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ABSTRACT

Dynamical Instabilities and High-Temperature Phase Stability in Ionic Crystals

by

Min-Hua Chen

Co-Chairs: Anton Van der Ven and Katsuyo S. Thornton

A large class of high-temperature phases become dynamically unstable at low temper-

atures and transform to lower symmetry phases upon cooling. In this thesis we seek to

understand the energetics and vibrational thermodynamic properties associated with these

transformation mechanisms in a variety of technologically important materials, including a

newly discovered battery solid electrolyte, oxide phases in nuclear rod cladding, and thermal

barrier coatings.

Using first-principles phonon calculations, we examine the dynamical stability and vi-

brational properties of Li3OCl, a solid electrolyte material. We show that it is dynamically

unstable with respect to octahedral rotations. Further examination of the anharmonic en-

ergy landscapes resulting from these rotations revealed that while rotations can lead to lower

symmetry structures, the energy gained by these rotations are small. At low temperatures,

the cubic form should persist due to anharmonic vibrational excitations. We also find that

Li3OCl is entropically stabilized with respect to LiCl and Li2O at temperatures above 480

K.

Zirconium alloys used in nuclear fuel rod cladding experience corrosive and oxidizing

environments. Understanding the phase stability of these oxide phases at high temperatures

is crucial to designing corrosion-resistant materials. Vibrational free energies for several Zr-

O compounds were calculated and incorporated into a previously calculated temperature

composition phase diagram [1] to identify the temperature stability limit of the recently

identified δ′-ZrO phase. We show that this phase is stable well beyond typical nuclear

reactor temperatures.

Instabilities observed in cubic, tetragonal, and monoclinic ZrO2 are also studied. The

cubic instability leads to a transformation into the tetragonal phase. A volume-induced

xi



instability in the tetragonal phase results in a transformation into a new orthorhombic phase.

This instability has implications for the finite temperature stability of tetragonal ZrO2 and

the role of anharmonicity in high-temperature materials. Strain is shown to affect stabilities

of the three tetragonal variants, as well as the relative stabilities of the tetragonal and

monoclinic phases. These results suggest that strain can stabilize the high-temperature

tetragonal phase, which is preferable for epitaxial thin films used in high-k dielectrics and

for ferroelastic toughening in thermal barrier coatings.
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CHAPTER I

Introduction

Introduction to materials science often begins with descriptions of atomic bonds and

rigid crystal structures. In higher-level academic research, well-developed cluster expansion

models [2–4], based on atomic occupancies on a periodic crystal lattice, are a rigorous way to

account for configurational degrees of freedom. Combining these descriptions with statistical

mechanics result in useful thermodynamic properties. To an extent, these models reinforce

the notion of atoms sitting statically on specific crystal lattice sites. In reality, due to thermal

energy at finite temperatures, atoms are in fact vibrating about their equilibrium positions.

As temperature increases, the effect of these collective atomic movements, or phonons, on

the thermodynamic properties and stabilities of materials increases as well. The underlying

physics and thermodynamics arising from these vibrations as calculated by first principles

can be used to study phase stabilities and phase transformations of materials with a broad

range of applications. These techniques and principles will be used in this thesis to study the

dynamical instabilities and phase stabilities of ionic materials used as Li-ion solid electrolytes,

nuclear fuel rod cladding, or thermal barrier coatings.

Experimentally, inelastic neutron scattering measurements can provide a full description

of phonon frequencies in the Brillouin zone resulting from these oscillations, but this tech-

nique requires large single-crystal specimen, which are not always possible to obtain [5]. Com-

putational techniques can conveniently complement this experimental limitation. Atomic-

scale modeling methods, such as first-principles calculations, are especially appropriate for

modeling perturbations at this level, and the methodology will be reviewed in Chapter II.

First-principles calculations alone are able to provide information such as the energy of

a static arrangement of atoms, or configuration, at zero Kelvin. Although these calculations

can optimize the structure and minimize the energy of a material through an iterative,

self-consistent process, the system may ultimately land on a saddle point of the energy

landscape. Such a structure is considered to be dynamically unstable, as symmetry breaking

distortions can push the system into a lower energy phase. Phonon studies can be used to
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verify the presence of these dynamical instabilities. Inspection of the atomic displacement

fields associated with these instabilities can also provide insight into how certain phase

transformations occur.

Occasionally, first-principles calculations will predict an experimentally known compound

that is stable at low temperatures to be metastable. While this result may be due to a

fundamental deficiency in the first-principles description for this material, another possibility

is that the material is entropically stabilized by phonons. Antiperovskite Li3OCl, a solid

electrolyte material [6], is an example. Although this material is predicted to be metastable

at 0 K [7], it is experimentally stable at room temperatures. Using phonon calculations,

we found that Li3OCl is dynamically unstable with respect to octahedral rotations, and the

energy landscape with respect to these rotational degrees of freedom is highly anharmonic.

Our work also shows that Li3OCl is vibrationally stabilized at temperatures above 480 K,

which is consistent with the experimental synthesis temperatures of 330− 360◦C [6]. These

results will be presented in Chapter III and have been previously published in Physical

Review B [8].

At elevated temperatures, vibrational entropy begins to play a larger role in the relative

phase stabilities of materials. In certain phases with near zero configurational disorder,

such as line compounds, finite temperature vibrational effects dominate and determine their

stabilities relative to neighboring phases. This is a concept around which Chapter IV is

built, where we examine the stability of a recently identified δ′-ZrO phase [1] within the

broader context of oxides in the Zr-O system. This system is of interest as zirconium alloys

are used as nuclear fuel rod cladding and are subjected to harsh high-temperature and

oxidizing environments [9, 10]. Using phonons to understand the high-temperature stability

of δ′-ZrO is therefore important to engineering oxidation-resistant alloys. We also updated

a previously published Zr-O temperature-composition phase diagram based on a cluster

expansion Hamiltonian and Monte Carlo calculations [1] to include the effects of vibrational

entropy.

As part of our Zr-O study, we also used vibrational free energies to predict the phase

transition temperature of monoclinic to tetragonal ZrO2. Further study of the three main

ZrO2 polymorphs (cubic, tetragonal, and monoclinic) showed that in addition to the well-

known mechanical instability of the cubic phase [11–16], instabilities in the mechanically

stable tetragonal [14–16] and monoclinic phases [15, 16] can be triggered by factors such

as volume increases or strain. The volume-induced instability of tetragonal ZrO2 resulted

in the discovery of a new orthorhombic ZrO2 phase. As the high-temperature tetragonal

and cubic phases are often more desirable for applications in memory storage devices and

thermal barrier coatings, understanding the effects of volume or strain on their stabilities
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can ultimately aid and inform engineering efforts of these materials. The details of these

different types of instabilities are presented in Chapter V.

Chapter VI discusses results on stable phases that are formed during intercalation of Li

into trirutile LiFe2F6, a cathode material for Li-ion batteries. Using a cluster expansion

Hamiltonian and Monte Carlo calculations, an intercalation voltage curve was calculated

and intermediate stable phases were identified. Li diffusion barriers in the dilute limit were

also calculated, and the Li diffusion behavior is discussed.

Lastly, Chapter VII summarizes the key findings in this thesis and identifies future re-

search directions in these material systems.
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CHAPTER II

Theoretical Background and Computational Methods

2.1 Phonons

2.1.1 Harmonic Approximation

Phonons are the cooperative motion of atoms in a crystal due to thermal excitations.

These small vibrations of atoms around their equilibrium position can be modeled as a

collection of atoms connected by springs. Considering that the classic potential energy of

a molecule being separated as a function of separation distance is close to parabolic near

the equilibrium separation distance, the potential energy of these small atomic vibrations

can be modeled with a parabolic energy surface. This approach is known as the harmonic

approximation, which is well established, extensively studied [5, 17–19] and implemented

[12,20–22]. An overview of the theory behind the harmonic approximation will be provided

here.

The harmonic approximation model is constructed within the Born Oppenheimer approx-

imation [23], where the movement of electrons and ions is treated separately due to the mass

differences. Only the movement of the ions are considered, while the electrons are neglected

as the electronic wave functions are expected to relax instantaneously into their ground state

in response to changes in its environment. Beginning with a static, periodic arrangement

of atoms at zero K with an equilibrium potential energy Φ0, any perturbations from the

equilibrium atomic positions due to finite temperature vibrations will result in a change in

the Born Oppenheimer energy surface. A general description of the potential energy due to

lattice vibrations can be obtained through a Taylor expansion with respect to deviations of
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the atoms from their equilibrium positions

Φ = Φ0 +
∑
lbα

∂Φ

∂ubα (Rl)

∣∣∣∣
0

ubα (Rl)

+
1

2

∑
ll′

∑
bb′

∑
αβ

∂2Φ

∂ubα (Rl) ∂ub
′
β (Rl′)

∣∣∣∣∣
0

ubα (Rl) ub
′

β (Rl′) + · · ·
(2.1)

= Φ0 +
∑
lbα

Φb
α (Rl) ubα (Rl)

+
1

2

∑
ll′

∑
bb′

∑
αβ

Φbb′

αβ (Rl,Rl′) ubα (Rl) ub
′

β (Rl′) + · · · ,
(2.2)

where a truncation after the second order term is applied, limiting the description to pairs

and maintaining a parabolic energy landscape description. When anharmonicity is accounted

for, higher order couplings are required. The crystal described here is composed of N unit

cells indexed by l and l′. The n number of basis atoms within each unit cell are likewise

indexed by b and b′. The indices α and β represent the x, y, z Cartesian directions. The

position of an atom in the unperturbed crystal is defined by the position of the unit cell Rl

to which it belongs, as well as the shift vector τ b representing its position within the unit

cell. The perturbation of basis atom b in unit cell l from its equilibrium position Rl + τ b is

represented by ubα (Rl).

Each term in the Taylor expansion above is evaluated at the equilibrium configuration.

The first order term Φb
α (Rl) represents the negative of the α-th component of the force felt

by the atom at Rl + τ i. At equilibrium, there are no forces, resulting in the elimination

of this term in the overall potential energy expression. The partial derivative in the second

order term is defined as

∂2Φ

∂ubα (Rl) ∂ub
′
β (Rl′)

∣∣∣∣∣
0

= Φbb′

αβ (Rl,Rl′) , (2.3)

and this is the inter-atomic force constant that relates the force felt by an atom at Rl′ + τ b′

due to a perturbation imposed on atom Rl + τ b. This relationship can be seen more clearly

by taking the derivative of the Taylor-expanded potential energy in Equation 2.2

∂Φ

∂ubα (Rl)
=
∑
l′b′β

Φbb′

αβ (Rl,Rl′) ub
′

β (Rl′) , (2.4)

from which we see a more explicit interpretation of the force constant as the spring constant

that relates the force felt on an atom at Rl+τ b due to a perturbation of an atom at Rl′ +τ b′ .
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Using this potential energy description, the phonon Hamiltonian can be expressed as

H = Φ0 +
1

2

∑
lbα

Mb

[
u̇bα (Rl)

]2
+

1

2

∑
ll′

∑
bb′

∑
αβ

Φbb′

αβ (Rl,Rl′) ubα (Rl) ub
′

β (Rl′) . (2.5)

There are three distinct terms, corresponding to the static lattice, kinetic, and potential

energies, respectively. The mass of basis atom b in the kinetic energy is represented as

Mb. This Hamiltonian describes the crystal as a system of coupled harmonic oscillators,

manifested in the coupling between perturbations at different sites, ubα (Rl) and ub
′

β (Rl′).

By performing a diagonalization, this complex description can be simplified into a system

of decoupled harmonic oscillators. To accomplish this, we begin by defining the Fourier

transform of the displacements ubα (Rl) and ub
′

β (Rl′) as

ũbα (k) =
1√
NMb

∑
l

ubα (Rl) exp [ik · (Rl + τ b)] (2.6)

ũb
′

β

(
k

′
)

=
1√
NMb′

∑
l′

ub
′

β (Rl′) exp [ik′ · (Rl′ + τ b′)] , (2.7)

where a discretized sum is performed over each unit cell. The inverse Fourier transform can

be expressed in terms of the Fourier transforms ũbα (k) and ũb
′

β (k) according to

ubα (Rl) =
1√
NMb

∑
k

ũbα (k) exp [−ik · (Rl + τ b)] (2.8)

ubβ (Rl′) =
1√
NMb′

∑
k′

ũb
′

β (k) exp [−ik′ · (Rl′ + τ b′)] . (2.9)

The perturbations are expressed as a superposition of plane waves, where ũ (k) are the

amplitudes of waves having wavelength λ = 2π
|k| . These perturbations can be substituted

into both the kinetic and potential energy terms in the Hamiltonian to fully diagonalize the

Hamiltonian. The potential energy term of our Hamiltonian upon this substitution is then

1

2N

∑
ll′

∑
bb′

∑
αβ

∑
kk′

1√
MbMb′

Φbb′

αβ (Rl,Rl′)ũ
b
α (k) exp [−ik · (Rl + τ b)]

ũb
′

β

(
k

′
)

exp [−ik′ · (Rl′ + τ b′)] .

(2.10)

A change of variables can be performed, where we utilize the observation that the force

constants Φbb′

αβ (Rl,Rl′) depend only on the relative distance defined by Rl′′ = Rl′ −Rl since

the crystal is periodic. This allows for the elimination of index l, after which exponential
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terms with the same R vectors can be grouped together

1

2N

∑
l′′

∑
bb′

∑
αβ

∑
kk′

1√
MbMb′

Φbb′

αβ (0,Rl′′) ũbα (k) ũb
′

β

(
k

′
)

exp [ik · (Rl′′ − τ b)− ik′τ b′ ]∑
l′

exp [−i (k + k′) · (Rl′ + τ b′)] .

(2.11)

All the terms dependent on l′ have been gathered within the same sum, and we note that

the sum over l′ at the end is a delta function Nδ (k + k′) = 1. Only terms −k = k′ survive,

allowing further simplification of the expression as

1

2

∑
k

∑
bb′

∑
αβ

ũbα (−k) ũb
′

β (k)
1√

MbMb′

∑
l′′

Φbb′

αβ (0,Rl′′) exp [ik · (Rl′′ + τ b′ − τ b)] .

(2.12)

By performing this mathematical manipulation, we have transformed the expression from

real space to reciprocal space. In doing so, the potential energy is fully diagonalized and all

coupled terms are eliminated. More importantly, the double sum at the end of this expression

is the Fourier transform of the force constant, which is a quantity known as the dynamical

matrix

Dbb′

αβ (k) =
1√

MbMb′

∑
l′′

Φbb′

αβ (0,Rl′′) exp [ik · (Rl′′ + τ b′ − τ b)] . (2.13)

A similar diagonalization procedure can be performed on the kinetic energy term as well,

such that the kinetic energy is also in reciprocal space

1

2

∑
lbα

Mb

[
u̇bα (Rl)

]2
=

1

2

∑
kbα

˙̃ubα (−k) ˙̃ubα (k) . (2.14)

This process ultimately results in a fully diagonalized Hamiltonian

H = Φ0 +
1

2

∑
k

[∑
bα

˙̃ubα (−k) ˙̃ubα (k) +
∑
bb′

∑
αβ

ũbα (−k) ũb
′

β (k)Dbb′

αβ (k)

]
, (2.15)

where the same system of coupled harmonic oscillators is now described as decoupled har-

monic oscillators, one for each wave number k, where the fluctuating variable is the amplitude

of a collective sinusoidal vibrational mode with wavelength λ = 2π
|k| . These collective modes

are called phonons.
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Equation 2.15 can be further diagonalized to obtain frequencies ωv (k),∑
b′β

Dbb′

αβ (k) eb
′

βv (k) = ω2
v (k) ebαv (k) , (2.16)

where e (k) and ω2
v (k) are the eigenvectors and eigenvalues and v indexes the phonon

branches. The eigenvectors of the dynamical matrix determine the direction in which the

atoms are displaced by a particular mode. In addition, as the expression shows, the frequen-

cies are simply the square root of the eigenvalues. While it is common to write the eigenvalue

problem in terms of the angular frequency ω, dispersion curves are conventionally expressed

in plain frequencies, ν, which is related to the angular frequency by a factor of 2π. Other

unit conversion details needed for the implementation can be found in Appendix A.4.

The diagonalized Hamiltonian can be further expressed in terms of normal coordinates

ξv (k). The perturbations u (R) in terms of normal coordinates and eigenvectors of the

dynamical matrix is

ubα (Rl) =
1√
NMb

∑
kv

ebαv (k) ξv (k) exp [−ik · (Rl + τ b)] , (2.17)

which in turn gives mode amplitudes of the form

ũbα (k) =
∑
v

ebαv (k) ξv (k) . (2.18)

Substituting this expression into Equation 2.15, we can express the entire Hamiltonian in

terms of these normal coordinates. Performing this substitution into the potential energy

term and rearranging terms results in

1

2

∑
k

∑
vv′

ξv (−k) ξv′ (k)
∑
bα

ebαv (−k)

[∑
b′β

Dbb′

αβ (k) eb
′

βv′ (k)

]
, (2.19)

where the term in the brackets can be replaced with Equation 2.16. One last simplification

can be made upon further rearrangement to obtain

1

2

∑
k

∑
vv′

ξv (−k) ξv′ (k) [ωv′ (k)]2
∑
bα

ebαv (−k) ebαv′ (k) , (2.20)

at which point we note that the eigenvectors of the dynamical matrix are orthogonal and

therefore the sum over b and α becomes a delta function δvv′ . Only v terms survive, resulting

8



in

1

2

∑
k

∑
v

ξv (−k) ξv (k) [ωv (k)]2 , (2.21)

which is an expression of the potential energy term in normal coordinates. A similar process

gives us a kinetic energy term similarly in terms of normal coordinates

1

2

∑
k

∑
v

ξ̇v (−k) ξ̇v (k) . (2.22)

The entire Hamiltonian in terms of normal coordinates, which remains diagonalized, is then

H = Φ0 +
1

2

∑
k

[∑
v

ξ̇v (−k) ξ̇v (k) +
∑
v

ξv (−k) ξv (k) [ωv (k)]2
]
, (2.23)

a form that is used in Chapter III to estimate the total free energy of Li3OCl. Solutions

to the Schrödinger equation using this diagonalized phonon Hamiltonian results in discrete

energy levels accessible to each phonon mode vibrating at frequency ωv (k)

Ev,k = ~ωv (k)

(
n+

1

2

)
, (2.24)

where n = 0, 1, . . . are integers corresponding to discrete energy levels.

Thus far, the dynamical matrix has proved crucial in providing important information

such as the vibrational frequencies and the directionality of the phonon modes, and it has

several important characteristics. As each atom has 3 degrees of freedom, the entire dynam-

ical matrix D (k) has dimensions of 3n × 3n, resulting in 3n frequencies when evaluated at

a given k point. At the center of the Brillouin zone, Γ, the phase factor goes to 1, and the

dynamical matrix becomes a matrix of all interactomic force constants of the unit cell, where

each 3× 3 block corresponds to the sum of force constants connecting basis atoms b and b′.

Due to the symmetry and constraints imposed on the force constants that will be discussed

shortly, the dynamical matrix is also necessarily Hermitian [24]. The eigenvalues of any

Hermitian matrix are by definition real, and as the frequencies ωv (k) are obtained by taking

the square root of the eigenvalues, the frequencies can be real or imaginary. Real frequencies

correspond to a phonon mode with an energy landscape that has positive curvature, as in a

parabolic energy surface. Imaginary frequencies, on the other hand, correspond to phonon

modes with an energy landscape of negative curvature. The presence of an imaginary or soft

mode typically indicates that the crystal is mechanically unstable. A perturbation of atoms
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in the equilibrium crystal in the direction of the unstable phonon mode will cause the crys-

tal to transition into a lower energy and often lower symmetry phase. Such a phenomenon

will be observed and discussed further in the context of antiperovskite Li3OCl in Chapter

III. Instabilities observed in a phonon dispersion curve can also lead to further insight into

the mechanisms of displacive phase transformations. The unstable mode observed in me-

chanically unstable cubic ZrO2 is known [12, 13, 25], for example, to be responsible for the

transformation into a mechanically stable tetragonal ZrO2 phase, which will be discussed in

Chapter V.

2.1.2 Force Constants

One of the fundamental building blocks of the harmonic approximation is the description

of atom movements as harmonic oscillators. Therefore, an accurate description of the force

constants is particularly important, and there are several properties and conditions that

need to be obeyed [17]. The first property is that of translational invariance, which was used

in the diagonalization of the Hamiltonian. Physically, when a crystal is translated rigidly,

neither the potential energy of the crystal as a whole nor the force constants should change.

The effect of this constraint on the force constants can be shown by applying a translation

vector, v, to the potential energy

Φ = Φ0 +
∑
lbα

Φb
α (Rl) vα +

1

2

∑
ll′

∑
bb′

∑
αβ

Φbb′

αβ (Rl,Rl′) vαvβ + · · · . (2.25)

As the change to the total potential energy Φ by a simple translation is zero, the nontrivial

solution results in the condition∑
ll′

∑
bb′

Φbb′

αβ (Rl,Rl′) = 0. (2.26)

From this condition, we can draw from it the acoustic sum rule, which is

Φbb
αβ (Rl,Rl) = −

∑
(l′b′)6=(lb)

Φbb′

αβ (Rl,Rl′) . (2.27)

The term Φbb
αβ (Rl,Rl) is the inter-atomic force constant between an atom and itself. Another

property can be gleaned from Equation 2.3, where the partial differentiation is commutative

and as a result we obtain the symmetry constraint [17, 26]

Φbb′

αβ (Rl,Rl′) = Φb′b
βα (Rl′ ,Rl) . (2.28)
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While the force constants depend only on a relative distance, the form of the force constant

does depend on the directionality, as this expression shows. It states that the force constant

going from site b to site b′ is related to the transpose of the force constant from site b′ to b.

Further combining Equations 2.27 and 2.28 produces another condition, which is∑
(l′b′)6=(lb)

Φbb′

αβ (Rl,Rl′) =
∑

(l′b′)6=(lb)

Φbb′

βα (Rl,Rl′) . (2.29)

For certain crystal symmetries, this condition may not be trivially satisfied and thus needs

to be explicitly enforced [26].

Extending the concept of translational invariance, we note that when a crystal is sub-

jected to an infinitesimal rigid body rotation, the forces do not change either. We begin by

expressing the derivative of the potential as

∂Φ

∂ubα (Rl)
= Φb

α (Rl) +
∑
l′b′β

Φbb′

αβ (Rl,Rl′) ub
′

β (Rl′) . (2.30)

Applying an antisymmetric, infinitesimal rotation, SR such that SRβγ = −SRγβ is equivalent

to a perturbation of the form

ub
′

β (Rl′) =
∑
γ

SRβγ · [(Rl′ + τ b′)− (Rl + τ b)]γ (2.31)

=
∑
γ

SRβγ∆r
bb′

γ (Rl,Rl′) (2.32)

= −
∑
γ

SRβγ∆r
bb′

γ (Rl′ ,Rl) . (2.33)

For convenience, we define the difference between two sites as ∆rbb
′

γ = (Rl′ + τ b′)−(Rl + τ b).

Substituting this expression for the perturbation into Equation 2.30, we obtain

∂Φ

∂ubα (Rl)
= Φb

α (Rl)−
∑
l′b′γ

Φbb′

αβ (Rl,Rl′)S
R
βγ∆r

bb′

γ (Rl′ ,Rl) . (2.34)

Applying a rigid rotation means the derivative of the potential behaves as

∂Φ

∂ubα (Rl)
=
∑
β

(
δαβ + SRαβ

)
Φb
β (Rl) (2.35)

= Φb
α (Rl) +

∑
β

SRαβΦb
β (Rl) , (2.36)
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where δαβ is the Kronecker delta function. Equating Equations 2.34 and 2.36 results in∑
β

SRαβΦb
β (Rl) = −

∑
l′b′γ

Φbb′

αβ (Rl,Rl′)S
R
βγ∆r

bb′

γ (Rl′ ,Rl) . (2.37)

Recalling that the rotational matrix SR is antisymmetric (SRβγ = −SRγβ), this expression can

be further simplified as

δαβΦb
γ (Rl)− δαγΦb

β (Rl) = −
∑
l′b′

[
Φbb′

αβ (Rl,Rl′) ∆rbb
′

γ (Rl′ ,Rl)− Φbb′

αγ (Rl,Rl′) ∆rbb
′

β (Rl′ ,Rl)
]
.

(2.38)

As we mentioned at the beginning, at equilibrium, Φb
α (Rl) is zero due to the absence of

forces. This results in the final expression for the rotational invariance condition [17,27]∑
l′b′

[
Φbb′

αβ (Rl,Rl′) ∆rbb
′

γ (Rl′ ,Rl)− Φbb′

αγ (Rl,Rl′) ∆rbb
′

β (Rl′ ,Rl)
]

= 0. (2.39)

These force constants rules and constraints can be applied during the fitting of the force

constants via a constrained least squares method, the mathematics of which are detailed in

Appendix A.3.

2.1.3 Non-Analytic Born Effective Charge Correction

Electrostatic interactions arising from atomic displacements are largely screened in met-

als, but in insulating, ionic materials, the electrostatic effects do not decay as rapidly, and

thus cannot be ignored [13,28]. Phonon modes approaching the center of the Brillouin zone

Γ have wavelengths approaching infinity. Acoustic modes within this limit result in atoms

in a unit cell moving in-phase with each other, corresponding to a rigid translation of the

crystal. Optical modes at Γ correspond to atoms moving out-of-phase from each other. In

ionic materials, as oppositely charged ions vibrate in opposite directions in the manner of

optical modes, dynamic dipoles arise and interact with each other Coulombically and induce

macrosocpic electric fields. This effect results in the splitting of longitudinal optical and

transverse optical (LO-TO) frequencies around the Brillouin zone center such that the longi-

tudinal frequency is higher than the transverse frequency [17]. An expression for the ratio of

the longitudinal and transverse frequencies known as the Lyddane-Sachs-Teller relation [29]

was further extended for more general crystal symmetries by Cochran and Cowley [30].

A non-analytical correction to the analytical expression of the dynamical matrix that
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reflects this behavior is needed and takes the form of

Dbb′

αβ (k; na) =
1√

MbMb′

4πe2

V

(∑
γ Z

b
αγkγ

)(∑
γ′ Z

b′

βγ′kγ′
)

k · ε(∞) · k f (k) , (2.40)

where different expressions of f(k) have been proposed. The terms Zb and Zb′ are the Born

effective charge tensors, a 3× 3 matrix proportionality constant between the dipole moment

and the atomic displacement causing this polarization. Specifically, each Zb
βα refers to the

polarization along direction β as a result of a displacement in the α direction of basis atom

b [31]. ε(∞) is the macroscopic dielectric tensor.

One approach to account for this LO-TO splitting was formulated by Parlinski et al. [32],

where a Gaussian smearing is applied to the non-analytical correction to ensure its decay

before reaching a k-point commensurate with the supercell:

f (k) = exp
(
2πik2/ρ2

)
(2.41)

Here, commensurate k-points are defined as points in reciprocal space obtained by a perfect

tiling of the supercell’s reciprocal lattice within the unit cell’s reciprocal lattice, except for

the Γ point [33]. The damping factor ρ can be calculated based on the particular unit

cell’s k-points and the supercell geometry. It should be chosen such that the non-analytic

contribution to the dynamical matrix dies off before reaching the nearest commensurate

k-point.

Another more recent approach formulated by Wang et al. [33] takes the form of

f (k) =
1

N

∑
l

exp (ik · [Rl −R0]) (2.42)

where N is the number of unit cells, indexed by l, in the larger supercell from which the force

constants were calculated. The quantity Rl−R0 is the distance of each unit cell l relative to

the first unit cell. This correction similarly approaches zero at commensurate k-points. Both

forms of f (k) also fulfill the requirement of Cochran and Cowley [30] as k approaches the

Γ point. They are also non-zero at k-points that are not commensurate with the supercell,

which is necessary as the effect of these electrostatic effects persist at these points.

2.1.4 Statistical Mechanics and Thermodynamics

Solutions to the Schrödinger equation using the fully diagonalized Hamiltonian in Equa-

tion 2.15 describing independent harmonic oscillators provide the energy of a particular mi-
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crostate of the system. Thermodynamic quantities can be calculated by averaging over these

microstates, which can be defined as a collection of quantum numbers ~n = {nk0, nk1, . . . , nk3N}.
This is the set of integers that define the energy occupancy level for each harmonic oscillator.

The energy of a microstate is then a sum of the energies of all the harmonic oscillators in

the system

E~n =
∑
k

~ωk
(
nk +

1

2

)
. (2.43)

It follows that the partition function of the entire system is then

Z =
∑
~n

exp (−βE~n) , (2.44)

where we sum over all possible microstates of the system and β = kBT has been introduced

for simplicity. This can be further written as

Z =
∑
nk0

∑
nk1

· · ·
∑
nk3N

∏
k

exp

[
−β~ωk

(
nk +

1

2

)]
, (2.45)

since the sum within an exponent is equivalent to a product of exponents. We can then

rearrange exponent terms as each exponent term is dependent only on one of the sums

Z =
∑
nk0

exp

[
−β~ωk

(
nk0 +

1

2

)]∑
nk1

exp

[
−β~ωk

(
nk1 +

1

2

)]
· · ·
∑
nk3N

exp

[
−β~ωk

(
nk3N +

1

2

)]
,

(2.46)

This expression can be written more compactly as

Z =
3N∏
k

∑
nk

exp

[
−β~ωk

(
nk +

1

2

)]
, (2.47)
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where the sum over all possible energy levels {nk = 0, 1, . . . } is the partition function of a

single harmonic oscillator Zk, which can be further simplified using a geometric series

Zk =
∑
nk

exp

[
−β~ωk

(
nk +

1

2

)]
(2.48)

= exp

(
−1

2
β~ωk

)∑
nk

exp [−β~ωknk] (2.49)

=
exp

(
−1

2
β~ωk

)
1− exp (−β~ωk)

. (2.50)

To obtain the total vibrational free energy, the partition function in Equation 2.47 is substi-

tuted into F = −(1/β) lnZ

F = − 1

β
ln

3N∏
k

exp
(
−1

2
β~ωi

)
1− exp (−β~ωi)

(2.51)

= − 1

β

3N∑
k

ln

(
exp

(
−1

2
β~ωk

)
1− exp (−β~ωk)

)
(2.52)

=
1

β

3N∑
k

1

2
β~ωk + ln [1− exp (−β~ωk)] . (2.53)

Here, we introduce the density of states g(ωk), an integration over all the frequencies in the

Brillouin zone∫ ∞
0

g(ωk)dωk = 3N. (2.54)

The vibrational free energy can be ultimately be expressed as

F =
1

2

∫ ∞
0

~ωkg(ωk)dωk +
1

β

∫ ∞
0

ln [1− exp (−β~ωk)] g(ωk)dωk (2.55)

where

Ezp =
1

2

∫ ∞
0

g(ωk)~ωkdωk (2.56)

is the zero-point energy corresponding to the vibrational groundstate and resulting from the

fact that the lowest n = 0 level of the quantized energies of a harmonic oscillator is finite.

Differentiating the free energy with respect to temperature results in vibrational entropy,
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defined as

S = −kB
∫ ∞

0

g(ωk) · ln [1− exp (−~ωk/kT )] dωk −
1

T

∫ ∞
0

g(ωk)
~ωk

exp (~ωk/kT )− 1
dωk.

(2.57)

An intuitive understanding of how phonon frequencies may contribute to vibrational

entropy can be derived from considering a 1-D lattice. The frequency of an individual

harmonic oscillator in this simplified model is proportionally related to its force constant

ωk =

√
Φk

m
, (2.58)

so a lower frequency tends to correspond to a softer spring. The separation of discretized

energy levels Ek, determined by ~ωk in Equation 2.24, is smaller for a softer spring. In

calculating the partition function and ultimately the vibrational entropy, this translates

into the sampling of more states, leading to an overal increase in entropy. Conversely, higher

frequencies correspond to stiffer spring constants and energy levels that are separated further

apart, thus contributing less to entropy.

2.1.5 Quasi-Harmonic Approximation

The beauty and simplicity of the harmonic approximation works well for materials where

the assumption that atoms are heavy and their movements only oscillate within the vicinity

of their equilibrium positions is valid. At low temperatures, this model can also be valid to

an extent as lower temperatures will induce less thermal excitations. At high temperatures,

however, this model is no longer accurate as volumetric changes due to thermal expansion

have to be accounted for. The quasi-harmonic approximation is an attempt to correct for

these thermal expansion effects.

By obtaining Helmholtz free energies at volumes both larger and smaller than the equi-

librium volume, we can build a free energy that is dependent not only on temperature, but

also on volume

F (T, V ) = E0(V ) + FH(T, V ), (2.59)

where as usual, E0(V ) is the energy of our static crystal at a specific volume V , and our

harmonic free energies at each volume is denoted as FH(T, V ). Differentiating the free energy
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with respect to volume gives negative pressure(
∂F

∂V

)∣∣∣∣
T

= −P. (2.60)

Minimizing F (T, V ) with respect to volume at each temperature, we obtain an equilibrium

volume V ∗(T ) at zero pressure. The free energies evaluated at these equilibrium volumes

F (T, V ∗(T )) gives a Gibbs free energy at zero pressure.

In the following chapters, we will use the quasi-harmonic approximation to obtain free

energies to explore vibrational stabilization of various materials. A simple case exploring the

stabilization of a metastable Cu2Sb relative to Cu and Sb through phonons can be found in

Appendix B.

2.1.6 Forces from First-Principles Calculations

There are two main approaches to calculating the force constants described in Section

2.1.1 needed to construct the dynamical matrix in Equation 2.13. The first is the direct

approach or supercell method, in which Hellmann-Feynman forces resulting from perturba-

tions of atoms within a supercell from equilibrium positions are used to calculate the force

constants necessary for the dynamical matrix [18, 19, 28, 34]. A number of atomic displace-

ments are imposed on atoms within a supercell, typically ranging anywhere from 30 - 100

atoms, along high symmetry directions. An optimal supercell size can be determined by

the means of convergence tests of force constants [18] or free energies, depending on the

ultimate aim and computational limitations. The symmetry of the supercell can be used to

minimize the number of perturbation directions necessary for a complete description of force

constants [19]. The forces resulting from the perturbations are used in a least squares fit of

a system of linear equations to calculate the force constants between pairs of atoms.

The second approach to obtaining force constants is based on linear-response theory

[35,36]. In this approach, the dynamical matrix can be evaluated at specific k-points. Typi-

cally, the Hessian of the Born Oppenheimer energy surface is calculated by differentiating the

Hellmann-Feynman forces with respect to atomic positions [36]. Practically, this is accom-

plished by calculating the response of a ground-state electron charge density to perturbations

of atoms within an equilibrium supercell structure. The Hessian matrix obtained is essen-

tially a collection of 3× 3 matrices, each of which is an inter-atomic force constant between

two atoms in the supercell. As this method is not used in this work, we will not go into

details of the method and its formulations.
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2.2 First-Principles Calculations

To obtain forces needed to fit the interatomic force constants previously defined in Equa-

tion 2.3, first-principles calculations are employed. Conceptually, the foundation of the

technique is in solving the many body Schrödinger equation

Hψ = Eψ, (2.61)

which relates the Hamiltonian H to the energy of the system E through a many-body

wave function ψ [37]. An exact solution can in theory provide the allowed eigenstates and

corresponding energies, but obtaining a precise solution to this equation for realistic material

systems is not feasible, even with current computational capabilities. A simplification in the

form of an approximate Hamiltonian is introduced

H = T (ri) + V (ri, rj) + V (ri,Rj) + V (Ri,Rj) . (2.62)

The first term is the kinetic energy operator of electrons

T = − ~2

2m

∑
i

∇2
i . (2.63)

The second term describes the Coulombic interaction between electrons

V (ri, rj) =
∑
i

∑
j<i

1

|rj − ri|
, (2.64)

while the third term is the Coulombic interaction between electrons and nuclei

V (ri,Rj) = −
∑
i

∑
j

Zj
|Rj − ri|

. (2.65)

Finally, the last term expresses the ion-ion Coulomb potential

V (Ri,Rj) =
∑
i

∑
j<i

ZiZj
|Rj −Ri|

. (2.66)

In these expressions, m is the electron mass, ri is the position of electron i, Ri is the position

of a nucleus i, and Zi is the nucleus charge of atom i. What is notably missing from the

Hamiltonian is the contribution of the kinetic energy of the nuclei. The description above

is based on the Born-Oppenheimer approximation. Under this assumption, the nuclei are
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considered to be at fixed positions given the ease at which electrons respond to changes in

their environment. Another simplification of the approximate Hamiltonian is that the nuclei

are treated classically, while the electrons are treated quantum mechanically.

An initial approach to solving this many-body problem was the Hartree method [37]. In

this model, the eigenfunctions of Equation 2.61 are approximated as a product of individual,

orthonormal single-electron wave functions

ψ (r1, r2, . . . , rN) = ψ (r1)ψ (r2) · · ·ψ (rN) . (2.67)

The electrons in this Hartree product are assumed to be non-interacting. This assumption

is precisely one of the failings of the model because in a real system, electrons do not behave

independently, and thus there are non-negligible correlation effects between electrons. An-

other oversimplification is that the wave functions do not obey exchange symmetry, where

when two electrons swap places, the wave function needs to change signs. An improvement

was introduced via the Hartree-Fock approach [37], where a Slater determinant composed of

one electron wave functions obeying exchange symmetry is used as a more accurate approx-

imation of the wave function. Despite this modification, the model still does not account for

electron correlations.

2.2.1 Density Functional Theory

A slightly less computationally intensive method to solving the many-body Schrödinger

equation in which electron interactions are approximated is density functional theory (DFT).

Rather than solving a problem with 3n degrees of freedom, one for each of the 3 spatial

coordinates of n electrons, Hohenberg and Kohn [38] introduced the concept that the ground

state energy is a unique functional of the electron density, E [n (r)]. Instead of solving for

3n variables of the wave function, the problem is reduced down to the three spatial variables

of the electron density.

Another important result by Hohenberg and Kohn is that the electron density result-

ing from minimizing the energy functional is the electron density mapping directly onto

the solution of the Schrödinger equation. This is known as the variational principle. The

combination of the two concepts indicate that by minimizing the density functional, both

the ground state energy and corresponding electron density can be obtained. The energy

functional for an electron density takes on the form of [39]

E [ρ] = TS [ρ] +

∫
Vext (r) ρ (r) dr + EH [ρ] + EXC [ρ] , (2.68)
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where TS [ρ] is the kinetic energy of independent electrons. The second term
∫
Vext (r) ρ (r) dr

is the interaction energy between the electron density and an external potential field aris-

ing from Coulombic interactions between the electrons and ions. The term EH [ρ] is the

Hartree term resulting from classical Coulombic interactions between electrons. The last

term, EXC [ρ], is the exchange-correlation energy. In a realistic system, electron interactions

are correlated, and thus an attempt to correct for the treatment of electrons as classical ions

in the Hartree term is included in this last exchange-correlation term. In addition, kinetic

energy differences between a system with independent electrons and interacting electrons are

also built in. This last term is the most difficult to capture, as it is meant to account for

corrections to the other three terms in an attempt to describe a realistic, physical system.

There are different implementations of EXC [ρ]. Two of the most popular are the local

density approximation (LDA) [40], and the generalized gradient approximation (GGA) [41].

The exchange correlation term in LDA is dependent on the exchange-correlation energy of a

homogeneous electron gas. While this works for localized systems such as layered materials,

it tends to under-predict lattice parameters relative to experimental values. GGA, on the

other hand, is also dependent on the gradient of the local electron density. Despite this

correction, GGA tends to over-predict lattice parameters.

Even within these approximations, there are different parameterizations. Initially, GGA

as parameterized by Perdew and Wang, often referred to as PW-91 [42], was used. An

improvement was introduced by Perdew, Burke, and Ernzerhof (PBE) [43]. In more recent

years, a pseudopotential method designed specifically for solids, PBE-sol, [44] has been

resulted in better agreement with experimental lattice parameters.

2.2.2 Pseudopotential Method

Kohn and Sham introduced a method in which the problem of solving for the electron

density can be simplified to solving a collection of equations each corresponding to an inde-

pendent electron. Each of these Kohn-Sham equations takes the form[
− ~2

2m
∇2 + V (r) + VH (r) + VXC (r)

]
ψi (r) = εiψi (r) , (2.69)

where each single-electron wave function ψi (r) depends solely on the three spatial variables.

The terms in the brackets on the left hand side of the equation resemble the form of the

approximate Hamiltonian expressed in Equation 2.62. Of the three potential terms, the

first, V (r), represents the interaction between the single electron i and the collection of

atomic nuclei. The second potential term VH (r) is the Hartree potential, which physically

describes a Coulombic repulsion between electron i and the total electron density. This
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Hartree potential includes a nonphysical self-interaction term between electron i with itself.

A correction for this interaction is built into the exchange-correlation potential, VXC (r),

which is a derivative of the exchange-correlation energy (first encountered in 2.68)

VXC (r) =
δEXC (r)

δn (r)
. (2.70)

As both the Hartree potential and the exchange-correlation potential both depend also on the

entire electron density rather than only an independent electron, the seemingly independent

single-electron wave functions are still inter-dependent. As a result, a self-consistent method

to solving the Kohn-Sham equations is required to obtain the ground state energy and

corresponding electron density.

There are two primary numerical approaches to solving the Kohn-Sham equations, the

Linear Augmented Plane Wave (LAPW) method and the pseudopotential method [45, 46].

While the LAPW method is considered more accurate, the pseudopotential method is more

computationally efficient. In the pseudopotential method, the core electrons are assumed to

be frozen and to have no effect on the bonding. The core electrons are replaced by an effec-

tive potential. This pseudopotential approach therefore reduces the number of Kohn-Sham

equations to be solved due to a reduction in the number of participating electrons. A pop-

ular generalization of the LAPW and pseudopotential method is the Projector-Augmented

Wave (PAW) method [47,48]. The implementation of these methods by the Vienna Ab Initio

Simulation Package (VASP) [49] was used to perform the calculations in this dissertation.

2.2.3 Cluster Expansion

The cluster expansion method has been well-studied and implemented in many systems

to predict macroscopic physical properties of a crystal system that depend on configurational

degrees of freedom [2–4]. In a system where there are N possible Li-vacancy sites, there are

2N possible ways to distribute Li-ions and vacancies over those sites. Each arrangement or

configuration can be represented uniquely by assigning each site in the crystal a site variable

σi. In a spin basis, if a site i is occupied by a Li-ion, then σi = 1; conversely, if a site j is

occupied by a vacancy, then σj = −1. A particular configuration can be expressed in terms

of a vector of these site variables, ~σ = {σ1, . . . , σi, . . . , σN}. Site basis functions are used to

describe all possible states that a particular site can have. Interactions between sites in the

crystal can be broken down into pair, triplet, or even quadruplet interactions, where each

collection of sites is referred to as a cluster. Within this framework, to describe an entire

crystal, cluster basis functions, φα, are constructed by taking tensor products of site basis
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functions. For a given cluster α, the cluster basis function is represented as

φα (~σ) =
∏
i∈α

σi. (2.71)

The cluster basis functions form a complete and orthonormal basis in configurational space,

and properties of the system with configurational dependence can therefore be expressed as

linear combinations of these functions [2].

Within this cluster expansion description, the energy of a static crystal, which is depen-

dent on configurational degrees of freedom, ~σ, can be represented by an expansion of these

basis functions and expressed as

E (~σ) = V0 +
∑
α

Vαφα (~σ) . (2.72)

The coefficients V0 and Vα are known as the effective cluster interactions (ECIs). The

summation is over clusters of different sizes, which can be more explicitly expressed as

E (~σ) = V0 +
∑
i

Viσi +
∑
ij

Vijσiσj +
∑
ijk

Vijkσiσjσk + · · · . (2.73)

The individual summations are over single, pair, and triplet clusters as denoted by the site

indexing i, j, and k. As in Equation 2.72, the V ’s are expansion coefficients. Although the

cluster expansion is theoretically over all possible cluster sizes (number of sites in the cluster)

and lengths (distance between sites), in practice a truncation is typically applied to both

as the strongest and most important interactions often occur between smaller clusters and

within a radius where the cluster expansion has converged. To obtain the ECIs that accu-

rately describe the system of interest, first-principle calculations of different configurations

are performed and their corresponding energies are collected. A least squares fit between

the occupation variables σ and the formation energies is used to determine the ECIs.

The convergence and quality of a cluster expansion are quantified by the cross validation

(CV) score and the root mean square (RMS) error. The CV score is a measure of the ability of

the model to accurately predict configurational energies [50]. Specifically, the leave-one-out

CV score was utilized, and is calculated as

CV2 =
1

N

N∑
i=1

(
E (~σi)− E ′ (~σi)2) .

For each of the N calculated configurations, the first principles energy E (~σi) is compared
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to the predicted energy E ′ (~σi), where the predicted energy is calculated by first performing

a least-squares fit to the other N − 1 configurations and subsequently evaluating the cluster

expanded energy of the excluded configuration ~σi. The RMS error provides a measure

of the ability of the cluster expansion model to predict formation energies of calculated

configurations. Typically, lower CV and rms scores are correlated with cluster expansions

that correctly predict stable ground states. The Cluster Assisted Statistical Mechanics [51,

52] implementation of the cluster expansion was used in Chapter VI to cluster expand over

Li-Va sites in trirutile Li3xFe2F6.

2.2.4 Monte Carlo

Monte Carlo simulations are used to calculate thermodynamic averages in statistical

mechanics. In this method, different microstates resulting from a Markov chain of configura-

tional evolution are sampled [53]. The Metropolis algorithm was used, where the successful

transition from configuration A to B each with grand canonical energies ΩA and ΩB is de-

termined by a transition probability calculated as

P (A→ B)

1 if ΩB < ΩA

e−∆Ω/kBT if ΩB ≥ ΩA

. (2.74)

The energy difference between the two states is given as ∆Ω = ΩB−ΩA. The grand canonical

energy Ω is

Ω = E (~σ)− µN, (2.75)

where E (~σ) is the average energy of a configuration defined by occupation variables ~σ, µ is

the chemical potential, and N is the number of sites. Following the rule given in Equation

2.74, if the energy of the new configuration ΩB is lower than the current state ΩA, then

naturally the transition occurs. If ΩB is higher, however, the probability P (A→ B) is

compared to a randomly generated number. If the probability is larger than this random

number, then the new configuration is accepted. If the probability is smaller, however, the

current configuration is kept.

The effective Hamiltonian resulting from a cluster expansion is used to estimate the

formation energy of each new configuration in the Monte Carlo simulation and to facilitate

sampling a large enough number of microstates to calculate thermodynamic averages. Monte

Carlo simulations can either be performed at constant chemical potential to obtain heating

and cooling runs or at constant temperature for chemical potential runs. The latter was
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used to calculate a voltage curve for lithium insertion into Li3xFe2F6 in Chapter VI. For a

given temperature, this voltage is

V (xLi) = −µLi − µreference
Li

Fz
, (2.76)

where µLi is the chemical potential of Li in the intercalation material, µreference
Li is the chemical

potential of a pure Li reference, F is Faraday’s constant, and z is the electron charge of a Li

ion.
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CHAPTER III

Anharmonicity and Phase Stability of Antiperovskite

Cubic Li3OCl

3.1 Introduction

The recently discovered antiperovskite Li3OCl compound is a promising solid electrolyte

for Li-ion batteries, with ionic conductivities reported [6] to be almost as high as 2 mS cm−1.

Li3OCl has a perovskite crystal structure, but with the role of anions and cations reversed

(Figure 3.1a): The positively charged Li ions form the corner sharing octahedra while the

negatively charged O ions occupy the center of the Li-octahedra; the negatively charged

Cl occupy the large cages at the center of the unit cell coordinated by 12 Li ions. Several

first-principles studies of Li transport in the antiperovskite crystal structure have predicted

low migration barriers for Li-vacancy exchanges, with values on the order of 350 meV [7,54].

An even lower migration barrier of approximately 160 meV was predicted for an interstitial

dumbbell mechanism [7]. The effect of alloying in Li3OCl1−xBrx on the migration barriers

of vacancy mediated Li diffusion was also recently investigated from first-principles [55].

While Li vacancies and Li interstitials can appear at stoichiometric compositions through

the creation of Frenkel defect pairs, the formation energy of such pairs is predicted to be

too large [7] to achieve an appreciable concentration of diffusion mediating defects at room

temperature. Off-stoichiometric compositions that are Li rich are likely more desirable to

ensure an excess of Li ions that can migrate by means of the interstitial dumbbell mechanism.

Devising strategies to synthesize off-stoichiometric compositions of Li3OCl by doping or

alloying requires an understanding of the factors stabilizing Li3OCl. First-principles studies

predict that Li3OCl is metastable at zero Kelvin relative to decomposition into LiCl and Li2O

[7,54] (Figures 3.1b and 3.1c). The ability to synthesize Li3OCl experimentally [6], however,

suggests that this compound is likely entropically stabilized at elevated temperatures, if not

at room temperature, then at least at the higher synthesis temperatures of approximately
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(a) (b) (c)

Figure 3.1. Crystal structures of (a) Li3OCl, (b) LiCl, and (c) Li2O. Lithium, oxygen, and chlorine
atoms are represented by green, red, and blue circles, respectively.

330 − 360◦C [6]. As Li3OCl does not exhibit significant configurational disorder and is an

insulator, the most important degrees of freedom are vibrational excitations.

Perovskite structures have been widely studied. A perfectly cubic perovskite is rarely

observed and most perovskites that exhibit cubic symmetry at high temperature undergo

symmetry breaking transitions at low temperature. Symmetry breaking distortions can arise

either as a result of distortions of the octahedra, or due to rotations of the octahedra [56].

The Glazer notation has been established to classify structures that can be derived from

cubic perovskite through octahedral rotations [57]. Octahedral rotations around the three

cubic axes are denoted with the notation a∗b∗c∗ where the letters a, b and c represent relative

tilt angles around the cubic axes of the octahedra, and the ∗ can be +, −, or 0, depending

on whether an in-phase, out-of-phase, or no tilt of neighboring octahedra has occurred [57].

In the case of the cubic Pm3̄m Li3OCl structure, which has no tilts, the tilt system is

represented as a0a0a0. Howard and Stokes have taken the 23 tilt systems proposed by

Glazer [57] and using group-theory, simplified the list to 15 distinct tilt systems [58]. These

group theoretic tools have proven invaluable in analyzing rotational instabilities in a wide

range of perovskites [59–62].

In this work, we investigate the stability of Li3OCl using lattice dynamics. We find

that Li3OCl is mechanically unstable with respect to octahedral rotations. We map out the

energy landscape as a function of unstable modes and find that the minima correspond to

several of the 14 rotational tilt systems [58]. The energy gained by octahedral rotations

relative to the cubic crystal, however, is predicted to be very small, suggesting that the high-

symmetry cubic form of Li3OCl should emerge even at low temperatures due to anharmonic

vibrational excitations. Additionally, we find that vibrational entropy will likely stabilize

the cubic Pm3̄m form of Li3OCl relative to decomposition into LiCl and Li2O above room

temperature.
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3.2 Methodology

First-principles density functional calculations were performed using the Vienna Ab Initio

Simulation Package (VASP) [48, 49] within the generalized gradient approximation (GGA)

as implemented by Perdew, Burke, and Ernzerhof [43]. Projector augmented wave [47, 49]

pseudopotentials with valence-electron configurations of 1s12s12p1 for Li, 2s22p4 for O, and

3s23p5 for Cl and an energy cutoff of 600 eV were used.

Force constants for Li3OCl were calculated using the frozen phonon approach. Isolated

atomic displacements relative to their high symmetry positions in cubic antiperovskite were

sampled in large supercells. The resulting forces on all the atoms in the supercell were then

calculated with VASP. Force constants were determined using a least-squares fit between

atomic perturbations and the calculated forces. The force constants were then used to

construct the dynamical matrix [5, 12, 17,18,31]. Since Li3OCl is an ionic crystal, the effect

of dipole-dipole interactions must also be accounted for in the dynamical matrix [29, 30,

36]. Born effective charges and dielectric tensors were calculated with density functional

perturbation theory as implemented in VASP [35,63]. These were then used to calculate the

non-analytic contribution to the dynamical matrix, which was evaluated within the same

supercell as that for the atomic perturbations using the envelope function introduced by

Wang et al [33]. A 6× 6× 6 (1080 atoms) cubic supercell of the primitive cubic structures

(a = 3.907Å) was fully relaxed before applying various displacements of length 0.015Å to

each of the three asymmetric unit cell sites in the Li3OCl structure. A 3 × 3 × 3 Gamma-

centered k-point mesh was used in the VASP calculations performed on these supercells.

We also calculated vibrational free energies within the quasi-harmonic approximation for

Li3OCl, LiCl and Li2O. Phonon dispersion curves and their corresponding densities of states

were calculated as described above for a range of volumes. Smaller supercells were used for

the quasi-harmonic calculations. For Li3OCl, a 3×3×3 supercell of the primitive cubic unit

cell was used (containing 27 primitive cells and 135 atoms). For LiCl and Li2O, supercells

containing 32 unit cells (64 atoms) and 27 unit cells (81 atoms) were used. Atomic pertur-

bations having lengths of 0.015, 0.15, and 0.03 Å for Li3OCl, LiCl, and Li2O, respectively

were sampled to extract force constants. A second order polynomial fit of the free energy

dependence on volume was used to obtain the Gibbs free energy as a function of temperature.

Irreducible representations of the Pm3̄m phase were obtained via the SMODES module

of ISOTROPY (ISOTROPY Software Suite, iso.byu.edu). Accompanying each irreducible

representation is one or more symmetrized collective displacement mode, each of which

transforms the dynamical matrix into block diagonal form. The energy of the crystal was then

calculated with VASP as a function of the amplitudes of the displacement modes. Energy
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calculations of collective displacements having M+
3 and R+

4 symmetries were performed in a

supercell containing two primitive unit cells of Li3OCl.

The FINDSYM module [64] of ISOTROPY was used to verify the space groups of the 15

structures resulting from octahedral tilts of the Pm3̄m structure. Structures were calculated

using the same 2× 2× 2 supercell of the 5 atom cubic primitive with a 9× 9× 9 Γ-centered

k-point mesh, thus ensuring that an identical k-point mesh was used for each structure.

After a full relaxation of each structure, final energies were calculated using the tetrahedron

method with Blöchl corrections [65].

3.3 Results

3.3.1 Phonons

Figure 3.2 shows the calculated phonon dispersion curves for Pm3̄m Li3OCl as calculated

using force constants fit to force-displacement relationships obtained from DFT-PBE calcu-

lations on a 6 × 6 × 6 supercell of the cubic unit cell. We also show the dispersion curves

using force constants extracted from a 3×3×3 supercell. Because Li3OCl is an ionic crystal,

contributions from Born effective charges were included in the calculation of the dispersion

curves to account for macroscopic electric fields induced by long-range Coulombic interac-

tions due to dipole moments that emerge from longitudinal optical phonons [17]. This leads

to the LO-TO (longitudinal optical - transverse optical) splitting at the Γ point [30, 33].

Oxygen and chlorine occupy sites having cubic symmetry and therefore have isotropic Born

effective charges with values of −1.98|e| and −1.30|e|, respectively. The Li ions occupy sites

with lower symmetry and have an anisotropic, diagonal Born effective charge tensor with a

value of 0.99|e| in the direction of the O-Li-O bond and a value of 1.14|e| in the plane per-

pendicular to the O-Li-O bond. The dielectric tensor has diagonal elements of 15.13. The

Born effective charges, particularly those of Li and O, are remarkably close to their formal

charges, indicating the highly ionic nature of the material.

Figure 3.2 shows that the cubic form of Li3OCl is dynamically unstable with respect to

phonon modes at R and M . The unstable modes, corresponding to imaginary eigenvalues of

the dynamical matrix, are represented as negative frequencies in Figure 3.2. The instability at

R is three-fold degenerate, indicating that there are three symmetrically equivalent phonon

modes that contribute to the decomposition of the cubic phase into a more energetically

favorable structure. Figure 3.2 also shows that a phonon mode at M is slightly dynamically

unstable when using force constants extracted from a 6×6×6 supercell, and the same mode

is predicted to be even more so when using force constants determined with a 3 × 3 × 3

supercell.
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Figure 3.2. (a) Phonon dispersion curve and (b) density of states of Pm3̄m Li3OCl calculated
using the finite displacement method with a lattice parameter of 3.907Å and Born effective charge
corrections in a 6 × 6 × 6 supercell. (c) and (d) are the dispersion curve and density of states
resulting from a 3 × 3 × 3 supercell. There is a 3-fold degenerate instability at the Brillouin zone
boundary R point in both supercells, but the smaller supercell results in an instability at the M
point as well.

The phonon density of states in Figure 3.2b show that the unstable modes account for

a small fraction of the total phonon modes. The partial densities of states in Figure 3.2b

indicate that the unstable modes involve only Li ions. The high frequency modes above

approximately 5 THz are dominated by oxygen and Li. The Cl anions are about 5 times

heavier than Li and reside in the large dodecahedrally coordinated cages characterized by

long Cl-Li bonds. As a result, Cl accounts for most of the lower frequency stable modes.

The unstable modes at R indicate that the energy of the crystal can be lowered through

octahedral tilts that generate the other 14 tilt systems. A systematic analysis can be accom-

plished by examining the irreducible representations of the point groups of the first Brillouin

zone high-symmetry points [56] of cubic Pm3̄m Li3OCl. In the antiperovskite structure, the
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Figure 3.3. Energy variation with Li6O octahedral rotations. (a) In-phase octahedral rotations
due to distortions with M+

3 symmetry and (b) resulting energy variation. (c) Out-of-phase octahe-
dral rotations and (d) resulting energy variation. Green, red, and blue circles represent Li, O, and
Cl atoms, respectively. The zero reference energy is that of the undistorted Pm3̄m structure.

ξ1 ξ3ξ2

Figure 3.4. Octahedral tilts due to atomic displacements with the irreducible representation
symmetry R+

4 . The three-fold degeneracy of R+
4 leads to three variants of this distortion, where

each variation is an octahedral rotation about a different axis.

octahedral rotations result from positional displacements of the Li cations, while the O and

Cl anions stay fixed. These rotations can be attributed to a six-dimensional reducible repre-

sentation of Pm3̄m, M+
3 ⊕R+

4 , with M+
3 and R+

4 themselves being irreducible representations

belonging to high-symmetry points M and R in the first Brillouin zone [58].

Distortions having M+
3 symmetry can be characterized as rotations of all layers of octa-

hedra around a single axis in a cooperative in-phase motion (Figure 3.3a), resulting in an

a0a0c+ tilt system and a P4/mbm space group [58]. This tilt periodicity can be realized in a

tetragonal supercell made up of two cubic primitive cells. Figure 3.3b shows the dependence

of the energy of the crystal as the angle of rotation is incrementally increased. The energy

well is highly anharmonic for small rotation angles varying by less than 0.2 meV over a two

degree interval and exhibiting three local minima. The two minima at non-zero rotation

angle correspond to structures possessing P4/mbm symmetry.

By doubling the M+
3 unit cell in the c-axis direction, we effectively create two layers of

octahedra that can be rotated in opposing directions, simulating an out-of-phase rotation

between the two layers (Figure 3.3c). This distortion leads to the formation of a a0a0c− tilt
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Figure 3.5. Energy variations due to distortions with R+
4 symmetry with Pm3̄m as the energy

reference. (a) The energy landscape of an ξ1 = 0 slice of the 3-D ξx space. The landscape is
very flat, with the energy scale around the wells being on the order of 1 meV/f.u. (b) Amplitude
dependent energies in the [111], [110], and [100] directions of the ξx space leading to the formation
of R3̄c, Imma, and I4/mcm structures.

system with a space group of I4/mcm. While the energy wells are slightly deeper than those

of the M+
3 rotation, the depth of the energy wells remain well above −1 meV per f.u. As is

clear in Figures 3.3b and 3.3d, M+
3 is indeed a stable mode, but both Figures 3.2c and 3.2a

exhibit a relatively soft branch at M . This correlates with the ease at which the structure

falls into the 2 energy minima when the M+
3 distortion is applied.

At the R point, the R+
4 representation is 3-fold degenerate, and each mode results in a

rotation along a different pseudo-cubic axis (Figure 3.4). Defining the amplitudes of each of

these rotational variants as order parameters ξ1, ξ2, ξ3, we sampled distortions over a uniform

grid in this three-dimensional space and calculated the energy landscape. A ξ1 = 0 slice in

the ξ1− ξ2− ξ3 space is shown in Figure 3.5a. Similar to the M+
3 rotations, the energy scales

in the ξ2 − ξ3 space are extremely small, and the depth of the wells occur within 1 meV.

Global energy minima are found along the [111] direction of the ξ1 − ξ2 − ξ3 space. Taking

two-dimensional slices along the [111], [110], and [100] directions in the ξ1− ξ2− ξ3 space, we

see in Figure 3.5b that while the lowest energy well occurs along [111], corresponding to an

equal angle of rotation along each axis, it is less than half an meV lower than the energy wells

along the [110] and [100] directions. We note that the minimum energy structures along the

[111], [110], and [100] directions have space groups of R3̄c, Imma, and I4/mcm, respectively.

These space groups in turn correspond to the a−a−a−, a0b−b−, and a0a0c− tilt systems, which

is consistent with conclusions drawn from previous group-theoretical analysis [56,66].
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Figure 3.6. Energies of Li3OCl in the 15 tilt systems. The Pm3̄m structure was used as the
reference. All distortions were calculated in a 2× 2× 2 supercell of the primitive cell to minimize
k-point errors. The energies are within 0.8 meV of the perfect cubic structure.

3.3.2 Stability of Pm3̄m Li3OCl Relative to 14 Rotational Tilt Systems

Figure 3.6 shows the calculated energies of all 14 tilt systems relative to Pm3̄m Li3OCl.

The energies were calculated using the same 2 × 2 × 2 supercell of the cubic primitive cell

using an identical k-point mesh for each structure. All structures were allowed to relax fully.

The space groups before and after relaxation were unchanged for each structure as verified

using FINDSYM [64].

Of the 14 tilted structures, 10 have lower energy than the cubic Pm3̄m. While Figure

3.6 shows that the introduction of octahedral tilts can lower the energy of the cubic antiper-

ovskite, it is important to note, however, that the energy differences between all 15 structures

are within 1 meV per f.u. of each other. Despite minimizing k-point errors by using the

same supercell for all calculations, the energy differences are small and still well within the

numerical error range of first-principle calculations. The 15 different tilt systems in Li3OCl

are therefore energetically indistinguishable, and it is impossible to unambiguously identify

the most stable tilt system. It is also unlikely that the system will remain trapped in one of

these lower symmetry distortions at all but the lowest temperatures.

3.3.3 Stability of Li3OCl Relative to LiCl and Li2O

Li3OCl at zero Kelvin is predicted to have a positive formation energy relative to a two

phase mixture of Li2O and LiCl [7]. It is therefore not stable at zero Kelvin. It may, however,

become entropically stabilized at elevated temperatures as a result of vibrational excitations.

The unstable modes of cubic Li3OCl corresponding to the imaginary (negative) frequencies in

Figures 3.2a and 3.2c pose challenges to calculating free energies at finite temperature using
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either the harmonic or quasi-harmonic approximation. The energy landscapes as a function

of the amplitudes of the unstable phonon modes in Figures 3.3 and 3.5 reveal a substantial

degree of anharmonicity with respect to Li6O octahedral rotational degrees of freedom. While

instabilities and anharmonicity in materials have been extensively studied [67, 68] and can

be treated using first-principles parameterized anharmonic lattice-dynamical Hamiltonians

together with Monte Carlo simulations [69–72], these approaches are highly involved. Here we

estimate the free energy of Li3OCl within the quasi-harmonic approximation by integrating

over only the stable phonon modes of cubic Li3OCl and argue that the neglect of unstable

(anharmonic) modes should lead to an upper bound of the Li2O + LiCl to Li3OCl transition

temperature.

To estimate the error incurred when calculating the free energy of a dynamically unstable

high symmetry phase by integrating only over stable phonon modes, it is convenient to

formally express the Born-Oppenheimer potential energy surface in terms of the amplitudes

of phonon normal coordinates, ξk,b, where as usual, k refers to a wave vector and b to a phonon

branch. The potential energy surface can then be expressed as a polynomial expansion of

the phonon normal coordinate amplitudes as, for example, described by Monserrat et al [73].

We can distinguish between two categories of phonon modes in such an expansion. For

stable and stiff modes, the harmonic approximation should be suitable, and only terms up

to second order need to be kept in the expansion. We will denote the amplitudes of these

normal coordinates with ξHk,b. For unstable or soft phonon modes, anharmonicity is important

and polynomials of their amplitudes beyond the second order are needed to reproduce the

full potential energy surface. We denote the amplitudes of these phonon modes with ξAk′,b′ .

The potential energy surface can then formally be written as

V
(
{ξHk,b}, {ξAk′,b′}

)
=
∑
k,b

1

2
ω2
k,b(ξ

H
k,b)

2

+ V A
(
{ξAk′,b′}

)
. (3.1)

where the ξAk′,b′ appearing in the anharmonic potential V A(ξAk′,b′) may even be coupled to each

other. With this partitioning, it is next convenient to split the full vibrational Hamiltonian,

including the kinetic energy, into a sum of a harmonic part HH and an anharmonic part HA
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where

HH =
∑
k,b

(
(ξ̇Hk,b)

2

2
+

1

2
ω2
k(ξHk,b)

2

)
(3.2)

HA =
∑
k′,b′

(ξ̇Ak′,b′)
2

2
+ V A

(
{ξAk′,b′}

)
. (3.3)

Since HH and HA are decoupled from each other, they can be solved separately. The

harmonic Hamiltonian will have energy levels EH
ν =

∑
k,b ~ωk,b (nk,b + 1/2) where the nk,b

are integer quantum numbers. Formal solutions to the anharmonic Hamiltonian will generate

a spectrum of energy levels EA
0 , E

A
1 , . . . , E

A
ν′ , . . . , where EA

0 corresponds to the ground state

energy of the anharmonic Hamiltonian. The energy of any particular vibrational microstate

η of the full crystal is then

Eη = Eo
cubic +

∑
k,b

~ωk,b (nk,b + 1/2) + EA
0 + ∆EA

ν′ (3.4)

where Eo
cubic is the fully relaxed energy of cubic Li3OCl and ∆EA

ν′ = EA
ν′ − EA

0 (which is

always ≥ 0).

Substitution of Eq. 3.4 into the partition function Z =
∑

η exp(−βEη) and using F =

−(1/β) lnZ yields a free energy F that can be written as a sum of a harmonic vibrational free

energy FH and an anharmonic free energy contribution FA. An explicit expression for FH

can only be derived once a criterion is established to distinguish between the phonon modes

appearing in the harmonic Hamiltonian and those appearing in the anharmonic Hamiltonian.

Here we assume that all stable phonon modes fall in the first category while all unstable

phonon modes fall in the second category. The free energies can then be written as

FH = E◦cubic + EH
zp

+
1

β

∫ ∞
0

g(ω) ln (1− exp (−β~ω)) dω (3.5)

and

FA = EA
0 −

1

β
ln

(∑
ν′

exp
(
−β∆EA

ν′

))
. (3.6)

EH
zp appearing in Eq. 3.5 refers to the zero point energy of the harmonic Hamiltonian and is
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given by

EH
zp =

∫ ∞
0

1

2
g(ω)~ωdω (3.7)

where g(ω) is the density of states.

The harmonic free energy FH can be calculated numerically given the vibrational den-

sity of states g(ω) (Figure 3.2b and 3.2d) by integrating over solely the stable phonon

frequencies in the Brillouin zone. The anharmonic contribution FA due to the presence

of soft, unstable modes, however, is not as accessible. It consists of a temperature inde-

pendent term EA
0 which could be positive or negative and a temperature dependent term,

−kBT ln
(∑

ν′ exp
(
−β∆EA

ν′

))
, which is always negative. The second term of FA, therefore,

lowers the total free energy and gives it a more negative slope as a function of temperature

compared to that of FH . If EA
0 is zero or negative, then the true free energy F will be less

than FH at all temperatures. If EA
0 is positive, however, its inclusion in the estimate of

F will result in a rigid upward shift of the free energy curve as a function of temperature

relative to FH .

The order of magnitude of EA
0 can be estimated by comparing the zero Kelvin component

of the free energy of cubic Li3OCl, Eo
cubic + EH

zp + EA
0 , to the zero Kelvin free energy of a

dynamically stable tilted variant of cubic Li3OCl. The lower symmetry I4/mcm form of

Li3OCl, for example, is dynamically stable. Within the harmonic approximation, its free

energy at zero Kelvin is equal to the fully relaxed energy EI4/mcm plus its zero point energy

Ezp
I4/mcm. The two free energies at zero Kelvin should be very similar, if not equal, i.e.

Eo
cubic + EH

zp + EA
0 = EI4/mcm + Ezp

I4/mcm (3.8)

provided that the harmonic approximation at zero Kelvin is valid for the I4/mcm form of

Li3OCl and that the decomposition in harmonic and anharmonic free energies is sufficiently

accurate for the cubic form of Li3OCl. Based on Eq. 3.8 and a calculation of the phonon

density of states for the I4/mcm form of Li3OCl, we estimate a value for EA
0 of approximately

5 meV per Li3OCl formula unit. Although EA
0 is positive, its magnitude still suggests that

EA
0 has a negligible contribution to the total free energy F of cubic Li3OCl and that FH

can therefore serve as an upper bound to the true free energy of Li3OCl. The transition

temperature for the LiCl plus Li2O reaction to Li3OCl using FH instead of F should therefore

serve as an upper bound to the true transition temperature.

We estimate the temperature at which Li3OCl is stabilized relative to LiCl and Li2O

by first conducting quasi-harmonic calculations for all three phases. The quasi-harmonic
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Figure 3.7. Quasi-harmonic curves for (a) LiCl, (b) Li2O, and (c) Li3OCl and (d) free energy
curve for Li3OCl. Volume-free energy curves are at increments of 50 K between 0 - 500 K. Li3OCl
is entropically stabilized at 486 K, which is an upper-bound approximation.

approximation, unlike the purely harmonic model, accounts for thermal expansion by con-

structing volume dependent free energies. These volume and temperature dependent free

energy curves, F (T, V ) = E(V ) + FH(T, V ), consist of the energy of a static lattice at a

particular volume, V , and the harmonic vibrational free energy at the same volume. Mini-

mizing F (T, V ) with respect to V results in the Gibbs free energy at zero pressure. Harmonic

phonons were calculated at volumes both larger and smaller than the equilibrium volume

for LiCl, Li2O, and Li3OCl. Both LiCl and Li2O were predicted to be dynamically stable,

having only real phonon frequencies. The phonon density of states corresponding to the real

vibrational frequencies were used to obtain FH(T, V ) for each of the three phases, which are

shown in Figures 3.7a, 3.7b, and 3.7c.

In determining the force constants at different volumes for the quasi-harmonic free en-

ergies of Li3OCl, we used a 3 × 3 × 3 supercell (containing 135 atoms) as opposed to the
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substantially larger 6×6×6 supercell (containing 1080 atoms) used to extract force constants

for our initial phonon analysis. The dispersion curves resulting from the force constants ex-

tracted from the 3×3×3 supercell exhibit softer modes both at R and M (Figure 3.2c) than

those based on a 6× 6× 6 supercell. This is likey due to the sampling of anharmonic modes

and the ease with which a slight 1◦ rotation of the Li6O octahedra nudges the system into a

lower energy state. Note in Figure 3.2d that the soft mode contribution to the total density

of states is very small. Using the Gibbs free energies for each of the three compounds, we

can calculate a formation free energy for Li3OCl, ∆GLi3OCl = GLi3OCl−GLiCl−GLi2O. Figure

3.7d, shows that an upper bound temperature at which Li3OCl is stabilized is approximately

480 K. Errors of +/ − 1 meV per formula unit of Li3OCl bring the transition temperature

within a range of 475 - 487 K, while errors of +/− 5 meV per formula unit of Li3OCl result

in bounds of 450 - 510 K.

3.4 Discussion

Li3OCl shows promise as a solid electrolyte for Li-ion batteries [6]. It is, however, pre-

dicted to have a positive formation energy relative to a two-phase mixture of LiCl and

Li2O [7,54]. Furthermore, to ensure a high concentration of diffusion mediating defects, the

compound must be synthesized with a composition that deviates from perfect stoichiometry

as the energy to form Frenkel pairs in the stoichiometric compound is too high to gener-

ate a sufficient number of Li interstitials and vacancies at room temperature [7]. A deeper

understanding of the factors responsible for the observed stability of Li3OCl is therefore

desirable.

Our analysis of the phonon modes of Li3OCl shows that its cubic form is dynamically

unstable with respect to Li6O octahedral rotations. The instability occurs at the R wave

vector points and leads to the spontaneous decomposition of Pm3̄m Li3OCl into lower energy

tilt systems, which has been observed in other perovskite materials [61,74]. Li3OCl is highly

anharmonic with respect to rotational degrees of freedom of the Li6O octahedra. The energy

landscape as a function of unstable phonon modes of cubic Li3OCl is very shallow (Figure

3.5a) with the energy differences between cubic and lower symmetry tilt systems being too

small to establish which distortion is more stable (Figure 3.6). It is therefore unlikely that

any of the lower symmetry tilt variants of Li3OCl will be stable at any but the lowest

temperatures, becoming cubic when sufficient thermal energy is available to overcome the

small energy barriers separating the various low symmetry variants.

The ionic radius of Cl relative to Li and O is consistent with the Goldschmidt rule [75]

for cubic perovskite stability with respect to rotational instabilities of the Li6O octahedra.
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General guidelines indicate that a cubic structure is preferred for a tolerance factor, defined

for an ABX3 perovskite as

t =
(RA +RX)√
2 (RB +RX)

, (3.9)

between 0.9 − 1. The tolerance factor for Li3OCl is 0.84, based on ionic radii tabulated

by Shannon [76]. Substituting Cl with a larger anion should make the cubic perovskite

dynamically stable with respect to Li6O octahedral rotations. Br, for example, which has

been alloyed on the Cl sublattice of Li3OCl to optimize Li conductivity [6,7,55], results in a

slightly higher tolerance factor of 0.89 for Li3OBr. This suggests that Li3OBr is unlikely to

exhibit rotational instabilities.

While our analysis of phase stability due to vibrational excitations does not rigorously

account for anharmonicity, it does give a strong indication that Li3OCl should be entropically

stabilized at high temperature. Nevertheless the precise temperature above which Li3OCl

should become thermodynamically stable relative to LiCl+Li2O is uncertain as our quasi-

harmonic model and subsequent analysis only provide an upper bound estimate. Our results,

however, indicate that Li3OCl is very likely stable at typical synthesis temperatures of 330-

360◦C [6]. Because our free energy calculations relied on the density of states corresponding

to stable phonon modes, we were unable to account for the anharmonic contributions to the

free energy. The contribution to the total density of states by the imaginary frequencies,

however, is relatively small when extracting force constants from frozen phonon calculations

using the 1080 or 135 atom supercells of Li3OCl. This suggests that the inclusion of an-

harmonic excitations is unlikely to have a strong effect on the predicted temperature above

which Li3OCl becomes stable relative to LiCl and Li2O.

The phonon analysis of Li3OCl provides insight about the factors responsible for the high

temperature stability of Li3OCl. As shown in the partial densities of states of Figures 3.2b

and 3.2d, the majority of the low frequency modes can be attributed to Cl anions and Li

cations, while the majority of high frequency modes involve both Li and O. Cl in Li3OCl

resides in a large cage and is 12 fold coordinated by Li, which is substantially higher than its

6-fold coordination in LiCl. The Li-Cl bond lengths in Li3OCl are 2.76Å, which are longer

than the 2.58Å Li-Cl bonds in LiCl. Longer bonds tend to be softer, resulting in an increase

in vibrational entropy [5]. Hence Cl will gain in vibrational entropy when going from its

octahedrally coordinated sites in LiCl to the more open 12-fold coordinated sites in Li3OCl.

Additional vibrational entropy arises from the easy Li6O octahedral rotations, a degree of

freedom that is absent in the more compact LiCl and Li2O phases.

At practical temperatures for Li-ion battery applications, the Li6O rotational tilts will be
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energetically accessible due to thermal excitations. While these tilts will have consequences

for ion transport, it is unclear whether the rotational instabilities will facilitate or hinder Li

diffusion. Transition state theory assumes that the initial and final states are dynamically

stable, which is not the case here for cubic Li3OCl. Understanding the role of octahedral

rotations on Li diffusion in Li3OCl, either by a vacancy or interstitial dumbbell mechanism,

will require analysis of molecular dynamics simulations at temperatures where the cubic form

of Li3OCl is stabilized by anharmonic vibrational excitations.

3.5 Conclusion

Through a harmonic phonon model we have shown that the cubic Pm3̄m Li3OCl struc-

ture, which has been known to be metastable [7, 54], is mechanically unstable. Aided by

group-theoretical analysis, we have identified that a combination of the three degenerate

unstable modes with R+
4 symmetry can result in lower-energy tilt systems. Furthermore, we

have explored the energetics of M+
3 , the other irreducible representation known for inducing

octahedral rotations. Calculations of the 15 tilt systems showed that while structures involv-

ing octahedral tilts have lower energy than cubic Pm3̄m, energy differences are too small to

identify a single system as most stable. We have also found that Li3OCl is indeed stabilized

by vibrational entropy at temperatures lower than 480 K.
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CHAPTER IV

High-Temperature Stability of δ′-ZrO

4.1 Introduction

The oxidation of zirconium alloys has long been of interest as it is an important degra-

dation mechanism of nuclear fuel-rod cladding in water-based reactors. The harsh reactor

environments induce waterside corrosion of the Zr-alloy cladding. An experimental under-

standing of the resulting oxide microstructures is especially important to designing alloys

with greater corrosion resistance [9, 77]. Computational efforts can provide further insight

into the thermodynamic driving forces behind these complex oxidation processes, which are

determined by the relative stabilities of various oxides at high temperatures. While zir-

conium alloys have been extensively studied, resulting in both experimental [78, 79] and

computational phase diagrams [1, 80], new discoveries of the material continue to emerge.

A notable characteristic of the Zr-O phase diagram is the extraordinary oxygen solu-

bility in α-Zr, reported to reach values up to 35 at.% [79]. Various sub-oxide phases are

formed at low-temperatures in which oxygen orders over the interstitial sites of α-Zr. At

higher temperatures, an α Zr-O solid-solution forms due to the absence of long range oxygen

ordering. In calculated phase diagrams [1, 79, 80], there exists an ordered suboxide having

ZrO1/2 stoichiometry, near the oxygen solubility limit, where the tolerance for vacancies on

the oxygen sublattice increases with temperature. At higher oxygen concentrations, the well-

studied ZrO2 polymorphs form. Up to 1478 K, the monoclinic α-ZrO2 is stable, after which

a transformation to tetragonal β-ZrO2 occurs [78]. At even more elevated temperatures of

approximately 1800 K, a non-stoichiometric cubic γ-ZrO2 becomes stable [79]. In zirconium

alloys, this sequence of sub-oxides followed by ZrO2 has been observed experimentally [81,82].

The formation of these oxides as a function of distance from the oxidation surface is a result

of an oxygen chemical potential gradient that exists between the exterior surface, where the

oxygen chemical potential is high, and the interior unexposed regions of the nuclear cladding

material, where the oxygen chemical potential is low [1].
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Recently, a monoxide ZrO phase was discovered experimentally via EELS, atom probe

tomography, and electron diffraction [81–83]. Its hexagonal structure was determined with

first-principles methods [1] and subsequently confirmed experimentally [83]. This phase was

previously identified as a line compound, labeled as δ′-ZrO, in a first-principles calculated

phase diagram [1], but as only configurational entropy had been considered, its finite temper-

ature stability limits remain unknown. Determining the stability of δ′-ZrO relative to ZrO1/2

and ZrO2 at elevated temperatures is important due to the high-temperature environments

under which nuclear rod claddings are subjected.

Here we examine the stability of Zr-O phases at the nuclear cladding operating temper-

atures of 300-360◦ C from first principles by calculating vibrational free energies within the

quasi-harmonic aproximation. Previous lattice dynamics studies in the Zr-O binary have

focused primarily on the 3 polymorphs of ZrO2 and their relative stabilities [14, 15, 84]. In

this work, we calculated temperature and volume-dependent free energies of α-Zr, ZrO1/2,

δ′-ZrO, α-ZrO2 and β-ZrO2 within the quasi-harmonic approximation and determined that

δ′-ZrO is stable to at least as high as 1500 K. Nevertheless, our calculations predict that the

oxygen chemical potential window in which δ′-ZrO is stable decreases with increasing tem-

perature due to its lower vibrational entropy relative to that of competing oxides in the Zr-O

binary. We also report a prediction of the α to β ZrO2 transition temperature of 1440 K.

With the calculated vibrational free energies, adjustments were made to the phase diagram

in Reference [1] to include the contribution of finite temperature vibrational effects.

4.2 Methodology

The Zr-O temperature composition phase diagram was previously calculated using first-

principles cluster expansion Hamiltonians and Monte Carlo calculations [1,80]. While rigor-

ously accounting for configurational degrees of freedom due to oxygan-vacancy disorder over

the interstitial sites of hcp Zr, these studies neglected the role of vibrational excitations.

Here we build on the phase diagram of [1] by calculating vibrational free energies of key

compounds in the Zr-O binary. We are primarily interested in the stability of the newly

discovered δ′-ZrO phase at elevated temperature. Whether or not δ′-ZrO remains stable at

high temperature depends on the value of its free energy relative to those of ZrO1/2 and

ZrO2.

The temperature dependence of the free energies of δ′-ZrO as well as those of α and

β-ZrO2 are primarily determined by vibrational excitations since these phases are line com-

pounds with negligible configurational disorder [1, 79]. While ZrO1/2 corresponds to an

ordered phase, Monte Carlo simulations [1, 80] have shown that it can tolerate some disor-
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der and oxygen off-stoichiometry at high temperature. Hence the temperature dependence

of its free energy has contributions from both vibrational and configurational excitations.

Although the coupling between configurational and vibrational excitations can be treated

rigorously using coarse graining techniques [85], these approaches are computationally pro-

hibitive. Here we estimate the free energy of ZrO1/2 by approximating it as a sum of a

configurational free energy Gconfig(x, T ) and a vibrational free energy Gvib(x, T ). We further

assume that the dependence of the vibrational free energy on concentration in HCP based α

ZrOx can be linearly interpolated between that of α Zr and ordered ZrO1/2. These approx-

imations should be reasonable for the purpose of calculating the stability of δ′ ZrO relative

to ZrO1/2 and ZrO2. While ZrO1/2 can tolerate a high degree of oxygen off-stoichiometry at

elevated temperature, its concentration when in equilibrium with more oxygen rich oxides

(i.e. ZrO or ZrO2) remains very close to that of the stoichiometric compound.

To obtain the vibrational Gibbs free energies, Gvib, force constants are needed to construct

a lattice dynamics model within the harmonic approximation. The frozen phonon approach

was used to calculate force constants for each of the phases. Single atom perturbations

were applied in high symmetry directions in large supercells. Forces resulting from these

perturbations were obtained through high precision calculations using the Vienna Ab Initio

Simulation Package (VASP) [48, 49]. A least squares fit between the displacements and

forces was performed to extract force constants that were then used in the construction of

the dynamical matrix [5,12,17,18,31]. First-principles calculations of forces were performed

within the generalized gradient approximation (GGA) to density functional theory using the

PBEsol parameterization [44]. This parameterization has been shown to be superior to other

parameterizations in predicting lattice parameters and phonon properties for ZrO2 [86]. A

600 eV energy cutoff was used for the plane wave basis. Projector augmented wave [47, 49]

pseudopotentials were used having valence-electron configurations of 4s2, 4p6, 5s1, 4d3 and

2s2, 2p4 for Zr and O, respectively.

As both α and β forms of ZrO2 are insulating materials, contributions from long wave

length dipole-dipole interactions must be accounted for [13, 29, 30, 36]. These dipole-dipole

interactions are not present in either ZrO1/2 or δ′-ZrO as they are both metallic [1]. The

non-analytical contribution to the dynamical matrix resulting from long-range dipole-dipole

interactions was calculated according to the interpolation scheme of Parlinski et al [32]. Born

effective charges and dielectric tensors were calculated with a linear response approximation

[36] as implemented in VASP [63].

Vibrational free energies within the quasi-harmonic approximation were calculated for

Zr, ZrO1/2, δ′-ZrO, α-ZrO2, and β-ZrO2 by performing harmonic phonon calculations at

varying volumes. At each volume, displacements of 0.03Å were imposed in the 3× 3× 2 (36
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atoms), 2× 2× 4 (96 atoms), 2× 2× 2 (72 atoms), and 3× 3× 3 (324 atoms) supercells of

Zr, ZrO, ZrO1/2, and α-ZrO2 , respectively. Amplitudes of 0.048 and 0.037Å were imposed

on the O and Zr atoms, respectively, in a 3 × 3 × 2 (108 atoms) supercell of β-ZrO2. A

Monkhorst-Pack [87] k-point mesh of 4× 4× 4, 5× 5× 4, 7× 7× 7, 3× 3× 3, and 5× 5× 5

was used for each supercell of Zr, ZrO, ZrO1/2, α-ZrO2, and β-ZrO2 when calculating forces

with VASP using DFT-PBEsol. The Gibbs free energy as a function of temperature was

calculated by minimizing each iso-thermal, volume-dependent free energy curve via a second

order polynomial fit.

4.3 Results

Experimentally, the oxidation of zirconium alloys manifests itself as a sequence of ZrOx

suboxides, a monoxide, and ZrO2 [81, 82]. Of the ZrOx suboxides, the ordered phase with

the widest region of stability both as a function of oxygen concentration and temperature

is ZrO1/2. The crystal structures of ZrO1/2 and ZrO2 are well known. The crystal structure

of ZrO1/2 (Figure 4.1a) consists of an HCP Zr sublattice with oxygen atoms occupying

octahedral sites between the triangular close-packed Zr-layers. The other ordered ZrOx

suboxides share the same HCP Zr sublattice with varying oxygen occupation. ZrO2 forms

on the surface of the oxidizing metal due to the high oxygen chemical potential there. In this

region, two of the three polymorphs are often observed. One is tetragonal β-ZrO2, shown in

Figure 4.1b, which has O atoms occupying tetrahedral interstitial sites of the tetragonally

distorted FCC Zr sublattice, forming an 8-fold coordination around Zr. The Zr in the low-

temperature monoclinic α-ZrO2 polymorph, shown in Figure 4.1c, is 7-fold coordinated by

oxygen. While the connectivity of Zr in both α and β-ZrO2 is that of FCC, in α-ZrO2, it is

highly distorted.

The newly identified δ′-ZrO monoxide phase has hexagonal symmetry with a Zr sublattice

identical to ω-Zr. It consists of two distinct layers each denoted by a different shade of

green in Figure 4.1d. The first layer is a triangular Zr sublattice while the second layer

is a honeycomb Zr sublattice, each outlined with a red and blue dashed line, respectively.

Each corner of the triangular sublattice is situated directly above and below the center of

each honeycomb. The oxygen are coordinated by 5 Zr atoms, forming a square pyramidal

polyhedron, where the O atom is not quite coplanar with the square base of Zr atoms.

The purple dashed line in Figure 4.1e shows the outline of this pyramid. The square base

of the pyramid is composed of four atoms from the honeycomb layer, while the tip of the

pyramid belongs to the triangular sublattice. The O-Zr bond formed with the apex of the

square pyramid is 2.15Å, shorter than the 2.26Å bonds formed with the pyramid base. The
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(a) (b) (c) (d) (e)

Figure 4.1. Crystal structures of (a) ZrO1/2 (b) β-ZrO2 (c) α-ZrO2 and (d) δ′-ZrO. The δ′-ZrO
oxygen interstitial sites, shown as red squares, and coordination with neighboring Zr are shown
in (e). Green and red atoms represent Zr and O, respectively. Different shades of green and
red in (a), (d), and (e) differentiate atoms on different layers of the crystal. The triangular and
honeycomb sublattices in ZrO are shown in red and blue dashed lines. Different layers of the
triangular sublattices of ZrO1/2 are also shown in red and blue dashed lines.
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Figure 4.2. Dispersion curve of δ′-ZrO showing a vibrational band gap.

compact pyramidal coordination of oxygen by Zr suggests that oxygen in δ′-ZrO is tightly

bound, which will have implications for the shape of the dispersion curve and density of

states.

The phonon dispersion curve and corresponding density of states of δ′-ZrO are shown

in Figures 4.2 and 4.3. The most notable feature of the dispersion curve is the vibrational

bandgap. The partial density of states (Figure 4.3) shows that the majority of the optical

vibrational modes above the gap are dominated by oxygen while the acoustic modes are

dominated by Zr. The high oxygen vibrational frequencies suggests that the oxygen are

strongly bound within the tight pyramidal coordination geometry of the Zr sublattice. The

large separation in vibrational frequencies also arises in part from a large mass difference,

with Zr being about 5.7 times heavier than O.
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Figure 4.3. (a) Oxygen and (b) zirconium vibrational partial density of states of ZrO1/2, δ′-ZrO,
and α-ZrO2. The total density of states is shown by a black outline. For ZrO1/2 and δ′-ZrO, there
is a clear distribution of oxygen and zirconium vibrational states between high and low frequencies.

The partial densities of states for neighboring phases ZrO1/2 and α-ZrO2 are also shown

in Figure 4.3, and their dispersion curves are provided in Supplementary Materials. Similar

to δ′-ZrO, Figure 4.3a shows that the oxygen frequencies are well separated from the Zr

frequencies in ZrO1/2. Compared to ZrO1/2, both the oxygen and zirconium frequencies of

δ′-ZrO are shifted up. This behavior indicates an overall increase in bond stiffness in δ′-

ZrO relative to ZrO1/2. In α ZrO2 the O and Zr vibrational frequencies are more evenly

distributed. Nevertheless, the majority of the acousting modes are still dominated by Zr.

While some vibrational modes have high frequences the absence of a vibrational band gap

in α ZrO2 ensures that a large fraction of modes dominated by oxygen occur at frequencies

below the oxygen vibrational frequencies in ZrO1/2 and δ′-ZrO.

A quasi-harmonic analysis was performed to obtain Gibbs free energy curves of several

ordered Zr-O phases. Figure 4.4 shows calculated Helmholtz vibrational free energies as a

function of volume. By minimizing the isothermal Helmholtz free energies, we obtain Gvib at

zero pressure for each of the 5 ordered phases. These free energies are superior to those from

the harmonic approximation in that finite temperature volume expansion is included in the

quasi-harmonic approximation. Figure 4.5 shows both the configurational entropy and the

vibrational entropy as a function of oxygen concentration. The configurational entropy was

determined by subtracting the internal energy from the free energy, both calculated with

Monte Carlo simulations applied to a cluster expansion for the HCP based ZrOx phase [1].

Minima in the configurational entropy indicate the presence of an ordered phase, the most

prominent of which is ZrO1/2. The black line denotes the ideal solution entropy multiplied
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by the temperature at 1200 K. As the ideal solution entropy corresponds to the maximum

configurational entropy, it is always higher than the configurational entropy of a solid with

interacting atoms exhibiting some degree of short- or long-range ordering. As is clear from

Fig. 4.5, the vibrational entropy is substantially larger than the configurational entropy.

The vibrational entropy per Zr of ZrO1/2 is also larger than that of α Zr, which is consistent

with the introduction of more vibrational degrees of freedom upon insertion of oxygen.

At finite temperatures, vibrational entropy begins to play a role in the relative stabilities

of phases. The effect on ZrO1/2 and δ′-ZrO at elevated temperatures, for example, can

be seen in Figure 4.7, where the formation vibrational entropies (per Zr) for both phases

relative to α-Zr and α-ZrO2 are shown. The formation entropies for both phases are negative.

Hence the formation of either ZrO1/2 or δ′-ZrO from a two phase mixture of Zr and ZrO2

is accompanied by a reduction in vibrational entropy. The formation vibrational entropy

per Zr of δ′-ZrO is even more negative than that of ZrO1/2, indicating that with increases

in temperature, vibrational entropy stabilizes δ′-ZrO to a lesser extent than it does ZrO1/2.

This is consistent with the vibrational densities of state of Figure 4.3, which shows that the

bonds are stiffer in δ′-ZrO than in ZrO1/2.

To incorporate vibrational effects into the phase diagram, we approximated the total free

energy Gtotal as a sum of separate configurational Gconfig and vibrational Gvib components.

Representative total free energies are shown in Figure 4.6. As temperature increases, the

vibrational entropy shown previously in Figure 4.5 dramatically lowers the free energy. Appli-

cation of the common tangent construction at each temperature yields the phase boundaries

shown in the phase diagram of Figure 4.8, which now includes both configurational and

vibrational entropy. The most notable change to the phase diagram is that δ′-ZrO is now

stable at least until 1500 K. The entropic stabilization of ZrO1/2 relative to δ′-ZrO observed

in Figure 4.7 translates into an increase in the oxygen solubility limit of the ZrO1/2 phase.

In the phase diagram, the dashed line in the ZrO1/2 region denotes the original two-phase

boundary as calculated when only considering configurational degrees of freedom. With

the addition of vibrational entropy, this boundary has been shifted towards higher oxygen

concentrations. At higher oxygen concentrations, the well-known oxide α-ZrO2 forms and is

stable until a temperature of 1440 K. At this temperature, a transformation to the tetragonal

β-ZrO2 is predicted. This temperature is in good agreement with the experimental transition

temperature of 1478 K [78].

The relative stability of the various oxides in the Zr-O binary becomes apparent upon

inspection of the variation of the oxygen chemical potential with oxygen concentration. Cal-

culated oxygen chemical potentials at 300 and 600 K are shown in Figure 4.9. These are

related to the slopes of the Gibbs free energies in Figure 4.6 with respect to the oxygen
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Figure 4.4. Quasi-harmonic volume-dependent free energy curves for (a) δ′-ZrO, (b) ZrO1/2, (c)
α-ZrO2 (d) β-ZrO2, and (e) α-Zr. Curves are shown at increments of 100 K between 0 - 1500 K.
The Gibbs free energy obtained by minimizing each isothermal curve was incorporated into the
phase diagram in Figure 4.8 to account for finite temperature effects.
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Figure 4.6. Total Gibbs free energy, including both vibrational and configurational contributions,
at various temperatures.
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′-ZrO

is less entropically stabilized at finite temperatures than ZrO1/2.

concentration x. Steps in a chemical potential versus concentration plot correspond to sto-

ichiometric compounds, while solid solutions appear as sloping regions. Plateaus signify

two-phase regions since the chemical potentials of coexisting phases remain constant in equi-

librium. Figure 4.9 shows that the collection of HCP based ZrOx suboxides as well as α ZrO2

are stable in wide oxygen chemical potential intervals. δ′-ZrO, however, is stable in only a

narrow chemical potential window. Furthermore, the stability window of δ′-ZrO decreases

with increasing temperature.

4.4 Discussion

Our first-principles calculation of the vibrational free energies of compounds in the Zr-O

binary predicts that newly discovered δ′-ZrO remains thermodynamically stable to tem-

peratures above 1500 K. The updated phase diagram of Figure 4.8 now accounts for both

configurational [1] and vibrational degrees of freedom. The phase diagram below x < 1/2

remains unaffected by our inclusion of vibrational contributions since we approximated the

vibrational free energy between x = 0 and x = 1/2 as a linear interpolation between the

vibrational free energies of α Zr and ordered ZrO1/2. Adding a linear term to a free energy

curve as a function of concentration does not affect the common tangent construction and

will therefore not alter phase boundaries or order-disorder transition temperatures. Since

the crystal structure and lattice parameters of HCP based ZrOx vary negligibly with oxygen

concentration [1] we do not expect that a more rigorous inclusion of vibrational degrees of

freedom using for example a coarse graining scheme [85] will alter the topology of the phase

diagram below x = 1/2 much. Inclusion of vibrational contributions does, however, increase
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included.

the oxygen solubility limit of ordered ZrO1/2 when it coexists with δ′-ZrO. This is due to the

low vibrational entropy within δ′-ZrO compared to ZrO1/2 and the α and β polymorphs of

ZrO2. Oxygen within the Zr5O square pyramidal interstitial sites of the ω-Zr sublattice of

δ′-ZrO are tightly bound resulting in high frequency optical modes.

As is evident from the updated phase diagram in Figure 4.8, the concentration of ordered

ZrO1/2 when it coexists with δ′-ZrO is close to ideal stoichiometry. Hence, our linear inter-

polation scheme to approximate the vibrational free energy of HCP based ZrOx should be

sufficiently accurate for the purposes of assessing the relative stability between δ′-ZrO and

ZrO1/2 and ZrO2 at elevated temperature.

The calculated phase diagram of Figure 4.8 shows fair agreement with a previously pub-

lished phase diagram (between 0− 1500 K) as assessed with the CALPHAD approach [79].

The ordered HCP-based phases, ZrO1/6, ZrO1/3, and ZrO1/2, appear in both phase diagrams,

although ZrO1/2 in Figure 4.8 is predicted to be stable to much higher temperatures [1]. The

primary difference between the two phase diagrams is the presence of the recently identified

δ′-ZrO line compound.

The relative stability between α and β-ZrO2 has been investigated before within the

harmonic [15] and quasi-harmonic approximation [14]. While the quasi-harmonic study [14]
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did not include the effect of long-range dipole-dipole interactions, our calculated vibrational

free energies do account for such effects, as did the previous harmonic study [15]. Further-

more, in contrast to prior treatments [14], our harmonic Hamiltonians for α-ZrO2 did not

predict spurious unstable modes (i.e. imaginary frequencies). We believe this is due to our

use of significantly larger supercells to extract force constants (324 compared to 108 in a

previous study [14]), which have allowed for longer-range force constants to be included in

the harmonic Hamiltonian, as Kuwabara et al suspected [14].

Experimental observations [82] of Zr metal-oxide interfaces oxidized at temperatures of

360◦ C (633 K) have shown narrow regions of ZrO wedged between ZrO2 and HCP based ZrOx

suboxides (with x < 1/2). Zr samples exposed to air will have a gradient in oxygen chemical

potential that is high at the surface and that decreases monotonically towards the interior

of the sample. While kinetic factors play a role in determining the presence and distribution

of different oxide phases in an oxidizing microstructure, the thickness of a particular oxide

phase in a monotonically decreasing oxygen chemical potential profile should to a large

extent depend on the width of oxygen chemical potential window in which the phase is

thermodynamically stable. As is clear from Figure 4.9, δ′-ZrO at x=1 is only stable in a very

narrow oxygen chemical potential window. This is consistent with experimental observations

that δ′-ZrO appears as much thinner regions compared to ZrO2 and the collection of HCP

based ZrOx suboxides. Figure 4.9 also shows that the chemical potential stability window

of δ′-ZrO decreases with increasing temperature. This suggests that the relative thickness

of the δ′-ZrO phase in oxidizing samples will decrease as the temperature is raised. The

diminishing relative stability of δ′-ZrO with increasing temperature is a result of its lower

vibrational entropy compared to ZrO1/2 and ZrO2.

While our calculation of thermodynamic properties predict that δ′-ZrO remains stable at

high temperatures, it does not shed light on the role of this phase in affecting the kinetics of

Zr oxidation. Important in this regard is whether the interfaces between the various oxides

tend to be coherent, semicoherent or incoherent. The crystallographic nature of the interface

will determine how mobile the interface is between a pair of oxides as oxidation proceeds.

Another important factor is the oxygen mobility through the different phases. Although

oxygen diffusion coefficients in the HCP based ZrOx suboxides have been predicted to be

high at elevated temperature [88], oxygen mobility in the more compact crystal structures

of δ′-ZrO will likely be low. δ′-ZrO may therefore act as a diffusion barrier, slowing oxygen

ingress in the HCP metal substrate. If this is the case, then it will be desirable to devise

strategies that result in a thick δ′-ZrO phase within the oxidizing microstructure. Alloying

would have to aim at increasing the energetic stability δ′-ZrO relative to ZrO1/2 and ZrO2

since our current study suggests there is little maneuverability to enhance finite temperature
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entropic stabilization of the phase.

4.5 Conclusion

Using quasi-harmonic lattice dynamic calculations, we were able to obtain vibrational free

energies important to elucidating finite temperature phase stabilities. The phonon dispersion

curve and corresponding partial density of states of δ′-ZrO revealed that the O and Zr atoms

are tightly bound. In addition to calculating an α-β-ZrO2 transition temperature of 1440 K, a

Zr-O composition-temperature phase diagram complete with configurational and vibrational

degrees of freedom was also presented, showing that δ′-ZrO is stable to at least 1500 K. More

importantly, the stability of δ′-ZrO relative to ZrO1/2 decreases at elevated temperatures due

to a relative decrease in vibrational entropy.
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CHAPTER V

Dynamical Instabilities of ZrO2 Polymorphs

5.1 Introduction

Zirconium alloys and their oxides have been studied extensively for their applications

in thermal barrier coatings, nuclear rod cladding, and memory storage devices. The oxide

ZrO2 exists in 3 main polymorphs under normal pressures. The low temperature monoclinic

phase is stable until 1478 K [78], after which it transforms into a tetragonal phase. At even

higher temperatures, a transition to the cubic phase occurs. Under pressurized environments,

several orthorhombic phases are known to form. There have been many efforts to stabilize

the cubic and tetragonal forms at low temperatures either via strain or doping. For example,

the cubic or tetragonal form is stabilized by doping with Y2O3 in solid oxide fuel cells and

thermal barrier coatings.

The stability and transformation mechanisms of these polymorphs, especially between

the cubic and tetragonal phases, have been studied in the context of lattice dynamics

[11, 14–16, 25, 84, 89, 90]. Early group-theoretic analysis [11] and subsequent first-principles

phonon calculations [12–14] have shown the presence of a soft mode at the X k-point of the

cubic Brillouin zone and demonstrated that the cubic phase is mechanically unstable. This

unstable mode has been shown [11] to be responsible for a transformation of the cubic phase

to the tetragonal phase.

The observed stability of cubic ZrO2 at elevated temperatures is likely due to anharmonic

vibrational excitations. This mechanism has been observed in other mechanically unstable

materials, such as ZrH2 and BaTiO2 [69,72]. Fabris et al. concluded in a tight-binding based

lattice dynamics and molecular dynamics study that the cubic ZrO2 energy landscape is an-

harmonic at high temperatures and that the phase is entropically stabilized [91]. Carbogno

et al. found that thermal excitations induce spontaneous switching between tetragonal ori-

entations [86]. At even higher temperatures, each tetragonal orientation is sampled and
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the observed cubic form exists as a thermodynamic average of all three tetragonal displace-

ment orientations [86], further confirming the anharmonic vibrational stabilization of the

mechanically unstable cubic phase.

The tetragonal ZrO2 phase exists as three variants, which has been experimentally ob-

served [92,93]. The coexistence of the three tetragonal variants, in addition to the ability of

a domain with one variant to reorient into another variant is a characteristic utilized in fer-

roelastic toughening [94]. In a material where one or more tetragonal variants coexist, when

a tensile force is applied near a crack, the tetragonal domains within the vicinity reorient

themselves parallel to the tensile direction. The reorientation of these domains result in a

compressive strain field surrounding the crack, effectively stopping further crack propaga-

tion. This toughening mechanism results in microstructures where two tetragonal variants

coexist as twins. To model this type of phase transformation, a model at the continuum

level is required. First-principles calculations can be used to calculate free energies that can

then be input into a continuum-level model. An accurate description of these free energies

requires two descriptors. The first describes the internal atomic positions associated with

each tetragonal variant. The second describes the external strain, which varies continuously

from one domain into another. Such a framework will be presented and discussed in this

chapter.

Group-theoretic techniques applied to tetragonal ZrO2 [25] have suggested that the

phonon modes at the M k-point of the tetragonal Brillouin zone boundary lead to a trans-

formation to the monoclinic structure. A pair potential model [90] also predicted a softening

of a mode at M as the separation distance between oxygen atoms increases. Subsequent

lattice dynamic studies of the tetragonal phase [14,15], however, have shown that this phase

is dynamically stable. The low temperature monoclinic phase has also been shown to be

mechanically stable [15,16], with the exception of the study performed in reference [14].

In this chapter, we will examine instabilities of the three ZrO2 polymorphs. We will

begin with a discussion on the cubic mechanical instability that leads to a transformation

into the tetragonal phase. The effect of a volume increase on the stability of tetragonal

ZrO2 will also be presented, where we show the discovery of a new orthorhombic phase. The

effect of strain on the stability of different tetragonal variants will also be examined within

the framework of modeling twinned microstructure resulting from ferroelastic toughening.

Finally, the strain-induced instabilities of tetragonal and monoclinic will also be discussed.
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(a) (b) (c)

Figure 5.1. (a) Cubic, (b) tetragonal, and (c) monoclinic internal disorder in a cubic lattice.

5.2 Results

5.2.1 Dynamical Instability of Cubic ZrO2

The internal atomic orderings of the three ZrO2 polymorphs can be better understood by

examining them in the same 12 atom cubic lattice, as shown in Figure 5.1. The cubic phase

has an FCC Zr sublattice, with oxygens occupying tetrahedral interstitial sites. The oxygens

have a cubic connectivity within the conventional unit cell, as shown by the red atoms in

Figure 5.1a. The Zr ordering of the tetragonal phase in this cubic lattice is identical to

the cubic phase, but the oxygens are shuffled both up and down along the z-axis such that

pairs of atoms at opposite corners of the oxygen cube are displaced along the same direction

(Figure 5.1b). The monoclinic phase exhibits much more disorder (Figure 5.1c). The lattice

corners are still occupied by Zr atoms, but the Zr at the face centers are displaced inwards.

The oxygen ordering bears little resemblance to the ordering in the tetragonal phase.

The crystallographic relationship between the cubic and tetragonal phase is straightfor-

ward. The tetragonal internal ordering can be reproduced by displacing the oxygens in cubic

ZrO2 up and down the z-axis. Previous group theory [11] and first-principles [12,13] studies

have shown the presence of an unstable mode in the cubic ZrO2 dispersion curve, indicat-

ing that cubic ZrO2 is mechanically unstable. This unstable mode at the X Brillouin zone

boundary point is represented by negative frequencies in Figure 5.2. The unstable mode

suggests that displacements along this mode will push the system into a lower energy state.

In fact, these displacements tetragonally shuffle the oxygens, leading to a transformation

into the tetragonal phase.

In a perfectly cubic lattice, there are three orientations of this tetragonal oxygen shuffle,

each corresponding to shuffles in the three Cartesian coordinate directions. An order pa-

rameter description of these tetragonal shuffles can be formulated by first assigning variables

λ3, λ2, and λ1 to the x, y, and z shuffle directions. Figure 5.3 shows the energy variation

resulting from amplification of λ1 within a cubic lattice. At λ1 = 0, there is no shuffle,
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Figure 5.2. Dispersion curve of cubic ZrO2 showing an unstable mode at X.
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Figure 5.3. Energy variation with λ1, where λ1 corresponds to a z-shuffle. Here, the shuffles are
imposed in a cubic lattice. λ1 = 0 indicates no oxygen shuffle, which corresponds to a cubic oxygen
ordering.

and the structure thus has the same internal ordering as the cubic phase. As a z shuffle is

imposed, the energy decreases, indicating that the tetragonal internal ordering is preferable.

This result supports the result that the cubic phase is mechanically unstable. Despite the

dynamical instability of cubic ZrO2, the observed stability at high temperatures is likely due

to anharmonic stabilization [86,91].

Order parameters η1, η2, and η3 can be defined in terms of these λs as

η1 =
λ1 + λ2 + λ3√

3
(5.1)

η2 =
λ3 − λ2√

2
(5.2)

η3 =
2λ1 − λ2 − λ3√

6
. (5.3)
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(a) (b)

Figure 5.4. (a) η2-η3 energy landscape in a cubic lattice. (b) A slice along in η2-η3 space connecting
the two minima of the energetically equivalent y and x energy wells.

Here, η1 describes a shuffle amplitude, while η2 and η3 correspond to shuffle orientations.

The η2-η3 energy landscape for these λ shuffles in a cubic lattice is shown in Figure 5.4a.

Because the symmetry of the lattice does not dictate a preference for any one tetragonal

shuffle orientation, there are three energetically equivalent energy wells. Starting from the

well at finite η3 and η2 = 0 and going clockwise, each well corresponds to the dominance of

z, x, and y oriented oxygen shuffles. The center of this energy landscape, where η2 = η3 = 0,

corresponds to a combination of all x, y, z shuffles.

5.2.2 Volume Induced Instability of Tetragonal ZrO2

Unlike the cubic phase, both tetragonal [14,15] and monoclinic [15] ZrO2 have been shown

to be dynamically stable. The lattice dynamic studies on the monoclinic phase performed

in reference [14] revealed an instability near the Brillouin zone center. In our quasiharmonic

calculations for the monoclinic phase, we used significantly larger supercells with 324 atoms

(compared to 108 atoms used in reference [14]), which eliminated these instabilities. In pre-

vious studies, monoclinic-tetragonal transition temperatures within the harmonic [15] and

quasiharmonic [14] approximation have predicted monoclinic-tetragonal transition tempera-

tures of 1560 K and 1350 K, respectively. As discussed in Chapter IV, our quasi-harmonic

model predicted a monoclinic to tetragonal ZrO2 transition temperature of 1440 K (Fig-

ure 5.5), which is in good agreement with the experimental transition temperature of 1478

K [78]. In performing the quasi-harmonic calculations of the tetragonal phase, it became

evident that at larger volumes, acoustic modes at the Z k-point become increasingly unsta-

ble. At the tetragonal equilibrium volume, the dispersion curve (Figure 5.6a) is dynamically

stable. The dispersion curve of a tetragonal unit cell that is 8% larger than the equilibrium
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Figure 5.5. Tetragonal and monoclinic vibrational Gibbs free energies. The transition between
the two phases occurs at 1440 K, the crossing point between the two curves.

has an instability (Figure 5.6b). In both dispersion curves, discontinuous lines in the optical

modes at Γ are characteristic of the LO-TO splitting in ionic materials due to interactions

with an external electric field [17]. The instability at Z in Figure 5.6b suggests displace-

ments along the unstable mode will lead to decomposition into another phase that lowers

the overall energy of the system. Furthermore, the unstable mode at Z is doubly degenerate,

suggesting the existence of at least two symmetrically equivalent lower energy states.

Verification of whether this mode is unstable was accomplished by imposing the displace-

ments of one of the two unstable phonon modes in the ideal crystal. As the unstable mode

is at the high symmetry k-point (0, 0, 0.5), a supercell derived by doubling the primitive cell

in the c axis direction was necessary to preserve the periodicity of the displacement field.

This phonon mode was imposed with increasingly large amplitudes in supercells based on

primitive unit cells with volumes ranging from +0% to +10% of the equilibrium volume.

The resulting energy curves are shown in Figure 5.7. At the equilibrium volume of +0%,

the energy landscape is still fairly parabolic, but as the volume increases to +4%, the energy

well flattens and becomes increasingly anharmonic. Starting at about +6%, two minima

begin to appear at positive and negative displacements. With further increases in volume,

the depth of the two energy wells increases. A similar calculation with the degenerate mode

results in energy curves with identical behavior, suggesting that there are 4 variants of this

phase.

The displacement field resulting from this unstable Z mode broke the tetragonal sym-

metry of the structure and resulted in a structure with an internal distortions having or-

thorhombic P212121 symmetry. Given the two minima in the energy curve in Figure 5.7

and the double degeneracy of this phonon mode, it follows that four of these orthorhombic
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Figure 5.6. Dispersion curves of tetragonal ZrO2 based on a primitive unit cell that is (a) at the
equilibrium volume and (b) +8% larger than the equilibrium volume. In (b) there is an instability
at Z, corresponding to the (0, 0, 0.5) point in the irreducible Brillouin zone.
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Figure 5.7. Amplifying the displacements due to the unstable phonon mode at Z at volumes
incrementally larger than the equilibrium shows that the instability appears around +3% of the
equilibrium volume. The energy wells that result from the instability deepen as the volume is
increased.
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Figure 5.8. Energy landscape in the Z3 symmetry mode space.

variants can be derived from the tetragonal phase. Denoting the displacements leading to

the orthorhombic phase of one mode as ζ1 and the displacements from the degenerate mode

as ζ2, an energy landscape resulting from combinations of these displacements can be cal-

culated. The energy landscape resulting from displacements in this ζ1-ζ2 space is shown in

Figure 5.8. The local maximum in the center of the energy landscape is the ideal tetragonal

structure. As expected, there are four minima, each corresponding to a minima in the energy

wells resulting from displacement of the unstable Z modes. As the energy landscape shows,

combinations of displacements ζ1 and ζ2 lead to energetically higher structures.

Further inspection of the displacements of this mode shows that the displacements occur

only in the a-b plane. As the propagation direction of the phonon mode at Z is in the c

direction and the displacements occur in perpendicular directions, the phonon mode is a

transverse mode. The transverse mode has little effect on the O and Zr layering in the c axis

direction, so these remain largely similar to the parent tetragonal phase. The displacements

occurring along the trajectory shown in Figure 5.7 can be described by 4 distinct layers of

Zr displacements, as shown in Figure 5.9a. The first layer is composed of Zr atoms displaced

in the −iâ − jb̂ direction, where j > i. The subsequent layer of Zr displacements is in the

−iâ + jb̂ direction. Zr displacements in the third layer occurs in the +iâ + jb̂, which is

in the exact opposite direction of the first layer. The fourth and final layer is also in the

opposite direction of the second Zr layer.

The oxygen displacements can similarly be described in terms of 4 distinct layers where
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Figure 5.9. Layer-by-layer breakdown of the displacement fields for one of the unstable phonon
modes leading to orthorhombic P212121. (a) Zr atoms and (b) O atoms.

each set of four atoms in a layer belong to either an upper or lower set of 8 tetragonally

shuffled oxygens. The first layer has one pair of oxygens displaced in the −mâ+nb̂ direction

while the other pair is displaced in the −mâ − nb̂ direction, where n > m. The following

layer of oxygen displacements occur in the +m′â+n′b̂ and the −m′â+n′b̂ directions, where

again, n′ > m′. The displacements of the second and fourth oxygen layers are slightly larger

than the first and third layers.

The asymmetric displacements in the a-b plane results in an elongation of the b axis and

shortening of the a axis, ultimately transforming the tetragonal lattice into an orthorhombic

one. By taking the structure at one of the minima of the +10% energy curve in Figure 5.7 and

allowing for a full structural relaxation, we found a previously unidentified ZrO2 orthorhomic

phase, shown in Figure 5.11. The space group was identified as P212121 (Space group #19)

using the FINDSYM module of the ISOTROPY Software Suite [64]. This orthorhombic

structure has lattice parameters of a = 3.485Å, b = 3.861Å, and c = 10.577Å. There are

three Wyckoff positions, which are shown in Table 5.1. The ideal tetragonal unit cell has 2

Wyckoff positions, O 4d and Zr 2b, and the Zr are octahedrally coordinated by oxygen. In

this orthorhombic phase Zr, is coordinated by 7 oxygens. The Zr-O polyhedra are mostly

edge-sharing in the orthorhombic phase, as are the octahedra in the tetragonal phase. The
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Table 5.1. Wyckoff positions of orthorhombic phase P212121.

Atom Site Position

O 4a (0.2512, 0.4611, -0.0387)
O 4a (0.2505, -0.3409, 0.2185)
Zr 4a (-0.2488, 0.3312, -0.1346)

(a) (b)

Figure 5.10. Crystal structure of newly identified orthorhombic P212121 phase.

tetragonal structure is much more compact, while distortions leading to the orthorhombic

phase opens up open tunnels running parallel to the b axis (Figure 5.10b).

While this particular orthorhombic polymorph had not been identified previously, other

orthorhombic phases have been reported. The known orthorhombic phases include Pbc21

[95], Pnma, and Pbca [96], each shown in Figure 5.11. Both Pbca and Pnma are stable

at elevated pressures, and phonon studies of these phases at ambient pressures have shown

them to be dynamically stable [16]. The Pbc21 phase was first found in magnesium partially-

stabilized-zirconia [95]. Both Pbca and Pbc21 have zirconium atoms that are seven fold

coordinated by oxygen, similar to monoclinic ZrO2. The Zr atoms in the tetragonal phase,

however, are eight-fold coordinated. Pnma, which is under the most compression, has Zr

that is nine fold coordinated by oxygen. Figure 5.12 shows the volume-energy relationships

between all known ZrO2 polymorphs, along with the new P212121 phase, shown as a black

diamond. There is a general trend in Zr coordination number and energy levels, as 7-fold

coordinated Zr phases are lower in energy, followed by the 8 fold coordinated cubic and

tetragonal phases. The 9 fold coordinated orthorhombic Pnma phase is the highest in

energy. The volume-energy trend between cubic, tetragonal, and monoclinic is consistent

with previous reports [84, 97]. There is a slight volume expansion associated with the cubic
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Figure 5.11. Known orthorhombic ZrO2 structures: (a) Pbc21, (b) Pbca, and (c) Pnma.
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Figure 5.12. Energy-volume relationships between the known ZrO2 polymorphs relative to mon-
oclinic ZrO2. The black diamond orthorhombic marker is the newly identified orthorhombic phase
with a space group of P212121.

to tetragonal transition. A larger volume expansion of approximately 5% accompanies the

transition from tetragonal to monoclinic ZrO2. This P212121 phase is larger in volume than

the tetragonal phase and is almost the same volume as the monoclinic phase. The P212121

phase is, however, still approximately 60 meV/f.u. higher in energy than the monoclinic.

It is possible that if the volume of the system were to expand to near monoclinic values,

it would prefer to form the more energetically favorable monoclinic phase rather than the

orthorhombic phase.

5.2.3 Strain Induced Instability of Tetragonal ZrO2

In addition to volume increases, strain can also serve as a destabilizing factor in tetragonal

ZrO2. To demonstrate this effect, we use the Hencky strain metric to explore the role of

strain on the relative stabilities of the different tetragonal variants. The relationship between
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a strained L′ and a reference L lattice can be described by the following transformation

L′ = F · L, (5.4)

where F is the deformation gradient tensor. The deformation gradient tensor can be uniquely

decomposed into rotation R and stretch U components

F = R · U, (5.5)

as long as the chosen U is symmetric. The Hencky strain is simply the matrix logarithm of

this stretch tensor

H = lnU. (5.6)

Using the components of the Hencky strain metric

H =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 , (5.7)

we can define strain order parameters (SOPs) as

e1 =
1√
3

(εxx + εyy + εzz) (5.8)

e2 =
1√
2

(εxx − εyy) (5.9)

e3 =
1√
6

(2εzz − εxx − εyy) (5.10)

e4 =
√

2εyz (5.11)

e5 =
√

2εxz (5.12)

e6 =
√

2εxy. (5.13)

In the infinitesimal strain limit, e1 represents dilatational strain, while e2 and e3 correspond

to a deviatoric strain. Within the same infinitesimal limit, e4 - e6 are shears. The benefit

of utilizing the Hencky strain is that applying it does not change the volume with e2-e3

strains [98]. As Figure 5.13 shows, applying only an e3 strain would elongate a cube along

the z-axis. Straining along any of the dashed green axes in e2-e3 space will result in a

differently oriented tetragonal lattice.

In a cubic, unstrained lattice, the three tetragonal variants x, y, and z are energetically
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Figure 5.13. Effect of deviatoric e2-e3 strains on a cube. Straining along one of the three green
axes will result in a different tetragonal orientation
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Figure 5.14. η2-η3 energy landscapes at various e2-e3. (a) Under an e2 = 0, e3 = 0.0228 strain,
the z variant is favored. (b) An e2 = 0.0650, e3 = 0.0375 strain favors the z and y variants. (c)
Straining by e2 = 0.0361, e3 = 0.0292 results in z being favored slightly over x and y.

equivalent, as Figure 5.4a showed. Applying a finite e3 = 0.0228 strain such that the lattice

is now tetragonally strained in the c axis direction, results in the destabilization of the x

and y variants, as shown in Figure 5.14a. The z variant energy well is much lower in energy

than either the x or y energy wells. Similarly, choosing an e2 = 0.0650 and e3 = 0.0375

strain such that the lattice is equally strained in both the x and z directions results in the

energy landscape shown in Figure 5.14b, where the x and z energy wells are energetically

equivalent. This strain, however, destabilizes the y variant completely. Finally, applying an

e2 = 0.0361 and e3 = 0.0292 strain such that the lattice is strained more in the z direction

than the x direction results in a deeper z shuffle well relative to the x shuffle well, as Figure

5.14c shows. From these energy landscapes, we can see that strain can effectively destabilize

certain tetragonal variants and dictate the preferred tetragonal orientations.
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Figure 5.15. Contour plot of tetragonal internal shuffle landscape at tetragonal e1.

As Figure 5.14 showed, strain can affect the stabilities of the tetragonal variants. Its

effect under deviatoric strain can be seen by applying an e2-e3 strain to cubic lattices with

x, y, and z internal shuffles, allowing full internal relaxations, and taking the minimum

energy landscape. A contour of the resulting energy landscape is shown in Figure 5.15.

Each of the three minima falls on one of the three tetragonal orientation axes in Figure 5.13

and corresponds to a different tetragonal shuffle variant. The local maximum at the origin

corresponds to a cubic internal ordering in a cubic, unstrained lattice, which is consistent

with previous results showing the metastability of the cubic phase.

5.2.4 Instabilities of Tetragonal and Monoclinic Under Strain

As the previous section showed, strains can cause a particular tetragonal orientation to be

more energetically favorable, while simultaneously destabilizing another orientation. Strain

has a similar effect on the stabilities of tetragonal and monoclinic. The relationship between

the three ZrO2 polymorphs can be described in terms of the SOPs e1 - e6. Furthermore,

the strains of the tetragonal and monoclinic phases can be expressed relative to the cubic

phase. Figure 5.16 shows a projection of cubic, tetragonal, and monoclinic phases in e2-e3

strain space. The cubic reference is the blue diamond at the origin. The z-shuffle variant

of the tetragonal phase has non-zero strain order parameters e1 = 0.0181 and e3 = 0.0228.

This particular variant corresponds to the green diamond on the e3 axis. The other two

tetragonal variants are the green diamonds on the dashed axes, which are the same tetragonal

deviatoric strain axes shown in Figure 5.13. The non-zero SOPs of the monoclinic phase

are e1 = 0.0417, e2 = −0.0135, e3 = 0.0209, e5 = −0.1208. The increase in e1 relative

to tetragonal is consistent with the observed volume expansion during the tetragonal to

monoclinic transition. Four monoclinic variants can be derived from each tetragonal variant.

Each pair of the four will have the same e2-e3 strains, but can have a positive or negative

e4, e5 or e6 shear. Because the equilibrium tetragonal and monoclinic phases have different
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Figure 5.16. The relationship between cubic (blue diamond), tetragonal (green diamond), and
monoclinic(red diamond) projected onto the e2-e3 space. The different trisections represent different
regions in which a tetragonal variant dominates. The x, y, z regions are blue, yellow, and pink.

strains, strain is likely to have an effect on the stabilities of either phase. For example, under

tetragonal SOPs, the tetragonal phase is probably more stable than monoclinic.

To explore the energetics of the transition from tetragonal to monoclinic, the nudged

elastic band method was used to calculate the energy pathway. In a cubic, unstrained

lattice, where all order parameters e1 − e6 are zero, both tetragonal and monoclinic are

stable and separated by an energy barrier approximately 240 meV per formula unit (f.u.), as

shown by the blue diamond pathway (I) in Figure 5.17. The magnitude of the energy barrier

is not trivial and is unlikely to be overcome and result in a martensitic transformation. In

a lattice strained by tetragonal strain order parameters, as the green curve (II) shows, the

tetragonal phase is even more stable, while the monoclinic phase is metastable. This shift in

energetics suggests that given a slight perturbation, a structure that has monoclinic internal

distortions within a tetragonally strained lattice would easily fall into the stable tetragonal

phase, lowering the energy of the system by about 150 meV per f.u. In this instance, the

strain further stabilized the tetragonal phase, while destabilizing the monoclinic.

Further straining the lattice such that the dilatation and deviatoric strains e1−e3 have the

equilibrium monoclinic values results in an orthorhombic lattice where the tetragonal phase

is still stable, but the monoclinic is now unstable, as seen by the red curve (III) in Figure

5.17. Imposing an e5 shear to the lattice fully reproduces the equilibrium monoclinic lattice.

The strains and shear of this monoclinic phase renders the tetragonal phase metastable and

stabilizes the monoclinic phase.

As Figure 5.17 showed, the stabilities of tetragonal and monoclinic can be influenced

by different strain conditions. In the cubic lattice, both tetragonal and monoclinic are

stable since there is a lack of orientation preference. Tetragonally straining the lattice would

naturally increase the stability of the tetragonal phase, while decreasing the stability of the
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Figure 5.17. Energy barriers between tetragonal and monoclinic performed in lattices strained
according to the strain order parameters of cubic (I), tetragonal (II), orthorhombic (III), and
monoclinic (IV).

monoclinic phase. Although it is expected that the orthorhombic strain would decrease the

stability of the tetragonal phase and make the monoclinic phase more energetically favorable,

it is surprising, however, that the orthorhombic strain would destabilize the monoclinic

phase. Adding the shear strain, however, subsequently stabilizes the monoclinic phase. It

is apparent that while dilation and deviatoric strains alone can destabilize the tetragonal

phase, the shear seems necessary to stabilize the monoclinic.

5.3 Conclusion

In this chapter, we have explored different types of instabilities in the three main ZrO2

polymorphs. In cubic ZrO2, we observed the dynamical instability leading to the tetrag-

onal phase. As previous studies on cubic ZrO2 [86, 91] and other mechanically unstable

materials [69, 72] have noted, the dynamically unstable phase is likely stabilized at high

temperatures by anharmonic vibrations. While the tetragonal phase is dynamically stable

near equilibrium volumes, it becomes dynamically unstable at larger volumes, resulting in an

orthorhombic P212121 phase. Since this new phase only gradually appears at larger volumes,

it is possible that thermal expansion at higher temperatures may facilitate its formation. As

Figure 5.7 showed, this orthorhombic phase is energetically more favorable than the tetrag-

onal phase. Only the tetragonal structure, however, has been experimentally observed thus

far. It is possible that at larger volumes, tetragonal ZrO2 is stabilized by anharmonic vibra-

tions, similar to the way cubic ZrO2 is dynamically stabilized [86, 91] and observed at high

temperatures.

The volume-induced instability and anharmonicity of the tetragonal phase may have

broader implications on the diffusion behavior within this high temperature material. The

effect of a soft phonon mode on diffusion has been studied in the context of β-Ti. This
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high-temperature BCC phase has been shown to be mechanically unstable [67], and the

diffusion behavior exhibits curvature deviating from the linear Arrhenius relation [99–102].

It has been suggested that the anharmonicity of this high-temperature phase explains the

non-linear diffusivity dependence on temperature [103, 104]. Köhler and Herzig report that

the displacement field associated with the unstable mode serves to facilitate the diffusion

mechanism within β-Ti [102]. Further studies on the diffusion behavior in tetragonal ZrO2

with the knowledge of this anharmonicity could be performed.

The volume induced tetragonal instability had not been identified previously [14–16]. One

of these studies [14], however, had reported the presence of an instability in the monoclinic

phase, which we have resolved by using a significantly larger supercell in our calculations. As

previous studies [14–16] used different pseudopotentials, a cursory examination using PBE

and LDA pseudopotentials demonstrated a similar tetragonal instability at larger volumes,

indicating that this is not a spurious result due to pseudopotential differences.

In addition to strain playing a role in stabilizing different tetragonal variants, we have seen

that it can also affect the stabilities of tetragonal and monoclinic. In thin film applications,

the atomic layer deposition of zirconia leads to observations of high-temperature tetragonal

phases [105–107]. This phase is not expected at low deposition temperatures of 523 − 573

K [105–107] that are well below the monoclinic-transition temperature of 1478 K. It is

possible that in these thin films, the epitaxial strain stabilizes the tetragonal phase at low

temperatures.

While the results of strain dependent stabilities have focused primarily on the tetragonal

and monoclinic phases, anisotropic strains could be a mechanism that stabilizes the newly

discovered orthorhombic phase. Further first-principles calculations can be used to determine

the strains required to stabilize the orthorhombic phase at low temperatures. Armed with

such insights, experimental studies involving strains can then be performed to stabilize this

orthorhombic phase. Once this has been accomplished, mechanical properties testing can

then be performed to determine if this phase has promise in engineering applications.

The equilibrium phase diagram provides insight into the temperature stability of the

three ZrO2 polymorphs, but there are other mechanisms through which the stabilities of

each of these phases can be affected. Further studies of these different mechanisms may aid

in future engineering efforts to stabilize the high-temperature tetragonal and cubic phases.
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CHAPTER VI

Intercalation of Li in Trirutile Li3xFe2F6

6.1 Introduction

Recent battery research has pivoted from traditional intercalation materials such as

LiCoO2 and LiFePO4 to displacement and conversion materials, such as CuSb and metal

fluorides. Conversion materials hold great promise in that while intercalation materials are

typically limited to one electron transfer per formula unit, the different valence states of the

metal cation in a conversion material allows for a larger theoretical energy density. Iron fluo-

rides FeF2 and FeF3 are examples of a conversion system where Li insertion causes structural

changes to the host structure [108,109]. The rutile FeF2 and perovskite FeF3 decompose into

LiF and metallic BCC Fe upon lithiation. As a first-principles study of the Li-Fe-F ternary

phase diagram shows [110], of the many structural changes the occur during the lithiation,

a trirutile LiFe2F6, is known to form in the early stages of conversion.

The trirutile structure is composed of three rutile-based structures stacked on top of each

other. Along the c-axis, every two Fe octahedra are followed by one Li octahedron, forming

these Fe-Li metal chains (Figure 6.1a. The octahedra are edge sharing along the c-axis,

and neighboring chains Li-Fe octahedra are corner-sharing. There are long, empty tunnels

running parallel to the c-axis, which is assumed to the primary Li diffusion pathway. In

addition to the body center and corner sites of the tetragonal lattice, Li can occupy two

other sites in this empty tunnel. One site is along the a (and symmetrically equivalent b)

lattice edge and the other is in the center of the a-c face. Figure 6.1b shows every possible

Li (green) and Li vacancy (blue) site in the unit cell.

Experimentally, a cation-disordered trirutile LiFe2F6 structure was synthesized by ball-

milling stoichiometric mixtures of LiF, FeF2 and FeF3 [111]. As the Rietveld refinement did

not present superlattice peaks characteristic of the ordering in an ideal LiFe2F6 structure,

it was concluded that there was a disordered arrangement of Li and Fe [111]. Reversible
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(a)

Li

Li Vacancy

(b)

Figure 6.1. (a) Trirutile primitive structure where green and brown octahedra correspond to
Li and Fe. (b) Li-vacancy sites within the primitive trirutile unit cell considered in the cluster
expansion.

intercalation reaction was observed between voltages of 2.0− 4.5 V, corresponding to lithia-

tion between x = 0.1666 and x = 0.5333 in Li3xFe2F6. This voltage regime stays well within

intercalation regime and never advances the conversion reaction. With in-situ XRD, Liao et

al. determined that during first discharge, Li is inserted into the empty channels that run

parallel to the Li and Fe polyhedra chains. Similarly, upon charging, Li is extracted first

from the channels before Li is extracted from the Li-Fe-chains [111].

In this chapter, we will examine the stable phases that form upon intercalation of Li into

trirutile FeF3 using the cluster expansion method detailed in Section 2.2.3. The resulting

effective Hamiltonian will then be used in a Monte Carlo simulation to calculate the Li

insertion voltage curve. Li migration barriers in the dilute regime will also be examined.

6.2 Methodology

First-principles calculations were performed using density functional theory (DFT) with

the Vienna ab Initio Simulation Package (VASP) [48,49]. The calculations utilized the gener-

alized gradient approximation (GGA) of the exchange-correlation functional as implemented

by Perdew-Wang [42]. Pseudopotentials developed by the projector-augmented wave (PAW)

method [47, 49] with the valence state 3p13d74s1 for Fe, 1s12s12p1 for Li, and 2s22p5 for

F were used. An energy cutoff of 550 eV was used. Brillouin zone integration was per-

formed on a 6 × 6 × 6 Γ-centered k-point mesh to achieve energy convergence to within 1

meV/atom. Full relaxations of 156 configurations with Li-Va ordering over possible octahe-

dral sites in trirutile were performed. Ferromagnetic (FM), spin-polarized calculations were

implemented since the related rutile structure FeF2 is known to exhibit antiferromagnetic

(AFM) properties below the Neel temperature 79 K [112–114].

The cluster expansion method [51, 52] was used to predict DFT formation energies of
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Figure 6.2. Pair clusters considered in the cluster expansion fit.
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Figure 6.3. Effective cluster interactions used in the fitting of the cluster expansion.

possible Li-Va orderings in trirutile LiFe2F6 in Monte Carlo simulations to extract Li chemical

potential and subsequently the voltage curve at 300 K. Possible Li-Va sites in the unit cell

that were considered are shown in Figure 6.1b. A genetic algorithm [115] followed by a

depth-first-search [1] was used to fit the effective cluster interactions (ECIs). A total of

33 clusters were considered: an empty cluster, 2 point clusters, 12 pair clusters, 10 triplet

clusters, and 8 quadruplet clusters. The 12 pair clusters included in the fit are shown in

Figure 6.2. The effective cluster interactions obtained from the fit are shown in Figure 6.3.

Within each cluster size set (i.e. pairs, triplets, quadruplets), the ECIs are ordered from

shortest to longest distance. The closest atoms tend to have the largest ECIs, and the

interaction dies off with increases in distance. The cross-validation (CV) score, a measure

of the predictive quality of the cluster expansion, was 0.041 eV per unit cell. The RMS

error, which measures the ability of the model to reproduce formation energies of calculated

configurations, is 0.027 per unit cell.

Li migration barriers in the dilute limit were calculated through nudged-elastic band

(NEB) calculations as implemented in VASP. 2 × 2 × 2 supercells of the primitive trirutile
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Figure 6.4. (a) Calculated first-principles energies (blue circles) and the convex hull (green line).
Stable phases that are on the convex hull are shown as green diamonds. (b) Calculated voltage
curve of Li insertion into trirutile Fe2F6.

FeF3 structure were used. This supercell was sufficiently large in all directions such that

the Li diffusing in either the [001] or [100] directions was not influenced by its periodic

image. A total of 5 images were interpolated between the initial and final states. As all

NEB calculations were performed at constant volume, a lower energy cutoff of 400 eV with a

Γ-centered k-point mesh of 4× 4× 4 were used. This k-point density is commensurate with

the k-point density for the primitive unit cell as calculated by a convergence test.

6.3 Results

Using the cluster expansion method, we were able to predict the stable phases formed

by intercalating Li into trirutile Fe2F6. Figure 6.4a shows the energies of the calculated

structures (blue circles) and the stable phases on the convex hull (green diamonds and line).

Only concentrations up to x = 2/3 were considered as further lithiation will reduce the Fe

valence state to less than the desired +2. There are many ordered ground states on the

convex hull in the x < 1/3 concentration region, which will likely

The 300 K voltage curve calculated by Monte Carlo simulations is shown in Figure 6.4b.

At x = 0, there is the fully delithiated trirutile structure (Figure 6.5) At 300 K, between

concentrations of x = 0 and x = 1/3, there is a solid solution. At x = 1/3, the big voltage

drop corresponds to the stable phase is the LiFe2F6 trirutile structure shown previously in

Figure 6.1a. Further lithiation results in a stable compound Li3/2Fe2F6, where Li occupies

alternating levels of vacancy sites in the empty tunnels (Figure 6.5). Finally, Li2Fe2F6 is

a slightly more complex structure where Li only occupies half of the sites along the Li-Fe
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Figure 6.5. Stable phases formed upon Li insertion into trirutile Fe2F6.

chains, while the empty tunnels are now occupied by two Li. This configuration produces an

arrangement with face-sharing Li polyhedra. These results are consistent with Liao et al.’s

theory that the Li sites along the Fe-chain are filled before the empty tunnel sites are filled,

and that upon charging, the Li in the empty tunnel are extracted before that of Fe-chains.

To understand how Li diffuses in the dilute limit, we calculated its migration barriers in

the delithiated structure in Figure 6.5. The delithiated trirutile structure is open. In addition

to the empty tunnels in the [001] directions, there are now open pathways in the (110) plane

as well. Adding one Li atom to the supercell composed of 4 units of the delithiated primitive

cell, we see that there are two symmetrically distinct hops. The first pathway is down the

empty tunnels, in the [001] direction (Figure 6.6a). Similar to the lithiated LiFe2F6 trirutile

structure, it is expected that Li would simply shoot through the [001] tunnels. The migration

barrier for this pathway, however, is 750 meV (Figure6.6b), which is fairly high.

The second hop is within the (110) plane, where Li moves from a site in the metal chains

into a tunnel site, and then back into the adjacent metal chain site (Figure 6.6c). Surprisingly

enough, the barrier for this hop is 315 meV (Figure 6.6d), about half of the [001] barrier.

The local minimum in the middle of the curve corresponds to the intermediate octahedral

site shown as a blue polyhedron.

Examining the crystal structures of these pathways provides some insight into the dif-

ference in migration barrier magnitudes. In the [100] path, Li hops from octahedral site

to octahedral site. In the metal chain sites, it is edge sharing with the Fe polyhedra both

above and below. Within the same plane, it is only corner sharing with diagonal metal

chains. As it moves into the octahedral site in the tunnel, it becomes edge-sharing with four
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Figure 6.6. Li migration barriers in the dilute limit. (a) The [001] hop and (b) corresponding
energy barrier. (c) The [100] hop, which is equivalent to the [010] hop and (d) corresponding energy
barrier.

Fe polyhedra, two on each side. The [001] hop requires passing through an intermediate

octahedral site that is face-sharing with two Fe polyhedra. This intermediate site is exactly

midway between the initial and final states and corresponds to the barrier peak in Figure

6.6b. The electrostatic repulsions between the Fe and Li polyhedra are likely the hindering

factor to Li diffusion through this path. The large differences in barrier energies suggests

that Li diffusion in the dilute regime largely occurs through 2D diffusion in the (110) plane.

6.4 Conclusion

In this chapter, we performed a cluster expansion over Li-Va sites in Li3xFe2F6, which

was subsequently used in Monte Carlo simulations to calculate a voltage curve. Examining

the sites that Li occupy in the stable phases shows that, as Li is intercalated, it first fills

up sites along the metal chain before filling up tunnel sites, as Liao et al. observed in their

experiments [111,116]. NEB calculations indicated that Li diffusion in the dilute limit occurs

largely within the (110) plane.
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CHAPTER VII

Conclusion

This thesis focused primarily on the application of phonons in exploring dynamical in-

stabilities as well as high-temperature phase stabilities. Instabilities activated by volume

changes and strain were also analyzed. Dynamical properties of different materials with a

wide range of applications, including Li3OCl, δ′-ZrO, and ZrO2, were discussed in detail.

The stable phases formed during the intercalation of Li into trirutile Li3xFe2F6 were studied

as well.

We found that Li3OCl, a solid electrolyte candidate for Li-ion batteries, is mechanically

unstable with respect to certain octahedral rotations. Combinations of these rotations can

lead to energetically lower structures, but the energy differences between these lower symme-

try and energy structures are too small to definitively identify the single most stable phase.

As the energy gained from these rotational distortions are incredibly small, it is likely that

even at low temperatures, the structure presents as cubic on average. In addition, we also

calculated the vibrational free energies within the quasi-harmonic approximation of LiCl,

Li2O, and Li3OCl. As Li3OCl is dynamically unstable, we performed an estimation of its

free energy and found an upper bound for the temperature at which Li3OCl becomes en-

tropically stabilized. We also calculated vibrational free energies within the quasi-harmonic

approximation of several Zr-O phases to predict the high-temperature stability of a recently

identified δ′-ZrO phase. The stabilities of oxide phases in the Zr-O system is of interest

due to their applications as nuclear fuel rod cladding in water-based reactors. We found

that this monoxide phase is stable at least until 1500 K, which is beyond typical nuclear

reactor operating temperatures. In addition, we also updated a previously published phase

diagram [1] to include both configurational and vibrational entropy.

Different types of instabilities were explored in the ZrO2 polymorphs. The dynamical

instability of cubic ZrO2 has been shown to lead to a transformation of the tetragonal phase.

Within the broader context of modeling microstructural phase transformations such as those

observed in ferroelastic toughening, a framework describing both internal tetragonal shuffle
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order parameters and strain order parameters was introduced. Energy landscapes showing

the relative stabilities of the three tetragonal variants under different strain conditions were

shown, and a strong coupling between the internal order parameters and external strain

was found. In tetragonal ZrO2, we found a dynamical instability induced by an increase

in volume, which leads to a transformation into a new orthorhombic phase. Despite the

presence of this instability, it is likely that the tetragonal phase is entropically stabilized

by anharmonic vibrations at the high temperatures where it is observed, which is similar

to how the cubic phase may be stabilized. The ability of strain to affect phase stability

was extended to the tetragonal and monoclinic phases, where we found that strain can

stabilize the high-temperature tetragonal phase, while simultaneously destabilizing the low

temperature monoclinic phase.

Lastly, a study of trirutile Li3xFe2F6 revealed the different phases that form with Li

insertion. Migration barrier calculations in the dilute limit also indicate that Li diffusion

likely occurs in a 2-D manner in the (110) planes, rather than through the empty tunnels in

the [001] direction.

In each of these material systems, there are different properties and aspects that can be

further explored. For example, the dynamical stabilities and phase stabilities of the broader

family of super-conducting antiperovskites will likely be studied to aid engineering efforts

to maximize the ionic conductivities. Further research in this area will help efforts to make

solid electrolytes competitive with liquid electrolytes, thus improving the safety of Li-ion

batteries for use in applications such as electric cars. In the studies on Li3OCl and ZrO2

in particular, we found these materials to have a degree of anharmonicity, which were not

accounted for in our quasiharmonic models. Although we made approximations of the effects

of anharmonicity, there have been studies of other materials that required more involved

anharmonic Hamiltonians combined with Monte Carlo simulations. Future studies on the

role of anharmonicity and instabilities on diffusion will prove interesting in both Li3OCl and

tetragonal ZrO2, as a relationship between diffusion and anharmonicity has been observed

in β-Ti [102–104].

Studies of oxygen diffusion in the novel δ′-ZrO phase will lead to a better understanding

of the oxidation mechanisms in zirconium alloys. As we have suggested, if oxygen diffusion

proves difficult in δ′-ZrO, engineering zirconium alloys with a thick δ′ phase may improve

the oxidation resistance. Further calculations of the anisotropic strain required to stabilize

the new orthorhombic ZrO2 phase is necessary before experiments are carried out. Certain

properties, such as the bulk modulus, can also be calculated. If these properties indicate that

the orthorhombic phase has useful properties for engineering applications, the calculations

can motivate and inform experiments on methods to stabilize the phase.
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The quasi-harmonic approximation used to calculate the thermodynamic properties were

computationally expensive and intensive, even with current computational capabilities. This

is particularly true when incorporating vibrational effects into a phase diagram with several

different ordered phases to consider. With further improvements in computing speed and

efficiency of first-principles algorithms, however, these types of calculations will likely become

increasingly common and routine.

As we have demonstrated in this thesis, dynamical properties can provide useful insight

into the phase stabilities and phase transformations of materials with very different applica-

tions. Studies of these vibrational properties can lead to a very fundamental understanding

of the underlying physics that affect the stabilities of these materials. While the emphasis

here has been on ionic materials, the versatile methodologies and concepts used here can be

applied to other types of materials as well.
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APPENDIX A

Phonons Implementation

A.1 Finding Perturbation Directions

The choice of perturbation directions in the direct approach is important as it produces

the input required for determining force constants. While there are an infinite number of

perturbation directions, a straightforward and relatively brute-force approach is to enumerate

positive and negative perturbations along each Cartesian direction, and calculate all the

forces resulting from those 26 perturbations. Symmetry of the crystal, however, will result

in redundancies in the forces that are obtained. Therefore, it is possible to use symmetry to

predetermine the minimum set of perturbations necessary for a complete description of the

force constants [34]. In a perfectly relaxed crystal in which all lattice parameters and atom

positions are optimized, there should be zero forces in the crystal. In real DFT computations,

however, there are often residual forces in the unperturbed crystal. This is particularly true

for crystals with lower than cubic symmetry. Because of the presence of these residual forces,

it is common that additional perturbations are required to compensate for the bias.

To select the optimal set of perturbation directions, we begin by defining the asymmetric

unit of a crystal, which is the smallest subset of atoms that can fully reproduce the crystal

by application of symmetry. Perturbations of each of the atoms in the asymmetric unit,

rather than in the entire crystal, is sufficient to obtain accurate force constants. The method

described here results in as few as 1 and as many as 6 perturbation directions per asym-

metric unit site. To begin, for each asymmetric unit site, of the 26 perturbation directions,

only the symmetrically distinct ones are kept. For each unique perturbation, symmetrically

equivalent directions are generated using the point group of the asymmetric unit site. If

the symmetrically equivalent directions span all of space, which is verified by checking that
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the rank of the matrix of these directions is 3, then this unique perturbation is kept as a

valid perturbation direction. There may be more than one unique perturbation direction for

which this is true, in which case, the choice of perturbation direction is left up to the user.

If there is no single perturbation that spans all of space, then the symmetrically equivalent

directions with rank 2 are searched. For a single set of symmetrically equivalent directions

{u0, . . . ,ud}, the cross product between the initial perturbation direction u0 and subsequent

directions ud are calculated. If the cross product result is a zero vector, the two perturbation

directions u0 and ud are parallel and span the same space. If the cross product u0 × ud is

non-zero, then the two vectors u0 and u0 × ud span all of space, and those directions are

used.

The negative perturbation direction, i.e. the opposite direction, is also included by default.

Perturbations in the positive and negative directions within a harmonic potential should

be equivalent as the energy landscape is symmetric. A potential energy surface that is

asymmetric, however, has odd-order terms. Inclusion of negative directions, in addition to

the positive directions, removes odd-order effects. The negative directions are a way to

address the problem of residual forces, which are first-order effects.

A.2 Determining Force Constants with a Clusters-Based Approach

In predicting the phase stability of alloying compounds with respect to configurational

disorder, a widely used approach has been the cluster expansion, which is discussed in Section

2.2.3. The foundation of the cluster expansion formalism is in describing configurational

degrees of freedom of a crystal in terms of smaller collection of atoms, or clusters, starting

from a point cluster and moving on to pairs, triplets, and even quadruplets. These building

blocks allow us to build a Hamiltonian based on these clusters and their interactions.

We can use this clusters-based framework in evaluating interatomic force constants, as

defined in Equation 2.3. Because we are building a harmonic model, we limit ourselves to

pair clusters, ignoring point, triplet, and higher-order interactions. For anharmonic descrip-

tions, higher order terms will be necessary. As in cluster expansions, the number of unique

pairs that can be enumerated in an infinite crystal is in theory infinity, but due to realistic

computational limitations, and utilizing the assumption that at longer distances, the inter-

action decays rapidly, we can truncate our enumeration. In the case of phonons, the upper

bound of this truncation will be defined by the simulation cell size. In the cluster expan-

sion formalism, a collection of clusters that are symmetrically equivalent are referred to as

belonging to the same orbit. In particular, we are interested in clusters radiating from the

same site b, which we will call the pivot. As a result, our orbits will be special in that they
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not only gather symmetrically equivalent clusters, the clusters in an orbit all also contain

the same pivot. For simplicity, we will index clusters with η and orbits with Ω. Each orbit

represents clusters of a particular length, for example, Ω = 0 represents the pair cluster

between an atom with itself, which we will refer to as the self-interaction pair. Ω = 1 is

the nearest neighbor, Ω = 2 is the next nearest neighbor, etc. Because we will no longer be

dealing with a single pair of atoms in the supercell, but rather all symmetrically equivalent

ones as well, we will express our force constants as ΦΩη, where it is understood that this

describes the force constant of a specific pair of atoms in a particular orbit. Force constants

of clusters in the same orbit can be related by the space group of the crystal.

A basis of rank 2 tensors can be constructed such that the sum possesses the symmetry

of the force constant describing the interaction between the two sites represented by η. We

represent each 3× 3 tensor of this basis using Λδ, where δ indexes the number of tensors in

the basis. The force constant for a particular pair cluster can then be written as

ΦΩη =
∑
δ

ΓδΩΛδ
Ωη. (A.1)

While the collection of Λδ
Ωη’s describe the symmetry of the force constant, using perturbations

and forces, we can fit for the coefficients Γδ that will give us a force constant that accurately

describes the physics between a particular pair cluster. Note that for a single orbit, while

the clusters’ basis tensors may take on different forms, there is a single set of coefficients for

all the clusters in the orbit.

We can express the force on site b resulting from a perturbation on site b′, where both

sites b and b′ belong to cluster η, as

~fb =
∑

Ω

∑
η

ΦΩηuΩ,η,b′ . (A.2)

Following equation 2.27, we can write the self-interaction term as

Φ0,0 = −
∑
Ω=1

∑
η

∑
δ

ΓδΩΛδ
Ωη, (A.3)

where we omit the orbit Ω = 0 representing the self-interaction term from our summation.

One common method of ensuring Equation 2.27 is satisfied is to fit for the force constants

of all finite-length pairs, and subsequently setting the self-interaction force constant term to

be the negative of the sum of the other pairs [26]. The fitting method presented here will

ensure that this condition is enforced self-consistently. We begin by combining Equations
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A.2 and A.3

~fb = Φ0,0u0,0,b′ +
∑
Ω=1

∑
η

(∑
δ

ΓδΩΛδ
Ωη

)
uΩ,η,b′ (A.4)

= −
∑
Ω=1

∑
η

∑
δ

ΓδΩΛδ
Ωηu0,0,b′ +

∑
Ω=1

∑
η

(∑
δ

ΓδΩΛδ
Ωη

)
uΩ,η,b′ (A.5)

=
∑
Ω=1

∑
δ

ΓδΩ
∑
η

Λδ
Ωη (uΩ,η,b′ − u0,0,b′) (A.6)

=
∑
Ω=1

∑
δ

ΓδΩVΩ,δ,b′ (A.7)

(A.8)

where VΩ,δ,b′ =
∑

η Λδ
Ωη (uΩ,η,b′ − u0,0,b′). This can be rewritten as a matrix equation


~f0

~f1

...
~fb

 =


V1,0,0 V1,1,0 · · · VΩ,δ,0

V1,0,1 V1,1,1 · · · VΩ,δ,1

...
...

...
...

V1,0,b′ V1,1,b′ · · · VΩ,δ,b′




Γ0
1

Γ1
1
...

ΓδΩ

 . (A.9)

Once the forces, perturbations, and tensors are known, the coefficients ΓδΩ can be solved with

a least squares method.

A.3 Constrained Linear Least Squares Fitting of Force Constants

In our description of force constants in Section 2.1.1, we described several constraints

that need to be imposed. These constraints can be applied during our least squares fitting

via the means of well-established constrained linear least squares fitting as, for example,

detailed in reference [117].

Given the matrix X filled with ~VΩ,δΩ,b′ components and a column vector of forces, we can

fit for coefficients (column vector of Γs) through a system of linear equations that take on

the general form

y = Xβ, (A.10)

where β is the column vector of these coefficients, y is the column vector of forces, and X
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the tensor components of our force constants. Now given a constraint on β such that

Q′β = c, (A.11)

we can find a constraint-corrected β, βc using the following equation

βc = R(R′X ′XR)−1R′X ′y +
(
Ip −R(R′X ′XR)−1R′X ′X

)
Q (Q′Q)

−1
c. (A.12)

Here, Q is a full rank p× q matrix and R is a p× (p− q) matrix. For Equation A.12 to be

valid, not only do these matrix conditions need to be true, it is also imperative that [QR] is

non-singular and R′Q = 0. In the implementation, R is obtained by computing the kernel

of Q. To verify that [QR] is non-singular, the determinant is verified to be non-zero.

A.4 Units

In implementing the calculation of the dynamical matrix using VASP output, careful

unit conversions to the dynamical matrix need to be applied in order to obtain a dynamical

matrix where taking the square root of the eigenvalues will produce frequencies in units of

THz. Of course, frequencies are also sometimes expressed in units of cm−1, but we will

not address that here. To begin, recall the expression for the dynamical matrix in Equation

2.13. It is straightforward to note that only quantities such as the mass of the atoms Mi,Mj,

and the force constant have units, as the phase factor is unitless. In VASP, the calculated

forces have units of eV/Å, and the force constants Φbb′

αβ (Rl,Rl′) have units of eV/Å2, and

the masses have units of a.m.u. The following unit conversions to the dynamical matrix need

to be applied:

eV

Å2a.m.u.
× 1.60217646× 10−19J

1eV
× 1a.m.u.

1.66053886× 10−27kg
×

kgm2

s2

1J
×
(

1010Å

1m

)2

= 9.6475× 1027 1

s2
.

(A.13)

Solving for the eigenvalues of this adjusted dynamical matrix will now give us ω2, the angular

frequency squared in terms of 1/s2. As phonon dispersion curves are commonly plotted in

terms of just frequency ν, related to angular frequency by ω = 2πν, a division by (2π)2 is

applied

9.6475× 1027 1

s2
× 1

(2π)2
= 2.4440× 1026 1

s2
. (A.14)
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Noting that 1/s is a Hz, and that phonon frequencies are conventionally expressed in terms

of THz, we further apply a conversion factor of 1THz = 1012Hz:

2.4440× 1026Hz2 ×
(

1THz

1012Hz

)2

= 244.40THz2.

As a result of this added conversion factor, when we solve the dynamical matrix, we are

ultimately solving for ν, and not ω, in units of THz.

As a last note of caution, whether ω or ν is used in evaluating the thermodynamic

properties outlined in Section 2.1.4 only depends on whether h or ~ is used. In addition,

frequencies need to be in Hz and not THz.
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APPENDIX B

Entropic Stabilization of Cu2Sb Relative to Cu and Sb

An interesting Li-ion anode candidate is Cu2Sb, a displacement material. Contrary

to conventional layered intercalation materials such as LiCoO2, the charge and discharge

of the battery does not solely involve the shuttling of Li ions in and out of fixed host

structures. In displacement battery materials, as Li is intercalated in, another element

is extruded. In Cu2Sb, Cu is displaced [118]. In calculating the Li-Cu-Sb ternary phase

diagram, Chang et al. discovered that while Cu2Sb can be synthesized and remains stable

at room temperatures, zero Kelvin calculations with various pseudopotentials indicated that

Cu2Sb is metastable relative to Cu and Sb [119]. In fact, with the exception of more precise

hybrid functionals, Cu2Sb had a positive formation energy relative to the pure components.

A possible explanation was that Cu2Sb is stabilized by vibrational entropy, a hypothesis

easily tested with lattice dynamic calculations.

Using the quasi-harmonic approach described in Section 2.1.5, we examined the stability

of Cu2Sb relative to Cu and Sb. Harmonic phonon calculations were performed for Cu,

Sb (A7) and Cu2 Sb at volumes ranging from −5 % to +5 % of the equilibrium volume.

Perturbations with magnitudes of 0.01−0.05Å were imposed in supercells containing 32, 32,

and 18 primitive cells of Cu, Sb(A7), and Cu2Sb, respectively. Each harmonic calculation

resulted in dispersion curves similar to the equilibrium volume dispersion curves shown in

Figure B.1.

Having obtained Gibbs free energies at zero pressure for each of the three phases from

the quasi-harmonic calculations (Figures B.1a-B.1c), the formation free energy of Cu2Sb can

be calculated as

∆GCu2Sb = GCu2Sb − 2GCu −GSb. (B.1)
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Figure B.1. Dispersion curves of (a) Cu (b) A7-Sb and (c) Cu2Sb plotted along high symmetry
directions.

As Figure B.2d shows, the temperature at which Cu2Sb becomes stabilized is about 190 K,

indicating that Cu2Sb is stabilized by vibrational entropy.
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Figure B.2. Quasi-harmonic free energy curves for (a) Cu (b) A7-Sb and (c) Cu2Sb. Volume-
free energy curves are shown at increments of 50 K between 0 - 500 K. (d) The formation energy
∆GCu2Sb = GCu2Sb− 2GCu−GSb is plotted, showing that at 190 K, Cu2Sb is stabilized relative to
a decomposition to Cu and Sb.
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APPENDIX C

The Effect of U on the Li-Fe-F Ternary System

While studying Li intercalation into trirutile LiFe2F6 presented in Chapter VI, we ex-

amined the broader Li-Fe-F ternary system. Iron fluoride compounds FeF2 and FeF3, both

conversion cathode candidate materials, are known experimentally to be insulators and thus

have wide bandgaps. The density of states of FeF2 and FeF3 were calculated using GGA

Perdew-Wang pseudopotentials [42], and while FeF3 had a negligible bandgap, FeF2 had

no bandgap. We then calculated the densities of states using DFT+U to account for the

correlated electronic states around Fe. Figure C.1 shows the partial density of states of FeF2

and FeF3 with varying Ueff. As we would expect from DFT+U calculations, as the Ueff value

is increased, so does the bandgap.

The zero-Kelvin Li-Fe-F phase diagram we calculated using PBE pseudopotentials is

shown in Figure C.2 and largely agrees with one published previously by Doe et al. [110]. The

ground states of a zero-Kelvin phase diagram calculated using PW91 pseudopotentials [120]

are also consistent. As we saw, exclusion of Ueff values incorrectly predicts FeF2 and FeF3

to be metallic. We therefore calculated the Li-Fe-F ternary phase diagram with varying U

values using the PW91 pseudopotential to see how the ground states may be affected. The

results are shown in Figure C.2. With a value of Ueff = 1, several of the rutile-based ground

states disappear. For FeF2 to appear as a ground state, the reference state of Fe has to be

raised about 2.86 eV. Changing the Ueff value to 2 results in many of the original ground

states reappearing, and the Fe reference state only needs to be raised 0.36 eV to stabilize

FeF2. The Fe reference states of the phase diagrams with Ueff = 3, 4, 5 had to be raised by

0.3, 0.33 and 0.34 eV, respectively, in order for FeF2 to be stabilized. Many of the other

ground states, however, disappear. While the trirutile LiFe2F6 ground state is not present

with Ueff = 1, it persists for Ueff = 2 up until Ueff = 4.
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Figure C.1. Density of states of (a) FeF2 and (b) FeF3 with varying U values. The energy scale
is centered around the Fermi level
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[112] J. Strempfer, U. Rütt, S. P. Bayrakci, T. Brückel, and W. Jauch, “Magnetic prop-
erties of transition metal fluorides MF2 (M=Mn, Fe, Co, Ni) via high-energy photon
diffraction,” Phys. Rev. B, 69, p. 014417, (2004).

[113] E. O. Wollan, H. R. Child, W. C. Koehler, and M. K. Wilkinson, “Antiferromagnetic
properties of the iron group trifluorides,” Phys. Rev., 112, pp. 1132–1136, (1958).

[114] J. M. Greneche, A. L. Bail, M. Leblanc, A. Mosset, F. Varret, J. Galy, and G. Ferey,
“Structural aspects of amorphous iron(iii) fluorides,” Journal of Physics C: Solid State
Physics, 21, no. 8, p. 1351, (1988).

[115] G. Hart, V. Blum, M. Walorski, and A. Zunger, “Evolutionary approach for determin-
ing first-principles hamiltonians,” Nature Materials, 4, pp. 391–394, (2005).

[116] P. Liao, R. A. Dunlap, and J. R. Dahn, “In situ mössbauer effect study of lithium inter-
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