the same output location in order to finish processing all over-

lapping patches corresponding to an output pixel, which further increases memory

bandwidth requirements. In addition, multiple SIMD modules would be needed to

target the throughput requirements of this work, making this approach impractical.

6.7.3 Row Based Sparse Convolver

This work utilizes a parallel array of low overhead SIMD row based sparse con-

volvers that completely removes output memory random access, and significantly

reduces the output buffering required to avoid stalls from bursty irregular execution

times. The 8x8 row based sparse convolver uses a priority encoder to skip zero entries,

followed by 8 multiply-accumulate (MAC) units to convolve a nonzero pixel by a row
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Figure 6.7: A 4x4 sparse convolver design and illustration of its operation. A sparse
convolver consists of a priority encoder to skip zeros and a row of multiply-
accumulate (MAC) units to compute convolutions.

of 8 weights in parallel. The priority encoder scans an 8x8 patch in H1 and outputs

the row and column addresses of the nonzero entries. With a target sparsity no less

than 87.5%, the sparse convolver matches or surpasses the throughput of the 8x8 tree

convolver, but its area and power are 1.74 times and 3.3 times lower, respectively,

than the tree convolver.

An example 4x4 row based sparse convolver processing one input section is shown

in Figure 6.7. For clarity, in this paragraph the numbers will be in reference to the

4x4 row based sparse convolver in Figure 6.7, but in this work a 8x8 row based sparse

convolver is used. Nw, which is equal to the width and height of the square weight

kernel, will also be used to represent the general case. Similar to the patch based

sparse convolver, the row based convolver takes a stream of single non-zero pixels and

multiplies and accumulates them across a vector of elements, which in this case is a row

instead of a patch. Similar to the tree convolver, the row based sparse convolver works

on one output row at a time in Nw = 4 element sections. During processing of a single

row, the row based sparse convolver processes Nv/Nw = 8 non-overlapping Nw×Nw =

4x4 sections from H1, which is zero padded to be Nv×Nv×C = 32x32x16. The inputs
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are read in one at a time by using a priority encoder to locate and select only the non-

zero elements. Each element from the Nw×Nw = 4x4 input section has an associated

row and column that are used to select the corresponding row of Nw = 4 kernel

elements to multiply with the input pixel and store in Nw = 4 out of (2Nw−1) = 7

potential output column elements. When the sparse convolver finishes the Nw×Nw

= 4x4 input section, the first Nw = 4 output elements have been completed for that

input channel, and are stored to memory. The last (Nw−1) = 3 output elements are

partial results needed for the next stage of computation to process the next Nw = 4

outputs. During the same cycle, the last (Nw−1) = 3 output elements are shifted

to the first (Nw−1) = 3 elements (plus one zero element for padding) and are added

to the Nw = 4 results from the previous channel loaded from memory. This process

continues until the last horizontal section is processed, then the elements stored in the

input buffer are shifted up by one row to process the next output row in the image.

When one channel of the 16 input channels of H1 is completed, the process repeats

on the next channel until all channels are processed.

One interesting observation of CRBM networks is that some features lead to much

sparser outputs than others on average. However, these very sparse signals may not

improve overall throughput because the ASIC has limited memory bandwidth and

buffering resources that can stall the architecture. In order to achieve significant

speedups for lower sparsity levels, the inputs from known highly sparse channels can

be combined with less sparse channels in a mini-batch to achieve more consistent

throughput across inputs channels, leading to reduced stalling. Therefore, L2 pro-

cesses two out of the 16 channels of H1 in a mini batch.

6.8 Hardware Optimization

Register elements used for memory buffering make up a significant portion of the

sparse deep learning processor. This chip uses 40Kb registers to buffer weights and
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Figure 6.8: Sparse deep learning processor architecture composed of two CRBM layers
and an SVM layer. Layer 1 uses a 3-way P-parallel and 2-way K-parallel
architecture, and layer 2 uses a 16-way K-parallel and 2-way P-parallel
architecture.

12Kb registers to queue L2 outputs. Since the weight and L2 output storage are not

updated in a pipelined fashion, we replace the registers by latches leading to a 25%

area reduction in memory buffer storage modules. We also note the weight buffer and

the H1 and H2 interface buffer are infrequently updated. Therefore, dynamic clock

gating is applied to turn off the clock input to the buffers and reduce their power by

47%.

6.9 Architecture Summary

The overall sparse deep learning architecture is composed of three layers: 1) a

dense convolution stage, 2) a sparse convolution stage, and 3) an SVM classification

module. A block diagram of the sparse deep learning processor is shown in Figure 6.8.

The gray blocks represent memory blocks where dark gray corresponds to SRAM and

light gray corresponds to latches or flip-flops.

L1 is made up of 6 8x8 tree convolvers arranged to be 3-way P-parallel and 2-way

K-parallel. After convolution, the results go through a 3x3 maxpooling unit followed
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by a sigmoid non-linearity implemented as a look up table (inside of the max pooling

block). In order to increase design flexibility, a rectified linear non-linearity [126] as

well as a bypass mux are also implemented. The outputs of L1 are then quantized to

8b and stored in H1 memory. L2 is made up of 32 8x8 row based sparse convolvers

arranged to be 2-way P-parallel and 16-way K-parallel. The load queue and store

queue are required to implement the sum of the outputs over all H1 channels which

are read in 2 channels at a time. The load queue and store queue also act as FIFOs

in the design to smooth out bursty execution times inherent to sparse processing.

The outputs of L2 are stored in H2 memory before the 2x2 maxpooling operation

as maxpooling cannot be applied until the sparse convolvers finish looping over all

H1 input channels. The L3 SVM module performs classification using the sum of

the outputs from each of the 12x12x64 max pooled H2 values to create a 64 element

vector that is used to find the inner product with 64 16b weights for comparison

with a threshold. Compared to the rest of the architecture, SVM consumes fewer

computational resources and completes relatively quickly.

6.10 Chip Measurements

A 1.40mm2 design was fabricated in a 40nm CMOS technology. The chip uses

a PLL to generate the clock, and scan chains for input and output. The chip mea-

surements are summarized in Table 6.1. With a 0.9V supply and 240MHz clock fre-

quency, the chip achieves a throughput of 96.4M pixel/s at 140.9mW. The measured

frequency and power consumption at room temperature are shown in Figure 6.9. The

processor takes advantage of sparsity to reduce the 898.2GOPS workload by almost

4X to 261.6GOPS. When tested with of 50% face images and 50% other categories

from the Caltech 101 [127] (with 434 images for training and the remaining 434

images for testing), the processor achieves an 89% classification accuracy. The re-

sults of the chip are compared with other deep learning processors published recently
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Figure 6.9: Measured power and frequency of a test chip at room temperature. The
lowest supply voltage is used at each frequency point. The supply voltages
used are annotated on the graph.

Table 6.1: Chip summary

Technology

Chip Area

Core Area

SRAM

Supply Voltage 0.9V 0.65V

Frequency 240MHz 120MHz

Power 140.9mW 40.9mW

Throughput 96.4 Mpixel/s              48.2 Mpixel/s              

261.6 GOPS  130.8 GOPS  

 898.2 GOPS                        

(dense equivalent)

 449.1 GOPS                        

(dense equivalent)

1.86 TOPS/W 3.20 TOPS/W

 6.37 TOPS/W       

(dense equivalent)

 10.98 TOPS/W       

(dense equivalent)

186.9 GOPS/mm2 93.4 GOPS/mm2

641.6 GOPS/mm2 

(dense equivalent)

320.8 GOPS/mm2 

(dense equivalent)

Performance

Power Efficiency

Area Efficiency

40nm

1.4 x 1.4mm (1.96mm2)

1.40mm2                                                  

(Logic 1.07mm2)                                  

(Memory 0.33mm2)

744Kb
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Table 6.2: Comparison of deep learning processors.

Reference This Work ISSCC'15 Park [1] ISSCC'14 Lu [2]

Application Object Recognition Big Data Analysis Pattern Recognition

Function Deep Neural Network Deep Neural Network
Unsupervised Online 

Clustering

Technology 40nm 65nm 0.13um

Area 1.4mm2 10.00mm2 0.36mm2

261.6 GOPS  

 898.2 GOPS       

(dense equivalent)

Power 140.9mW 213.1mW
27uW (learning)    

11.4uW (inference)

1.86 TOPS/W

 6.37 TOPS/W       

(dense equivalent)

186.9 GOPS/mm2

641.6 GOPS/mm2 

(dense equivalent)

Area Efficiency 41.13 GOPS/mm2 0.03 GOPS/mm2

Performance 411.3 GOPS 0.012 GOPS

1.93 TOPS/W 1.04TOPS/WPower Efficiency

[116] [117] in Table 6.2. The chip demonstrates a competitive energy efficiency of

1.86TOPS/W and area efficiency of 186.9GOPS/mm2, equivalent to 6.37TOPS/W

and 641.6GOPS/mm2 respectively for a non-sparse processor. With a scaled sup-

ply voltage of 0.65V, the energy efficiency improves to 3.20TOPS/W, equivalent to

10.98TOPS/W for a non-sparse processor. The chip microphotograph is shown in

Figure 6.10.

6.11 Conclusion

In this work, we present a sparse deep learning ASIC that achieves dramatic per-

formance and efficiency improvements by taking advantage of sparsity inherent to the

convolution neural network algorithm. This work complements previous work [12] by

utilizing sparsity for a new neural network algorithm based on convolution rather

than integrate and fire neuron dynamics. The processor is well suited for low power

embedded applications, and is capable of processing 1080p video at 30 fps. Architec-
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tural analysis led to the balance of P, C, and K parallel choices as well as the choice to

use 8x8 tree convolvers and 8x8 row based sparse convolvers as processing elements.

Latch based design and clock gating also allowed for a significant reduction of the

power consumed by memory buffer elements in the design. The processor achieves

261.6GOPS, equivalent to 898.2GOPS done by a non-sparse processor, dissipating

140.9mW power. This work achieves state-of-the-art results with a dense equivalent

energy and area efficiency of 6.37 TOPS/W and 641.8 GOPS/mm2 at a nominal 0.9V

supply voltage.
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CHAPTER VII

Conclusion

The demand for lower power and higher performance signal processing capabil-

ities will continue to grow for the foreseeable future. In an age where the benefits

from Moore’s law scaling have been trailing off, a custom specialized ASIC solution is

one of the best ways for chip developers to support new functionality and demanding

applications while keeping the power budget low. This work discusses ASIC hard-

ware for both conventional and unconventional signal processing systems, and how

integration, error resilience, emerging devices, and new algorithms can be leveraged

by signal processing systems to further improve performance and enable new appli-

cations. This work aims to discuss some of these design considerations by presenting

three case studies: 1) a conventional and massively parallel mix signal cross-correlator

ASIC for a weather satellite performing real time synthetic aperture imaging, 2) an

unconventional native stochastic computing architecture enabled by memristors, and

3) two unconventional sparse neural network ASICs for feature exaction and object

classification.

The design of the more conventional but massively parallel mix signal cross-

corelator ASIC enabled a new application, microwave radiometer in geosynchronous

orbit, by dramatically reducing system power requirements. Massive integration and

an evaluation of error resilience through radiation testing were key to the success of
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this design. Large scale integration of both ADCs and digital processing onto a single

die led to dramatic power reduction by removing the high speed IO that would have

been required. The highly parallel architecture also allowed for both energy efficient

and high performance operation. In addition, costly design techniques such as spe-

cialized radiation tolerant circuit designs were considered. However, after radiation

testing and an evaluation of the system level requirements for the given application,

it was found that these radiation tolerant circuits were not necessary. By removing

these circuits, area and power consumption were dramtically reduced.

Native stochastic computing enabled by memristors is an example of an uncon-

ventional signal processing system. This work turned the probabilistic behavior of

an emerging device, normally seen as a negative attribute, into a positive feature

by merging it with stochastic computing to produce an unconventional computing

paradigm. The stochastic behavior of the memristor devices allows for the costly ran-

dom number generators to be eliminated and replaced with relatively low area and

low power memristive devices. This work showed that by embracing non-ideal device

behavior from a perspective of a different computing paradigm, a new signal pro-

cessing architecture can be created to take advantage of the benefits of the emerging

devices without the drawbacks.

The two neural network based signal processing systems are examples of leverag-

ing unconventional algorithms to improve signal processing systems. Neural network

and machine learning algorithms offer a compelling alternative to traditional feature

extractors such as K-means, PCA, and SIFT. These neural algorithms draw inspira-

tion from the brain, and break away from the Von Neumann computing paradigm

common to most micro architectures. In these works, we use hardware and algorithm

co-design techniques to create efficient signal processing architectures. Specifically,

both works focus on utilizing sparsity for algorithm acceleration, low power process-

ing, and communication.
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The sparse coding ASIC based on integrate and fire neurons took advantage of the

relatively lower bandwidth associated with sparse neuron activation in the algorithm

by implementing a lightweight ring-bus architecture for communication. The architec-

ture also allowed neurons within the same bus to share weight memory banks, which

reduced the need for independent random access and memory area. Furthermore,

quantization analysis allowed the memory to be partitioned into a high bandwidth

low precision MSB weight memory for inference and a low bandwidth high precision

LSB weight memory for learning. The dual-precision architecture allowed the rela-

tively lower throughput learning to be implemented with low overhead while keeping

inference very low power and high performance. By tightly integrating computation

and memory in a non-Von Neumann architecture that embraces sparsity, an efficient

high performance architecture was created.

The sparse deep learning ASIC based on convolutional neural networks builds on

the key ideas from the sparse coding ASIC, but applies them to a new algorithm

with unique parallel processing requirements for sparse computation. This work uses

sparsity to significantly reduce computation, but without the high cost of independent

parallel random memory access. The reduction in random memory access is achieved

through the use of row based sparse convolutional processing and careful parallelism

choices. Clock gating and latch based modules further reduced power and area in

the design. This work once again shows unique aspects of neural network hardware

acceleration and their potential as an alternative to traditional feature extractors in

low power devices.
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