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ABSTRACT

A Macroscopic Study of Network Security Threats at the Organizational

Level

by

Jing Zhang

Co-Chairs: Michael Donald Bailey and Mingyan Liu

Defenders of today’s network are confronted with a large number of malicious activ-

ities such as spam, malware, and denial-of-service attacks. Although many studies have

been performed on how to mitigate security threats, the interaction between attackers and

defenders is like a game of Whac-a-Mole, in which the security community is chasing after

attackers and malicious hosts rather than helping defenders to build systematic defensive

solutions. As a complement to these studies that focus on attackers or end hosts, this thesis

studies security threats from the perspective of the organization, the central authority that

manages and defends a group of end hosts. This perspective provides a balanced position

to understand security problems and to deploy and evaluate defensive solutions.

This thesis explores how a macroscopic view of network security from an organization’s

perspective can be formed to help effectively measure, understand, and mitigate security

threats. To realize this goal, we bring together a broad collection of reputation blacklists

that cover malicious sources involved in Spam, Phishing/Malware, and active scanning. We

first measure the properties of the malicious sources identified by these blacklists and their

impact on an organization. We reveal that the malicious sources have a surprisingly high

impact on an organization’s traffic — about 17% of the organization’s traffic is from or to

malicious sources. We then aggregate the malicious sources to Internet organizations and

xiii



characterize the maliciousness of organizations and their evolution over a period of two

and half years. We find that the maliciousness of organizations varies greatly: while more

than half of the organizations remain “clean”, some organizations have a disproportion-

ally large fraction of their IP addresses involved in malicious activities. We also find that

both the average magnitude and the dynamic of maliciousness have increased significantly

over the past two and half years. Next, we aim to understand the cause of different ma-

liciousness levels in different organizations. By systematically examining the relationship

between eight security mismanagement symptoms and the maliciousness of organizations,

we find a strong positive correlation between mismanagement and maliciousness of or-

ganizations. Lastly, motivated by the observation that there are organizations that have a

significant fraction of their IP addresses involved in malicious activities, we evaluate the

tradeoff of one type of mitigation solution at the organization level — network takedowns.

Based on a broad set of cost and benefit metrics and tradeoff analysis, we identify hundreds

of Internet organizations for whom this analysis shows significant favorable returns, with

minor costs when they are shuttered.

Thesis Statement: By forming a macroscopic view of security postures of organiza-

tions, it is possible to develop security solutions that measure, understand, and mitigate

network malicious activities.
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CHAPTER 1

Introduction

Network security problems have drawn great attentions for decades. Although security

communities have sought various solutions to minimize the impact of malicious activities,

both the scale and sophistication of attacks have increased dramatically in recent years.

Every day there are thousands of large distributed denial-of-service attacks [17], tens of

thousands of new drive-by download pages [105], hundreds of thousands of new malware

samples [26], and billions of spam emails [31]. In no uncertain terms, defenders of to-

day’s networks are overwhelmed. Therefore, it is vital to the Internet ecosystem that we

develop effective security mechanisms that can measure, understand, detect, and mitigate

the malicious threats.

1.1 Perspectives of Network Security Studies

While focusing on different participants in the network security ecosystem, the study

of a security threat can be conducted from different perspectives: the perspective of the

attacker, the perspective of the organization, and the perspective of the end host. To illus-

trate these different perspectives, we use the DNS amplification attack as an example. In

DNS amplification attacks, attackers utilize open DNS resolvers to flood target hosts with

a large number of DNS responses. These attacks are innately dependent on both widely-

distributed misconfigured open DNS resolvers and the ability of attackers to forge request

packets [52, 20]. Using this example, we can see the approaches researching the attack

1



from each perspectives. The research that understands the attack mechanism and measures

the global impact of the attack can be classified as studies from the attacker’s perspec-

tive [119, 19, 41]. On the other hand, the DDos detection systems deployed at an organi-

zation’s network edges are a form of detection solution from the organization’s perspec-

tive [13, 18]. Lastly, the best security practices on open resolver configurations provides

mitigation solutions from the end host’s perspective [76].

From the example we can see that these three perspectives are equally important in

studying security threats. This thesis focuses on the organizational perspective because it

provides a balanced tradeoff among breadth, depth, and actionablity. Understanding the

attacker’s perspective is critical because knowing your enemy is imperative to establishing

any effective defensive strategy. The study from the attacker’s perspective aims to answer

questions such as Who are the attackers? Why are they attacking? and How do they attack?

The attacker’s perspective typically offers a wide breadth of visibility with an Internet-wide

view of security threats. However, it lacks the depth of visibility because it cannot observe

the detailed information from end hosts. Another drawback of the attacker’s perspective is

the lack of actionability, because the observations, although very useful to understand the

threats, are hardly translated into solutions that can be deployed on the Internet.

In contrast, the perspective of the end host provides opportunities for deploying security

solutions, but has a very limited view on the threats. An end host, which can be a computer

or a user, is the basic participant in the security ecosystem. Studies from the perspective

of the end host aim to understand the vulnerabilities posed by the end hosts, how those

vulnerabilities can be explored, and how to fix them. These studies may be able to inspect

deep activities and develop detection and mitigation solutions for a single end host, but they

do not provide the global visibility that the attacker’s perspective can.

While the attacker’s perspective and the end host’s perspective present clear tradeoffs

in depth, breadth and actionablity, the organization, being between of the Internet and indi-

vidual end users, provides a balanced vantage point to understand security problems and to

deploy and evaluate defensive solutions. Organizations are the central authorities that man-

age and defend groups of end hosts. Because organizations aggregates a large number of

end hosts, the visibility at this organizational level is broader and more persistent than the

2



visibility individual end hosts have. Organizations administer networks and therefore man-

age and deploy network policies such as operating systems and patches, firewall policies,

training of IT personnel, and even end-user education.

Besides the balanced position for studying security threats, it is important to study or-

ganizational security as we have seen an increase of targeted attacks, especially those tar-

geting organizations [50]. For example, the recent data breaches, such as those at Target

[96], JP Morgan [62], and Home Depot [112], resulted in a huge economic loss and so-

cial impact. The JP Morgan Chase attack was believed to have been one of the largest

in history, affecting nearly 76 million households [62]. Organizations that poorly-manage

security policies are low-hanging fruits for attackers and pose great risk to not only the

organizations themselves but also to their customers and to the Internet and society as a

whole. While traditional security studies are chasing after attackers and malicious hosts,

because these are constantly changing, the fight is like a game of Whac-a-Mole, and the

overall network security ecosystem has not been improved. Therefore, it is critical to help

organizations to understand their security problems and build systematically defensive so-

lutions.

1.2 Overview of Thesis

This thesis focuses on studying security threats from the organizational perspective.

It aims to explore how a macroscopic view of network security from an organization’s

perspective can be formed to help effectively measure, understand, and mitigate security

threats. The study of organizational security can be conducted both internally and exter-

nally. While the internal study has deep understanding of the organization, it is hard to scale

to multiple organizations because of the heterogeneous environment and confidentially of

operational information. To achieve our goal of a macroscopic view of organizational secu-

rity, we choose the external study as it is possible to get Internet-wide external observations

with scanning [80] and other data collection methods. However, our studies may lose the

depth in understanding the security postures of individual organizations.

Specifically, we bring together a broad collection of reputation blacklists that cover

3



malicious sources involved in Spam, Phishing/Malware, and active scanning on the Inter-

net. We first analyze the properties of these IP-based reputation lists and their impact on

an organization. Then we formed a measure of organization maliciousness by aggregating

the malicious IP addresses to an organization level. Equipped with the defined organiza-

tion maliciousness, this thesis demonstrates how this macroscopic view of maliciousness

can be useful for security studies, including measuring the evolution of maliciousness and

defenses, understanding the causes of maliciousness, and mitigating security threats at the

organizational level. While this thesis advocates for the exploration of organization-focused

security solutions, it is not aimed at discounting existing host-centric and attacker-centric

studies. Rather, these three perspectives are equally important and complement each other.

1.3 Main Contributions

The contributions of this thesis are the following:

• Measuring the characteristics of IP-based reputation blacklists and their impact

on an organization’s traffic. Reputation blacklists are a form of reactive policy en-

forcement in which malicious hosts are actively detected and recorded. Organizations

usually use them as real-time feeds so that connections to these hosts can be rejected

or carefully inspected. In this thesis, we collected nine to twelve IP-based reputation

blacklists that cover Spam, Phishing/Malware, and active scanning sources on the In-

ternet. We find that while the blacklists are stable in size, the IP addresses within the

blacklists are highly dynamic, growing between 150% to 500% over a one-week

period. And blacklisted IP addresses share affinity for specific geographic distri-

butions (e.g., RIPE and APNIC dominate spam; ARIN and RIPE dominate phish-

ing/malware). Rather than solely focusing on the lists themselves, we analyze the

impact of these blacklists on Merit Networks [36] to gain better insight into the inter-

play between malicious sources and organizations. By tainting traffic whose source

or destination IP address is listed, we find a surprisingly high proportion — up to

17% of the collected network traffic at Merit Networks [36] — is tainted by at least

one of the blacklists.
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• Measuring the longitudinal evolution of maliciousness and defenses at the or-

ganizational level. Equipped with the IP-based blacklists, we first calculate orga-

nization maliciousness, which is defined as the fraction of the organization’s IP ad-

dresses that are blacklisted. The results show that organizations’ malicious levels

vary greatly: while more than half of the organizations remain “clean”, some or-

ganizations have a disproportionally high fraction of IP space that is identified as

“malicious” by the blacklists. By observing the organization maliciousness for two

and half years, we then characterize its evolution. The evolution of the organization

maliciousness is determined both by external factors, such as the rise of attack activ-

ities or botnet takedowns, and by complex incentives and defensive efforts done by

the organization. Therefore, characterizing the evolution of organization malicious-

ness is a fundamental step toward understanding the evolution of Internet crimes and

defenses and facilitating preventive solutions. Using the time series of organization

maliciousness, we extract metrics that capture the magnitude and dynamic properties.

We show that the magnitude of spam and active scanning activities has increased,

while phishing-related malicious sources remained unchanged over the past two and

half years. The dynamic of scanning activities per AS is higher than that of Spam

and phishing-related activities, and has increased significantly over the same time

period. When using dynamics as a proxy to obtain some measure of organizations’

responses to or defenses against security threats, it indicates that organizations have

become faster in responding to security incidents and threats. However, the effec-

tiveness of such defenses is limited and not long-lasting, as the overall magnitude of

maliciousness continues increasing.

• Understanding the relationship between mismanagement and maliciousness of

organizations. The large variance in maliciousness levels for different organizations

inspires us to explore the causes for such a difference. Anecdotal evidence suggests

that mismanaged networks are often taken advantage of for launching external at-

tacks, posing a risk not only to themselves, but to the Internet as a whole (such as the

DNS amplification attack [20, 119]). This thesis complements the existing evidence
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of individual incidents with a macroscopic, systematic study on the relationship be-

tween security mismanagement and organization maliciousness. For the purpose of

this study, we define mismanagement as the failure to adopt commonly accepted

guidelines or policies when administrating and operating networks. By leveraging

Internet-scale measurements of eight varied mismanagement symptoms, we show

that misconfigured systems and servers are pervasive, including over 27 million open

recursive DNS resolvers, 22 thousand open SMTP relays, and 227 thousand DNS

resolvers that do not utilize source port randomization, etc. Then, we analyze their

relationship to the maliciousness of the network. We find strong positive correlations

between organizations’ mismanagement and maliciousness, even when controlled by

selected social and economic factors.

• Mitigating network security threats with network takedowns. The finding of “bad”

organizations, who consistently have a very large fraction of their IP addresses in-

volved in malicious activities, motivates us to study a particular mitigation solution at

the organization level — network takedowns. In response to the growing pressure of

malicious activities, the network operator community has, in limited cases, resorted

to vigilante justice — shutting off Internet access to networks who are egregiously in-

volved in acts of malice or misbehavior, such as the Russian Business Network [58],

Atrivo [15], and McColo [6]. The hotly-contested debate around such actions in-

volves not only legal and ethical issues, but also raises concerns about the ad hoc

nature of the decision making. In this thesis, we investigate a principled approach to

analyzing network takedowns that explores both the technical justification and feasi-

bility of such takedowns, as well as allows for comparison between various takedown

options. We select and apply a broad collection of cost and benefits metrics, including

Internet routing, naming, and transit. With the measured costs and benefits associated

with certain takedown candidates, a Pareto efficiency is then applied to find the op-

timal operating points that maximize security benefits while minimizing costs. We

apply this methodology to an investigation of the Internet over a period of one year,

and we identify hundreds of networks for whom this analysis shows significant fa-
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vorable returns with minor costs when the networks are shuttered. While providing

strong justification for takedowns in individual cases, our analysis shows the existing

vigilante network takedown approach will likely only provide modest improvements

to the overall health of the global Internet.

1.4 Structure of Thesis

The rest of the thesis is organized into six parts. We characterize the IP-based blacklists

and their impact on traffic in Section 2. Our study of organization maliciousness and its

longitudinal evolution is presented in Section 3. In Section 4, we explore the relationship

between organization maliciousness and mismanagement. Then in Section 5, we evalu-

ate the tradeoffs of network takedowns. In Section 6, we review existing works related to

this thesis. Finally, we conclude this thesis and discuss some directions for future work in

Section 7.
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CHAPTER 2

Characterization of IP-based Reputation Blacklists and

Their Impact on An Organization’s Traffic

Reputation information is a useful resource for organizations to evaluate and design

their security policies. In this thesis, we leverage various IP-based reputation blacklists to

characterize the maliciousness of Internet organizations. This chapter measures the proper-

ties of these reputation blacklists and their impact on the organization’s traffic.

IP-based reputation blacklists are a form of coarse-grained, reputation-based, dynamic

policy enforcement in which real-time feeds of malicious hosts are sent to networks so

that connections to these hosts may be rejected. We collect reputation blacklists covering

three broad categories of attacks: Spam, Phishing/Malware website, and active scanning.

Together, these represent the most prevalent attacks in today’s Internet [115].

In this chapter, we first analyze the size, timing, and geographic properties of those

reputation blacklists. Our findings include:

• While stable in size, the IP addresses in blacklists are highly dynamic, growing be-

tween 150% to 500% over a one-week period.

• Classes of reputation blacklists show significant internal entry overlap, but little sim-

ilarity is seen between classes.

• Reputation blacklists in the same classes share an affinity for specific geographic

distributions (e.g., RIPE and APNIC dominate Spam lists; ARIN and RIPE dominate

phishing/malware lists).
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Then, instead of focusing solely on the blacklists themselves, we analyze their impact

on Merit Network [36], a large Internet Service Provider (ISP). By examining what net-

work traffic is tainted by these blacklists, we gain better insight into the utility of these

mechanisms and their impact on Internet organizations. Surprisingly, we find a very high

proportion, up to 17%, of the collected network traffic is tainted by at least one of our rep-

utation blacklists. In addition, our work indicates that an organizational view of network

threats can differ from the global perspective — Merit network only saw traffic to a small

portion, between 3% and 51%, of IP addresses within the blacklists.

2.1 Data Set

Attack Category Blacklists
Spam BRBL[10], CBL[12] , SBL[53], SpamCop[47],

WPBL[57], UCEPROTECT[55]
Phishing/Malware Website SURBL[49], PhishTank[40], hpHosts[24]
Active Scanning Darknet scanners list, Dshield[21], OpenBL[39]

Table 2.1: Blacklists data sources and attack categories.

IP-based reputation blacklists are lists managed by various organizations that contain IP

addresses believed to have originated some malicious behavior. Blacklists generally focus

on some specific suspicious behavior. Merit collects 12 commonly used blacklists on a daily

basis, which are typically fetched directly from the publisher via rsync or wget. Table 2.1

organizes these lists into three broad categories based on the malicious behavior being

monitored: spam (unsolicited bulk e-mail), phishing/malware website, or active scanning.

Together, these represent the most prevalent attacks in today’s Internet [115].

This set of IP-based reputation blacklists is the main data source used in this thesis. In

the following chapters, 9-12 blacklists are used depending on the data availability when the

work was done.
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Figure 2.1: Daily size and cumulative size of blacklists. While stable in size, the IPs in the
blacklists are highly dynamic, growing between 150% to 500% over a one week period.

2.2 Characterize IP-based Reputation Blacklists

We first characterize nine IP-based reputation blacklist to answer three questions: how

dynamic are the lists? What is the geographical distribution of the malicious IP addresses?

And what is the relationship between different lists?

2.2.1 Timing

We examined the stability of each blacklist with respect to the daily number of unique

IP addresses. As shown in Figure 2.1a, the size varied across blacklists with BRBL being
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Spam Phishing/Malware Active
BRBL CBL Spamcop UCE WPBL hpHosts Phisht SURBL Dshield

AFRINIC 3.02 7.70 5.89 6.37 4.19 0.20 0.58 0.04 2.19
APNIC 25.20 47.14 51.94 48.45 51.27 8.45 11.56 5.58 36.19
ARIN 6.23 1.05 2.53 1.84 6.17 53.32 43.93 54.70 13.54

LACNIC 17.11 16.19 12.15 15.89 10.59 1.66 5.32 1.44 8.54
RIPENCC 48.44 27.93 27.50 27.44 27.77 36.37 38.6 38.24 39.53

Table 2.2: Geographic distribution of IPs for each blacklist (%). Reputation blacklists in the
same classes share affinity for specific geographic distributions: RIPE and APNIC domi-
nate SPAM; ARIN and RIPE dominate phishing and malware.

much larger than the others, but the size of blacklists was consistent over the week mea-

sured. In order to understand the churn of unique IP addresses, we calculated the relative

size of cumulative entries in Figure 2.1b. Spamcop and Dshield updated their entries ag-

gressively, with nearly 500% turnover in one week, while BRBL, hpHosts, and SURBL

were relatively static during the week, with less than 110% turnover.

2.2.2 Regional Characteristics

We mapped the blacklisted IP addresses to their registries by using the IP to ASN map-

ping services provided by Team Cymru [51]. Table 2.2 demonstrates that a given class of

blacklists has consistent geographical properties. SPAM- and Active-attack-related lists

have more entries in the APNIC (Asia/Pacific) and RIPENCC (Europe) regions, while

ARIN (North America) and RIPENCC are the most common regions in Phishing/Malware

blacklists. Even though monitoring position and listing methodologies are different for each

blacklist, they share consistent views of the regional distribution of malicious activity.

2.2.3 Overlap

We examined to what extent blacklists overlap with other; we expected that overlap

within the same category of blacklists would be significantly larger than the overlap among

different classes. Our results in Table 2.3 match our expectation: BRBL and CBL, the two

largest SPAM blacklists, cover about 90% of other SPAM-related lists, and the intersection

within hpHosts, PhishTank, and SURBL is also large. Meanwhile, the overlaps between

different classes are trivial.
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Spam Phishing/Malware Active
BRBL CBL Spamcop UCE WPBL hpHosts Phisht SURBL Dshield

BRBL 100.0 75.2 94.6 89.8 93.8 5.3 10.0 30.7 33.2
CBL 3.9 100.0 98.1 91.7 70.2 0.5 0.7 6.2 9.3

Spamcop 0.1 2.3 100.0 12.6 21.5 0.1 0.1 0.8 1.2
UCE 0.6 12.1 69.4 100.0 50.6 0.3 1.5 1.2 4.8

WPBL 0.0 0.7 8.8 3.7 100.0 0.0 0.2 0.9 0.4

hpHosts 0.0 0.0 0.0 0.0 0.0 100.0 33.7 7.3 0.0
Phisht 0.0 0.0 0.0 0.0 0.0 1.8 100.0 1.7 0.0

SURBL 0.0 0.0 0.3 0.1 0.7 11.8 52.8 100.0 0.1

Dshield 0.1 0.4 2.4 1.8 2.2 0.4 0.7 0.3 100.0

Table 2.3: The average % (of column) overlap between blacklists (row, column). Classes
of blacklists show significant internal entry overlap, but little similarity is seen between
classes.

2.3 Impact of IP-based Reputation

One of the key questions we considered in our study was, what fraction of traffic carries

a negative reputation?

To answer the question, we collected records of the traffic at Merit. Merit is a large

regional ISP, which provides high-performance computer networking and related services

to educational, government, healthcare, and nonprofitable organizations located primarily

in Michigan. This network experiences a load which varies daily from a low of four Gbps

to a high of eight Gbps. Though Merit has over 100 customers, the top five make up more

than half of the total traffic, and HTTP accounts for more than half of the traffic volume.

Our traffic data was collected via NetFlow [32] with a sampling ratio of 1:1. The traffic was

monitored at all peering edges of the network for a period of one week, starting on June 20,

2012. During this period, we experienced several collection failures, each lasting from one

to seven hours, for a total of 17 hours lost. The collected NetFlow represents 118.4TB of

traffic with 5.7 billion flows and 175 billion packets.

We taint the NetFlow if one or both of the collected NetFlow’s source and destination

IPs are listed by any blacklist. While we expected that perhaps as much as 10% of network

traffic might be potentially malicious [29], we found that tainted traffic accounted for an

average of 16.9% of the total traffic volume over the week. When measured by flow count,

the proportion is even larger, with 39.9% of the flows being tainted (Figure 2.2b).

This is, of course, a very liberal approach to tainted traffic analysis: tainting all the

traffic of a host by all the entries in all the blacklists. We conjecture that there may be
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Figure 2.2: Total traffic v.s. tainted traffic. Tainted traffic accounted for an average of 16.9%
of the total traffic volume or 39.9% of the flows over the week.
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Spam Phishing/Malware Active
BRBL CBL Spamcop UCE WPBL hpHosts Phisht SURBL Dshield

Touched entries 4,142,394 577,583 44,383 134,024 16,288 13,989 983 14,043 105,918
% of the list 2.8% 7.7% 29.3% 39.5% 51.2% 25.2% 24.4% 13.9% 22.1%

Table 2.4: Blacklist entries touched by our network traffic.

several sources of overestimation: (i) some blacklists are intended to taint only one kind of

application traffic instead of an entire host, (ii) the blacklists may contain false positives,

(iii) some IP addresses are shared via mechanisms like Network Address Translation (NAT)

and therefore some traffic was tainted due to “guilt by association”. To provide a tighter

lower bound, we applied the blacklists solely to the type of traffic they pertain to (e.g.,

SPAM blacklists are only applied to SMTP traffic). The results show that 10.5% of total

traffic was tainted by this more conservative approach. Further we observed that several

list entries were for well known services on the network, such as Amazon Web Services,

Facebook, and CDNs. Although previous work has shown that the cloud services have

been used for malicious activities [122], we nevertheless conservatively whitelisted these

service providers. As a result, the volume of tainted traffic was reduced to 7.5% of total

traffic. Therefore, we believe a realistic value for tainted traffic is likely to lie within the

range of 7.5% to 17% of the total traffic by bytes.

Next, we investigated the potential impact of global reputation blacklists when applied

locally. Prior work in this area has suggested that there might be some entries in global

blacklists that are never used by an organization [123], and our results validated this argu-

ment. In Table 2.4, we show the average number of daily entries touched for each blacklist.

Only a small fraction of entries were touched by our network traffic. For our ISP, only small

portions of blacklists are relevant, even though these portions may change over time.

Finally, we examined whether lists, or a class of lists, have the greatest impact on our

traffic. The traffic volume tainted by each blacklist is shown in Figure 2.3a. There is a

clear variance among tainted traffic volumes, ranging from more than ten GB per hour by

Dshield, BRBL, and hpHosts to about tens of MB per hour by Spamcop, PhishTank, and

SURBL.

Since the number of entries in each blacklist differs, we then normalized the volume of

tainted traffic per hour (i.e. Volume o f tainted tra f f ic by the blacklist
Number o f touched entries in the blacklist ) in Figure 2.3b. Interestingly,

14



 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 20  40  60  80  100  120  140  160

T
ra

ff
ic

 v
o

lu
m

e
 p

e
r 

h
o

u
r 

(B
y
te

s
)

Time (hour)

brbl
cbl

dshield

hphosts
phisht

spamcop

surbl
uce

wpbl

(a) Total tainted traffic.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 20  40  60  80  100  120  140  160

N
o

rm
a

liz
e

d
 t

ra
ff

ic
 v

o
lu

m
e

 p
e

r 
h

o
u

r(
B

y
te

s
)

Time (hour)

brbl
cbl

dshield

hphosts
phisht

spamcop

surbl
uce

wpbl

(b) Normalized tainted traffic volume.

Figure 2.3: Tainted traffic per blacklist. Tainted traffic volumes various, ranging from more
than ten GB per hour by Dshield, BRBL, and hpHosts to about tens of MB per hour by
Spamcop, PhishTank, and SURBL. After normalization, the contribution of entries in the
SPAM-related blacklists is about two orders of magnitude lower.
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(b) Tainted traffic volume of top 5% of IPs.

Figure 2.4: Tainted traffic to/from external IP addresses. The top 50 external IP addresses
contributed about 40% of total tainted traffic.

we show that each entry in hpHosts, PhishTank, and Dshield taints about one MB of traffic

per hour on average; but, the contribution of entries in the SPAM-related blacklists is about

two orders of magnitude lower.

2.4 Impact of Heavy Hitting IPs

In this section, we investigate whether any specific IPs are responsible for skewing

the traffic distribution. Toward this end, we divided the traffic into two categories: those

IP addresses belonging to Merit (internal IP addresses) and those not belonging to Merit

(external IP addresses).

2.4.1 External IP Addresses

Of the 11,016,520 unique external IP addresses in the tainted traffic, 99.5% of them had

less than 10 MB of tainted traffic each (as shown in Figure 2.4a). However, the top contrib-

utors had more than 100 GB of tainted traffic associated with each of them (Figure 2.4b).

In fact, the top 50 external IP addresses contributed about 40% of total tainted traffic. In the

following analysis, we try to define what these hitters are and what comprises their traffic.

External Heavy Hitters Among the top 50 external IP addresses, 39 are listed in at

least one blacklist. It is surprising to see that 27 of those are hosting service providers or
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Ports 80 443 1935 1256 1509 1046 1077 1224 1121 1065
% of volume 60.65 35.31 3.48 1.12 1.06 1.03 0.71 0.66 0.64 0.58

Table 2.5: Distribution over TCP/UDP ports for top blacklisted external IPs.
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Figure 2.5: Tainted traffic to/from internal IP addresses. The top 50 internal IP addresses
contributed 38% of the total tainted traffic.

caching servers, including Amazon Web Services hosts (10 IPs listed on hpHosts, Phisht,

SURBL, or Dshield), Facebook content distribution network (CDN) servers (six IPs listed

on Dshield), Pandora media servers (six IPs listed on Dshield), EDGECAST Network hosts

(three IPs listed on hpHosts, Phisht, or Dshield), and BOXNET servers (two IPs listed on

BRBL). These hosts are owned by popular service providers and their traffic is dominated

by HTTP, as shown in Table 2.5.

External Heavy Hitters Not on a reputation blacklist The remaining 11 external IP

addresses in the top 50 are IP addresses communicating with tainted Merit hosts, who send

large volumes of traffic. Of these external destinations, 10 are owned by Netflix and one

belongs to Yahoo!. 99% of the tainted traffic within these 11 IP addresses was over HTTP.

2.4.2 Internal IP Addresses

Analysis of the 2,515,080 Internal IP addresses observed in the tainted traffic also

showed the existence of heavy internal hitters (as shown in Figure 2.5). In this case, the

top 50 internal IP addresses contributed 38% of the total tainted traffic.
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Organization CDN EDU LIB MEDAkamai University College Intermediate Regional
Num of IPs 9 6 4 1 1 4 4

Total 9 12 4 4

Table 2.6: Organization of blacklisted internal IP addresses.

Internal Heavy Hitters Our results showed that there are only 35 IP addresses in the top

50 listed by the Reputation Blacklists, and of the 35 IP addresses, only 29 were resolvable

to host names. When categorized by owner (as shown in Table 2.6), we see that nine of these

blacklisted IP addresses are owned by Akamai [8], a provider of content delivery network

(CDN) and shared hosting services; others are hosts registered by educational institutions,

library network providers, and medical centers. Interestingly, there are two Virtual Private

Network servers, a mail server, and one web site server from educational institutions.

Internal Heavy Hitters Not on a reputation blacklist We found the top three internal

heavy hitters, which accounted for 12% of total tainted traffic, are not themselves on a

blacklist, and 81.6% of their traffic is HTTPS traffic. Furthermore, by inspecting the black-

listed hosts they communicated with, we noticed that about 80% of their tainted traffic is

to/from Amazon Web Services (AWS) IP addresses that are blacklisted.

2.4.3 Heavy Hitter Distribution

Heavy hitters constitute a significant portion of tainted traffic. How are these heavy

hitters distributed across reputation blacklists?

To understand the heavy hitters in each reputation blacklist, we defined the contribution

of entryi in LISTj as
Ventryi
VLISTj

, where Ventryi is the volume of traffic tainted by entryi and

VLISTj is the total volume of traffic tainted by LISTj. We then sorted the entries by their

contribution in decreasing order for each RBL, and then derived the cumulative contribution

of the top N entries (Figure 2.6). The top entries contribute greatly to the blacklists — the

traffic tainted by the top 50 entries accounted for more than half of the total tainted traffic of

each. In the case of Phishing/Malware blacklists, the top 50 entries contributed even more

(80%) of the tainted traffic (as shown in Figure 2.6b). Once again, we find a small amount

of entries dominating the tainted traffic.
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Figure 2.6: Cumulative contributions of the top N entries per blacklist.
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BRBL CBL Spamcop UCE WPBL
80 (59.62) 80 (34.01) 80 (26.394) 3389 (27.03) 25 (26.71)

443 (22.30) 443 (21.26) 44794 (16.51) 53 (14.16) 80 (23.30)
1935 (2.22) 4444 (11.78) 4025 (16.16) 25345 (12.80) 44794 (19.30)
3578 (1.26) 25 (6.67) 25 (11.14) 80 (12.54) 4025 (18.89)
17391 (1.21) 3389 (4.96) 37101 (7.60) 25 (8.18) 1080 (9.73)

(a) SPAM.

hpHosts Phisht SURBL
80 (84.99) 80 (65.05) 443 (52.30)

443 (15.00) 443 (32.32) 80 (44.84)
1256 (1.95) 49729 (2.96) 25 (1.85)
1121 (1.10) 42652 (1.80) 1288 (1.51)
1605 (1.01) 52951 (1.48) 1032 (1.12)

(b) Phishing/Malware.

Dshield
80 (60.75)

443 (32.26)
1935 (3.55)
993 (1.68)

1509 (1.16)
(c) Scan.

Table 2.7: Top TCP/UDP ports for traffic tainted by top 50 contributors per blacklist.

Spam Phishing/Malware Scan
BRBL CBL Spamcop UCE WPBL hpHosts Phisht SURBL Dshield

CDN 2 0 0 0 0 35 3 1 26
HOST 0 0 1 0 2 3 19 17 12
TOR 1 11 0 0 0 1 0 0 0
MAIL 0 0 0 3 5 0 1 0 1
VPN 3 0 0 1 0 0 0 0 0
Total 10 13 1 4 7 39 23 18 39

Table 2.8: Service hosts in top 50 contributors for each blacklist.

Next, we characterized the tainted traffic by the top 50 contributors for each blacklist

(Table 2.7). Though not dominating, SMTP (port 25) traffic occupied a large proportion

of the tainted traffic for each of the SPAM related blacklists (except BRBL). This matches

our expectation that SPAM related IP addresses send email more aggressively than other

hosts. In the other blacklist, we see a higher proportion of Web related traffic. This could

be associated with either Phishing and Malware distribution activities or other, potentially

benign, traffic from these hosts.

Finally, we looked at the network and domain information of the top contributers (shown

in Table 2.8). We found that 60 of these IP addresses are used by content delivery networks

and 51 of them are owned by hosting companies. Four VPN servers are listed in BRBL and

UCEProtector, while 11 Tor nodes are shown in CBL. Nine different mail servers (some

of them belonging to LinkedIn) are also in the top 50 entries of some reputation black-

lists. These entries form a sizable fraction of network traffic. This holds especially true for
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the Phishing/Malware and Active reputation blacklists, whose tainted traffic included from

29% to 68% of these heavy hitters.

2.5 Summary

In this chapter, we first characterized nine reputation blacklists. The blacklists are

highly dynamic, growing between 150% to 500% over a one-week period. While there is a

significant overlap among blacklists within the same class, little similarity is seen between

classes. And geographically, RIPE and APNIC dominate Spam blacklists while ARIN and

RIPE dominate phishing/Malware blacklists.

Then we analyzed the impacts of reputation blacklists on traffic from a live operational

Internet organization. We demonstrated that up to 17% of the traffic could be considered

tainted, as it flowed to or from addresses that were on various blacklists. The surprisingly

high fraction of traffic that is tainted indicates that malicious sources identified by the rep-

utation blacklist have great impact on organizations.
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CHAPTER 3

Measuring the Longitudinal Evolution of Maliciousness at

the Organization-Level

While security ecosystem is complex and can be studied from different perspectives,

our study in this chapter is motivated by the desire to better understand security ecosystem

within the context of the malicious sources at the organizational level.

An organization’s maliciousness and its longitudinal evolution is determined both by

external factors such as the raise of attack activities or botnet takedowns and by complex in-

centives and defensive efforts of the organization. For individual organizations, understand-

ing the threats can facilitate risk assessment and adaptive defensive policies. For example,

the activities from an organization with consistently high level of maliciousness should

be closely monitored while the activities from a “clean” organization can be whitelisted

to utilize limited resources. In addition, by analyzing the trend of its own maliciousness,

security administrators can systematically evaluate the effective of current or new defen-

sive policies. From a global perspective, characterizing organizations’ malicious activity

is a fundamental step toward understanding the evolution of Internet crime and facilitating

preventive solutions. What are the maliciousness level of organizations? How malicious ac-

tivities in the Internet has evolved over time in terms of magnitude and dynamics? Are there

differences for different types of attacks? Are there geographical and topological difference

in the evolution? Those are questions that we seek to answer in this chapter.

This chapter makes two main contributions. First, we form an organization-level view
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of malicious sources based on a collection of 11 IP-based reputation blacklists. Traditional

reputation is usually generated for individual IP-address or individual host. However, the

highly dynamic nature of IP addresses [122] and the large number of IP addresses on host

reputation lists can significantly diminish the accuracy and utility of evaluating network

security threats. By contrast, one may expect the network of an organization to exhibit

more stable and thus more predictable behavior over time, due to the fact that the factors

influencing an organization’s security posture generally vary on a slower time scale. These

factors include various network policy related issues such as operating systems and patch

levels, firewall policies, the expertise and training of IT personnel, and even user aware-

ness levels. The notion of organization maliciousness is consistent with the observation

of clusters of malicious activity in specific networks [107, 70, 117, 73]. Specifically, we

aggregate malicious IP addresses by their autonomous systems or BGP routing prefixes,

which are coarse-grained proxies of Internet organizations. We then define the malicious-

ness of an organization as the fraction of its IP addresses that appear on the blacklists. Then

we compare the organization-level maliciousness to IP-based blacklisting and show that

aggregation can achieve greater persistence and predictability of entities with high level of

maliciousness.

Secondly, we characterize the longitudinal evolution of organization maliciousness in

a period of two and half year. We collect the reputation blacklists and form the organiza-

tion maliciousness for the period of time. Using the resulting time series of organization

maliciousness, we then extract metrics capturing the magnitude and dynamic properties. In

subsequent analysis we first examine the first order statistics, i.e., how the average mag-

nitude of the maliciousness time series has evolved over time, resulting in a sequence of

long-term trends. We then examine the second order statistics (dynamic), i.e., how the fre-

quency of short-term changes in the maliciousness time series has evolved over time. The

short-term change in maliciousness may be taken as a proxy for gleaning at how fast and

effective an organization responds to or defends against malicious activities. Thus this lat-

ter exercise allows us to indirectly measure how organization’s response has evolved over

time. We find that in the past two and half years, the magnitude of spam and active scan-

ning activities have increased while phishing/malicious websites related malicious sources
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remained unchanged. The dynamic in scanning activities per AS is higher than that of

Spam and phishing/malicious websites related activities, and has increased significantly

over the same time period. Given the increasing trend of dynamics of maliciousness, orga-

nizations have become faster in responding to security incidents and threats. However the

effectiveness of such defenses is limited and not long-lasting as the overall magnitude of

maliciousness continues increasing.

3.1 Constructing Organization Maliciousness

3.1.1 Abstraction for Organizations

Ideally, the best aggregation can capture the management boundaries and cluster IP ad-

dresses into groups in which IPs in the same group are share similar characters and are

managed with the same policies. However, given the confidentiality of operation informa-

tion, such management boundary is hardly known. To address this challenge, various prox-

ies, including autonomous systems, BGP routing prefixes, DNS administrative domains,

and /24 prefix, are used. The more coarser the aggregation, the less dynamic the measure of

maliciousness. But one drawbacks of coarse-grain aggregation is that it can also negatively

impact individual hosts that become a part of the aggregate. The choice of best aggrega-

tion level is out of the scope of this thesis. In this thesis, we mainly adopt the aggregation

level of Autonomous System (AS). But our method is applicable to any arbitrary choice of

aggregation level.

3.1.2 Construction

We define the maliciousness of an organization as the fraction of its announced IP

addresses that appeared in the union of collected blacklists. Specifically, we construct or-

ganization maliciousness in three steps.

Blacklist Consolidation In this first step, various blacklists are combined into a single

list. There are different ways in which blacklists can be combined. The most intuitive
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method — union, minimizes false negatives. On the other hand, union method results in

the highest false positives because even a single listing on the most inaccurate list will

result in that IP address being included and given equal weight with union method.

In addition to the Union method, we also explored other combination methods such

as Voting (IP in at least seven of 11 lists) and Intersection (IP in at least one list of each

attack category). However, these techniques resulted in huge number of false negative as

the lists use disparate techniques to capture malicious IP addresses, and have varying levels

of confidence in their listing methodology. As a result, these more complicated methods

offered little intuitive or technical rationale and therefore we reverted to a simple Union list

for the purposes of this study.

As mentioned in Section 2.1, our collection of reputation blacklists cover three category

of attacks: spam, phishing/malware, and active scanning. In addition to the overall union

list across all three types of attacks, we also perform individual analysis on each type of

attack. Namely, we union the blacklists under each attack category and get three by attack

category union lists, which we refer as Spam-related union list, Phishing-related union list,

and Scan-related union list in the following analysis.

Aggregation As discussed above, we choose BGP routing prefix and autonomous sys-

tem as illustration of aggregation in our study. Equipped with the union list, we use routing

information to map IP addresses to BGP prefix and then to autonomous systems. Specif-

ically, we used the BGP tables collected by all vantage points of Route Views [104] and

RIPE [42] project. We first match IP addresses to BGP prefixes via longest prefix matching,

and then map the BGP prefixes to their origin autonomous systems. While our reputation

blacklists are refreshed on a daily basis, we collected the BGP table everyday at midnight

and perform the mapping process.

Computing Organization Reputation In the final step, we quantify organization mali-

ciousness of an organization as the fraction of its IP addresses that are blacklisted on the

union list. We use an upper bound estimation of the size — all the IP addresses in adver-

tised prefix and the sum of the IP addresses of all its advertised prefixes for an AS. As there
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Figure 3.1: An illustration of organization maliciousness at AS and routing prefix levels.
Some disreputable organizations have disproportional large fraction of IP addresses black-
listed: More than 70% of their IP addresses are blacklisted for the top 126 ASes and for the
top 17k prefixes.

might be unused IP addresses in each netblock, the number of advised IP addresses is the

upper bound estimation of the total size of an Internet organization. We note that dynamic

IP allocation could cause our measure to overestimate the malicious level of the network

as a compromised machine may use different IP addresses. For the reminder of this thesis,

we refer the fraction as organization maliciousness.

3.1.3 Impact of Abstraction on Persistency and Predictability

As we discussed above, the abstraction of organization would have impacts on the re-

sulted maliciousness. In this section, we examine the difference in the content of the black-

listed IPs in the combined list and the worse prefixes/ASes and how this leads to difference

in their security benefits. For simplicity, blocking individual IPs listed on the Union list will

be referred to as IP-based blocking, while blocking out entire addresses within a blacklisted

AS or prefix will be referred to as AS-based blocking and prefix-based blocking, respec-

tively, or aggregated blocking collectively.

Based on the method described in section 3.1.2, we compute organization maliciousness

at both abstractions on October 16, 2012 based on the overall union lists. There are about

10 million malicious IP addresses in the overall union list on that day. While aggregating

to Internet organizations, 26,051 autonomous systems (59.3% of all ASes seen in routing
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Figure 3.2: Persistence of malicious IP addresses and the disreputable prefixes and ASes.
The coarser the aggregation level, the more persistent are the worst entities: only 20% of
the IP addresses remain on the list during the one-month period; more than 90% of the
disreputable ASes persist in this group, while about 75% prefixes among the disreputable
prefixes persist during the same period.

tables on that day) and 253,297 BGP prefixes (45.8% of total routed prefixes) had at least

one IP addresses blacklisted in the Union list. Figure 3.1 shows the distribution of organi-

zations’ maliciousness under our definition. On the x-axis, we ranked autonomous systems

or routing prefixes by their maliciousness and on the y-axis, we show their maliciousness

(i.e. the fraction of their advised IP addresses that are listed in the Union list).

It can be seen that there are a set of organizations that have very high level of mali-

ciousness. More than 70% of their IP addresses are blacklisted for the 100 worst ASes. The

result is more pronounced at a finer level of aggregation: nearly 100% for the worst 9,000

prefixes, and 70% for the worst 15,000 prefixes. These observations confirm the existence

of bad organizations that have disproportional large fraction of IP addresses blacklisted.

Aggregation can dampen the dynamic nature of individual IP addresses and result in

more persistent measures of malicious entities. We first compare the persistence of mali-

cious IPs and the disreputable ASes/prefixes under our definitions. We take the ASes/prefixes

with more than 70% of their IP addresses listed as the sets of disreputable ASes/prefixes.

As a result, there are 126 ASes and 17k prefixes in the disreputable AS and disreputable

prefix set, respectively. Figure 3.2 shows the malicious IPs (or disreputable ASes/prefixes)

on the first day remaining on the Union list on day x as a function of x. As expected, these

disreputable ASes/prefixes are much more persistent than malicious IP addresses, and the

coarser the level, the more persistent are the worst entities: only 20% of the IP addresses
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Figure 3.3: The predictability of IP-based blocking and aggregated blocking. The solid line
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remain on the list during the one-month period; more than 90% of the disreputable ASes

persist in this group, while about 75% prefixes among the 17k disreputable prefixes persist

during the same period.

The difference in persistency is then reflected in their ability to predict malicious sources.

As already pointed out, the IP-based lists are often inaccurate and time-delayed. In another

word, the lists published on a given day capture the malicious sources that are active over

the past few days, but miss the malicious sources that currently or will be involved in ma-

licious activities. This results in both false positives (some malicious IPs on the list have

since been cleaned up) and false negatives (new malicious IPs that have not been captured

to show up on the list). Our conjecture is that if aggregation offers more steady measures of

malicious entities, then the worst ASes/prefixes do not change as fast as the malicious IPs.

Thus aggregated blocking would cancel out some of the false negatives and even predict

future malicious sources. We refer this benefit as predictability.

We compare the predictability of IP-based reputation and aggregated reputation under

the assumption that the lists are a time-delayed version of ground truth. More specifically,

the actually malicious sources on a certain day is reflected on the lists published x days
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later. Then the predictability is the fraction of actually malicious sources (i.e., reflected by

the lists after a time lag) that can be captured by what is known on a given day (i.e., the

lists on that day). We do not yet have a valid method of verifying precisely how long is this

time lag. So the results here use a one-day and five-day time lag as possible examples.

We show the predictability of IP-based and aggregated-based blocking in Figure 3.3. It

can be seen that IP-based blocking has 90% predictability with a one-day time lag. How-

ever, the it drops quickly to around 50% if the truth is only known after five days (i.e., a

five-day time lag). By contrast, aggregated blocking provides more predictive power. Both

prefix and AS level aggregation provides 99% predictability with a one-day time lag. More

importantly, the predictability remains at high levels over the longer time lag (about 95%

for AS-based and 90% for prefix-based blocking with a five-day time lag), and the higher

the aggregation level, the higher the predictability.

However, AS/prefix-based blocking results in other types of errors even if the Union list

on a given day represents the truth: false positives due to the collateral damage inflicted on

those innocent IPs deemed guilty by association, and false negatives because this process

ignores those malicious IPs falling outside the worst set of ASes or prefixes.

In the next sections, we characterize the longitudinal evolution of maliciousness at the

autonomous system level in terms of magnitude and dynamic.

3.2 Evolution on the Magnitude of Maliciousness

This section aims to answer the following questions. Is the overall malicious level of

organizations increasing or decreasing over this period of time? Is there any difference for

different types of attacks? What are the regional differences? Do edge networks and service

provides have the same trend?

3.2.1 Characterizing Magnitude of Maliciousness

We first describe our methodology in extracting a metric to describe the magnitude of

maliciousness. For an organization denoted by Ni, we quantify its daily maliciousness on
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Figure 3.4: An illustration of organization distribution over Spam malicious magnitude.

day t (1 t 31) of any month k (mi,k(t)) as the fraction of its advertised IP addresses that

are blacklisted on a union list (i.e. Spam-related union list, Phishing-related union list, or

Scan-related union list) on that day. We then combine the daily maliciousness in month k

into a time series mi,k = [mi,k (1), mi,k (2), ], and the concatenating each month we

obtain the complete time series mi,kk=1,2, for organization Ni. This aggregation is done

separately for each of the three union lists for the three types of attacks.

We define the metric malicious magnitude based on the constructed organization mali-

ciousness time series. The malicious magnitude of an organization is defined as the average

of its daily maliciousness in a certain month. Specifically, the magnitude of organization

Ni in month k is given by: m̄i,k =
∑

T
t=1 mi,k(t)

T , with T being the number of days in month k.

We use the average over a month instead of daily maliciousness to reduce possible noises

introduced in the data collection.

With the magnitude metric, we show the distribution of ASes based on their malicious

magnitude of Spam activities as an illustration. Figure 3.4 shows the CDF of autonomous

system over their malicious magnitude in Spam. Overall, we see more than half of au-

tonomous systems are very “clean” with less than 0.01% of their IP addresses listed in

spam activities (i.e. magnitude is less than 0.0001). At the same time, about 10% of the

organizations are highly malicious — on average more than 1% of their IP addresses were

sending Spam (i.e. magnitude is large than 0.01). We also notice that there are tens of
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ASes with an average of more than 20% of their IP addresses blacklisted, indicating the

existence of “bad” organizations that are responsible for an disproportionate fraction of

malicious sources. The distribution is similar for active scanning and phishing/malicious

webpage related maliciousness, but at a lesser scale.

3.2.2 Trend in Average Malicious Magnitude

When comparing the distribution of different month in Figure 3.4, one can see that

the curve was shifting to a higher magnitude. At the beginning of 2013, about 65% of

the autonomous systems were with a magnitude less than 0.0001; but the fraction reduced

to 52% in 2014 and 2015. And the ASes whose malicious magnitude was higher than

0.01 have increased from 2.8% to 6.5% in the two years. This observation inspires us to

systematically look at the trends of malicious magnitude.

Overall Trend To better capture the overall trend of malicious magnitude, we calcu-

late the malicious magnitude of all autonomous systems in each month and plot the aver-

age over time in Figure 3.5. It can be seen that while fluctuating, the magnitude of both

Spam and active scanning has been increasing since the end of 2012. By applying lin-

ear regression, we obtain the following statistically significant models (p− value < 0.05):

m̄k = 5.1 · 10−5 · k + 1.4 · 10−3 for Spam and m̄k = 3.0 · 10−6 · k + 2.1 · 10−4 for active

scanning, where m̄k is the average magnitude over all autonomous systems and k is the

time (month).For Phishing/malicious websites, the magnitude experienced an increase at

the end of 2012, but has been staying stable since January 2013. And a statistical test also

confirms that the magnitude does not depend on the time.

Regional Differences We then examine the regional difference in the trend of malicious

magnitude. We calculate the average magnitude of organizations respectively within five

different regions and show the results in Figure 3.6. For Spam, AFRINIC has the highest

average malicious magnitude while autonomous systems in ARIN have a very small frac-

tion of their IP addresses associated with Spam. Over this period, except for AFRINIC, the

other four regions share similar increasing trends. The magnitude of AFRINIC decreased
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Figure 3.5: Evolution of Magnitude of Maliciousness.
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Figure 3.6: Regional difference in the magnitude of maliciousness.
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significantly in the year of 2013 and stayed close to the overall malicious magnitude. How-

ever, the difference have been increasing again since July 2014.

For Scan activity, ARIN also has the lowest malicious magnitude among the five re-

gions. RIPENCC had a relatively high magnitude (about two times higher than that of the

others) at the beginning of our study. But we observe a sharp decrease in the middle of

2013 and since then the magnitude and trend are very similar for the four regions other

than ARIN.

Interestingly, AFRINIC, while having the highest malicious magnitude in Spam sources,

has the lowest magnitude in phishing/malicious websites related maliciousness. One pos-

sible explanation is that end hosts in AFRINIC are poorly protected so that they are easily

to be compromised and used as Spam sources. However, for phishing/malicious websites,

the attackers tend to utilize networks who have better infrastructures (i.e., high network

speed, stable services, etc). This is consistent with the observation that phishing/malicious

websites are concentrated in ARIN and RIPENCC, in which web infrastructure and host-

ing providers are highly concentrated. For long term trend, we do observe a decrease in

the magnitude of phishing in ARIN while an increase in that of RIPENCC, APNIC, and

LACNIC.

Topological Differences We next examine the question whether organizations in differ-

ent topological categories have different malicious magnitude. We break the autonomous

systems into enterprise customers and service providers by their topological position. The

rationale is that these two types of ASes play very different roles on the Internet and thus

may be managed in different ways, or one type of ASes may be more attractive to the at-

tackers than the other. For this purpose we use the definition and categorization techniques

proposed by Dhamdhere et al [79], with the modification that we combine transit service

providers and content/accessing/hosting service providers into a single service provider

category in our study.

The results are shown in Figure 3.7 with the average malicious magnitude of enterprise

customers and service providers. It is interesting to see that for all three types of attacks,

the magnitude of the two types of ASes trend in synchrony; this indicates that attacks or
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Figure 3.7: Topological difference on the magnitude of maliciousness.
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malicious campaigns do not appear to distinguish network types when choosing potential

host targets. On the other hand, the magnitude of service providers is consistently (about

two times) higher than that of enterprise customers; this might have been caused by the

complexity of managing large and diverse networks.

3.3 Dynamics in Maliciousness

In this section we examine the frequency of short-term changes in the malicious mag-

nitude. This short-term change, or dynamics in maliciousness may be taken as a proxy for

how fast and effective an organization responds to or defends against malicious activities.

This therefore allows us to indirectly measure how organization response has evolved over

time. Below we first define how we quantify such dynamics and measure their change for

individual organizations. We then break down organizations into different types based on

both magnitude and dynamics and analyze the evolution.

3.3.1 Characterizing Dynamics

In order to measure the frequency in change, we will first need to define what consti-

tutes a “change” in the malicious magnitude. Furthermore, such a definition needs to be

consistent with our intention of using it as a proxy for measuring organization responses.

To do so, we will first quantize the magnitude time series of a particular organization in any

month into three regions: “good”, “normal” and “bad”, on a scale relative to that organiza-

tion’s average within that month.

Specifically, a point mi,k(t) at t belongs to the “normal” region if mi,k(t)∈ [(1−δ)m̄i,k,(1+

δ)m̄i,k], the “good” region if mi,k(t) < (1− δ)m̄i,k, and the “bad” region if mi,k(t) > (1+

δ)m̄i,k, where 0 < δ < 1 is a constant and m̄i,k is the average over month k for organization

Ni. The parameter choice for δ is obviously not unique and will lead to different quantities

in our analysis; however, such a choice should have limited impact on our study of trending

over time. We have used the value 0.2 in this study.

This quantization of the magnitude values is motivated by clear phase transitions in the
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Figure 3.8: Histogram of the change in dynamic.

maliciousness time series; it is plausible that these significant phase transitions correspond

to events associated with attacks and responses. For example a “good” region/period may

correspond to events that have had certain IP addresses removed from the blacklists due

to potential security enhancement efforts. Similarly, “bad” region/periods may correspond

to security breaches and host infections. We examine the frequency of regions as they

transition into good, bad and normal separately and do not notice any significant differences

in the transition into one state or another. We therefore take any such transition, i.e., the

time series moving from one region to another, as a change in the magnitude. This is also

referred to as the short-term change in the magnitude which is distinguished from the long-

term trend observed in the previous section. Our second step consists of calculating the

frequency at which the magnitude changes during each month.

3.3.2 Change in Dynamics

We first examine how the malicious dynamics have evolved over the period of our study.

We calculate the average frequency for each organization over the first and last six months

in this period (Oct 2012 - Mar 2013 and Oct 2014 - Mar 2015, respectively). The difference

between these two frequencies is shown in Figure 3.8 as a histogram that presents the

fraction of organizations with a certain level of difference. A negative difference indicates

that an organization’s maliciousness change less frequently at the end of the study period
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compared to two years ago.

For Spam related maliciousness, we see that most organizations ( 83%) have a small

change falling within [-0.1, 0.1]. The numbers of organizations with positive changes (be-

coming more dynamic) and those with negative changes (less dynamic) are roughly the

same. On the other hand, for Active Scan the distribution is very different: we see a clear

trend in organizations becoming more dynamic. A total of 78% of the organizations have

an increase in their frequency. The heavy tail on the positive side also indicate that some

organizations have significant increases in their dynamics. We observe a similar result for

phishing/malicious webpage related maliciousness, but to a less degree: about 55% of the

autonomous systems have an increase in their malicious dynamics, among which about

45% is a small increase (less than 0.1).

3.3.3 Dynamics v.s. Magnitude

In the above analysis, we have analyzed the trend in magnitude and dynamics sepa-

rately, in this section we further examine the relationship between magnitude and dynamics

as well as its trending over time.

We first classify organizations into nine groups (clusters) based on their malicious mag-

nitude and dynamic in each month. For simplicity of presentation we use four thresholds

for the grouping: αH indicating high magnitude, αL indicating low magnitude, βH for high

dynamics and βL for low dynamics. We then classify organizations, for instance, into High

(m̄i,k ≥ αH), Medium (m̄i,k ∈ [αL,αH ]), and Low Magnitude (m̄i,k ≤ αL) groups and sim-

ilarly three groups of High, Medium and Low Frequency. In total, we have nine groups

(3×3) when combining these two metrics. These thresholds in principle should be chosen

by experimenting on their effectiveness in separation. For instance, one could employ clus-

tering methods (see e.g., spectral clustering [103]) to obtain precise quantities. In this study

we have used the following thresholds. For Spam, we set αH = 0.01 and αL = 0.0001,

while for active scanning and phishing/malicious websites, the value are adjusted given the

lower number of malicious sources (αH = 0.001 and αL = 0.00001). For frequency, since

the dynamics (state changes) are w.r.t. to each organization’s own magnitude, we use the
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unified threshold βH = 0.3 and βL = 0.05 for all three types of attacks.

We show the classification results for Spam, active scanning, and phishing/malicious

websites in Figure 3.9, 3.10, and 3.11 respectively. We then highlight our key observations

on the relationship between magnitude and dynamics as well as the evolution of network

types.

First, the dynamics of maliciousness varied with the malicious magnitude. The or-

ganizations with low malicious magnitude also have low dynamics (Figure 3.9a, 3.10a,

and 3.11a). This confirm the existence of “clean” organizations that consistently have small

number of IP addresses that involve in malicious activities. For Spam, we also notice that

around 40% of organizations in high malicious magnitude groups also have low dynamics,

which indicating the existence of autonomous systems that are consistently “bad”. And in

general, the autonomous systems with middle malicious magnitude have the highest dy-

namics.

Second, we observed very different distribution over dynamics for different types of

attacks. For active scanning, although the organizations with low magnitude have low dy-

namics, the organizations with medium and high magnitude almost completely fall into the

medium and high frequency groups (Figure 3.10b and 3.10c). This observation indicates

that the IP addresses performing active scanning change more frequently. One possible

explanation is that large-scale scanning is relatively easily detected using network intru-

sion systems and are usually met with quick responses from network operators. We also

see that organizations have the lowest dynamics in Phishing/malicious websites among all

three types of attacks: more than 99% of low malicious organizations, and more than 54%

of medium and high malicious organizations fall into the low dynamic groups. While pre-

vious studies have shown that most phishing campaigns only lasts for very short periods

of time (usually a couple of hours) [110], one possible explanation for the static nature of

phishing-related maliciousness is that the attackers tend to find new hosts which are located

topologically close to the old ones.

Third, the number of autonomous systems with medium and high magnitude continues

to increase throughout the period. For example, the number of organizations with high

magnitude in Spam increased from around 1k in 2013 to more than 2k in late 2014 and
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Figure 3.9: Distribution of ASes based on magnitude and frequency categories in Spam
activities.
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Figure 3.10: Distribution of ASes based on magnitude and frequency categories in active
scanning activities.
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Figure 3.11: Distribution of ASes based on magnitude and frequency categories in phish-
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2015 (Figure 3.9c). And the number of middle magnitude in SCAN has increased from 11k

to more than 10k during the period of our study (Figure 3.10b). This is in consistent to the

increasing of overall malicious magnitude.

Forth, while we see a clear increasing trend into higher magnitude, the dynamics is also

increasing for active scanning. Organizations with high frequency has increased from 20%

in 2013 to about 35% in 2015 and organizations with medium frequency also increased

from 19% to 26%. However, for Spam, we observe an increasing in the number of orga-

nizations with high magnitude but low frequency. This indicates that there are more stable

“bad” organizations for which we can target our efforts.

3.4 Summary

In this chapter, we study the longitudinal evolution of Internet threats landscape from

the perspective of organization maliciousness. Using Autonomous Systems and routing

prefixes as proxies of Internet Organizations, we formed the maliciousness at a organiza-

tion level and characterize the malicious behavior of an organization with both the level

of maliciousness (magnitude) and how frequently the maliciousness changes (dynamics).

With our defined maliciousness, we quantify the security benefits of aggregated blocking

compared to IP-based blocking. Our results show that aggregated maliciousness of organi-

zations, both at autonomous system and prefix levels, can dampen the dynamic nature of IP

addresses, thus resulting in more consistent and predictive measure of malicious sources.

Then we analyze the longitudinal evolution of organization maliciousness. We found that

both the magnitude and dynamics of maliciousness have been increasing during the two

and half years. While taking the dynamics as a proxy of responsiveness, organizations have

become faster in responding to malicious activities.
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CHAPTER 4

Understanding the Relationship between Organization

Maliciousness and Security Mismanagement

In chapter 3, we find that the maliciousness of organizations various greatly. This chap-

ter aims to understand the causes for such a variances in organization maliciousness. Specif-

ically, we explore the question that whether security mismanagement is one the cause for

organization maliciousness.

Misconfigured networks have long been attractive resources for hackers [23], and anec-

dotal evidence suggests that mismanaged networks are often taken advantage of for launch-

ing external attacks, posing a risk not only to themselves, but to the Internet as a whole. One

example of this can be seen in DNS amplification attacks in which attackers utilize open

DNS resolvers to flood target hosts with a large number of DNS responses. These ampli-

fication attacks have long been observed in the wild and continue to occur with increasing

scale and impact [119, 20]. These attacks are innately dependent on both widely-distributed

misconfigured open DNS resolvers and the ability of attackers to forge request packets. In

spite of calls by the Internet security community to address both of these issues by fol-

lowing standard deployment practices [76, 82], serious attacks continue to occur [52, 41].

As a result, these events are frequently described in terms of economic externalities: “a

situation where a party could efficiently prevent harm to others—that is, a dollars worth of

harm could be prevented by spending less than a dollar on prevention—but the harm is not

prevented because the party has little or no incentive to prevent harm to strangers [81].”
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In this chapter, we complement these anecdotes of individual incidents with a macro-

scopic, systematic study of one such externality—security mismanagement. For the pur-

pose of this study, we define mismanagement as the failure to adopt commonly accepted

guidelines or policies when administrating and operating organizations’ networks. We ex-

plore the relationship of such misconfiguration with our defined organization malicious-

ness. We seek to understand the relationship between different types of network misman-

agement and global Internet security.

Rather than focusing on how individual vulnerabilities influence the likelihood of a host

becoming compromised (e.g., CVE-2008-4250 resulting in Conficker infections), we in-

stead investigate how symptoms of network mismanagement, such as the presence of open

recursive resolvers or instances of observed BGP misconfiguration, relate to organizational

reputation built from externally observed malicious behavior, such as malware hosting and

SPAM. While these features are merely proxies, ultimately, we hope to answer the ques-

tion of what relationships exist between poor network management and maliciousness of

the organization.

Our results show a statistically significant, strong positive correlation (0.64 correlation

coefficient <0.01 p-value) between mismanagement and maliciousness of organizations.

However, a correlation test is not sufficient as there might be latent variables that causes

both maliciousness and mismanagement. We then assume organization management and

maliciousness can both be impacted by common social and economic factors such as coun-

try GDP and number of customers in routing topology. By applying multivariate regres-

sions, we find that the relationship still holds while controlling for these social and eco-

nomic considerations.

4.1 Symptoms of Mismanagement

There are many symptoms that externally reflect poor network management. We ana-

lyze eight of these symptoms, which we list in Table 4.1. While these symptoms do not

necessarily comprehensively describe all manners in which a network could be misman-

aged, we choose to focus on these particular symptoms because they are well-documented
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Symptoms Best Current Practices Functions Attacks Dataset
Open Recursive Resolvers BCP 140/RFC 5358 Naming DNS Amplification Global
DNS Source Port Randomization RFC 5452 Naming DNS Cache Poisoning Global
Consistent A and PTR records RFC 1912 Naming - Partial
BGP Misconfiguration RFC 1918, RFC 6598 Routing - Global
Egress Filtering BCP 38/RFC 2827 Transit - Partial
Untrusted HTTPS Certificates RFC 5246, RFC 2459 Web Man-in-the-middle Global
Open SMTP Mail Relays RFC 2505 Mail SPAM Global
Publicly Available IPMI cards Manufacturer’s Guideline Server Compromising Hosts Global

Table 4.1: Summary of mismanagement metrics and the third-party, public data sources
used for validation

in published Request for Comments (RFCs) and Best Current Practices (BCPs) [68], and

are part of the security community’s best practices. We attempt to focus on characteristics

that are symptomatic of overall network mismanagement rather than on specific vulnerabil-

ities that could be used for mounting an attack. This is intended to reduce any bias between

mismangement symtoms and maliciousness metrics we consider later in this work (e.g.,

CVE-2008-4250 resulting in Conficker infections).

We choose a range of symptoms ranging from BGP routing stability to the management

and patching of SMTP, HTTPS, and DNS servers. This range of symptoms has several

merits. First, it provides a global perspective of an organization’s network management. For

example, different teams potentially manage different services and by analyzing a range of

different symptoms, we focus on the overall organizational network mismanagement rather

than a single misconfigured service. Second, the analysis of multiple symptoms allows us to

analyze the relationships between different symptoms. Although care was taken in choosing

these symptoms, we make no claim that they are complete or without bias. We discuss

potential drawbacks of these symptoms invidually in the follwing sections and reflect on

them at the end of this section.

In the following subsections, we discuss each of the mismanagement symptoms with

respect to their security implications, associated best practices, and our data collection

methodology.

4.1.1 Open Recursive Resolvers

Open DNS resolvers respond to recursive queries for any domain and pose a direct

threat to the Internet due to their role in DNS amplification attacks. In an amplification

46



attack, an attacker sends simple DNS queries to an open resolver with a spoofed source

IP address. While the DNS lookup request itself is small, the response to the victim is

much larger and, as a result, the responses overwhelm the victim. BCP 140 [76] provides

several recommendations for how to configure open resolvers to mitigate these threats.

Ultimately, recursive lookups should be disabled unless specifically required and, when

enabled, limited to intended customers.

In order to analyze the misconfiguration of open resolvers, we utilize data provided by

the Open Resolver Project [38], which conducts active scans of the public IPv4 address

space by sending a DNS query to every public address on port 53 and capturing the re-

sponses. The project has been performing these scans weekly since April, 2013, and has

identified more than 30 million open resolvers. Detailed data collection methodology and

preliminary results can be found in their recent presentation at NANOG [61].

We specifically consider the scan from June 2, 2013, which found 34.2 millions open

resolvers in total. We consider the hosts that support open recursive queries as miscon-

figured, given their potential risk to the Internet and their failure to implement even the

simplest best practices. Ultimately, we find 27.1 million open recursive resolvers on the

Internet.

4.1.2 DNS Source Port Randomization

DNS cache poisoning is a well-known attack in which an attacker injects bogus DNS

entries into a recursive name server’s local cache. Traditionally, DNS resolvers used a ran-

domized query ID in order to prevent cache poisoning attacks. However, in 2008, Dan

Kaminsky presented a new subdomain DNS cache poisoning attack that has two new ad-

vantages [37]. First, it extends the window of attack because there is no valid reply from

the authoritative name server with which to compete. Second, the multiple identical queries

allow attackers to brute-force the 16-bit transaction ID that was previously relied upon for

preventing these types of attacks.

Current best practices (RFC 5452 [87]) recommend randomizing the source port when

performing DNS lookups in order to prevent these brute force attacks. In this configura-
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tion, a DNS server will use a large range of source ports instead of a single preset port,

which significantly increases the search space for an attacker. For example, if a DNS server

utilizes 2,000 source ports, the search space would increase from 64,000 to more than 100

million possibilities. Most popular DNS packages have already issued patches that imple-

ment source port randomization [1, 2].

In order to determine whether networks have patched their DNS resolvers with source

port randomization, we analyze the set of DNS queries made against VeriSign’s [56] .com

and .net TLD name servers on February 26, 2013. In total, we observed approximately 5

billion queries from 4.7 million DNS resolvers.

In this experiment, we track the source ports utilized to make DNS queries against these

TLD servers and infer that resolvers that only utilize the default source port without im-

plementing source port randomization are misconfigured. We find that 226,976 resolvers,

which account for 4.8% of total resolvers seen in the data, do not utilize source port ran-

domization.

4.1.3 Consistent A and PTR records

DNS supports several types of records, of which Address (A) and Pointer (PTR) records

are two of the most common. An A record is used to map a hostname to an IP address. A

PTR record resolves an IP address to a canonical name.

One merit of PTR records is that they facilitate the validation of connecting clients and

are widely used for detecting and blocking malicious IP addresses. For example, SMTP

servers often discard messages from IP addresses without a matching PTR or MX record.

The DNS operational and configuration guidelines (RFC1912 [65]) dictate that every A

record should have a corresponding PTR record[25].

In our study, we utilize two datasets in order to estimate the global status of DNS

records: the .com and .net second level domains stored in the VeriSign zone files and the

domains in the Alexa Top 1 Million popular websites [9].

In order to determine which A records have associated PTR records, we perform a DNS

query for each domain in our two datasets, finding 116 million A records. We then perform
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a reverse DNS lookup of the IP addresses appearing on these 116 million A records. We

find that 27.4 million A records, which account for 23.4% of A records we queried, do not

have a matching PTR record.

We note that our dataset is biased toward domains within North America and Europe.

However, given that .com and .net domains account for more than half of all domains on

the Internet [59] and that Alexa includes the most popular sites in the world, we believe our

results still provide insights into the status of DNS records management.

4.1.4 BGP Misconfiguration

Publicly routed networks utilize Border Gateway Protocol (BGP) in order to exchange

advertised routes. A router can announce a new route for a prefix or withdraw a route when

it is no longer available. Routers are expected to not send updates unless there are topo-

logical changes that cause its advertised routes to change. However, misconfiguration and

human error can result in unnecessary updates, which can potentially lead to both security

vulnerabilities (e.g., Bogons [108, 121]) and downtime (e.g., AS7007 incidents [3]).

Mahajan et al. note that 90% of short-lived announcements (less than 24 hours) are

caused by misconfiguration [101]. This is because policy changes typically operate on hu-

man time-scales, while changes due to misconfiguration typically last for a much shorter

time.

In order to measure BGP misconfigurations, we use this simple heuristic in coordina-

tion with BGP updates from 12 BGP listeners in the Route Views project [104]. In our

experiment, we track the time period for every new route announcement during the first

two weeks of June, 2013 and infer that routes that last less than a day were likely caused

by misconfiguration. We detect 42.4 million short-lived routes, which account for 7.8%

of announced routes during the period of two weeks. We note that the Mahajan method-

ology is dated, and a fruitful area of future work would be to validate this methodology

in the context of current routing practice (i.e., the current practice of fine-graned routing

announcements).
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4.1.5 Egress Filtering

Attackers often spoof source IP addresses to achieve anonymity or as part of DDoS

attacks [66, 60]. In order to counter these attacks, it has been a best practice since 2000, to

perform egress filtering as documented in BCP 38 [82].

In order to measure which networks have implemented egress filtering, we consider

data from the Spoofer Project [48], which utilizes approximately 18,000 active clients to

send probes to test for the presence of egress filtering. We specifically analyze data from

April 29, 2013 and check in which netblocks an arbitrary routable source IP address can

be spoofed. Because spoofed IP addresses are primarily used by attackers, we consider

netblocks that do not implement address filtering to be misconfigured. The dataset from

April 29th contained results for 7,861 netblocks, of which 35.6% have not implemented

egress filtering. Unfortunately, the status of the remaining 195,000 netblocks is unknown.

4.1.6 Untrusted HTTPS Certificates

HTTPS sites present X.509 certificates as part of the TLS handshake in order to prove

their identity to clients. When properly configured, these certificates are signed by a browser-

trusted certificate authority.

Now that browser-trusted certificates are available for free from several major providers,

the best practice is for public websites to use browser-trusted certificates. As such, we

consider the presence of untrusted certificates as a potential symptom of misconfiguration.

However, a large number of sites utilize self-signed certificates or certificates that have not

been validated by a trusted authority.

In order to understand the state of HTTPS certificate utilization, we consider a scan of

the HTTPS ecosystem that was completed as part of the ZMap network scanner project [80].

In this scan, Durumeric et al. performed a TCP SYN scan on port 443 of the public IPv4

address space on March 22, 2013 using the ZMap network scanner. It then performed a

follow-up TLS handshake with hosts that responded on port 443, and collected and parsed

the presented certificate chains using libevent and OpenSSL.

Using this dataset, we consider whether presented certificates are rooted in a browser-
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trusted certificate authority or are not browser trusted (i.e. self-signed or signed by an un-

known certificate authority). We found 33 million hosts with port 443 open, 21.4 million

hosts who successfully completed a TLS handshake, and 8.4 million distinct X.509 cer-

tificates. Among these certificates, only 3.2 million (38%) were browser-trusted, and only

10.3 million (48%) of the hosts presented browser-trusted certificates.

4.1.7 SMTP server relaying

Open mail relays are SMTP servers that do not perform any filtering on message source

or destination and will relay e-mail messages to any destination. These servers are fre-

quently abused by spammers in order to avoid detection or to offload traffic onto third

parties. Given their consistent abuse, the Internet community strongly recommends against

their use (RFC 2505 [99], RFC 5321[93]).

In order to investigate the prevalence of open mail relays, we performed a TCP SYN

scan of the IPv4 address space for port 25 using ZMap on July 23, 2013 and attempted the

initial steps of an SMTP handshake in order to determine whether the server would reject

the sender or receiver. After determining whether the server would accept the message, we

terminated the connection without sending any mail.

Our scan identified 10.7 million servers with port 25 open of which 7.0 million identi-

fied themselves as SMTP servers. Of the responsive SMTP servers, 6.2 million explicitly

rejected our sender, 433,482 terminated the connection or timed out, and 22,284 SMTP

servers accepted the message, identifying them as open mail relays.

4.1.8 Publicly Available Out-of-Band Management Cards

Out-of-band management cards that allow remote control of power, boot media, and

in some cases, remote KVM capabilities, are now commonplace on servers. Most of these

management cards are implementations of the Intelligent Platform Management Interface

(IPMI) industry standard, but come under a variety of names, including Dell’s Remote Ac-

cess Card (iDRAC), HP Integrated Lights Out (iLO), and Super Micro’s Base Management

Card (BMC).
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While these interfaces are a valuable tool for systems administrators, they also pose a

severe security risk if publicly available on the Internet [67]. These devices have recently

been found to be riddled with vulnerabilities, and manufacturers explicitly recommend that

the devices be isolated on a private management network and not be made available on

the public Internet [86, 67, 118]. As such, we consider any publicly-available management

card to be a misconfiguration.

In order to measure the public availability of these IPMI cards, we consider the TLS

certificate data set collected by Durumeric et al. by searching for known default certificates

presented by IPMI cards manufactured by Dell, HP, and Super Micro. In this dataset, we

found IPMI cards hosted on 98,274 IP addresses.

4.1.9 Summary and Limitations of Symptoms

In this work, we choose to focus on eight symptoms that we believe expose mismanaged

networks and, for the most part, are not vulnerabilities that will directly influence the the

blacklists we consider later in this work. We further focus on symptoms that have clear and

accepted best practices, which have been documented by the security community.

We note that these symptoms are not the only externally visible metrics for network

mismanagement—there most likely exist networks that contain other mismanaged services,

which may correlate to the symptoms we present. Additionally, we acknowledge that bi-

ases may exist between the symptoms that we select that cannot be discerned without op-

erational details of an organization (e.g., open recursive DNS resovers and open SMTP

relays).

Regardless, we observe pervasive failures in implementing common security practices

in the symptoms that we do consider, several of which can, by themselves, result in eas-

ily exploitable vulnerabilities. Specifically, we find that there exist (1) 27 million open

recursive resolvers, (2) 226,976 DNS resolvers that have not been patched to use source

port randomization, (3) 27.4 million A records that do not have matching PTR records, (4)

42.4 million short-lived BGP routes, (5) 35.6% of the tested netblocks that have not im-

plemented egress filtering, (6) 10.2 million HTTPS servers using untrusted certificates, (7)
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22,284 SMTP servers that allow open mail relays, and (8) 98,274 public accessible IPMI

cards.

4.2 Mismanagement Symptoms at Autonomous System Level

In this section, we analyze the previously discussed symptoms at the AS level in order

to determine the global misconfiguration of different networks and to measure the relation-

ships between different types of misconfiguration.

4.2.1 Abstracting Networks

While it would be ideal to measure the correlation between mismanagement and mali-

ciousness at the management boundaries, there exist no easily visible or authoritative net-

work boundaries from an external perspective—it is often difficult or impossible to detect

what sociopolitical organizations own or manage network blocks or specific hosts within a

network block.

Several methodologies have emerged for aggregating networks ranging from AS-level

aggregation, to BGP routed prefix [97], to aggregating hosts by adminstrative domains

defined by authoritative name server [120, 106, 107]. We choose to aggregate hosts at the

AS level because several of our metrics are only available at this granularity and because

as we move forward, we ultimately hope to send information to owning organizations.

We make no claim that this choice of administrative boundary is ideal. For example,

several uniquely managed organizations make exist within a single AS (e.g., customers

of a large provider). Strictly speaking, we do not show in all cases a correlation between

mismanaged organizations and malicious networks, but rather between mismanaged ASes

and ASes that have been the source of malicious traffic.

4.2.2 Distribution of Misconfigured Systems

We hypothesize that the security postures of networks will differ based on the varied

effort placed in management and security. To validate this hypothesis, we consider the
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distribution of each of type of misconfiguration based on host IP addresses in each AS.

We rank networks by the normalized number of misconfigured systems, and show the

breakdown of vulnerabilities in Figure 4.1. In line with our hypothesis, mismanagement

is different between different networks—symptoms of misconfiguration are typically con-

centrated in a small number of networks.

In the remainder of this section, we discuss how we normalized each metric and the

results of aggregating specific vulnerabilities by AS.

Open recursive resolvers We normalize the number of open recursive resolvers by total

number of IP addresses announced by the AS. In Figure 4.1a, we show the normalized

number of open recursive resolvers (i.e., fraction of IP addresses that are running open re-

cursive resolvers) for each AS, ranked by a decreasing order. We find that in the top 10 most

misconfigured ASes, close to 100% of the ASes’ advertised addresses are running miscon-

figured open resolvers. While we do not know for sure why this is occurring, we suspect

that these networks are centrally managed and hosts are similarly configured. Beyond these

several cases, 477 ASes (1.2%) have more than 10% of IPs running misconfigured open

recursive resolvers. The long-tail distribution shows that approximately 95% of all ASes

are well-managed, with a small number of no open recursive resolvers.

DNS source port randomization We normalize the number of DNS resolvers without

source port randomization by the total number of unique resolvers in the AS. The results

are shown in Figure 4.1b. There are 14,102 ASes (33%) with at least one misconfigured

DNS server. Among these, the top 584 most misconfigured ASes have 100% of their re-

solvers misconfigured, and more than 50% of the resolvers do not implement source port

randomization in the top 1,762 ASes.

Consistent A and PTR records We define the normalized number of unmatched PTR

records as the fraction of the AS’ A records that do not have a corresponding PTR record.

We show the results of this normalization in Figure 4.1c. At least one A record is mis-

matched in 21,418 ASes (49%). A large number of ASes have a disproportionally higher

fraction of their A records mismatched: none of the A records in the top 5,929 ASes have
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Figure 4.1: Normalized distribution of misconfigured systems in autonomous systems. All
of the symptoms show that there are a few ASes that have a disproportional number of
misconfigured systems.
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corresponding PTR records and more than half of the A records are mismatched in the top

10,863 ASes.

BGP misconfiguration In order to normalize BGP misconfigurations, we consider the

fraction of routing announcements originating from an AS that is misconfigured. Results

are shown in Figure 4.1d. Unlike the previously discussed metrics, we do not find clearly

divided groups of ASes. Instead, we find many ASes that announce a similar number of

short-lived routes. Only 37 ASes have more than half of their updated routes as short-lived,

and only a few ASes have less than 5% of their updates that are caused by misconfiguration.

We suspect that this is because the causes of BGP misconfiguration are numerous and

complex [101].

Egress Filtering Ideally, the number of netblocks without egress filtering would be nor-

malized by the total number of netblocks in an AS. However, our dataset only includes

information for a fraction of the netblocks in 2,987 ASes. Therefore, we estimate the nor-

malized number by calculating the fraction of known netblocks that are spoofable in these

2,987 ASes. As shown in Figure 4.1e, approximately half of these ASes do not have any

netblocks that allow address spoofing, while all of the tested netblocks in the top 638 ASes

do not implement egress filtering and are spoofable.

We note that this particular metric may not accurately represent the distribution of net-

works without egress filtering. First, we can only estimate the deployment of source ad-

dress validation in 6% of all ASes. Secondly, the results may be biased given that the tested

netblocks in a particular AS may not accurately represent the behavior of the entire AS.

However, even with these limitations, we believe that the existence of egress filtering is a

symptom worth considering when discussing mismanaged networks due to the potential

abuse for attacks.

Untrusted HTTPS certificates We normalize the servers that present untrusted certifi-

cates with the total number of HTTPS servers seen in each AS. The results are plotted in

Figure 4.1f. While there is less risk associated with using self-signed certificates, we find

that a large number of ASes contain servers with a self-signed certificate. Specifically, more
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than 36,000 ASes (82%) have at least one mismanaged HTTPS server. In 8,042 ASes, all

hosts serving HTTPS on port 443 use a self-signed or an otherwise untrusted certificate.

Open SMTP mail relays We normalize open mail relays with the total number of SMTP

servers in each AS, and we show the per-AS normalized number of open mail relays in

Figure 4.1g. In comparison to other mismanagement symptoms, we find that mail servers

are relatively well maintained. Only 1,328 ASes hosted open mail relays and only 135 ASes

contained more than 10% of mail servers that are misconfigured.

Publicly available IPMI devices We find relatively few publicly available IPMI cards in

comparison to the previously listed metrics; in total we find IPMI cards in 5,648 ASes. Nor-

malized by the total number of IP addresses of the ASes, the number is tiny (Figure 4.1h).

But, a few ASes are relatively poorly managed—2% of IP addresses have been detected

with IPMI cards in the top 44 ASes.

4.2.3 Correlations between Symptoms

We next explore the question of what relationship, if any, exists between the different

mismanagement symptoms within an AS. To quantify the relationship between two symp-

toms, we use Spearman’s rank correlation test, which measures the statistical dependence

between two ranked variables. We use rank-based correlation rather than value-based tests

because of the differences in scale between ASes and the varying implications of each

mismanagement symptom. Further, rank-based correlation is a nonparametric measure that

does not require data from a normal distribution.

The result of Spearman’s test is a value between -1 and 1, where a negative value in-

dicates a negative relationship between two metrics and positive value indicates a posi-

tive relationship. For any nonzero value, we perform a hypothesis test with a 95% con-

fidence level in order to determine whether the observed correlation is significant (i.e., if

p− value < 0.05). For a significant nonzero correlation coefficient, the larger the absolute

value, the stronger the relationship. According to Cohen’s guidelines [71], values with ab-

solute correlation coefficients from 0.1 to 0.3 can be considered weakly correlated, 0.3 to
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Open resolver Port random. PTR record BGP misconfig. Egress filter. HTTPS cert. SMTP relay IPMI cards
Open resolver - 0.35 (< 0.01) 0.09 (< 0.01) 0.17 (< 0.01) 0.09 (< 0.01) 0.46 (< 0.01) 0.14 (< 0.01) 0.26 (< 0.01)
Port random. 0.35 (< 0.01) - 0.14 (< 0.01) 0.07 (< 0.01) 0.04 (= 0.02) 0.23 (< 0.01) 0.16 (< 0.01) 0.26 (< 0.01)
PTR record 0.10 (< 0.01) 0.15 (< 0.01) - 0.03 (< 0.01) 0.01 (= 0.46) 0.00 (= 0.37) 0.11 (< 0.01) 0.15 (< 0.01)
BGP misconfig. 0.17 (< 0.01) 0.07 (< 0.01) 0.03 (< 0.01) - 0.04 (= 0.04) 0.16 (< 0.01) 0.02 (< 0.01) 0.03 (< 0.01)
Egress Filter. 0.09 (< 0.01) 0.04 (= 0.02) 0.01 (= 0.46) 0.04 (= 0.04) - -0.02 (= 0.32) 0.14 (< 0.01) 0.10 (< 0.01)
HTTPS cert. 0.46 (< 0.01) 0.23 (< 0.01) 0.00 (= 0.37) 0.16 (< 0.01) -0.02 (= 0.32) - 0.06 (< 0.01) 0.15 (< 0.01)
SMTP relay 0.14 (< 0.01) 0.16 (< 0.01) 0.10 (< 0.01) 0.02 (< 0.01) 0.14 (< 0.01) 0.06 (< 0.01) - 0.26 (< 0.01)
IPMI cards 0.26 (< 0.01) 0.26 (< 0.01) 0.15 (< 0.01) 0.03 (< 0.01) 0.10 (< 0.01) 0.15 (< 0.01) 0.26 (< 0.01) -

Table 4.2: Correlation coefficients and p-values between different mismanagement symp-
toms. There are significant correlations between different symptoms. (RED: Moderate cor-
relation; BLUE: Weak correlation.)

0.5 moderately correlated, and 0.5 to 1.0 to be strongly correlated.

The pair-wise correlation coefficients and p-values are shown in Table 4.2. We find a

statistically significant correlation between 25 of the 28 comparisons at a 95% confidence

level. Of these, two of the pairs are moderately correlated, 14 pairs are weakly correlated,

and the remaining correlations are trivial. Of the symptoms, we find the strongest corre-

lation within vulnerability-related symptoms: open DNS resolvers, failure to implement

source port randomization, and using untrusted HTTPS certificates.

Missing PTR records and BGP misconfiguration have the weakest correlation to other

metrics. In the case of the PTR records, this may be caused by the biased dataset as

discussed in Section 4.1.3. For BGP misconfiguration, we expect to see little correlation

with other metrics due the complexity and potential inaccuracy of measurements (see Sec-

tion 5.2.2.3).

We expected to find the lack of egress filtering significantly correlated with other symp-

toms, which we do not observe. However, we note that the relatively size sample size of

this metric has skewed its results. Specifically, the measured ASes in our egress filtering

dataset are biased toward fewer misconfigured systems as indicated by other metrics. As

such, we do not draw any conclusions based on this metric.

One plausible explanation for the correlation between these technically disparate mis-

management metrics is that they are likely impacted by the organizational culture of se-

curity management. In other words, while we expect that disparate systems are managed

by different groups within an organization, we suspect that members in an organization

are influenced by its culture, including its hiring process, daily operating procedures, and

general awareness of security vulnerabilities.
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4.3 Unified Network Mismanagement Metric

We next analyze the mismanagement of networks as a whole using the eight metrics we

previously described. We first combine the individual symptoms into an overall misman-

agement metric. Our rationale is that while each symptom may be an inaccurate measure

of the AS’ mismanagement, the combination of disparate metrics provides a more holis-

tic view. Using this global metric, we consider different attributes of ASes including their

geographic region and topological role.

4.3.1 Combining Symptoms

We combine different symptoms into a single metric using Borda’s method [77], which

is a linear combination algorithm for aggregating ranked results. This provides us with an

overall score for each AS that is equivalent to an unweighted average of the AS’ rank in

each individual symptom. We exclude our metrics on ingress filtering and PTR records

given that they only represent a small number of ASes. We rank ASes by their overall

mismanagement scores from the worst to best managed.

4.3.2 Geographical Distribution

We first consider the geographic distribution of mismanagement by mapping ASes to

their geographical regions using the WHOIS services provided by Team Cymru [4]. To

compare mismanagement of ASes, we group ASes into five groups based on their rank

percentile in the overall mismanagement metric. We show the distribution of ASes in these

five groups in Figure 4.2.

We find that networks allocated by ARIN are relatively well-managed, and that ASes in

AFRINIC and LACNIC have a disproportionally large number of poorly-managed ASes.

Approximately 15% of their ASes fall into the 5th percentile of mismanaged ASes, and

60% fall into the 25th percentile of mismanaged ASes.

One possible explanation for the regional differences is that less developed areas may

devote less resources to network management. In addition, with different network opera-
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Figure 4.2: Regional differences in mismanagement. Networks assigned by ARIN are rela-
tively well managed, while a larger fraction of networks under AFRINIC and LACNIC are
poorly managed.

tor groups being geographically based, the exposure to management regulations and best

practices could potentially vary between geographic regions.

4.3.3 Topological Roles

Next, we examine whether the topological role of an AS influences its management.

One might expect that mismanagement would increase with AS size and breadth of ser-

vices due to the complexity of managing large and diverse networks. We use the catego-

rization of ASes’ topological roles and techniques proposed by Dhamdhere et al. [79] in

order to estimate AS size and functionality. In this categorization, ASes are separated into

four topological roles: Enterprise Customers (ECs), Small Transit Providers (STPs), Large

Transit Providers (LTPs), and Content/Access/Hosting Providers (CAHPs).

In order to determine the topological position of an AS, we attempt first to infer business

relationships (provider-customer, peers, and sibling) between ASes using Gao’s algorithm

against the global BGP routing table [?]. We then build a decision tree based on the number

of customers and peers of each AS and train against a set of 150 known ASes. We then

utilize this decision tree on the remaining set of ASes in order to determine their topological

roles. With this methodology, we find 39,653 ECs, 3,667 STPs, 30 LTPs, and 1,599 CAHPs
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Figure 4.3: Topological role differences in mismanagement. In general, Transit providers
(LTPs and STPs) are the the most mismanaged type of organization, followed by content,
access and hosting providers (CAHPs).

in June 2013.

Figure 4.3 shows the distribution of ASes in each topological role. As expected, we find

that Enterprise Customers are the best managed while Transit Providers are poorest man-

aged followed by Content/Access/Hosting Providers. Except the complexity of managing

large networks, it is also plausible that these large providers receive lower scores because

they contain a large number of small customers that are not large enough or staffed to re-

ceive an AS. In either case, service providers need to be held responsible for maintaining

their networks or alerting their customers to these vulnerabilities.

4.4 Mismanagement and Maliciousness

In this section, we explore whether there is a relationship between the eight misman-

agement symptoms we measured and our definition of organization maliciousness.

4.4.1 Maliciousness of Autonomous Systems

As defined in Section 3, we form the maliciousness of autonomous systems with 12

blacklists which contains approximately 160 million unique IP addresses. We note that
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Figure 4.4: Maliciousness of autonomous systems. Similar to the distribution of misconfig-
ured systems, a few ASes have a disproportionally large number of malicious IP addresses.

while we attempt to choose mismanagement symptoms that appear to be unrelated to the

blacklists in question, there is potential for bias between some mismanagement symptoms

and these blacklists. We specifically acknowledge that there is likely a bias between the

SPAM blacklists we use and the existence of open SMTP relays on a network. However, we

ultimately find only a weak positive correlation between the two, less than the correlation

with many of the other mismanagement symptoms we investigated.

As a result, we find that 29,518 ASes (67%) have at least one blacklisted IP address.

Figure 4.4 depicts the maliciousness of ASes sorted in descending order. Similar to the

distribution of misconfigured systems, the maliciousness of ASes varies greatly: the top

350 ASes have more than 50% of their IP addresses blacklisted, while the bottom ASes

have a negligible number of blacklisted IPs.

4.4.2 Are Mismanaged Networks more Malicious?

We hypothesize that there is a positive correlation between mismanagement and mali-

ciousness for two reasons. First, well-managed networks will expose fewer attack vectors,

which will ultimately lead to fewer infected hosts and will prevent attackers from using

well-managed networks as launch points for attacks. Second, well-managed networks are

more likely to adopt other reactive approaches (e.g., anomaly detection, filtering/blocking)
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Metric Coefficient P-value Interpretation
Open recursive DNS resolvers 0.59 < 0.01 strong positive
DNS source port randomization 0.45 < 0.01 moderate positive
Consistent A and PTR records 0.20 < 0.01 weak positive
BGP misconfiguration 0.19 < 0.01 weak positive
Lack of Egress filtering 0.04 < 0.01 no correlation
Untrusted HTTPS certificates 0.44 < 0.01 moderate positive
Open SMTP mail relays 0.23 < 0.01 weak positive
Mismanaged IPMI cards 0.22 < 0.01 weak positive
Overall 0.64 < 0.01 strong positive

Table 4.3: Correlation coefficients and p-values between mismanagement and malicious-
ness. There is a statistically significant correlation between our mismanagement symptoms
and maliciousness.

to mitigate the impact of compromise. Therefore, if compromise were to occur, hosts would

not remain online long enough to be found in our scans or to be placed on a global blacklist.

In order to determine the relationship between mismanagement and maliciousness, we

examine the correlation between the two metrics. We first calculate Spearman’s correlation

between each individual mismanagement symptom and maliciousness. All of the symptoms

we examine have a statistically significant positive relationship with networks’ apparent

maliciousness at a 95% confidence level. We present the results in Table 4.3. In particular,

the vulnerability-related symptoms (open DNS resolvers, DNS source port randomization,

and HTTPS server certificates) have a stronger correlation to maliciousness than the other

symptoms. One possible explanation for this is that the mismanaged open resolvers, DNS

servers, and HTTPS servers, once compromised, can be turned into malicious sources di-

rectly. Other mismanagement symptoms (e.g., BGP misconfiguration or mismatched DNS

records), which pose risk to the Internet but cannot be turned into malicious sources, have a

weak correlation to maliciousness. And we find that the correlation between anti-spoofing

and maliciousness is negligible, which we believe is due to biased datasets (i.e., our egress

filtering dataset only covers 4% of total networks).

And we find that our aggregated mismanagement metric has the strongest correlation

with maliciousness. Given that our overall mismanagement metric is an approximation of

the true management posture of a network, this observation shows that researchers need

to consider a more holistic view of network health, rather than only consider specific vul-
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Variable Coefficient t-value p-value
(Intercept) 3.089e+04 273.648 <2e-16
GDP -1.732e-10 -16.043 <2e-16
GDP per capita -2.175e-01 -58.963 <2e-16
# of Customers 1.107e+01 8.553 <2e-16
# of Peers 2.102e+01 8.238 <2e-16

Table 4.4: Multivariate regression with rank of mismanagement as the dependent variable
and the four social and economic factors as independent variables. All the factors signifi-
cantly influence the organization’s rank of mismanagement: the higher the GDP/GDP per
capita, the better the management; the more the customers and peers, the worse the man-
agement.

nerabilities or symptoms. However, it is possible that the strongest correlation is caused

by statistical errors—the sample randomness could be reduced by combining several sam-

ples togerther. We do not explore the statistical details here, which is one limitation of our

current work.

Correlation does not imply any cause-effect relationship; there could very well be a

third variable that impacts both mismanagement and maliciousness [113]. For example, as

we discussed in Section 4.3, mismanagement differs between geographical and topological

locations, which indicates that external social and economic factors influence mismanage-

ment. Therefore, we need to further examine whether mismanagement causes malicious-

ness when controlling for social and economic factors.

We assume that the aforementioned differences in management within different geo-

graphic regions (Section 4.3.2) are caused by the differing economic development in these

regions. Networks in a developed region might invest more in management and security

than in less-developed countries. For each country, we use gross domestic product (GDP)

and GDP per capita as economic indicators for the ASes located in the country. In addition,

we look at the business relationship between ASes to infer their social and financial status.

Specifically, we use two variables: number of customers and number of peers in Internet

routing. The number of routing customers and peers are calculated with Gao’s algorithm as

discussed in 4.3.3.

The multivariate regression results show that all the four social and economic variables

are significant influencing factors for both mismanagement and maliciousness of organiza-
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Variable Coefficient t-value p-value
(Intercept) 1.656e+04 191.644 <2e-16
GDP -7.103e-11 -8.592 <2e-16
GDP per capita -1.833e-01 -64.897 <2e-16
# of Customers 6.352e+00 6.408 1.49e-10
# of Peers 1.105e+01 5.659 1.53e-08

Table 4.5: Multivariate regression with rank of maliciousness as the dependent variable and
the four social and economical factors as independent variables. The results are similar to
those of mismanagement in Table 4.4.

tions. In Table 4.4 and Table 4.5, we show the detailed regression results. It can be seen

that all the four factors statistically influence the rank of an organization’s maliciousness

and mismanagement at a 95% confidence level. The higher the GDP and GDP per capita,

the better the management status of the organization. From the coefficients, we can see that

a 10 billion dollar increase in the country’s GDP would result in a decrease of 0.71 in the

maliciousness rank and a decrease of 1.7 in the mismanagement rank when controlled by

other factors. A 10 dollar increase in the GDP per capita would cause the maliciousness

rank to decease by 1.8 and the mismanagement rank to decease by 2.1 when controlled by

other factors. Similarly, the more the customers and peers, the worse the management. With

each additional customer the organization has, its maliciousness rank would increase by 6.4

and its mismanagement rank would increase by 11; and if the organization have one more

peer, its maliciousness rank will increase by 11 and its mismanagement rank will increase

by 21.

In order to determine whether a correlation exists between mismanagement and mali-

ciousness when controlling for these factors, we test their relationship with a multivariate

regression. We first quantify the relationship between maliciousness and mismanagement

with a univariate regression. Then we add the four social and economical factors as inde-

pendent variables to test whether this relationship holds when controlled by these factors.

In the univarite regression between maliciousness and mismanagement, we find the

following regression model:

rank o f maliciousness = 0.451∗ rank o f mismanagement−131.9
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Variable Coefficient t-value p-value
(Intercept) 4.581e+03 36.445 <2e-16
Mismanagement 3.879e-01 118.336 <2e-16
GDP -3.841e-12 -0.537 0.5911
GDP per capita -9.891e-02 -38.988 <2e-16
# of Customers 2.057e+00 2.405 0.0162
# of Peers 2.902e+00 1.722 0.0851

Table 4.6: Multivariate regression with rank of maliciousness as the dependent variable,
and mismanagement and the four social and economic factors as independent variables.

Variable Coefficient t-value p-value
(Intercept) 4.576e+03 36.413 <2e-16
Mismanagement 3.883e-01 118.956 <2e-16
GDP per capita -9.958e-02 -47.837 <2e-16
# of Customers 2.324e+00 2.764 0.00572

Table 4.7: Final multivariate regression model for maliciousness and mismanagement when
controlled by social and economic factors. Mismanagement is a significant influencing fac-
tor for organization maliciousness when controlled by these latent variables.

in which the rank of mismanagement is a significant factor with p− value < 2e− 16 for

rank of maliciousness. This indicates that when the mismanagement rank increases by one,

the organization’s maliciousness rank would increase by 0.45. When adding all four fac-

tors and applying a multivariate regression, we get a model as shown in Table 4.6. This

shows that the GDP and number of peers are not statistically significant independent vari-

ables in this model (with p− value > 0.05). Therefore, we remove them to get the final

model, as shown in Table 4.7. In the final model, although when controlled by these so-

cial and economic factors, the increase of mismanagement rank has a lower impact on the

maliciousness, but mismanagement is still a significant influencing factor for malicious-

ness. When controlled by these factors, every increase in the mismanagement rank causes

an increase of 0.39 in the organization’s maliciousness rank. Therefore, we conclude that

organization maliciousness is correlated with its mismanagement when controlled with our

selected social and economic factors.

We note that there might be missed variables that may diminish the relationship be-

tween mismanagement and maliciousness. For example, the legal regulations for security

managements in different countries or the education level of population would directly
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Metric Coefficient P-value Interpretation
Open recursive DNS resolvers 0.54 < 0.01 strong positive
DNS source port randomization 0.24 < 0.01 weak positive
Untrusted HTTPS certificates 0.39 < 0.01 moderate positive

Table 4.8: Aggregation at BGP prefix level: Correlation coefficient and p-value between
mismanagement and maliciousness.

impact the organizations management and behavior patterns. In the future, more social, be-

havioral and economic factors could be added into the analysis to verify this relationship.

4.4.3 Impact of Aggregation Type on Maliciousness Correlations

In order to explore our choice of using autonomous system as the proxy of Internet

organizations instead of at a more granular level, such as by routed block or authoritative

name server, we consider the correlation between three of the mismanagement symptoms

and our global maliciousness metric at the routed block granularity. We find very slight

differences between the level of correlation (e.g., the correlation between DNS port ran-

domization moves from a moderate positive correlation to a weak positive correlation while

other correlations remain unchanged). Ultimately, we find that there continues to be strong

positive correlations for all of the mismanagement symptoms. We show the exact values in

Table 4.8.

4.5 Limitations

There are several limitations in the data that we collect in this work. First, we uti-

lize a large number of external data sources that were collected using disparate collection

methodologies, from multiple networks with differing coverage, and during multiple time

frames. While utilizing these datasets reduces the impact of active scanning on destination

networks, these discrepancies could potentially impact the correlations we present. While

we are not aware of any impact, there is future work to collect more consistent datasets.

As discussed throughout the paper, we aggregate networks at an AS level. Additional
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insight may be gained by grouping hosts at a more granular level or with the addition of

organizational data. As well, there is future work required to determine whether hidden

biases exist between the symptoms we select or between the symptoms and the misman-

agement metrics we utilize, particularly between mail server mismanagement and SPAM

metrics.

4.6 Summary

There is a widely held, anecdotal belief that mismanaged networks not only pose a risk

to themselves, but to the Internet as a whole. In this paper, we systematically examine the

relationship between mismanagement and maliciousness by analyzing eight Internet-scale

mismanagement metrics and twelve commonly used global blacklists. Through this analy-

sis, we find that different symptoms of mismanagement are highly correlated among them-

selves, and we ultimately find the relationship between mismanagement and maliciousness

holds while controlling for social and economic considerations.

While security has primarily been reactionary, the understanding of the relationship

between mismanagement and maliciousness is the first step in developing proactive security

systems. We encourage the security community to switch some of their attention from

studying attacks to researching defensive mechanisms and incentivizing organizations to

implement even the simplest security best practices. Ultimately, we hope that networks can

be secured proactively from such research instead of primarily reactively.
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CHAPTER 5

Exploring the Tradeoffs of Network Takedowns

We observe the existence of “bad” organizations that consistently have a high fraction

of their IP addresses involved in malicious activities. In response to these rogue Internet or-

ganizations, network operator community have turned to a form of vigilante justice we call

network takedowns. Network takedowns is one of the mitigation solutions at the organiza-

tional level, which aims to eliminate rogue Internet organizations that provide bulletproof

hosting for malicious activities [11] by pressuring upstream provider to de-peer from or

refuse to transit a target network’s traffic. Since 2007, more than ten disreputable ISPs have

been successfully taken down [11], including Russian Business Network [58], Atrivo [15],

and McColo [6].

At first blush, these high profile actions appear to have merit—the takedown of McColo,

for example, contributed to a two-third reduction in global spam traffic [45]. But recently,

the community has begun to question both the legal and ethical basis for such takedowns

as well as, perhaps more importantly, their ad hoc nature:

“Some have suggested that ISPs and Internet backbone providers should not be

allowed to serve as judge, jury and executioner of problematic customers...[This]

stance was echoed by Marcus Sachs, director of the SANS Internet Storm Cen-

ter. ‘There are others out there who need to be cut off but we’ve got to find a

better way to do it than by creating the virtual equivalent of a lynch mob.”’ [30]

While the thorny legal and ethical issues offer opportunities to test recent ethical as-

sessments of Information Technology Research, such as those espoused in the Menlo Re-
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port [64], we are most intrigued by the ad hoc nature of the evaluations used by the com-

munity to assess a potential takedown target. In this thesis, therefore, we propose a more

principled quantitative approach to measure the costs and benefits for such takedown de-

cisions. Specifically, we propose sets of cost and benefit metrics, ranging from security,

Internet naming, routing and transit. The cost metrics include the collateral damages to

both legitimate services and innocent networks. The benefit metrics cover not only the se-

curity gain, but also the improvement in control plane stability and network workloads. To

measure the cost and benefit metrics, we assemble seven Internet-scale datasets covering

network attacks, routing, and naming, as well as the traffic collected by a regional Inter-

net Service Provider. We further apply Pareto efficiency on the individual measure of costs

and benefits to find the optimal operating points of takedowns that optimizes benefits while

minimizing costs.

The framework can be used for evaluating any future takedown actions. To illustrate

our framework, we apply the cost and benefit analysis on a set of candidate networks for

takedowns. Specifically we identify 672 candidate autonomous systems (ASes), which had

a significant fraction of their IP addresses engaged in acts of malice based on the 11 repu-

tation blacklists collected during a period of one year. While applying our metrics, we have

the following findings:

• These 672 disreputable autonomous systems contributed 20% of all malicious IP

addresses on our collected blacklists, and 7% of sites hosting Malware detected by

Google Safe Browsing.

• Compare to other networks, disreputable ASes play less critical roles in the Internet

naming and routing infrastructures (e.g., hosting statistically significant fewer name

servers, or having smaller degree in routing topology). Therefore, the takedown of

them only results in minor costs to innocent users and services.

• The disreputable organizations not only perform maliciously in network security, but

also have undesirable behaviors in other Internet functions. They contribute signifi-

cantly more to the BGP instability and DNS workloads than other ASes. Therefore,

the takedowns have moderate benefits on other Internet core functions.
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• Applying Pareto efficiency on the costs and benefits of takedowns, we identified sets

of optimal operating points with favorable cost-benefit tradeoffs. Conservatively, tak-

ing down 14 ASes (8 enterprise customers and 6 service providers) would eliminate

1% of malicious IP addresses (about 96K malicious IPs) in our collected blacklists

with very minor costs. At a more aggressive operating point, taking down 153 enter-

prise customers and 24 service providers would remove 7% of malicious sources at

the cost of 0.4% ASes becoming unreachable.

Although the cost-benefit tradeoff is impressive, when we explore the question what

are the global impacts of large numbers of these takedowns?, the case for such community

policing is not as clear. By taking down the 14 candidate ASes, we only eliminate 1%

of malicious IP addresses in our view of the Internet. Even by taking down more than six

hundreds of disreputable autonomous system, only 20% of malicious IP addresses would be

removed. When taken along side the dismaying anecdotes decrying the success of previous

takedowns (e.g., “By the second half of March, seven-day average spam volume was at the

same volume we saw prior to the blocking of the McColo ISP in November 2008 [44].”),

our observations about the modest global impact of network takedowns highlight the fact

there are likely to be no quick and dirty solutions to the pervasive security problems we

face. Instead such minor victories “ will be short but sweet [45].”

5.1 Tradeoff Analysis Framework

In this section we describe a tradeoff analysis framework aimed at understanding the

costs and benefits associated with a given takedown decision. Specifically, we want to an-

swer two questions: What are the costs and benefits of takedowns and how to measure

them? and What is the optimal operating points for takedowns where certain security ben-

efit is achieved with minimal costs? To answer the first question, we select various metrics

ranging from network security, Internet naming, routing, and transit and use normalized

global impacts to measure them. For the second question, we use Pareto efficiency to find

the optimal operating points which maximize security benefits while minimizing the costs.

The framework takes as input a given set of candidate networks for takedown, which may
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Metrics Internet Functions

Security Benefits
Reduced Malicious IP addresses -
Reduced Malware sites -

Costs
Invalid Domains Naming
Unreachable ASes Routing
Loss of untainted traffic Transit
Reduced TLD queries Naming

Other Benefits Reduced BGP Instability Routing

Table 5.1: Summary of cost and benefit metrics.

be arbitrarily defined. Therefore, our methodology can be used to evaluate any future take-

down actions. Although the Pareto solution provides guidelines for takedown decisions, we

believe there should be some operation guidelines to facilitate any such decision, which is

out of the scope of this work.

5.1.1 Network Abstraction for Takedowns

There are different network abstractions, such as autonomous systems [6, 58, 15], net-

blocks [54], or groups of servers [33], at which takedown actions can be conducted. In this

thesis, we assume that the takedowns will be conducted at the level of autonomous systems.

This is in accordance with most of historical takedown actions and has three merits. First,

autonomous systems are administrative boundaries that can reflect the networks’ policies.

So it is a natural choice for capturing rogue networks [117]. Secondly, autonomous sys-

tems are the entities of routing policy. Therefore, it is the level where de-peer by upstream

providers is feasible [30, 35]. Thirdly, AS level provides a useful benchmark for tradeoff

analysis. It represents the worst case scenario which has the largest costs. A finer abstrac-

tion, for example, of the prefix or administrative domains levels, provides opportunities for

finer-grained policies and more favorable tradeoffs. In practice, the choice of best network

abstraction should be determined on the basis of operation, which is out of the scope of this

work.
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Security
Malicious IP addresses from a collection of 11 blacklists
Sites hosting Malware detected by Google Safe Browsing

Naming
Zone snapshot of second-level domains in .com and .net
.com and .net TLD queries seen by Verisign TLD servers

Routing
Routing tables collected by Route Views and RIPE projects
BGP updates seen by Route Views and RIPE

Traffic NetFlows collected at a large regional ISP

Table 5.2: Summary of datasets used in measuring costs and benefits.

5.1.2 Cost and Benefit Metrics

To evaluate the costs and benefits associated with takedowns, we propose three sets of

metrics as summarized in Table 5.1. These metrics have a broad coverage ranging from

network security, Internet naming, routing and transit. And to make fair comparisons be-

tween different metrics possible, we use normalized global scale measures for each metric.

As listed in Table 5.2, we collect seven global-scale datasets to measure the costs and ben-

efits. Although these metrics have been carefully selected, we make no claim that they are

complete or without bias. Next we will discuss each of these metrics with respect to the

reason of their inclusion and measurement methodology.

5.1.2.1 Security Benefit Metrics.

Our first set of metrics aims to measure the global impact of takedowns on malicious

sources. The first question we want to answer is what percentage of malicious IP addresses

would be removed after the takedowns? To answer this question, we collect 11 IP address-

based reputation blacklists (as described in Section 2.1) and calculate the reduction in the

number of unique malicious IP addresses in these blacklists to represent the security benefit

of takedowns. This is an unweighted measure of the improvement in security because we

treat each malicious IP equally.

To cross-validate the security benefits, we use an empirical metric — the reduction in

Malware sites detected by Google Safe Browsing [22]. Other security metrics, for example,

the reduction in spam traffic or phishing websites, could also be added to our framework.

However, we do not explore them in the present study.

73



5.1.2.2 Cost Metrics

The costs of network takedown are mainly the collateral damages to legitimate services

and innocent users. We proposed cost metrics that cover three core Internet functions —

Internet naming, routing, and transit.

For Internet naming, the most important collateral damage from takedowns is the dis-

ruption of legitimate services. Given the design of the DNS system, domains are only reach-

able in practice if they have at least one reachable authoritative name server. The takedown

of ASes would make domains whose authoritative name servers are located in blocked

ASes unreachable to the rest of the Internet. Therefore, we use the metric of the percentage

of domains becoming invalid after takedowns as a proxy for this cost. We collect Verisign

zone information snapshot that contains the authoritative name server information for all

second-level domains under .com and .net. and quantify this cost by examining the effect on

accessibility of all .com and .net domains, which account for half of all registered domain

names on the Internet [59].

From a routing perspective, the takedowns might not only knock off the targeted net-

works, but also render their customers disconnected from the Internet. Therefore, we mea-

sure the cost as the percentage of untargeted ASes that become unreachable after take-

downs. We measure this cost based on the routing tables collected by Route Views [104]

and RIPE [42].

Similarly, for network transit, the cost is the loss of legitimate traffic. Generally speak-

ing, it is very difficult, if at all possible, to measure the volume of purely malicious/legitimate

traffic. Instead, we provide a rough estimate of the malicious traffic utilizing the tainted

traffic approach [126], where tainted traffic is defined as traffic whose source or destination

IP address is shown to be used for malicious activities (e.g., appears on a blacklist), while

untainted traffic is the complement set. The untainted traffic represents a lower bound of le-

gitimate traffic. We use the the fraction of untainted traffic that is lost following a takedown

as the cost metric in transit. To measure the transit cost, we collected Netflow traffic from a

regional ISP that provides high-performance computer networking and related services to

educational, government, healthcare, and non-profit organizations.
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5.1.2.3 Other Benefit Metrics

Besides security benefits, we select two metrics which measure the possible improve-

ments in the Internet core functions. Although these benefits are not the primary goal of

takedowns, they are interesting and welcome if present.

For naming infrastructure, we propose a benefit metric of the reduced DNS queries. As

the naming systems are intensively used for botnet communication, we expect there would

be a reduction in the queries after taking down disreputable ASes. This benefit is measured

as the fraction of global top-level domain queries that are reduced after takedowns. We

measure the metric of lighted name server loads with a dataset that consists of DNS queries

captured at four geographically distributed VeriSign .com and .net TLD server clusters

(Dulles, VA; New York, NY; San Francisco, CA; and Amsterdam, NL).

We also propose to use the BGP instability metrics to measure the potential benefit

in routing. BGP routing updates happen for a variety of reasons, such as device failures,

reconfiguration, and policy changes. Each change causes overhead due to issues such as

convergence delay and network congestion. The stability of BGP routing tables has drawn

considerable attention [98] as it is critical to the routing operation. We evaluate what frac-

tion of BGP update events can be reduced after takedowns to measure the benefit metric

of reduced BGP instability.We use routing updates collected from Route Views [104] and

RIPE [42] to measure this benefit.

5.1.3 Pareto Efficiency Analysis of Costs and Benefits

Based on the costs and benefits data we measured, we further answer the question of

how to make takedown decisions to achieve optimized benefits while minimizing costs? We

apply Pareto efficiency [78], which compare the costs of different solutions for achieving

certain benefit and then selects the most effective solutions that cannot be outperformed by

other solutions. In our study, denote the cost for naming, routing and transit as c1,c2,c3 and

the security benefits of takedowns as b. All these parameters are functions of N which is

the number of top candidates for takedowns. Our goal is to find Pareto optimal operating

points of N such that no other operating point would gain the same benefit with lower costs.
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A common way of approximating the Pareto optimal solutions is to solve a series of

optimization problems formed by a linear combination of the cost and benefit functions.

We first specify a set of numbers {ω1,ω2,ω3} on the hyperplane {ω1,ω2,ω3 : ω1,ω2,ω3 ≤

1,ω1 +ω2 +ω3 ≤ 1.}. Then we formulate the following optimization problem to find an

optimal N

minN ∑
3
i=1 ωi · ci− (1−∑

3
i=1 ω3) ·b

Ideally we should formulate and search such N over all possible points on the hyper-

plane, which is impossible as the above set is infinite. The way we simplify the search is to

uniformly quantize the [0,1] interval and select ωis only on the grids, for instance take ωi

as [0,0.1,0.2, ...,1] with an interval being 0.1. After solving and getting the optimal N for

each {ω1,ω2,ω3} we obtain a set of N which approximates the Pareto optimal solution set.

The Pareto efficiency provides a guideline for making takedown decisions. However,

in real operations, a careful cost-benefit analysis [14], in which the costs and benefits are

compared after being unified into a single measure (e.g., money, infected population, etc.),

is needed to evaluate the soundness of a decision. Such conversion and analysis is a highly

non-trivial process as it depends on operational considerations, which is beyond our mea-

surement capabilities. This remains an interesting direction of future work.

5.2 Application

In this section, we will illustrate the application of our tradeoff analysis framework. We

first identify a set of disreputable Autonomous Systems, which are candidates for takedown,

based the 11 blacklists collected over the period of one year starting from March 2014.

Then we measure each cost and benefit metrics of taking down the top N candidates with

our Internet-scale datasets. In the end, we apply our Pareto efficiency analysis to provide

guidelines for the choice of N.
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Figure 5.1: Average Maliciousness of Autonomous Systems over a period of one year.
There are ASes with very high level of maliciousness—the top nice disreputable ASes
have an average of more than 30% IP addresses are malicious during the year; more than
10% of IP addresses are blacklists for the top 84 disreputable ASes; and more than 3% IP
addresses for the top 672 disreputable ASes.

5.2.1 Identifying Disreputable Organizations

The evidences that motivated historical takedown are external security reports showing

that major portions of the network were being used for malicious activities [30, 35]. In con-

sistence to the operational practices, we identify potentially takedown organizations based

on their maliciousness. Specifically, we collect 11 IP address-based reputation blacklists

over a period of one year starting on March, 2014 and calculate the organization malicious-

ness as described in Section 3.1.2. To identify disreputable organizations as candidates for

takedown, we calculate the average maliciousness of each autonomous system over the

period of one year.

We ranked autonomous systems by their average maliciousness over the year and show

the average in Figure 5.1. Overall, 33,717 autonomous systems had at least one IP addresses

blacklisted during the year. Similar to our observations in previous chapters, the average

maliciousness varies greatly for different ASes: most autonomous systems had only a very

small fraction of their IP addresses involved in malicious activities; but on the other hand,

we do observed the existence of disreputable organizations that have a large fraction (as

high as 51%) of their IP addresses involved in malicious activities. The top nice disrep-
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utable ASes have an average of more than 30% IP addresses are malicious during the year.

More than 10% of IP addresses are blacklists for the top 84 disreputable ASes, and more

than 3% IP addresses for the top 672 disreputable ASes. These observations confirm the

existence of disreputable organizations that are subjected to be taken down. For the follow-

ing cost and benefit analysis, we will focus on the top 672 ASes that had an average of

more than 3% of their IP addresses blacklisted during the year.

We note that our method, which gives equal weight for different malicious sources, can

be improved in multiple ways. For example, different malicious types can be given different

weights: the IP address that hosts a C&C server could be weighted more than a spamming

IP address. As we mentioned that our framework can take an arbitrary set of candidates as

input, it can be used to assess the candidates selected by other consolidation methods in the

future.

In our following analysis, we break these disreputable ASes into enterprise customers

(ECs) and service providers (SPs) by their topological position. The rational is that the two

types of ASes play very different roles on the Internet, thus making the impact of takedown

varied. For example, a transit service provider is in a more critical position in the Internet

hierarchy and will have a higher impact on routing than a stub AS. For our categorization,

we use the definition and categorization techniques proposed by Dhamdhere et al [79].

While 539 disreputable ASes are enterprise customers, 133 of them are service providers

including both transit service providers and content/access/hosting providers.

5.2.2 Measuring the Costs and Benefits

In this section, we apply our framework on the selected disreputable autonomous sys-

tems and measure the costs and benefits of taking down the top N disreputable ASes.

5.2.2.1 Improvements of Security

5.2.2.1.1 Reduced Blacklisted IPs We first look at what fraction of malicious IP ad-

dresses in our union list can be culled if one takes down the top N disreputable ASes. As

we evaluate the benefit within our collection of blacklists that are also used for identifying
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Figure 5.2: Benefit on Security — Reduced malicious IP addresses. There is a moderate
improvement in security. About 20.2% of blacklisted IPs would be eliminated after taking
down the 672 disreputable ASes.

disreputable ASes, our results represent the upper bound of the security gains.

We collected the 11 reputation blacklist for three months starting from March 2015. On

average, there are 9.6 million malicious IP addresses on these lists on each day. We calculate

the average fraction of malicious IP addresses that would be eliminated after taking down

the top N disreputable service providers/enterprise customers as a function of N and show

the results in Figure 5.2. It can be seen that the security improvement increase linearly with

the increase of N. In total, the 672 disreputable ASes contribute about 20.2% blacklisted

IP addresses. Taking down the 133 disreputable service providers would eliminate 14.4%

of total malicious IP addresses, while only 5.8% of total malicious IP addresses would be

removed after the takedown of 539 disreputable enterprise customers. The limited impact

of taking down enterprise customers is cause by the small size of these ASes. Although

they have a very large fraction of their IP addresses blacklisted, the absolute number of

malicious IP addresses in them only accounts for a small fraction of total malicious IP

addresses.

We also note that more than 80% of the blacklisted IPs used for identifying disrep-

utable organizations fall into the category of spam. Therefore, the identified disreputable

organizations might be biased toward the malicious activities of sending spam and the most

profound security gain would be the reduction in spam. By breaking down the reduction
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Figure 5.3: Benefit on Security — Reduced Malware site detected by Google Safe Brows-
ing. About 7.6% of Malware sites would be removed after taking down the 672 disreputable
ASes.

of malicious IP addresses into three different attack types, we see that taking down the top

672 disreputable AS would eliminate about 5% malicious IPs performing active scanning

and 27% malicious IPs that hosting Phishing or Malware site. Therefore, although our se-

lection methods are biased towards Spam sources, there are also moderate security benefits

for other malicious activities.

5.2.2.1.2 Reduced Malware Sites The second metric we used to measure the security

benefit is the reduction in malware sites detected by Google Safe Browsing [22] . We use

the data collected on March 20, 2015 which includes all the sites hosting Malware in the

past year. In total, there are 2.5 million malware sites in the dataset.

In Figure 5.3, we show the fraction of malware site that would be removed if one takes

down the top N disreputable ASes. Only 0.8% of the detected malware sites are hosted in

the 133 disreputable service providers, while about 6.8% are hosted in the 539 disreputable

enterprise customers. However, the large spike indicates that malware sites are concentrated

in certain networks while there are only several malware sites in other disreputable ASes.

This concentration may be caused by the data collection method. As Google Safe Browsing

does not scan the entire IP address space and the scan coverage varies from less than 1% to

more than 99% for different autonomous systems. Therefore, our results could be affected
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Mean (disreputable) Mean (others) p-value
ECs 29.0 36.6 0.14
SPs 63.3 285.0 5.41e-09

Table 5.3: T-tests on the difference in number of authoritative name servers between disrep-
utable ASes and other ASes. Disreputable service providers host significantly fewer name
servers than other ASes at a 95% confidence level.

by the biased data sample.

5.2.2.2 Impact on Naming

5.2.2.2.1 Cost—Invalid Domains To quantify the cost in naming, we use the Verisign

zone information snapshot taken on March 01, 2015. In total, there are 314 million second-

level domains with 2.1 million resolvable name servers. For each domain, we map its au-

thoritative name servers into ASes. In total, we find 25,063 ASes that host authoritative

servers for at least one domain.

Given this data, we first examine whether disreputable ASes plays less or more crit-

ical roles than others in the naming infrastucture. Specifically, we compare the number

of unique name servers hosted by disreputable ASes and the rest. The average number of

hosted name servers of ASes in different groups are shown in Table 5.3. Both disreputable

service providers and enterprise customers host less name servers than reputable ones. To

further validate whether the difference is statistically significant, we use a t-test, which

can examine the impact of the value of a binary variable on the value of other variables.

To meet the normality assumption of t-test, we begin with a log-transformation and then

apply a t-test to the transformed data. The null hypothesis Ho here is that there is no differ-

ence between disreputable ASes and others in terms of the number of hosted name servers.

With a 95% confidence level, we can reject Ho if p-value< 0.05. The results of t-tests are

shown in Table 5.3. We can reject the null hypothesis for service providers and conclude

the differences are statistically significant at a 95% confidence level.

This observation indicates that disreputable service providers are playing less critical

roles in naming infrastructure, thus resulting in less negative impact of takedown actions.

To quantify the cost on domain accessibility, we look at the percentage of domains which
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Figure 5.4: Cost on Naming: Unresolvable .COM and .NET domains after taking down the
top N disreputable ASes. The cost is minor.

become unresolvable after taking down the top N disreputable ASes. We note that domains

may have multiple authoritative name servers. A domain becomes unresolvable only when

all of its authoritative name servers are unreachable. In our analysis, we do not distinguish

malicious domains. This results in an overestimation of cost, since we take the removal of

malicious domains as part of costs.

We show the results in in Figure 5.4 and it can be see that the cost on domain availability

is negligible. Only about 0.003% domains would be affected after taking down the top

200 disreputable enterprise customers; and taking down all the 539 disreputable enterprise

customers would affect 0.04% of domains. And as expected, taking down service provides

has much larger negative effects. About 0.12% of domains would be unresolvable after

taking down the 133 disreputable service providers.

5.2.2.2.2 Benefit — Reduced TLD Loads We then measure the benefit metric of lighted

name server loads with a dataset that consists of DNS queries captured by VeriSign TLD

server clusters on Dec 23, 2013. The data contains nearly 4.1 billion queries from 3.6 mil-

lion unique resolvers.

We first map the IP addresses of resolvers into ASes and calculate the number of TLD

queries per AS. Again, we first compare the TLD querying behavior of disreputable ASes

and others. We perform the t-tests as before to see whether there are statistically significant
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Mean (disreputable) Mean (others) p-value
ECs 102,729 26,508 < 2.2e-16
SPs 474,560 382,528 6.7e-13

Table 5.4: T-tests on the difference in number of TLD queries between disreputable ASes
and other ASes. Both disreputable ASes enterprise customers and service providers sent
significantly more queries than other ASes at a 95% confidence level.
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Figure 5.5: Benefit on Naming: TLD queries reduced after taking down the top N disrep-
utable ASes. There would be a moderate reduction in TLD queries.

differences in the number of queries sent by disreputable ASes and the rest. The results are

shown in Table 5.4. From the mean number of queries per AS, we can see that disreputable

ASes sent more queries on average than other ASes in the same category. Especially, the

disreputable enterprise customers sent about four times more queries than the other ECs.

And the t-tests confirm that the differences are statistically significant at a 95% confidence

level (i.e., p-value< 0.05).

Although we do not know why the disreputable ASes contribute more TLD loads, tak-

ing them down would definitely have benefits. We show the reduction on the number of

queries after taking down the top N disreputable ASes in Figure 5.5. The improvements

are moderate. Taking down the 133 disreputable service provides would eliminate 1.3%

of global TLD queries, while taking down all the disreputable enterprise customers would

result in a 1.3% reduction.

Summary of Impact on Naming: The disreputable ASes plays an less critical role in
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Mean (disreputable) Mean (others) p-value
ECs 2.1 2.1 0.63
SPs 26.4 48.8 1.9e-13

Table 5.5: T-tests on the centrality (degree) in AS-graph between disreputable ASes and
others. The disreputable service providers occupied significantly less central positions in
routing topology than other providers at a 95% confidence level.

the naming infrastructure than the rest of ASes, as they on average host less authorization

name servers. Taking down the disreputable ASes would have minor cost on domains ac-

cessibility (∼ 0.1%). Meanwhile, these disreputable ASes contribute more TLD queries

than others. Thus taking down them would have positive effects of reducing TLD loads by

more than 2.5%.

5.2.2.3 Impact on Internet Routing

5.2.2.3.1 Cost—Loss of Reachability Next, we measure the cost of takedowns in In-

ternet routing reachability. Before we evaluate the actual cost, we first compare the disrep-

utable ASes to reputable ones with respect their roles in the routing topology. We calculate

the node degree of each AS in the AS-graph constructed from the routing tables in March

1, 2015. The higher the degree, the more critical role played by the AS in routing topology.

We show the mean degree of ASes of different groups in Table 5.5. It can be seen that

disreputable service providers have smaller degree than other ASes in the same category.

And the t-test results indicate that the differences are statistically significant at a 95% confi-

dent level. Since enterprise customers are the edge networks, there would not be differences

for disreputable ones from others.

We measure this impact by examining the ASes other than disreputable ones that be-

come unreachable by any monitor from Route Views or RIPE after removing all paths

involving the top N disreputable ASes. We only use the explicitly announced routes in

BGP table snapshots without inferring any paths in this exercise. It has been shown that the

Route Views and RIPE data fails to capture the complete Internet topology. A significant

fraction of peering and backup links are missed [72]. Therefore, our approach, again, rep-

resents the worse case because the loss in reachability is likely smaller in reality than what
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Figure 5.6: Cost on Routing: ASes that becomes unreachable after taking down the top N
disreputable ASes. The cost is minor for taking down enterprise customers.

we see here.

As one might have expected, Figure 5.6 shows that taking down service providers has

much higher cost on reachability than enterprise customers. Since some of them provide

transit services, taking them down would make their customers unreachable from other

parts of the Internet. On the other hand, taking down edge networks has little impact, even if

hundreds of them are taken down. Overall, about 1.5% of ASes would become unreachable

after taking down the disreputable ASes.

5.2.2.3.2 Benefit—Reduced BGP Instability We use the BGP updates seen by Route

Views and RIPE on March 01, 2015 to measure the benefit of improved BGP stability.

Rather than simply counting the number of updates for a given destination AS, which

may lead to counting a single routing change multiple times, we use the method proposed

by Rexford et al. [109], which is to collapse updates that occur close in time (within 45

seconds) and that are associated with the same destination prefix into a single update event.

In total, we observe 144 million update events.

We first seek to answer the question of whether disreputable ASes generate more or

fewer update events than others. We show the mean number of update events for each group

in Table 5.6. It can be seen that the disreputable ASes announced more BGP update events

than other ASes. And the t-tests confirm that the differences are statistically significant at a
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Mean (disreputable) Mean (others) p-value
ECs 5,756 1,543 9.3e-06
SPs 33,797 11,598 0.0005

Table 5.6: T-tests on the difference in number of update events between disreputable ASes
and others. The disreputable ASes announced significantly more BGP update events than
other ASes at a 95% confidence level.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  100  200  300  400  500
 0

 2e+06

 4e+06

R
e
d
u
c
ti
o
n
 i
n
 B

G
P

 u
p
d
a
te

 e
v
e
n
ts

 (
%

)

N
u
m

b
e
r 

o
f 
re

d
u
c
e
d
 e

v
e
n
ts

Top N disreputable ASes

Enterprise Customers
Service Providers

Figure 5.7: Benefit on Routing: BGP update events that would be eliminated by taking
down the top N disreputable ASes. There is a moderate improvement in BGP instability.

95% confidence interval.

Given the finding that disreputable ASes generate more update events than others, we

expect to see an improvement in stability with network takedown. Therefore, we examine

what fraction of BGP instability is mitigated if we take down the top N disreputable ASes.

In Figure 5.7 we show the fraction of update events that can be eliminated by taking down

the top N disreputable ASes. About 3.1% of update events would be eliminated after taking

down the 133 disreputable service providers. In addition, taking down the 539 disreputable

enterprise customers would also remove about 2.1% of update events. To conclude, we see

a moderate improvement in BGP instability by taking down the disreputable ASes.

Summary of Impact on Routing: The disreputable ASes play less central position in

the routing topology. Thus, taking down enterprise customers would only result in minor

cost on reachability while taking down service providers would result in moderate cost

on reachability. Meanwhile, these disreputable ASes announce more BGP updates, which
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Figure 5.8: Cost on Transit: Loss of untainted traffic after taking down the top N disrep-
utable ASes. The cost is minor.

is an undesirable property. The takedown would moderately improves BGP stability by

eliminating about 5% update events .

5.2.2.4 Impact on Transit

5.2.2.4.1 Cost—Loss of Untainted Traffic To measure the costs in transit, we use a

dataset that consists of NetFlow traffic records collected from a regional ISP for a period

of one week starting on March 17, 2015. Figure 5.8 shows the loss of untainted traffic after

taking down the top N disreputable service providers/enterprise customers. It can be seen

that the regional ISP would lose about 0.06% and 0.04% untainted traffic when taking down

the top 133 disreputable service providers or the top 539 disreputable enterprise customers

respectively. In total, less than 0.1% of untainted traffic would lost when taking down all

the disreputable ASes. Therefore, the cost is minor.

5.2.3 Pareto Efficiency Analysis

Throughout the preceding analysis, we have deliberately avoided the question of how

many disreputable ASes should be taken down (i.e., the choice of N). In this section, we

use Pareto efficiency analysis to give recommendations on the choice of N. Here, we want

to justify the takedowns from quantitative perspective and provide recommendations.
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Type ECs SPs
(N) (8) (58) (153) (6) (24)

Security Reduced malicious IPs 0.30% 0.86% 2.28% 0.62% 4.88%
Reduced Malware sites 0.000% 0.003% 0.012% 0.000% 0.011%

Costs
Invalid domains 0.000002% 0.000027% 0.002779% 0.000003% 0.000320%
unreachable ASes 0.000% 0.004% 0.010% 0.020% 0.376%
Loss of untainted traffic 0.0001% 0.0004% 0.0013% 0.0004% 0.0062%

Other Reduced TLD queries 0.01% 0.37% 0.50% 0.01% 0.10%
benefits Reduced BGP instability 0.08% 0.20% 0.55% 0.14% 0.43%

Table 5.7: Costs and benefits with recommended choice of N based on Pareto efficiency.

The goal of Pareto efficiency is to find the optimal choices of N to maximize secu-

rity benefits while minimizing collateral damage. To illustrate the analysis, we visualize

the Pareto solutions with the costs in naming and routing, alongside with the reduction of

malicious IP addresses as the benefit in Figure 5.9. The plots are generated for enterprise

customers and service providers separately. In each Figure, the small nodes correspond to

a (c1,c2,b) combination for a certain N while the line with triangles represents the Pareto

solutions. The derived Pareto solutions capture a small set of Ns that achieved the opti-

mal operation points while eliminating the sub-optimal ones. In addition, the line between

Pareto solution shows the trends of cost-benefit slope. With the choice of a small N, the

benefit increases with limited increase of costs. However, with the increase of N, the costs

increase much faster for the same increase in benefit. In addition, taking down enterprise

customers is more effective than taking down service providers, as it can achieve the same

benefit with a lower cost.

Based on the Pareto efficiency on all the three costs in naming, routing, and transit, we

recommend a set of Ns (N = 8,58,153 for enterprise customers and N = 6,24 for service

providers). The recommended choice of N is a Pareto optimal solution and has a favorable

cost-benefit slope. To illustrate the global impact of such takedowns, we summarize all the

costs and benefits we measured with the recommended Ns in Table 5.7. Conservatively, if

one takes down eight enterprise customers and six service providers, although the cost is

very minor, only less than 1% of global malicious IP addresses would be eliminated. On the

other hand, at a more aggressive operating points, taking down 153 enterprise customers

and 24 service providers would remove 7% malicious sources at the cost of 0.4% ASes

being unreachable.
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There is a limitation of our current analysis—we do not unify different costs and bene-

fits in the same terms, which would normalize the impact of different metrics and support

more rational operational decisions. For example, one might expect that the monetary im-

pact of an invalid domain would be much less than the loss caused by one inaccessible

autonomous system. And similarly, the security benefit of eliminating control and com-

mand domain are expected to be higher than the benefit of taking down a spam machine.

Therefore, it is an important future direction to transform the metrics into unified measures,

such as money or affected populations, to facilitate operational decisions.

5.3 Implications

In the previous sections, we discussed how to move from ad hoc evaluations of network

takedowns to a more principled approach for performing tradeoff analysis. Such analysis

showed that there are 14 networks for which the security benefits of their takedown far

outpace their costs. In evaluating the global impact of these take downs, however, we found

that taking them down has little down impact (1%) on the global malicious sources. Even

by being more aggressive, taking down all the 672 disreputable ASes, only contributes to

20% reduction in globally misbehaving hosts. In this section we briefly discuss what we

believe to be the implications of this result.

Historically, high-profile takedowns resulted in significant drops in malicious activi-

ties. For example, the takedown of McColo in 2008 resulted in a two-thirds reduction in

global spam traffic. Unfortunately, it only took four months for the spam level to return to

its prior level after the takedown of McColo [43], as the attackers quickly restored their

command-and-controls in other networks. What is worse, the trend of distributed cyber-

crime infrastructures significantly shortened recovery time. For instance, it only took three

days for the spam level to be restored after the takedown of Real Host in August 2009. Un-

less the cybercrime infrastructures were comprehensively rooted out, any takedowns can

only be able to temporarily disturb the malicious activities.

The limited security benefits we revealed are consistent with the trend of more dis-

tributed and resilient cybercrime infrastructures. The changes are, in fact, catalyzed by
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takedown actions, and attackers have made efforts to a void putting all of their eggs into

one basket [7]. With more distributed infrastructures, the botnets would be better able to

resist network takedowns. In addition, they act more stealthily to avoid exposing new ISPs

as targets for takedowns [43].

Both the distributed nature and temporary effects of network takedowns indicate that

they are not sufficient to solve security problems: “There’s no point to aggressively pur-

suing malware networks if we don’t choke up on their collective ability to regain Internet

access, even/especially if the entire point of that access is to re-aim their networks at a

different set of servers. This fight is already far too much like a game of Whack-a-Mole —

there’s no need to turbocharge the competition [34].”

So where do we go from here? One direction is to gain a deeper understanding on the

interplay between attackers and takedown policies. When a takedown happens, the attack-

ers will make efforts to restore their infrastructures. We expect the cost of rebuilding a

rogue ISP that has been taken down would be high, as it likely involves efforts to allocate

IP addresses and to connect to upstream providers. Therefore, one possible solution is to

automate the whack-a-mole process or at least reduce the time it takes to detect and take

down new rogue networks as they emerge. This would not only reduce the malicious activ-

ities, but also increase the cost and hassle of creating future rouge ISPs. And then the lack

of bulletproof hosting services would further increase the cost to attackers, thus improving

the security ecosystem in the long term.

Another direction is to understand the social, behavioral, and economic factors that

influence the attackers [91, 92]. The models derived from this understanding have lead

to more targeted and structural actions than the whack-a-mole nature of takedowns. For

example, consider the spam-level reductions from takedowns which seem to always return

to previous levels. It’s only with the removal of the SpamIT affiliate program that we see

sustained reductions in spam volume [46].

Another area of potential advancement is dealing with the factors that create these bad

networks in the first place. From an economic point of view, security has long been rec-

ognized as a public good [102], for which the investment by one agent has positive effects

on others. However, the existence of positive effects can create free-riders—networks that
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do not make any investment to improve Internet security, but instead relies on the contri-

bution of others. However, if everyone is selfish, everyone is worse off than if they had all

agreed on collective efforts. This is called the tragedy of commons, where “a party could

efficiently prevent harm to others — that is, a dollar worth of harm could be prevented by

spending less than a dollar on prevention — but the harm is not prevented because the party

has little or no incentive to prevent harm to strangers [81].” Legal, policy, or market based

solutions (e.g., cyber insurance) are needed to help incentivize good behavior.

5.4 Summary

While more than ten high-profile network takedowns have occurred over the last several

years, the process for evaluating who deserves to be removed remains largely ad hoc. In this

chapter we proposed a tradeoff analysis framework including examples of applicable cost

and benefit metrics. Utilizing this framework, we show that there are autnomous systems

for which the takedown would provide moderate benefits with little costs. While this is

true for tens of individual organizations, we find that the global security gains of all such

takedowns, even in aggregate, are limited. The whack-a-mole takedown actions increase

the cost of attacks, but we argue there is no easy solution for maintaining network health.

Rather we call for more work that addresses the social, behavioral, and economic factors

behind both the attacker ecosystems and those of the network defenders. Such work can

assist in creating appropriate disincentives for malicious behavior and incentivize health

behavior in networks and, in the long term, succeed better than our current game of whack-

a-mole.
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CHAPTER 6

Related Work

In this section, we review the related work regarding the study of organizational secu-

rity. From organizations’ perspective, the study are commonly understanding the security

problems faced by organizations and developing defensive mechanisms. We classify these

studies by their purpose as measuring, detecting, mitigating, or understanding the threats.

6.1 Measuring security threats at the organizational level

There are numerous works on measuring the security postures and cyber incidents of

organizations. For example, The annual Data Breach Investigations Report from Verizon

lists the data breach incidents in organizations and measures the evolution of cyberthreats

from the organization’s perspective [16]. Among the measurement studies, the works fo-

cusing on the malicious activities of organizations and the mismanagement of organizations

are most related to the studies in this thesis.

There are many evidences of the concentration of malicious activities in the “bad” orga-

nizations. For example, Ramachandran et al. studied the network-level distribution of Spam

found that about 36% of the observed spam are originated from only 20 autonomous sys-

tems [107]. Similarly, as reported by Koddkdis et al, 90% of total observed spam volume

came from 10% of spamming autonomous systems [94]. The “bad” organization have also

been identified for other malicious resources. For example, Collins et al. studied the spa-

tial uncleanness of malicious sources of botnets. They reveal that the compromised hosts
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are disproportionally concentrated in some organizations [73]. Stone-Gross et al. found

that drive-by-downloads and phishing websites are also concentrated in rouge autonomous

systems [117]. Shue et al. [111] use a union approach to combine and aggregate IP-based

reputation lists into reputation of autonomous systems and examine the Internet connectiv-

ity properties of the malicious ASes. They found that malicious ASes have more frequent

changes with their BGP peers.

For mismanagement, there have been numerous studies on the adoption and efficacy

of various best practices that we build upon. For example, in 2009, Beverly et al. [66]

performed an active measurement experiment from 12,000 clients in order to study the de-

ployment of egress filtering. Their team showed that 31% of the clients are able to spoof any

arbitrary routable source address and that 77% can forge an address within their /24 sub-

network. The results are consistent with our findings, and indicate a lack of anti-spoofing

deployment improvement within the past 5 years. In 2002, Mahajan et al. showed that 90%

of short-lived routes are caused by misconfiguration and that 0.2%-1% of the global routing

table consists of misconfigured routes [101]. The study also found that these misconfigured

routes had a variety of causes, including human error, configuration errors, and software

bugs. In our study, we use their heuristics to define updates caused by BGP misconfigura-

tion.

6.2 Detecting rogue organizations and Detecting threats

at the organization-level

The detection studies from organization’s perspective can be categorized into two cate-

gories. The first category is to detect rogue organizations, which provide bulletproof hosting

service for malicious activities. Stone-Gross et al. developed FIRE, a project that aims to

detect rogue autonomous systems based on malicious activities such as drive- by-downloads

and phishing [117]. And a follow-up study found that it is also feasible to detect rogue or-

ganizations based on their control-panel activities such as routing rewire activities and IP

space fragmentation and churn [95].
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The second category of work is to detect cyber attacks based on the aggregated obser-

vation at the organization-level. For example, various network intrusion detection system

(NIDS) are deployed on an organization’s network to detect distributed denial-of-service

attacks [13, 18] and botnet activities [75, 85]. And our previous work successfully detected

compromised user accounts in two universities by looking at the account activities observed

by the organizations.

6.3 Mitigating solutions at the organization level

While network takedown discussed in this thesis is a form of mitigation solution that

the security community takes against rouge organization, there are mitigation solutions that

organizations can deployed to reduce the risk or impact of security threats.

From security management’s perspective, there exist a large number of best practices

for specific services and for organizationally managing security, including ISO 17799 [28],

the Information Security Forum [27], and Network Protection Practices [74]. As defenders

in the security ecosystem, organizations can contribute to mitigating security problems by

following these best security practices. On the other hand, active security systems, such

as Network access control (NAC) and Firewalls are commonly deployed at organization

network edges to mitigate cyberthreats. Lastly, organization can train its IT personal and

do security education on users to proactively prevent threats from happening.

6.4 Understanding security threats at the organizational

level

As a complement to these studies that focus on technical solutions, some researches

have paid attention to understand the social, behavioral, and economic factors that influ-

ence the security investment and policies in organizations. For example, the Cyberthreat

Defense Report [5] conducts surveys among IT security practitioners and aims to under-

standing their security concerns, practices, and investment strategies and facilitating com-
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parison and experience sharing among different organizations. Our previous internal study

in two universities aims to understand the effectiveness of security practice such as vulnera-

bility scanning, password policy, and user educations [124]. It shows that all these security

practice can significantly reduce the user susceptibility toward identity theft. Jiang et al.

studies the selfish behavior in Internet security investment while treating security as public

goods [88]. It shows that the improvement of technology alone may not improve the secu-

rity ecosystem if there is a lack of incentives in security investment. Gill et al. studied the

low deployment rate of Secure BGP and argue that it is caused by the lack of incentives as

the Secure BGP is a public good [83]. Then they proposed a strategy that adds economic

incentives to drive the deployment.
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CHAPTER 7

Conclusion and Future Work

This thesis has demonstrated how a macroscopic view of network security at the orga-

nizational level can be used to measure, understand, and mitigate security threats. While

malicious activities have evolved considerably over the past decade, Internet organizations

are chasing after the attackers. The central premise of this thesis is to help organizations

systematically understand their security problems and to then develop defensive strategies.

In the four primary chapters, the research presented in this thesis demonstrates how to

leverage Internet-wide observations to study security problems at the organizational level,

including: measuring the impact of malicious sources on organizations, characterizing the

longitudinal evolution of security threats, understanding the root cause of maliciousness,

and then mitigating threats via network takedowns. In the following sections, we summa-

rize our contributions and key insights from this thesis, and discuss future work.

7.1 Summary of Contributions

This thesis begins with describing the collecting and characterizing of a set of reputation

blacklists. Reputation blacklists are widely used by organizations to make security policies,

such as blocking and filtering. Existing work has studied how these lists can be created [63],

evaluated for their effectiveness [90, 114], and then further explored for the properties of

the networks that make them effective [120, 123, 111]. For this thesis, tens of IP-based,

widely-used, commercial reputation blacklists, which cover Spam, Phishing/Malware, and
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active scanning, were collected on a daily basis and analyzed. By analyzing the lists, we

find that the size of these blacklists are relatively stable, but that some of them have a

high turnover rate. The blacklists in the same attack category have significant internal entry

overlap, but little similarity is seen across the different attack categories.

Rather than focusing solely on the lists themselves, this thesis analyzes their impact on

an Internet organization — Merit Networks, a large Internet Service Provider. By examin-

ing which part of network traffic is tainted by these blacklists, we gain better insight into

the utility of these mechanisms and the nature of malicious traffic on our networks. We find

that a surprisingly high proportion, up to 17%, of the collected network traffic is tainted by

at least one of the blacklists. In addition, our network only saw traffic to a small portion

(between 3% and 51%) of IP addresses within the blacklists, indicating there is a difference

between the global view and the organizational view of the security threats.

Equipped with these IP-based reputation blacklists, we then formed a measure of orga-

nization maliciousness which is as the fraction of the organization’s IP addresses that are

blacklisted. In general, one can expect hosts in a network to be governed by similar net-

work policies, such as DHCP pool blocks, workstations with the same operating systems or

patch levels, firewall policies, password strength checks, and even user-awareness levels.

This observation hints at the potential benefit of aggregating IP-based reputation lists. By

aggregating individual IP addresses, one can form an equivalent measure of reputation, but

perhaps a measure that is more stable; we call this organization maliciousness. Specifically,

we quantify the security benefits of aggregation, compared to blocking, using the unaggre-

gated list of malicious IP addresses. Our results show that the aggregated reputation can

achieve greater persistency and predictability of entities with poor reputations, thus being

more effective in filtering out malicious IP addresses.

Then, this thesis studies the longitudinal evolution of the Internet threats landscape

with respect to the organization maliciousness. We characterize the malicious behavior

of a network by both the level of maliciousness (magnitude) and by how frequently the

maliciousness changes (dynamics). We find that the distribution of organizations’ malicious

magnitude varies greatly and that there are “bad” organizations that consistently have a very

high magnitude of maliciousness. We also show that over a period of two and half years,
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both the magnitude and dynamics of maliciousness have been increasing. While taking the

dynamics as a proxy of responsiveness, we find that organizations have become faster in

responding to malicious activities. However, the impact of the response is not as lasting

because the average magnitude of maliciousness has increased significantly.

Inspired by the observation that maliciousness varies greatly across different organi-

zations, this thesis then explores the cause for the maliciousness of organizations. To do

so, we systematically examine the relationship between security mismanagement and mali-

ciousness by analyzing eight Internet-scale mismanagement metrics. Through this analysis,

we find that different symptoms of mismanagement are highly correlated to organization

maliciousness, and we ultimately find a causal relationship between mismanagement and

maliciousness, while controlling for social and economic considerations.

Lastly, after measuring and understanding organization maliciousness, this thesis dis-

cusses the investigations of one organization-level mitigation solution — network take-

downs of organizations, specifically ones that consistently have a very large fraction of

their IP addresses blacklisted. This thesis proposes a cost-and-benefit tradeoff analysis

framework that includes examples of applicable cost and benefit metrics. Utilizing this

framework, we show that there are networks for which the takedown would provide mod-

erate benefits with little cost. While this is true for tens of individual networks, we find

that the global security gains of all such takedowns, even in aggregate, are limited. The

Whack-a-Mole takedown approach increases the cost of attacks, but we argue there is no

easy solution for maintaining network health.

7.2 Insights and Future Work

In this section, we review several of the key insights learned from the research presented

in this thesis and discuss potential future research directions.
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7.2.1 Granularity of organizations

As discussed in Section 3.1.1, external studies of an organization’s security face the

challenge of sharing confidential operational information, in particular the organization’s

management boundaries. To deal with this, various proxies of organizational boundaries

have been proposed in previous works. For example, autonomous systems [107], routing

prefixes [120], and DNS administrative domains [106] are used to study the organizational-

level behavior of spamming. However, most of the current work utilizes existing natu-

ral boundaries of other Internet core functions as proxies of organizations. For example,

autonomous systems and routing prefixes are boundaries in Internet routing, while DNS

administrative domains are boundaries in Internet naming. But the security management

boundaries could be different from other management domains. Therefore, it is an impor-

tant future direction to identify the right level of granularity based on security postures. For

example, a hierarchical clustering [69] can be used to divide the address space into net-

blocks based on the similarity of security behavior, such as malicious behavior and man-

agement status.

Technically, the approaches proposed in this thesis can be extended to any arbitrary

level of granularity. For example, as demonstrated in Sections 3.1.3 and 4.4.3, our methods

are applicable to routing prefixes. But the result of the policies might differ when being

applied on different level of granularity. For example, as shown in Section 3.1.3, the per-

sistency and predictability of autonomous systems is better than that of routing prefixes,

indicating that autonomous systems are the more stable and consistent entity for profil-

ing and predicting organization behaviors. However, when we looked at actions, such as

network takedowns, those at the autonomous systems AS level represented the worst-case

scenario with the largest collateral damage across nearly all cost metrics. The question

of what is the best granularity for different policies is out of the scope of this thesis, but

remains an interesting direction to explore in the future.
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7.2.2 External and internal study of organizational security

Studies from the organization’s perspective can be conducted internally or externally.

External studies, such as our research presented in this thesis, that rely on external obser-

vations, could have Internet-wide visibility with Internet scanning tools. But because of

the confidentiality of operational information within organizations, it is hard to get detailed

security management information to answer questions such as: Where is the management

boundary of organizations? What is the organization’s security management status? and

How many security incidents happen every year? Instead, we need to use various proxies

to infer the internal management status.

In contrast, an internal study is effective in better understanding security problems and

developing solutions within the organization. However, it is hard to scale such internal stud-

ies to reflect global security postures or to achieve unified solutions for different organiza-

tions for two reasons. First, the security solution for one organization might be ineffective

for others because of the heterogeneous nature of the Internet. Internet organizations vary in

their functions, infrastructure, and user groups, which results in different security problems

and solutions. Therefore, it might require non-trivial efforts to customize security solu-

tions for different organizations. Second, cross-organization cooperation and information

sharing is also hard to achieve. Without the cooperation among organizations, the security

community cannot have broad visibility of the security threats.

Our current study is based solely on the external observation of an organization’s ma-

licious activities. In the future, we can conduct more studies such as these within organi-

zations that help University of Michigan to detect emerging threats [125] and understand

the effectiveness of current preventive solutions [124]. Another future direction is to cross-

validate our observations, such as fluctuation of maliciousness, with the defensive action

taken by the organization and the process of attack campaigns. Such correlation or causal-

ity could help us to better understand the utility of defensive policies and to facilitate more

effective future actions. In addition, these studies can be extended to more organizations in

the future.
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7.2.3 Proactive and reactive defense

Traditional security is of a reactive nature. For example, most reputation blacklists are

generated based on the observation of malicious activities. However, reactive mechanisms

are ineffective due to the latency between exploit and detection. In most cases, by the

time an attack is detected, it is already too late as the damage has occurred. In contrast,

an effective proactive defense can substantially reduce the potential cost incurred by an

incident. In this thesis, we discuss three mechanisms of proactive defense and elaborating

on those possible directions for future work.

The first, proactive reputation shows the management status of organizations, and it can

help the security community to target efforts to risky networks. Equipped with proactive

reputation, we can knowledgeably answer questions when making policies. Is there a point

at which a network becomes too dangerous to be allowed to remain connected to the public

Internet? Is it appropriate to proactively blacklist open mail relays in SPAM filters or to

drop DNS responses originating from known open recursive resolvers?

The second mechanism is to explore whether we can build systems to predict future

attacks. Inline with the research presented in this thesis, we have successfully developed

a method to predict future security incidents in organizations [100]. This work demon-

strates that mismanagement and the historical maliciousness are effective predictors of fu-

ture incidents. In addition, there are existing works that effectively predict future malicious

sources [123] and compromised web servers [116]. In the future, we would like to work

more to refine the prediction system to be more accurate and to cover even more security

threats.

Lastly, proactive defense suggests more security considerations for computer systems.

As shown in this thesis, there are a large number of misconfigured systems that fail to imple-

ment even the simplest patches and then ultimately pose a threat to the Internet as a whole.

Proactive defense calls for better default configuration and automatic patch mechanisms

for computer and network systems. Developing intelligent management tools for network

operators can also be helpful to prevent the exploit of misconfigured systems. These are all

directions for future studies.
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7.2.4 Incentive to secure networks

This thesis identifies a large number of organizations that have a disproportional high

number of malicious sources. An area of potential advancement is dealing with the factors

that create these bad networks in the first place. From an economic point of view, security

has long been recognized as a public good [102], for which the investment by one agent has

positive effects on others. However, the existence of positive effects can create free-riders—

networks that do not make any investment to improve Internet security, but instead rely on

the contribution of others. However, if everyone is selfish, everyone is worse off than if they

had all agreed on collective efforts. As pointed out by Felten [81], “A party could efficiently

prevent harm to others — that is, a dollar’s worth of harm could be prevented by spending

less than a dollar on prevention — but the harm is not prevented because the party has little

or no incentive to prevent harm to strangers.” For example, the case of egress filtering poses

a risk to the rest of the Internet, but poses little internal threat. As a result, organizations

have little incentive to fix these services.

Recent work has shown that providing social or financial incentives may be more effec-

tive than developing new technical solutions for improving overall security [89]. As such,

if we are able to develop strategies in which edge networks are incentivized to better man-

age their systems, we may be to able increase the stability of the Internet as a whole. In

one example, Gill et al. propose a strategy for increasing BGP security in which network

operators assign a higher priority to routes that adopt appropriate security measures. This

increased traffic translates to increased revenue, serving as a financial incentive for secur-

ing networks [84]. However, the strategy is limited to BGP security. We show that one

future research direction is to develop legal, policy, or market-based solutions (e.g., cyber

insurance) to encourage better organizational network management.
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