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ABSTRACT 

 

Thousands of loci have been associated with complex diseases and traits. However, there is still 

much we do not know about the biology of disease. Many reasons for this are possible, including 

the strong focus of genetic association studies over the past 5-10 years on common single 

nucleotide polymorphisms. In this dissertation, we focus on methods for the design and analysis 

of sequence based studies, to enable the assessment of other types of variants, particularly rare 

variants and copy number variants. 

 

In the first chapter, we attempt to resolve the debate regarding the best strategy for studying very 

rare, disease-associated variants, particularly singleton variants appearing only once in a sample. 

We estimated the sensitivity to detect singleton variants using both simulations and analysis of 

real data. We extended this to determine the power of an association study for discrete traits, 

evaluating the burden of singletons under a variety of situations. We found that sensitivity to 

detect singletons increases with sequencing depth, plateauing when depth reaches ~25x. For a 

fixed sequencing capacity, we estimated that power is maximized when samples are sequenced at 

15-20x coverage, which produced an optimal trade-off of singleton discovery and sample size. In 

our assessments, increasing coverage beyond 15-20x (and decreasing sample size) results in 

reduced power. 
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In the second chapter, we extend this analysis to a quantitative trait framework. Despite the 

different disease model, the results for quantitative traits are remarkably similar to those for 

binary traits. For constant sequencing effort, power is maximized at 11-16x coverage, for a 

variety of parameter values examined. Increasing coverage further for reduced sample size 

results in decreased power. 

 

In the final chapter, we turn to another type of variant that may aid in understanding the etiology 

of disease: copy number variation. Copy number variants (CNVs) are associated with many 

diseases, especially psychiatric disorders, and there is great interest in methods to accurately 

detect and genotype CNVs. We developed a method that uses read depth information to estimate 

copy number for a set of sequenced individuals. 
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CHAPTER I. Introduction 

 

One aim of genetic association studies is to further our mechanistic understanding of genetic 

diseases: knowing which genes are associated with disease can be used to determine functional 

pathways leading to disease.1 Much work has been done to study the impact of genetic variation 

on human disease. In recent years, genome-wide association studies (GWAS) have allowed for 

testing of millions of variants simultaneously.2; 3 This has made it possible to identify thousands 

of loci related to diverse diseases.3; 4 Ultimately, we want to translate association signals to 

function, and studies have resulted in some key insights.4 Despite this progress, however, there is 

still much we do not understand about the functional mechanism of disease.1; 4 

 

It is believed that rare variants may prove particularly useful in further elucidating etiology of 

disease.5; 6 A strong focus of genetic association studies in the past has been on common single 

nucleotide polymorphisms (SNPs).3; 7; 8 While many common variants have been associated with 

diseases, most convey only a small increase in disease susceptibility – not enough to fully 

explain the proportion of phenotypic variance explained by genetic factors.2; 3; 7; 8 Rare variants 

are more likely to be functional4-7; 9; 10 and have large effect sizes7; 9; 10, which point to key 

locations necessary for proper function. Therefore, rare variant association studies have been 

expanding rapidly. Examples of recent discoveries include: four low-frequency or rare variants 

associated with risk of type 2 diabetes, including a rare variant with minor allele frequency 

(MAF) of 0.20% (odds ratio of 2.27)11; a rare variant associated with increased risk of prostate 
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cancer (odds ratio of 2.90)12; and a very rare mutation with MAF 0.0076% associated with 

increased risk of schizophrenia (odds ratio 7.1).13 

 

While it is now clear that rare variants increase disease susceptibility for many diseases, there is 

still much debate regarding the best way to identify these variants.4 In particular, the popular 

theory is that deep sequencing is necessary to obtain a complete catalog of variation.4; 10 

However, some studies have shown that, especially for large sample sizes, many rare variants 

can be detected at low sequencing depth.3; 4; 14 Additionally, in most studies, there is a trade-off 

between sample size and sequencing depth so that, to maintain constant cost, if one increases, the 

other must decrease. Therefore, deep sequencing often requires reducing sample size.3; 4 While 

sequencing at greater depth may increase sensitivity to detect variants, association study power 

tends to increase with sample size. As a result, it is still unclear what is the ideal sequencing 

strategy for studying rare variants. 

 

We focused on singleton variants (those that appear only once in a sample), as designs that work 

well for them will likely provide an upper bound of needed sequencing depth for more common 

variants, for which low pass data can be analyzed more effectively.3; 15 We examined the balance 

between the sensitivity to detect singletons with association study power under a variety of 

situations in order to identify optimal study designs. We calculated the sensitivity to detect 

singletons at different sample sizes and read depths using both simulations and real data. We 

then used these estimates to assess association study power for a discrete trait under various 

conditions. We found that association study power is maximized at 15-20x coverage for a variety 

of trait models and study designs examined. 
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Another area of intense focus in recent years is studies of quantitative traits. Quantitative traits 

are frequently associated with disease (ie: cholesterol levels with heart disease, glucose levels 

with diabetes) and can, therefore, be used as markers for disease. This allows for a more flexible 

method of analysis. Additionally, knowledge of how genetic variation affects quantitative traits 

can aid in our understanding the mechanistic cause of disease.16 For instance, knowing a variant 

is associated with increased cholesterol, which increases the risk of heart disease, tells us how 

that variant leads to increased risk of heart disease. We extended our analysis to consider the 

association of singleton variants with quantitative traits. We found that 11-16x coverage results 

in maximal power for the trait models and study designs we considered. 

 

In addition to rare variants, a better functional understanding of the biology of disease may also 

lay beyond single nucleotide polymorphisms (SNPs).2; 8; 17 Copy number variants (CNVs) have 

been associated with a number of diseases, particularly psychiatric disorders such as 

schizophrenia and autism.18-20 It is necessary to have a reliable way of detecting such variants.  

 

Historically, array-based methods have been used to locate CNVs – specifically array 

Comparative Genomic Hybridization (aCGH) – but these methods do not allow for other types of 

analyses.20 As sequencing becomes cheaper, using sequence data to determine copy number 

becomes an attractive approach, as this allows for saving the cost of aCGH and allows for other 

types of analyses to be performed simultaneously. A number of methods have been devised to 

perform such an analysis, but most analyze one sample at a time.21 We developed a quick, easy 
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to use, and accurate method that determines copy number within a particular, well-defined region 

of interest for a sample of individuals. 

 

In this dissertation, we describe methods that will aid in the design and analysis of complex traits 

using sequence data. We begin by determining optimal designs for studying singleton variants 

related to discrete traits. We then extend this to ascertain the ideal strategy for studying 

singletons associated with quantitative traits. Finally, we propose a novel method for detecting 

copy number variants from sequence data. 
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CHAPTER II. Optimal Sequencing Strategies for Identifying Disease-Associated 

Singletons1 

 

Abstract 

With the increasing focus of genetic association on the identification of trait-associated rare 

variants, it is important to identify the most cost-effective sequencing strategies for these studies. 

Deep sequencing will accurately detect and genotype the most rare variants per individual, but 

may limit sample size. Low pass sequencing will miss some variants in each individual but has 

been shown to provide a cost effective alternative for studies of common variants. Here, we 

investigate the impact of sequencing depth on studies of rare variants, focusing on singletons - 

the variants that are sampled in a single individual and are hardest to detect at low sequencing 

depths. We first estimate the sensitivity to detect singleton variants in both simulated data and in 

down-sampled deep genome and exome sequence data. We then explore the power of association 

studies comparing burden of singleton variants in cases and controls under a variety of 

conditions. We show that the power to detect singletons increases with coverage, typically 

plateauing for coverage > ~25x. Next, we show that, when total sequencing capacity is fixed, the 

power of association studies focused on singletons is typically maximized for coverage of 15-

20x, independent of relative risk, disease prevalence, singleton burden, and case-control ratio. 

                                                

1 Rashkin, S., Jun, G., Chen, S., Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), and 
Abecasis, G. (In preparation). Optimal Sequencing Strategies for Identifying Disease-Associated Singletons. 



66 

Our results suggest sequencing depth of 15-20x as an appropriate compromise of singleton 

detection power and sample size for studies of rare variants in complex disease. 

 

Introduction 

New sequencing technologies are shifting the focus of genetic association studies to rare 

variants. Rare variants may explain much of the heritability of common, complex diseases.6; 10 

Importantly, rare variants are more likely to severely disrupt gene function5; 6, and identifying 

trait associated rare variants may accelerate progress from genetic association signals to 

mechanistic understanding of disease. 

 

It is frequently asserted that the study of rare variants requires deep sequencing, which provides 

the highest power for variant discovery in any single genome.4; 10 The alternative of low-pass 

sequencing has been advocated for studies of common variation,3; 14 supported by empirical 

studies.22 Low pass sequencing allows for larger sample sizes but misses some variants in each 

individual and reduces genotyping accuracy.3; 4 The 1000 Genomes Project used low pass 

sequencing of ~2,500 individuals to catalog genetic variation and haplotypes across 26 

populations.14 The project has produced a near complete catalog of common variation but also 

identified many rare variants, including singletons, in sequenced individuals.  

 

We speculated that low pass or intermediate depth sequencing could be useful even for studies of 

very rare variants. It is now clear that these studies often require large sample sizes, totaling 

thousands of individuals. Examples of successful rare variant association studies include several 

studies implicating rare variants in the complement genes (CFH, C3, CFI, C9) in the risk of age-
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related macular degeneration,23-26 a study showing rare IFIH1 variants protect against type 1 

diabetes,27 and a study that found that rare variants that inactivate NPC1L1 reduce the risk of 

coronary heart disease.28  

 

Here, we attempt a more nuanced view of the optimal strategies for sequence based rare variant 

association studies and explore and compare the power of rare variant association studies that use 

low, intermediate, or deep sequencing strategies. Since common variants can be detected and 

genotyped efficiently by analyzing sequence data for many individuals jointly, we focused our 

analysis on singletons. Any sequencing depth that works well for singletons should provide an 

upper bound of needed sequencing depth for more common variants, for which low pass data can 

be analyzed more effectively.3; 15 In this paper, we examine discrete traits and seek to maximize 

association study power for a fixed sequencing effort (in a companion manuscript, we explore 

quantitative traits29). We consider the balance between power to identify very rare variants 

(which increases with sequencing depth) and power to identify disease association (which 

increases with sample size). We explore both simulated data and actual sequence data. We 

estimate the power of association tests for study designs employing deep sequencing, low pass 

sequencing, and intermediate strategies across a range of sample sizes, singleton frequencies, 

disease relative risks, and disease prevalence. Our results show that, for fixed cost, power to 

detect association is maximized at a read depth of 15-20x and decreases rapidly as coverage is 

increased beyond this threshold. 
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Methods 

Overview 

To determine the ideal study design for studying disease-related singletons, we first used 

simulations to explore the ability to detect singleton variants present in sequenced samples. Next, 

we validated simulations by comparing results to down-sampled sequence data. Finally, we 

extended these analyses of variant discovery power to examine association study power. 

 

Definitions 

We consider sequencing studies that assess N individuals, sequencing each to an average depth d. 

We assume that the cost of the study is proportional to the cost of preparing samples for 

sequencing, Nc, and the total sequencing depth, Nd. (Here, c is a constant that places sequencing 

depth and per sample cost in the same scale).  

 

Thus, we estimate the total cost of a sequencing study as: 

€ 

Cost = N ⋅ cost per sample( )
= N ⋅ d⋅ cost per depth( ) + N ⋅ cost of library and sample preparation( )
= N ⋅ cost per depth( )⋅ d + c( )
∝ N ⋅ c + d( )  

where N(c+d) is the total sequencing capacity. In this simple model, to keep total cost constant, 

sample size and depth must vary inversely of each other (i.e., if sample size increases, coverage 

decreases). In our simulations, we first considered c=0. We then expanded our analyses to also 

consider c=5 and c=20 for total budgets of sequencing capacity = 50,000x, 100,000x, and 

200,000x. With current genome sequencing costs of $1,000 - $3,000 per 30x genome, c=5 and 
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c=20 correspond to costs of ~$250 to $600 and of ~$700 - $2,000 for sample collection and 

preparation, respectively. 

 

Sensitivity to Detect Singleton Variants 

We first used simulations to estimate the sensitivity of singleton discovery. We ran these 

simulations using different read depths (d, ranging from 2x to 50x), sample sizes (N, ranging 

from 100 to 5,000), sequencing error rates (e, ranging from 0.001 to 0.02) and singleton 

discovery false positive rates (γ, 0.00001, 0.0001, 0.001, 0.01, and 0.05). For each combination 

of parameters, we generated 200,000 replicate samples, each with a single individual carrying the 

simulated singleton variant (when estimating sensitivity) or no individuals carrying the variant 

(when estimating false positive rates).  

 

We assumed read depth followed a Poisson distribution. For each individual, we track the total 

number of sequencing reads as well as the number of reads in which a variant base was observed. 

For each individual, depth was generated from Poisson(d), and each read was generated with a 

sequencing error occurring with probability e. Briefly, our simulation proceeded as follows. We 

first sampled a total read depth for each individual and set the number of variant reads to zero. 

Then, for each read, we select a strand at random. Then, we increased the number of variant 

reads whenever the simulated read was assigned to the individual and strand that has the 

singleton variant (without a sequencing error, probability 1 - e) or when the simulated read was 

assigned to a different individual (but with a sequencing error, probability e). We then estimate 

the likelihood of the observed count of variant reads, conditional on depth and sequencing error 

rates and an allele frequency; first, assuming that all individuals match the reference so that the 
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number of variant reads in each individual is distributed as Binomial(Prob = e, Count = depth); 

next assuming that a rare variant is segregating with frequency 1/2N, so that the number of 

variant reads is distributed as (1 – 1/2N) x Binomial(Prob = e, Count = depth) + 1/2N x 

Binomial(Prob = 0.5, Count = depth). Finally, we take the ratio of these two likelihoods. The 

sensitivity for detecting a variant with false positive rate γ was computed as the fraction of 

simulations with a simulated singleton for which the likelihood ratio was greater than the (1- γ)th 

percentile of null simulations using the same sample size, depth, and sequencing error rate 

parameters.  

 

We validated these estimates by down-sampling on chromosome 20 from deep genome and 

exome samples and assessing the sensitivity to detect singletons called when all available 

sequence data was analyzed. Exome samples are from the NHLBI Exome Sequencing Project6; 30 

(original depth of exome sequenced regions in chromosome 20 averaging 106.80x, range 27.10–

515.25x). We excluded samples with an average depth <50x to allow for down-sampling to 

depths 2-50x. Whole genome samples are from the Genetics and Epidemiology of Colorectal 

Cancer Consortium31 (original depth averaging 35.79x, range 30.35-42.59x). For whole genome 

samples, we considered down-sampled depths 2-30x. In each down-sampling analysis, we 

sampled reads from each individual to create a new sample with the desired average depth. For 

instance, for an individual with an original depth of 100x, we would retain each of the original 

reads with a probability of 10% to achieve depth 10x.  

 

After down-sampling, we performed variant calling using SAMtools mpileup.32 Sensitivity for 

each subsample was computed as the proportion of singletons in the original deep sequence data 
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that were called in the down-sampled data. The false positive rate was estimated as the 

proportion of sites where variants were called in the down-sampled data but not in the original 

deep sequence data. We averaged the results of 100 replications for 100 individuals at each depth 

(each exome replicate examined 788,942 bases on chromosome 20 and included 126-231 

singletons; each whole genome replicate examined 63,025,520 bases on chromosome 20 and 

included 75,269-79,849 singletons). 

 

We chose parameter settings for computational simulations so that results closely mimicked 

those for analysis of down-sampled real data. We then used these values in the analysis of 

association study power across a broad range of sample sizes, sequencing depths, and cost 

models.  

 

Power to Detect Association 

We estimated association study power analytically by comparing the burden of singletons in a 

region between cases and controls, at significance level α = 2.5x10-6, corresponding to the 

analysis of ~20,000 independent gene regions. Power for a two-sample t-test can be estimated 

using a non-central t-distribution to model test statistics as a function of sample size, the 

frequency of singleton variants per gene per person, the increased risk of disease conveyed by a 

singleton variant, and the sensitivity to detect each singleton (which is a function of sequencing 

depth). 
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Modeling this non-central t-distribution requires estimates of a non-centrality parameter λ, which 

describes the expected value of the statistic for a given disease model and experimental design. 

The requisite non-centrality parameter λ for a two-sample t-test can be expressed as: 

€ 

λ =
µA − µU

σA
2 NA +σU

2 NU

 

where μA is the mean number of singletons per gene per person in affected individuals, and σA
2 is 

the corresponding variance. Similarly, μU and σU
2 are the mean and variance for unaffected 

individuals. NA and NU are the number of affected and unaffected individuals, respectively.  

 

We assume that the number of singletons occurring per gene per person follows a Poisson 

distribution with rate parameter equal to the product of gene length (L) and frequency of 

singleton occurrence per site per person for cases (pA) or controls (pU). For a subset of 

simulations, we compared results of a two-sample t-test and a Wilcoxon rank-sum test. Since 

both gave similar results, we proceeded with the two-sample t-test.  

 

The non-centrality parameter can be expanded as: 

€ 

λ =
L⋅ pA − L⋅ pU

L⋅ pA NA + L⋅ pU NU  

Here, pA and pU are the cumulative frequencies of singletons among cases and controls (for 

deeply sequenced samples). For low and intermediate sequencing depths, we replace these with 

pA
* and pU

*, which are the frequency of detected singletons in cases and controls at a given 

sequencing depth. These quantities can be defined as: 
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€ 

pA
* = P detect singleton | d, N, case( )

= P detect singleton | singleton, d, N( )⋅ P singleton | case( )
+ P detect singleton | no singleton, d, N( )⋅ P no singleton | case( )

pU
* = P detect singleton | d, N, control( )

= P detect singleton | singleton, d, N( )⋅ P singleton | control( )
+ P detect singleton | no singleton, d, N( )⋅ P no singleton | control( )

 

where P(detect singleton | singleton, d, N) is the sensitivity to detect singleton variants for a 

given read depth and sample size, and P(detect singleton | no singleton, d, N) is the 

corresponding false positive rate. The frequency of singleton occurrence in cases and controls 

can be expressed as: 

€ 

P singleton | case( ) =
prf /L

prf /L + (1− p /L) f
=

pr /L
pr /L + (1− p /L)

P singleton | control( ) =
p /L(rp /L +1− p /L − rf )
(1− f )(rp /L +1− p /L)

 

where r is relative risk of disease (ranging from 2 to 20 in our simulations), p is population 

frequency of singletons (ranging from 0.001% to 1% per gene per person in our simulations), L 

is gene length (ranging from 1,000 to 50,000 bps in our simulations), and f is the background 

prevalence of disease (ranging from 0.1% to 20% in our simulations). We considered different 

case-control ratios (1:1, 2:1, 3:1, and 1:2 in our simulations). 

 

We considered prevalences from 0.1% to 20% to explore scenarios for studying different 

diseases. Such diseases include very complex diseases such as cardiovascular disease, which has 

a prevalence of 33% in American adults33, intermediate frequency diseases such as age-related 

macular degeneration, which has an estimated prevalence of 1.47% in Americans 40 years and 
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older34, but also less common diseases such as type 1 diabetes, which has an approximate 

prevalence of 0.33% in Americans 18 years and younger35.  

 

From our exome samples, we estimated that singletons occur at a rate of 0.79% per gene per 

person for the entire genome (assuming approximately 20,000 genes). This rate fluctuates when 

looking at specific genes. Longer genes are more likely to include singletons than shorter genes. 

For instance, AVP (a gene that provides instructions for making the hormone vasopressin) is 

2,169 bp long36 and has an estimated frequency of singletons of 0.058% per person in the coding 

region, while TTN (encoding a giant muscle protein that plays a key role in muscle assembly and 

one of the longest genes in the human genome) is 281,435 bp long37 and has a singleton 

frequency of 42% per person in the coding region. Genes of different functions might have 

different frequencies of singletons. We varied population frequency of singletons from 0.001% 

to 1% per gene per person to account for this wide set of possibilities.  

 

Once the non-centrality parameter is computed, the power of an association test can be estimated 

by: 

€ 

Power = P X > tα / 2(ν, 0) | X ~ t(ν, λ)( )
where

tα / 2(ν, 0) =100(1−α /2) percentile of the central
t with ν degrees of freedom

t(ν, λ) = Non − central t with ν degrees of
freedom and non − centrality parameter λ
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Results 

Sensitivity to Detect Singletons 

Our simulations show that, for a fixed sample size, sensitivity to detect singletons increases 

rapidly as coverage increases until ~25x (see Figure II-1a). After this point, increasing coverage 

has little effect on sensitivity. As sample size increases for a fixed depth, sensitivity decreases 

only slightly (see Figure II-1b), implying that coverage at a site has more impact than sample 

size in the overall ability to detect singletons. For constant depth and sample size, an increase in 

sequencing error rate reduces sensitivity (see Figure II-1c). At higher false positive rates, 

sensitivity is greater (see Figure II-1), although the number of incorrectly called singletons 

increases as well. Among the settings we considered, by 25x, sensitivity reaches 98.6% for a 

sequencing error rate of 0.005, 96.2% for an error rate of 0.01, and 89.9% for a sequencing error 

rate of 0.02, regardless of sample size or false positive rate. Increasing depth to 30x resulted in 

sensitivity of 99.6% for a sequencing error rate of 0.005, 98.8% for an error rate of 0.01, and 

95.9% for an error rate of 0.02. Further increase in depth to 50x, resulted in 100% sensitivity, 

regardless of error rate.   

 

As shown in Figure II-1, variant detection sensitivity changes rapidly with read depth but only 

very slowly with sample size (sensitivity decreases slightly with increased sample size because, 

when depth and total false positive rate are fixed, the caller must become gradually more 

stringent as more samples are sequenced so as to maintain a fixed false-positive rate). We next 

explored variant discovery power in experiments with constant cost, where sample size and read 

depth vary in opposite directions. We first considered a simplified case with no additional cost 

for library and sample preparation, so that read depth and sample size are inversely proportional. 
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In this case, as coverage increased, sensitivity increased until 20-25x, after which increasing read 

depth had little effect on sensitivity (see Figure II-2). When we varied the total sequencing 

capacity, there was little difference between the sensitivity to detect singletons at a fixed read 

depth, emphasizing that read depth has more effect than sample size on sensitivity. For instance, 

at 10x coverage, sequencing 5,000 samples provides 64% sensitivity, sequencing 10,000 samples 

provides 60.8% sensitivity, and sequencing 20,000 samples provides 57.9% sensitivity; whereas, 

at 20x coverage, sequencing 5,000 samples provides 97.4% sensitivity, sequencing 10,000 

samples provides 96.8% sensitivity, and sequencing 20,000 samples provides 96.1% sensitivity. 

 

Analyses of down-sampled data validated our computational simulations (see Figure II-3). For a 

fixed sample size of 100 individuals, empirical estimates of sensitivity closely resemble 

simulations that assume a sequencing error rate of 0.01 and a false positive rate of 0.001, though 

the simulations were slightly conservative at lower depth – detecting a lower proportion of 

variants than in the down-sampled data – and slightly anti-conservative at higher depth – 

detecting a larger fraction of variants than in the down-sampled data with the same total depth 

(see Figure II-3). We thus used e = 0.01 and γ = 0.001 to estimate variant detection sensitivity 

and assess association study power for a broad range of cost models and sequencing capacities.   

 

Power to Detect Association 

We first considered a situation of fixed cost (sample size and read depth vary inversely) with no 

extra cost of library/sample preparation (c=0) for equal numbers of affected and unaffected 

individuals. As depth increases, association study power quickly reaches a maximum and then 

rapidly decreases (see Figure II-4). For example, sequencing 20,000 samples at 5x provides only 
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1.19% power, sequencing 6,666 samples at 15x provides 91.08% power, and sequencing 2,000 

samples at 50x provides 17.71% power for a relative risk of 15, population frequency of 

singletons 0.01 per person per gene, and a prevalence of 20%. Maximum power increases with 

relative risk, population frequency of singletons, or prevalence (see Figure II-4a-c). For unequal 

numbers of cases and controls, power decreases as the case-control ratio moves further away 

from 1:1 (see Figure II-4d).  

 

When the NCP is large, a change in the NCP might not be reflected in power if the power is 

already 1. Therefore, we examined the read depth/sample size pair where the maximum NCP, 

rather than power, was attained. The depth at which the NCP is maximized occurs between 15-

20x depending on study cost and the relative cost of library/sample preparation. As available 

sequencing capacity and total study cost increase, the maximum NCP increases (see Figure II-5). 

As relative cost of library/sample preparation (c) increases, NCP decreases slightly (see Figure 

II-6). When either total study cost or c increases, the point at which NCP is maximized shifts to a 

higher depth. For c=0, NCP is maximized at 15-16x; for c=5, NCP is maximized at 16-18x; and 

for c=20, NCP is maximized at 18-19x. For sequencing capacity=50,000x, NCP is maximized at 

15-18x; for sequencing capacity=100,000x, NCP is maximized at 16-18x; and, for sequencing 

capacity=200,000x, NCP is maximized at 16-19x. This point is not affected much by relative 

risk, prevalence, population frequency of singletons, or gene length. The overall pattern is easy 

to understand intuitively: with increasing per sample preparation costs, it is advantageous to 

sequence fewer samples at higher depth; with increasing total sequencing capacity, the overall 

sample size increases and a slight increase in sequencing depth is needed to accommodate the 

greater stringency needed to maintain low false positive rates in variant calling.  
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For fixed sample size, increasing coverage is never harmful. At lower depth, increasing coverage 

increases association study power; at high depths, power eventually plateaus (see Figure II-7). 

For instance, for relative risk of 15, population frequency of singletons 0.008, and prevalence 

0.2, sequencing 10,000 samples provides 30.45% power at 10x, 97.99% power at 25x, 98.27% 

power at 35x, and 98.27% power at 50x. For increased sample size, relative risk, population 

frequency of singletons, or prevalence, the magnitude of power increases. Regardless of the 

parameter values, NCP is maximized by 35x, with 99% of maximal NCP occurring by 25x. 

 

Discussion 

We set out to identify ideal sequencing strategies, in terms of read depth and sample size, 

focusing on studies exploring the association of singleton variants and discrete traits.  We found 

that association study power is never large unless frequency of singletons or relative risk is large. 

When cost is fixed so sample size varies inversely of read depth, power decreased as coverage 

increased beyond 15-20x. Even for fixed sample size, increasing coverage beyond 25x had only 

a small impact on power. Therefore, we believe it will often be better to sequence larger samples 

at lower coverage rather than smaller samples at increased coverage when searching for disease 

associated singletons. We recommend that coverage should only be increased beyond 20x if 

sample numbers are limited or if applications other than genetic association studies (such as 

genetic counseling and diagnosis) can justify the advantages of more complete sequencing of 

each individual at the cost of reduced sample sizes. 
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While varying prevalence, singleton frequency, and relative risk varies association study power, 

the combination of read depth and sample size combination that maximizes power (for a fixed 

cost) remained constant. For example, consider two scenarios. The first has a relative risk of 10, 

a prevalence of 20%, and a population frequency of singletons of 0.8%. The other has a relative 

risk of 12.5, a prevalence of 20%, and a population frequency of singletons of 1%. Both 

scenarios have a sequencing capacity of 200,000x with intermediate library and sample 

preparation costs (c=5) and a gene length of 1000 bp. The first scenario attains a maximum 

power of 19.87% (NCP = 3.86); the second reaches a maximum power of 92.07% (NCP = 6.12). 

However, in both cases, NCP is maximized at a depth of 18x (with 8,695 samples). This suggests 

that deep sequencing is not justified for detecting rare variant association, irrespective of the 

disease or gene under study. While power may be low, increasing coverage beyond a threshold at 

15-20x will not increase power if it requires a decrease in sample size. For more common 

variants, there is likely even higher sensitivity for detecting variants at lower depths, so we 

expect association study power will be maximized at even lower coverage.3 

 

Of the parameters we considered, only the cost of library and sample preparation changed the 

depth required to maximize association study power, though this optimal depth remained 

between 15-20x. For larger library and sample preparation costs, the optimal depth increases 

slightly. For no extra cost of library/sample preparation (c=0), the ideal depth is 15-16x; for a 

moderate cost of library/sample preparation (c=5), the ideal depth is 16-18x; and when the cost 

of library/sample preparation is high (c=20), the ideal depth is 18-19x. When there is an 

increased penalty for increasing sample size rather than increasing coverage in the current 

sample, a slightly deeper coverage is ideal to compensate for this penalty. For very large studies, 
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the ideal depth shifts to slightly larger depths. For example, when the total sequencing capacity is 

50,000x, the ideal depth is 15-18x per genome; when this increases to 100,000x, the ideal depth 

is 16-18x per genome; and, for sequencing capacity of 200,000x, the ideal depth is 16-19x per 

genome. This increase in per genome depth allows variant calling to become more stringent as 

sample size increases (there are more opportunities for false positive calls as more genomes are 

sequenced). 

 

In summary, we have shown that, while deep sequencing is appealing for detecting a complete 

catalog of variants, increasing sample size at the cost of lower depth of coverage per sample 

results in higher power for association studies. An avenue of future work is to conduct a similar 

analysis for quantitative traits.29 Additionally, our simulations focus on SNPs, but other types of 

variants such as insertions and deletions are of interest. These non-SNP variants are typically 

more difficult to detect than SNPs,38 and may justify higher coverage to enable accurate 

genotyping followed by detection of association. 



2121 

Figures and Tables 

Figure II-1. Sensitivity to detect singletons by read depth, sample size, and sequencing 
error rate 
Sensitivity vs. (a) read depth for N=1000 and e=0.01, (b) sample size for d=10x and e=0.01, and 
(c) sequencing error rate for N=1000 and d=10x at different false positive rates. 
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Figure II-2. Sensitivity to detect singletons by read depth for constant cost 
Comparing computational simulations (for a sequencing capacity of 50,000x) for sensitivity to 
detect singletons for different false positive rates shows that power increases until 25-30x, exact 
threshold increasing with increased error rate or decreased false positive rate. (Sample size = 
cost/depth, assuming no cost of library/sample preparation, c=0) 
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Figure II-3. Comparison of empirical sensitivity to detect singletons with computational 
estimates 
For a sample size of 100, sequencing error rate of 0.01 with a false positive rate of 0.001, 
empirical and computational estimates are similar. 
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Figure II-4. Association study power by read depth for constant cost 
Power of an association study increases with relative risk (a), population frequency of singletons 
(b), prevalence (c), and ratio of cases to controls (d) for a fixed sequencing capacity of 100,000x 
with no extra cost for library/sample preparation (c=0).  
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Figure II-5. Association study power and NCP by read depth for constant different 
sequencing capacities 
Library/sample preparation costs low (c=0), relative risk 15, population frequency of singletons 
0.01, prevalence 20%, case-control ratio 1:1 
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Figure II-6. Association study power and NCP by read depth for different sample 
preparation costs 
Sequencing capacity 100,000x, relative risk 15, population frequency of singletons 0.008, 
prevalence 20%, case-control ratio 1:1 
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Figure II-7. Association study power by read depth for fixed sample size 
Increasing coverage beyond a threshold does not increase power of an association study for 
constant sample size. 
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CHAPTER III. Optimal Sequencing Strategies for Identifying Singletons Associated with 

Quantitative Traits2 

 

Abstract 

A major focus of modern genetic association studies is the effect of rare variation on quantitative 

traits, so it is important to determine cost-effective sequencing strategies for these studies. Deep 

sequencing allows for accurate detection and genotyping of all variants per individual, but may 

restrict sample size. The reduced cost of low-pass sequencing allows for increased sample sizes 

(given a fixed total cost), which is beneficial in association studies, but may miss some variants. 

Here, we explore the effect of sample size and depth on studies of rare variants associated with 

quantitative traits, focusing on singleton variants that appear in a single individual in a sample 

and are the most difficult type of variant to detect. We examined the sensitivity to detect 

singletons in simulated data and down-sampled deep genome and exome data. We extended this 

to examine association study power comparing the burden of singletons in a gene to the trait 

value. We show that when sequencing capacity is fixed, power of association studies focused on 

singletons is typically maximized for 11-16x coverage, independent of frequency of singletons 

per gene per person and effect size. Our results suggest a sequencing depth of 11-16x as an 

appropriate compromise of sample size and sequencing depth for studies of rare variants and 

quantitative traits. 

                                                

2 Rashkin, S., Jun, G., and Abecasis, G. (In preparation). Optimal Sequencing Strategies for Identifying Singletons 
Associated with Quantitative Traits. 
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Introduction 

Quantitative traits have become an area of intense focus in recent years.16 Examples of 

quantitative traits include height, cholesterol levels, and blood glucose levels. Frequently, these 

can be used as markers for a disease, and they can also aid in understanding the basic mechanism 

of disease.16 Knowing how variants affect a quantitative trait value can be informative about the 

biological mechanism by which that variant affects disease, rather than simply knowing that a 

variant increases or decreases disease susceptibility. 

 

As with binary traits, there is still much we do not know about the biological basis of quantitative 

traits.4; 16 Focusing entirely on common single nucleotide polymorphisms (SNPs) is insufficient 

for understanding the biology of quantitative trait variation.2; 4; 8; 16 Rare variants are more likely 

to disrupt gene function and might, therefore, explain some of missing heritability of common, 

complex diseases and increase our mechanistic understanding of disease.4-7 With the advent of 

better sequencing technologies, allowing for reduced costs of sequencing studies, it is possible to 

include rare variants in genetic association studies. 

 

A typical study design for examining rare variants relies on deep sequencing to provide the 

highest power for variant discovery.4; 10 However, deep sequencing increases the cost of 

sequencing a single sample, limiting the number of individuals for a sequencing study (given 

fixed resources), which typically reduces the power to detect association. Lower coverage can 

reduce sequencing costs but may result in missing many rare variants.3; 39 Recent studies have 

shown that rare variants can be detected even with low coverage sequencing if the sample size is 
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large.3; 4; 14 Examples of such studies have identified rare variants including an LDLR variant that 

is associated with low-density lipoprotein cholesterol levels40 and several rare and low-frequency 

variants associated with hematological traits41. These results imply that a detailed comparison of 

sequencing study designs for the specific purpose of studying rare variants associated with 

quantitative traits is useful for designing modern genetic studies.  

 

Here, we compare the power of sequencing based rare variant association studies using low, 

intermediate, and deep sequencing strategies. Since singleton variants that appear only once in a 

sample are the most difficult type of variant to detect, designs with power to detect associations 

between them and a trait value should have power to detect associations with a trait for more 

common variants. Any sequencing depth that works well for singletons should provide an upper 

bound of needed sequencing depth for more common variants, for which low pass data can be 

analyzed more effectively.3; 15 Our goal was to determine optimal sequencing strategies that 

maximize power for a fixed sequencing effort for studies exploring the role of singletons in 

quantitative traits (we conducted a similar analysis for binary traits in a companion paper42).  

 

We examined the balance between sensitivity to detect singletons (increases with coverage) and 

power to detect association (increases with sample size) with analyses using simulated data and 

actual sequencing data. We explored the power of association tests for study designs 

implementing low, intermediate, and deep sequencing strategies across a range of effect sizes 

and frequencies of singletons. Our results show that, for fixed sequencing capacity, power to 

detect association is maximized at 11-16x and decreases as coverage is increased beyond this 

threshold. 
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Methods 

Overview 

To determine the optimal study design for studying singletons associated with quantitative traits, 

we conducted several simulations under a variety of parameter values. We approximated 

sensitivity to detect singletons by computational simulations validated by simulations using real 

data. We then extended these results to examine how association study power varies under 

different study designs in terms of sample size and read depth. 

 

Definitions 

We consider sequencing studies that assess N individuals, sequencing each to an average depth d. 

We assume that the cost of the study is proportional to the cost of preparing samples for 

sequencing, Nc, and the total sequencing depth, Nd. (Here, c is a constant that places sequencing 

depth and per sample cost in the same scale).  

 

Thus, we estimate the total cost of a sequencing study as: 

€ 

Cost = N ⋅ cost per sample( )
= N ⋅ d⋅ cost per depth( ) + N ⋅ cost of library and sample preparation( )
= N ⋅ cost per depth( )⋅ d + c( )
∝ N ⋅ c + d( )

 

where N(c+d) is the total sequencing capacity. In this simple model, to keep total cost constant, 

sample size and depth must vary inversely of each other (i.e., if sample size increases, coverage 

decreases). In our simulations, we first considered c=0. We then expanded our analyses to also 

consider c=5 and c=20 for total budgets of sequencing capacity = 50,000x, 100,000x, and 



3232 

200,000x. With current genome sequencing costs of $1,000 - $3,000 per 30x genome, c=5 and 

c=20 correspond to costs of ~$250 to $600 and of ~$700 - $2,000 for sample collection and 

preparation, respectively. 

 

Sensitivity to Detect Singleton Variants 

We first implemented computational simulations to estimate the sensitivity of singleton 

discovery. For each combination of depth, sample size, error rate, and false positive rate, we used 

a simulated multi-sample caller that calculated the power of detecting a singleton at a site from 

the likelihood of calling the variant across 200,000 simulations. We validated these results using 

simulations from real-data, where we down-sampled from deeply sequenced genome and exome 

samples and, for each sample size and read depth combination, assessed our ability to detect 

previously called singletons. For a more detailed explanation of this part of our analysis, refer to 

our companion paper for binary traits.42 We chose parameter settings for our computational 

simulations where results closely mimicked empirical estimates and used these results for our 

analysis of association study power across a broad range of sample sizes, depths, and cost 

models. 

 

Power to Detect Association 

We assumed a model where the trait value is dependent on burden of singletons in a region, at 

significance level alpha = 2.5x10-6, corresponding to the analysis of ~20,000 independent gene 

regions. We assumed the data follow a simple linear regression model: 

€ 

yi = β0 + β1xi +ε i, ε i ~
iid
N 0,σ e

2( )  
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where, for the ith individual, yi is the phenotype value, xi is the number of singletons in a gene, 

and εi is the error term. In this model, β0 represents the average trait value for an individual with 

no singleton variants in the gene and β1 represents the effect size, the change in the trait value for 

each additional singleton present in the gene for an individual. Since the power of association is 

dependent solely on the slope parameter (β1), we fixed β0 as 0 for our data generation. We 

allowed β1 to vary from 0.5 to 3. 

 

We modeled X following a Poisson(p) distribution, where the rate p is the population frequency 

of singletons per person per gene. In our companion paper for a similar analysis for binary traits, 

we estimated that singletons occur at a rate of 0.0079 per gene per person across the whole 

genome, assuming 20,000 genes.42 However, this rate may vary when looking at specific genes – 

it is reasonable to assume that longer genes may have higher rates of occurrence. We, therefore, 

considered rates from 0.001 to 0.01 per gene per person to account for most situations.  

 

The trait value given the number of singletons in a gene (Yi|Xi) follows a N(β0+β1xi, σe
2) 

distribution. For ease of simulations, we assumed that Y is standardized so the total phenotypic 

variance, σp
2, is 1. The variance of the error term can be calculated as: 

€ 

σp
2 =Var Y( ) =Var β0 + β1X +ε( ) = β1

2 ⋅ Var X( ) +Var ε( )

⇒1 = β1
2p +σe

2

⇒σe
2 =1− β1

2p
 

 

For each simulation, we set the sample size (N), read depth (d), population frequency of 

singletons (p), and effect size (β1). For each individual, we sampled Xi~Poisson(p) and 

Yi|Xi~N(β0+ β1Xi, 1-(β1)2p). To account for uncertainty regarding the true number of singletons, 
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we adjusted Xi to determine the number of singletons detected for the ith individual, Zi. We first 

generated the number of singletons present for the ith individual that are correctly detected Ti~ 

Bin(Xi, s), where s is the sensitivity for detecting singletons given the depth and sample size. We 

also generated the number of false positive singletons for the ith individual, Fi~Poisson(γ/N), 

where γ is the false positive rate for detecting singletons. We adjusted by N to approximate the 

number of false positives in a single individual rather than across the sample. Zi is the sum of 

these quantities. 

 

Using the generated data, we fit a simple linear regression on Y using Z and assessed β1 for 

significance. We repeated this for 5000 replicates. Power was estimated as the fraction of 

simulations where β1 was significant out of the total number of replicates. 

 

Our goal was to identify the optimal study design in terms of sample size and depth of coverage, 

so we were interested in determining the depth at which power is maximized. Since power 

cannot increase beyond 100%, it is sometimes impossible to distinguish which of several depths 

results in the largest power if all have near 100% power. Therefore, we calculated the non-

centrality parameter for a linear regression F-test43:  

€ 

λ =
β1
2 (zi − z )2

i=1

n
∑

σZe
2  

where σ2
Ze= 1-(β1)2Var(Z)= 1-(β1)2[Var(T)+Var(F)]= 1-(β1)2[sp+γ/N]. As we are only interested 

in the slope term, we can use the non-centrality parameter for a t-test, which is the square root of 

the above term. 
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Results 

Sensitivity to Detect Singletons 

Our simulations show that sensitivity to detect singletons increases as coverage increases, until 

~25x, beyond which increasing depth further has little effect on power. This pattern holds for 

both fixed sample size and fixed sequencing capacity (where sample size decreases as coverage 

increases). For a fixed sample size of 100 individuals, empirical estimates resemble simulation 

estimates for a sequencing error rate of e=0.01 with a false positive rate of γ=0.001, though 

computational sensitivity estimates are lower than estimates using real data for lower depths and 

higher than estimates using real data at higher depths. For a more detailed explanation of this 

part of our analysis, refer to our similar analysis for binary traits.42  

 

Power to Detect Association 

We first considered a scenario with fixed cost (sample size and depth vary inversely of each 

other) with no extra cost of library/sample preparation (c=0). As depth increases, power 

increases until a threshold is reached. Beyond this depth threshold, a further increase in coverage 

results in a decrease in power. For example, sequencing 20,000 samples at 5x provides 42.94% 

power, sequencing 8,333 samples at 12x provides 80.74% power, and sequencing 2,000 samples 

at 50x provides only 7.52% power for population frequency of singletons 0.008 and effect size 

0.8. The magnitude of the power to detect association depends on the combination of the effect 

size (β1) and the population frequency of singletons (p). 

 

As the effect size increases, power increases, holding other parameters constant (see Figure 

III-1). For example, for a sample size of 8,333 at 12x coverage with a population frequency of 
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singletons of 0.008 and an effect size of 0.5, the power of an association study is 13.90%. When 

the effect size is increased to 0.7, the power increases to 59.14%, and, when the effect size is 

further increased to 1, the power increases to 98.02%. 

 

Similarly, as the population frequency of singletons increases, power also increases, holding 

other parameters constant (see Figure III-2). For example, sequencing 8,333 samples at 12x 

coverage with an effect size of 1 and a population frequency of singletons of 0.001 per gene per 

person provides 2.00% power. When frequency of singletons increases to 0.005, power increases 

to 77.08%, and, when singleton frequency is increased further to 0.01, power increases to 

99.84%. 

 

Power calculated through the average non-centrality parameter across replicates follows a similar 

pattern as empirical power (see Figure III-3). For a sequencing capacity of 100,000x, the 

difference in power estimates has a mean of 0.48% (with a standard deviation of 2.76%). We 

determined the depth at which the non-centrality parameter is maximized for each combination 

of parameters. As sequencing capacity increases, maximum NCP increases (see Figure III-4). As 

relative cost of library and sample preparation increases, maximum NCP decreases (see Figure 

III-5). When either total sequencing capacity or c increases, the point at which NCP is 

maximized shifts to a higher depth. For c=0, NCP is maximized at 11-12x; for c=5, NCP is 

maximized at 12-14x; and for c=20, NCP is maximized at 15-16x. With increasing per sample 

preparation costs, it is advantageous to sequence fewer individuals at higher depth. For 

sequencing capacity=50,000x, NCP is maximized at 11-15x; for sequencing capacity=100,000x, 

NCP is maximized at 12-15x; and, for sequencing capacity=200,000x, NCP is maximized at 12-



3737 

16x. With increasing total sequencing capacity, the overall sample size increases and a slight 

increase in sequencing depth is needed to accommodate the greater stringency needed to 

maintain low false positive rates in variant calling. This point does not vary much with effect 

size or population frequency of singletons. 

 

For fixed sample size, increasing depth does not always result in an increase in power (see 

Figure III-6). At low coverage, increasing depth increases power substantively. However, after a 

threshold is reached, power remains relatively constant. For instance, for an effect size of 0.7 and 

a population frequency of singletons of 0.008, sequencing 10,000 samples provides 57.62% 

power at 10x, 92.72% power at 25x, 93.36% power at 35x, and 93.36% power at 50x. Regardless 

of the parameter values examined, NCP is maximized by 35x, with 99% of maximal NCP 

occurring by 24x. 

 

Discussion 

We set out to compare low, intermediate, and deep sequencing strategies for sequencing studies 

exploring the association of singleton variants with quantitative traits. We found that power is 

never large unless effect size or frequency of singletons is large. If cost is fixed so sample size 

and depth vary inversely, power decreases as depth increases beyond 11-16x. Even for fixed 

sample size, increasing coverage beyond 24x has little effect on power. Therefore, we believe it 

will often be better to sequence larger samples at lower coverage rather than increasing coverage 

in smaller samples when searching for singletons associated with quantitative traits. We 

recommend increasing coverage beyond 16x only if sample size is restricted or reasons other 
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than genetic association studies can justify the advantages of sacrificing increased sample size in 

lieu of more complete sequencing of each individual. 

 

While varying effect size and population frequency of singletons varies the power to detect an 

association, the read depth and sample size combination that maximizes power (for a fixed cost) 

remains constant. Consider two scenarios. In the first, we have an effect size of 0.7 and a 

population frequency of singletons of 0.007. In the second, we have an effect size of 1 and a 

population frequency of singletons of 0.009. In both situations, assume a total sequencing 

capacity of 100,000x with intermediate library/sample preparation costs (c=5). The first scenario 

attains a maximum power of 20.67% (NCP = 3.89); the second reaches a maximum power of 

94.76% (NCP = 6.34). Both situations attain maximal power at a depth of 14x (with 5,263 

samples). This suggests that deep sequencing is not justified for detecting rare variant 

association, irrespective of trait or gene under study. While power may be low, increasing 

coverage beyond a threshold at 11-16x will not increase power if it requires a decrease in sample 

size.  

 

Of the parameters we considered, only the cost of library and sample preparation changed the 

depth required to maximize association study power, though this optimal depth remained 

between 11-16x. For larger library and sample preparation costs, the optimal depth increases 

slightly. For no extra cost of library/sample preparation (c=0), the ideal depth is 11-12x; for a 

moderate cost of library/sample preparation (c=5), the ideal depth is 12-14x; and when the cost 

of library/sample preparation is high (c=20), the ideal depth is 15-16x. When there is an 

increased penalty for increasing sample size rather than increasing coverage in the current 
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sample, a slightly deeper coverage is ideal to compensate for this penalty. For very large studies, 

the ideal depth shifts to slightly larger depths. For example, when the total sequencing capacity is 

50,000x, the ideal depth is 11-15x per genome; when this increases to 100,000x, the ideal depth 

is 12-15x per genome; and, for sequencing capacity of 200,000x, the ideal depth is 12-16x per 

genome. This increase in per genome depth allows variant calling to become more stringent as 

sample size increases (there are more opportunities for false positive calls as more genomes are 

sequenced). 

 

We explored effect sizes ranging from 0.5 to 3 in order to assess power in a variety of situations. 

Our analysis shows that, for really rare mutations, there is often insufficient power to be able to 

successfully detect an association between the number of singletons in a gene and a trait value 

for small to moderate effect sizes and a low frequency of singletons in a gene.  It is only possible 

to detect an association if the effect size is large or the population frequency of singletons in a 

gene is large.  We found that, while association study power increases as effect size increases, 

the depth at which power is maximized is unaffected by effect size modeled. 

 

In summary, despite the benefits of deep sequencing in locating more rare variants per 

individual, a preferable design for identifying very rare variants associated with quantitative 

traits is to increase sample size at lower depths. We conduct a similar analysis for binary traits in 

a companion paper.42 Our simulations focused on SNPs, although it is important to consider 

other types of variants such as insertions and deletions to further our understanding of the cause 

of disease. Since these non-SNP variants are, typically, more difficult to detect than SNPs, a 
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greater depth may be required to maximize the power of association.38 A greater sequencing 

effort may be required to increase depth of coverage without decreasing sample size. 
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Figures and Tables 

Figure III-1. Association study power by read depth for constant cost for different effect 
sizes 
Fixed sequencing capacity of 100,000x with no extra cost of library/sample preparation (c=0) 
and population frequency of singletons 0.008 
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Figure III-2. Association study power by read depth for constant cost for varying 
population frequency of singletons 
Fixed sequencing capacity of 100,000x with no extra cost of library/sample preparation (c=0) 
and effect size 1. 
 
 

 
 
 

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Effect Size = 1

Read Depth

P
ow
er

Pop Freq Singletons
0.001
0.0025
0.005
0.006

0.007
0.008
0.009
0.01



4343 

Figure III-3. Empirical power by read depth for fixed sequencing effort compared with 
power calculated via NCP 
Fixed sequencing capacity of 100,000x with no extra cost of library/sample preparation (c=0), 
effect size 1, and population frequency of singletons 0.008. 
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Figure III-4. Association study power and NCP by read depth for different total costs  
Effect size =1; population frequency of singletons = 0.008; no library/sample preparation cost 
(c=0). 
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Figure III-5. Association study power and NCP by read depth for different library/sample 
preparation costs 
Sequencing capacity = 100,000x; effect size = 1; population frequency of singletons = 0.008. 
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Figure III-6. Association study power by read depth for fixed sample size 
Effect size = 0.7; population frequency of singletons = 0.008. 
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CHAPTER IV. Rapid Genotyping of Large Deletions from Next-Generation Sequencing 

Data3 

 

Abstract 

Many diseases, particularly psychiatric disorders such as schizophrenia and autism, have been 

associated with copy number variants. Detecting such variants is an important step in 

determining associations with diseases. Historically, this has been accomplished using array-

based methods, but these do not typically allow for any other type of analysis to be performed 

from the resultant data. As sequencing costs decrease, it is increasingly desirable to use sequence 

data to assess copy number. There are several existing methods that implement approaches using 

sequence data, but most analyze samples individually. We developed a method that leverages 

population data across multiple individuals to determine copy number within a particular region, 

focusing specifically on number of reads mapped to the region. We tested our method using the 

1000 Genomes Project Phase 1 samples and list of deletion regions. We were able to successfully 

identify 1,297 regions with easily distinguishable deletions, where each region has a mean 

accuracy of 95.49% (standard deviation of 8.16%) and a median of 97.67%. We also 

implemented our method in other samples, using this same list of regions. For AMD, GECCO, 

and Sardinia samples, we identified 935, 1,943, and 747 regions likely to encompass deletions, 

respectively. Our method is easy to use, fast, and accurate in calling deletions in regions 

                                                

3 Rashkin, S., Blackwell, T., and Abecasis, G. (In preparation). Rapid Genotyping of Large Deletions from Next-
Generation Sequencing Data. 
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identified to have distinguishable deletions. Other regions likely require inclusion of information 

beyond mapped read counts or other, more complicated, methods. 

 

Introduction 

Copy number variants (CNVs) are segments of the genome where the number of copies varies 

between individuals. Typically, an individual has two copies of the entire genome: one 

maternally inherited copy and one paternally inherited copy. However, if there is a deletion, 

there can be fewer than two copies. Similarly, more copies can arise if there is a duplication or 

insertion. CNVs are longer than indels, ranging from approximately 100 bps to several thousand 

kbs. Copy number variation at some regions has been associated with susceptibility or resistance 

to a variety of diseases.19 In particular, CNVs have been shown to be associated with psychiatric 

disorders, including schizophrenia and autism.18-20 Detecting CNVs has, therefore, become an 

increasingly important area of research.  

 

An important step in determining the association between CNVs and phenotypes of interest is to 

locate regions where copy number variation exists as well as the number of copies of each region 

that an individual possesses. Many studies have been conducted using microarray-based methods 

to locate CNVs.19; 20 However, with the decreasing cost of genome sequencing, the amount of 

sequencing data available is increasing, and these data can be useful in determining CNVs, while 

allowing for other types of analyses simultaneously. Some recent studies have used sequencing 

information in order to locate regions of varying copy number.19; 44 These methods consider at 

least one aspect of sequencing data in assessing copy number: (1) read depth analysis, which 

compares depth of coverage in a window to average depth to determine copy number; (2) read 
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pair analysis, which involves analysis of abnormally mapping pairs of reads; (3) split-read 

analysis, which assesses gapped sequence alignment; and (4) sequence assembly, which allows 

for structural variation detection.19; 21; 38 While these methods all involve analysis of sequence 

data, most still analyze one genome at a time. One notable exception is Genome STRiP, which 

leverages population-level data into identification of deletions.21; 44  

 

We developed a fast and simple method that works on sequence data within a specific region of 

interest. Focusing only on detecting deletions in key regions, we used sequencing data, 

specifically the number of reads mapped to a region, in order to predict CNVs via an 

expectation-maximization (EM) algorithm. We tested our method on the 1000 Genomes Project 

list of deletion regions using Phase 1 samples and successfully identified 1,297 regions (out of a 

total 13,973), with each region having a mean accuracy of 95.49% (standard deviation of 8.16%) 

and a median accuracy of 97.67%. Implementing our method on age-related macular 

degeneration (AMD)45, Genetics and Epidemiology of Colorectal Cancer Consortium 

(GECCO)31, and Sardinia46 samples, we identified 935, 1,943, and 747 regions likely to have 

deletions, respectively. While our method might miss some deletion regions, these regions likely 

require more complicated detection methods, making them slower or more cumbersome to use. 

 

Methods 

It can be assumed that read depth in a region can be associated with the number of deletions at 

the region in question. As copy number decreases, read depth should also decrease. We 

measured an individual’s read depth for each region as the number of reads mapped to the 
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region, adjusted by the total number of reads mapped for the individual. We further adjust read 

counts for a region by the mean read count across individuals for that region. 

 

If there are two copies of the region, we can expect to have a high read depth, whereas we expect 

very low read depth if there are two deletions. Read depth can be modeled using a Gaussian 

mixture distribution:  

€ 

di ~ p0 ⋅ N µ0,σ 0
2( ) + p1⋅ N µ1,σ1

2( ) + p2 ⋅ N µ2,σ 2
2( ) 

where di is the adjusted number of reads mapped to a region for the ith individual, μj represents 

the mean of the distribution component for j number of deletions (0, 1, 2), σj represents the 

standard deviation of the distribution component for j number of deletions, and pj represents the 

probability of having j number of deletions. 

 

To reduce the parameters being estimated, we relate the means of the three distributions to each 

other, based on the hypothesis: for an individual with two copies of the region, read depth is 

high; for an individual with no copies of the region, read depth is minimal; and, for an individual 

with one copy of the region, read depth falls in between these values. For this scenario, we set: 

€ 

µ0 = µ

µ1 = µ + Δ

µ2 = µ + 2Δ
 

where μ is the mean for the read count distribution for zero deletions and Δ is the difference in 

means between the groups. We further reduced the number of parameters by assuming each 

component of our mixture model has the same variance. Additionally, we assumed that the 

presence of a deletion is in Hardy-Weinberg Equilibrium (HWE), so the three probabilities can 
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be related to each other, so we only need to estimate one parameter, pdel, the probability of there 

being a deletion. Therefore, our model becomes: 

€ 

di ~ (1− pdel )
2 ⋅ N µ,σ 2( ) + 2pdel (1− pdel )⋅ N µ + Δ,σ 2( ) + pdel

2 ⋅ N µ + 2Δ,σ 2( ) 

 

We implemented an expectation-maximization (EM) algorithm to predict the maximum 

likelihood estimates for the mixture distribution and used these estimates to predict the number 

of deletions for each individual at each region. The EM-algorithm is a method of estimating 

parameters when there is missing data; here, the number of deletions is unknown. It is an 

iterative procedure resulting in the maximum likelihood estimates of all parameters. Since it is 

only guaranteed to find the local maximum and it can be sensitive to initial parameter values, we 

used multiple initialization values for each parameter (randomly selected within range of data) 

and kept the estimates resulting in the highest likelihood.  

 

More specifically, for a set of observed data D that follows a statistical model (here, we assume 

di are independent, identically distributed and follow the mixture distribution described above), a 

set of unobserved data Z (here, zi is the number of deletions for each individual), and a vector of 

parameters θ (here, θ=(pdel, μ, Δ, σ2)), the EM algorithm identifies the parameter estimates that 

maximize the likelihood function, L(θ;D,Z). The EM algorithm consists of two steps that are 

performed iteratively until parameter estimates converge.  

 

In the expectation (E) step, we calculate Q(θ|θ(r)), the expected value of the log likelihood with 

respect to Z given D and the current parameter estimates θ(r), where r is the step number: 
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€ 

Q θ θ (r )( ) = EZ |d ,θ ( r ) log L θ;D,Z( )[ ]

∝ log p j
(r)( )E I Zi = j( )D,θ (r)

i=1

n
∑⎡ ⎣ ⎢ 

⎤ 
⎦ ⎥ +

−1
2 log σ j

(r)( )
2
− 1
2σ j

2 di − µ j
(r)( )

2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ i=1

n
∑ E I Zi = j( )D,θ (r)[ ]⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ j=0

2
∑

 

We can simplify this equation to calculating the following quantities: 

€ 

E I Zi = j( )D,θ (r )[ ] = P Zi = j D,θ (r )( )

=
p j
(r ) f di;µ j

(r ),σ j
(r)( )

p j
(r ) f di;µ j

(r ),σ j
(r)( )j=0

2
∑

= Tj,i
(r+1)

E I Zi = j( )D,θ (r )
i=1

n
∑⎡ ⎣ ⎢ 

⎤ 
⎦ ⎥ = Tj ,i

(r+1)
i=1

n
∑

 

where the first is calculated for each individual i and group j, and the second is the summation of 

the first quantity across all individuals for each group j. 

 

The maximization (M) step finds the parameter values that maximize Q(θ|θ(r)): 

€ 

θ (r+1) = argmax
θ

Q θ θ (r )( )  

We can simplify this to the following expressions for each parameter: 

€ 

pdel
(r+1) =

T1,i
(r+1)

i=1

n
∑ + 2 T2,i

(r+1)
i=1

n
∑

2n

µ(r+1) = d − Δ(r+1)⋅ y (r+1), where y (r+1) =
T1,i
(r+1) + 2⋅ T2,i

(r+1)( )i=1

n
∑

n

Δ(r+1) =
Tj,i
(r+1) j − y (r+1)( ) di − d ( )

j =0

2
∑

i=1

n
∑

Tj,i
(r+1) j − y (r+1)( )j =0

2
∑

i=1

n
∑

σ (r+1) =
Tj,i
(r+1) di − µ j

(r+1)( )
2

j =0

2
∑

i=1

n
∑

n
, where µ j

(r+1) = µ(r+1) + j⋅ Δ(r+1)

 

 

We used the Kullback-Leibler (KL) distance between the null model of a single normal 

distribution and the estimated mixture model to assess whether our method is likely to be able to 
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accurately call deletions. The KL distance between distributions P and Q can be conceptualized 

as the information lost when using Q to approximate P and is calculated as: 

€ 

DKL P Q( ) = p(x)log p(x)
q(x)

dx
−∞

∞

∫  

where P is the null distribution and Q is the mixture distribution. Small values of KL distance 

indicate that Q, the estimated mixture distribution, is similar to P, the null distribution of a single 

normal distribution. 

 

We first tested our method using 1,072 samples (average depth 11.36x) from the 1000 Genomes 

Project Phase 1 data and associated list of deleted regions.47 We restricted our analysis to the 

13,973 autosomal regions. We used these data to determine the value of KL distance that allows 

for detecting regions where deletions are present in some individuals and accurately genotyping 

each individual. We then applied our method to three other datasets: 1968 AMD samples 

(average depth ~5x)45, 2975 samples (average depth ~13x) from the Genetics and Epidemiology 

of Colorectal Cancer Consortium (GECCO)31, and 3441 Sardinian samples (average depth 

~4x)46. 

 

Results 

Our method works well to detect deletions in regions, especially for regions where the read count 

distributions for each number of deletions are well separated (see Figure IV-1). For a KL 

distance threshold of 0.3, our method identifies 1,853 regions likely to have deletions (see Table 

IV-A). Comparing deletion calls with those from the 1000 Genomes Project, these regions have a 

mean concordance of 75.12% (standard deviation of 39.12%) and a median of 95.62% (see Table 

IV-A).  
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Since we anticipate very few reads to be mapped to a region when there is a homozygous 

deletion, we expect the estimated mean for this group to be close to 0. Therefore, we further filter 

regions to exclude those where the mean for this group is further than two standard deviations 

away from zero. After applying this filter, we identify 1,297 regions that have a mean 

concordance of 95.49% (standard deviation of 8.16%) and a median of 97.67% (see Table IV-B). 

Furthermore, only 15 regions have a concordance below 80% (136 below 90%). For most of 

these regions, the read count distributions either are very overlapped (see Figure IV-2) or do not 

follow the distribution we expect (see Figure IV-3). 

 

In regions where the read count distributions for each number of deletions are overlapped, some 

genotype calls are incorrect or ambiguous (see Figure IV-4).  We attempted to resolve this 

uncertainty by performing genotype refinement via Beagle.48 Use of this genotype refinement 

tends to improve genotype accuracy, especially in regions where the read count distributions are 

overlapping (see Figure IV-4). While some regions do not show an improvement after genotype 

refinement, most show moderate increases in concordance (see Figure IV-5). 

 

We applied our method with the same filters for the same list of 13,973 deletion regions to three 

other datasets to identify regions likely to have deletions in these samples. For each of these 

datasets, our method identified an overlapping, but not identical, list of regions where deletions 

are likely (see Figure IV-6). Comparing the list of 1,297 regions identified by our method in the 

1000 Genomes Project Phase 1 samples with the regions identified in other datasets, 454 regions 

are only identified in the 1000 Genomes samples. Our method identifies 935 regions in the AMD 
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samples, 77 of which are uniquely identified in these samples. Our method identifies 1,943 

regions, where 1,023 regions are not identified in any other dataset. While having the largest 

sample size (3,441 individuals), our method identifies the fewest number of regions in the 

Sardinia samples: 747 regions, with only 36 uniquely identified in these samples. There are 557 

regions our method identifies as likely to have deletions in all four datasets. 

 

Discussion 

We developed a novel method for detecting deletions from sequence data by leveraging 

information across multiple samples simultaneously. Our method is fast, easy to use, and 

accurate. Using the 1000 Genomes Project Phase 1 samples and list of deletion regions, our 

method identified 1,297 regions, with each region having a mean accuracy of 95.49% (standard 

deviation of 8.16%) and a median of 97.67%. Implementing our method on AMD, GECCO, and 

Sardinia samples, we identified 935, 1,943, and 747 regions likely to have deletions, 

respectively. While our method might miss some deletion regions, these regions likely require 

more complicated detection methods, making them slower or more cumbersome to use. 

 

Our method runs quickly. Collecting metadata for each region for each individual is the rate-

limiting step, compared to running our deletion caller. For 100 regions in a single sample 

processed on a single CPU, collecting the metadata takes approximately 5 minutes. Once the 

metadata are collected, implementing our deletion caller for 100 regions in a sample of 100 

individuals takes approximately 10 seconds on a single CPU, running a single region at a time. 
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Since our method runs quickly, even though it may miss some deletion regions, it provides a 

useful step in an analysis where it is important to identify regions where deletions are likely. In 

particular, our method allows for a quick determination of deletion calls within specific regions 

of interest, without identifying particular breakpoints. In addition, its speed allows for a quick 

overview of specific regions and whether they are likely to contain deletions in a specific sample 

without committing to a more complicated, and time consuming, analysis. 

 

Our method identifies the fewest number of deletion regions in the Sardinia data. While having 

the largest sample size (3441 individuals), these samples have the lowest average depth. Since 

our method compares read counts within a region, the deeper the coverage, the better it will be 

able to make comparisons. 

 

Our method should work for all types of sequencing data, including exome data, but our analysis 

here focused on whole genome sequencing data. Further testing is necessary to assess method 

performance with exome data. Additionally, our current method only allows for detection of 

deletions within a specified region. Further work is necessary to include detection of insertions. 
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Figures and Tables 

Figure IV-1. Example of region where distributions are well-separated 
Region located at 1:152555542-152587742 
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Table IV-A. Region concordance by KL threshold 
 
KL Threshold # Regions Mean Concordance (SD) (%) Median Concordance (%) 

0.3 1853 75.12 (39.12) 95.62 
0.35 1436 80.95 (34.94) 96.74 
0.4 1145 86.34 (23.10) 97.29 
0.45 918 90.71 (23.10) 97.67 
0.5 761 92.87 (19.41) 97.95 

 



5959 

Table IV-B. Region concordance by KL threshold for regions where μ2-2σ<0 
 

KL 
Threshold 

Number 
of 

Regions 

Mean 
Concordance 

(SD) (%) 

Median 
Concordance 

(%) 

# Regions where 
concordance 

<80% 

# Regions where 
concordance 

<90% 
0.3 1297 95.49 (8.16) 97.67 15 136 
0.35 1108 95.85 (7.94) 97.85 11 86 
0.4 954 95.97 (8.31) 97.85 9 62 
0.45 801 96.21 (8.24) 97.95 8 43 
0.5 680 96.53 (7.97) 98.04 7 27 
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Figure IV-2. Example of regions where distributions are very overlapped 
Region located at 7:8698628-8698846 
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Figure IV-3. Example of a region where read counts do not follow expected distribution 
Region located at 1:1564801-1568200 
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Figure IV-4. Example of region where distributions are overlapping 
Region located at 21:15460780-15461864 
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Figure IV-5. Concordance after Genotype Refinement vs. Original Concordance 
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Figure IV-6. Venn diagram comparing lists of regions identified in each dataset 
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CHAPTER V. Discussion 

 

While thousands of loci have been associated with complex diseases and traits, much is still 

unknown about the biology of disease. One possible reason is that much of genetic association 

studies has focused on common SNPs. Therefore, in this dissertation, we described methods that 

will aid in the design and analysis of complex traits using sequence data by allowing for 

improved assessments of other types of variants to disease, particularly rare variants and copy 

number variants. 

 

In Chapters II and III, we assess different study designs to determine what analysis plan (deep, 

intermediate, or low coverage sequencing) is best for studying very rare variants. This will aid in 

future endeavors to design studies with goals of identifying rare variants associated with either 

discrete or quantitative traits. We showed that, when cost is fixed so read depth and sample size 

vary inversely, power to detect association between a singleton variant and a trait decreases as 

coverage is increased beyond a threshold (15-20x for discrete traits, 11-16x for quantitative 

traits). We recommend increasing coverage beyond this threshold only if sample size is restricted 

or reasons beyond genetic association studies justify decreasing sample size in favor of a more 

complete sequencing of each individual. 

 

In Chapter IV, we describe a novel method for detecting deletion regions from sequence data by 

leveraging information across samples.  This allows for determining deletion regions, which is 
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useful in downstream analysis, quickly, easily, and accurately, without the added expense of an 

extra assay. While our method might miss some deletion regions, these regions likely require 

more complicated detection methods. Our method’s speed allows for a quick overview of 

specific regions to determine which ones are likely to contain deletions for a sample of 

individuals before committing to a more detailed and time consuming analysis. 
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