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ABSTRACT

Kernel Based Model Parametrization and Adaptation with Applications to Battery
Management Systems

by

Caihao Weng

Co-Chairs: Jing Sun and Huei Peng

With the wide spread use of energy storage systems, battery state of health (SOH)

monitoring has become one of the most crucial challenges in power and energy re-

search, as SOH significantly affects the performance and life cycle of batteries as well

as the systems they are interacting with. Identifying the SOH and adapting of the

battery energy/power management system accordingly are thus two important chal-

lenges for applications such as electric vehicles, smart buildings and hybrid power

systems.

This dissertation focuses on the identification of lithium ion battery capacity fad-

ing, and proposes an on-board implementable model parametrization and adaptation

framework for SOH monitoring. Both parametric and non-parametric approaches

that are based on kernel functions are explored for the modeling of battery charging

data and aging signature extraction. A unified parametric open circuit voltage model

is first developed to improve the accuracy of battery state estimation. Several analyt-

ical and numerical methods are then investigated for the non-parametric modeling of

battery data, among which the support vector regression (SVR) algorithm is shown

xiv



to be the most robust and consistent approach with respect to data sizes and ranges.

For data collected on LiFePO4 cells, it is shown that the model developed with the

SVR approach is able to predict the battery capacity fading with less than 2% error.

Moreover, motivated by the initial success of applying kernel based modeling meth-

ods for battery SOH monitoring, this dissertation further exploits the parametric SVR

representation for real-time battery characterization supported by test data. Through

the study of the invariant properties of the support vectors, a kernel based model

parametrization and adaptation framework is developed. The high dimensional op-

timization problem in the learning algorithm could be reformulated as a parameter

estimation problem, that can be solved by standard estimation algorithms such as the

least-squares method, using a SVR special parametrization. The resulting framework

uses the advantages of both parametric and non-parametric methods to model non-

linear dynamics, and greatly reduces the required effort in model development and

on-board computation. The robustness and effectiveness of the developed methods

are validated using both single cell and multi-cell module data.

xv



CHAPTER I

Introduction

1.1 Motivation

The world’s increasing prosperity and rapid economic growth continue to place

additional demands on energy supply [1]. The International Energy Agency has

projected that the world’s energy demand and carbon-dioxide emissions will grow

by 37% and 20%, respectively, from now to 2040, based on planned policies [2]. At

the same time, the growing concern over oil shortage and environmental issues has

greatly accelerated the development of alternative power and energy solutions to

displace fossil fuels in recent years [3, 4]. It is essentially a new industrial revolution

in which our energy sources need to be more affordable and sustainable, and our

energy utilization should become more effective and efficient [1, 5].

As a key component in this revolution, energy storage systems are critical enablers

for the next generation power/energy technologies [6–9]. In particular, the integra-

tion of energy sources with storage systems is crucial to the improvement of energy

efficiency and conservation, for energy conversion systems as well as for new and

renewable energy sources [1, 7]. Among the various choices of energy storage tech-

nologies, it is well recognized that lithium ion battery systems can offer a number of

high-value opportunities given their advantages in portability and superior efficiency

(See Fig. 1.1 for comparisons [10]). Lithium ion batteries have been used to power
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an increasingly diverse range of applications, from cell phone and medical equipment

to electric vehicles (EVs). The development of more reliable and efficient battery

management systems (BMSs) have become vitally important [4, 11, 12].

Figure 1.1: Ragone plot of common energy storage systems.

A BMS is an integration of hardware and software that monitors and controls

the battery systems [13, 14]. The primary task of a BMS is to ensure safe and re-

liable battery operation in performing its function as a power source/sink [15]. By

controlling the charging and discharging process, a BMS handles important functions

such as limiting battery overcharge and preventing cell imbalance [11]. The complex-

ity of a BMS design depends on the application. For most portable devices such as

laptops and cell phones, the battery cells are slowly discharged and then recharged

periodically [11]. The main responsibility of a BMS in this case is to recharge the

batteries to full state of charge (SOC) with a safe charging protocol. Because of the

easiness of battery replacement, longevity and service life extension are usually less

concerned for those devices. For other applications such as the EVs and hybrid elec-

tric vehicles (HEVs), which operate large battery systems in dynamic environments,
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the design of the BMS is a lot more sophisticated. For instance, the BMS of a HEV

must coordinate with other vehicle components and power sources to ensure efficient

operation while satisfying the driver’s demand. The SOC and power capability of

the battery also needs to be estimated continuously by the BMS to guarantee per-

formance and safety. Moreover, due to the expected long service life and relatively

large size of the battery system, battery aging and degradation become a much more

influential factor for those applications. The state of health (SOH) management of

battery systems thereby becomes one of the most important tasks for the BMS.

SOH is a measure that reflects the current condition of a battery in compari-

son with its fresh status [15, 16]. Battery SOH continuously deteriorates due to

irreversible physical and chemical change during a life time. Batteries are complex

systems that are not fully understood. The aging process is typically associated

with multiple mechanisms that affect both capacity and resistance of the battery,

leading to the reduction of the battery’s energy and power density. In the case of

lithium ion cells, the performance degradation could be caused by many phenomena

such as the growth of solid electrolyte interphase (SEI) layers, loss of active materi-

als, electrolyte decomposition, and electrode structural disordering [17, 18]. Most of

those mechanisms are coupled during the aging process and cannot be isolated and

studied independently, thereby making the investigation of battery aging mechanism

more complicated [17]. On the other hand, inability to understand battery aging

mechanism could lead to poorly designed battery management strategies, and cause

severe loss of performance, shortened life, or even safety issues to the battery systems.

Therefore, in order to achieve longer and more efficient battery operations, it is crucial

(and extremely challenging) to study the aging phenomenon, and mitigate the aging

effects by designing and implementing effective energy as well as SOH management

strategies through the BMS.

One critical step in achieving effective battery energy management is the obser-
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vation and tracking of battery states, namely SOC estimation and SOH monitor-

ing, during the system operation. Many methods for on-line SOC estimation have

been studied including coulomb counting [19], use of relation between open circuit

voltage (OCV) versus SOC [20], and other model-based approaches with extended

Kalman filters [21–24]. In contrast, the development of on-line SOH monitoring tech-

niques is more difficult because of the lack of understanding of those complicated

electrochemical mechanisms involved in battery aging, as mentioned above. Whereas

it is possible to assess the resistance growth by both off-line tests such as electro-

chemical impedance spectroscopy (EIS) [25, 26] and on-line identification algorithms

such as the use of least squares method [27–30], the detection of capacity fading still

largely relies on laboratory measurements and off-line analysis [12, 31, 32].

The conventional method in determining battery capacity fading is by fully charg-

ing or discharging the battery, and computing the total charges transferred in the pro-

cess [31, 33, 34]. However, the method requires time-consuming tests and additional

energy cost, thus making it not suitable for on-board implementation with real-life op-

erating constraints. An alternative approach of studying capacity loss is the so-called

incremental capacity analysis (ICA) method [35]. ICA transforms voltage plateaus

on charging/discharging voltage (V -Q) curves into clearly identifiable dQ/dV peaks

on incremental capacity (IC) curves [35]. ICA has the advantage to detect a gradual

change in cell behavior during an aging process, with greater sensitivity than those

based on conventional charge/discharge curves and yield key information on the cell

behavior associated with its electrochemical properties [12, 36]. Another popular way

of extracting battery aging signature and analyzing battery SOH from the voltage

curve is the differential voltage analysis (DVA), which is based on the dV /dQ curve.

The accuracy of DVA-based capacity fading prediction has also been shown in many

studies [37, 38].

Although ICA was shown to be an effective tool for analyzing battery capacity

4



fading, most studies using the tool have focused on understanding the electrochemical

aging mechanism and few studies have been reported based on the on-board appli-

cation of ICA. Meanwhile, since all the peaks on an IC curve lie within the voltage

plateau region of the V -Q curve, which is relatively flat and more sensitive to mea-

surement noise, calculating dQ/dV directly from the measured data without noise

influence is difficult. Hence, effective and robust algorithms of obtaining the IC curve

need to be developed.

This dissertation aims at developing a modeling and identification framework that

can apply ICA for battery SOH monitoring with battery charging data that are nor-

mally available during operation. Several methods, including parametric models and

numerical procedures, were developed and evaluated for extracting the IC peaks and

associating them with capacity fading. The applicability of such frameworks to both

individual cells and multi-cell battery modules/packs are investigated. Among the

approaches that are explored in this work, a kernel-based method, namely support

vector regression (SVR), is shown to be most robust and effective in extracting an ag-

ing signature experimental data. Moreover, the results delivered by the SVR approach

motivate a study on the further improvement of the algorithm by taking advantages

of the SVR model sparsity and adapting the kernel parameters.

1.2 Background

1.2.1 Aging Process of Lithium Ion Batteries

Understanding battery aging mechanisms is one of the most important steps to-

ward effective battery energy and SOH management. Battery aging is a complex

physical-chemical process, which is influenced by various operating conditions such

as the SOC levels and the environmental temperatures [39–41]. The different aging

mechanisms are usually coupled and occur at similar time scales [17, 42, 43]. There-
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fore the performance degradation, typically reflected as capacity loss and increase of

internal resistance, is often a result of a combination of different processes and their

interactions [44, 45]. In general, the aging mechanisms of lithium ion batteries can

be categorized as electrochemical and mechanical degradation.

The main electrochemical degradation processes include the growth of solid elec-

trolyte interphase (SEI) layer, the lithium ion plating and the gas evolution due to

oxidation of positive electrode material. A SEI film is a protecting layer formed

on the negative electrode during first cycle [46]. It is generated to prevent elec-

trolyte degradation by blocking electron passing through the layer. The initial for-

mation of SEI consumes cyclable lithium ion, thereby leading to an irreversible loss

of capacity[32, 42]. Moreover, due to instability of SEI, the layer continues to grow

as battery ages. Because the SEI growth involves consumption of active lithium

ions, consumption of electrolyte and exfoliation of the active electrode material, the

process could further reduce the effective life of the battery [47]. SEI growth has

been identified as the determining factor on the performance of lithium ion batter-

ies. The formation of metallic lithium on the surface of the negative electrode is

called lithium ion plating. The phenomenon occurs mostly when the battery cell is

charged/discharged at low temperature or with high current rate [48]. Under both

conditions, lithium ion is transported more rapidly than the intercalation rate and

therefore deposited in metallic form on the anode surface. Lithium plating could

result in a rapid capacity loss. The conductive lithium metal may become isolated

from anode surface and accumulate in the separator. A metallic path through the

separator can eventually be formed due to the continued lithium plating and cause a

internal short circuit in the cell [49]. The gas evolution results from the decomposition

of electrolyte and reactions with impurities in lithium ion batteries [50]. It is usually

detected at high temperature or when battery cell is overcharged. The accumulation

of gas could increase the cell internal pressure and lead to battery swelling, which
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may eventually damage the cell enclosure [32, 50]. The mechanism could also reduce

the active area of porous electrode structure and lower the cell conductivity.

The mechanical degradation is mainly related to the cyclic expansion and con-

traction during battery operation. Such deformation induces mechanical stress to the

cell structure and causes fracture of the electrode material [51]. The formation of

microcracks could develop into spanning cracks and break pieces of active material

from the electrode, causing capacity loss [52, 53]. In addition, the cracks could expose

the surfaces of the active material to the electrolyte, which eventually degrades the

chemical stability and safety of the battery [54]. Therefore, the mechanical degra-

dation, especially that associated with structural changes, also affects the battery

performance significantly.

While the aging processes are found to be in those general areas, the exact mech-

anisms that lead to the aging, the operating conditions that slow or accelerate the

aging are not well understood. For the SOH management, one common approach is

to focus on the chief or dominant mechanisms (for instance, the SEI growth) that

contribute to capacity or power fade, and develop simplified or reduced-order models

to capture the aging behavior [18, 42, 55, 56]. The models could then be used to

optimize the battery management strategy that may mitigate the aging effects and

prolong the service life. The research on lithium-ion battery aging mechanism is still

a fast evolving area and continues to attract more attentions in the battery research

community.

1.2.2 Estimation of Battery States

The estimation of battery states, especially SOC and SOH, is an integral part

of on-board battery energy management [57]. SOC is commonly defined as “the

percentage of the maximum possible charge that is present inside a rechargeable

battery”, and the estimation of SOC serves as the “fuel gauge” for batteries. SOH is
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“a ‘measure’ that reflects the general condition of a battery and its ability to deliver

the specified performance in comparison with a fresh battery” [15]. Typically, the

quantitative definition of SOH is based on either the battery capacity or the internal

resistance, depending on specific applications [16].

Many studies of battery SOC estimation have been reported in the literature

[14, 19, 58]. The most popular way for calculating SOC is the Coulomb counting

method, which is based on the continuous integration of charge/dicharge current. It is

commonly used due to its simplicity. However, the estimation accuracy is limited due

to current measurement error and uncertain energy losses during operation. Another

popular method is based on the OCV function [20]. Because the OCV of a battery is

monotonic with respect to its SOC, the corresponding relationship between the two

values can be used as a look-up table for SOC estimation. In order to accurately

represent the OCV, the battery cell needs to be tested for a long time with slow

charging and long relaxation intervals [35]. Therefore this method is not readily

applicable for dynamic application such as EVs and HEVs. Moreover, for batteries

that have flat OCV-SOC function (e.g., LiFePO4 cells), the effectiveness of the method

would be greatly reduced. Kalman filter based SOC estimation is the most promising

technique at the moment [21–24]. Despite a relatively higher computational cost

compared to Coulomb counting and OCV-based methods, this type of method can

capture the system dynamics in real-time and use the closed-loop structure for self-

correction, thereby limiting the estimation error range [58]. There are also learning

based algorithms such as using the artificial neural network and fuzzy-logic [59–62].

The reliability and robustness of those methods heavily depend on the quality of the

training data [58].

The SOH determination of battery is usually associated with two factors: re-

sistance growth and capacity degradation [41, 63]. For the detection of resistance

growth, both off-line and online methods have been reported in literature. EIS is
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the most commonly used method for evaluating resistance growth off-line. In a lab-

oratory setting, electrochemical impedance is usually determined by applying an AC

potential to the battery cell and measuring the current through the cell [64]. Instead

of one frequency, EIS measures the impedance change for a wide frequency range,

thereby allowing the characterization of many aging effects [25]. On the other hand,

for on-board applications, the resistance is typically measured by applying an equiv-

alent circuit model together with a parameter estimation algorithm such as the least

squares method [27–30]. Due to the rich dynamics of vehicle driving cycles, persistent

excitation is usually guaranteed for the estimation of battery resistance [65]. The on-

line estimation result could help the prediction of vehicle power capability and the

development of optimal energy management strategies [66–71].

The conventional methods in determining battery capacity fading are mostly based

on the measurement of the fully charging and discharging data [31, 33, 34]. For lithium

ion batteries, one can either measure the usable capacity by computing total charge

transferred during the charging and discharging, or apply techniques such as ICA and

DVA to quantify the capacity loss through certain aging signature. In particular, the

ICA technique differentiates the battery charged capacity data (Q) with respect to

the terminal voltage (V), and transforms the plateaus of the voltage curve into clearly

identifiable dQ/dV peaks on the incremental capacity (IC) curve (See Fig. 1.2) [32,

35]. Those signatures are related to first-order phase transformations and formations

of solid solution during the intercalation process. The concept of ICA originally came

from the intercalation process of lithium and the corresponding staging phenomenon

at the graphite anode [32, 72–74]. It helps to detect gradual changes in cell behavior

with greater sensitivity [12]. ICA is applicable to lithium ion batteries that use

graphite as the negative electrode material since it originates from the study of the

lithium intercalation process [32, 72–74]. The efficacy of ICA has been shown with

various lithium ion batteries (LiFePO4, LiNMC, LNCAO, LiMn2O4, etc.) [35, 36, 75–

9



77]. In Ref. [77], the aging signature extracted using ICA is further amplified through

the delta differential capacity analysis technique, which enables people to detect small

battery degradation in a shorter time interval [32, 39, 78]. In contrast to the ICA,

the DVA is based on differentiation of voltage with respect to the charged capacity

(i.e., dV /dQ). Similar to ICA, DVA quantifies the battery capacity loss by analyzing

the peak changes on the dV /dQ curve [37, 38].
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Figure 1.2: ICA performed on charging voltage curve at 1
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C rate.

One major difficulty in performing ICA and DVA is the sensitivity to noise in

battery voltage measurement [16, 75, 77]. Since all the peaks on an IC curve lie within

the flat region of the voltage curve, computing the derivatives directly from the data

could lead to inaccurate and undesirable results, even after careful data filtering. This

issue could be addressed by implementing specially designed high precision testing

equipment [39, 77]. However, for on-board application, the measurement precision is

usually limited and appropriate data processing is required.
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1.2.3 Modeling of Open Circuit Voltage

The modeling of OCV is found to be critical in both SOC estimation and SOH

determination for lithium ion batteries. Most SOC estimation methods are model-

based approaches and require an accurate model that relates OCV to SOC [19–21, 33].

The OCV-SOC function is implemented in the BMS either as a look-up table or an

analytical expression, while the latter has several advantages including computational

efficiency (since no interpolation is needed) as well as the convenience for analysis.

However, for batteries that have a wide flat region on the OCV-SOC curve (e.g.,

LiFePO4 batteries), a small mismatch in OCV fitting may cause a large deviation in

SOC estimation. Therefore, improving OCV models can contribute significantly to

increasing the accuracy of SOC estimation. The importance of OCV modeling is also

shown in SOH monitoring, as OCV data often reflect battery aging and performance

degradation [31, 79, 80]. ICA and DVA both originate from the analysis of OCV

data.

In Ref. [81], several phenomenological OCV models, which are built with curve

fitting without considering the complex battery physical behavior during the lithium-

ion intercalaction/deintercalation process [3, 82], are summarized. Although those

models represent part of the nonlinear characteristics of battery OCV, they fail to

capture the voltage plateaus and transitions (please see Fig. 1.2) that correspond to

the staging phenomenon at the graphite anode [32, 35, 72–74].

By constructing an OCV model that represents the underlying physical phe-

nomenon of lithium-ion intercalaction/deintercalation process and therefore captures

the subtle transitions over the flat region, one can take advantage of the analytical

form of the model to extract useful information associated with battery electrochem-

ical properties and aging status using ICA [12, 36]. The effect of measurement noise

could also be mitigated by fitting the raw data with a specially structured parametric

model. For both SOC estimation and ICA-based SOH monitoring, an OCV model
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that can capture the physical process over the flat region of the OCV-SOC curve is

needed for lithium ion battery .

1.2.4 Non-Parametric Modeling Using the Support Vector Machines for

Regression

In the statistics and machine learning communities, parametric models are defined

as the ones whose functional structures are given and can be parametrized by a finite

number of parameters, while the nonparametric models have an indefinite number of

parameters depending upon the given data set. Examples of non-parametric models

include the histogram, the k-Nearest Neighbors model and the decision tree model.

The main advantage of non-parametric modeling methods is that they require less

or no prior knowledge about the system or the data, so that the application of such

methods are particularly effective for systems with unknown nonlinear dynamics.

For the non-parametric identification of nonlinear dynamic systems such as the

battery system, the support vector machine (SVM) algorithm is an ideal candidate

due to its excellent approximation and generalization capability [83]. The SVM al-

gorithm was initially developed by Vapnik et al. at the AT&T Bell Laboratories, for

data classification [84]. It has been an active area of research and played a significant

role in solving problems such as data classification and function estimation over the

last two decades [85–87]. The method relies on the use of the kernel trick, which maps

data points to a higher dimensional feature space through an inner product to make

the data linearly separable, so that a nonlinear separating surface can be represented

with a linear model in the feature space [85, 88]. Consequently, the nonlinear data can

be estimated and classified using linear methods as long as the problem is formulated

in terms of kernel evaluations [89, 90]. As a nonlinear generalization and extension

of the Generalized Portrait algorithm, the SVM algorithm is firmly grounded in the

framework of statistical learning theory [83, 91]. Therefore, it has attracted signifi-
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cant interests not only inside the field of machine learning but also from the statistics

and mathematics community due to its advantages in both theoretical insights and

practical usefulness [89, 90].

The support vector regression (SVR) method is the application of SVM algorithm

for regression [84]. Different from the SVM algorithm for data classification (e.g.,

output y ∈ {±1} in a two-classes case), the SVR problem is concerned with estimating

real-valued functions (i.e., output y ∈ R) [88]. By incorporating the ε-insensitive loss

function, a regression problem is constructed such that a function f(x) that has at

most ε deviation from the target values y can be found[83, 88, 92]. In this case,

estimation errors less than ε are treated as zero and only the losses greater than ε are

concerned in the objective function. It has been shown that the use of ε-insensitive

loss functions yield sparse and thus generalizable solutions [93].

Despite the simple structure, the standard SVR algorithm involves solving an op-

timization problem whose dimension depends on the size of the training data set,

and therefore requires non-trivial computational efforts to determine the model pa-

rameters. Since the resulting high dimensional optimization process is often compu-

tationally expensive, the potential applications are limited, particularly for on-board

and real-time estimation problems. Moreover, unlike most SVR problems where the

optimization is only performed once, for applications such as the SOH monitoring

of a multiple-cell battery system, the algorithm needs to be applied to every cell in-

dividually and repeatedly to capture the effects of aging and cell-to-cell variations.

The need for repeated optimization can dramatically increase the computational bur-

den and make the real-time implementation on resource limited platforms difficult

or impossible. An alternative algorithm, known as the reduced support vector re-

gression (RSVM), was developed to address the issue of high dimensions by reducing

the number of constraints in the optimization [87]. Other methods such as the least-

squares support vector machines (LS-SVM), the Chunking method and the sequential
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minimization optimization have also been discussed in the literatures [83, 87]. How-

ever, none of those approaches is applicable to our problem to meet the real-time

computational requirements.

1.2.5 Model Parametrization Based on the Invariance of Support Vectors

The simple and sparse structure of the SVR representation, resulting from the

optimization process, provides a natural choice of parametric model for on-board

adaptation. If the SVs remain invariant from the SVR model of one data set to

another, then only the coefficients of the SVR model need to be updated for model

identification. By fixing the kernel functions and the values of the SVs, the SVR

model could be treated as a linear parametric model whose weighting parameters can

be directly identified using estimation algorithms such as the least squares method.

The iterative optimization procedure could thereby be dramatically simplified. The

parametric structure could also help to better understand the physical properties of

the underlying problems and take advantage of the knowledge one has about the

systems [94]. As an example, the study reported in Ref. [95] exploits the parametric

SVR model for the real-time adaptation of gasoline engine air systems. It is shown

that the SVR model identified from a reference engine data could be applied for the

modeling of a different four-cylinder engine with intake variable valve timing (VVT).

For the application of battery SOH monitoring, since the aging data sets all have

common features, it is conjectured that the optimization only needs to be applied to

one of the data sets as a starting point, and the resulting SVR model structure and

SVs can be used as a basis for the derivation of parametric models for other data sets.

With the development of the parametrization framework based on the the invariance

of SVs, the computational complexity may be greatly reduced by limiting the high

dimensional optimization to the baseline data sets.
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1.3 Dissertation Work Scope and Contributions

This dissertation aims at developing an on-board implementable model parametriza-

tion and adaptation framework, that utilizes the kernel functions used in learning

algorithms, for battery energy management. Through the study of both parametric

and non-parametric modeling approaches, an ICA based on-board battery SOH mon-

itoring framework is proposed, and its efficacy is demonstrated through on data sets

collected through battery aging experiments.

The main contributions are summarized as follows:

1. Developed an SOHmonitoring strategy that combines data-driven and electrochemical-

based approaches, demonstrated that the capacity estimation model built upon

the data from one cell is able to predict the capacity fading of multiple different

cells with less than 2% error.

2. Established ICA as an useful tool for battery on-board SOH monitoring. In-

vestigated the use of SVR for effective ICA signature extraction. Identified the

correlation between peaks on IC curve and battery capacity fading, through

which battery capacity can now be estimated with partial charging data.

3. Developed an ICA motivated OCV model with special parametrization that

considers the staging phenomenon for lithium-ion batteries, and demonstrated

its utility in SOC estimation and SOH monitoring. The model is shown to

be capable of reflecting battery cell’s electrochemical properties at different

operating temperature conditions and aging stages.

4. Exploited the invariance of the SVs using parametric linear programming and

sensitivity analysis. Explored the variation feature of battery aging data. Es-

tablished a model parametrization and adaptation framework. Demonstrated

computational efficiency improvement.
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5. Extended the battery SOH monitoring framework from single cells to battery

modules that have multiple cells connected in parallel. Showed the robustness

of ICA with respect to both cell capacity and resistance non-uniformity inside

the modules.

6. Designed and conducted long-term battery aging tests on LiFePO4 cells and

modules. Built a database that consists of battery aging test data under var-

ious load and environmental conditions. The data sets have been shared with

collaborating universities and institutions.

1.4 Dissertation Outline

This dissertation is organized as follows:

In Chapter II, the effectiveness of ICA for battery SOH monitoring is illusrtated.

ICA is applied to OCV data that are identified off-line with a simplified parametric

model. The monotonic characteristic of IC peaks as battery ages is verified, and a

correlation between capacity and IC peak is established.

In Chapter III, a unified OCV-SOC model motivated by the ICA application

is proposed. The development and parametrization of the new OCV model is pre-

sented, with comparisons to other existing models in terms of OCV data fitting and

SOC estimation accuracy. The application of the OCV model for SOH monitoring is

elucidated. Parametric analysis and model simplification are also discussed.

In Chapter IV, the extraction of IC peaks using non-parametric approaches is

investigated. Several numerical procedures are applied and evaluated. The imple-

mentation of SVR for ICA is discussed in detail. The associated results for on-board

battery capacity estimation are presented.

Chapter V reports the findings of exploiting the parametric SVR model for real-

time battery system characterization, and proposes a framework for on-line battery
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SOHmonitoring. The LP-SVR problem for the identification of V -Q curve is extended

into a parametric LP problem with sensitivity study. The effects of characterization of

battery aging are illustrated through simulation and actual test data. The parametric

LP problem is solved using Monte Carlo simulations and the parametric V -Q curve

model based on the invariance of the SVs is established.

Chapter VI extends the ICA based SOH monitoring framework from single cells

to battery modules. The application of ICA for battery pack is analyzed using a

module simulation model with physical aging mechanism. The sensitivity of ICA with

respect to cell non-uniformity is investigated. Experimental results of the model SOH

monitoring framework applied to a inventory of about 30 battery cells are presented.

The conclusions and suggested future work are given in Chapter VII.
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CHAPTER II

Battery State-of-Health Monitoring Using

Incremental Capacity Analysis

The battery state-of-health (SOH) monitoring framework proposed in this dis-

sertation is established on the basis of the electrochemical characterization method,

known as incremental capacity analysis (ICA). The ICA method differentiates the

battery charged capacity (Q) versus the terminal voltage (V ) and transforms volt-

age plateaus on the charging/discharging voltage (V -Q) curve into clearly identifiable

dQ/dV peaks on the IC curve [32, 35]. In this chapter, the effectiveness of ICA for

battery SOH monitoring is demonstrated through the off-line identification of the

open circuit voltage (OCV) data.

2.1 Introduction of Incremental Capacity Analysis

The concept of ICA originates from the study of the lithium intercalation process

and the corresponding staging phenomenon [72, 73, 96, 97]. Using graphite based cell

as an example, during the charging (or discharging) process, when the lithium ions are

intercalated into (or de-intercalated from) the carbon electrode, the graphene sheets

together with the solid phase lithium ions are arranged periodically to form different

stage structures [98]. Those stages are associated with different energy levels in the

18



negative electrode, and reflected as multiple voltage plateaus on the battery OCV

curve. The ICA technique can be used to characterize the electrochemical properties

related to the intercalation process by computing the IC curve as,

IC =
dQ

dOCV
(2.1)

and transforming the voltage plateaus into clearly identifiable peaks, where Q repre-

sents the charged capacity. In practice, the OCV data are often substituted with slow

charging/discharging (for instance, 1/25 C rate) voltage data (V) under constant cur-

rent. The voltage obtained in this way is sometimes referred as close to equilibrium

OCV data [35]. The dQ/dV based ICA curve could accurately reflect the character-

istics of the underlying battery, given that the results are properly computed, due to

the following equivalence,

dQ

dV
=

dQ

d(OCV + IR)
≈

dQ

dOCV
= IC (2.2)

where V , I, R are the battery voltage, current and internal resistance, and dIR ≪

dOCV when dI is small.

ICA has the advantage to detect a gradual change in cell behavior during the

aging process [35, 76]. It is useful particularly for battery SOH monitoring as the

extracted peak intensities and their change pattern are closely related to the battery

capacity fading.

2.2 Battery Testing Systems and Data Collection

The efficacy of ICA for SOH monitoring will be illustrated using experimental data

obtained from a battery life cycle test. Most of the studies reported in this dissertation

are based on data sets collected from A123 APR18650 cells, which use LiFePO4 as
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the positive electrode material and graphite as the negative electrode, over a period

of 24 months [16, 99]. The details of our multi-cell module tests, which share most

of the set ups for the single cell test, will be presented in a later chapter. The test

data are acquired through a battery test bench (shown in Fig. 2.1), which includes

an Arbin BT2000 tester, a thermal chamber for environment control, a computer for

user-machine interface and data storage, a switch board for cable connection, and

battery cells [16, 99]. The data acquisition system has a logging frequency of 10Hz,

and the measurement precision of both current and voltage is 0.02% (i.e., 1mV for

voltage measurement).

Table 2.1: Main Specifications of the LiFePO4 Cell
Nominal Nominal Upper cut-off Lower cut-off

capacity (Ah) voltage (V ) voltage (V ) voltage (V )

1.10 3.30 3.60 2.00

Figure 2.1: Experimental set up of the battery tests.

The batteries used for this test are lithium ion phosphate (LiFePO4) cells from

A123 (APR18650M1A) with the specifications listed in Table 2.1. Eight cells are

tested with the same load profile for comparison and validation. As shown in Fig.

2.2, the experiment procedure starts with a series of characterization tests (which
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Figure 2.2: Battery test schedule.

consist of a static capacity test, a hybrid pulse test, a DC resistance test, a dynamic

stress test (DST) and a Federal Urban Driving Schedule (FUDS) test) conducted at

three different temperatures (in the order of 10oC, 35oC and 22oC). After these tests,

100 aging cycles are conducted at 22oC. In each aging cycle, the cells are charged and

discharged at a constant rate until the cut-off voltage is detected [81]. For this study,

the data sets from the static capacity test are mainly used. More detailed discussion

of the battery testing systems and schedules can be found in [81]. The data collected

through this set up will be used in the rest of this dissertation.

2.3 Off-line Application of Incremental Capacity Analysis

Results

The ICA technique employs the IC (dQ/dV ) curves to detect gradual changes in

the electrochemical behaviors of lithium ion batteries. The analysis associates the

evolution of the IC peaks with the battery aging process and serves as an effective
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Figure 2.3: Sensitivity of the numerically derived dQ/dV curve to measurement noise.

tool for SOH monitoring. Ideally, one can just take the voltage and current data

from charging or discharging process and compute the dQ/dV curves. However,

because of measurement noise, performing the ICA directly from the measured V -Q

curve has proven to be not a viable option [16, 39, 75, 77], especially for on-board

BMS, where the measurement precision is limited. Fig. 2.3 shows how sensitive

numerical differentiation is to the measurement noise. Therefore, it is required to

develop appropriate data processing methods so that ICA can be applied. For this

study, both parametric and non-parametric approaches are considered to solve this

problem. The former rely on the development of a parametric model with determined

structure whereas the latter typically use numerical and learning procedure to identify

the model parameters as well as the model structure.

To quickly illustrate the effectiveness of applying ICA for battery SOH monitoring,

we start by identifying OCV curves from the experiment data set using a simplified
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parametric model developed in [22–24]. The selected model has linear parameters so

that their values could be directly computed. The identification of such OCV curves

requires test data that span the entire SOC range and therefore is only applicable

during off-line study. The model is not developed for the purpose of SOH monitoring

and therefore it does not capture all the features embedded in the test data. Never-

theless, this model could bring useful insights on the development of methodologies

for the application of ICA.

The model of the OCV curve is expressed as

OCV (z) = K0 −
K1

z
−K2z +K3ln(z) +K4ln(1 − z) (2.3)

where K0∼4 are the model parameters and z is the normalized SOC, and the discrete

battery model used for charging/discharging process is formulated as

zk+1 = zk − (
ηi∆t

C
)ik,

yk = OCV (zk)−Rik

= K0 −
K1

zk
−K2zk +K3ln(zk) +K4ln(1− zk)− Rik

(2.4)

where ηi is the charging/discharging efficiency, ∆t is the time step, C is the battery

capacity, ik is the input current, yk is the model output (terminal voltage), zk is the

SOC and R is the parameter that represents battery internal resistance [81].

Because the battery model is linear in parameters, we could thus formulate the

estimation problem as the following

yk = θTV φV k,

θV = [K0, K1, K2, K3, K4, R]T ,

φV k = [1,−
1

zk
,−zk, ln(zk), ln(1− zk), ik]

T .

(2.5)
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Figure 2.4: OCV and IC curve identified from static capacity test.

The parameters θV can be solved by the standard least squares method,

θV = (ΦT
VΦV )

−1ΦT
V Y,

where Y = [y1, y2, ..., yn]
T ,

ΦV = [φV 1, φV 2, ..., φV n]
T .

(2.6)

An example of the OCV identification results and the corresponding IC curve

is shown in Fig. 2.4. With the parametric OCV model identified, the IC curve

is obtained by taking analytic derivative of the mathematic expression (2.3). One

single peak can be observed from the IC curve. It should be noted, according to [35],

there are three identifiable peaks on the IC curve. However, the number of peaks

that can be extracted numerically from the experimental data depends on the OCV

model and the numerical approach. Using the simplified parametric model (2.3) and

analytic derivative calculation, only one peak is identified. Nevertheless, the purpose

of using this parametric OCV model is to reveal and validate that the aging signature

can indeed be extracted from battery data through ICA. In later chapters, however,
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Figure 2.5: Comparison of OCV and IC curve at different battery aging cycles.

we will discuss how ICA can be applied directly to battery charging data with both

parametric and non-parametric approaches, and show results where all three peaks

are identified.

Applying the identification procedure to different data sets collected at different

aging cycles, the results shown in Fig. 2.5 represent the change in OCV and IC curve

for the first 2300 cycles of one battery under testing. Compared with the other cells,

the battery #7 in Fig. 2.6 shows the most consistent aging behavior and is therefore

used as the reference battery cell in our study. The numerical values in the plot

legends represent the aging cycle number. Monotonic trends in the peaks, as the

battery ages, can be clearly identified on both OCV and IC curves. However, notice

that the IC curve provides not only greater sensitivity than the OCV curve, but also

does so in the normal range of voltage operation (around 3.3V) rather than at high

voltage range.

The same trend can be observed from all eight cells at all temperatures. Fig. 2.6

shows the normalized IC peak values for all battery cells during the aging process.
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Figure 2.6: IC peak value comparison for all eight cells.

With the exception of 4 outliers out of 48 data sets, the eight cells give consistent

decreasing IC peaks, which confirms the validity of using IC peaks as the signature

for battery capacity fading.

At last, the battery capacity is plotted versus the IC peak in Fig. 2.7 and a linear

correlation can be observed between the two values.

In this chapter, the monotonic characteristic of IC peaks as batteries degrade is

verified through the off-line identification, and a correlation between capacity and

IC peak is established. Therefore ICA is shown to be a useful tool for battery SOH

assessment. However, the major difficulty in implementing ICA is the computation of

the IC curve directly from the measured data on-board. For on-line SOH monitoring,

OCV curves change as batteries age, and the updated OCV curves are not available

for conducting ICA. Moreover, most real-life charging data does not span the entire

SOC range, thus the off-line identification method discussed in this Chapter cannot

be directly applied. On the other hand, since the peak of IC curve appears around the

nominal voltage of 3.3V , we believe that this signature can be extracted from normal
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Figure 2.7: Correlation between battery faded capacity and IC peak.

EV charging data (which is limited in its SOC range) with appropriate algorithms.

In the following chapters, both parametric and non-parametric approaches are

developed for the on-board implementation of ICA, with partial battery charging

data that are obtainable during real-life vehicle operations.
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CHAPTER III

A Unified Parametric Open-Circuit-Voltage Model

for State-of-Charge Estimation and

State-of-Health Monitoring

The study reported in the previous chapter shows promising results on applying

incremental capacity analysis (ICA) for battery state-of-health (SOH) monitoring.

However, the implementation replies on the availability of charging voltage and dis-

charging voltage data that span the entire state-of-charge (SOC) range. On the other

hand, the simplified open circuit voltage (OCV) model only captures part of the ag-

ing features from the voltage data. In this chapter, we propose a unified OCV model

that can be applied for both SOC estimation and SOH monitoring. In particular, it is

shown that the proposed OCV model can be used to perform battery SOH monitor-

ing as it effectively extracts aging information based on ICA. Parametric analysis and

model complexity reduction are addressed, and experimental data is used to illustrate

the effectiveness of the model and its simplified version in the application context of

SOC estimation and SOH monitoring.

28



3.1 A New Open-Circuit-Voltage Model

OCV models and data are widely used for characterizing battery properties under

different conditions. They contain important information that can help to identify

battery SOC and SOH. While various OCV models have been developed for battery

SOC estimation, few have been designed for SOH monitoring. In this chapter, a

new OCV model structure, that can capture the phenomenological characteristics

associated with the lithium-ion intercalaction/deintercalation process while fitting

the OCV-SOC data, is proposed here. A specific model structure is chosen to enforce

the model to exhibit plateaus on the OCV curve. These plateaus are results from the

lithium-ion staging phenomena, and have been irrefutably observed from experimental

data. The parameters of the proposed model will be identified with experiment data.

Instead of measuring the OCV after a long relaxation period at different SOC levels

that span the entire range, the data used are collected by charging/discharging a

LiFePO4 battery cell at low rate of 1
20

C under room temperature. The voltage data

obtained by this slow charging/discharging process reflects the OCV at a close-to-

equilibrium status [35]. Although the close-to-equilibrium OCV curve shown in Fig.

3.1 may be affected by hysteresis and diffusion voltage due to lack of relaxation, it can

sufficiently represent the generic electrochemical properties for ICA and quantifying

capacity fading as presented in Ref. [35]. The upper and lower cut-off voltage limits

are set to be 3.6 V and 2.1 V respectively. The total charge stored between the upper

and lower limits is defined as the battery capacity.

3.1.1 Open-Circuit-Voltage Parametric Model

Based on the studies presented in Refs. [16, 32, 35], there are generally three

observable voltage plateaus and two transitions, which are important in characterizing

the OCV and battery capacity, over the flat area on the OCV curve of LiFePO4 battery

cells. In our model, those plateaus and transitions are represented by the sigmoid
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functions as follows,

OCV (z) =K0 +K1
1

1 + eα1(z−β1)
+K2

1

1 + eα2(z−β2)

+K3
1

1 + eα3(z−1)
+K4

1

1 + eα4z
+K5z

(3.1)

where z is the SOC,K0∼5 are the linear parameters, and α1∼4 and β1∼2 are parameters

in the nonlinear functions. This parametrization shares features with some of the

electrochemical model of LiFePO4 proposed in Ref. [3]. More specifically, our model

can be interpreted as a simplified composition and generalization of the cathode and

anode OCV functions in Ref. [3] (where hyperbolic and exponential functions are

used).
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Figure 3.1: Fitting result with the proposed OCV model.

An example of a complete data set for model identification is shown in Fig. 3.1,

where the collected charging/discharging data are averaged to yield OCV data. The

parameters in Eq. (3.1) are determined using the Matlab curve fitting toolbox. We

focus on fitting the data in the middle SOC range, namely 10%-90% SOC, given that

in practice only data in the middle SOC range are available. Moreover, this allows
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Figure 3.2: OCV model fitted over SOC from 10% to 90%.

us to achieve higher accuracy in the range where the model will be most useful. The

fitted OCV-SOC curve is plotted in Fig. 3.2, with a reference made to the averaged

measured OCV data. The rms and maximum values of fitting error is 1 mV and 2.5

mV , reduced from 2.3 mV (rms )and 7 mV (maximum) that were obtained when the

full SOC range is used.

3.1.2 Model Comparison and Analysis

Table 3.1: OCV models from literatures together with the new model
# OCV Models Ref.

1 OCV (z) = K0 −
K1

z
−K2z +K3 ln(z) +K4 ln(1− z) [23]

2 OCV (z) = K0 +K1(1− e−α1z) +K2(1− e−
α2
1−z ) +K3z [100]

3 OCV (z) = K0 +K1e
−α1(1−z) − K2

z
[101]

4 OCV (z) = K0 +K1e
−α1z +K2z +K3z

2 +K4z
3 [102]

5 OCV (z) = K0 +K1z +K2z
2 +K3z

3 +K4z
4 +K5z

5 +K6z
6 [103]

6 OCV (z) = K0 +K1
1

1+eα1(z−β1)
+K2

1
1+eα2(z−β2)

Proposed

+K3
1

1+eα3(z−1) +K4
1

1+eα4z
+K5z Model

The new OCV model is compared in this section with the five different models
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summarized in Ref. [81], where the polynomial model is reported to be the most accu-

rate. All the parameters in those five OCV models are refitted for the data presented

in Fig. 3.1 using Matlab curve fitting toolbox, the results with their rms and maxi-

mum errors are shown and summarized in Fig. 3.3 and Tab. 3.2. It should be noted

that none of the five OCV models is suitable for IC analysis, as their model struc-

tures do not take into account the staging mechanism in intercalation/deintercalation

process. One can see that the new OCV model proposed in Eq. 3.1 has better fit-

ting accuracy than all those five models. Consequently, improvement in the SOC

estimation results may also be expected when the new OCV model is incorporated.

Table 3.2: Fitting results of OCV models from Tab. 3.1
Model # RMS Error (mV) Max Error (mV)

1 5.2 12.6
2 3.1 8.9
3 5.6 21.3
4 4.7 12.7
5 2.1 7.3
6 1.0 2.5
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Figure 3.3: Comparison of OCV fitting results.
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The IC curves based on different OCV models are shown in Fig. 3.4. It can be

observed that the new model (model #6) captures the two IC peaks associated with

staging, whereas all other models only show one peak on the IC curves. Since the

signature of different peaks are associated with different aging mechanism, model #6

can extract more aging information from the OCV data compared to other models

and will be used for further analysis in SOH monitoring. For models #2 and #5,

dQ/dV is not defined at 3.35 volt because of a singularity in the math expression.

Consequently, spikes in both directions are shown in Figure 5 for the two IC curves,

corresponding to models #2 and #5.

3.2 State-of-Charge Estimation Based on Extended Kalman

Filter

The extended Kalman filter (EKF) based approach discussed in Ref. [24] is used to

illustrate the implementation of the new OCV model for SOC estimation. The battery

test data for this study is collected through the experimental set-up introduced in
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Ref. [99] and the first-order RC model [104] is used for calculating the SOC with the

following algorithm:

RC Model:

zk+1 = f(zk, Ik) + wk,

Vk = g(zk, Ik) + vk,

EKF Algorithm:

Ak−1 =
∂f(zk−1, Ik−1)

∂zk−1

∣
∣
∣
∣
zk−1=ẑk−1

,

Ck =
∂g(zk, Ik)

∂zk

∣
∣
∣
∣
zk=ẑk|k−1

,

ẑk|k−1 = f(ẑk−1, Ik−1),

Pk|k−1 = Ak−1Pk−1A
T
k−1 +Q,

Gk = Pk|k−1C
T
k

[
CkPk|k−1C

T
k + V

]−1
,

ẑk = ẑk|k−1 +Gk

[
Vk − g(ẑk|k−1, Ik)

]
,

Pk = [I−GkCk]Pk|k−1,

where

f(zk, Ik) = zk − (
ηi∆t

Qc

)Ik,

g(zk, Ik) = OCV (zk) + Vrc,k +R0Ik,

Vrc,k+1 = exp(
−∆t

R1C
)Vrc,k +R1[1− exp(

−∆t

R1C
)]Ik,

(3.2)

zk is the SOC, ηi is the charging/discharing efficiency, ∆t is the time step, Qc is the

battery capacity, Ik is the input current, Vk is the total terminal voltage, Vrc,k is volt-

age of the RC circuit, R0, R1 and C are battery internal resistance and capacitance, Q

is the error covariance of process noises, and V is the error covariance of observation

noises [99]. The OCV function is represented by the model given by Eq. (3.1).

In this study, all the parameters in the RC model are set to be constants without
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performing iterative optimizations as discussed in Ref. [81].
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Figure 3.5: Battery data tested under FUDS.

The battery data collected under the Federal Urban Driving Schedule (FUDS) is

shown in Fig. 3.5. As in Ref. [24], the SOC data obtained by Coulomb counting in

the Arbin battery test bench, where high precision current sensor is used, is assumed

to be the “true” SOC and used as a reference for performance evaluation. Therefore

the SOC estimation error is defined as,

eSOC,k = ẑk − zk (3.3)

where eSOC,k is the SOC estimation error, ẑk is the SOC estimated by the EKF

algorithm and zk is the reference SOC calculated from the measured data. Please note

that the SOC from Arbin Coulomb counting, while representing the best reference

that we can get, is only approximately accurate due to the unavoidable error and

integral accumulation of the error in the current measurement [24].

The model parameters used in the EKF-based SOC estimation are shown in Tab.

3.3.
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Table 3.3: Parameters of models #5 and #6 used in SOC estimation
Model Parameters Model #5 Model #6

K0 3.0896 3.4002
K1 1.1627 0.0080
K2 -2.3821 0.0785
K3 2.1870 -0.2150
K4 -0.5444 -1.3032
K5 -0.1939 0.0891
K6 0.0582 N/A
α1 N/A -14
α2 N/A -18
α3 N/A 28
α4 N/A 40

Table 3.4: Parameters of EKF based SOC estimator
Parameters Values

Error covariance of process noises, Q

(
0.15 0
0 1

)

Error covariance of observation noises, V 0.01

A detailed description of the EKF algorithm can be found in both Refs. [24] and

[81]. The parameters of the EKF (i.e., V and Q used in Eq. 3.2) are calibrated using

the data collected in our aging tests, and the same parameters (listed in Tab. 3.4)

are used in the performance evaluation for the new model (#6) and the polynomial

model (#5).

Figure 3.6 displays the EKF based SOC estimation results. The two plots repre-

sent two cases with different initial SOC error (+10% and -10%, respectively). One

can see that the estimated SOC converge into the 5% estimation error bound when

either model #5 or #6 is used. In particular, with positive initial error, the SOC

estimated with model #6 converges much faster than the SOC estimated with model

#5. This difference in convergence rate with positive initial error can be explained

by the curve fitting results shown in Figs. 3.2 and 3.3, where model #6 has better

accuracy than #5 in the high SOC region. On the other hand, both models have
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Figure 3.6: SOC estimation with OCV model #6.

approximately the same accuracy when SOC is below 70% and therefore have similar

convergence rate with negative initial error. The 5% error bound can be achieved

with other initial error (e.g., 20% or 30%).

In summary, the new OCV model, when used for EKF-based SOC estimation,

outperforms other OCV models under the conditions we tested. The model delivers

accurate estimation results with less than 5% errors without extensive calibration

and training. The results presented in this section demonstrates the potential of

implementing this new OCV model for SOC estimation problems.

3.3 State-of-Health Monitoring Based on Incremental Ca-

pacity Analysis

Even though ICA was originally proposed for “close-to-equilibrium” conditions, it

was shown in Ref. [16] that, for normal charging data, the peaks on the IC curve can

also be identified and they reveal significant information about battery SOH. Hence,

the results presented in this section for ICA are all based on 0.5C battery charging
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data (same as in Ref. [16]). It will be shown that the proposed parametrization is

applicable to both OCV data and normal charging data (i.e., charged at 0.5C ).
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Figure 3.7: V-SOC and IC curve from 0.5C charging data.

As shown in Fig. 3.7, we can obtain the IC curve directly by differentiating the

analytical V-SOC function and then taking the reciprocal.

3.3.1 Incremental Capacity Analysis Results at Different Aging Stages

The IC curves of battery charging data collected at different aging cycles under

35oC environment condition are shown in Fig. 3.8. The numerical values in the plot

legends represent the aging cycle number. The IC peaks highlighted by the circle in

Fig. 3.8 clearly shows a monotonic decreasing trend as a battery ages, which implies

a battery degradation that is mainly related to the loss of active material at the

graphite anode [32, 35].

The IC curves from four different cells are plotted in Fig. 3.9, where the plots

focus on the second peak on the IC curve and depict a consistent trend in capacity

fading as reflected by the decreasing IC peaks.
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Figure 3.8: IC curves of data at different aging stages at 35oC.

To obtain the correlation between the cell capacity fading and IC peak, the peak

values of eight cells at different aging stages are identified. The normalized peak

values of one of the cells (red dots in Fig. 3.10) are correlated with the faded cell

capacities, and used to construct the battery capacity estimation curve (red dashed

curve in Fig. 3.10) as done in Ref. [16]. The data from other cells are also plotted

to verify the prediction capability of the estimation curve. The result shows the new

parametric model in the form of Eq. (3.1) can be used for capacity based battery

SOH monitoring with good accuracy.

3.3.2 Incremental Capacity Analysis Results at Different Temperature

Test data were also collected at different temperatures throughout the battery

aging process. ICA was performed with respect to different temperatures to evaluate

and confirm the sensitivity to temperature and results are presented in Fig. 3.11. The

intensities of the IC peaks reduce as temperature drops, which could be attributed

to the slow lithium-ion diffusion or lithium plating phenomenon at low temperature

as elucidated in Ref. [17]. When the temperature is too low, say at 10oC, the second
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Figure 3.9: IC curves comparison from four different cells at 35oC.

peak could disappear from the IC curve. However, since the operating temperature

of battery systems are usually maintained through integrated thermal control in the

BMS, the disappearance of IC peaks at low temperature should not be a concern.

Figure 3.12 presents the IC curves at different temperature at different aging

stages. A temperature dependence of the IC peaks and the model parameters may

be evaluated. The first peak on these four plots shows consistent temperature sen-

sitivity while the second peak shows the aging status. It suggests that the test

data corresponding to higher temperature will be more reliable for ICA and capacity

fading identification. Therefore, even though the temperature dependence is not

parametrized explicitly, the proposed model is capable of capturing the influence of

temperature difference by adapting all parameters.
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Figure 3.10: Correlation between faded battery capacity and IC peak values at 35oC.

3.4 Other Signatures on the Incremental Capacity Curve and

Their Correlation with Capacity Fading

Other than using the IC peak value decreasing as the indication of battery ca-

pacity fading, we also explore a different approach that uses the IC peak locations to

evaluate the degradation. Since the IC peaks represent the phase transitions during

the intercalaction/deintercalation process and this electrochemical reaction is affected

by battery capacity loss, the locations of the peaks might also have a correlation with

the faded capacity and can give a good estimation of the loss.

Consider the IC as a function of SOC (rather than measured voltage), as shown

in Fig. 3.13. Note that the first IC peak stays at approximately the same location

whereas the second peak is moving toward the left as the battery ages and capacity

decreases. By normalizing both the second IC peak location and battery capacity, we

obtain the correlation between the two values in Fig. 3.14 , which confirms that the

location of the second IC peak could also be a indication of battery capacity fading.

However, in order to accurately measure this peak location in terms of charged
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Figure 3.11: IC curves of data at different temperature.

capacity, it is required to start the battery charging from zero SOC, which is not

always practical in real operation. This problem can be addressed by using the SOC

span between the two consecutive IC peaks,

dIC = P2 − P1 (3.4)

where dIC is the SOC interval between two consecutive peaks, and P1 and P2 are the

locations of the two IC peaks, respectively. The value of dIC is more easily obtainable

as long as the charging starts below the SOC value that corresponds to the first IC

peak. Typically, the first peak on the IC curve appears around SOC=0.45. Therefore,

for all the data we have, this condition is satisfied as long as the charging covers 40%

to 85% SOC. The plot with normalized dIC and battery capacity is shown in Fig.

3.15. This correlation obtained using dIC is looser than using P2 only, as the values

of both P1 and P2 are affected by measurement noise and the value of dIC is more

susceptible to noise and modeling error.

The analysis suggests that the signatures on the IC curves, namely the second
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Figure 3.12: IC curves of data at different temperature and ages.

IC peak and the distance between two peaks, can be used as indicators for battery

aging. The two correlations based on IC peak locations are not as strong and robust

compared to the results based on peak values shown in Fig. 3.10. Nevertheless,

we believe that those correlations can provide useful information for battery SOH

monitoring from different perspectives. It is also possible to improve the peak location

based results when more accurate current sensors are available.

3.5 Parametric Analysis and Model Simplification

Although the identification results using the new OCV model has shown its effec-

tiveness, the high number of parameters and nonlinearity of the model may present a

challenge for on-board implementation. A parametric analysis is performed to char-

acterize the correlations between model parameters and battery aging, evaluate the
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Figure 3.13: IC curve plotted versus charged capacity data at 35oC.

sensitivity and robustness of the model structure, and better understand the utility

of the proposed model. Moreover, the analysis results may help to identify the signif-

icance of each parameter and simplify the model, so that the computational efficiency

in estimation can be improved.

Consider the following function, which is derived by differentiating OCV with

respect to the battery SOC,

G(z) =
d

dz
OCV (z) = −K1

α1e
α1(z−β1)

(1 + eα1(z−β1))2

−K2
α2e

α2(z−β2)

(1 + eα2(z−β2))2
−K3

α3e
α3(z−β3)

(1 + eα3(z−1))2

−K4
α4e

α4(z−β4)

(1 + eα4z)2
+K5.

(3.5)

Note that the IC curve is the inverse of G(z), the locations and values of IC

peaks may be calculated by letting the derivative of G(z) equal to zero and solving

the resulting algebraic equation. The resulting equation, however, is highly nonlinear

and cannot be easily solved analytically in general. Here, an alternative approach that
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Figure 3.14: Correlation between IC peak locations and battery faded capacities (data
from different cells are color coded differently).

separates and analyzes the terms in the Eq. (3.5) individually is used to correlate the

model parameters and the solution of G(z).

To understand the contribution of each term of (3.5), we first define the following,

f1(z) =−K1
α1e

α1(z−β1)

(1 + eα1(z−β1))2
,

f2(z) =−K2
α2e

α2(z−β2)

(1 + eα2(z−β2))2
,

f3(z) =−K3
α3e

α3(z−1)

(1 + eα3(z−1))2
,

f4(z) =−K4
α4e

α4(z)

(1 + eα4z)2
.

(3.6)

Through analytical and numerical analysis, we have the following observations:

• f2 and f4 decay to zero at the high SOC range, where the IC peak of interest

occurs. Therefore, they do not contribute to the IC peaks and their locations.

Our analysis will be focused on f1 and f3;

• The parameter K5 is a constant and therefore it does not need to be considered
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Figure 3.15: Correlation between IC peak location difference and battery faded ca-
pacities (data from different cells are color coded differently).

here;

• Numerical results show that K1 and K3 do not vary much compared to α1 and

α3;

• Our analysis show that the IC peak has about equal sensitivity to α1 and

α3. The sensitivity analysis is performed by numerically evaluating the partial

derivative of the IC function, defined by 1
G(z)

with G(z) given by (3.5), with

respect to the parameters α1 and α3 at the z value where the second IC peak

is located.

With the above observations, we identified a simplified model in the following

form:

OCV (z) =K1
1

1 + eα1(z−β̄1)
+K3

1

1 + eα3(z−1)

+ K̄0 + K̄2
1

1 + eᾱ2(z−β̄2)
+ K̄4

1

1 + eᾱ4z
+ K̄5z.

(3.7)
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where the model structure contains only 4 changing parameters (i.e., K1, K3, α1 and

α3), and other parameters can be estimated only once when the batteries are fresh

and kept constants as batteries age.
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Figure 3.16: IC curves obtained using simplified OCV model at 35oC.

Table 3.5: Comparison of fitting accuracy measured by RMS error between full and
simplified model

Cycle # Full Model (mV) Simplified Model (mV)
1000 0.760 0.805
1400 0.925 0.980
1900 0.946 1.247
2300 1.024 1.559

In Fig. 3.16, one can see that the IC curves obtained using the simplified OCV

model show qualitatively the same trend as the ones obtained by the full model (see

Fig. 3.8) when the battery ages. Table 3.5 shows the comparison of fitting accuracy

between the full and the simplified model. In the worst case, the rms error is less

than 2 mV . Therefore, the simplification preserves the high fitting accuracy provided

by the full model.
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Table 3.6: Parameters of the simplified OCV model
Cycle # α1 K1 α3 K3

1000 -12.57 0.0446 25.9352 -0.2459
1400 -12.29 0.0467 23.2749 -0.2435
1900 -11.57 0.0497 20.4778 -0.2413
2300 -11.4 0.0531 18.5991 -0.2447

The parameters for the simplified model are listed in Tab. 3.6, where one can see

the variations in α1 and α3 agree with our parametric analysis. Moreover, it suggests

that the values of the deteriorating peaks in the IC curves might be estimated directly

from the parameters with the following relationship,

q = θ0 + θ1α1 + θ2K1 + θ3α3, (3.8)

where q, defined as q = p−p0
p0

, represents the amount of degradation, p represents

the IC peak values, and p0 is the initial peak value. θ0∼3 are the identification pa-

rameters in this equation. K3 is not included in this equation as it is insensitive to

the variation of IC peak values. Same as our analysis in subsection 3.3.2, the val-

ues of parameters θ0∼3 depend on the operating temperature. For on-board battery

SOH diagnosis, thermal control should be integrated as part of the BMS. Therefore,

consistent temperature could be expected when the SOH monitoring is performed.

Given a set of n data points, pi, α1i, K1i, α3i, i = 1, ..., n, from one battery cell

at different aging stages, the values of θ0∼3 can be easily calculated from the least
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squares method,

θ = (ΦTΦ)−1ΦT q,

where

θ = [θ0, θ1, θ2, θ3],

Φ = [φ1, φ2, ..., φn]
T ,

q = [q1, q2, ..., qn]
T ,

φi = [1, α1i, K1i, α3i]
T .

(3.9)
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Figure 3.17: Identification results of (3.8) using battery testing data from one single
cell.

The identification results of (3.8) are very accurate as shown in Fig. 3.17, where

the battery testing data of one single cell (denoted as cell A) at all different ages are

included.

To use the model (3.8) identified from cell A to 7 other cells, one can use θ1∼3

directly while adjusting θ0 such that the value of q given by (3.8) at the initial stage

is zero. Figure 3.18 show that the data from two other cells, as an example, can
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Figure 3.18: Verification of (3.8) using parameters θ1∼3 identified from Fig. 3.17 with
data from two other cells.

also be fitted accurately by applying θ1∼3 without further identification effort. In

other words, the IC peak values of different cells can be estimated/predicted based

on the parameters θ1∼3 identified from one reference cell. Therefore, it is possible to

perform battery SOH monitoring directly using (3.8) without numerically deriving

the IC curves.

As shown in Fig. 3.19, the results from Figs. 3.10 and 3.17 can be combined so

that the battery capacity fading can be directly predicted using the parameters of the

simplified OCV model. One can see that 50% reduction in IC peak value is equivalent

to about 10% battery capacity loss.

To summarize, the simplified OCV model with reduced number of varying pa-

rameters is capable of capturing the battery aging features with fewer parameters,

thereby improving the identification efficiency and making the model implementable

in on-board BMS. With the established linear relationship between the IC peak val-

ues and the OCV model parameters in (3.8), the battery aging information can be

revealed by only looking at the changing parameters in the OCV representation (3.7).
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Figure 3.19: Correlation between capacity fading and IC peak reduction.
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CHAPTER IV

Non-Parametric Approaches for Battery

State-of-Health Monitoring

In this chapter, we explore the use of non-parametric approaches to process battery

voltage data and apply incremental capacity analysis (ICA) on-board. Compared to

parametric models, whose number of parameters are typically fixed, the number of

parameters in a non-parametric model usually depends on the properties of the given

data set. Among the several algorithms that are developed to extract the battery

aging signature through ICA, the use of support vector regression (SVR) is shown to

provide the most consistent identification results with moderate computational load.

For battery cells tested, the SVR model built upon the data from one single cell is

able to predict the capacity fading of 7 other cells within 1% error bound.

4.1 Incremental Capacity Analysis Results Using Conven-

tional Data Processing and Curve Fitting Methods

As mentioned in previous chapters, the updated OCV curve is not available during

real-life operation, the ICA has to therefore rely on the vehicle charging data, which

gives the charging voltage (V -Q) curve. Applying numerical derivative directly to

the data is the most intuitive approach, given the definition of IC. Because the mea-
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surement noise has a rather big influence on the flat portion of the charging voltage

curve, judicious data processing is required before numerical differentiation can be

performed.

4.1.1 Numerical Differentiation with Smoothing

In this section, the raw data curve is fitted with a 3rd order polynomial curve

piecewisely with a moving window. The derivative of the middle point of each window

is recorded. The resulting derivative curve is then smoothed by averaging. The results

are shown in Fig. 4.1. There are three noticeable peaks in the plot, which agrees

with the results shown in [35]. The peaks are associated with the staging process in

the negative electrode as discussed in [32, 36, 72]. The peak at higher voltage gives

a clearly decreasing trend as battery ages (shown in Fig. 4.2) and is thereby selected

for further study.
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Figure 4.1: Comparison of IC curves obtained by numerical derivative.

Although the numerical derivative results do yield a clear monotonic change on

the IC peaks, the resulting IC curves are not differentiable and therefore not suitable
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Figure 4.2: Zoom-in of the numerically derived IC curves.

for further quantitative analysis. In addition, the data processing procedure is time-

consuming and thus not computationally efficient. Nonetheless, the numerical results

identify the range where the relevant peaks appear and therefore a local polynomial

curve can be fitted. The polynomial fitting results are discussed in the next subsection.

4.1.2 Polynomial Curve Fitting

The charging data around the main voltage plateaus (e.g., ranging from 0.45Ah

to 0.85Ah for the battery of nominal capacity 1.1Ah) is selected for the analysis.

Because the selected data only contains two IC peaks at the higher voltage range as

shown in the previous subsection and Fig. 4.1, a 5th order polynomial (which can

represent exactly two peaks) is chosen to be fitted with the charging data and then

differentiated for ICA. Two ICA peaks can be observed on the IC curve. Same as

before, the value of the peak at higher voltage is recorded for analysis. An illustration

of this method is shown in Fig. 4.3 and a comparison of the curves involving aging

effect is plotted in Fig. 4.4.
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Figure 4.3: IC curve obtained by polynomial fitting.

Polynomial curve fitting gives much smoother IC curves compared to the ones

by numerical differentiation. However, our analysis reveals an unacceptably high

sensitivity of the results to the selected data range. As shown in Fig. 4.5, the shape

of the IC curve may change significantly when a slightly different data range is used

for the fitting. A more robust method for ICA is thus needed.

The correlation between faded battery capacity and IC peaks obtained from the

above two methods are displayed in Fig. 4.6. Both methods lead to 2nd order cor-

relations between the faded capacity value and the corresponding IC peak value.

Although quantitatively the two methods give different results, the qualitative rela-

tionships are the same.

4.2 Incremental Capacity Analysis Results Obtained by Sup-

port Vector Based Methods

The support vector algorithm is a nonlinear generalization of the Generalized

Portrait algorithm developed by Vapnik et al. in the sixties [83]. SVR adopts the
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Figure 4.4: Comparison of polynomial fitted IC curves for different cycles.

original machine learning algorithm and applies it for non-parametric function esti-

mation. Conventional SVR is formulated as a convex quadratic programming (QP)

problem and has been successfully applied in identifying nonlinear dynamic systems

[105]. However, the implementation of QP-SVR is computationally expensive and

sufficient model sparsity cannot be guaranteed. A linear programming (LP) based

SVR, that employs ℓ1 norm as the regularizer, was then proposed to improve the

model sparsity and computational efficiency [106, 107]. SVR is chosen for this study

because of its excellent approximation and generalization capability, and its demon-

strated potential in the realm of nonlinear system identification [105, 106, 108].

4.2.1 Incremental Capacity Analysis Results Obtained by Support Vector

Regression

Since we are only interested in obtaining the IC (dQ/dV ) curve, we decide to

use SVR to fit the reverse of charging curve (Q-V ). The kernel based Q-V model is
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Figure 4.5: Comparison of polynomial fitted IC curves with different range of Q.

described by

yn = f(xn) =

N∑

i=1

βik(xi, xn),

xi = vi,

yn = qn

(4.1)

where xn and yn are model input and output, xi is the base data point used for the

kernel function, q is the battery charged capacity, v represents the measured voltage,

N is the number of data points in the data set, βi is the model parameters and k(·, ·)

is the selected kernel. In this study, the Gaussian radial basis function (rbf) kernel is

used and is expressed as

k(x, x′) = exp(
−‖x− x′‖2

2σ2
) (4.2)

where σ is the adjustable parameter for the kernel function. The rbf kernel is the

most generalizable kernel function for machine learning algorithms and it works very

well with the IC curve identification. The parameters βi in SVR are computed by an

optimization algorithm.
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Figure 4.6: Correlation between faded capacity and IC peak by using V -Q data.

The SVR using ℓ1 regularizer formulates the optimization problem as follows [106],

min
β, µ, ξ+, ξ−

‖β‖1 + w

N∑

n=1

(
ξ+n + ξ−n

)
,

subject to







∑N

i=1 βiK(xi, xn) + µ− yn ≤ ε+ ξ+n

yn −
∑N

i=1 βiK(xi, xn)− µ ≤ ε+ ξ−n

ξ+, ξ− ≥ 0

(4.3)

where ξ+n and ξ−n are the slack variables introduced to cope with the constraints in

case they become over-constraining and make the optimization problem infeasible,

w is the weighting factor, ε is the precision parameter, ‖·‖1 denotes the ℓ1 norm in

coefficient space and β is defined as β = (β1, ..., βN)
T . The optimal result usually

gives zero value for most of the βis, and the xis corresponding to non-zero βis are

called support vectors (SVs) [83].

In this work, we used LP as the optimization engine to derive the SVR model. In

order to establish the problem as an LP optimization, the coefficients βis need to be
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decomposed (using the property of linear piecewise convex function minimization) as

[109],

βi = α+
i − α−

i |βi| = α+
i + α−

i (4.4)

where α+
i and α−

i are nonnegative and satisfy α+
i · α−

i = 0.

4.2.2 Formulation of Linear Programming Support Vector Regression

Following the derivation reported in [106], the SVR problem using ℓ1 regularizer

can be reformulated as an LP problem,

min cT















α+

α−

ξ+

ξ−

µ















,

subject to












K −K −I 0 1

−K K 0 −I −1




















α+

α−

ξ+

ξ−

µ















≤






ε+ y

ε− y






α+,α−, ξ+, ξ− ≥ 0

(4.5)
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where

c = (1, ..., 1
︸ ︷︷ ︸

2N

, w, ..., w
︸ ︷︷ ︸

2N

, 0)T ,

y = (y1, ..., yN)
T ,

α+ = (α+
1 , ..., α

+
N)

T ,

α− = (α−
1 , ..., α

−
N)

T ,

ξ+ = (ξ+1 , ..., ξ
+
N)

T ,

ξ− = (ξ−1 , ..., ξ
−
N)

T

(4.6)

and I is an N × N identity matrix. K is the kernel matrix with entries defined as

Kij = K(xi, xj),

K =












K(x1, x1) K(x1, x2) · · · K(x1, xN)

K(x2, x1) K(x2, x2) · · · K(x2, xN)

...
...

. . .
...

K(xN , x1) K(xN , x2) · · · K(xN , xN)












. (4.7)

The LP problem (4.5) is bounded and feasible by default and can always be solved

using standard algorithms such as the simplex method or the interior point method

[109].

An example of the IC curve obtained through LP-SVR is shown in Fig. 4.7. Note

that the SVR algorithm gives a robust and smooth result even though a shorter range

of data (0.6Ah-0.85Ah) is used. The algorithm performed well in terms of both model

sparsity and data approximation.

For on-board implementation, there are factors associated with the charged capac-

ity data q (such as the variation in data ranges, or estimation errors) could potentially

affect the SVR model and the corresponding ICA results. The influence of those fac-

tors is investigated. First, the insensitivity of the SVR model to data range variations
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Figure 4.7: IC curve obtained by SVR.

is illustrated in Figs. 4.8 and 4.9, where the same results are obtained when a differ-

ent data range is used (Fig. 4.8), and when only a sub-segment of data is used (Fig.

4.9). The IC peak values with respect to different data ranges are compared in Table

4.1. One can see that the maximum difference between the tabulated IC peak values

is about 1%.

Table 4.1: Sensitivity of IC Peak Value to Different Data Range

Q (Ah) 0.55-0.90 0.55-0.93 0.55-0.95 0.35-0.85 0.45-0.85 0.60-0.85

IC Peak 10.17 10.18 10.18 10.05 10.17 10.14

The effects of estimation errors in q on the ICA results is also studied. Because of

the data sampling scheme, the errors in q would only be reflected as a constant shift

in the input data x. Assuming that xref is the set of accurate q and xerr is the set

of q with a constant estimation error e (i.e., xerr = xref + e). With the use of the rbf
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Figure 4.8: Sensitivity of SVR based IC curve to different range of Q.
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Figure 4.9: Sensitivity of SVR based IC curve to different data size.

kernel, the entries in the K matrix could be represented as,

K(xerr,i, xerr,j) = exp(
−‖xerr,i − xerr,j‖

2

2σ2
)

= exp(
−‖(xref,i + e)− (xref,j + e)‖2

2σ2
)

= exp(
−‖xref,i − xref,j + e‖2

2σ2
)

= K(xref,i, xref,j)

(4.8)

where the equality between K(xerr,i, xerr,j) and K(xref,i, xref,j) is referred as the trans-

lational invariant property. For any kernel functions that have the translational in-

variant properties, the K matrix would not be affected by a constant error in the
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input x. Therefore, in this particular problem, an estimation error in the data q

would not change the final identification results or the ICA results.

There are also other environmental or operating factors including the temperature

and charging current rate. Although those factors would not affect the application

of the SVR method, they could change the ICA results due to their influence on

the intercalation process. Consequently, it is preferred that the ICA-based SOH

monitoring is performed under controlled temperature with a determined constant

current rate.

4.2.3 Incremental Capacity Analysis Results Obtained by Support Vector

Based Parameter Identification

Although the SVR method exhibits excellent capability of processing noisy data

and performing accurate model regression, the algorithm involves a mathematical

optimization process that depends on the entire data set and therefore requires non-

trivial computational efforts to determine the parameters βis. At the same time, for

many applications such as an EV on-board battery management system, the on-line

computational power is often limited. To improve the computational efficiency, and

make it feasible for on-board implementation, we investigated the performance of the

IC peak identification algorithm when the SVs are fixed from cycle to cycle (i.e., only

apply LP-SVR to the initial data set to find SVs and favorable kernel functions, and

then use the SVs and kernels as a parametric model for other aged battery data sets).

The LP-SVR problem in 4.5 is then reduced to an Support Vector Based Param-

eter Identification (SVPI) problem,

f(xn) =
Nsv∑

i=1

βik(svi, xn) = θTSV φSV ,

θSV = [β1, β2, ..., βNsv
]T ,

φSV = [k(sv1, xn), k(sv2, xn), ..., k(svNsv
, xn)]

T

(4.9)
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where svi are the SVs identified previously by LP-SVR formulated in (4.5), Nsv is the

total number of SVs, and the parameters βis can be solved by parameter identification

method such as least squares. Typically, Nsv ≪ N . In this study, we have Nsv = 9

and N = 200.
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Figure 4.10: IC curves obtained by LP-SVR and SVPI.

Comparisons between the IC curves and corresponding peak values obtained by

LP-SVR and by SVPI are displayed in Fig. 4.10. One can see that both methods give

qualitatively the same results but the IC peak values from the two methods start to

deviate from each other after 1900 cycles, which implies that the SVPI with a fixed

set of SVs works well over a wide range of data and it is only necessary to update the

SVs after a long period operation. Moreover, as plotted in Figs. 4.10 and 4.11, if the

SVs are re-derived with the 1900 cycle data, we can obtain quantitatively the same

results by both methods at all aging cycles.

We can establish a 2nd order correlation between battery capacity and IC peak

through the SVR results as well. The correlation curves identified by LP-SVR and

SVPI are both plotted in Fig. 4.12. By updating the SVs at 1900 cycles, the two

identified correlations are almost identical (the two curves overlap each other as shown

in Fig. 4.12).
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Figure 4.11: Normalized IC peak value obtained by LP-SVR and SVPI.

The correlation shown in Fig. 4.11, which is obtained for battery #7, will be

used as the capacity fading prediction model. To validate the model, SVPI is also

performed (with updated SVs) on the data sets of all other 7 battery cells at the

chosen aging cycles. The signatures of decreasing IC peaks can be extracted clearly

from all cells with partially charging data (about 60% to 85% SOC range). The

normalized IC peaks and the capacities of all batteries are plotted in Fig. 4.13 with

the correlation curve identified using data of battery #7. The maximum difference

in the capacity is about 1% except the 5 outliers. Therefore, by normalizing both the

capacities and IC peak values, the identified quantitative correlation can be used for

effective on-board capacity estimation and SOH monitoring.

In terms of computational efficiency, because the major burden comes from the

process of solving the LP problem, SVPI using least squares method for identification

saves a significant amount of time compared to LP-SVR and is very promising for

on-line applications. In the case of battery #7, the total processing times of LP-SVR
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Figure 4.12: Correlation between faded capacity and IC peaks from SVR results.

and SVPI are 187 sec and 64 sec, respectively1. SVPI reduces 66% computational

time compared to LP-SVR.

4.2.4 Development of State-of-Health Monitoring Framework Using In-

cremental Capacity Analysis Results

With the established quantitative correlation between the battery capacities and

the IC peak values, an on-board SOH (mainly on battery capacity fading) monitoring

framework is developed (Fig. 4.14). Different from conventional methods, our ICA

based SOH monitoring framework uses partially charging data (about 60% to 85%

SOC range), that are frequently available during real-life operations, to estimate the

faded battery capacity on-board. Fully charging data is only needed for calibration

after a long operation period. By using SVPI, the advantages of our framework in

robustness and computational efficiency have both been demonstrated.

1Recorded on a computer with a 2.53GHz Intel Core 2 Duo CPU and 4.0 GB RAM.
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Figure 4.14: ICA based on-board SOH monitoring framework.
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CHAPTER V

Model Parametrization and Adaptation Based on

the Invariance of Support Vectors

To this end, both parametric and non-parametric approaches have been success-

fully developed and applied to monitor battery state-of-health (SOH) together with

incremental capacity analysis (ICA) technique. The parametric model provides rel-

evant physical insights and observable model structure but requires more efforts in

development and parameter tuning. The support vector regression (SVR) algorithm

involves an iterative optimization process, which is often computationally expensive

and inefficient. For applications such as the battery SOH monitoring, where the iden-

tification algorithm needs to be applied repeatedly for multiple cells because of the

variation in model dynamics (due to battery aging and cell-to-cell difference), the

computational burden could pose difficulties for real-time or on-board implementa-

tion.

In this chapter, the battery V -Q curve identification problem for SOH monitor-

ing is further studied so that the advantages of both parametric and non-parametric

methods could be utilized. Based on experimental battery aging data, we establish

a model parametrization and adaptation framework utilizing the simple structure of

SVR representation with determined support vectors (SVs). The model parameters

can then be estimated in real time. Under the formulation presented in Chapter IV,
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the SVPI method requires an update for the SVs after the batteries are aged for a

long period of time. The main reason why the invariance of SVs cannot be found is

that the voltage data instead of the charged capacity date are used as input in the

model. Since the voltage data do change over time, they might not have the invari-

ant properties. On the other hand, because the voltage data are sampled within a

determined range of charged capacity at fixed rate, using the charged capacity in-

stead of the voltage data as the model inputs could help to establish the invariance of

SVs. This different model formulation is then investigated in this chapter. Through

mathematical analysis and simulations using mechanistic battery aging model, it is

shown that, given a certain charged capacity (Q) range, the SVs of the battery models

indeed stay invariant even when the batteries age or vary. The invariance of the SVs

is verified using experimental aging data. Consequently, the resulting model for the

battery V -Q curve can be directly incorporated in the battery management system

and adapted on-line for SOH monitoring. Moreover, the general characteristics of

the data that could maintain the SV invariance is identified. The proposed auto-

mated model parametrization process (via optimization algorithm) can be extended

to nonlinear dynamic systems with the given properties.

5.1 Battery V -Q Curve and Support Vector Regression Model

5.1.1 Battery V -Q Curve Identification for Incremental Capacity Analysis

ICA has the advantage to detect a gradual change in cell behavior associated with

its electrochemical properties during the aging process, with greater sensitivity than

those based on conventional charge/discharge curves [12, 36]. As illustrated by Fig.

5.1, which shows the test data at different aging stage for a LiFePO4 battery, the

IC curve (Fig. 5.1(b)) has much identifiable aging signs than the V -Q curve (Fig.

5.1(a)). It is useful particularly for battery SOH monitoring as the extracted peak
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Figure 5.1: Aging signature extracted using ICA.

values and their change pattern on the IC curves are closely related to the battery

capacity fading, and can be used for characterizing the aging mechanism.

In previous chapters, several numerical procedures are developed and evaluated for

extracting the IC curves from battery V -Q data. While the ICA results are sensitive

to the selection of curve fitting method, the support vector regression (SVR) approach

with the Gaussian radial basis function (rbf) kernel is shown to be the most robust

and effective method. The use of SVR to represent the V -Q relation and then using

analytic derivative to obtain the IC curve provides the most consistent identification

results with moderate computational load [16].

5.1.2 Support Vector Regression Model

As discussed above, the SVR was chosen for the battery V -Q curve identification

because of its demonstrated potential in the realm of nonlinear system identification
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[105, 106, 108]. Let x = q, y = v be the input and output of the SVR model, where q

represents the battery charged capacity, v is the measured voltage. The SVR model

for the V -Q curve can thereby be represented as,

y =
N∑

i=1

βiK(xi, x) + µ, (5.1)

where N is the number of data points in the data set, βis and µ are the model

parameters, whose values are determined based on the data set, and K(·, ·) is the

selected kernel. Again, the rbf kernel is used and is expressed as

K(x, x′) = exp(
−‖x− x′‖2

2σ2
) (5.2)

where σ is the adjustable parameter for the kernel function.

The parameters used in model (5.1) are identified by solving a convex quadratic

programming (QP) problem. Through the QP-SVR and appropriate selected kernel,

the flatness property is enforced in both the feature space and input space [83, 105].

Conventional QP-SVR has been successfully applied in identifying nonlinear dynamic

systems[105, 108, 110]. However, the implementation of QP-SVR may not guarantee

sufficient model sparsity. LP-SVR that employs ℓ1 norm as regularizer was then

proposed to improve the model sparsity and computational efficiency [106, 107, 111,

112]. As shown in previous chapters (Eqn. (4.5)), LP was used as the optimization

engine to derive the SVR model [16].

Figure 5.2 shows how the LP-SVR algorithm is implemented for the identification

of the battery V -Q curve. First the parameters in model (5.1) are determined, and

the SVR model of the V -Q curve

f(xn) =

Nsv∑

i=1

βiK(svi, xn) + µ (5.3)
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Figure 5.2: Implementation of LP-SVR for battery V -Q and IC curve identification.

is obtained, where svi (i = 1, · · · , Nsv) are the SVs identified by the LP-SVR algo-

rithm and Nsv is the total number of SVs (Nsv ≪ N).

Then the IC curve can be computed from the fitted V-Q curve as follows,

dQ

dV
=

1

f ′(xn)
=

1
∑Nsv

i=1 βiK′(svi, xn)
(5.4)

Using the ICA technique, we can then extract battery aging information through

the changes observed from the IC peaks. Please note that the correlation between

battery capacity and IC peaks could be influenced by environmental temperature.

Therefore, our SOH monitoring framework is designed based on battery charging data

collected under constant temperature. We think it is a valid assumption since active

thermal management systems are implemented on most commercial electric vehicles.
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On the other hand, since the ICA is mainly based on the lithium intercalation process,

it might not be directly applicable to battery chemistries such as Pb-Acid and Ni-

MH. Nonetheless, because voltage data of any battery cells are associated with their

fading and degradation, it is possible that one could extract aging signature (perhaps

different from lithium ion batteries) using the dQ/dV analysis from those chemistries

as well.

Even though LP-SVR works well for retrieving the IC curve from battery voltage

measurement, it has to be applied repeatedly to different cells at different ages. For

applications such as electric vehicles, which usually contain hundreds or thousands of

battery cells, the extensive computational effort required for solving the LP problems

could not be satisfied on-board or in real-time.

If the simple structure produced by the LP-SVR, Eqn. (5.3), can be generalized

as a parametric model with kernel functions as the basis and the SVs invariant, for

all cells under all conditions, conventional parameter estimation methods such as the

least squares can be directly used and the computational efficiency would be greatly

improved. In this case, the LP-SVR algorithm is only used for the initial model

identification and parametrization, while the parameter adaptation to fit individual

cell data and aging status could be achieved through linear parameter identification

that does not require iterative optimization.

5.2 Conditions for Support Vectors Invariance and Paramet-

ric Linear Programming

In order to investigate the possibility of using the SVR model as a parametric

model with invariant support vectors, an LP sensitivity study is performed to under-

stand the variations of the SVs with respect to the data variation. For the convenience

of performing LP sensitivity study, we can transform problem (4.5) into a standard
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LP formulation,

min
χ

cTχ,

subject to







Aχ = b,

χ ≥ 0

(5.5)

where

c = (1, ..., 1
︸ ︷︷ ︸

2N

, w, ..., w
︸ ︷︷ ︸

2N

, 0, ..., 0
︸ ︷︷ ︸

2N+2

)T ,

χ = (α+;α−; ξ+; ξ−;µ+;µ−; s+; s−),

A =






K −K −I 0 1 −1 I 0

−K K 0 −I −1 1 0 I




 ,

b =






ε+ y

ε− y




 ,

µ = µ+ + µ−,

(5.6)

µ+ and µ− are added to ensure nonnegativity on the decision variable, s+ and s− are

added to convert the inequality constraints into equality. This new formulation is

equivalent to the original problem (4.5) [109].

5.2.1 Formulation of Parametric Linear Programming

Let us assume that we have found an optimal basis matrix B for the standard LP

problem, where

B =

(

AΩ(1) AΩ(2) ... AΩ(m)

)

(5.7)
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and AΩ(1), ..., AΩ(m) are linear independent columns chosen as the optimal basis from

the constraint matrix A. Then B must satisfy the following conditions [109],

B−1b ≥ 0

c− cBB
−1A ≥ 0

(5.8)

where cB consists of the entries in the objective vector c corresponding to the optimal

basis matrix B,

cB =

(

cΩ(1) cΩ(2) ... cΩ(m)

)T

. (5.9)

Now consider the different LP problem (5.5) for a different data set that is obtained

either for a different cell or for the same cell at a different aging stage. In our study, the

battery charging data are always sampled between the same range of charged capacity

at the same sampling rate (that is, the variable x in problem (4.3) does not change

from cell to cell and at different aging stage). Although this sampling scheme might

appear to be a limitation of the technique for on-board implementation, those data

samples should be available during normal operations, as the range of the charged

capacity data we are using is within the typical operating range of electric vehicles.

Because of the sampling scheme, the matrix K and the constraint matrix A in (5.5)

do not vary as the data set changes. In addition, the objective vector c is always kept

constant. The only term that is changed in the LP problem definition is b in the

constraint. Therefore, the condition, c− cBB
−1A ≥ 0, is always satisfied even when

data variation occurs. The optimal condition for the original optimal basis matrix B

to be satisfied by the new data set can then be reduced to,

B−1b ≥ 0 (5.10)
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Since the optimal basis matrixB decides the values of the SVs, it can be concluded

that the SVs for the battery V -Q model would not change if, given B, the condition

(5.10) is satisfied for the new data set. If (5.10) is satisfied for all data sets collected

for different cells and at different aging stages, we call the SVs invariant, and the

same SVs and basis functions can be used to represent different V -Q characteristics

for different cells and at different aging stage.

Moreover, b only depends on the variable y, which is the voltage measurement

from the battery charging data. Hence the sensitivity analysis only needs be per-

formed with respect to y in our work, and problem (5.5) can be rewritten as,

min cTχ,

subject to







Aχ = b(y),

χ ≥ 0
.

(5.11)

The formulation shown in problem (5.11) is typically referred as parametric linear

programming [113]. In conventional parametric LP problems, the dependence of b on

the varying parameters is usually linear. One can find the correspondence between all

the optimal basis and the varying parameters by solving systems of linear equalities.

However, in our battery V -Q identification problem, the data variation is nonlinear

and a proper parametrization needs to be found for characterizing the variation.

5.2.2 Special Scenario: Constant Shift in the Battery Data

Before proceeding to more complex cases, let us first consider the special scenario:

constant shift in the battery data. Let y1 be the reference data set, and y2 be the

data set with a constant shift (i.e. y2 = y1 + ρ). We have the following proposition.

Proposition V.1. A constant shift in the data does not change the SVs.

Proof. Assume that the optimal solution of (5.11) corresponding to the data y1 is χ∗,
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where

χ∗ = (α+
∗ ;α

−
∗ ; ξ

+
∗ ; ξ

−
∗ ;µ

+
∗ ;µ

−
∗ ; s

+
∗ ; s

−
∗ ). (5.12)

Please note that the column vectors in B that correspond to µ+ or µ− are not related

to the invariance of SVs, they can be treated independently from the rest of the basis

vectors. For that reason, let χ̂∗ and Â be the submatrices of χ∗ and A excluding the

columns associated with µ+ or µ−, respectively. That is,

Â =






K −K −I 0 I 0

−K K 0 −I 0 I




 ,

χ̂∗ = (α+
∗ ;α

−
∗ ; ξ

+
∗ ; ξ

−
∗ ; s

+
∗ ; s

−
∗ ).

(5.13)

We then have

Âχ̂∗ +






1 −1

−1 1











µ+
∗

µ−
∗




 = Aχ∗ = b(y1) =






ε+ y1

ε− y1




. (5.14)

On the other hand, let






1 −1

−1 1











µ+

µ−




 =






1 −1

−1 1











µ+
∗

µ−
∗




+






1

−1




 ρ. (5.15)
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By substituting (5.15) into (5.14), the following equation is obtained,

Âχ̂∗ +






1 −1

−1 1











µ+

µ−






=Âχ̂∗ +






1 −1

−1 1











µ+
∗

µ−
∗




+






1

−1




 ρ

=






ε+ y1

ε− y1




+






1

−1




 ρ =






ε+ y1 + ρ

ε− y1 − ρ






=






ε+ y2

ε− y2




 = b(y2)

(5.16)

where one should see that the change in ρ would be compensated by adjusting either

µ+ or µ−, without affecting the value of χ̂∗. The LP problems with y1 and that with

y2 share the same χ̂∗ as part of their optimal solutions. Therefore the variation in

the constant term ρ does not change the SVs.

5.3 Voltage Data Variation

As shown in (5.11), the variation of the constraints is determined by variation of

battery voltage data collected during the charging process. The variation could be

caused by several different mechanisms including loss of cyclable lithium, loss of active

material and increase of internal resistance. Those performance degradations could

be reflected as different changing patterns in the charging voltage data. In general,

the voltage data tend to increase at a given charged capacity as the battery ages. The

detailed variation characteristics is investigated in this section and the relationship

between reference data and aged data,

Vaged = g(Vref) (5.17)
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Figure 5.3: The equilibrium potentials of LiFePO4 batteries.

is explored.

5.3.1 Characterization of Battery Data Variation Using Mechanistic Bat-

tery Aging Model Simulation

The variation in battery voltage measurement during aging are simulated using

the mechanistic battery aging model developed in Ref. [114]. The battery model

considers the aging mechanism of both the positive and negative electrodes, and could

reflect the qualitative relationship between the equilibrium potentials and battery

aging status. Figure 5.3 shows the equilibrium potentials of LiFePO4 batteries. The

analytic models for the equilibrium potentials can be found in literature [115, 116].

The overall equilibrium potential of the battery cell is the difference between the

positive electrode and the negative electrode, Vtotal = VPE − VNE (see Fig. 5.4).

As discussed in Ref. [76], the capacity fading in LiFePO4 cells is mainly caused

by the loss of cycable lithium at the early stages of aging. The loss of cycable lithium

could be simulated by shifting the relative location of the two potential curves [114].
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Figure 5.4: Open-circuit-voltage of LiFePO4 batteries simulated using the mechanis-
tic battery aging model.

The simulation results are shown in Fig. 5.5, where the voltage output of the model

of the aged cells, Vaged, is plotted versus the output of the reference cell, Vref, which

represents a new battery.

It is observed that the relation between Vaged and Vref could be approximated by

a quadratic function,

y(q) = p2y∗(q)
2 + p1y∗(q) + p0

y = Vaged

y∗ = Vref

(5.18)

where p0, p1 and p2 are the parameters of the quadratic function and they vary as

a function of aging status. y∗ is the voltage of the fresh battery at a given charge

capacity q.
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Figure 5.5: Simulated voltage variations of LiFePO4 batteries at different aging
stages.

5.3.2 Data Verification

The quadratic approximation (Eqn. (5.18)) found using the mechanistic battery

aging model that relates the voltage response of the aged cell to that of a fresh new

cell can be verified with the actual test data. As mentioned above, the data used in

this study are collected from eight A123 APR18650 cells over a period of 18 months.

Figure 5.6 shows two sets of data variation at different aging stages. The curves can

be fitted with quadratic functions with good accuracy.

Hence, the quadratic function is indeed a good approximation and can be used

for characterizing the voltage variation.
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Figure 5.6: Voltage variation of LiFePO4 batteries observed in the test data at T =
35oC.

5.4 Invariance of the Support Vectors and Linear Parametric

Model

5.4.1 Results from Monte Carlo Simulations

Since the characteristics of voltage variation are identified, we can then investigate

under what conditions the optimal basis computed from the reference data stays

invariant when the parameters of the quadratic function vary as the cell ages. In

particular, we are interested in finding the following feasible region for SV invariance.

Assuming that the following problem,

min cTχ,

subject to







Aχ = b(y∗),

χ ≥ 0.

(5.19)
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has the optimal basis B, then for any pair of p1 and p2, if the corresponding b(y)

satisfies B−1b(y) ≥ 0, the pair (p1, p2) is considered feasible. Otherwise the pair is

infeasible.

As discussed above (see Prop. V.1), the variation in the constant term p0 does

not affect the invariance of the SVs, and it can be ignored in solving the parametric

LP problems.

Different from the general approaches for solving the conventional parametric LP

problems, the dependence of b on the varying parameters, p1 and p2, is nonlinear.

Instead of solving systems of linear equalities, the determination of feasibility for

each parameter pair (p1, p2) is done through Monte Carlo simulations. The results

are shown in Fig. 5.7, where the green region highlights the feasible region.

On the other hand, we can find the region, where y and y∗ have a monotonic

increasing relation, by computing

∂y

∂y∗

= 2p2y∗ + p1 ≥ 0 (5.20)

and therefore the region (marker by blue dashed lines in Fig. 5.7) is defined by the

following two boundary functions,

p1 ≥ −(2y∗,min)p2,

p1 ≥ −(2y∗,max)p2.

(5.21)

where y∗,min and y∗,max are the minimum and maximum values of Vref , which is

measured when the battery is fresh.

From the simulation results shown in Fig. 5.7, one can see that the feasible

region computed by the Monte Carlo simulations coincides with the region where

y is monotonically increasing. The results imply that the SVs for the battery V -Q

curve model would stay invariant as long as the variation in the voltage data satisfies
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Figure 5.7: Monte Carlo simulations for determining feasible region of (p1, p2) corre-
sponding to the optimal basis B.

a quadratic and monotonic increasing relationship. As shown in Figs. 5.4 and 5.5,

the monotonic quadratic relationship is consistent with our simulation results and

observations from the battery data.

5.4.2 Model Parametrization

According to the analysis performed above, the SVs should not change even when

battery ages or varies for our applications. Figure 5.8 show the LP-SVR results for the

data of one cell at different ages. The invariance of the SVs can be clearly observed

from the plot. Therefore, the structure obtained by the initial LP-SVR results can be

used as a parametric model for the identification of battery V -Q curves. The model

is parametrized as follows,

v =
Nsv∑

i=1

βiK(svi, q) + µ (5.22)

The main difference between the model (5.22) and the formulation in (4.1) and
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Figure 5.8: Invariance of SVs from LP-SVR results.

(4.9), the parametric model now has q as input and v as output, as well as a drift

term µ. Those changes have helped to establish the invariant properties of the SVs.

For on-board implementation, the estimation problem of the model parameters β

and µ can be formulated as the following,

vj = θTφj
(5.23)

where

θ = [βT , µ]T ,

φj = [K(sv1, qj), ...,K(svNsv
, qj), 1]

T ,

β = [β1, ..., βNsv
]T

(5.24)

and the parameters could be solved by the standard least squares method (LSM),

θ = (ΦTΦ)−1ΦTV, (5.25)
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where

V = [v1, ..., vN ]
T ,

Φ = [φ1, ...,φN ]
T .

(5.26)

Given that the battery (V , Q) data are collected at fixed sample of Q points, Φ

in (5.25) is a constant matrix for all time. Therefore, the parameter θ can be simply

calculated as,

θ = hTV, (5.27)

where

h = Φ(ΦTΦ)−1 (5.28)

is a constant matrix and can be computed offline.

Table 5.1: Computational Time and Estimation Error Comparison

Data Points
LP-SVR LSM

Time (sec.) RMS (V) Time (sec.) RMS (V)
20 0.4733 7.64×10−4 1.1×10−5 2.57×10−4

50 4.201 4.18×10−4 1.1×10−5 2.53×10−4

100 30.01 3.83×10−4 1.1×10−5 2.42×10−4

200 211.5 3.40×10−4 1.6×10−5 2.54×10−4

†The assessment summarized in Table 5.1 was performed on a laptop computer

with a 32-bit Intel Core2 Duo CPU @ 2.53GHz and 4.0 GB RAM

The computational time of using the LP-SVR and the LSM for the V -Q curve

identification are compared in Table 5.1. The four groups of data are sampled within

the same range of charged capacity but with different sampling rate, so the results of

different sizes of data could also be compared. One can see that the computational

time of the LSM is several order of magnitude less than that of the LP-SVR, and
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insensitive to the dimension of sampled data. The parametric battery V -Q curve

model provides a more robust and computationally efficient way to obtain the IC

curves from raw data measurement, without sacrificing any estimation accuracy.

5.4.3 Model Sensitivity with Respect to Estimation Error in Charged

Capacity

The data sampling scheme proposed in this study is subject to the error in the

estimation of charged capacity data q. Therefore the model robustness with respect

to the estimation error in q needs to be verified. In this case, a similar parametric

linear programming problem could be be considered since b in (5.5) is again the only

varying component. Fig. 5.9 shows that when 0.05 Ah error (about 5% in SOC) in

the data q would only lead to a difference of 0.5 in the IC peak value (equivalent

to less than 1% in capacity estimation). Therefore it could be concluded that the

proposed model is insensitive to the estimation error in charged capacity.
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CHAPTER VI

State-of-Health Monitoring Applied to Multi-cell

Battery Modules

The effectiveness and robustness of incremental capacity analysis (ICA) for sin-

gle cell diagnostics have been demonstrated in previous chapters. In this chapter,

we extend the ICA based battery state-of-health (SOH) monitoring framework from

single cells to multi-cell battery modules, which consist of battery cells with various

aging conditions. Results show that the framework developed for single cell capacity

estimation can also be used for battery packs. Analysis through both simulations and

experimental results are presented.

The main difference between single cell and parallel-connected battery pack, when

applying the ICA, is the uneven current distribution due to the cell non-uniformity.

Consequently, the current going through each cell in the pack could be time varying

even when the pack is charged at a constant current. Since ICA typically requires

constant charging/discharging data, the uneven distribution could affect the appli-

cability of ICA to a battery pack. Therefore the SOH monitoring for batteries in a

pack is even more challenging than the monitoring of single cells. The study reported

in this chapter aims to extend the ICA based battery SOH monitoring framework

developed for single cells to battery packs. The applicability of the framework is

investigated using both simulations and experimental results.
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6.1 Multi-Cell SOH Monitoring and Cell Non-Uniformity

For single battery cells, the effectiveness of ICA based SOH monitoring is built

on the fact that the IC peaks are quantitatively correlated to cell capacity and there-

fore could be used to identify capacity degradation [16]. For cells connected If the

correlation between capacity and IC peak value still holds for a pack, the ICA based

capacity estimation approach could be extended from cells to packs. Most popular

battery pack configurations connect cells in parallel first to form small modules, and

then connect the modules in series to form the pack. For instance, the Chevrolet

Volt’s pack divided its 288 cells into 96 modules with 3 cells connected in parallel,

and Nissan Leaf has battery modules, each contains two 2-cell strings that are con-

nected in parallel. The parallel connected cells can self-balance their SOC throughout

the operations. The configuration also improves the overall robustness of the battery

pack in case of cell failure. However, in such design, the currents going through in-

dividual cells are usually not monitored [117]. As the individual cell measurements

are no longer available, the ICA based battery capacity estimation framework has

to be performed using the data measured at model terminal. Moreover, cell-to-cell

variation is inevitable in battery productions [118]. During operations, the variation

might grow larger, as the aging rate of each cell could be different. The existence

of cell non-uniformity could lead to uneven current distribution among the parallel-

connected cells, thereby making SOH monitoring more challenging compared to the

single cell case. In this chapter, battery module refers to several parallel-connected

cells and we focus our investigation on the applicability of ICA to the module with

terminal measurements, and how cell non-uniformity in the module could affect the

application.

Toward this end, an inventory of 30 test cells at different aging stage is established.

The batteries available for this study are LiFePO4 cells from A123 with the specifica-

tions listed in Table 2.1. The battery cells have different degrees of degradation after
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Figure 6.1: Capacity and resistance distribution of the test cells.

hundreds of cycles of aging tests, as described in Chapter II. The distribution of the

cell capacity and resistance of the inventory is plotted in Fig. 6.1. One can see that

the cells have capacities varying from 1.1Ah to 0.8Ah, and internal resistance varying

from 0.12Ohm to 0.17Ohm. Battery modules with distinctive cell combinations are

built from this inventory for the study. The values of the physical parameters are

used as a reference to the model simulation analysis in 6.2.

6.1.1 Influence of Cell Non-uniformity in Applying ICA to Battery Mod-

ules

The applicability of ICA to battery modules is first explored using a quick ana-

lytical analysis. To simplify the analysis, let’s consider the simple model,

Vk = OCVk +R0Ik,

Qk+1 = Qk + Ik∆t

(6.1)
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where Vk, Ik, Qk are the voltage, current, and the charged capacity at sample time

k respectively. R0 is the battery internal resistance and ∆t is the time step. Then

for an individual battery cell, the IC curve can be computed as the following when

constant charging current is applied,

ICk =
∆Qk

∆OCVk

=
∆Qk

∆OCVk +R0∆Ik
=

∆Qk

∆Vk

(6.2)

where ∆Ik = 0 when Ik is a constant current. The IC curve calculated using terminal

measurement data (∆Qk

∆Vk
) could well represent the battery characteristics reflected by

the OCV-SOC function.

On the other hand, for a battery module with 2 parallel-connected cells, we have,

∆Qk

∆Vk

=
∆Q1k +∆Q2k

∆Vk

=
∆Q1k

∆V1k

+
∆Q2k

∆V2k

=
∆Q1k

∆OCV1k +R0,1∆I1k
+

∆Q1k

∆OCV2k +R0,2∆I2k

6=
∆Q1k

∆OCV1k
+

∆Q1k

∆OCV2k

(6.3)

where 1 and 2 in the subscript indicate the cell #1 and #2 in the battery module

respectively. I1k and I2k would vary with time even when a constant current is applied

to charge the module, due to the uneven current distribution caused by the cell-to-cell

variation. In this case, ∆I1k and ∆I2k are no longer zero in the battery module. The

∆Qk

∆Vk
calculation may not capture the aging signature embedded in the battery OCV

value. Moreover, because of the uneven charge, the IC peaks for the two cells would

appear at different time during the charging process. This could further distort the

correlation between the module IC peak value identified from the the measurements

of terminal variables of the module, and thereby affecting the estimation of the actual

battery module capacity.

The applicability of ICA for module SOH monitoring, therefore, critically relies
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on the cell uniformity. In order to understand how the variations in cell current affect

the ICA based SOH monitoring framework, simulation analysis are performed using

a battery module model in the following section.

6.2 ICA for Battery Module SOH Characterization: Simu-

lation Analysis

The objective of the simulation analysis is to explore how the IC curve of a battery

module change with different module capacity and cell non-uniformity. The cell

capacity and resistance values would be set to emulate different degree of variation

in a battery module.

6.2.1 Battery Module Model

The battery module model is constructed based on the approach proposed in [119],

where the modeling method follows the Kirchhoff’s circuit laws, as shown in Fig. 6.2

for a 3-cell1 module system. The single cell behavior is simulated using an equivalent

circuit model (ECM). A first-order ECM with one RC circuit can be described as

follows [104],

Vk = OCV (zk)− VRC,k +R0Ik, (6.4)

where

zk+1 = zk + (
ηi∆t

Q
)Ik,

VRC,k+1 = exp(
−∆t

R1C
)VRC,k − R1[1− exp(

−∆t

R1C
)]Ik,

(6.5)

1The 3-cell module system is built to emulate the module design of the Chevy Volt.
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Figure 6.2: Battery module model used for simulations.

zk is the state of charge (SOC), ηi is the charging/discharging efficiency, ∆t is the

time step, Q is the battery capacity, Ik is the current, Vk is the terminal voltage,

VRC,k is the voltage of the RC circuit, R0, R1 and C are battery internal resistance

and capacitance.

The OCV function that incorporates the battery aging effects is simulated using

the mechanistic battery aging model proposed in [120] . The battery model considers

the aging mechanism of both the positive and negative electrodes, and could reflect the

qualitative relationship between the equilibrium potentials and battery aging status

[114]. The analytic models for the equilibrium potentials of LiFePO4 batteries can

be found in literature [115, 116]. The overall equilibrium potential of the battery cell

is the difference between the positive electrode and the negative electrode, Vtotal =

VPE − VNE (see Fig. 6.3).

As reported in [121, 122], the capacity fading of LiFePO4 cells is dominated by

the loss of active lithium. While the degradation of the carbon negative could be

observed using destructive structural analysis, it does not affect the cell capacity

[121]. Therefore, loss of active lithium is simulated as the main capacity degradation

mechanism in our aging analysis.
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Figure 6.3: Open-circuit-voltage of LiFePO4 batteries simulated using the mechanis-
tic battery aging model.

For a 3-cell module, following the Kirchhoff’s laws, the voltages and currents of

the parallel connected circuits satisfy:

Vs,1 = Vs,2 = Vs,3

αs,1 + αs,2 + αs,3 = Itotal

(6.6)

where Vs,1, Vs,2, Vs,3 are the string terminal voltage measurements, and αs,1, αs,2, αs,3

are string currents. Itotal is the total module current.

The voltage response and current distribution are thereby computed as a solution
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Table 6.1: Cell Parameters in Battery Module Simulations

Battery Total Individual Cell
Module Capacity (Ah) Capacity (Ah), Resistance (Ω)

#S1 2.85 0.97, 0.13 0.95, 0.13 0.93, 0.13

#S2 2.70 0.92, 0.13 0.90, 0.13 0.88, 0.13

#S3 2.55 0.87, 0.13 0.85, 0.13 0.83, 0.13

#S4 2.85 0.97, 0.12 0.95, 0.13 0.93, 0.14

#S5 2.85 0.97, 0.11 0.95, 0.13 0.93, 0.15
†S represents simulation

of a set of linear equations [119]. The system of linear equations can be described by,









αs,1

αs,2

αs,3









=









R0,1 −R0,1 0

0 R0,2 −R0,3

1 1 1









−1







Πs,2 − Πs,1

Πs,3 − Πs,2

Itotal









where

Πs,i = OCVs,i − VRC[s,i].

(6.7)

where VRC is defined in Eqn. 6.4.

6.2.2 ICA Results of Battery Modules with Parallel Connected Cells

Battery modules with different total capacity and cell non-uniformity (in both

capacity and resistance) are simulated using the model described above. The results

of five battery modules with different cell combinations are presented here. The three

cells in each module are assumed to be connected in parallel as shown in Fig. 6.2.

The cell capacities and resistance used in the module simulations are listed in Table

6.1. The internal resistance value represents the sum of R0 and R1 for each cell.

The range of the capacity and resistance variation is selected based on the parameter

values of the test cells (see Fig. 6.1). The correlation between the IC peak values

and the capacity of the simulated battery modules are compared as shown in Figs.

6.4 and 6.5.

97



3.34 3.36 3.38 3.4 3.42 3.44 3.46 3.48 3.5

5

10

15

20

25

30

Voltage (V)

IC
 C

ur
ve

 (
dQ

/d
V

)

 

 
Pack #S1
Pack #S2
Pack #S3

Figure 6.4: ICA results of battery modules simulated (#S1, #S2, #S3) with variation
in cell and total capacity.

The ICA results of battery modules #S1, #S2 and #S3 are shown in Fig. 6.4.

The three simulated modules have variation in both cell and total capacities but not

in resistance. As marked by the arrow in Fig. 6.4, the value of second IC peak reduces

as the module capacity degrades, which is consistent with the single cell results. The

influence of cell non-uniformity in cell capacity is rather small and inconsequential.

Therefore, without resistance variation, the ICA based capacity estimation is directly

applicable to battery modules.

The sensitivity of the module IC peak values to cell non-uniformity in resistance is

also investigated. Although the resistance change does not affect the ICA results for

single cells, the difference between cells could be large and might affect the module

ICA results because they could affect the current distribution. For the case studies,

variations of 0.01Ω (Module #S4) and 0.02Ω (Module #S5) are simulated and the

results are shown in Fig. 6.5. It is observed that, when the variation of internal

resistance increases, the IC peaks tend to decrease.

To better understand the quantitative relationship between the cell variation and
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Figure 6.5: ICA results of battery modules (#S1, #S4, #S5) simulated with variation
in cell resistance.

the deviations in the IC peak values, extensive simulations are performed with battery

modules that have parallel-connected cells. For the convenience of visualization, 2

instead of 3 cells are included in each simulated module. Regardless of the cell

numbers, the simulation results should reflect the relationship between the accuracy

of ICA with respect to cell capacity and resistance variation in a module. In this

part of the study, the reference module which has two identical cells is used as the

benchmark, whereas the modules made up of two cells with varied capacity and

resistance are used to reflect the non-uniformity. The simulated modules have the

same total capacity as the reference module.

We consider the variation in the IC peak by comparing,

∆IC =
ICref − ICvar

ICref

(6.8)

where ICref and ICvar are the IC peak values of the reference module and the modules

with varied cell non-uniformity respectively.
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Figure 6.6: ICA results simulated using a 2-cell battery module with capacity and
resistance variation.

The results are shown in Fig. 6.6, where Capvar and Rvar are the capacities and

resistance of the cells in the modules with variation. The color code corresponds to

the value of ∆IC as specified by the side bar in the figure. The x and y axes represent

the variations in resistance (±30%) and capacity (±10%) respectively among the two

cells in the module. The contour map shows that the deviation in IC peak value

could be up to 25% in the worst case. However, most of the changes in the battery

module follow the pattern that increase in resistance is accompanied by the decrease

in capacity. Therefore most of non-uniform distributions are expected to fall within

the neighborhood of the the diagonal stripe (from the upper-left to the lower-right),

and unlikely to fall into the two corners (upper-right and lower-left) of Fig. 7, where

the value of ∆IC is high. This is confirmed by experimental results. By plotting our

actual battery data onto the map, one can see that the range of deviation could be

reduced to 10%, which is equivalent to 2% error in capacity estimation.

The simulation results imply that the ICA based SOH monitoring framework

developed for single cells could also be used for battery modules. The design of the
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Figure 6.7: Design of the experimental battery module test.

validation test is presented in the next section.

6.3 Experimental Setup

The test data used for this study are acquired through the battery test bench set

up in [81], which includes an Arbin BT2000 tester, a thermal chamber for environment

control, a computer for user-machine interface and data storage, a switch board for

cable connection, and battery cells. The data acquisition system has a sampling

frequency of 10Hz.

Battery modules in experiment are formed by selecting aged cells from our test

cell inventory and connecting them in parallel (see Fig. 6.7, for the case of 3-cell

modules). In this work, total of about 30 modules were tested with most of the

modules having 3 cells and others having 7. The characteristics of the 3-cell modules
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Figure 6.8: Characteristics of tested battery modules with 3 cells.

are shown in Fig. 6.8, where the variation of individual cell capacity in a module is

quantified using the standard deviation. One can see that the modules cover a wide

range of capacity variations (2.5Ah to 3.2Ah) and have different uniformity. Some

modules are made up of cells with similar aging status, while others have capacity

variation up to 0.14Ah (more than 10% of the nominal capacity).

All tests are conducted at 24oC. ICA is performed on the data to obtain the

relationship between the IC curve and the battery degradation.

6.4 ICA for Battery Module SOH Monitoring with Experi-

mental Results

The IC curves of the battery modules cannot be computed directly from numerical

derivative or parametric curve fitting due to the measurement noise. Instead, the IC

curves are computed using partial charging data with specialized processing algorithm

such as the support vector regression (SVR) algorithm [16, 123].

Take each charging data set with current and voltage measurements, let x = q,
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y = v be the input and output of the SVR model (q represents the battery charged

capacity, v is the measured voltage). The SVR model for the V -Q curve can be

expressed as,

y =
N∑

i=1

βiK(xi, x) + µ, (6.9)

where N is the number of data points in the data set, βis and µ are the model

parameters, whose values are determined based on the data set, and K(·, ·) is the

selected kernel. In this study, the Gaussian radial basis function (rbf) kernel is used

and is expressed as

K(x, x′) = exp(
−‖x− x′‖2

2σ2
) (6.10)

where σ is the adjustable parameter for the kernel function.

By solving a linear programming based optimization problem, the parameters in

model (6.9) can be determined and the model can be reduced to

f(x) =
Nsv∑

i=1

βiK(svi, x) + µ, (6.11)

where sv is the support vector (SV) and Nsv is the total number of SVs (Nsv ≪ N).

Then, the IC curve can be computed from the fitted V -Q curve as follows:

dQ

dV
=

1

f ′(x)
=

1
∑Nsv

i=1 βiK′(svi, x)
. (6.12)

As an example, Fig. 6.9 shows the IC curve of a 3-cell module identified through

the SVR algorithm. More detailed discussion on the SVR approach for IC curve

identification can be found in [123].

Fig. 6.10 shows the ICA results of three 3-cell battery modules. The specifications
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Figure 6.9: Computing IC curves from battery charging data using SVR algorithm.

Table 6.2: Cell Parameters in Battery Module Tests

Battery Total Individual Cell Cell
Module Capacity (Ah) Capacity (Ah) Variation (Ah)

#T1 3.2005 1.0838 1.068 1.0788 0.008

#T2 3.1030 0.9866 1.0782 1.0461 0.046

#T3 3.0179 1.0039 0.9991 0.9901 0.007

#T4 3.0373 1.0251 1.0059 1.0076 0.011

#T5 3.0396 1.0838 1.0680 0.9112 0.095
†T represents test

of those modules with 3 aged cells are listed in Table 6.2. As expected, the IC curves

extracted from the test data show a clear aging trend. The second IC peak (circled

in Fig. 6.10) values decreases as module capacity reduces.

6.4.1 Results of Module ICA Study

As in the single cell case [16], we may record the value of the second IC peak and

use that as a signature of battery capacity fading. In order to see the robustness of the

ICA based capacity estimation method, two battery modules with same total capacity

but different individual cell capacities are compared in Fig. 6.11. The characteristics
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Figure 6.10: ICA results of 3-cell battery modules.

of the two modules are listed in Table 6.2. The collective capacity is the total module

capacity measured through Coulomb counting. One might notice that the collective

module capacity does not equal to the algebraic sum of the individual capacities.

This can be caused by two reasons. First, there is a time gap between the cell tests

and module tests so that the individual cell properties could have changed. Second,

the current distribution during charging/discharging would be uneven in the module

when cell non-uniformity exists, thereby affecting the usable capacity of the module.

For the module capacity estimation, we use the value of the collective capacity.

As shown in Fig. 6.11, although the IC peak locations are different due to the

difference in resistance, the second IC peak values of the two packs are almost iden-

tical. Therefore the second IC peak value seems to be a robust aging signature for

LiFePO4 battery modules.
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Figure 6.11: IC curves of battery modules with same total capacity but different cell
capacities.

Table 6.3: Battery Capacity Estimation

# of Cells 1 3 7

RMSE (%) 1.62 1.28 1.55

6.4.2 Battery Module Capacity Estimation Model

To quantify the correlation between capacity and the corresponding IC peak val-

ues, a fitted curve (dashed line in Fig. 6.12) is obtained using only the single cell

test data. The quantitative correlation could provide us a tool to estimate the bat-

tery capacity based on the IC peak values identified from the test data. To validate

this estimation method with battery module data, normalization is performed first.

Both capacity and IC peak values obtained from the data are divided by the nominal

capacity values (e.g., 3-cell module data are divided by 3.3Ah, the total capacity of

three fresh normal cells). After normalization, we could plot the ICA results of single

cells and modules on the same figure, as shown in Fig. 6.12. The maximum deviation

between fitted correlation and the battery module data is about 2%. The accuracy

of the battery capacity estimation is shown in Table 6.3. One can see that, although
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Figure 6.12: ICA based battery capacity estimation.

the estimation model is built based on the single cell data, the estimation error does

not increase when the it is applied to 3-cell and 7-cell module data. This result im-

plies that, the correlation identified using single cell data is generalizable to battery

modules with various number of cells, and could be used as a battery degradation

model for capacity estimation.
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CHAPTER VII

Conclusions and Future Work

7.1 Conclusions

The main results of the dissertation can be summarized as follows:

• A new OCV parametric model is proposed for on-board battery energy man-

agement. The special parametrization considers the staging phenomenon dur-

ing the lithium intercalation/deintercalation process for lithium-ion batteries,

therefore leading to a much better fitting accuracy when applied to experimen-

tal battery OCV data. The new parametric model is applied, together with an

EKF, to SOC estimation and its effectiveness is demonstrated on FUDS cycle

data. We also show that the parametric model can be applied for ICA based

SOH monitoring. Through comparisons of IC curves, the model is shown to be

capable of reflecting battery cell’s electrochemical properties at different oper-

ating temperature conditions and aging stages. Moreover, through parametric

analysis, we are able to simplify the model structure and develop a function that

characterizes the relations between the model parameters and the degradation

of battery performance, which enables us to monitor battery SOH and estimate

capacity fading only based on the model parameters.

• The battery SOH monitoring problem with a specific emphasis on using partial
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vehicle charging data for on-board implementation is studied. ICA is used to

correlate capacity fading with the IC curve peaks, thereby rendering the latter

as the robust signature for SOH monitoring. Several algorithms are developed

to extract this signature from normal vehicle charging data. Using SVR, an

SOH monitoring framework is developed to provide a definite and quantitative

correlation between IC peaks and faded battery capacity. The capacity loss can

thereby be estimated/predicted through normal charging data during real-life

operation. For data collected on 8 LiFePO4 cells, the model developed with the

SVR approach using one cell data is able to predict the capacity fading of other

cells with less than 1% absolute error except a few outliers.

• The parametric model structure identified by the SVR algorithm is exploited

for real-time battery system characterization, and a framework for lithium ion

battery SOH monitoring is proposed. In order to investigate the sensitivity of

the parametric structure to battery voltage data variation, a parametric LP

problem is formulated. The voltage variation is characterized through simu-

lations using mechanistic battery aging model and verified using battery test

data. The parametric LP is solved by Monte Carlo simulations. Because of the

data characteristics, the SVs in the V -Q curve model of LiFePO4 battery do not

change even when the battery cells age or vary. A model parametrization based

on the SV invariance is thereby established. The resulting linear parametric

model can be directly implemented in on-board BMS for SOH monitoring.

• The ICA based SOH monitoring framework is further extended from single cells

to battery packs. The applicability of the framework to battery pack is first

investigated through model simulation and then validated using experimental

data. A battery inventory that consists of 24 LiFePO4 cells with various aging

conditions is established, and the test cells are combined into battery packs

109



for the study. The results show that, the total capacity loss of a battery pack

could also be correlated with the IC curve peaks, and the correlation is the

same as the single cell case. The findings suggest that the ICA based SOH

monitoring framework developed for single cells can be applied to battery packs

with various series-parallel configurations.

7.2 Future Work

The work presented in this dissertation motivates many new research opportu-

nities and could be mainly extended in two directions: generalization of the model

parametrization and adaptation framework, and development of optimal energy man-

agement strategies for applications that involve energy storage systems.

Since most of my efforts have been dedicated to developing effective and robust

system identification algorithms for battery state monitoring, the research on devel-

oping optimal energy management strategies could be focused on the following topics:

• Develop simulation tools that integrate battery degradation model

with the main system model for SOH management: the objective of

optimal energy management strategies is usually to maximize system energy ef-

ficiency. However, in the long term operation, the cost of battery maintenance

or replacement could also affect the economic performance of the system. By

integrating the battery SOH information identified on-board with a validated

degradation model, both the system operations and the battery health condi-

tions could be considered in the problem formulation. Adaptive load control

strategies could thereby be developed to not only optimize the overall system

efficiency, but also to mitigate aging effects and extend battery life.

• Study effects of the electrical loads generated by the optimized bat-

tery management strategies on the grid: the collective effects of the charg-
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ing/discharging strategies could affect the electric grid significantly. An appro-

priate mathematical optimization problem could be formulated to coordinate

those charging operations with the objective of maximizing system performance

while maintaining reliable and safe grid operation.

• Design model-based predictive energy management strategies with

real-time system identification for off-grid operations: the system iden-

tification algorithms previously designed for the battery systems could be ex-

tended to other components in the applications. By updating the system status

in real-time, the on-board energy management strategies could be further opti-

mized to achieve better performance. For instance, in the case of model predic-

tive control based optimal energy management design, the model parameters

could be constantly updated to ensure prediction accuracy.

On the other hand, the model parametrization and adaptation could be further

explored in the following ways:

• Investigate the general conditions for the invariance of SVs in SVM

based learning or regression problems that have varying data char-

acteristics: The invariant properties of the SVs shown in the battery SOH

monitoring allows to eliminate the iterative optimization process from the SVR

problem. The conditions for invariance was found for the battery aging data

using a Monte Carlo simulation based approach, but general conditions has

not been established. Future work may be devoted to finding such conditions

through solving a parametric programming problem.

• Apply the modeling framework to other systems or applications that

share similar properties to the battery SOH monitoring problem: The

simple SVR representation provides a natural choice of parametric model for

on-board adaptation. By exploring existing engineering applications that have
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similar aging or time varying characteristics as the batteries, the effectiveness

and capability of generalization of the developed modeling framework could be

verified.
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