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ABSTRACT

Superthermal Electrons at Mars

by

Shaosui Xu

Chair: Michael Liemohn

Mars is unique in the solar system in terms of its interaction with solar wind be-

cause it lacks of a significant intrinsic global magnetic field but possesses localized

strong crustal fields. This interaction results in a very complex magnetic topology

at Mars so that superthermal electrons, mainly including photoelectrons and solar

wind electrons, can be distinctively important for such a complicated planetary space

environment. These energetic electrons (∼ 1 − 1000 electron volts) can carry and

rapidly redistribute energy along the magnetic field lines. They are also a reliable

tool to deduce the Martian magnetic topology, which is critical to understand the

electromagnetic dynamics of the Martian space environment.

The investigation methodology involves both data analysis and modeling. The ob-

servational data are mainly from the magnetometer/electron reflectometer (MAG/ER)

and Thermal Emission Spectrometer (TES) instruments onboard Mars Global Sur-

veyor (MGS). The methods to reduce spacecraft electron contamination and also

to separate photoelectron and solar wind electron samples are explained here. The

modeling work mainly relies on the SuperThermal Electron Transport (STET) model.

The detailed model description and validation are given. In addition, this disserta-

xx



tion also discusses the update to the STET model, i.e. incorporating two new solar

irradiance models: the Flare Irradiance Spectral Model (FISM) and the Heliospheric

Environment Solar Spectral Radiation (HESSR) model.

This dissertation mainly investigates three topics of superthermal electrons at

Mars. (1) This dissertation confirms that the long-lived influence of Martian low-

altitude dust storms on high-altitude photoelectron fluxes is common for a wide

range of energy and pitch angles and determines that this effect originates from the

thermosphere-ionosphere source region of the photoelectrons, rather than at exo-

spheric altitudes at or above MGS. Through simulations, the results suggest that the

global dust storm altered the photoelectron fluxes by causing CO2 to be the dom-

inant species at a much larger altitude range than usual. (2) Because the integral

of the production rate above the superthermal electron exobase is about the same

for all solar zenith angles, quite counterintuitively, it is found, observationally and

numerically/theoretically, that the high-altitude photoelectron fluxes are quite inde-

pendent of solar zenith angle. (3) Based on the energy spectral (flux against energy)

difference between photoelectrons and solar wind electrons, a statistical approach is

taken to distinguish the two populations and also allows us to quantify the occurrence

rate of solar wind electron precipitation and also these electrons’ energy deposition.

The broad impact and future work of this dissertation is also briefly discussed, es-

pecially with the comprehensive neutral and plasma measurements from the Mars

Atmosphere and Volatile EvolutioN (MAVEN) mission to further our understanding

of the Martian space environment.
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CHAPTER I

Introduction

1.1 Mars

Mars garners people’s interest because of how similar this planet is to Earth, and

because of its potential habitability. Pictures and measurements from spacecraft have

suggested that Mars might once have had streams, rivers, or even an ocean, alluding

to the possible existence of life in the past. Yet how the planet lost its water remains

mysterious, deduced to be directly related to the loss of its thick atmosphere. One of

the most popular theories of Mars’ inability of sustaining its atmosphere, as well as

liquid water, is due to its lack of a significant intrinsic global magnetic field like Earth

so that this planet’s upper atmosphere is exposed to solar wind that continuously

streams away from the Sun. Solar wind consists of solar plasma and also magnetic

fields, called the interplanetary magnetic fields (IMFs).

Albeit thin, the Martian upper atmosphere is photoionized by solar photons on

the dayside, which forms an ionosphere. For the first order consideration, because

of the lack of a significant intrinsic global magnetic field, the solar wind mainly

interacts with the Martian ionosphere. This interaction results in several distinct

structures. Because the solar wind is supersonic, i.e. the bulk velocity exceeds the

fast magnetosonic wave speed, there is a bow shock formed as the Mars ionosphere

acts as an effective obstacle to the solar wind. Between the bow shock and the effective
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Figure 1.1: A sketch of major boundaries and regions of the Martian plasma environ-
ment. Photo courtesy: http://www.setterfield.org/Astronomy/Mars.html.

obstacle is the region called the magnetosheath (Nagy et al., 2004), inside of which

significant mass-loading takes place. The Martian ionosphere behaves like a conductor

and generates currents within it to largely prevent IMF and solar plasma penetrating

deep to the atmosphere. As a result, IMF piles up and drapes around the planet,

forming the magnetic pile-up region and boundary (MPR and MPB, respectively).

This is a typical picture, as shown in the Figure 1.1, for the interaction between solar

wind and an unmagnetized object with an atmosphere, such as comets, Venus and

Mars.

However, Mars is unique in the solar system in terms of interaction with solar

wind. Martian crustal magnetic anomalies have been discovered by the magnetome-

ter/electron reflectometer (MAG/ER) on board the Mars Global Surveyor (MGS)
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spacecraft (Acuña et al., 1998), and their interaction with IMF results in complex

magnetic field topology (e.g. Brain et al., 2003, 2007; Harnett and Winglee, 2005;

Liemohn et al., 2007a,b; Ma et al., 2014), including closed (connected both ends to

the planet), open (connected at one end to the planet and at one end to the IMF), and

unconnected or draped (connected both ends to the IMF) magnetic field lines. Stud-

ies have been conducted on how the crustal magnetic fields affect localized plasma

processes (e.g. Withers et al., 2005; Nielsen et al., 2007; Krymskii et al., 2003; Brain

et al., 2010).

1.2 Superthermal Electrons

Superthermal electrons (a very small fraction of the total population with en-

ergies far exceeding the average thermal energy (Gombosi , 1998)) on Mars mainly

consist of two parts: photoelectrons and solar wind/magnetosheath electrons. When

photoionization happens, because of an electron’s small mass, they carry away the

excessive energy of photons. These energetic electrons (∼1 electron volts−1 kilo-

electron volts), i.e. photoelectrons, then transfer energy to thermal electrons through

Coulomb collisions. Thermal electrons then collide with ions, which consequentially

heat up the neutral atmosphere through friction with neutral particles. This process

is a significant pathway for solar energy transfer to the upper atmosphere.

As mentioned above, the magnetic topology is rather complicated at Mars. Su-

perthermal electrons with energies lower than a few tens of kilo-electron volts (keV)

are usually considered to be bounded to and move along the magnetic field lines,

which leads to energy redistribution. The closed magnetic field isolates ionospheric

originated photoelectrons from solar wind particles and allows them to move energy

from one end of the loop and be deposited at the other end. The open magnetic field

lines allow solar wind electrons (from the IMF end of an open field line) to enter the

Martian upper atmosphere and deposit their energy through collisions. Especially,
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dayside to nightside electron transport and also solar wind electron precipitation are

considered the main energy source at Martian nightside, causing heating (e.g. Krym-

skii et al., 2002, 2004), excitation (especially aurora on the nightside (e.g. Bertaux

et al., 2005; Brain et al., 2006a; Leblanc et al., 2008)) and dissociation and ioniza-

tion (Schunk and Nagy , 2000). On the other hand, for Mars, it is difficult to infer if

the magnetic field is closed, open, or draped from just instantaneous magnetic field

measurements, which is critical information to analyze dynamical processes. Rather,

electron angular distribution is used to deduce Martian magnetic topology (Liemohn

et al., 2006; Brain et al., 2007).

1.3 Specific Topics and Motivations

Now that we have established the importance of superthermal electrons at Mars,

this dissertation mainly investigates three topics of dayside superthermal electron

physics: photoelectrons and dust storms, photoelectrons and solar zenith angle, and

solar wind electron precipitation.

1.3.1 Photoelectrons and Dust Storms

Trantham et al. (2011) analyzed the dayside photoelectron observations from

the magnetometer/electron reflectometer instruments onboard Mars Global Surveyor

(Acuña et al., 1992; Mitchell et al., 2001) over the strong crustal field regions and

quantitatively determined that, among all possible candidates, the local solar extreme-

ultraviolet (EUV) proxy was the main controlling factor of photoelectron fluxes. In

spite of the normal linear dependence between these two, a second linear trend is,

however, found with the primary contribution being the much higher photoelectron

fluxes from late 2001 to early 2002.

This time period corresponds to a global-scale dust storm at late 2001 or Mars Year

(MY) 25 (e.g. Smith et al., 2002; Clancy et al., 2010). Most of Mars’ large dust storms
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occur in southern hemisphere springs and summers, when Mars is near perihelion.

Dust suspended in the dry Martian atmosphere is known to play an important role in

the Martian atmospheric dynamics; when dust opacity is high enough, its absorption

of solar radiation is comparable to CO2 gas, thus contributing to the variability of

the circulation and weather on Mars (e.g. Gierasch and Goody , 1972; Haberle et al.,

1982; Medvedev et al., 2011).

Even though the dust primarily remains below 60 km, its influence extends to

higher altitudes as it absorbs solar radiation and heats the atmosphere, causing an

elevated atmospheric density at higher altitudes due to the increased scale height.

Many studies have been conducted on dust storm influences on the Martian upper

atmosphere (e.g. Keating et al., 1998; Bougher et al., 1999, 2004, 2006; Baird et al.,

2007; Lillis et al., 2008, 2010a; England and Lillis , 2012; Withers and Pratt , 2013;

Medvedev et al., 2013). The change in neutral atmosphere, especially the increase

of neutral density due to a heated atmosphere caused by dust storms, leads to the

variability of the ionosphere. On one hand, observations of MGS, both during aero-

braking (Keating et al., 1998) and during the science phasing orbits (Tracadas et al.,

2001), have shown a factor of 3 increase in the mass density at 130 km altitude and a

factor of 2 increase at 180 km a few days after the start of dust storms, respectively.

By examining a few different dust storm events, Withers and Pratt (2013) found the

increases of upper atmospheric density were usually a factor of a few responding to

moderate regional storms and of an order of magnitude during the large storms. On

the other hand, modeling results of Bougher et al. (1997) on a 20-sol dust storm also

showed a 5-10 times increase of thermospheric density at 110 km; furthermore, Bell

et al. (2007) conducted a sensitivity study of the vertical depth of the dust layer and

found, when the 9-micron dust optical depth τ = 0.3, a 100% increase in atmospheric

density at the equatorial height of 110 km and a 650% increase at the winter pole.

In fact, the study of Bell et al. (2007) implies that the Hadley circulation transmits
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changes in the lower atmosphere caused by dust loading into the upper atmosphere,

which is supported by the study of Withers and Pratt (2013). Neutral density is

one of the dominant controlling factors of the ionosphere electron density profile

(with similar effects expected on ionospheric photoelectrons). Increased altitudes of

the ionospheric peak electron density due to the expanded atmosphere during dust

storms have been observed (Hantsch and Bauer , 1990; Wang and Nielsen, 2003). In

fact, the height of the electron peak can also be used to study the physical state of

the Mars lower and upper atmosphere (e.g. Bougher et al., 2004; Zou et al., 2011).

MGS was operated at altitudes around 400 km, well above the electron peak

altitude. Using drag data from this satellite, Forbes et al. (2008) concluded that the

dust storm at MY 25 seemed to not influence exospheric temperature or density but

the authors only addressed the relationship between the instantaneous dust opacity

within ±30◦ latitude and the exosphere. Liemohn et al. (2012), however, conducted

the time-history influence of dust storms on dayside photoelectrons observed by MGS

above the strong crustal fields. The inclusion of 7-Earth-month time-history dust

opacity not only successfully merged two linear EUV dependence trends into one

but also significantly increased the correlation of photoelectron fluxes and the new

controlling function, the EUV proxy multiplied by the time-history dust opacity.

This modification to the controlling function, sometimes corrected by an order of

magnitude, can be considered as a change to the photoelectron production rate and/or

to high-altitude scattering effects, which can be caused by the change in the neutral

density at ionospheric altitudes and/or at exospheric altitudes, respectively.

Since both Trantham et al. (2011) and Liemohn et al. (2012) only investigated one

single velocity space bin, 27 electron volts (eV) at pitch angle 80◦-90◦, the question re-

mains: how does the full energy and pitch angle distribution of high-altitude

photoelectrons respond to low-altitude dust storms? Similarly, what is the

physics governing this connection? Hence, it is necessary to examine dust storms’
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effects on all the available energy channels and pitch angles. This examination allows

us to investigate the physical processes behind the dust storms, which the former

two studies barely addressed. Differences in the response of different energy photo-

electrons may be an indicator of physical processes that have an energy preference,

such as scattering and/or collisions. The pitch angle can give information on where

photoelectrons reside, for example, photoelectrons near 90◦ pitch angle are mostly

located and bouncing at or beyond the MGS orbit. The examination of pitch angle

bins might uncover where those dust-related physical processes most likely happen.

Furthermore, we use the SuperThermal Electron Transport (STET) model (Liemohn

et al., 2003) to investigate what characteristics of the atmosphere can lead to such

photoelectron flux enhancements.

1.3.2 Photoelectrons and Solar Zenith Angle

Solar zenith angle (SZA) is known to have effects on the Martian upper atmo-

sphere, both the thermosphere and the ionosphere (e.g. Withers , 2009; Haider et al.,

2011). The dayside Martian ionosphere is relatively well described by Chapman the-

ory (Chapman, 1931a,b), especially in terms of electron peak values. Particularly, for

an ionosphere in photochemical equilibrium, the peak density is roughly proportional

to the square root of the cosine of solar zenith angle (SZA), as well as that the peak

altitude rises with increasing SZA. Such studies include occultation profiles from early

missions (e.g. Hantsch and Bauer , 1990; Zhang et al., 1990), Mars Global Surveyor

(MGS) Radio Science profiles of electron density (e.g. Withers and Mendillo, 2005;

Fox and Yeager , 2006, 2009), and measurements from the Mars Advanced Radar for

Subsurface and Ionospheric Sounding (MARSIS) (Gurnett et al., 2005) instrument

on board Mars Express (e.g Nielsen et al., 2007; Morgan et al., 2008; Gurnett et al.,

2008; Němec et al., 2011). Similarly, the Martian total electron content (TEC), de-

rived from echoes of MARSIS, is also found to approximately match the Chapman
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theory (e.g. Safaeinili et al., 2007; Lillis et al., 2010b). However, not all the quantities

have obvious dependence on SZA. Based on the power k=0.5, Withers et al. (2014)

concluded that the electron temperature at the main peak is in fact independent of

SZA.

The main local source of photoelectrons are photoionization and secondary ioniza-

tion while the main scattering and energy loss process is collisions with other species,

especially neutral particles at lower altitudes (e.g. Nagy and Banks , 1970; Banks and

Nagy , 1970). The photoionization production rate is controlled by the local solar ir-

radiance, which should vary significantly with SZA due to a slant path at high SZAs

and different atmospheric density profiles. On the other hand hand, transport is also

very important to photoelectrons. When semi-vertical (as opposed to purely hori-

zontal) magnetic fields are present, such as at Earth and at Martian strong crustal

field regions, photoelectrons can gyrate around magnetic fields and transport from

low altitudes to high altitudes. Then, the high-altitude electron flux is the integral

of photoelectrons transported from the ionospheric production peak region to higher

altitudes. Because the production rate decreases exponentially with increasing alti-

tude, the photoelectron fluxes measured at high altitudes are supposedly dominated

by the production region at lower altitudes, where it is Chapman-like and has a strong

SZA dependence. At Mars, photoelectron fluxes over the crustal field regions were

presumed to be SZA dependent (e.g. Liemohn et al., 2012). For example, Trantham

et al. (2011) investigated the main controlling factors of photoelectrons observed by

MGS and included the effects of SZA in their local EUV proxy, which is claimed to

be the best organizer of photoelectron fluxes.

However, do the observed high-altitude photoelectron fluxes really de-

pend on solar zenith angle? The answer concerns energy redistribution at Mars.

Mars’ complicated magnetic topology (e.g. Brain et al., 2007; Liemohn et al., 2007a)

allows photoelectrons, therefore energy, transport from one location to another, espe-
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cially important to the nightside atmosphere through cross-terminator transport. In

addition, the escaping photoelectrons could set up ambipolar electric fields that fa-

cilitate ion escape. In this dissertation, we examine the relationship of high-altitude

photoelectrons and SZA by analyzing the measured photoelectron fluxes from the

magnetometer/electron reflectometer (MAG/ER) instrument onboard Mars Global

Surveyor (Acuña et al., 1998; Mitchell et al., 2001), accompanied by further explo-

ration with a superthermal electron transport model.

1.3.3 Solar Wind Electron Precipitation

Open magnetic field lines, resulting from the connection between the IMF and

crustal fields, have been discovered and confirmed by several studies via identi-

fying solar-wind/magnetosheath electron precipitation (e.g. Mitchell et al., 2001;

Liemohn et al., 2003; Brain et al., 2005; Dubinin et al., 2008a,b). Futhermore, Brain

et al. (2007) discussed how often the fields above different geographic regions were

open/closed by analyzing electron pitch angle distributions. These open field lines

allow ionospheric photoelectrons to escape into space (e.g. Frahm et al., 2006a,b;

Liemohn et al., 2006, 2007b) and solar-wind/magnetosheath electrons to precipitate

into the Martian upper atmosphere. The precipitation of superthermal electrons into

the Martian atmosphere can cause heating (e.g. Krymskii et al., 2002, 2004), excita-

tion (especially aurora on the nightside (e.g. Bertaux et al., 2005; Brain et al., 2006a;

Leblanc et al., 2008)) and dissociation and ionization (Schunk and Nagy , 2000).

Mitchell et al. (2001) identified solar-wind/magnetosheath electron precipitation

through open magnetic field lines on the nightside, resulting in the spikes of high elec-

tron fluxes in between plasma voids (whose energy spectra are near instrument back-

ground level flux, a feature of closed magnetic fields). Also, Dubinin et al. (2008a)

observed spatially organized narrow spikes in regions of strong crustal field on the

Martian nightside by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-
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3) experiment (Barabash et al., 2006) onboard the Mars Express spacecraft. Further-

more, a systematic study of the nightside electron precipitation’s geographic pattern

and dependence on solar wind conditions was conducted by Lillis and Brain (2013).

On the day side, Brain et al. (2005) studied how often solar wind/magnetosheath

electrons penetrate below 400 km by analyzing the omni-directional electron fluxes

measured by MGS and then concluded the hemispherical asymmetry and the seasonal

variation of the altitude of the magnetic pileup boundary (MPB), also its dependence

on the IMF directions. In particular, a higher probability of magnetosheath plasma

intrusion was observed in some patches surrounded by closed strong crustal fields,

where field lines more likely connect to the IMF.

Martian strong crustal fields should be oppositely directed with IMF most of

the time, which most likely leads to reconnections and consequently open magnetic

fields. Then one might ask: what is the occurrence rate of dayside solar

wind/magnetosheath electron precipitation over strong crustal fields Also,

open magnetic fields allow particle and energy exchange between the solar wind and

the Martian atmosphere. So, what is solar wind electrons’ energy deposition

into the Martian atmosphere? For this part of the dissertation, we take a statis-

tical approach to identify solar wind/magnetosheath electrons and ionospheric photo-

electrons and determine the occurrence rate of solar wind electron precipitation. Fur-

thermore, although solar photon absorption is certainly the largest source of energy

input to the dayside Martian upper atmosphere, quantification of how superthermal

electrons’ energy input compares to solar input has not been done. This new approach

also allows us to quantify the energy flux deposition of solar-wind/magnetosheath

electrons into the dayside Martian upper atmosphere and compare it with solar flux

input.
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1.4 Overview of Dissertation

This dissertation mainly investigates the following three topics of superthermal

electrons at Mars:

• Understanding the underlying physics of the connection between photoelectrons

and dust storms;

• Determining the relation between high-altitude photoelectrons and solar zenith

angle;

• Quantifying the occurrence rate and energy deposition of solar wind electron

precipitation into Martian dayside atmosphere through cusps over the strong

crustal field regions.

The investigation methodology involves both data analysis and modeling. Chap-

ter II introduces the instruments, such as MAG/ER and Thermal Emission Spec-

trometer (TES) onboard MGS, and the selection procedures of photoelectrons and

solar wind electrons, followed by the description, validation, and development of the

SuperThermal Electron Transport (STET) model in Chapter III. Then, in Chap-

ters IV and V, we investigate how dust storms and solar zenith angle, respectively,

affect high-altitude photoelectrons through analyzing MGS data as well as simula-

tions with the STET model. Chapter VI switches to another population, solar wind

electrons, and studies the dayside precipitation occurrence rate and the energy de-

position of these electrons via a statistical approach to MGS data. A similar study

on the nightside is also briefly described. A preliminary work with observations from

the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is briefly discussed

in Chapter VII. This dissertation finally closes with conclusions and future work in

Chapter VIII.
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CHAPTER II

Methodology: Data

Part of this dissertation involves analyzing electron data and dust opacity data

mainly from instruments onboard Mars Global Surveyor (MGS). In this chapter,

a brief description of the instruments is given. Then, the selection procedures of

photoelectrons and solar wind electrons are described in detailed.

2.1 Instrumentation

Mars Global Surveyor was a global mapping mission that aimed to examine the

entire planet, from the ionosphere down through the atmosphere to the surface, and

deep into Mars’ interior. MGS arrived at Mars on September 12, 1997, and was

initially operated in a highly elliptical polar orbit. On February 4, 1999, the spacecraft

concluded aerobraking into a circular mapping orbit at 405±36 km altitude and locked

to 0200/1400 local time (LT) during its mapping phase. The instruments onboard the

spacecraft had been making measurements for over nine years until late 2006 when

the spacecraft lost contact with Earth.

Together with vector magnetic field data measured by the magnetometer(MAG),

the electron reflectometer (ER) onboard MGS measured superthermal electron angu-

lar distributions with an energy range of 10 eV-20 keV (Acuña et al., 1992; Mitchell

et al., 2001). Every 2-8 seconds, the ER recorded electron fluxes in sixteen 22.5◦×14◦
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sectors, which spanned the entire 360◦× 14◦ field of view (FOV). With both the vec-

tor magnetic field and the electron angular distribution measured, the FOV can be

converted into pitch angles (Eq. 1 in Mitchell et al. (2001)). As the MGS spacecraft

did not spin, the ER can only provide 2-D pitch angle distributions (PADs) rather

than a full 3-D velocity space distribution; the sampled width of the PAD also varies

according to the orientation of the ambient field with respect to the ER detection

plane. In other words, if the magnetic field was in the plane of the instrument field of

view all 180◦ were sampled, but if the magnetic field was perpendicular to this plane,

only pitch angles near 90◦ were sampled (see Figure 9 of Liemohn et al. (2006)). It is

important to notice this possible bias in the number of samples for the different pitch

angles.

The Thermal Emission Spectrometer (TES) instrument on MGS is fully described

by Christensen et al. (1992, 2001) and the details of extracting dust opacity values

from these observations are given by Smith (2004). The dust opacity record shows

a clear seasonal variation, with higher values caused by dust storms occurring each

southern hemisphere spring and summer, as shown in Figure 2.1. Since even local

dust events can cause a global response of the upper atmosphere (e.g. England and

Lillis , 2012; Withers and Pratt , 2013), this study is based on the globally averaged

dust opacity values. The dust opacities at MGS’ latitude were presented by Liemohn

et al. (2012) and other studies.

2.2 Data Processing

Superthemal electrons consist of photoelectrons and solar wind electrons. How

to distinguish these two populations is described in detail. Also, contamination from

spacecraft photoelectrons can be significant to low energy measurements, so a method

to reduce this contamination is provided here.
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Figure 2.1: Zonal-averaged column dust opacity: (top panel) MGS-TES observations
(Smith, 2006) from Ls = 120◦ of Mars Year (MY) 24 to Ls = 80◦ of MY27;
(bottom panel) observations from Thermal Emission Imaging System on-
board Mars Odyssey from Ls = 330◦ of MY25 to Ls = 190◦ of MY29
(Smith, 2009), also Figure 1 of Medvedev et al. (2011).

2.2.1 Photoelectron Selection

To select dayside photoelectrons, the methodology is similar to that of Trantham

et al. (2011). Photoelectrons observed at an altitude of 400 km by MGS on closed

magnetic field lines are most likely originated from the ionosphere lower down on

that same field line. On Mars, a region consisting of closed magnetic loops is mostly

within longitudes of 160◦ and 200◦ and north latitudes of −30◦ and −70◦, as shown

in Figure 2.2, and this spatial constraint is applied to our data selection, along with

a magnetic field magnitude minimum constraint (35 nT). In addition, to avoid cusps

between loops where solar wind electron precipitation could happen, only elevation

angles within ±45◦ of horizontal are selected. All energies were intended to be ex-

amined but the photoelectron fluxes in energy channels higher than 746 eV are at or

near the 1-count instrument threshold. Hence only 12 out of the 19 energy channels

are examined, from 11.4 to 746 eV (lower bound of the lowest channel and upper

bound of the highest channel, respectively). Also, a pitch angle bin size of 10◦ is

used, mapping the ER anode sectors into these 18 identically sized pitch angle bins.

However, our full examination of all available energy and pitch angle bins found
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Connerney J E P et al. (2005) Proc. Nati. Acad. Sci. USA;vol. 102, no. 42:14970-14975

Figure 2.2: Radial B field of Mars (Connerney et al., 2005), with the white box repre-
senting the geographic selection boundaries of this study, also Figure 1 of
Trantham et al. (2011). Copyright (2005) National Academy of Sciences,
U.S.A.

that the aforementioned method is insufficient. Figure 2.3 shows an example of one

selected orbit, Earth year 2000 Day 288, 14:29:01. The top two panels show how the

magnetic elevation angles and latitudes change within this 490 s interval, respectively.

The latitude is from −60◦ to −35◦, crossing most of the entire spatial box of strong

crustal fields, while the B elevation angle increases from −35◦ to 45◦, decreases to

−45◦ and then increases to 45◦ again. The smooth change of B elevation angle

indicates the loop structure of the magnetic field. The data absent from 120 s to 200

s are due to the elevation angle criteria described above. Other large gaps are caused

by the unsuccessful conversion from anode bins into pitch angles. The eight contour

plots in Figure 2.3 show fluxes of two energy channels, 515 eV (b-e) and 36 eV (g-j).

Figure (2.3b, 2.3g) are the differential electron fluxes recorded in the 16 anode sectors

against time for two energies, respectively, while the color is normalized electron flux

(relative to the maximum value, also given in each plot) for all eight contour plots.
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Here, since the time for each measurement from MAG/ER is different, a 6 second

time interval is used in the contour plots, causing the small gaps in between data

points. The ER has a 360◦ × 14◦ field of view (FOV) and measures each pitch angle

(PA) twice, once for each 180-degree span of instrument azimuth around the FOV.

Pitch angles are determined by the magnetic field’s azimuthal and elevation angles

and also the azimuth of the incident electron, i.e. the angle of each sector in the

FOV plane (Mitchell et al., 2001). Figure 2.3g shows constant high fluxes across

sectors 5-12, regardless of the elevation angle of the magnetic field and the latitude

of the measurement. In fact, this feature is found in energies lower than 53 eV for

almost the entire 7-year data. Given the fact that these 8 sectors look towards and

along the spacecraft bus, the systematically higher flux values of these sectors at lower

energies throughout this interval of changing magnetic field direction strongly suggest

contamination by spacecraft photoelectrons and secondary electrons.

Originally, simply averaging the fluxes of two bins of the same pitch angle for all

energies is used, shown in Figure (2.3c-d, 2.3h-i). Because of this new discovery of

contamination at low energies, while the same method is used for energies higher than

53 eV, only the rest of the 8 sectors other than sectors 5-12 are taken into account

to calculate the electron fluxes of lower energy channels, shown in Figures 2.3e and

2.3j. Notice that for the lower 4 panels in Figure 2.3, with time along the x-axis, the

y-axis is now denoted as “Modified PA.” Aside from converting fluxes of 16 sectors

into pitch angle distributions (PADs), the pitch angle is also flipped when the B

field points downward (data points below the dashed line in 2.3a). For example, if

B points towards the planet, the original pitch angle of 10◦ would now be 170◦. In

other words, electrons at pitch angle 0◦ − 90◦ (90◦ − 180◦) always have a velocity

component away from (towards) the planet. Figures 2.3c and 2.3d (also 2.3h and

2.3i) show a comparison between the normal PA and “Modified PA.” In this case, we

can separate pitch angles into three parts. For PA near 90◦, it’s the so-called trapped
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Figure 2.3: An example of one selected orbit, Earth year 2000 Day 288, 14:29:01. The
top two (a, f) show how the magnetic elevation angles and latitudes change
within 490 s, respectively. The left four color plots (b-e) correspond to
energy channel 515 eV while the right four (g-j) correspond to 36 eV.
The color is normalized electron flux (relative to the maximum value
[cm−2s−1ster−1eV −1] of each plot). Panels (b) and (g) are the differential
electron fluxes recorded in the 16 anode sectors against time while panels
(c) and (h) are the fluxes converted into pitch angle distributions (PADs).
The lower four (d, e, i, j) are fluxes converted into PADs but with Modified
PA bins as the y-axis. The dash line in (a) marks 0 magnetic elevation
angle, below which the pitch angle is flipped. The dash line in (c, d, e, h,
i, j) marks 90◦ pitch angle.
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zone since electrons are mostly scattered into these pitch angles due to their source

(ionosphere) being located at altitudes of strong magnetic field and then bounce at

MGS altitudes or above. As magnetic loops of strong crustal fields are relatively

short, photoelectrons basically come from the ionosphere at one end of the loop, then

move along the field line, and are lost to the ionosphere at the conjugate end of the

field line, if they are not scattered. As a result, upward electrons, especially PA

near 0◦, can be considered as fresh photoelectrons coming from the ionosphere while

downward electrons (PA near 180◦) are those moving along the field lines and towards

the sink, far away from their source region.

After applying the contamination filter, the unfiltered Figure 2.3d is identical to

the filtered Figure 2.3e since the filter has no effect on energy channels higher than

53 eV. However, for 36 eV, Figure 2.3i has fewer bins than Figure 2.3j because the

contamination filter removes some of the data in the pitch angle space. Pitch angles

greater than 120◦ after 350 s, where fluxes are especially high, are absent because

fewer sectors are used to determine PADs for low energy channels. In the meantime,

the maximum of Figure 2.3j now is 60% of Figure 2.3i with the removal of those high

fluxes. As a result, PADs are now more isotropic.

To further confirm that the method above is valid, example energy spectra are

shown in Figure 2.4. The three plots correspond to three pitch angle bins, 0◦ − 10◦,

80◦−90◦, 170◦−180◦, respectively, at the same time period as Figure 2.3. The energy

spectrum of every single time is over-plotted, highlighted in different colors, black for

0 s and then green and then red for the latest time, 490 s. Because ER only provides

2D samples of electron fluxes, 90◦ pitch angle is constantly measured while more field-

aligned pitch angles are sampled only part of the time. As a result, only 3-5 spectra

are seen in Figure 2.4a and 2.4c while more are seen in Figure 2.4b. Nevertheless,

clear photoelectron energy spectrum features, such as the knee at 60-70 eV, the sharp

drop at around 500 eV and the cut-off at 800 eV (e.g. Mitchell et al., 2001; Liemohn
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et al., 2003), are seen in Figure 2.4. The absence of the low energy part in Figure 2.4a

is due to the spacecraft photoelectron contamination issue described above, resulting

in fewer sectors used to calculate low-energy photoelectron fluxes.

2.2.2 Solar Wind Electron Selection

To select the solar-wind/magnetosphere electron precipitation through cusps, where

the magnetic topology changes from one closed loop arch to the next, over the strong

crustal fields, the same geographic constraints are applied. The cusps are located

between the closed magnetic field loops, and are more likely found when the field line

is more vertical. Therefore any open magnetic field within the cusp region is more

likely to be seen at large magnetic elevation angle at the MGS altitude. Hence, an ab-

solute magnitude elevation angle observed by MGS MAG greater than 45◦, is applied,

complementary to the magnetic elevation angle criterion for photoelectron selection,

because the chance to observe solar-wind/magnetosheath electrons at smaller angles

is very low (Liemohn et al., 2003; Trantham et al., 2011). A minimum magnetic field

strength of 35 nT to ensure strong crustal fields and a maximum SZA of 90◦ to select

dayside data are also applied.

2.2.2.1 Identifying Solar Wind Electrons

Solar-wind/magnetosheath electrons have been previously identified on the day-

side by studies (e.g. Liemohn et al., 2003) of MGS observations. Figure 2.5 shows the

measurements of one orbit of MGS on January 15, 2004, starting at universal time

(UT) 10:50:00. From around UT 10:54 to UT 11:11, MGS flew through the strong

crustal fields (east longitude 190◦ to 170◦, south latitude 80◦ to 30◦) on the dayside

(SZA 75◦ to 30◦). The strong crustal fields can usually be identified by the large vari-

ation of the elevation angles of the magnetic field, shown in Figure 2.5d, and the large

magnitude (a few tens of nT to over 200 nT seen in Figure 2.5e). Figure 2.5f shows
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Figure 2.4: Energy spectra of differential number fluxes (cm−2s−1ster−1eV −1) at
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the differential number flux (# eV −1cm−2s−1sr−1) for 36 eV and 115 eV two energy

channels at pitch angle (PA) 150◦ − 160◦. Within the first minute, MGS was around

the terminator (SZA ∼ 90◦) and the fluxes for both channels are relatively high and

then drop significantly when the satellite flew through the crustal fields as the electron

population switched from solar-wind/magnetosheath electrons, with higher fluxes, to

the ionospheric originated photoelectrons, with lower fluxes. The flux drop for the

two channels are different, a factor of ∼ 2 decrease for the 36 eV channel and a much

larger (over an order of magnitude) decrease for the 115 eV channel. This different

amount of flux drop is due to one of the photoelectrons’ features: the sharp drop of

photoelectron fluxes around 60 eV, the so-called “knee” in the energy spectra (due

to the sharp drop in solar photons below 15 nm) while for solar-wind/magnetosheath

electron spectra, the decrease of electron fluxes is much slower (e.g. Fox and Dalgarno,

1979; Mantas and Hanson, 1979; Crider et al., 2000; Mitchell et al., 2001; Liemohn

et al., 2003). In other words, the flux ratio of the 36 eV and 115 eV channels is

much higher for photoelectrons than solar-wind/magnetosheath electrons, as shown

in Figure 2.5g.

However, the fluxes jump back to their original high values occasionally during

the flight over the strong crustal fields (Figure 2.5f), such as at UT 10:58 and UT

11:04. Magnetic fields with near 90◦ elevation angles are more likely to be connected

to the IMF, thus a higher possibility of solar-wind/magnetosheath electrons entering

the Martian atmosphere. These spikes seem to correspond to high elevation angles by

comparing Figure 2.5 d and f, thus considered as solar-wind/magnetosheath electron

precipitation through the magnetic field lines inside the cusps on the dayside. Fur-

thermore, data points with flux ratios below the dashed line in Figure 2.5g (ratio=27)

are marked with black dots in Figure 2.5d, marked as T1 and T2. Over the strong

crustal fields (UT 10:54 - 11:11), the low flux ratios are seen at elevation angles near

90◦, as expected.
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The basic idea is to separate solar-wind/magnetosheath electrons and ionospheric

photoelectrons by utilizing the different flux ratios of the two populations, with one

energy channel smaller than the energy of this knee, e.g. 36 eV, and one channel

larger, e.g. 115 eV. To further validate this idea, the energy spectra (differential

number flux at PA 150◦ ∼ 160◦ against energy in eV) of two data points with a high

and low flux ratio (T1 and 2 in Figure 2.5g, respectively) are shown in Figure 2.6. The

solid line is for the higher ratio (∼ 70, T1) while the dashed line is for the lower ratio

(∼ 20, T2), with the dotted line showing the instrument background flux. The energy

spectrum for T1 shows some ionospheric photoelectron features: the knee around 60

eV and also the sharp decrease of fluxes around 500 eV due to the extremely small

source term for energies above. However, for T2, none of these features are seen. This

characteristic difference in energy spectra for high and low flux ratios holds for all the

examples that we individually examined. Hence, it is reasonable to distinguish the

two populations by analyzing the statistical results of their flux ratios over the whole

mapping phase of MGS, from Earth year 1999 to 2007.

The left column of Figure 2.7 is the ratio of electron fluxes at 36 eV and at 115 eV

against time while the right column is the histogram of the left plots. Each row is for

different “modified pitch angles”, from top to bottom: 0◦−10◦, 40◦−50◦, 80◦−90◦, and

170◦−180◦. As shown in the first row of Figure 2.7, when the pitch angle is 0◦−10◦, the

ratio is centered at a few tens and the distribution over 7 years is an approximately

Gaussian distribution, peaked at a flux ratio ∼ 50. Since this peak flux ratio is

closer to that of T1 (∼ 70), i.e. the photoelectron sample, these electrons are likely

fresh ionospheric photoelectrons, propagating upward. As the pitch angle increases,

especially for the downward pitch angle bins, such as 170◦ − 180◦, ratios extend

below 20 while the histogram starts to show a bimodal distribution. A Gaussian-

like distribution centers at a ratio of around 60, which resembles the population

seen above at upward field-aligned pitch angles as ionospheric photoelectrons. In
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addition, another peak of a lower ratio, around 10, is also shown, indicating another

population of electrons. i.e. solar-wind/magnetosheath electrons. This population

change at different pitch angles (PAs) can be explained as follows. Over the strong

crustal field, electrons that move along the magnetic field line away from the planet

(PA < 90◦) most likely originated in the ionosphere. For pitch angles greater than

90◦, electrons either originated in the ionosphere in the conjugate leg of the same

magnetic field loop or originated in the solar wind/magnetosheath, precipitating into

the atmosphere through an open magnetic field line (most likely inside the cusps). The

second population, as shown in PA 40◦ − 50◦ of panels in the second row, is possibly

reflected solar-wind/magnetosheath electrons due either to the collisional scattering

with the neutral atmosphere and/or charged particles or to the magnetic mirroring

effect as the magnetic field strength increases when closer to the planet above the

strong crustal field regions. The existence of these reflected electrons suggests a loss
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cone of < 40◦. Notice that the y ranges of the histogram plots in Figure 2.7 are

different. There are fewer data samples at more field-aligned pitch angles (∼ 0◦ or

180◦) than more perpendicular pitch angles (∼ 90◦), due to the 2D FOV (field of

view) of the instrument.
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Figure 2.7: The left column is the ratio of electron fluxes at 36 eV and at 115 eV
against time; the right column is the histogram of the left plots. Each
row is for different “modified pitch angles”, from top to bottom: 0◦−10◦,
40◦ − 50◦, 80◦ − 90◦, and 170◦ − 180◦. The blue and red ticks in the
lowest left panel mark solar longitude (Ls) of 90◦ and 270◦, i.e. Martian
southern winters and summers, respectively
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CHAPTER III

Methodology: Modeling

Another means to conduct this thesis study is through simulations with a su-

perthermal electron transport model. Unlike Earth, the magnitude of the magnetic

fields at Mars can change rapidly within a few hundred kilometers in altitude. Hence

the model tool of the Martian environment requires a sophisticated theoretical de-

scription and the ability to modulate arbitrary magnetic fields. The superthermal

electron transport (STET) model is a multi-stream model that calculates the su-

perthermal electron distribution function from the gyration-averaged Boltzmann ki-

netic equation and simulates the superthermal electron transport along a flux tube

(Liemohn et al., 2003). It was initially developed for the Earth environment (Ko-

rablev et al., 1993; Khazanov and Liemohn, 1995; Liemohn et al., 1997) and has then

been modified for the Martian upper atmosphere (Liemohn et al., 2003, 2006). This

model not only satisfies the aforementioned requirements to simulate electron trans-

port in the Martian environment but also has the potential to model time-dependent

processes. In this chapter, the description of the model is first given, followed by

the validation of the model. Finally, some development, incorporating two new solar

irradiance models into STET, has been done.
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3.1 STET Model Description

Starting with the Bolzmann kinetic equation (also equation 1 of Khazanov et al.

(1994)), assuming that the electron Larmor radius of superthermal electrons is small

compared to the gradient of the local magnetic field (Liemohn et al., 2003), the

guiding center approximated version in the coordinate system [t, E, µ, s] is expressed

as

β√
E

∂ψ

∂t
+ µ

∂ψ

∂s
− 1− µ2

2

(
−F
E

+
1

B

∂B

∂s

)
∂ψ

∂µ
+ EFµ

∂

∂E

(
ψ

E

)
=

Q+ See +
∑
α

(
Seα + S∗eα + S+

eα

)
+
∑
i

(
Sei + S∗ei + S−ei

)
(3.1)

where E is the electron energy in eV, s is the coordinate along the local magnetic field

line, and θ is the electron pitch angle (PA), the constant β = 1.7× 10−8eV 1/2cm−1s,

µ = cos θ. The force due to a parallel electric field is F = eE‖, in units of eV cm−1. See

describes collisions with Maxwellian/thermal electrons, Seα and Sei elastic collisions

with neutral and ion species, S∗eα and S∗ei account for excitation of neutral and ion

species, S+
eα and S−ei ionization and recombination, and Q the electron production

rate due to photoionization of neutral species. ψ(t, E, µ, s) is the differential flux of

electrons and ψdEdΩ is the flux of electrons with energy from E to E + dE inside a

solid angle dΩ at a point s along the field.

Note that the use of a guiding center approximation for these calculations is jus-

tified because the gyroradius of the simulated electrons is always less than the radius

of curvature of the field lines as well as less than the spatial grid step. For instance,

the lowest magnetic field values used in the calculations below is 10 nT, which re-

sults in a gyroradius of 1 km and 3.4 km for 10 and 100 eV electrons, respectively.

The magnetic field radius of curvature, for the fields applied in this study, are at a

minimum 50 km and usually much larger than this. In addition, the step size used in
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these regions of low magnetic field will always be larger than the electron gyroradius

within our simulation energy range.

Due to the much larger densities of neutral species than ions and the small cross

section of dissociative recombination for superthermal electrons, the terms S∗ei and

S−ei are generally neglected. The rest of the collision terms can be expressed as:

See + Sei = Ane

{
∂

∂E

(
ψ

E

)
+

1

2E2

∂

∂µ

[(
1− µ2

) ∂ψ
∂µ

]}
(3.2)

Seα =
nασ

(1)
α

2

∂

∂µ

[(
1− µ2

) ∂ψ
∂µ

]
(3.3)

S∗eα = nα
∑
j

[
σ∗αj(E + E∗αj)ψ(E + E∗αj, µ)− σ∗αj(E)ψ(E, µ)

]
(3.4)

S+
eα = nα

2E+E+
α∫

E+E+
α

I+
α (E ′, E ′ − E − E+

α )ψ(E ′, µ)dE ′

+
nα
2π

∞∫
2E+E+

α

I+
α (E ′, E)

2π∫
0

ψ(E ′,
√

1− µ2 cos η)dηdE ′ − nασ+
α (E)ψ(E, µ) (3.5)

where A = 2πe4lnΛ = 2.6× 10−12 eV2cm2, and lnΛ is the Coulomb logarithm, nα is

the density of neutral species α, σ
(1)
α (E) =

∫
Iα(E,χ)(1 − cosχ)dΩ is the transport

cross section, χ is the scattering angle, and Iα(E,χ) the differential elastic cross

section, σ∗αj is the total cross section of scattering to excite a neutral particle with

a threshold energy E∗αj, and the ionization energy is E+
α . The total cross section of

ionization by an electron with an energy E is

σ+
α (E) =

(E−E+
α )/2∫

0

I+
α (E,E2)dE2 (3.6)

29



where I+
α (E,E2) is the appropriate differential cross section, and E2 is the energy of

a secondary electron.

The detailed simplification of these collision terms are described in Khazanov

et al. (1994). In addition, terms of order of me/mi, where me and mi are the mass

of electron and ions, respectively, and second derivatives with respect to energy are

also omitted from the calculation (Khazanov et al., 1994).

As said in the Introduction, the magnetic field magnitude on Mars can change

by a factor of ten within a few hundred kilometers, which means a larger variation

of the local pitch angle than found at Earth. To avoid a non-Cartesian grid, which

may increase the approximation errors of the derivatives ∂/∂s and ∂/∂µ, the kinetic

equation is rewritten in s-µ0 space, instead of s-µ space. Here µ0 = cos(θ0) and θ0 is

the pitch angle at the location of minimum B, also referred to as minimum-B pitch

angle. The transformation from the local pitch angle µ to the minimum-B pitch angle

µ0 is

µ0 =
µ

|µ|

√
1− B0

B
(1− µ2) (3.7)

where B0 is the minimum B strength along the field line. Figure 3.1 (Figure 7 of

Liemohn et al. (2003)) shows the corresponding s-µ0 space to s-µ space, and a Carte-

sian grid is applicable with the removal of the ∂B/∂s term. With this new space,

only slow collisional processes redistribute the electrons in µ0.

The code was designed to well resolve the “slow” process of pitch angle scattering.

Hence equation (1) is rewritten as a diffusion equation in s-µ0 space,

(√
m

2E

∂ψ

∂t
+ µ

∂ψ

∂s
+ C1

∂ψ

∂E

)
+ C2

∂

∂µ0

(
C3

∂ψ

∂µ0

)
= Q (3.8)

In equation 3.8, the coefficients C1, C2 and C3 include summations over various

neutral and plasma species in the Martian upper atmosphere. In equation 3.8, the
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Figure 3.1: Schematics of superthermal electron trajectories as a function of spatial
distance along the field line and pitch angle from the left-hand side of
equation 3.1, showing the trajectory dependence on (a) local pitch angle
(s-µ space) and (b) equatorial pitch angle (s-µ0 space). Also Figure 7 of
Liemohn et al. (2003).

spatial transport derivative (the second term) and the energy degradation derivative

(the third term) are treated analogously as the time derivative in a standard diffusion

equation, a numerical technique developed by Khazanov (1979). By using a finite-

difference approximation for these real/pseudo- time derivatives,

∂ψ

∂t
=
ψ − ψt−∆t

∆t
(3.9)

∂ψ

∂s
=


ψ−ψ−s

∆s
µ0 > 0

ψ−ψ+s

∆s
µ0 < 0

(3.10)

∂ψ

∂E
=
ψE − ψ

∆E
(3.11)

equation 3.8 can be reduced to
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∂2ψ

∂µ2
0

+D1
∂ψ

∂µ0

−D2ψ = D3. (3.12)

where ψt−∆t is ψ at the previous time step; ψ+s and ψ−s are ψ at the next upper and

lower s step; ψE is the ψ at the next higher energy step; ∆t, ∆E, and ∆s are the

step lengths in t, E, and s. Coefficients D1, D2 and D3 are functions of the variables

t, s, µ0 and E. More details of the derivation can be found in Khazanov (1979) and

Gefan and Khazanov (1990).

The analogy of the spatial transport derivative and energy degradation derivative

to the time derivative disadvantages the resultant scheme in resolving propagation

fronts along the field line but well suits for resolving the long-term development,

evolution, and interplay between the source cones and trapped zone (Liemohn et al.,

2003).

The last PA grid of each spatial location requires a special formula for the calcu-

lation of the flux at this grid point, denoted as kend (Liemohn, 1997):

ψkend =

[
βψt−∆t

√
E∆t

+
µψs−∆s

∆s
+
ξψE−∆E

∆E
+Q+ S +

pend
2

(
ψ+
kend−1 + ψ−kend−1

)]
/(

pend +
β√
E∆t

+
µ

∆s
+

ξ

∆E
+ L

)
(3.13)

where pend stands for the fraction of the electron flux scattered from the pitch angle

kend − 1, and “+” and “-” superscripts indicate upward and downward flowing flux,

respectively. S here is the source due to cascading and L represents the energy

degradation due to collisions. Finally, ξ = Ane/E, related to the Coulomb collision.

At very low altitudes, the scattering terms with pend dominate the numerator and

denominator of this equation, resulting in a nearly isotropic distribution. At higher

altitudes, either the ∆t or ∆s terms will dominate this equation. However, in our

set up for these simulations with a very large ∆t (i.e., jump to steady state), there
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is one exception. At the spatial location of minimum B, the local µ value for kend

is µ = 0, and therefore the transport terms drop to zero. This allows other, usually

negligible, source terms to dominate the equation, which can result in an anomalously

large flux value in this one point of the s−µ0 grid. To correct this issue, we add some

small transport to PA = 90◦, as would be the case if some small perturbations were

present. The specific implementation of this small transport effect is defined such

that µ(kend, i) = (µ(kend − 1, i) + µ(kend − 1, i + 1))/8, where i indicates the spatial

grid points.

The boundary conditions applied to STET are as follows. For the energy grid,

it is assumed that the flux above the highest energy step is zero. For the spatial

grid, it is assumed that there is no source below the lowest altitude step and that

any downward-directed flux at this location is lost. If the field line is “open” and

connected to the solar wind at either or both ends, then the highest altitude spatial

step will have an imposed downward-directed electron flux and the upward fluxes are

assumed to be lost.

The cross-section information of photoionization and excitation for Mars envi-

ronment used in the model is from Fox (1991), with an updated electron impact

cross-section from Sung and Fox (2000). The neutral and ionospheric density profiles

for Mars upper atmosphere are linearly interpolated from the Mars Thermospheric

General Circulation Model (MTGCM) (Bougher et al., 1988, 1994, 2001) within MT-

GCM’s calculation domain from 100 km to 240 km. Above this altitude, both the

neutral and electron densities are linearly extrapolated from the logarithm of the two

topmost values from MTGCM. For now, the STET model uses the Hinteregger-81

model (Hinteregger et al., 1981) as solar irradiance input, scaled by F10.7, with the

additional correction from Solomon et al. (2001), i.e. multiplying the flux of photons

for wavelengths below 25 nm by a factor of 4. The modeled photon flux, actually

Earth values, is then scaled to Mars values by accounting for the relative distance of

33



both planets from the Sun.

3.2 STET Model Validation

Even though this superthermal electron transport (STET) model has already been

used to simulate the Martian environment (Liemohn et al., 2003, 2006), this section

provides rigorous numerical convergence tests on the STET model. In addition, three

physical parameters, F10.7 values, thermal electron/plasma density and neutral den-

sities, are examined. These tests not only demonstrate the STET model’s ability to

handle a large range of inputs but also verify the performance of the model. The final

validation of the model is through the comparison between the model and the ob-

servations from the magnetometer/electron reflectometer instrument on board Mars

Global Surveyor.

3.2.1 Convergence Tests

Firstly, convergence tests for the pitch angle (PA) grid, spatial grid and energy

grid have been conducted. Figure 3.2 shows the neutral density profiles of O, O2,

N2, CO2, CO, thermal electron density and also neutral temperature against altitude

from MTGCM for the superthermal transport code. The MTGCM run was at an Ls

of 90 degree with an Earth F10.7 of 100 sfu.

If it is not specified, then the standard setup for this model validation section is

an Earth F10.7 value of 100 sfu, 1.57 astronaut unit (AU) as the Sun-Mars distance

to scale the modeled Earth EUV fluxes, which is about the average distance, and a

constant energy step of 1 eV for the range 0.5-200.5 eV. Also, the solar zenith angle

is set as 10◦. Symmetric closed B field lines, as shown in Figure 3.3, and the same

background atmosphere and illumination for the two legs of the B fields, are given.

Because of the symmetry, only results of photoelectrons flowing in the “+s” direction

(i.e. from s=0 km to maximum s) are shown in the following sections. That is, the
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Figure 3.2: Neutral densities, thermal electron density and neutral temperature of
Mars to be used in the calculations that follow, from MTGCM against
altitude near solar minimum, Ls = 90◦ condition.
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electron fluxes in the +s direction look identical to those in the -s direction at an

equivalent distance from the source region. While the distance variable s starts at

z=0, the calculation does not start at the surface of the planet, rather it starts at

z=90 km in the simulations presented below. Furthermore, for the case of precipi-

tating electrons along an open field line, the calculation can start at the top of the

simulation domain where the source of the particles is applied. Note that there are

other “standard” field line configurations at Mars, namely open lines connected to

both Mars and the solar wind and draped solar wind field lines. They will not be

examined here because the primary difference is the boundary condition.

These runs are steady-state with a time step set to be 105 s, approximately one

day, so large that the ∂/∂t term is mostly negligible. The convergence criteria is

|ψ − ψlast|/ψ < 0.01, where ψ and ψlast are the electron flux at the current time

step and the last time step. However, the STET model is capable of simulating time-

dependence cases, simply setting the time step to an appropriately small value so that

the ∂/∂t term plays a role, and has been applied to Earth space environment (e.g.

Liemohn, 1997). The time-dependent simulations for Mars environment are planned

as future work.

3.2.1.1 Pitch Angle Grid

Two different field line configurations, a short B field line (green) and a long B

field line (red), are shown in Figure 3.3; Figure 3.3a - 3.3b for distance s, and B

strength against altitude and Figure 3.3c for B strength against distance s. For the

pitch angle grid convergence test, the short B field line will be used. The distance

step size ds is 5 km below 200 km to well resolve the ionosphere and 10 km above this

altitude. Also, the dotted line in Figure 3.3a marks the relationship for a vertical B

field line for comparison.

As said in section 3.1, the calculation is in ‘µ0− s’ space instead of ‘pitch angle-s’
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space, the transformation from pitch angles to µ0 is not only as a function of cosine but

also determined by the local magnetic strength relative to the minimum magnetic field

strength. This non-linear transformation, although providing advantages described in

the section 3.1, makes the pitch angle grid setup not so straight forward. A constant

µ0 grid was tested but yields very large θ0 spacing in the high-B-field ionospheric

source region of the photoelectrons. To ensure several pitch angle grid steps in the

ionosphere, therefore, a different approach was used. The pitch angle (PA) grid is

set up as follows: a uniform minimum-B pitch angle θ0 for all grid points except

for the last pitch angle step size. The last PA step size is calculated as ∆θ0(top) =

90◦−sin−1(
√
B(stop)/B(stop−1)), i.e. the difference of 90◦ and θ0 at the second-to-top

location (θ0(stop − 1) = sin−1(
√
B(stop)/B(stop−1))). The exception of the last pitch

angle step size is to ensure the grid number K increase is no larger than 1 for the

top s grid, which otherwise not only is a waste of grids but also can cause numerical

issues. To calculate the pitch angle step sizes, take a total of 10 grid points as an

example, it is x ∗ (10 − 1) + 1◦ = 90◦, where 1◦ is the last step size. In this case,

x=9.9◦. Four different total pitch angle grid numbers, 6, 10, 20, and 40, are tested.

For this particular B field line, it is translated into the uniform minimum-B pitch

angle step size of θ0 of 17.8◦, 9.9◦, 4.7◦, 2.3◦, respectively, and also 1.0◦ for the last

step size.

The results are shown in Figure 3.4. The three rows are for three energies: 21 eV,

111 eV, and 196 eV. The left and middle columns are the differential number flux

at local PA = 0◦ and 90◦, respectively, against distance s. For the left column, the

differential number fluxes are almost the same, unaffected by the different total pitch

angle grid numbers. The fluxes firstly increase rapidly, mostly because of the source

production by photoionization in the neutral atmosphere, then decrease slightly at

s ∼ 200 km due to the decreased source and loss processes, such as scattering, and

slightly increase again at s ∼ 1300 km caused by the source production in the other
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ionosphere. For the middle column (local PA=90◦), the fluxes are now influenced

by the pitch angle grid size and converge as the grid step size is reduced. The right

column shows the differential number flux against pitch angle at the top of the B

field line. The pitch angle distributions are the typical source-cone distribution (high

fluxes at PAs near 0◦ and low fluxes at PAs near 90◦). The left and right columns

show that, with decreased pitch angle grid size, the flux distribution is more smooth

and that a grid number of 10 is needed to resolve the pitch angle grid.

The example of a pitch angle distribution at each distance step with a total pitch

angle grid of 20 is shown in Figure 3.5. Three rows are for three energies: 21 eV,

111 eV, and 196 eV. The left column is the minimum-B pitch angle distribution, also

an example of how the grid is actually setup in the calculation domain, while the

right column shows the local pitch angle distribution. The white lines in the right

column mark the same minimum-B pitch angles for different local pitch angles at each

s location. The pitch angle distribution is quite isotropic for altitudes lower than 350

km, corresponding to s < 400 km and > 1150 km, and rapid drop of fluxes at PA

near 90◦ happens at higher altitudes due to the conservation of the first adiabatic

invariant.

3.2.1.2 s Grid

With the knowledge of an appropriate pitch angle step size, the next step is to test

the s grid of the short B field line with a total PA grid number of 20, although the pitch

angle grid size changes slightly according to the last s grid step, which determines

the last pitch angle grid step size. To ensure the ionosphere is well resolved, the s

grid step size under altitude of 200 km is half of that above 200 km. The results

of the four combinations of s grid step size, (20, 40), (10, 20), (5, 10), and (2.5, 5)

(in km), are shown in Figure 3.6. The corresponding PA grid step sizes are, (4.47◦,

5.1◦), (4.62◦, 2.2◦), (4.68◦, 1.0◦), (4.72◦, 0.3◦), the former number for 19 uniform PA
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Figure 3.5: Pitch angle distributions along the whole B field for the run with a total
pitch angle grid number of 20. Three rows again are for three energies: 21
eV, 111 eV, and 196 eV. The left column is the minimum-B pitch angle
distribution while the right column shows the local pitch angle distribu-
tion. The color shows the differential number flux in log scale, with a
range from the maximum flux to 2 orders of magnitude smaller, and the
white lines in the right column mark the same minimum-B PA.
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step size and the latter for the last step size. Similar to Figure 3.4, the three rows of

Figure 3.6 are for three energies: 21 eV, 111 eV, and 196 eV.

The left and middle columns are the differential number flux at local PA = 0◦

and 90◦, respectively, against distance s. These are not pitch angle distributions at

a given altitude but rather flux values at a constant local pitch angle value as a

function of altitude. In the middle column, which shows the altitude profile of fluxes

for the locally-mirroring pitch angle, note that the finer spatial resolution results

have a stair-step profile at high altitudes while the coarser spatial resolution results

appear to be smoother at these altitudes (e.g., compare the red and black curves).

This is because of the relationship between the spatial and pitch angle grids due to

the changing magnetic field strength along the field line. Because these simulations

were conducted with a fixed configuration for the minimum-B pitch angle steps, the

addition of more spatial grid points along the field line results in several spatial

locations with the same Ko(i) (i.e., number of minimum-B pitch angle steps for that

ith spatial location). Because transport dominates at the higher altitudes, the lowest

altitude for a particular Ko(i) value will dominate the flux level, as seen by the nearly

constant flux values for each K increment in the left column of Figure 3.5. This

results in a stair-step profile for the PA = 90◦ flux values. For coarser spatial step

sizes at high altitudes, Ko(i) will increment more often, perhaps with every spatial

step, resulting in a smoother altitude profile for the locally mirroring fluxes. The

right column shows the differential number flux against pitch angle at the top of the

B field line. While all the lines are mostly on top of each other, the smaller s step

size leads to a smoother pitch angle distribution at the top of the B field lines for

trapped pitch angles (PA∼ 90◦). Overall, the results suggest that the fluxes are not

very sensitive to the s grid step sizes. However it does make sense to have s grid step

size smaller than local scale heights of the neutral species at Mars.
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Figure 3.6: Results of different s grid size combinations, (20, 40), (10, 20), (5, 10),
and (2.5, 5) (in km), highlighted in black, light blue, green, and red,
respectively, in each panel. Three rows are for three energies: 21 eV, 111
eV, and 196 eV. The left and middle columns are the differential number
flux (cm−2 s−1 eV−1 sr−1) at local PA = 0◦ and 90◦, respectively, against
distance s. The right column shows the differential number flux (cm−2

s−1 eV−1 sr−1) against pitch angle at the top of the B field line.
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3.2.1.3 Different Magnetic Field Configurations

The tested magnetic field in sections 3.2.1.1 and 3.2.1.2 belongs to the relatively

short field lines among the Martian strong crustal fields. Hence, another B field with

a more extended altitude and a larger ratio of B strength maximum and minimum is

also tested, as shown in red in Figure 3.3. The s step size is 10 km below 200 km and

20 km above. Because of this larger B maximum and minimum ratio, the uniform

pitch angle step size setup described in section 3.1 has its disadvantages because of

the complicated transformation from pitch angles to µ0. The number of PA grid

points at each altitude for this PA setup is shown in Figure 3.7a, black for a total PA

grid points of 20, light blue for 50. It is easy to see that, for s < 600 km (altitude

below 570 km), only less than 1/3 of the total PA grid points are utilized, resulting

in rather coarse pitch angle resolutions in these altitudes.

Hence, the code is provided with another pitch angle grid setup. If θ0(200) is

the minimum-B pitch angle at 200 km, then from the minimum altitude to 200 km,

K1 of pitch angle grid points is assigned to this region and the pitch angle step

size is θ0(200)/K1. The second region is set up as such, from θ0(200) to 2 ∗ θ0(200)

with K2, so that the pitch angle step size is θ0(200)/K2. Given K4 is 1 for the

last pitch angle step size with the same setting as the shorter B field line. K3 is

Ktotal − (K1 + K2 + K4), accounting for minimum-B pitch angles from 2 ∗ θ0(200)

to θ0(stop − 1), where θ0(stop − 1) is θ0 at the second-to-top location. Here, denote

this method as the “non-uniform” PA grid setup. Two pitch angle grids of this non-

uniform setup are shown in Figure 3.7a, green for a total pitch angle grid points of

20 and red for 25, with (2.24◦ , 1.1◦ , 9.1◦ , 7.9◦ ) & (4,8,7,1) and (2.24◦ , 1.1◦ , 5.4◦ ,

7.9◦ ) & (4,8,12,1) for ∆θ0(1− 4) & K1−4, respectively. The only difference between

the two is the K3.

The results of two uniform PA grid setup and two non-uniform PA grid setup are

shown in Figure 3.7b - 3.7d, energy 111 eV as an example. Figure 3.7b - 3.7d are
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Figure 3.7: (a) Number of pitch angle grid points at each altitude. Black and blue
lines are for uniform pitch angle grid setup with a total grid number of 20
and 50, respectively. The green and red lines are for non-uniform pitch
angle grid setup with a total grid number of 20 and 25, respectively. (b)
and (c) show the differential number flux (cm−2 s−1 eV−1 sr−1) at PA =
local 0◦ and 90◦, respectively, against distance s. (d) shows the differential
number flux (cm−2 s−1 eV−1 sr−1) against pitch angle at the top of the B
field.
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the differential number flux at PA 0◦ and 90◦ against distance s, and the differential

number flux at the top of the B field against pitch angle, respectively. In Figure 3.7c,

two runs (black and light blue) with uniform PA grid setup are chunky between s

300-600 km while both runs (green and red lines) with the non-uniform setup are of

a much finer resolution, even better than uniform PA grid setup with 50 grid points.

For 600 < s < 1000 km, the non-uniform setup provides the same as or slightly

coarser resolution than the uniform setup. At the maximum altitude, the pitch angle

distribution (Figure 3.7d) of all the runs are about the same. In all, this non-uniform

pitch angle grid setup not only provides a good resolution with much fewer grid points

but also some freedom to obtain the desired grid resolution at some particular regions

according to the specific configuration of a magnetic field line.

Since section 3.2.1.2 already shows that the results are somehow insensitive to s

grid step size, the test of s grid is skipped here.

3.2.1.4 Energy Grid

The last grid that needs to be tested is the energy grid, which is independent

of B field configuration. Hence the short B field, shown in green in Figure 3.3, is

chosen to carry out the convergence test, with a PA grid setup the same as the case

of a total PA grid number of 20 in section 3.1 and s grid setup of (10, 20) km. Four

uniform energy grid sizes of 1eV, 2 eV, 4 eV, and 10 eV are used, with the results

shown in Figure 3.8a - 3.8d, respectively. Typical features of photoelectron energy

spectra, such as the large flux drop near 60 eV due to the sharp drop in solar photons

below 15 nm, the spikes near 270 eV and 500 eV due to Auger (inner shell) electron

production by soft X rays, and the abrupt cutoff around 500 eV as the extreme small

source term beyond the last Auger peak, are seen in Figure 3.8a - 3.8d (e.g. Nagy and

Banks , 1970; Mantas and Hanson, 1979; Liemohn et al., 2003). The flux spikes in

the 20-30 eV range due to the intense He II 30.4 nm solar line and also Auger peaks
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near 360 eV can only be identified in finer resolutions, below 4 eV, i.e. Figure 3.8a

- 3.8c.

The results above suggest that the determination at whether an energy grid size is

sufficient highly depends on the question being asked and the energy range or feature

being investigated. More than occasionally, especially for data-model comparisons,

finer resolution in low energy range is required and a relatively coarse resolution in

high energy range is acceptable. It is possible to set up the energy grid such that

dE/E=constant. However, in order to have 1 eV grid resolution at 25 eV, it puts

a lot of grid points in the 1-10 eV energy range. This makes a dE/E based energy

grid impractical. Hence, we designed and tested a non-constant energy grid size as

follows: 1 eV for energy below 40 eV, 2 eV for 40-200 eV, and 4 eV for energy above

200 eV, with the results shown in Figure 3.8e. Flux spikes in the 20-30 eV range,

Auger peaks near 270 eV and 360 eV and other features are easily identified. This

energy grid setup also speeds up calculation due to fewer energy grid steps.

To more clearly show the structures in the low energy range for different energy

grid sizes, the energy spectra in the energy range of 0-50 eV for the five energy grid

setups at an altitude of 150 km are shown in Figure 3.8f. Results of the four uniform

energy grid sizes of 1eV, 2 eV, 4 eV, 10 eV and the non-constant energy grid size are

colored in blue, light blue, green, yellow and red, respectively. In addition, a run with

energy grid size of 0.5 eV, with a energy range of 0.25-200.25 eV, is also carried out to

illustrate the finer structures of the photoelectrons in 0-50 eV range for comparison,

highlighted in black in Figure 3.8f. Especially, in the 20-25 eV range, this black line

shows three flux spikes, which smears into two with a step size of 1 eV. When the

step size becomes coarser, the energy spectra is smeared further. In Figure 3.8f, the

downside with the uneven energy grid size, however, is seen in the red line. Small

oscillations occur just below the energy where the grid size changes, for example near

30-40 eV, making the red line more spiky than the black line. With the technique
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Figure 3.8: Panels (a-d) show the omni-directional differential number flux against
energy for a constant energy grid size with grid sizes of 1eV, 2 eV, 4 eV,
and 10 eV, respectively. Different colors highlight the energy spectra at
different altitudes, as shown in the color bar. Panel (e) is for the results of
a non-constant energy grid size. Panel (f) shows the energy spectra at the
altitude of 150 km from 0 eV to 50 eV. Results of the four uniform energy
grid sizes of 1eV, 2 eV, 4 eV, 10 eV and the non-constant energy grid
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addition, the result of a run with energy grid size of 0.5 eV is highlighted
in black.
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used in Swartz et al. (1975) and a grid size change under a factor of 2, the oscillations

are relatively small.

3.2.2 Physical Parameter Tests

With the appropriate PA, s and energy grid setups determined, to further ver-

ify the model, the next step is to examine the performance of the transport code

with different physical parameters, specially F10.7 values (section 3.2.2.1), thermal

electron/plasma density (section 3.2.2.2), and neutral densities (section 3.2.2.3). The

short B field line is used in this section, with s step size of (10, 20) km. The pitch angle

grid setup is the same as the case of a total PA grid number of 20 in section 3.2.1.1.

The energy grid is of a step size of 1 eV and a range of 0.5-200.5 eV.

3.2.2.1 F10.7 Values

Solar photon fluxes incident onto Mars vary dramatically during a solar cycle

and even a Martian year. Hence, four Earth F10.7 values, 50, 100, 150, and 200, are

chosen as input for the Hinteregger model and after being scaled to Mars values by

multiplying a factor of 1/r2 (r is the Mars-Sun distance in AU, 1.57 in this study),

the modeled EUV fluxes against wavelength are shown in Figure 3.9a, highlighted in

black, blue, green, and red, respectively. Despite the Hinteregger EUV flux’s linear

dependence on F10.7, each wavelength has its own scaling factor. As a result, the

increase of EUV flux varies for different wavelengths, as the four lines are “tighter

together” in some wavelengths than others. This feature of the Hinteregger model

translates into different responses of photoelectron fluxes for different energies.

To demonstrate, Figure 3.9b shows the energy spectra of omni-directional photo-

electron flux for these four Earth F10.7 inputs at 200 km altitude. The differences in

flux between the lines are difficult to see, and so the normalized flux (by the fluxes

with F10.7 = 50) against F10.7 values for several energies are shown in Figure 3.9c.
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From Figure 3.9c where different slopes are seen, the increase factors of fluxes, or

the percentages of increased flux, per unit F10.7 for all the energies are shown in Fig-

ure 3.9d. This percentage varies for different energies, being especially spiky in the

energy range of 20-30 eV. This variation produced by the transport code in the pho-

toelectron fluxes is consistent with the Hinteregger EUV flux changing for different

ionizating photon wavelengths.

3.2.2.2 Thermal Electron/Plasma Density

Thermal electron/plasma density is directly related to the loss of photoelectrons

due to Coulomb collisions. To examine this effect, the normal electron density from

MTGCM, shown as the black line in Figure 3.2, is scaled by a factor of 0.1, 1, 10, and

100, and the resultant energy spectra are shown in Figure 3.10a - 3.10d, respectively.

When electron density increases (Figure 3.10c and 3.10d), the omni-directional

fluxes at the top of the field line (colored in red) decrease more compared to the

normal electron density (Figure 3.10b), especially at lower energies. It is due to

the factor that the Coulomb collisional cross section is proportional to the inverse of

squared energy (1/E2). Also, the flux spikes in the 20-30 eV range are more degraded

and barely seen at the top of the field line in Figure 3.10d.

When electron density decreases (Figure 3.10a), while the high-altitude flux drops

are not as severe at the very low energies (below 10 eV), the results closely resemble

the normal case. It hints that the loss due to Coulomb collisions plays a relatively

minor role compared to other loss mechanisms, i.e. elastic and inelastic collisions with

neutral particles, hence this reduced minor factor barely influences the final fluxes.

To quantitatively determine the photoelectron flux change caused by the different

plasma densities, Figure 3.10e shows the normalized flux at the top of the magnetic

field against the multiplication factor. For high energies, the photoelectron flux is

barely affected due to the small Coulomb collision cross section. For really low energies
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Figure 3.10: Omni-directional differential number flux (cm−2 s−1 eV−1 sr−1) against
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(e.g. 5 eV), photoelectron flux decreases almost linearly with the increase of the

plasma density but barely changes with the decrease of the plasma density as the loss

due to the Coulomb collision is small compared to other processes.

3.2.2.3 Neutral Densities

Neutral densities’ effects on photoelectron fluxes are more complicated as they

contribute to both the source and the loss. An easy way to validate the transport

model’s performance is to examine the electron flux peak altitude. According to

Chapman theory (Chapman, 1931c,d), when neutral density increases, as the solar

EUV flux is absorbed more in the upper atmosphere and the optical depth reaches 1

at a higher altitude, the altitude of the peak electron flux also increases.

The densities of five neutral species are scaled by a factor of 0.01, 0.1, 1, 10, and

100, results colored in black, blue, green, pink, and red in Figure 3.11, respectively.

Each panel is the omni-directional flux against altitude for a particular energy. For

all four panels, the peak altitude increases with elevated neutral densities. The peak

fluxes tend to decrease a little as neutral densities increase but are mostly within 50%

of each other. It might be partially due to the increased neutral temperature at the

peak, as the neutral temperature increases with altitude in the Martian thermosphere,

as shown in Figure 3.2 (the red line), and the peak altitudes for higher density cases

increase as well. The resultant increased scale heights (H) lead to a decreased peak

production rate (∝ 1/H) according to the Chapman theory (for example, see equation

9.23 in Schunk and Nagy (2000)). In addition, the flux decreases less from the peak

to the top of the field line as the neutral density increases, providing an increased

source at high altitudes.
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Figure 3.11: Omni-directional differential number flux (cm−2 s−1 eV−1 sr−1) against
altitude for different energies, (a) 8 eV, (b) 23 eV, (c) 100 eV, and (d) 200
eV. In each plot, different colors are for the results of different neutral
densities. Green is for normal neutral densities as shown in Figure 3.2.
Black, blue, pink, and red are for neutral densities of all species scaled
by a factor of 0.01, 0.1, 10, and 100, respectively.
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3.2.3 Data-Model Comparison

To further assess the STET model, the data-model comparison is performed here.

An orbit of MGS on Nov. 7, 2005, 03:48:27-03:48:59, is chosen as the Sun, Earth and

Mars aligned so that the solar flux can be directly scaled from Earth to Mars by their

relative solar distances. The spacecraft was at local time 2 pm, south latitude ∼ 46◦,

east longitude ∼ 190◦, solar zenith angle ∼ 37◦. The magnitude of magnetic field is

around 200 nT and the magnetic elevation angle, angle relative to the planet surface,

is from 0−30◦. For the model setup, the non-constant energy grid setup described in

section 3.2.1.4 is used. Earth F10.7 and the relative Sun-Earth and Sun-Mars distances

are given accordingly. The two magnetic field configurations shown in Figure 3.3 are

both tested here. For the short B field line, a total pitch angle number of 20 is used,

while for the long B field line, the non-uniform setup with 25 pitch angle grid points,

as described in section 3.2.1.3, is employed.

The data-model comparison of the omni-directional flux at MGS altitude (∼400

km) is shown in Figure 3.12. The width of the solid red lines shows the energy

resolution of the electron instrument and the red dots are the serial measurements

from 03:48:27 to 03:48:59, 17 in total. The yellow line is the model run of Hinteregger

81 with the Solomon fix (Solomon et al., 2001) for magnetic field line B2. Compared

with the MGS observation, the model result matches with the data above 300 eV and

is 2-4 times higher for energy below 200 eV. The Solomon fix is to multiply the EUV

flux below 25 nm from Hinteregger 81 model by 4. Then, a model run of Hinteregger

81 without the Solomon fix for the short magnetic field line is shown in blue line in

Figure 3.12. Now the modeled results matches well with the observation, within a

factor of 2 below 200 eV. The disagreement at energy bin 61 eV, right around the large

flux drop, is probably due to the spacecraft potential shift, yielding mixing electron

fluxes of this bin with its neighbor bins and smearing the flux drop. In addition,

another discrepancy between the model and the data is the flux spikes in 20-30 eV
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Figure 3.12: Omni-directional flux against energy. The width of the solid red lines
shows the energy resolution of the electron instrument and the red dots
are the serial measurements from 03:48:27 to 03:48:59, 17 in total. The
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The blue and green lines are the model runs of Hinteregger 81 without
the Solomon fix, for the short and long field line, respectively. The yellow
line is the model run of Hinteregger 81 with the Solomon fix for the short
B field line.

range, which are missing from the data. It may be caused by the coarse resolution

(∆E/E = 25%) of the instrument and/or the discrepancy between the modeled EUV

fluxes and the actual values.

The model result, without the Solomon fix, with the long B field line, is also shown

in Figure 3.3, highlighted in green. As can be seen in Figure 3.12, the magnetic field

description had essentially no influence on the photoelectron omnidirectional flux val-

ues at 400 km altitude. While the magnetic field topology is important for electron

transport and the details of the pitch angle distribution, Figure 3.12 shows that it
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is relatively unimportant for this pitch-angle averaged quantity. The disagreements

between our model results and the observations are within a factor of two. Espe-

cially, solar EUV flux directly controls photoelectron fluxes and the EUV photon

intensities from the Hinteregger-81 model may be off from the actual solar EUV by

different factors at different wavelengths, which could introduce a significant differ-

ent discrepancy at different energies. In addition, both neutral density and field line

configuration discrepancies tend to introduce a systematic decrease/increase of fluxes

for all energies. More detailed assessments of the factors controlling photoelectron

fluxes at Mars will be the subject of future studies. Despite the fact that the two

magnetic configurations are of different lengths, minimum and maximum ratios, the

model results are almost identical, suggesting the high-altitude photoelectron omni-

directional fluxes are somewhat insensitive to the magnetic fields. However, as the

two tested field lines are symmetric, an extremely asymmetric field line, such as an

open field line, can lead to the decrease of omnidirectional flux by a factor less than

three for transport dominant altitudes (e.g. Mantas and Hanson, 1979).

3.3 STET Model Development

Solar EUV photon fluxes directly control the photoelectron fluxes (e.g. Banks and

Nagy , 1970). Measurements and models of the solar EUV and XUV fluxes are there-

fore vital to accurately obtain photoelectron fluxes. However, any one solar irradiance

model is based on a limited set of observations and has caveats to its applicability

and errors on its accuracy. For example, Peterson et al. (2012) compared the Earth

observation and the modeled photoelectron spectra with five different solar irradiance

models as the solar energy input and concluded that all the investigated models failed

to capture the variability of solar irradiance on the solar rotation time scale. This

limitation of observations is especially true at planets other than Earth, where solar

irradiance measurements are few. Furthermore, most superthermal electron transport
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models only use a single solar irradiance model for the specification of this impor-

tant input parameter. It is useful, then, to systematically examine the influence of

using different solar irradiance flux models on the resulting superthermal electron

distribution.

For our STET model, one of the mostly widely used solar irradiance modes, the

Hinteregger-81 model (Hinteregger et al., 1981), is currently incorporated to calcu-

late solar irradiance. Hinteregger-81 is an empirical model based on the fitting of

observations from the Atmospheric Explorer-E (AE-E) and several sounding rockets.

However, Woods et al. (2005) found the discrepancy of a factor of a few between the

modeled Hinteregger-81 solar fluxes and the observations from Thermosphere Iono-

sphere Mesosphere Energetics and Dynamics (TIMED) Solar Extreme Ultraviolet

Experiment (SEE)(Woods et al., 1998). Hence it is necessary to compare the perfor-

mance of other solar irradiance models’ to the Hinteregger-81 model, in the aspect

of the resultant photoelectron fluxes. We have selected two recently developed solar

irradiance models to implement into the STET model: the Flare Irradiance Spec-

tral Model (FISM) (Chamberlin et al., 2007, 2008) and the Heliospheric Environment

Solar Spectral Radiation (HESSR) model (Fontenla et al., 2009, 2014).

3.3.1 New Solar Irradiance Models

The FISM model, an empirical solar irradiance model that is based on more

accurate measurements from several instruments on three different satellites (such as

TIMED SEE for extreme ultraviolet irradiance data), makes use of six proxies for

different wavelengths/bands, treats the solar cycle and solar rotational components

separately, and also, in addition the daily component, includes the solar irradiance

variations from both the impulsive and gradual phases of the solar flares.

The HESSR is a semi-empirical model of the Solar Spectral Irradiance (SSI) at

planets and a derivative of the Solar extreme ultraviolet (EUV) Radiation Forecast
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System (SERFS) model described by Fontenla et al. (2014), which was developed to

model the Ultraviolet (UV) SSI at Earth. The SERFS model is based on the Solar

Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images of the

solar disk available since August 2010 that produce daily “masks” of the solar disk

that identify a set of 11 chromospheric and coronal features directly observed on the

disk. For application to other planets, i.e. in HESSR, maps of the features on the solar

disk are derived from the current and previous solar disk masks. Using these maps,

the solar features are projected to the planets viewing positions to produce daily

projected masks at each planet. Then these projected masks are used in the same

way as the Earth case to produce planetary UV SSI predictions. The resulting SSI

can be produced at any desired resolution, but for practical purposes the planetary

data used in this paper is re-binned into 1-nm bins. When observations are available

from other viewpoints in the heliosphere, or helioseismology of the far-side, these data

can be used to directly update the maps of features and thereby bring up to date the

state of the solar disk viewed from other planets (Fontenla et al., 2009).

For the HESSR model, the photon fluxes (available wavelength 0.05-160 nm,

http : //www.galactitech.net/hessrdata/Mars/Spectra/) are already in Mars val-

ues. For the other solar irradiance models, the modeled solar photon fluxes from

both the Hinteregger-81 model and FISM (available wavelength 0-190 nm, http :

//lasp.colorado.edu/lisird/fism/) are currently Earth values, which are then scaled

by the relative distances of the two planets from the Sun and interpolated according

to the Mars-Sun-Earth angle, to obtain Mars values.

3.3.2 Implementation of New Solar EUV Models

To demonstrate the implementation of the two new solar EUV models, the STET

model is set up as follows. The neutral densities, ionospheric density and temperature

profiles based on MTGCM are shown in Figure 3.13a. The MTGCM run was at an
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Ls of 90 degrees with an Earth F10.7 of 100 sfu (1 sfu= 10−22 W/(m2 Hz)) near the

solar minimum and aphelion condition. The magnetic field line configuration is a

symmetric field line, as shown in Figure 3.13b-3.13d. The distance step size of the

field line is 5 km below 200 km to well resolve the ionosphere and 10 km above. A

total of 20 pitch angle grid points for pitch angle 0− 90◦ are used for electron fluxes

flowing along the magnetic field direction and the same pitch angle setup for the

opposite flowing electrons. In addition, a non-constant energy grid size is set up as

follows: 1 eV for energy below 40 eV, 2 eV for 40-200 eV, and 4 eV for energy above

200 eV. All the runs for this part are steady-state by setting a large time step of 105

s, so that the time derivative term is mostly negligible. The simulation is considered

to be converged as |ψ−ψlast|/ψ < 0.02, where ψ and ψlast are the electron flux at the

current time step and the last time step at every location in the E − s− µ grid.

For this part, we have chosen July 13th, 2014 for the reference of the solar ir-

radiance models. For the Hinteregger-81 model, the inputs are F10.7 = 127 sfu and

81-day average index F10.7a = 135 sfu . As both the Hinteregger-81 model and the

HESSR model predict daily solar photon fluxes, we only use the daily component of

FISM for this part, rather than including the high-time-resolution flare component,

to most appropriately compare the influence of three models’ daily predictions on the

photoelectron fluxes. In addition, there were only several very minor flares (class C)

on July 13th, 2014 so that the daily component is an adequate representation of the

total solar flux. Both FISM and HESSR use observations from July 13th, 2014 as

inputs to drive the models.

The absorption and photoionization cross sections in the STET model are in the

same resolution as the Hinteregger-81 model, 41 wavebands and 18 single spectral

lines for strong emission lines, with a resolution of < 1 nm below 3.2 nm, then 1.8 nm

for 3.2-5 nm and a resolution of 5 nm for the wavelength range 5− 175 nm (see more

detailed resolution information in Table 1 of Heroux and Hinteregger (1978)). Both

60



0 500 1000 1500
s (km)

0

100

200

300

400

500

A
lt
. 
(k

m
)

0 100 200 300 400 500
B (nT)

0

100

200

300

400

500

A
lt
. 
(k

m
)

0 500 1000 1500
s (km )

0

100

200

300

400

500

B
 (

n
T

)

(b)

(c) (d)

10^−5 10^0 10^5 10^10 10^15
100

150

200

250

300

350

400

450

Density (# cm^-3)

A
lt
it
u

d
e

 (
k
m

)

 

 

O
O

2

N
2

CO
2

CO

e−

120 130 140 150 160 170 180 190 200
Neutral Temperature (K)

 

 

Tn

Figure 3.13: (a) Neutral densities, thermal electron density and neutral temperature
of Mars to be used in the calculations that follow, against altitude. These
values are from MTGCM for the altitude range of 100-240 km and lin-
early extrapolated from the logarithm of the two topmost values from
MTGCM above 240 km; (b) B field line altitudes against distance s; (c)
B field strength against altitude; (d) B field strength against distance s.
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FISM and the HESSR model data used in this dissertation, however, are currently

of a bin size of 1 nm. To avoid confusion, here we denote the resolution of the

Hinteregger-81 model as “the uneven resolution”, in contrast to the 1 nm resolution

of the two new solar irradiance models. Hence, we have constructed three ways to

incorporate the two new models. The most straightforward way (method 1) is to

integrate the solar photon fluxes from the two new models into the uneven resolution

for long wavelengths and linearly interpolate for wavelengths below 3.2 nm, where

the Hinteregger-81 model has finer resolution than 1 nm. Figure 3.14a shows the

comparison of the solar photon fluxes from FISM (dark blue) and the HESSR model

(red) in 1 nm resolution while the integrated versions of FISM (dark blue) and the

HESSR model (red) in the uneven resolution are shown in Figure 3.14b, accompanied

with the solar irradiance from the Hinteregger-81 model (black) as a comparison.

However, method 1 results in the loss of the finer wavelength resolution above

3.2 nm. Therefore, instead of integrating solar irradiance, the other two methods

are to linearly interpolate the absorption and photoionization cross sections to 1

nm resolution. It is only suitable to implement this way when the cross sections are

smooth. As shown in Figure 3.14c and 3.14d, both the absorption and photoionization

cross sections, crosses for the uneven resolution and solid lines for the interpolated 1

nm resolution, are rather smooth below 70 nm but quite spiky above. Considering 70

nm (∼18 eV in energy per photon) is about the wavelength threshold to photoionize

neutrals, it is appropriate to interpolate the cross sections. The difference between the

two methods lies in how to deal with the 18 single spectral lines, as indicated by the

red/blue crosses in Figure 3.14a. The second method (method 2) is to first interpolate

the cross sections for the 41 wavebands into 175 bins with 1-nm resolution. Then for

those 18 1-nm bins that contain the single spectral lines, the cross sections obtained

from the waveband interpolation will be replaced by the original cross sections of the

corresponding single spectral lines.
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Figure 3.14: (a) Solar fluxes from FISM (blue) and HESSR model (red) against wave-
length, in 1 nm resolution. The blue and red crosses indicate the wave-
lengths of the 18 single spectral lines. (b) Solar fluxes from Hinteregger-
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The third method (method 3) is to interpolate the cross sections for the 41 wave-

bands into 175 bins with 1-nm resolution and, instead of replacing, add the extra 18

single spectral lines. In other words, the third method has 18 more bins (with the

same upper and lower bound for each bin) than does the method 2. The photon fluxes

for the extra 18 single spectral lines are from the 1-nm bins that contain the 18 single

spectral lines. The third method resembles the way the Hinteregger-81 model calcu-

lates the solar photon fluxes, adding extra photon fluxes from the single-spectral-line

bins into the fluxes from the wavebands.

To briefly summarize, for both FISM and the HESSR model, there are two funda-

mental ways to incorporate them into the STET model: (1) integrating and interpo-

lating the solar irradiance to fit the absorption and photoionization cross sections in

uneven resolution (method 1); (2) interpolating the absorption and photoionization

cross sections in 1 nm resolution (method 2 and method 3). Method 2 and method 3

differ in the treatment of the single spectral lines.

3.3.2.1 Flare Irradiance Spectral Model

The comparison of FISM implemented in these three methods is demonstrated in

Figure 3.15. The upper panel of Figure 3.15 shows the omni-directional photoelectron

fluxes against energy at 200 km, just above the collisional ionosphere. The solid line

is for FISM in the uneven resolution, the dashed line for method 2 and the dotted

line for method 3, the latter two in 1-nm resolution. All three energy spectra are

mostly on top of each other. A noticeable difference between the two resolutions is

the steeper drop of electron fluxes for the uneven resolution near 60-70 eV due to the

coarser wavelength resolution above 3.2 nm. In contrast, the 1-nm resolution results

in a broader decrease of fluxes from approximately 50 to 70 eV. A more quantitative

comparison is shown in the lower panel of Figure 3.15 where the photoelectron fluxes

generated by FISM using the absorption and photoionization cross sections at 1-nm
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resolution are ratioed relative to the fluxes of the uneven resolution FISM, by dividing

the dashed and dotted lines in the upper panel by the solid line. The difference

between the two resolutions is within a factor of 3. The discrepancy between method

2 and 3 is seen at energy below 40 eV. Without the extra single-spectral-line bins,

the dashed line is off the solid line, i.e. in the uneven resolution, by a factor less than

2. The dotted line, however, is closer to the solid line, as both the method 1 and

3 have additional extra photon fluxes from the single-spectral-line bins. However, it

is not yet clear if the additional fluxes from these single-spectral-line bins will result

in overestimated photoelectron fluxes for the low energy range. In other words, it

is inappropriate to conclude which method is better without a comprehensive data-

model comparison study.

3.3.2.2 Heliospheric Environment Solar Spectral Radiation model

Similarly, Figure 3.16, in the same format as Figure 3.15, shows how the three

methods used to incorporate the HESSR model affect the photoelectron energy spec-

tra. Again, the resultant photoelectron fluxes from the three methods vary within a

factor of around 4. The lower panel of Figure 3.16 mostly resembles the lower panel

of Figure 3.15 below 100 eV. The noticeable feature for the HESSR model is that the

second and third methods, (dashed and dotted lines), result in more variance from

the first method above 100 eV, compared to the FISM case. It is due to the more

dramatic decrease of the solar irradiance from 3 nm to 2 nm for the HESSR model,

compared to FISM, as the HESSR model tends to predict much lower solar irradiance

below 2 nm than FISM. As a result, the interpolation of the HESSR solar irradiance

to the uneven resolution at short wavelengths brings more variance to the high-energy

photoelectron fluxes.

As the only discrepancy between method 2 and 3 is below 40 eV, hereinafter we

will only show the results of the method 2 to demonstrate cases of 1-nm resolution.
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Figure 3.15: The upper panel is the omni-directional flux against energy. The three
lines are for different ways to implement FISM, the solid line for method
1, integrating FISM photon fluxes to the uneven resolution, the dashed
line for method 2, FISM and absorption and photoionization cross sec-
tions interpolated to 1 nm resolution, and the dotted line for method
3, FISM and absorption and photoionization cross sections interpolated
to 1 nm resolution with additional single-spectral-line values. The lower
panel is the relative omni-directional fluxes of three methods against en-
ergy, i.e., the dashed and dotted lines in the upper panel divided by the
solid line.
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HESSR: Omni-directional flux
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Figure 3.16: The same format as Figure 3.15. This figure shows the comparison of
the three methods to implement the HESSR model.
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3.3.3 Comparison of the Solar EUV Models

In this section, we will compare the photoelectron fluxes with different solar ir-

radiance models as input, as shown in Figure 3.17. The left column demonstrates

the comparison of the various models in the uneven resolution while the right column

shows the results of FISM and the HESSR model with the model absorption and pho-

toionization cross sections interpolated to 1-nm resolution, with the Hinteregger-81

model for comparison. Again, the upper panels are for omni-directional photoelectron

fluxes against energy at 200 km and the lower panels for the fluxes relative to the

Hinteregger-81 model case. In each panel, the Hinteregger-81 model case is in black,

FISM in green, and the HESSR model in red.

3.3.3.1 Comparison of Photoelectron Fluxes

For the uneven resolution (left column of Figure 3.17), the results of FISM and

the HESSR model generally agree well for the energy range 40-300 eV, within a factor

of 2. Below 40 eV, though modeled photoelectron fluxes fluctuate dramatically, the

photoelectron fluxes from the two newer solar irradiance models are generally within

a factor of 2 as well. Above 300 eV, the resultant electron fluxes from the HESSR

model are about half of that from FISM.

The right column of Figure 3.17, for absorption and photoionization cross sections

being interpolated to 1-nm resolution, shows similar features described above. How-

ever, it is noticeable that the resultant photoelectron fluxes from the HESSR model is

much lower than FISM, around 10-20 %, as the HESSR model tends to predict much

lower solar irradiance below 2 nm than FISM. Also, the energy spectra resulting from

the two new solar irradiance models, as shown in the right upper panel, decrease more

smoothly from 50 eV to 300 eV, while for the Hinteregger-81 model case, the decrease

is semi-staircase (likely due to the coarser wavelength resolution above 3.2 nm).
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Figure 3.17: The upper two panels are the omni-directional flux with different EUV
models against energy. The black line is for the Hinteregger-81 model
without modification, aqua for Hinteregger-81 with the Solomon mod-
ification, blue for Hinteregger-81 with the new modification, green for
FISM, red for HESSR model. The lower two panels are the relative
omni-directional photoelectron fluxes against energy, i.e., other color
lines divided by the black line in the upper panel. The left column is
in the uneven resolution while the right column is for FISM and the
HESSR model implemented with method 2.
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3.3.3.2 Modifications to Hinteregger-81 Model

From Figure 3.17, it is easy to see that the Hinteregger-81 model leads to much

lower photoelectron fluxes than the other two solar irradiance models, except for

the HESSR model at high energy range. Solomon et al. (2001) concluded that the

solar photon fluxes from the Hinteregger-81 model needed to be multiplied by a

factor of 4 below 25 nm to match the observation. The Hinteregger-81 model with

this modification is shown in aqua in Figure 3.17. While this modification makes

the Hinteregger-81 model case match much better with FISM above 360 eV in the

uneven resolution (left column), it results in higher photoelectron fluxes by a factor

of around 2 from 40 eV to 360 eV than both FISM and HESSR cases. Section 3.2.3

also suggested that the correction of Solomon et al. (2001) seems to extend to longer

wavelengths than necessary through their data-model comparison. The right column

of Figure 3.17 shows this similar trend, better agreement with FISM above 230 eV

but overshoot in the energy range of 40-230 eV compared to the two newer models.

Woods et al. (2005) found that the modeled solar photon fluxes from the Hinteregger-

81 model was 50% higher in the 50-75 nm range than the SEE measurement from

February 2002 to mid-2004 and that the observation was 70% higher than the mod-

eled solar fluxes in the 5-25 nm range. Therefore, a simple new modification to the

Hinteregger-81 model is to combine the findings from both studies, multiplying the

modeled solar fluxes from the Hinteregger-81 model by 2/3 in the 50-75 nm range,

by 1.7 in the 3.2-25 nm range, and by 4 below 3.2 nm. The choice of 3.2 nm cutoff

instead of 5 nm is due to the better agreement with the other two models. The resul-

tant photoelectron fluxes with this new modification are shown in blue in Figure 3.17

and agree quite well with the newer models for energies between 40 eV to 300 eV and

with FISM above 300 eV. This new modification does lead to lower photoelectron

fluxes below 40 eV than the Solomon modification and also the other two models.
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3.3.4 Discussion of Incorporating New Solar Irradiance Models into STET

Both FISM and the HESSR model are improved solar spectral models which can

be used to simulate the photoelectron fluxes at Mars. Our STET model currently

includes the Hinteregger-81 model description of the photon fluxes. However, the

Hinteregger-81 model contains a coarse wavelength resolution and we examine how

the inclusion of the improved wavelength resolution of FISM and the HESSR model

affects how the photoelectron fluxes predicted by STET would be altered.

In the previous sections, we have described how to incorporate FISM and the

HESSR model into our STET model in detail. Due to the different wavelength res-

olutions of the absorption and photoionization cross sections and the two new solar

irradiance models, three methods have been constructed to integrate the new models

to STET. The first method is to simply integrate and linearly interpolate the FISM

and the HESSR model into the uneven resolution, i.e. the Hinteregger-81 resolution.

The second and third methods are to interpolate the cross sections, instead, and

handle strong emission lines differently. The resultant omni-directional photoelectron

fluxes of the three methods generally agree well with each other, varying within a

factor of 3.

In this section we have also proposed a new modification for the Hinteregger-81

model. While Solomon et al. (2001) provided a good correction of the Hinteregger-

81 model for short wavelengths, it does introduce higher photoelectron fluxes in the

energy range 40-360 eV. This new modification combines the finding of Solomon

et al. (2001) and Woods et al. (2005), leading to a better agreement with the other

two models.

Finally, with the modifications, the resultant omni-directional fluxes of the three

solar irradiance models, the Hinteregger-81 model, FISM, and the HESSR model,

mostly vary within a factor of 2. However, the HESSR model does not include flares

and therefore maybe somewhat lower than the daily averaged SSI at wavelengths
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below 2 nm, which leads to lower photoelectron fluxes above 300 eV. The variation

among three models is decent enough to validate the three models but also leaves room

to further discriminate which EUV model delivers the better performance. However,

to determine which solar irradiance model prevails requires an extensive data-model

comparison study. The Analyzer of Space Plasma and Energetic Atoms (ASPERA-

3) experiment Electron Spectrometer (ELS) instrument (Barabash et al., 2006) from

Mars Express (MEx) provides a very fine resolution (dE/E=8%) for electron mea-

surements at energies below 100 eV. These measurements could also be utilized to

compare the solar irradiance models.
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CHAPTER IV

Photoelectrons and Dust Storms

Trantham et al. (2011) concluded the local solar extreme ultraviolet (EUV) proxy

as the main controlling factor of photoelectron fluxes at Mars, but the local EUV

proxy was found to yield two distinct linear relations, suggesting some processes result

in separating some photoelectron fluxes from others for the same solar irradiance level.

The second elevated linear trend is due to the much higher photoelectron fluxes from

late 2001 to early 2002, during which a global dust storm occurred. Liemohn et al.

(2012) determined that the special enhancement of the photoelectron fluxes observed

at 400 km was indeed a result of the global dust storm that occurred in late 2001.

Also, the dust storms’ influence on the photoelectron fluxes was long lived, roughly 7

Earth months. Yet both Trantham et al. (2011) and Liemohn et al. (2012) confined

their studies to one single velocity space bin, 27 electron volts (eV) at pitch angle

80◦-90◦. In this chapter, we first examine dust storms’ effects on all the available

energy channels and pitch angles. Then we use the SuperThermal Electron Transport

(STET) model to explore what kinds of atmosphere can lead to such photoelectron

flux enhancements.
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4.1 MGS Data Analysis

To investigate time-history effects of dust storms, time series of various quantities

are shown in Figure 4.1. Figure 4.1a presents photoelectron fluxes of 36 eV at pitch

angle 0◦ − 10◦ against time. The blue/red dots are the data values and the black

vertical lines give the mean and 3-sigma uncertainty with a bin size of 0.1 Earth year

(approximately 37 Earth days). The red dots are highlighted as the time period of

the global dust storm in Mars Year (MY) 25 and exhibit the second linear dependence

on the solar EUV proxy while the blue dots are for the rest of ‘normal’ time period.

Here the 3-sigma uncertainty is used to exclude extremely high fluxes, along with

the unusual high fluxes at the beginning of Year 1999 (approximately the first 73

days of Year 1999). Though consisting of a small amount of data points, these high

fluxes can cause big drops of the Pearson correlation coefficients. To justify this

exclusion, firstly, the energy spectra of the unusual high fluxes at the beginning of

Year 1999 clearly show that these electrons are not photoelectrons. Secondly, these

high fluxes can be magnetosheath fluxes. Thirdly, the solar EUV proxy might be

more of a representative of average photoelectron fluxes. Finally, this study focuses

on the two main linear trends dependence on the solar EUV proxy and these excluded

fluxes are just a small portion of the data set. The exclusion of these fluxes should

barely affect the findings of this study. Figure 3e is the local EUV proxy, i.e. F10.7

cm solar flux at Mars multiplying a solar zenith angle-dependent Chapman Function

(Trantham et al., 2011), against time. The very low values during southern summer

(seen in the Figure 1c of Liemohn et al. (2012)), when the crustal fields were at LT

2 am but partially illuminated due to the tilt of the planet, are also excluded as the

partially illuminated magnetic loops very likely straddle the terminator and therefore

these fluxes may behave differently. Figure 4.1b - 4.1d are time-history dust opacity

values against time. Liemohn et al. (2012) came up with two different methods to

determine dust storms’ long-term effects, time-history averages and maximums of
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dust opacities within a certain time window. In other words, for a data point, tracing

back across a specified time length, either the averaged dust opacity or maximum

within this window will be the new value. Here, time-history maximums are shown

as examples and the window lengths are 7 Earth days, 154 Earth days and 354 Earth

days, respectively. Figure 4.1f - 4.1h are the new controlling functions, calculated

as the EUV proxy at Mars (Figure 4.1e) multiplying the left three corresponding

time-history maximum dust opacities, against time. As said above, this inclusion

of the time-history dust opacities serves as a modification to the dominant factor,

solar EUV, of photoelectron fluxes. For instance, the multiplication of a high dust

opacity may imply a denser neutral atmosphere at ionospheric altitudes and/or a

higher collision rate due to a denser exosphere. Comparing Figures 4.1f - 4.1h with

4.1e shows that this adjustment sometimes exceeds an order of magnitude change in

the controlling function values.

With the new controlling functions, the study of the relationship between dayside

photoelectron fluxes and TES dust opacities is conducted in section 4.1.1. To further

investigate the specialness of the global-scale dust storm at MY 25, two sets of mod-

ified dust opacities are also applied to the same method, with the results shown in

section 4.1.2.

4.1.1 Relationship with TES Dust Opacities

Figure 4.2 shows the scatter plots of the fluxes of photoelectrons of different en-

ergies and different pitch angles (PA) against various controlling functions. The first

three columns are photoelectrons of 515 eV, 116 eV, and 36 eV at PA 0◦ − 10◦, and

the fourth shows 36 eV at PA 80◦− 90◦. The x-axis for each row is EUV proxy, EUV

proxy multiplying 7-day, 154-day and 364-day maximum time-history dust opacity.

In each panel of Figure 4.2, all the data points are divided into 10 bins with equal

number of data points inside each bin. Then the median values and quartiles (as
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Figure 4.1: a) Photoelectron fluxes (cm−2s−1ster−1eV −1) at 36 eV and pitch angle
0◦ − 10◦ against time. The black vertical lines give the mean and 3-
sigma uncertainty of all of the individual red/blue data points within a
bin size of 0.1 Earth year. (b-d) 7, 154 and 354 Earth-day time-history
dust opacity values against time, respectively. e) The local EUV proxy.
(f-h) The new controlling functions, using the local EUV proxy at Mars
(e) multiplied by the dust opacity values in b-d, against time.
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error bars) for each bin are marked with the asterisk symbols, with a linear fit to

these median values shown as a black line. The slope and intercept quantities to this

fit, along with the Pearson correlation coefficients of all the data points in each plot,

are also given in each panel. In addition, data points are highlighted in red and blue,

the same as Figure 4.1a, with red designating the especially high flux interval from

Earth year late 2001 to early 2002 (late MY 25 to early MY 26) while blue is used

for the rest of the time.

The scatter plots of photoelectron fluxes against EUV proxy only (the first row)

show a separation of photoelectron fluxes in the last three columns, the same feature

as found in Trantham et al. (2011). In fact, this separation has been seen in 8 (×18

pitch angle bins) out of 12 energy bins with 4 energy channels as exceptions: 515

eV, 313 eV, 79 eV and 61 eV. For example, the top plot of the first column, 515

eV, does not show a clear separation. On the one hand, the results demonstrate

that this double linear trend is not exclusive for only 27 eV photoelectrons at PA

80◦ − 90◦ (Trantham et al., 2011) but is a common feature of the majority of energy

and pitch angle bins. Especially, the fact that this feature exists in source cone

pitch angles hints that the driving processes tend to happen at the source, i.e. the

thermosphere/ionosphere, since photoelectrons in the trapped pitch angles are less

likely to affect those in the source regions. An example of a different pitch angle,

80◦ − 90◦, is also shown in the last column. Usually, the scatter plots of pitch angle

near 90◦ appear to be broader in flux than for field-aligned PA bins, which either can

be a result of more data sampled at these particular pitch angles due to the design of

the instrument or indicates some underlying physical processes. On the other hand,

this feature is not found in every energy and pitch angle bin. In fact, the existence

of these exceptions makes the question more complicated. While the possibility that

this feature has an energy preference cannot be completely excluded, it is more likely

that the exception of 79 eV and 61 eV is due to spacecraft potential. These two
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Figure 4.2: The four columns correspond to the scatter plots of the photoelectron
fluxes (cm−2s−1ster−1eV −1) of 515 eV at 0◦−10◦, 116 eV at 0◦−10◦, 36 eV
at 0◦−10◦ and 36 eV at 80◦−90◦, respectively, against different controlling
functions. The x-axis for each row is: EUV proxy, EUV proxy multiplying
7-day, 154-day and 364-day time-history dust opacity, corresponding to
Figure 4.1 e-h. The asterisk symbols in each panel mark the median
values and quartiles (as error bars) for 10 bins with equal data points
inside (with slope, intercept and correlation coefficient given in the upper).
In addition, data points are highlighted in red and blue, the same as
Figure 4.1a, with red for especially high flux from Earth year late 2001
to early 2002 while blue for the rest of time.
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energy bins happen to be near the knee of the photoelectron energy spectrum (e.g.

Mitchell et al., 2001; Liemohn et al., 2003), where there is an order or so of magnitude

decrease of flux from 50 eV to 70 eV. The energy shift caused by spacecraft potential

might cause the large variation of the fluxes of these two energies. As for the other

two high energy channels that do not show the double-linear trend, 515 eV and 313

eV, it is probably because the driving factor of this feature does not favor these high

energy photoelectrons.

The separation of the photoelectron population into two distinct linear trends with

respect to the local EUV proxy suggests the existence of another controlling factor of

photoelectrons. Trantham et al. (2011) investigated a few other possible candidates

including solar wind pressure, the magnitude and elevation angle of magnetic field,

as well as longitude and latitude (with one velocity space bin, 27 eV at PA 80◦− 90◦)

but concluded that these candidates have little control of photoelectrons. Our similar

investigation on the rest of the energy and pitch angle bins seems to support this

conclusion, as shown in the first row of Figure 4.2 for a few examples and checked for

all others. However, Liemohn et al. (2012) provided another candidate, dust storms,

and demonstrated that global dust storms may be responsible for the particularly

high fluxes at Earth year 2002 by using a multiple of EUV and dust opacity as a

new controlling function. Also, the correlation is the best with the use of a time-

history of globally-averaged dust opacity value instead of the instantaneous value,

which indicates a long-term influence from dust storms. However, this research also

focuses on only one bin, 27 eV at PA 80◦ − 90◦.

The results above demonstrate that different energies may have different responses,

hence it is necessary to investigate dust storms’ influence on all energy and pitch angle

bins. The same method as Liemohn et al. (2012) is applied to all usable bins. A few

examples are also shown in Figure 4.2. The controlling function of rows 2 to 4 have

multiplied three different time-history windows of dust opacity with local EUV proxy:
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7 Earth days (one week), 154 Earth days (5 months) and 364 Earth days (1 year),

respectively. The controlling functions against time are shown in Figure 4.1e - 4.1h,

respectively. The second row sometimes has slightly better correlations compared to

row 1 (such as 36 eV), but sometimes worse (such as 115 eV) and the separation

has not yet disappeared. However, when the time-history window reaches 154 Earth

days, the photoelectron fluxes against this controlling function are now one single

linear trend, shown in row 3. As the window runs longer to 364 Earth days the last

three columns in the 4th row now have an even better linear trend. Row 2 to 4

actually display the progress from two linear trends into a single one as the time-

history window runs longer, if a separation is present in Row 1 (EUV proxy only).

The multiplication of a 5-month window dust opacity is able to successfully merge the

separations. Mathematically, the Pearson correlation coefficient (R) (shown in the

upper left corner of each panel) has a ∼ 0.1 increase for the last two rows, compared

to the first two rows. This increase is statistically significant, given the number of

data points included to calculate the correlation, which is hundreds of thousands.

Notice that for each column in Figure 4.2, the correlation coefficients of the 154-

Earth-day time history window and 364-Earth-day window are almost the same, which

indicates that R does not always rapidly increase as the time window increases. How

R changes as a function of the time-history window is shown in Figure 4.3. The

three columns are for three energy bins: 515 eV, 115 eV and 36 eV and each row for

different pitch angle bins: PA 0◦ − 10◦, PA 80◦ − 90◦, PA 170◦ − 180◦, respectively.

Notice that the y axes have different ranges for each plot. Two lines (red and blue)

correspond to two methods to obtain the time-history dust opacity (the maximum

and average within the window). A common feature of all the panels in Figure 4.3

(also seen in the rest of the pitch angle and energy bins not shown here) is that the

correlation coefficient rapidly increases at first and then levels out for the rest of the

time window.
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However, in spite of the fact that rapid increases in the correlation are observed

in all the energy and pitch angle bins as the time history window increases, it is

important to compare with the correlation with solar EUV proxy only, denoted as

“Orig Corr” in the right bottom corner of each panel. In fact, those energy and pitch

angle bins that exhibited little to no separation of photoelectron fluxes in the scatter

plots barely have any increase of correlation with window duration, especially in the

trapped zone, such as 515 eV, PA 80◦ − 90◦. In this case, dust storms seem to have

little effect on these energy channels. In contrast, the source region (pitch angle near

0◦ or 180◦) of energy channels higher than 53 eV and all the pitch angles below 53 eV

have shown a higher correlation than that of solar EUV proxy only. A few examples

are shown in Figure 4.3. The increase is around 0.05 for 515 eV at both pitch angle

bin 0◦ − 10◦ and 170◦ − 180◦ and 115 eV at PA 80◦ − 90◦. An increase of above 0.15

is seen in the source region of 115 eV and all three different pitch angles of 36 eV.

For those bins with higher correlation with inclusion of time-history dust opacities,

the rapid increase of correlation stops at 120 Earth days (approximately 63◦ Ls) or

longer, which implies that the influence of dust storms is most likely long-lasting.

After this point in the window duration setting, the change of R is within 0.01 as the

time-history window runs longer. This level-off implies the lack of sensitivity towards

the exact length of this time-history window, pointed out by Liemohn et al. (2012).

Also, because of the fact that the line shape of using the running average within a

time-history window is similar to that of using the maximum value and that the latter

usually has a similar or higher correlation than the former, especially for low energies,

all the discussion below will be based on results of using this maximum value.

Two kinds of information can be extracted from Figure 4.3, the length of the

time-history window and the improved correlation coefficients. For the former one,

because of the insensitivity towards exact peak in the time-history window, the tran-

sition point, where R changes from a rapid increase to almost a constant, can be
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Figure 4.3: Correlation coefficient of photoelectron fluxes versus a controlling function
(Figure 4.1 g), with red and blue curves corresponding to a running-
average time-history dust opacity method and a maximum-value time-
history dust opacity method. “Orig Corr” denotes the correlation without
the inclusion of dust opacities. The three columns are for three energy
bins: 515 eV, 115 eV and 36 eV and each row for different pitch angle
bins: PA 0◦ − 10◦, PA 80◦ − 90◦, PA 170◦ − 180◦, respectively. Notice
that the y axes have different ranges for each plot.
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considered as a reasonable representative of this time length. Here, two criteria are

applied to determine this transition point. If dy is the subtraction of the maximum

and minimum correlations, i.e. the correlation range of each panel of Figure 4.3, a

transition point is such that its correlation is no more than 0.1*dy lower than the

maximum correlation, defining a region near the maximum value, and also that its

correlation is ≤ 0.05*dy larger than the previous point’s correlation, to guarantee a

very slow increase. In addition, since R is almost the same after this transition point,

the correlation coefficient of this time point will be used as the improved correlation

for the following discussion.

The correlation coefficients of all energy and pitch angle bins for both the case of

the EUV proxy only and the case of including time-history dust opacities are given

in Figure 4.4, in the upper and lower panel, respectively. In the upper panel, for

energy greater than 53 eV, the correlations are mostly above 0.5 in the source region

and lower in the trapped zone, especially low for all pitch angles of 79 eV, which is

near the knee of the photoelectron energy spectrum. For energy lower than 53 eV,

the correlations are generally higher than 0.6, and not obviously lower in the trapped

zone.

There are two possible reasons for the slightly lower correlations at high ener-

gies. Firstly, high-energy photoelectrons are produced by shortwave photons, such

as X-rays, while the EUV proxy used here, based on F10.7, is not a very good ap-

proximation for such shortwave solar flux. Secondly, the method used to account for

the different angles of Mars and Earth are not able to capture all the solar flares

and/or other short-lived solar activities. Another feature is that correlations of the

trapped zone are lower for high energies. Notice that the measurement of MGS is

at around 400 km, well above the source region of these examined photoelectrons

(which is usually located below 200 km). Particles of pitch angles near 90◦ are mostly

scattered into and reside at high altitudes. Their fluxes depend on not only solar
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Figure 4.4: The correlation coefficients of the photoelectron fluxes versus a controlling
function of all the energy and pitch angle bins. The controlling function of
the upper panel is the local EUV proxy only while that of the lower panel
is the local EUV proxy multiplied by the maximum-value time-history
dust opacities.
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radiation but also scattering. This extra controlling factor can lead to lower corre-

lations. Especially, since the collision cross section is proportional to the inverse of

energy square (1/E2) (Rutherford , 1911; Khazanov and Liemohn, 1995), high-energy

photoelectrons are harder to be scattered into the trapped zone. This may also be the

reason for the different behaviors within the trapped zone for low and high energies.

In addition, Liemohn et al. (2003) noted that observed high-energy photoelectron

pitch angle distributions were more isotropic than at lower energies, indicating other

scattering mechanisms could be dominant (e.g. wave-particle interactions).

After multiplying time-history dust opacities as new controlling functions, as

shown in the lower panel of Figure 4.4, a similar pattern to the upper panel is found,

but the correlation now is much higher in most bins. Especially, the number now is

above 0.8 for the lower energies across all pitch angles. The obvious increases in the

source region of high energies are also seen. However, as mentioned above, lower cor-

relations than with the EUV proxy only are seen in the trapped zone of high energy

channels.

As said above, it is important that the correlation after including the time-history

dust opacities is higher than the correlation with the local EUV proxy only. To further

demonstrate this criteria, the quantitative difference of the two panels of Figure 4.4 is

shown in Figure 4.5, both the absolute and relative difference given in the two panels,

respectively. For energy below 53 eV, the increase of correlation is mostly above 0.1,

up to 0.25. Also, it appears that the downward fluxes experience a higher increase

than do the upward fluxes while the trapped zone seems to be the lowest, again. For

energy above 53 eV, the increase of correlations in the 115 eV and 190 eV channels,

both displaying a double linear trend in the scatter plots, is seen across all the pitch

angles, above 0.1 in the source region. For the 61 eV and 79 eV energy channels,

there was barely flux separation seen in the scatter plots of electron fluxes against

local EUV proxy but there is seen a correlation improvement in the source region,
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Figure 4.5: The absolute (upper) and relative (lower) correlation difference of the two
panels of Figure 4.4. Note that the color scale for the upper panel is 0-0.2
while for the lower it is 0-40%.
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as shown in Figure 4.4. It implies that the disappearance of the double linear trend

in these two energy channels might be due to spacecraft potential effects that mix

the very different flux intensities above and below the knee in these bins rather than

some physical processes. Finally, the two highest examined energy channels, 313 eV

and 515 eV, only have small increases (of less than 0.1) at a few source region bins.

Over all, an increase of correlation in the source region is the common feature of high

energies. While excluding two channels near the knee, it seems that the increase in

the trapped zone is less and less when energy increases. The relative difference of the

before/after including time-history dust opacities is also given in the lower panel of

Figure 4.5. The pattern resembles the absolute difference plot. Mostly, the increase

of correlation is around 20%. In all, it appears that, when there is a flux separation

in the scatter plots like Figure 4.2, the correlation coefficient after including the time-

history dust opacities will also more or less improve, such as for all the pitch angles

of low energies and in the source region of high energies; on the contrary, when there

is barely flux separation, little improvement is seen, like the trapped zone of high

energies. The general improvement of correlations at all energies suggests that dust

storms are responsible for the appearance of the second linear trend.

The fact that the maximum increase of correlation happens with ≥ 100 Earth-day

time history dust opacities instead of instantaneous opacity values suggests a long-

lasting effect of dust storms, as claimed by Liemohn et al. (2012). The exact time

length of this long-lasting effect is also significant, shown in Figure 4.6, determined

according to the method said above, upper and lower panels corresponding to the

maximum value and running average methods, respectively. Also, notice that only

for those bins with significant correlation improvement is the time-window length

significant. For the maximum value case, this time length for low energies is around

140 − 160 Earth days (approximately 70◦ − 84◦ Ls at Mars, given 1◦ Ls is about

1.9 Earth days on average at Mars) while for a few high energy bins where dust
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storms seem to play a role, the influence lasts longer, up to almost 190 Earth days

(approximately 100◦ Ls at Mars). By comparing the upper panels of Figure 4.5 and

Figure 4.6, an interesting feature is seen, for low energies, the history window seems

longer where the increase of correlation is higher. For the running average case, the

time length is around 210 Earth days (approximately 110◦ Ls at Mars) for most

bins. Notice that the time-history length of the maximum value case is different from

Liemohn et al. (2012) (which said 210 Earth days for both cases). It is because the

method of determining this window length is different between the two studies. In

fact, both studies have an agreement that the influence of dust storms is long-lasting

instead of an instantaneous effect.

4.1.2 Relationship with Modified Dust Opacity Levels

The results above have shown that the conclusion of dust storms’ long-living

influence on photoelectrons applies to all energy and pitch angle bins below 53 eV and

also the source region of higher energies. However, measured dust storms occurred on

Mars in every southern spring from MY 24-27, as shown in Figure 4.1b. It is not yet

clear whether all the dust storms affect the photoelectrons or whether the global-scale

dust storm at MY 25 is special. Hence, two sets of modified dust opacity are made,

by isolating the dust storm at MY 25 from the rest of the timeline. The first artificial

dust opacity time series is the dust storm MY 25 opacity with a constant 0.2 for the

rest of the time, colored as red in Figure 4.7 (denoted as high dust opacity) while

the second new dust time series has the original low dust opacity everywhere but

substitutes the large dust storm with a constant 0.2 level, colored black in Figure 4.8

(denoted as low dust opacity). The same time-history method has been applied to

both sets and the results are shown in Figure 4.8: (a) and (b) corresponding to high

dust opacity and (c) to low dust opacity.

Figure 4.8a shows an example of the plot of R against history-time window of 36
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Figure 4.6: The window lengths of time-history dust opacities used to generate the
correlation coefficients in the lower panel of Figure 4.4. The upper (lower)
panel corresponds to a maximum-value (running-average) time-history
dust opacity method. Note that the color scales of the two are different.
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Figure 4.7: Two sets of modified dust opacities versus time. The red (black) line is
for the high (low) dust case.

eV at pitch angle 0◦ − 10◦ and red/blue highlight the two methods of time-history

dust opacity calculation, maximum and average. Similar to Figure 4.3, the correlation

increases first and then levels off as the window length increases. In fact, the other

line plots of this high dust opacity case resemble the real case. To illustrate this, the

absolute difference of two sets of correlation coefficients, before and after including

dust opacity, is given in Figure 4.8b. Compared with the upper panel of Figure 4.5,

the two plots appear to be almost the same, with an increase of correlation seen in

all the pitch angles of low energies and in the source region of high energies. This

similarity between these two cases implies that the dust storm in MY 25 is entirely

responsible for the improvement of correlation as well as the merging of the double

linear trend in scatter plots.

To further investigate the influence of the unusually large dust storm, correlations

for the low dust opacity case have also been conducted. One example of this low dust

opacity case is exhibited in Figure 4.8c, the plot of R against time-history window

for 36 eV at pitch angle 0◦ − 10◦ (as was shown in Figure 4.8a for the high dust
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Figure 4.8: (a) Correlation coefficients of the fluxes of 36 eV photoelectrons at PA
0◦ − 10◦ versus the window length of the time-history dust opacities for
the high dust case. Again, “Orig Corr” denotes the correlation without
the inclusion of dust opacities. (b) The absolute correlation difference of
all the energy and pitch angle bins between before and after including
the time-history dust opacities for the high dust case. (c) Correlation
coefficients of the fluxes of 36 eV photoelectrons at PA 0◦−10◦ versus the
window length of the time-history dust opacities for the low dust case.
Red (blue) curve in a and c highlights the running-average (maximum
value) dust opacity method. Also notice the y axes have different ranges
for the two plots.
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case). The line shape no longer keeps increasing, but decreasing for the blue line.

Also, the correlation coefficient with EUV proxy only is 0.67, given in the right lower

corner, while the correlation after multiplying dust opacity is always lower than 0.55.

Similarly, all the examined energy and pitch angle bins share the same feature that

the inclusion of low dust opacity actually diminishes the correlation coefficients.

The opposite results for the two artificial dust opacity profiles strongly suggest

not only that the dust storm in MY 25 is entirely responsible for the second linear

trend in the scatter plots but also that the usual dust storms have little influence on

photoelectrons. It appears that dust storms with high 9-micron dust optical depths

(τ greater than some value between 0.5 and 1.4) can significantly change the Martian

upper atmosphere. The question remains, what feature(s) of large dust storms give

rise to this second linear trend in the scatter plots.

4.1.3 Discussion of Observed Photoelectron Fluxes and Dust Storms

The results presented above show that dust in the lower atmosphere has a long-

lasting influence on high-altitude photoelectron fluxes. Note that photoelectrons will

recombine and be lost to the neutral atmosphere on the nightside; thus such a long-

lived effect of a dust storm must be due to the changes in the neutral atmosphere

(Liemohn et al., 2012). Two highly possible candidates of how dust storms affect the

photoelectron fluxes are the change in the source, e.g. the perturbation of the neutral

density below 400km, and/or high altitude scattering due to the density change at or

above the altitude of MGS. With the inclusion of time-history dust opacities, a sig-

nificant increase of correlation between photoelectron fluxes and the new controlling

function is seen at all the low energy bins and more field-aligned high-energy bins

but not the trapped zone of high energy channels. As mentioned in the methodol-

ogy section, the source region pitch angles are more directly related to the source at

the ionosphere while the trapped zone is more influenced by high-altitude scattering.
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The increase of correlation happens at the source region of all energies, suggesting

that the effects of dust storms more likely happen in the ionosphere. The different

behaviors of trapped zones of different energy channels, again, can be caused by the

fact that the collision cross section is proportional to the inverse of energy squared

(1/E2). Low-energy photoelectrons are more easily scattered into the trapped zone.

In other words, the low-energy trapped zone is more sensitive to changes of sources

than the high-energy trapped zone. In contrast, even if high-energy photoelectron

fluxes in the ionosphere change due to dust storms, it might not be shown in the

trapped zone at 400 km. In fact, before relating dust storms, the flux separation in

the scatter plot of photoelectron flux against EUV proxy is found in both source and

trapped pitch angles. It already implies that driving processes more likely happen in

the source cone as the photoelectrons in the trapped pitch angles are less likely to

affect those in the source regions.

Therefore, the results imply changes to the neutral densities in the thermosphere

rather than the exosphere. According to Chapman production function (equation

9.21 in Schunk and Nagy (2009)), the peak production rate occurs at unit optical

depth and is directly proportional to the neutral density at the bottom side of the

thermosphere (equation 11.55 in Schunk and Nagy (2009)). The additional solar

energy absorption of dust particles heats the lower atmosphere and therefore results

in a larger scale height at low altitudes, which leads to an enhanced neutral density

at the bottom of the thermosphere. This will then increase the peak production rate

of photoelectrons. Note that ER measures the non-thermal primary photoelectrons

(> 10 eV), as opposed to the thermal electrons that dominate the main peak and

participate in the equilibrium that establishes the Chapman-like structure. The fluxes

of non-thermal primary photoelectrons detected by ER are determined by the source

but also the loss due to scattering.

The artificial opacity time series case has shown that only the dust storm at MY
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25 is able to significantly affect photoelectron fluxes. It appears that dust storms

with high 9-micron dust optical depths can significantly change the Martian upper

atmosphere. In fact, although Lillis et al. (2010b) concluded that there was no clear

trend between total electron content (TEC) in the Mars ionosphere and dust opacity,

there was indeed a sudden increase of TEC at the end of MY 28, corresponding to the

time period of a dust storm that reached a 9-micron dust optical depth of 1.0. The

dust opacities are obtained from the Thermal Emission Imaging System (THEMIS)

(e.g. Smith, 2009). Despite that the peak of dust opacity seemed broader than peaks

of TEC, Lillis et al. (2010b) did not rule out the connection between the two, given

no apparent change of other drivers. Our results imply that it is the changes in the

ionosphere caused by the global-scale dust storm at MY 25 that greatly modified

photoelectron fluxes at 400 km while this increase of TEC also shows the changes

at ionospheric altitudes potentially caused by the global-scale dust storm at MY 28.

However, it is not yet clear whether the influence of the global-scale dust storm at

MY 28 on the ionosphere is long-lasting or not. Therefore, it is necessary to analyze

the electron data from Mars Express ASPERA-3 ELS (e.g. Barabash et al., 2006) and

apply the similar method to investigate the time-history effects of the dust storm at

MY 28 on electron fluxes. If it turns out that the MY 28 dust storm does not have an

obvious and/or long-lasting effect on photoelectron fluxes and the ionosphere, it might

imply that the MY 25 dust storm was special in some way and was a one-time event.

And if the MY 28 dust storm does have an obvious and/or long-lasting influence,

together with our results, it suggests that there exists a dust opacity threshold above

which dust storms cause obvious and/or long-lasting changes in the ionosphere, or

even higher altitudes like 400 km. Given the dust opacity values from Mars Year

24 to 28 (e.g. Smith, 2006, 2009; Medvedev et al., 2011), this threshold might be

roughly between a global-averaged 9-micron dust optical depth, τ , of 0.5 and 1.0. In

other words, as long as dust storms become large enough, above this threshold, they
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are able to affect the entire atmosphere to such an extent that the ionosphere and

photoelectron fluxes are significantly affected.

Since we only investigated one case (MY 25 dust storm), it is hard to characterize

the nature of the link between the dust storms and photoelectron fluxes and the

ionosphere. The globally-averaged 9-micron dust optical depth threshold could lead

to many possibilities for the underlying physics. For example, on one hand, the dust

threshold could be related to the height where dust is still dense enough to significantly

alter the upper atmosphere. On the other hand, global-scale dust storms might change

the circulation or state of the lower atmosphere in ways that are transmitted to the

upper atmosphere. It is also very possible that the two scenarios are connected.

All these possibilities not only indicate the complex interactions between physical

processes, but also demand further investigation of this issue.

Both Liemohn et al. (2012) and our study have shown that dust storms’ influence

tends to be long-lived, as long as about 140−160 Earth days (approximately 70◦−84◦

Ls at Mars). This influence may be due to a long-lasting thermospheric density

increase caused by dust storms. In fact, Withers and Pratt (2013) claimed a corrected

decay time, approximately 80◦−120◦ Ls, of neutral density enhancement at altitudes

of 130-160 km. The upper atmospheric changes by dust storms can also remain

longer than the decay of the dust storms themselves, about 32◦ Ls, by analyzing the

atmospheric densities at northern latitudes (30◦−60◦N) from the MGS accelerometer

responding to the Noachis dust storm (40◦S, 20◦E). In other words, the atmospheric

densities remained elevated even though dust opacities dropped back to their pre-

storm level. However, the correction to the neutral density decay time removes the

effects of changing latitude and changing season, while the latter should be considered

in our case since in reality density did decrease when the season advanced into winter.

Hence, the fitted decay timescales (τfit), given in both Ls degrees and approximate

Earth days, are examined again here, shown in Table 1 (values from Table 1 of Withers
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Altitude (km) Direction Latitude (◦N) τfit (◦) τfit (Earth days)
130 Outbound 32.6-39.1 53.31±4.53 101.3±8.6
140 Outbound 32.2-36.4 59.65±3.95 113.3±7.5
150 Outbound 29.5-34.4 73.12±4.98 138.9±9.5
160 Outbound 27.5-32.6 82.98±6.50 157.7±12.6
130 Inbound 43.1-51.8 42.93±2.78 81.6±5.3
140 Inbound 44.2-54.5 39.64±1.72 75.3±3.3
150 Inbound 46.9-56.5 41.65±1.98 79.1±3.8
160 Inbound 49.0-58.3 50.94±3.24 96.8±6.2

Table 4.1: Atmospheric densities measured by the MGS accelerometer during the
Noachis dust storm and related properties. The latitude range reported
for each set of measurements corresponds from Ls = 224◦ to Ls = 260◦.
τfit is the decay timescale obtained by a direct exponential fit to the data,
given in both Ls degrees and approximate Earth days. The uncertainties
are 1σ. (Values from Table 1 of Withers and Pratt (2013))

and Pratt (2013)). Outbound measurements of latitudes from 30◦N to 40◦N, closer to

the place where the dust storm originated, have longer fitted decay times, above 50◦

Ls and up to 80◦ Ls at the most equator-ward latitude (corresponding to 100 − 160

Earth days), than the inbound measurements at latitudes greater than 40◦N (where

decay time is approximately 80 − 100 Earth days). The fact that an 80◦ Ls decay

of the upper atmospheric density responds to a dust storm with a peak localized

9-micron dust opacity τ ∼ 0.75 with a lower atmosphere decay time of 32◦ Ls hints

that dust storms’ effects on regional atmospheric densities can last longer than the

dust storm itself. Our study shows that the time length of the long-lasting effects of

the global dust storm with a peak globally-averaged 9-micron dust opacity τ ∼ 1.5

in MY 25, about 140 − 160 Earth days, is roughly the same time length of the dust

storm itself. In other words, the response of photoelectron fluxes lasts approximately

twice as long as the dust storm, which matches the analysis above.

Another possibility is the influence of the two persistent high-altitude dust layers,

centered at 20-30 km, high-altitude tropical dust maximum (HATDM), and 45-65 km,

upper dust maximum (UDM) (Guzewich et al., 2013). Given very few dust retrievals

above 60 km, Guzewich et al. (2013) did not exclude the possibility of the UDM being
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located at altitudes higher than 60 km, especially during the MY 25 global dust storm.

These two high-altitude dust layers may influence the neutral atmosphere, thus the

photoelectron fluxes, at altitudes higher than we originally assumed. Even though

dust storms contribute to these two dust layers, they are not usually the determinant

factor. It is possible that a change in these two layers due to a dust storm lasts

longer than the transient dust storm itself. The changes experienced by these two

layers, especially the UDM, could be transmitted into the thermosphere/ionosphere.

However, it is also important to notice that these two dust layers are a detail within

the main column of dust and therefore less likely to be a candidate causing significant

changes in the upper atmosphere.

In addition, Forbes et al. (2008) has shown that the MGS neutral densities at 400

km and exospheric temperatures are fit well (correlation coefficients of 0.96 and 0.99,

respectively) with a Mars-adjusted F10.7 and an additional seasonal term, without

any additional augmentation from a dust term. It suggests that dust storms do not

cause a long-lasting effect on the exosphere. It may explain why there is no obvious

improvement of correlation after adding time-history dust opacities at the trapped

pitch angles, which is mainly affected by the state of the neutral exosphere.

One possible error of the results of high-energy photoelectron is to use an EUV

proxy based on F10.7. Hence, another EUV proxy based on the Flare Irradiance

Spectral Model (FISM) (Chamberlin et al., 2007, 2008) with the same interpolation

from Earth to Mars is employed to repeat the procedure above. The EUV irradiance

is integrated over several bandwidths (0-10 nm, 0-50 nm and 50-100nm) to obtain the

solar EUV fluxes. It turns out that all the results are nearly identical with the EUV

proxy based on F10.7. It suggests that the difference between the proxy based on

F10.7 and FISM is small and that the possible error from interpolation from Earth

to Mars is more dominant. Regardless, even for high-energy photoelectrons, the

correlation of their fluxes and these solar EUV proxies is greater than 0.5 for source
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pitch angles, decent enough to make the case.

Another possible error may result from the contamination of spacecraft secondary

electrons at high-energy channels (Furman and Pivi , 2003). The contamination filter,

excluding anode sections 5-12 facing the spacecraft, is also applied to high-energy

channels. This new set of results are also nearly identical to those presented in

section 3 (included in the supplemental figures accompanying this paper). It implies

that the possible contamination at high-energy channels seems insignificant to our

study.

4.1.4 Summary of Observed Photoelectron Fluxes and Dust Storms

A survey was conducted of the Mars Global Surveyor electron data across all the

pitch angles (PAs) of 12 usable energy bins (11 eV−746 eV) for dayside photoelectron

observations over regions of strong crustal fields. The results have shown that the

unusual bimodal solar flux dependence of dayside photoelectron fluxes is seen in all

the pitch angles of low energies (≤ 53 eV) and some bins of higher energy channels

but is not obvious in the rest of the high energy bins. By applying time-history dust

opacities to obtain new controlling functions, the separations seen in the scatter plots

are now merged into one linear trend. In addition, quantitatively, obvious correlation

coefficient increases are also found at all pitch angles of energy channels lower than

53 eV and source regions of higher energy channels, even for 61 eV and 79 eV, two

channels that are near the knee of the photoelectron energy spectrum.

The results not only confirm that dust storms’ influence on photoelectron fluxes

are long-lasting, about 140− 160 Earth days (approximately 70◦ − 84◦ Ls at Mars),

but also imply that the changes caused by dust storms are most likely occurring in

the source region, i.e. the thermosphere/ionosphere. Furthermore, the isolation of

the global dust storm at MY 25 from the rest of the dust opacities shows that this

global-scale dust storm is entirely responsible for photoelectron fluxes’ second solar
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flux dependent trend. While it is possible that the MY 25 global dust storm was

a one-time event, based on the results of this thesis and Lillis et al. (2010b), we

hypothesize that, if the global-averaged 9-micron dust optical depth, τ , exceeds a

threshold between 0.5 to 1.0, dust storms are more likely to cause significant and/or

long-lasting changes in photoelectron fluxes and the ionosphere.

Two possible explanations as to why dust storms have such long-lived effects are

also given. Firstly, the atmospheric density decay time could be much longer than

the dust storm decay time. Such long-term elevated atmospheric densities can sig-

nificantly increase the photoelectron fluxes at MGS altitude for a very long time. In

addition, two high altitude dust layers, HATDM and UDM, might affect the ther-

mosphere/ionosphere more than transient dust storms as they are located at higher

altitudes and the changes of these two layers caused by dust storms might linger

longer after dust storms subside.

4.2 Modeling

As mentioned in Liemohn et al. (2012), the dust storms’ influences are long lived so

that the changes mostly like originate from the neutral atmosphere as the ionosphere

mostly depletes every day on the nightside at Mars. The basic idea is to use the

neutral atmospheres in Figure 3.2 as the baseline, denoted as the “normal case”, and

then to test different artificial atmospheres to compare the resultant photoelectron

fluxes at 400 km. In this section, we first show some examples of observations, then

use the model to investigate candidate atmospheres that can replicate the observation.

4.2.1 Results

Figure 4.9 shows some examples of the photoelectron fluxes observed by the MGS

MAG/ER instrument. The two clear linear trend dependences of the photoelectron

fluxes on F10.7 cm values are seen. The median red and blue fluxes are fitted with
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Figure 4.9: The photoelectron fluxes (# cm−2 eV−1 s−1 sr−1) observed by MGS
MAG/ER against time (the left column) and F10.7 cm values in sfu (the
right column) for pitch angle 0◦− 10◦ and the two rows are for 47 eV and
115 eV, respectively. The red highlights the extreme high photoelectron
fluxes for a time period during which a global dust storm occurred. The
rest of the “normal” photoelectron fluxes are colored in blue. For the
right columns, the black diamond symbols show the median photoelec-
tron fluxes and the error bars are quartile marks. The black solid lines
are linear fits to the median fluxes. The fitted slopes and Y intersections
are shown in the upper left corner. The ratios of the fitted slopes are
also given. The correlations in blue and red are for the blue and red
photoelectron fluxes and F10.7 cm values, respectively.
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linear functions and the ratio of the fitted slopes is 2.276 for the 47 eV energy channel

and 1.433 for the 115 eV channel at pitch angle 0◦-10◦. Generally, the slope ratio is

around 1.5 for energies above 100 eV and 2 − 3 for energies below 100 eV across all

the pitch angles (not shown).

Assume that the neutral atmosphere in Figure 3.2 represents the normal case

that produces the blue photoelectron fluxes in Figure 4.9, shown as the black lines in

Figure 4.10a (only CO2 and O density profiles are shown as examples). Now we test

what artificial atmospheres can result in the red fluxes, i.e. significantly higher fluxes

than the blue fluxes with the same F10.7 input. The first set of trials are to change

the atmospheric densities by simply multiplying a factor (a factor of 5 for the green

lines in Figure 4.10a), or only enhancing the neutral densities below a certain altitude

(a factor of 10 below 200 km for the red lines in Figure 4.10a). The photoelectron

fluxes resulting from these atmospheres are shown in Figure 4.10b-c. It is easy to

see that, compared to the normal case (black lines), the resultant fluxes from these

artificial atmospheres are lower than the normal case at pitch angle 0◦ but the same

or higher at pitch angle 90◦. In fact, various artificial atmospheres created through

the aforementioned three methods that we have tested fail to enhance photoelectron

fluxes at all the pitch angles.

Then, we investigate single-species-dominated atmospheres, which are given the

total density of all species of the normal case, as shown in Figure 4.10d. Here we chose

115 eV as example because for MGS MAG/ER data, 115 eV energy channel is one of

the most widely used energy channels (e.g. Brain et al., 2007; Lillis and Brain, 2013).

From Figures 4.10e and 4.10f, showing 115 eV the photoelectron fluxes at 0◦ and 90◦

pitch angles, only the CO2 dominated atmosphere generates higher fluxes than the

normal case. In contrast, the other single-species dominated atmospheres elicit the

same or smaller photoelectron fluxes at all pitch angles. To examine all the energies,

Figures 4.11a and 4.11b show the modeled omnidirectional photoelectron fluxes from
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Figure 4.10: (a) Several artificial atmospheres, CO2 (solid lines) and O (dashed lines)
as examples. The resultant photoelectron differential number fluxes (#
cm−2 eV−1 s−1 sr−1) at 400 km against F10.7 cm values in sfu at pitch
angles 0◦ (b) and 90◦ (c) for 115 eV. Different colors in (b-c) correspond
to the density profile in (a) with the same color. (d) The density profile
of each single-species-dominated atmosphere. The photoelectron differ-
ential number fluxes (# cm−2 eV−1 s−1 sr−1) at 400 km resulting from
single-species-dominated atmospheres, highlighted in different colors, as
a function of F10.7 cm values at pitch angles 0◦ (e) and 90◦ (f) for 115
eV. The black lines in (e) and (f) are fluxes for the normal case, as a
comparison.
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each single-species-dominant atmosphere and the normalization of these fluxes by the

normal case, with a Martian F10.7 of 86 sfu as input. As we can see, if O, CO, or

N2 dominates the density at all altitudes, the resultant omnidirectional photoelectron

fluxes are about the same or lower than the normal case. On the other hand, for an

O2 dominated atmosphere, the photoelectron fluxes are enhanced by a factor around

2 below 70 eV but diminished at energies above. Only a CO2 dominant atmosphere

leads to higher photoelectron fluxes across all the energies and pitch angles.

Among all these tests, the resultant photoelectron fluxes at field-aligned pitch

angles, so-called source cone pitch angles, are very insensitive to density changes but

more controlled by the composition change, i.e. the proportion of each species’ density

out of the total density. According to Banks and Nagy (1970), for a single species

atmosphere, the escaped photoelectron flux ψescape is expressed as:

ψescape =
Q(E)〈cos θ〉

2σa

{
1−R

[
1− 2σa

Q(E)〈cos θ〉
ψ−(∞)

]}
(4.1)

where Q(E) is the photoionization frequency and independent of density; 〈cos θ〉 is

the averaged pitch angle distribution; σa is the inelastic cross section of collisions

with neutrals; R is a factor that represents the portion of reflected electrons; and

ψ−(∞) is the downward photoelectron fluxes. Note that equation 4.1 is independent

of the neutral atmospheric density, which cancels out between the numerator and the

denominator terms. When ψescape=ψ
−(∞) is satisfied at a high altitude, such as the

symmetric magnetic field with the same ionospheric source at each leg used in this

study, Equation 4.1 is reduced to:

ψescape =
Q(E)〈cos θ〉

2σa
(4.2)

In Equation 4.2, ψescape is density independent and only controlled by species-

related terms, including Q(E) and σa, where Q(E) is the product of the solar ir-
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Figure 4.11: (a) The omnidirectional fluxes (# cm−2 eV−1 s−1 sr−1) from single-
species-dominated atmospheres, highlighted in different colors, against
energy, with an Martian F10.7 of 86 sfu as input. The black line is for
the normal case, as a comparison. (b) The omnidirectional fluxes nor-
malized by the normal case. (c) The ratio of the photoionization cross
section and the inelastic cross section for different species, highlighted
in different colors.
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radiance and the photoionization cross section. In other words, for a single species

atmosphere, ψescape is proportional to the ratio of this species’ photoionization cross

section and inelastic cross section. This equation, however, is based on many as-

sumptions, such as an isothermal atmosphere, ignoring the attenuation of the solar

irradiance by the atmosphere at all altitudes. To verify it, we have plotted out the ra-

tio of each species’ photoionization cross section and inelastic collisional cross section,

as shown in Figure 4.11c. Comparing Figure 4.11b and 4.11c, the normalized omnidi-

rectional fluxes for the five single-species-dominated atmospheres are organized in the

same order as the cross section ratio, which means our model results are consistent

with the equations from Banks and Nagy (1970).

Therefore, the dust-altered atmosphere likely consists of higher proportions of

species with a high photoionization and inelastic cross section ratio, compared to the

normal atmosphere, which leads to the observed extremely high photoelectron fluxes.

As this extreme photoelectron flux enhancement occurred to a wide range of energy

and pitch angle, out of five species we have tested, CO2 is the best candidate.

Nevertheless, Equation 4.2, which is derived from a two-stream model, does over-

simplify the role that density plays in photoelectron fluxes. Taking the CO2 domi-

nated atmosphere as an example, we scaled the density (green line in Figure 4.12a)

shown in Figure 4.10d by an extreme factor of 0.001 and of 1000, highlighted in

blue and red in Figure 4.12a, respectively, with the normal case (black line) as a

comparison. Note that in Figure 4.12b, the red, green and blue lines are all on top

of each other and in Figure 4.12c, the blue line coincides with the x-axis. Despite

the six orders of difference in CO2 density, Figure 4.12b and 4.12c show that the

resultant photoelectron fluxes are almost the same at pitch angle near 0◦ but sig-

nificantly differ at more perpendicular pitch angles. On one hand, this experiment

again demonstrates how insensitive to density the photoelectron fluxes at the source

cone pitch angles are, like Equation 4.2 predicts. On the other hand, the higher
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the density, the higher the photoelectron fluxes are at pitch angles near 90◦. For a

closed magnetic field with sources at lower altitudes of stronger magnetic strengths,

to conserve the first adiabatic invariant, an electron’ pitch angle becomes more field-

aligned when it transports to higher altitudes as the magnetic strength decreases. As

a result, photoelectrons have to be scattered into perpendicular pitch angles at high

altitudes because they are not collisionlessly connected to the source region. When

the CO2 density increases, the high altitude sources become important, resulting in

a wider source cone pitch angle range. With also increased collisions due to the den-

sity enhancement, photoelectrons are much easier to be scattered into perpendicular

pitch angles. Thus, density is a determining factor of the photoelectron fluxes at

perpendicular pitch angles.

4.2.2 Discussion of Simulation Efforts on High-Altitude Photoelectrons

and Dust Storms

Studies have shown that the Martian global dust storm occurred in 2001 has a

long-term influence on high-altitude photoelectron fluxes, most likely because the

dust altered the neutral atmosphere in a significant way in terms of photoelectron

production and loss (Liemohn et al., 2012). This study provides a detailed investiga-

tion of the effects that thermospheric composition and density have on high-altitude

photoelectron fluxes by using the STET model to determine candidate atmospheres

that can replicate observations from the MGS MAG/ER instrument.

Various attempts to change all species as a whole fail to significantly increase the

modeled photoelectron fluxes at all pitch angles. Instead, the single-species-dominant

atmosphere leads to very different photoelectron fluxes at 400 km. This is because the

fluxes at high altitudes, above the main source region of photoelectrons to be exact,

at source pitch angles are very insensitive towards density but instead are determined

by the neutral species’ photoionization cross section and the inelastic cross section. It
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is actually quite understandable. A density enhancement means not only an increased

source but also a higher loss due to collisions. For a single species atmosphere, the

density in the source term is cancelled out by that in the loss term so that density

does not matter in terms of photoelectron fluxes at source cone pitch angles. In the

meanwhile, the source to loss ratio is determined by the ratio of the photoionization

cross section and the inelastic cross section, characteristic quantities for each species.

Therefore, for a multi-species atmosphere, to achieve the observed extra enhancement

of photoelectron fluxes across a wide range of energy and pitch angle, the species with

a larger ratio of the photoionization cross section and inelastic cross section, e.g. CO2,

needs to be preferentially increased as a proportion of the total density.

Through the examination of five species, the STET model results suggest that

CO2 is the only species here that can increase photoelectron fluxes at all energies.

While O2 is effective at increasing fluxes at lower energies, it is a very minor species

of the Martian atmosphere, usually more than two orders of magnitude smaller than

the dominant species below 400 km, and therefore unlikely contributes significantly to

photoelectrons’ productions and loses. Thus, CO2 is the most reasonable candidate

here. As dust absorbs the solar irradiance at low altitudes, the scale height increases

due to the temperature increase. It can cause the altitude of the homopause to shift

higher, therefore so does the altitude at which the dominant species changes from

CO2 to O. Thus far, CO2 is known as the dominant species roughly below 200 km

so it may seem confusing to ask for a CO2 dominant atmosphere (Nier and McElroy ,

1977). However, there exists a critical altitude range for photoelectrons (e.g. Banks

and Nagy , 1970; Butler and Stolarski , 1978; Mantas and Hanson, 1979), only above

which photoelectrons can transport to high altitudes, such as MGS mapping phase

altitudes, and below which photoelectrons lose energy locally. The altitude range of

this photoelectron exobase is from 160 km to 170 km for the baseline atmosphere used

here. Thus, this study suggests that CO2 is the dominant species above this altitude
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range, which is achievable. For example, the Mars-Global Ionosphere and Thermo-

sphere Model (M-GITM) predicts that the crossing altitude from CO2 dominating to

O dominating the neutral density shifts from 190 km (for solar minimum, aphelion

conditions) to ∼250 km (for solar maximum, perihelion conditions) (Bougher et al.,

2015). With the extra heating to the atmosphere caused by the global dust storm,

CO2 can dominate a much larger altitude range than usual.

However, as Figure 4.10e and 4.10f suggests, the slope ratio of the photoelectron

fluxes compared between the CO2 dominant atmosphere and the normal case is always

below 1.5 at field-aligned pitch angles, lower than the ratio (> 1.5) obtained from the

observations. A possible explanation is that the baseline atmosphere used here might

have a higher CO2 concentration in the source altitudes of photoelectrons compared to

the average Martian atmosphere. Martian neutral density measurements, especially

composition measurements, are rather sparse. Because the high-altitude photoelec-

tron fluxes are quite sensitive to composition changes, to more quantitatively match

the observations requires a better quantification of the Martian upper atmosphere

density profiles of the main species. The neutral composition measurements from

the Neutral Gas and Ion Mass Spectrometer (NGIMS) instrument onboard Mars At-

mosphere and Volatile EvolutioN (MAVEN) (Jakosky et al., 2015) should provide

profound insights to this issue. Despite the fact that the modeled photoelectron flux

enhancement caused by a CO2 dominant atmosphere is smaller compared to obser-

vations, this is the only solution among various tested artificial atmospheres that can

qualitatively explain the observation. While there could be other explanations for the

observations of enhanced photoelectrons during and after the very large dust storm of

2001, this study examined neutral atmosphere composition changes and found that

only one possibility, enhanced CO2, leads to increases high-altitude photoelectron

fluxes at all energies and pitch angles.

Finally, even though total density makes little difference to photoelectron fluxes
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at source cone pitch angles, our model predicts that it significantly alters the high-

altitude fluxes at perpendicular pitch angles. This finding also suggests the advantages

of a multi-stream approach such as the STET model.

To briefly summarize, to simulate extremely high photoelectron fluxes observed

by MGS during and after a global dust storm, instead of simply increasing the total

density, the most effective way is to enlarge the proportion of species with higher pho-

toionization cross section and inelastic cross section ratio. In this study, we provide

one very likely candidate, CO2. In other words, the global dust storm has likely led to

CO2 becoming the dominant species at a much larger altitude range than usual and for

a much longer time than expected. We also do not exclude the possibility, however,

of other mechanisms other than neutral atmosphere composition changes. On the

other hand, as Equation 4.2 suggests, the high-altitude photoelectron fluxes depend

on only a very few parameters and can be used to validate solar EUV models, such as

the Flare Irradiance Spectral Model (FISM) (Chamberlin et al., 2007, 2008) and the

Heliospheric Environment Solar Spectral Radiation (HESSR) model (Fontenla et al.,

2009, 2014). In addition, it raises the point to monitor thermospheric composition

changes through high-altitude photoelectron observations, which could be very use-

ful, considering very limited planetary neutral density/composition measurements.

Also, these findings and implications can be carefully applied or adapted to planets

with significant vertical superthermal electron transport along magnetic fields, such

as Earth, Saturn, and Jupiter.
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CHAPTER V

Photoelectrons and Solar Zenith Angle

Electron transport can be significant when magnetic fields are present, such as over

the Martian strong crustal field regions. Then, the high-altitude electron flux should

be the integral of photoelectrons produced from all altitudes below. Because electron

fluxes decrease exponentially with altitude, the photoelectron fluxes measured at high

altitudes are supposed to be dominated by the production region at lower altitudes,

where it is Chapman-like and has a strong solar zenith angle (SZA) dependence. At

Mars, photoelectron fluxes over the crustal field regions were presumed to be SZA de-

pendent. In this chapter, we examine the relationship of high-altitude photoelectron

fluxes and solar zenith angle by analyzing the measured photoelectron fluxes from the

magnetometer/electron reflectometer (MAG/ER) instrument on board Mars Global

Surveyor, accompanied with further exploration with a superthermal electron trans-

port model (STET).

5.1 SZA’s Influence on Observed High-Altitude Photoelec-

tron Fluxes

The relation between the observed high-altitude photoelectron fluxes and SZA is

investigated through two methods. The first one is to compare the correlation of the

photoelectron fluxes and the EUV proxy with or without SZA factored in. The other
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is to examine, for a particular solar irradiance level, indicated by F10.7 cm values,

how the photoelectron fluxes change with SZA.

5.1.1 Correlation of Photoelectron Fluxes and EUV proxy

Trantham et al. (2011) investigated the main controlling factors of 27 eV photo-

electron fluxes within pitch angles (PA) 80◦-90◦ observed by MGS and concluded that

their local EUV proxy is the best organizer of photoelectron fluxes. This local EUV

proxy is the ratio of the solar irradiance proxy, denoted as ‘I0’, and a Chapman func-

tion (Smith and Smith, 1972) to take into account SZA’s effect, i.e. the attenuation of

the solar irradiance because of a limb path. The solar irradiance at Mars is calculated

according to the method described in Mitchell et al. (2001). The Chapman function,

Ch(Rg, SZA), is a function of SZA and Rg=R/H, where R is the distance from the

center of Mars and H is the scale height. This function resembles 1/cos(SZA) except

for very high SZAs. The local EUV proxy is therefore I = I0/Ch(Rg, SZA), which

is the resultant solar irradiance spectrum from F10.7 cm solar flux measurements

at Earth compiled by NOAA being scaled to Mars according to the planet-to-Sun

distances as well as the Earth-Sun-Mars angle.

Notice that the photoelectron flux is proportional to I, in contrast to the thermal

electron density predicted by Chapman theory correlated to
√
I. The square root

operator originates from the assumption that for thermal plasma, the production rate

balances with the recombination rate (main loss). Such equilibrium does not apply to

superthermal electrons as the recombination loss is trivial compared to other losses

such as collisions with neutral particles.

Figure 5.1 shows an example of photoelectron fluxes of the 115 eV energy channel

(a widely used energy channel (e.g. Brain et al., 2007; Lillis and Brain, 2013)) at PA

20◦-30◦ as a function of time in Earth year (5.1a), the EUV local proxy I (5.1b), and

F10.7 values (in sfu, I0) only (5.1c). The photoelectron fluxes highlighted in yellow
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Figure 5.1: (a) The photoelectron fluxes (# cm−2 eV−1 s−1 sr−1) of the energy channel
115 eV at pitch angle (PA) 20◦-30◦ observed by MGS MAG/ER against
time in Earth year. (b) The same photoelectron fluxes (# cm−2 eV−1

s−1 sr−1) in (a) against EUV proxy, i.e. F10.7 ×Ch(Rg, SZA). (b) The
same photoelectron fluxes (# cm−2 eV−1 s−1 sr−1) in (a) against F10.7
only. In (b) and (c), the correlation of the blue fluxes and the EUV
proxy and F10.7, respectively, is shown in the upper left corner. (d) The
correlation of blue photoelectron fluxes and F10.7 only, as a function of PA
and energy. (e) The Pearson correlation coefficient of blue photoelectron
fluxes and the EUV proxy. (f) The difference of the correlation coefficient
of (d) and (e) (d minus e).
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are for a time period that a global dust storm occurred and are much higher than the

rest of the fluxes, colored in blue, even with the same EUV proxy or F10.7 values, as

shown in 5.1b and 5.1c. The specialness of these yellow fluxes has been investigated by

Liemohn et al. (2012). Hence, here focuses only on the blue photoelectron fluxes. The

correlations of these blue fluxes against the local EUV proxy and F10.7 values only are

0.5 and 0.65, as shown in Figure 5.1b and 5.1c, respectively. Such a 0.15 enhancement

of correlation is statistically significant because the correlation is calculated from

hundreds of thousands of data points. Therefore, the photoelectron flux correlates

better with the solar irradiance without SZA factored in.

To examine the correlations for various energies and pitch angles, Figure 5.1d

and 5.1e show the correlation of the blue photoelectron fluxes and the Mars-adjusted

F10.7 values only and the local EUV proxy, respectively, as a function of energy and

PA. Figure 5.1f shows the difference of Figure 5.1d and 5.1e. A general improvement

of correlation, for more field-aligned pitch angles in particular, is seen for energy above

70 eV, up to 0.30, with SZA excluded. For energy below 70 eV, the exclusion of SZA

leads to lower correlation. In other words, high-energy photoelectron fluxes observed

by MGS tend to be not affected by SZA while SZA seems to partially control the

low-energy fluxes.

5.1.2 Observed Photoelectron Fluxes against SZA

The other method is to directly examine how the photoelectron fluxes change with

SZA. In Figure 5.2, an orbit on Oct. 16th, 2000 is chosen as an example. From top

to bottom, each panel shows north latitude, east longitude, magnetic field strength,

magnetic elevation angle (relative to the horizontal plane), SZA, and photoelectron

fluxes at pitch angle 20◦−30◦ for four energy channels, 313 eV, 115 eV, 47 eV, and 20

eV, against time. As we can see, instead of decreasing dramatically as predicted by

the Chapman function, the flux is rather constant for SZA 90◦− 60◦. Quantitatively,
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the root mean square errors (RMSEs) to the mean electron flux and also to the best-

fitted Chapman function are calculated and shown at the upper left and lower right

corners, respectively. The RMSEs to the mean value are 2-3 times smaller than that

to the Chapman function for all the energy channels. This implies that a straight-

line fit is substantially better than the SZA-dependent Chapman function fit to these

data. Then, in addition to this case study, we present another statistical examination

of the relation between the photoelectron flux and SZA.

The blue fluxes in Figure 5.1a are divided into eight Mars-adjusted F10.7 levels

and eight SZA bins. Then for the same F10.7 level, the median flux of each SZA bin

is normalized by the maximum of these median fluxes. Normalized median photoelec-

tron fluxes at pitch angles 20◦-30◦ against SZA are shown in Figure 5.3. with different

colors highlighting different F10.7 levels. The four rows, from top to bottom, are for

energy channels 313 eV, 115 eV, 47 eV, and 20 eV, respectively. The left column

shows the normalized median flux for each F10.7 level. For the right column, three

F10.7 levels are selected, highlighted in different colors and line styles, and for each

color, the three lines mark the quartile values for the normalized flux. The photo-

electron fluxes vary within 80% from the maxima for energies above 30 eV for all the

pitch angles, as shown in Figure 5.3a-5.3c. Only the energy channel below 30 eV is a

more systematic flux decrease at high SZAs seen, e.g. in Figure 5.3d. Similarly, the

calculated RMSEs to the mean flux are much smaller, by a factor of 2 to more than

10, than that to the fitted Chapman function, except for the 20 eV energy channel

with F10.7 = 43 sfu.

Again, an independence of the photoelectron fluxes on SZA is seen for energy above

30 eV. In contrast, the photoelectron flux does decrease significantly with increasing

SZA below 30 eV. This finding is consistent with the other method, even though the

energy cutoff differs.
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Figure 5.2: One orbit example: MGS data for Oct. 16th, 2000, the x-axis is the time
in minute, starting from UT 17:27:50. From top to the bottom, shown are,
MGS location over Mars in latitude (degree); MGS location over Mars in
east longitude (degree); the magnitude of the magnetic fields (nT); the
elevation angle of the magnetic fields (degree); MGS solar zenith angle
(degree); differential number flux (# eV−1 cm−2 s−1 sr−1) for 313 eV, 115
eV, 47 eV, and 20 eV four energy channels at PA 20◦ − 30◦, respectively.
The dotted lines in the last four panels mark the mean flux and the dashed
lines are for the best-fitted Chapman function. The standard errors to
the mean photoelectron flux and the best-fitted Chapman function are
shown at the upper left and lower right corners, respectively.

116



Normalized Median flux at PA 20-30 deg

30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fl
u

x

30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fl
u

x

F10.7= 30
F10.7= 43
F10.7= 56
F10.7= 69

F10.7= 82

F10.7= 96

F10.7=109

F10.7=122

30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fl
u

x

30 40 50 60 70 80
SZA (deg)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fl
u

x

(a) 313 eV

(b) 115 eV

(c) 47 eV

(d) 20 eV

Normalized Median flux at PA 20

30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fl
u

x

F10.7= 43 Error(Const)= 0.16; Error(Chap)= 0.43

F10.7= 69 Error(Const)= 0.04; Error(Chap)= 0.42

F10.7= 96 Error(Const)= 0.04; Error(Chap)= 0.42

30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fl
u

x

F10.7= 43 Error(Const)= 0.09; Error(Chap)= 0.39

F10.7= 69 Error(Const)= 0.03; Error(Chap)= 0.44

F10.7= 96 Error(Const)= 0.03; Error(Chap)= 0.42

30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fl
u

x

F10.7= 43 Error(Const)= 0.12; Error(Chap)= 0.26

F10.7= 69 Error(Const)= 0.03; Error(Chap)= 0.43

F10.7= 96 Error(Const)= 0.07; Error(Chap)= 0.39

30 40 50 60 70 80
SZA (deg)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fl
u

x

F10.7= 43 Error(Const)= 0.19; Error(Chap)= 0.16

F10.7= 69 Error(Const)= 0.11; Error(Chap)= 0.29

F10.7= 96 Error(Const)= 0.17; Error(Chap)= 0.33

(e) 313 eV

(f ) 115 eV

(g) 47 eV

(h) 20 eV

75%

50%

25%

75%

50%

25%

75%

50%

25%

75%

50%

25%

F10.7= 30
F10.7= 43
F10.7= 56
F10.7= 69

F10.7= 82

F10.7= 96

F10.7=109

F10.7=122

F10.7= 30
F10.7= 43
F10.7= 56
F10.7= 69

F10.7= 82

F10.7= 96

F10.7=109

F10.7=122

F10.7= 30
F10.7= 43
F10.7= 56
F10.7= 69

F10.7= 82

F10.7= 96

F10.7=109

F10.7=122

Figure 5.3: Normalized median photoelectron flux at pitch angles 20◦-30◦ against
SZA with colors showing different F10.7 levels. For each F10.7 level, the
median fluxes are normalized by the maximum of all the SZA bins. The
four rows, from top to bottom, are for energy channels 313 eV, 115 eV,
47 eV, and 20 eV, respectively. The left column shows the normalized
median flux for each F10.7 level. For the right column, three F10.7 levels
are selected, highlighted in different colors and line styles, and for each
color, three lines mark the quartile values for normalized flux.
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5.2 Simulations

Solar zenith angle affects the photoelectron fluxes in two ways. One is that the

attenuation of the solar irradiance is larger with increasing SZA due to the slant

path. The other is that the atmospheric densities and temperatures change with

SZA. Hence, in this section, we will first use the same atmosphere (the atmosphere at

SZA=0◦, as shown in Figure 5.4) to simulate at ten SZAs, from 0◦ to 90◦. Then, we

will run STET with two extra atmospheres, at SZA=60◦ and at SZA=75◦, as shown

in Figure 5.4, to discuss how different atmospheres influence the results.

5.2.1 Superthermal Electron Exobase

The MGS observations are at 400 km and well above the main region of ionosphere.

Various model efforts for different planets (e.g. Banks and Nagy , 1970; Butler and Sto-

larski , 1978; Mantas and Hanson, 1979) pointed out that there exists a critical alti-

tude range for photoelectrons, only above which photoelectrons can transport/escape

instead of losing energy locally. The measurements over the strong crustal fields from

the MAG/ER instrument should be mainly the escaped population. To understand

the relationship between these high-altitude electron samples and SZA, it is necessary

to determine this altitude range.

Banks and Nagy (1970) define the photoelectron mean free path λ as:

λ =
〈cos θ〉 sin I

n
√
σa(σa + 2peσe)

; (5.1)

where 〈cos θ〉 is the averaged pitch angle distribution; I is the dip angle of the magnetic

field line, relative to the horizontal plane; n is the neutral density; σa and σe are

the inelastic and elastic collision cross sections with neutrals, respectively; pe is the

backscatter probability for the elastic collisions. When λ� H, where H is the scale

height, there is no net transport and photoelectrons lose energy locally; while above
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the altitude where λ ' H, the photoelectron transport becomes significant. Here,

we generalize this formula to the multi-species case by changing the denominator in

equation 5.1 to
∑
i

ni
√
σai(σai + 2peiσei), where i indicates ith neutral specie. For our

calculation, I is near 90◦ below 200 km, and 〈cos θ〉 = 0.5, as it ranges from 3/8 and

9/16 (Banks and Nagy , 1970). The photoelectron mean free path λ against altitude,

along with the neutral scale height H (black dashed line), is shown in Figure 5.5a.

The altitudes at which λ = H for different energies range from 160 to 165 km for

the MTGCM atmosphere at SZA=0◦ and from 150 to 155 km for the MTGCM

atmosphere at SZA=75◦. For convenience, we define the “photoelectron exobase” as

the altitude of λ = H. However, it is important to note that it is not immediately

collisionless above this exobase. Instead, there is a transition region where transport

dominates but collisions still happen. The photoelectron exobase is at lower altitudes

than the exobase of the neutral atmosphere, which is located above 200 km, because

these high-energy electron’ collision cross sections are much smaller than those for

neutral-neutral particles.

Another approach to determine this photoelectron exobase is to calculate an “op-

tical depth” τ for a superthermal electron moving downward from the top of the

upper atmosphere:

τ =

zmax∫
z(s)

∑
j

njpjσj ds (5.2)

where σj can be the cross section of inelastic and elastic collisions with the jth neu-

tral species, as well as the Coulomb collision cross sections with electrons; nj is the

corresponding density; pj is the backscatter probability for the elastic collision with

neutrals and 1 for other collisions. Also, in equation 5.2, s is the distance along the

field line. The electron-ion collision term is neglected as the effect is small compared

to electron-neutral and electron-electron collisions. Note that τ is a unitless integral
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Figure 5.5: λ (a) and τ (b) against altitude. Different colors are for different energies.
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same atmosphere, against altitude for 100 eV. Different colors highlight
different SZAs. The horizontal dashed line marks the exobase. (d) shows
the photoelectron production rate (# cm−3 eV−1 s−1 sr−1) from the three
MTGCM atmospheres (SZA=0◦, 60◦, 75◦), against altitude for 100 eV.
The dashed lines show the exobases for three atmospheres. (e) Integrated
production rate (# cm−3 eV−1 s−1 sr−1) above the exobase against SZA
for different energies. The solid lines are for the ten runs with the same
atmosphere and the symbols are for the three atmospheres. (f) Integrated
production rate normalized by the production rate at SZA=0◦ against
SZA for different energies, the same format as (e).
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from the highest altitude zmax of the field line to a certain altitude z(s) and stands

for the probability of one photoelectron at z(s) not able to transport from the top of

field line to z(s), or vice verse, from z(s) to the top of the field line. In other words,

only when τ ≤ 1, photoelectrons can be transported to high altitudes, otherwise

they are lost locally or to nearby altitudes. Figure 5.5b shows τ of different energies

against altitude. τ = 1 happens at the 160-165 km altitude range for the MTGCM

atmosphere at SZA=0◦ and at the 147-152 km range for the MTGCM atmosphere

at SZA=75◦, which is consistent with the previous method. Similarly, Lillis et al.

(2008) determined that the scattering probability for 191 eV precipitating electrons

at PA < 24◦ reaches 1 at ∼ 160 km, which also supports our finding.

The STET model was first run at ten SZAs, from 0◦ to 90◦, with the same field line

and the MTGCM atmosphere at SZA=0◦. The calculated photoionization production

rate against altitude at different SZAs for 100 eV is shown in Figure 5.5c. The peak

production rate decreases and the peak altitude increases as SZA increases, as the

Chapman theory predicted. However, above the photoelectron exobase, marked by

the dashed black line, the production rates are about the same for all the SZAs. Then,

we run the STET model at SZA=60◦ and 75 ◦ with the corresponding atmospheres

from MTGCM. The photoionization rates against altitude for the three SZAs are

shown in Figure 5.5d and the dashed lines are the calculated exobases. While the

production rate decreases with increasing SZA, as expected, the exobase moves to

lower altitudes, because the atmosphere is less dense.

To further demonstrate the effect of this photoelectron exobase, we integrated

the photoionization production rate from the local exobase to the highest altitude

zmax of the field line for each SZA, as shown in Figure 5.5e. The solid lines are for

ten runs with the same atmosphere while the triangle symbols are for STET runs at

different SZAs with the corresponding atmospheres. In addition, Figure 5.5f shows

the normalization of this photoionization production rate integral against SZA, by the
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values at SZA=0◦. For the ten runs with the same atmosphere, an almost constant

photoionization production rate integral, with a slight decrease at high SZAs, is seen,

while for the runs with different atmospheres, the production rate integral increases

slightly at higher SZAs, as the exobase altitude decreases. In other words, in both

sets of the simulations, with or without changing atmospheres, the photoionization

production rate integral is fairly constant across all the SZAs.

5.2.2 Modeled Photoelectron Fluxes against SZA

As a result of the nearly constant production rate integral above the exobase for

all the SZAs, Figures 5.6a-5.6d show the photoelectron fluxes at PA=0◦ at different

altitudes against SZA for 20 eV, 50 eV, 100 eV, and 190 eV, respectively. Again, the

solid lines are for ten runs with the same atmosphere and the triangle symbols for

STET runs at different SZAs with the corresponding atmospheres.

For the runs with the same atmosphere, the photoelectron fluxes decrease as SZA

increases at 130 km. For comparison, the dotted lines show the fluxes at 130 km di-

vided by the Chapman function, Ch(Rg, SZA). The disagreement between the mod-

eled fluxes at SZA=90◦ at 130 km (black solid line) and the Chapman function scaling

is because this scaling is for peak densities but a particular altitude. For altitudes

above 150 km, the photoelectron fluxes are almost constant across all SZAs, with a

slight decrease at SZA=90◦, resembling the production rate integral in Figure 5.5e

and 5.5f. For the runs with different atmospheres, the fluxes are mostly constant with

respect to SZA for all the altitudes, as the exobase altitude moves lower for higher

SZA.

Therefore, the modeled photoelectron fluxes also show independence on the solar

zenith angle due to the quite constant production rate integral above the exobase for

all the SZAs. This model finding is consistent with the observations from section 5.1.
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Figure 5.6: (a-d) The flux (# cm−2 eV−1 s−1 sr−1) at PA 0 against SZA at different
altitudes, highlighted in different colors, for 20 eV (a), 50 eV (b), 100 eV
(c), and 190 eV (d), with the dotted line showing fluxes scaled by the
Chapman function.
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5.3 Discussion of High-Altitude Photoelectrons and SZA

Photoelectron fluxes over the strong crustal field regions at Mars were assumed

to change with solar zenith angle because they are directly connected to the source

region below 200 km altitude. If part of the photoelectrons produced at the peak

altitude transport to high altitudes along closed magnetic fields, then the photoelec-

tron fluxes should scale, though maybe not linearly, with the peak values. However,

through our examination of the MGS MAG/ER data over the strong crustal fields,

the high-altitude photoelectron fluxes are better organized solely by the solar irra-

diance, without SZA factored in, especially for the high energies. Furthermore, in

addition to a case study as an example, the observed median photoelectron fluxes

at different SZAs also change mostly within 80% of the maxima for the same Mars-

adjusted F10.7 cm level. Plus, through the calculation of root mean square errors,

the observed photoelectron flux is better described by a constant value against SZA

rather than a Chapman function best-fitted curve, indicating an independence.

The STET model is able to replicate the independence of high-altitude photo-

electron fluxes on SZA. Below the photoelectron exobase, while the peak fluxes vary

roughly as the inverse of Ch(Rg, SZA), these photoelectrons are lost locally due to

collisions. Only above this exobase, locally and freshly produced photoelectrons are

able to transport to high altitudes. It was found that the photoelectron exobase is

located between 145 and 165 km altitude, which is below the neutral atmosphere

exobase because of the smaller collision cross section of these fast-moving particles.

In addition, this value is in reasonable agreement with Mantas and Hanson (1979),

who found that photoelectron transport starts to be significant in the 130-150 km

altitude range. The analysis of the photoionization production rate from the simu-

lation indicates that, above the photoelectron exobase, the production rate integral

barely changes with SZA. As a result, high-altitude photoelectron fluxes are rather

independent of the changing of the peak values when the peak altitude is several scale
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heights below the photoelectron exobase.

This result does not change when different atmospheres are used. In this study, we

have tested three different atmospheres, taking into account the location difference.

While the production rate changes with different atmospheres (Figure 5.5d), the

production rate integral above the exobase, however, remains the same as the exobase

varies in altitude for different atmospheres (Figure 5.5e and 5.5f). On the other

hand, the observations are a collection of 7 years of data, spanning all the seasons

and different solar irradiance strengths. The statistical approach of section 5.1.1

and 5.1.2 should average over the variations of the seasons and solar cycle changes.

Also, the median fluxes are independent of SZA for all the observed F10.7 cm levels,

which implies that this finding is applicable to different solar irradiance fluxes and

that the atmospheres we used are appropriate and adequate.

Furthermore, take a closer examination of the observational results of high-energy

photoelectrons in Figure 5.1f. The enhanced correlation is more prominent for more

field-aligned pitch angles than perpendicular pitch angles. For pitch angles near 90◦,

the photoelectron fluxes observed at 400 km are mostly scattered into these pitch an-

gles, as electrons’ perpendicular velocities decrease with weakening magnetic strength,

to conserve the first adiabatic invariant. In other words, these fluxes rely on not only

the source but also the scattering processes at high altitudes, such as collisions with

neutral particles or thermal electrons. This comparison of field-aligned and perpen-

dicular pitch angles indicates a source change, consistent with our explanation. Also,

the higher the energy, the more pitch angle bins show an increase in the correlation

coefficient. The collision cross sections are lower with increasing energy and therefore

photoelectron fluxes are less affected by collision processes but more controlled by the

source changes.

The modeled low-energy photoelectron fluxes remain quite constant through all

the SZAs, with a slight drop of fluxes at SZA∼ 90◦, at high altitudes. In contrast, the
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photoelectron fluxes observed by the MGS spacecraft show some dependence on SZA

for low energies, even though the energy cutoff is different for the two approaches

in section 5.1. From our model results, the peak altitudes are generally closer to

the exobase for low energies than high energies (not shown). It is also suggested in

Figure 5.5f, where the normalized production rate decreases more at high SZA for

lower energies. It is possible that, in reality, the photoelectron exobase is systemati-

cally closer to the peak altitudes than what our model predicts. In such a case, the

low-energy photoelectrons will be partially controlled by SZA. Another possibility

of the discrepancy between the observation and the model results is that the sources

and losses for low-energy photoelectrons are more complicated than the high energies.

Cascading and secondary electrons are also important sources while the loss due to

Coulomb collisions is more prominent at the low energy range. Therefore, the low-

energy photoelectron fluxes depend on more parameters, such as the thermal electron

density profile, so that it is harder to replicate by the simple model setup. Finally, the

quality of the electron data for low energy channels from the MGS spacecraft might

be not very good so that the findings of the low energy channels are questionable.
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CHAPTER VI

Solar Wind Electron Precipitation

In this chapter, we take a statistical approach to identify solar-wind/magnetosheath

electrons and ionospheric photoelectrons and determine the occurrence rate of dayside

solar-wind/magnetosheath electron precipitation over strong crustal fields at Mars.

In addition, we investigate the dependence of the occurrence rate on the magnetic

elevation angle, as more vertical magnetic field lines have a higher chance to be open

at MGS altitudes. The occurrence rate also depends on the solar zenith angle (SZA),

as the normal solar wind dynamic pressure decreases from sub-solar point to termina-

tor. Furthermore, although solar photon absorption is certainly the largest source of

energy input to the Martian upper atmosphere, quantification of how superthermal

electrons’ energy input compares to solar input has not been done. This new approach

also allows us to quantify the energy flux deposition of solar-wind/magnetosheath

electrons into the dayside Martian upper atmosphere and compare it with solar flux

input.

6.1 Occurrence Rate

6.1.1 Precipitating Solar Wind Electron Occurrence Rate Calculation

In order to obtain the ratio of the two populations and the cutoff to separate

them, the bimodal distribution is treated as the addition of two Gaussian distribu-
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tions. Even though some distributions of the left population, i.e. solar wind electrons,

are not quite Gaussian-like, this Gaussian approximation is convenient and still rea-

sonable. A new function that consists of two Gaussian functions is fitted to the

bimodal distribution, with three to-be-fitted variables (the amplitude, the position

of the peak, and the standard deviation) to each function, as shown in Figure 6.1.

The basic idea of this fitting is to compute a non-linear least squares fit to this new

function. The three columns of Figure 6.1 show the histogram plots of the flux ratios

between the energy bins centered at 27 eV and 115 eV, 36 eV and 115 eV, 47 eV and

115 eV, respectively. Three energy pairs are examined here to show if their results are

similar, therefore if this method delivers reliable performance. The four rows are for

four pitch angles: 40◦− 50◦, 80◦− 90◦, 150◦− 160◦ and 170◦− 180◦. The red lines are

the fits to the distributions. The red bars at the top of each panel of Figure 6.1 show

the mean flux ratio, i.e. where the fitted curve peaks, and the standard deviation for

each fitted Gaussian distribution. The far apart red bars for two distributions suggest

that the bimodal distribution indeed consists of two populations.

Another significant and meaningful quantity that can be extracted from Figure 6.1

is the occurrence rate of the solar wind electrons’ precipitation into the Martian

upper atmosphere through cusps, which essentially is the percentage of the number

of identified solar wind electron measurements out of the total measurements. Here,

the ratio of the number of the measurements of the two populations is first calculated,

given in the left upper corner of each plot in Figure 6.1. It is obtained by integrating

each fitted Gaussian function from 0 to positive infinity (the negative part is neglected

because of the lack of physical meaning) and then acquire the ratio of the two obtained

integrals. Figure 6.2 shows how this ratio changes with pitch angle based on the

distributions of three pairs of the flux ratios in Figure 6.1, highlighted by different

colors. The three lines share the same trend: the plunging of the ratio at more field-

aligned upward PAs, 0◦ − 40◦, due to the lack of solar wind electrons; then the near

129



0 50 100 150 200

0

1000

2000

3000

4000

Ratio =    0.10

0 50 100 150 200

0

1000

2000

3000 Ratio =     0.14

0 100 200 300

0

1000

2000

3000 Ratio =     0.12

0 100 200 300

0

200

400

600

800

1000

1200

1400

Ratio =    0.10

0 20 40 60 80 100

0

1000

2000

3000

4000 Ratio =     0.15

0 20 40 60 80 100

0

1000

2000

3000

4000

Ratio =     0.20

0 50 100 150

0

1000

2000

3000

4000

5000

Ratio =     0.16

0 50 100 150

0

500

1000

1500
Ratio =     0.14

0 10 20 30 40 50 60

0

1000

2000

3000

4000

5000

Ratio =     0.15

0 10 20 30 40 50 60

0

1000

2000

3000

4000

Ratio =     0.20

0 20 40 60 80

0

1000

2000

3000

4000

5000

Ratio =     0.17

0 20 40 60 80

0

500

1000

1500

2000
Ratio =     0.17

Flux(27 eV)/Flux(115 eV)

Modified PA: 

  40-50 deg

#
 o

f 
d

a
ta

 s
a

m
p

le
s

Flux(36 eV)/Flux(115 eV) Flux(47 eV)/Flux(115 eV)

Modified PA: 

 80-90 deg

Modified PA: 

150-160 deg

Modified PA: 

170-180 deg

#
 o

f 
d

a
ta

 s
a

m
p

le
s

#
 o

f 
d

a
ta

 s
a

m
p

le
s

#
 o

f 
d

a
ta

 s
a

m
p

le
s

Flux Ratio Flux Ratio Flux Ratio

Figure 6.1: The three columns are the histogram plots of the flux ratios of three
energy pair: 27 eV & 115 eV, 36 eV & 115 eV, and 47 eV & 115 eV.
The four rows are for four pitch angles, from top to bottom: 40◦ − 50◦,
80◦ − 90◦, 150◦ − 160◦ and 170◦ − 180◦. The red lines are fittings to each
plot. Also, the sample ratio of the two populations are also shown at the
upper left corner in each plot. In addition, the red bars at the top of each
panel mark the flux ratio where the fitted Gaussian distribution peaks,
along with the standard deviation of each Gaussian-like distribution.
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Figure 6.2: Sample ratio of the two populations against modified pitch angles. The
three colors are for three energy pairs: 27 eV & 115 eV (red), 36 eV &
115 eV (blue), and 47 eV &115 eV (black).

constant value at PA 40◦−120◦; finally a slow decrease at the downward field-aligned

PAs. For the first few upward pitch angle bins, the sample ratio is about 0.

The highest possibility of solar wind electron precipitation happens at pitch angle

(PA) near 90◦. There are two possible explanations. Firstly, It is possible that solar

wind electrons are more likely to be found when the pitch angle distribution is only

partially sampled. As said in the methodology section, the instrument has a 2D field

of view (FOV) so that only part of the pitch angles, near 90◦, are sampled when

the magnetic field line is out of the plane of the instrument. As the data selected

for this study are confined within a box of loop-structure strong crustal fields, the

magnetic field (while not always true) is more likely north-south directed, thus in

the plane of the instrument as Mars Global Surveyor (MGS) is flying northward in
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the dayside. The chance of magnetic field lines being twisted out of this plane due

to the reconnection with the interplanetary magnetic field (IMF) is rather high as

the IMF usually has an east-west component. As a result, partially sampled pitch

angle distributions (PADs), centered at PA ∼ 90◦, may hint at a higher possibility of

open magnetic field lines through which solar wind electrons can precipitate into the

Martian atmosphere. Secondly, it seems that the measured pitch angle distribution

of electron fluxes at the high-energy range at 2 pm is more isotropic than expected

(e.g. Liemohn et al., 2003; Brain et al., 2007) over the strong crustal fields, which

is actually identified as photoelectrons by Brain et al. (2007). The more isotropized

pitch angle distribution of photoelectrons at 115 eV, compared to a classic source

cone distribution, decreases the flux ratio for perpendicular pitch angles, due to a

larger denominator, and increases the flux ratio for field-aligned pitch angles, due

to a smaller denominator. As a result, photoelectrons are more easily miscounted

as solar wind electron samples at perpendicular pitch angles due to the smaller flux

ratio while the field-aligned pitch angles are not affected.

Despite the similarity of the three lines, while the ratios between solar wind elec-

tron samples and photoelectron samples derived from the distribution of the flux

ratio of energy channels 36 eV & 115 eV (denoted as “E14/E10”, colored in blue, the

second column of Figure 6.1) and 47 eV & 115 eV (denoted as “E13/E10”, colored

in black, the third column of Figure 6.1) are on top of each other with a maximum

value near 0.20, the red line, derived from the distribution of the flux ratio of 27 eV

& 115 eV (denoted as “E15/E10”, the first column of Figure 6.1), has a ∼ 0.05 offset

from the other two, with a maximum around 0.15. The possible explanation of this

discrepancy is as follows. The spiked fluxes in the 20-30 eV range (partially fall into

the 27 eV energy channel), a typical feature of photoelectrons generated by the very

intense He II 30.4 nm solar line, can be mixed with lower fluxes at nearby energies due

to the energy shift caused by spacecraft potential. Frahm et al. (2006a) noted that
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Mars Express (MEX) had a negative spacecraft potential when in the ionosphere,

reducing the energy of the production spikes by 5 to 10 eV, which might be hap-

pening for MGS as well. A spacecraft potential shift would result in a broader flux

distribution of photoelectrons in the 27 eV bin but not influence the other two energy

channels nearly as much because the typical photoelectron spectrum is rather smooth

from 30-60 eV. This broadening of photoelectron distribution at 27 eV (wider error

bars for the photoelectron population, therefore larger overlapping areas of the two

populations in the left column of Figure 6.1) makes it less distinguishable from the

solar wind samples. Therefore, results from the 27 eV energy channel are relatively

less trustworthy in this study. The following analysis focuses on one of the other two,

the flux ratio of the energy channel pair 36 eV & 115 eV.

Based on the discussions above, it is easy to calculate that the occurrence rate of

solar wind electrons in regions where the magnetic field elevation angle is above 45◦

is around 1/6. In addition, it seems that a flux ratio cut-off can be obtained from this

bi-modal distribution to isolate solar wind electron samples or photoelectron samples

for further use, such as studying the energy flux of each population. For each pair of

flux ratios, we define this cutoff for each downward pitch angle bin such that the values

from two fitted Gaussian distributions are equal and then use the minimum of these

nine cutoffs as the solar wind electron cutoff and the maximum as the photoelectron

cutoff. For the flux ratio of 36 eV and 115 eV, the cutoff for the solar wind electrons

is 27, the dashed line as shown in Figure 2.6g, and the cutoff for the photoelectron is

35. For the flux ratio of 47 eV and 115 eV, the two numbers are 14 and 19. These

numbers may be used to distinguish photoelectrons and solar wind electrons without

examining the energy spectra for future studies.
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6.1.2 Occurrence Rate’s Dependence on Magnetic Elevation Angles

The occurrence rate of 1/6 is for a large variation of magnetic elevation angles.

As mentioned above, the strong crustal magnetic field lines are more likely to be

connected to the IMF (i.e. open) when the elevation angles are near 90◦, thus yielding

a larger chance for solar wind electron precipitation. How the occurrence rate changes

against magnetic elevation angles is examined here.

The dataset is divided into nine magnetic elevation angle bins with a bin size of

5◦. For each bin, similar to the previous section, the flux ratio distribution is obtained

and then fitted with two Gaussian functions. From the fitting to the distributions,

the sample ratio of the solar wind electron and the photoelectron can be determined.

The sample number for each PA× Elevation Angle bin (a bin size of 10◦ × 5◦) is

shown in Figure 6.3a and the sample ratio in Figure 6.3b. As expected, Figure 6.3a

shows large samples near PA 90◦, then lower towards PA 0◦ and 180◦. The sample

number is about the same for all pitch angles as the elevation angle increases. When

the elevation angle is near 90◦, magnetic field lines have little horizontal component,

thus are mostly in the plane of the instrument and all pitch angles are fully sampled

for almost all of the measurements. One thing to notice is that the minimum sample

number (colored in black) is 2670 instead of 0. The high sample ratio, up to 0.45,

of the solar wind electrons concentrates at high elevation angle bins as shown in

Figure 6.3b. For elevation angles lower than 60◦, the sample ratio of solar wind

electron to photoelectron is mostly below 0.2. Also, the sample ratio is higher again

near PA 90◦ for low elevation angles. For high elevation angles, where most of the

magnetic field lines are open, the sample ratio is higher for downward pitch angles.

The observations for upward pitch angles consist of both photoelectrons and reflected

solar wind electrons, while for downward pitch angles, the sample should be mostly

solar wind electrons. In addition, the reflected solar wind electrons can be seen in the

upward pitch angles as low as 20◦−50◦ (transition from blue to black in Figure 6.3b),
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indicating a loss cone width of about this size.

The fitting function does not perform well when solar wind electron samples are

very small. For example, for elevation angle 45◦−50◦ and PA 40◦−50◦ in Figure 6.3b,

the sample ratio (0.24) is unreasonably high for an upward pitch angle bin despite

barely being able to see a second population. Also, some of the sample ratios are

negative, such as elevation angle 45◦ − 50◦ and PA 170◦ − 180◦. It is because the

fitting returns a negative amplitude to one of the two fitted Gaussian distributions.

The negative sample ratios are set to 0 in Figure 6.3b.

From the discussion above, the occurrence rate of solar wind electron precipitation

largely varies with magnetic elevation angles, lower than 10% for more horizontal

magnetic field lines but as high as 1/3 for vertical field lines. This result is also

consistent with Figure 11 of Brain et al. (2007). In between closed magnetic loops,

the one-sided loss cone distribution, an indicator of solar wind electron precipitation

as well as open magnetic field lines, is the dominant pitch angle distribution.

6.1.3 Occurrence Rate’s Dependence on Solar Zenith Angles

Graphically, the occurrence rate of solar wind electron precipitation correlates

with magnetic elevation angle because vertical magnetic field lines are more likely to

be open. Physically, this rate can vary with the solar zenith angle (SZA) as solar

wind normal pressure onto the planet is smaller with increasing SZA. In addition,

the altitude of the Martian dayside electron density peak is also roughly proportional

to a cosine function of SZA (e.g. Hantsch and Bauer , 1990; Withers , 2009; Withers

et al., 2014), which can be explained by Chapman theory (Chapman, 1931a,b). As a

result, the magnetic pileup boundary (MPB) is closer to the planet near the sub-solar

point and at higher altitudes at larger SZA (e.g. Vignes et al., 2000; Crider et al.,

2002; Nagy et al., 2004). With a higher downward-directed solar wind pressure, i.e.

a smaller SZA, the IMF can erode more deeply into the Martian atmosphere and
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connect with strong crustal fields with the opposite component. To explore this

relation, the dataset is divided into two magnetic elevation angle groups, absolute

value within 45◦−70◦ and within 70◦−90◦, and then into seven SZA bins of 10◦. The

minimum SZA is 20◦ because the measurements were made by MGS at 2 pm LT.

Figure 6.4 shows some histogram examples at PA 100◦− 110◦, the left column for

absolute magnetic elevation angle 45◦ − 70◦ and right for 70◦ − 90◦; the upper row

for SZA 20◦ − 30◦ and the lower for 80◦ − 90◦. Again, the distribution is bi-modal

and the sample ratio derived from the fitting is bigger for large elevation angle by

comparing the right column to the left column. For small SZAs (the upper two rows),
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the left population, i.e. the solar wind electrons, is of a larger proportion of the total

sample than that for large SZAs (the bottom row), as shown as the sample ratios

in the upper left corner of each panel. As expected, the occurrence rate of the solar

wind electron precipitation is higher with smaller SZA.

To better examine all the pitch angles, Figure 6.5 shows the sample number (a and

c) and sample ratio (b and d) for the two magnetic elevation angle groups, respectively.

Because that dataset is confined in the geographic box as said in the methodology

section, the high sample number concentrates in mid-SZA and PA ∼ 90◦. On one

hand, for each group, the ratios in Figure 6.5d, where magnetic field lines are more

vertical, are generally much higher than in Figure 6.5b, as expected. On the other

hand, for both Figure 6.5b and d, one common feature is the higher ratio for smaller

SZAs than larger SZAs. Also, the maximum ratio now increases to 0.7, which means a

maximum occurrence rate of 41%. The pitch angle dependence can also be explained

by the three possibilities described in section 1. Note that the few high ratios in PA

< 40◦ and SZA 20◦ − 30◦ are caused by the ill fittings.

Another common feature in Figure 6.5b and d is that the highest ratio surprisingly

occurs at SZA 30◦ − 40◦ instead of 20◦ − 30◦. Although one would argue that it is

caused by the small sample numbers for SZA 20◦ − 30◦, the comparison between the

first and second row of Figure 6.4 seems to suggest some physical causes. Through

the examination of the magnetic elevation angle against latitude, as shown in Figure

6.6, it is found that the magnetic loop of latitude −30◦ to −40◦, where most of the

SZA 20◦− 30◦ measurement comes from, has more random magnetic elevation angles

than other latitudes. In other words, the magnetic field lines for SZA 20◦−30◦ might

be of more random directions and less likely connect to the IMF.

From Figure 2.7, a seasonal change of low flux ratio population, i.e. solar wind

electrons, is seen in the left column, being denser in the summer and sparser in the

winter, as expected. This seasonal feature can be explained by the SZA dependence.
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Figure 6.5: The upper two panels are the sample number for each pitch angle and
magnetic elevation angle bin for absolute magnetic elevation angle 45◦ −
70◦ (a) and 70◦ − 90◦ (c). The lower two panels are the sample ratio of
the two populations for each pitch angle and SZA bin for elevation angle
45◦ − 70◦ (b) and 70◦ − 90◦ (d).
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Figure 6.6: Magnetic elevation angle against latitude.

Because MGS is locked to 2 pm LT on the dayside and the tilt of Mars is around 25◦,

the alternating bar-like strong crustal fields, i.e. the geography box used to select data,

are concentrated at low SZAs in the southern summer and high SZAs in the winter.

It means that there is a higher chance to see solar wind electrons in the southern

summer than winter. Generally speaking, even without locking a particular local time

but just due to the tilt of Mars, the strong crustal fields can reach a lower SZA in the

southern summer, leading to more solar wind electron precipitation. Furthermore,

Mars is closer to the Sun during the southern summer, a higher dynamic pressure

at the sub-solar point is also expected, likely causing more reconnection between the

IMF and the crustal fields. All considered, a seasonal variation of solar wind electron

precipitation is expected.
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6.2 Energy Deposition

The identification of solar wind electrons, the occurrence rate and its dependence

on the magnetic elevation angle and also solar zenith angle are discussed in the above

sections. Another feature of these superthermal electrons is their energy deposition

into the Martian atmosphere, which can cause localized heating, excitation and dis-

sociation and ionization.

The first step is to isolate solar wind electron samples. As mentioned in section

3.2, the minimum flux ratio cutoff of nine downward PAs, 90◦ − 180◦, can be used

to select solar wind electron precipitation events. To make this selection more strict,

the minimum cutoffs of two energy pairs, 27 for 36 eV & 115 eV and 15 for 47 eV

& 115 eV, are both applied. Due to the small samples at PA near 0◦ and 180◦,

as shown in Figure 6.3a, the cutoff criteria is applied to downward PA 90◦ − 170◦

and 90◦ − 180◦, separately. Even though the selected sample numbers of solar wind

electron precipitation events for the two cases vary by a factor of two, (11374 and

5935, respectively), the results, such as the distributions and the number/energy

fluxes, are actually quite similar. Hence, the results of the first case, filtered by only

PA 90◦ − 170◦, are shown in Figure 6.7. The left column is for pitch-angle-averaged

number flux distributions while the right column is for energy flux distributions. From

top to bottom, each row is the downward, upward, and net (downward subtracting

upward) flux, respectively. For the upward/reflected solar wind electron fluxes, the

cutoff criteria is applied again to ensure excluding the photoelectrons. Also, the

average (denoted as “mean”), median, and mode values are listed in each plot.

As shown in Figure 6.7, take the median values as examples, the precipitating

solar wind electron number and energy fluxes are 1.02× 108 cm−2s−1 and 3.24× 109

eV cm−2s−1, respectively. However, ∼ 60% of the incoming fluxes are reflected back

to the MGS altitude by magnetic focusing and/or collisions, as shown in the second

row. We have further investigated the reflection of solar wind electrons. Firstly, the
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percentage of the reflected out of the total solar wind electron samples varies with

different upward pitch angles, > 90% for PA greater than 40◦ and < 30% for PA

smaller than 20◦. In other words, more field-aligned solar wind electrons are of higher

chance to deposit their energy into the upper atmosphere, as expected. Then, for

electrons with energy lower than 100 eV, around 60% of the incoming energy flux is

reflected while for energy above 100 eV, it is around 70%. On one hand, the reflection

is about the same for these different energy ranges, which implies that the magnetic

focusing is the dominant process. On the other hand, the high-energy electrons are

more likely to be reflected, which maybe result from the lower collision cross sections

(∝ 1/E2). It also means that collisions play a relatively minor role in the reflection.

With so much energy reflected, the number/energy fluxes absorbed by the at-

mosphere down below 400 km are only the net part, a median value of 4.16 × 108

cm−2s−1 and 1.11× 109 eV cm−2s−1 for the number and energy flux, respectively. To

compare it with solar photon input, the solar flux based on the Flare Irradiance Spec-

tral Model (FISM) (Chamberlin et al., 2007, 2008) is calculated. The EUV irradiance

is integrated from 1-100 nm and the resulting solar EUV flux is then scaled to Mars

orbit, along with a time shift based on a point-by-point basis (assuming a 27-day solar

rotation) to account for the different orbital positions of Earth and Mars, similar to

the method used in Mitchell et al. (2001). The mean EUV flux from Jan. 1999 to

Jan. 2007 (roughly the same time period of the MGS data set used in this study) is

around 1.9 × 10−7 W/cm2, or 1.2 × 1012 eV cm−2s−1. It means that the energy flux

deposition of solar wind electrons into the Martian atmosphere is about 0.1% of the

solar photon absorption. However, this 0.1% may need some adjustment. Firstly,

unlike solar EUV fluxes that only vary within a factor of 2, the long tails in the flux

distributions are seen in Figure 6.7 and under extreme cases, the energy input from

solar wind electrons can be ten times larger. Also, the estimated solar EUV flux does

not include the effect of solar zenith angles, which may drop by a factor of 2 at SZA
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greater than 60◦.

This direct comparison between the energy input of these two sources seemingly

suggests that the energy deposition of the solar wind electrons is insignificant. How-

ever, the deposition processes of these two energy sources are quite different. It

is possible that solar wind electrons can cause significant changes locally. In fact,

through a closer examination of the contribution of the net energy fluxes from elec-

trons with energy lower and higher than 100 eV individually, the former is twice

that of the energy flux deposition of the latter. Notice that low-energy electrons are

more likely to cause heating at higher altitudes instead of ionization at lower alti-

tudes. Therefore, it is possible that these solar wind electrons can efficiently heat the

cusps. Further study of this energy deposition and possible influence on the upper

atmosphere requires modeling.

One thing not addressed in the previous analysis is the possible contamination by

spacecraft photoelectrons and other secondary electrons. The anode sectors (sector

5-12) of MGS ER more likely to detect these spacecraft electrons look towards zenith

and along the spacecraft bus (Mitchell et al., 2001). Since the dataset of this study

is confined to more vertical magnetic fields lines, these contaminated sectors are

converted into upward modified pitch angles while the downward modified pitch angles

should be barely affected. Hence the possible contamination may not significantly

influence most of the previous analysis. However, the reflected energy flux (in upward

pitch angles) here might be overestimated because of the contamination. As a result,

the different reflection of high- and low- energy electrons might be partly or even

entirely due to the contamination. In addition, it also leads to an underestimation of

solar wind electron energy deposition. The actual energy deposition should range from

the net energy flux, 1.11 × 109 eV cm−2s−1, to the downward energy flux (assuming

all the upward energy fluxes are contaminations from spacecraft electrons), 3.24×109

eV cm−2s−1. This upper bound of energy deposition also increases the percentage
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relevant to the solar input to 0.3% and more than 2% under extreme cases.

6.3 Discussion of Solar Wind Electron Precipitation

In this chapter, the “knee” feature near 60 eV in the photoelectron energy spectra

is utilized to differentiate the solar wind/magnetosheath electrons from the iono-

spheric photoelectrons. The flux ratio of one energy channel lower than 60 eV and

one higher, such as 36 eV and 115 eV, is calculated for the selected dataset, the nearly

8-year measurements of MGS MAG/ER over a specific dayside strong crustal field

region. The distribution of the flux ratios is bi-modal, which implies the existence

of a second population other than photoelectrons, i.e. the solar-wind/magnetosheath

electrons.

Then a curve-fitting that consists of two Gaussian functions is applied, through

which the occurrence rate of dayside solar wind electron precipitation through the

cusps over the strong crustal fields is determined. For magnetic elevation angles

greater than 45◦, the occurrence rate is about 1/6. Furthermore, by dividing data

into 9 magnetic elevation angle bins, the occurrence rate increases with the magnetic

elevation angle, as expected. The maximum occurrence rate is 1/3, when the magnetic

field lines are nearly vertical.

The results have shown that the occurrence rate is lower at larger solar zenith

angles, probably resulting from the higher altitude of MPB due to a smaller normal

solar wind dynamic pressure and also a flared away ionosphere near the terminator.

A maximum occurrence rate of 40% is found, which suggests two things. Firstly, the

reconnected/open magnetic fields are more likely near the sub-solar point. Secondly,

even for vertical magnetic field lines with small SZA, the chance is surprisingly high

that the magnetic field is still closed at 400 km. Due to the tilt and the orbital position

of Mars, a seasonal variation of the precipitation is also expected and found. In other

words, during the southern summer (winter), the solar wind precipitation occurs more

145



(less) often. The occurrence rates presented here can roughly be approximated as how

often the IMF is connected to strong crustal fields at 400 km. However, be aware

that this rate may count in occasions when a draped field line moves to 400 km, even

though this is very rare near the strong crustal fields (Brain et al., 2005, 2007), and

also the transit of solar-wind/magnetosheath electron samples on closed magnetic

field lines when the reconnection between the IMF and strong crustal fields happens.

In addition, this occurrence rate probably varies with altitude as the cusps expand in

area with increasing altitude.

Open magnetic field lines also mean the particles and energy exchange between

the Martian atmosphere and the solar wind. The energy flux input from solar wind

electron precipitation is also investigated and is found to be roughly 0.1% up to 2%

of the solar EUV flux input to the Martian atmosphere. However, this simple com-

parison does not take into account the effects of the solar zenith angle or the different

deposition processes. The localized effects of the solar wind electrons might be sig-

nificant. The energy deposition of the solar wind electrons, especially the heating

rates, at different altitudes and SZAs can be further studied by modeling, such as

the SuperThermal Electron Transport (STET) model (Khazanov and Liemohn, 1995;

Liemohn et al., 1997, 2003, 2006).

6.4 Superthermal Electron Precipitation on Martian Night-

side

A mirroring study can be done when the strong crustal fields rotate to the night-

side. Shane and Xu et al. (manuscript submitted) found that the photoelectron

population still dominates the occurrence rate for solar zenith angles lower than 110◦,

which can be roughly considered as the terminator SZA for photoelectrons. When

SZA > 110◦, photoelectron occurrence rate firstly decreases at field-aligned pitch
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angles as electrons with more perpendicular pitch angles bounce at higher altitudes

where fewer collisions happen. Then, photoelectrons deplete on more horizontal mag-

netic field lines, which tend to be shorter, and then the more vertical magnetic fields.

On the other hand, solar wind electron precipitation is quite constant once past SZA

∼ 110◦ in terms of occurrence rate. The energy deposition of post-terminator elec-

trons happens mainly on more vertical magnetic fields with a median energy flux of

107 − 108 eV cm−2 s−1. Because this study is examining locations inside the strong

crustal field regions, the majority of the precipitated electrons are magnetically re-

flected or scattered back out, with a maximum of fractional deposition rate around

0.16. Such energy deposition is found to be able to cause emission only less than

1% of the time but to be capable of supporting a nightside ionosphere patch with a

column total electron content of 3.3 × 1014 m−2 and an averaged electron density of

1.6 × 104 cm−3, which is agreeable with previous estimations (e.g. Safaeinili et al.,

2007; Lillis et al., 2009).
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CHAPTER VII

Preliminary Work With MAVEN

The National Aeronautics and Space Administration (NASA) dedicated the Mars

Atmosphere and Volatile EvolutioN (MAVEN) mission, which was launched in Septem-

ber 2013, to determine the role that the loss of volatiles from the Mars’ atmosphere

to space has played through time, giving insight into the history of Mars atmosphere

and climate, liquid water, and planetary habitability. The MAVEN mission (Jakosky

et al., 2015) provides a comprehensive set of plasma and magnetic field observations

of Mars and also solar inputs to altitudes as low as ∼150 km (∼120-135 km dur-

ing“deep dips”) and over a wide range of local times and solar zenith angles. With

such a comprehensive dataset, more future work can be done to deepen our under-

standing of superthermal electrons and related topics at Mars. Here, we present some

preliminary work with MAVEN measurements.

7.1 Nightside Photoelectron Observations

Crustal magnetic fields in the northern hemisphere of Mars are generally much

weaker than those in the south (Connerney et al., 2005). Over two large regions,

Utopia Planitia and the Tharsis rise, the observed magnetic field at 400 km altitude

is thought to be dominated by fields induced by the solar wind interaction, although

the draping pattern is asymmetric and may be influenced by the presence of crustal
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sources far from the spacecraft (Brain et al., 2006b). From 12/1/2014 to 2/15/2015,

when MAVEN’s periapsis was at high northern latitudes on the nightside, the Solar

Wind Electron Analyzer (SWEA) observed ionospheric photoelectrons with energies

from 3 to 500 eV at low altitudes (140-200 km) and high solar zenith angles (120-145

degrees) on 35% of the orbits.

One orbit (Orbit 520) is shown in Figure 7.1. From top to bottom, each panel

shows solar zenith angle, altitude, ion energy spectrum and ion mass spectrum mea-

sured by the Suprathermal and Thermal Ion Composition (STATIC), magnetic field

data measured by Magnetometer (MAG) in Mars-centered Solar Orbital (MSO) coor-

dinates, normalized electron pitch angle distribution (111.2 - 140.3 eV) and electron

energy spectrum measured by SWEA, against time. Soon after 08:02, the SWEA mea-

surement shows electron depletion that lasts for about 5 minutes, which is thought

to be due to localized closed magnetic fields. These closed loops prevent solar wind

penetration and the planetary originated plasma that are bounded to these mag-

netic fields are also depleted because there are no significant sources but rather only

continuous losses such as recombination and collisions when these fields rotate to

nightside. From 08:07 to 08:12, when the spacecraft dips below ∼ 200 km, in addi-

tion to electron depletion, there are also continuous moderate to high electron fluxes

observed. In particular, undeniable photoelectron signatures are seen for the time

range 08:10:20-08:11:40. To demonstrate, Figure 7.2 is an example of pitch angle

(PA) averaged electron energy spectrum at 08:10:44 when the spacecraft is at alti-

tude 144 km and deep nightside (SZA∼ 132◦), black for PA 0− 90◦ and the red line

for PA 90◦ − 180◦. The magnetic elevation angle, the angle relative to the horizontal

plane, is 59◦. For PA 90◦ − 180◦ (red line), i.e. electrons flowing towards the planet,

typical photoelectron features can be identified, including the peaks in the 20 − 30

eV due to the very intense He II 30.4 nm solar emission and also the sharp decrease

of electron flux near 50 − 70 eV caused by the sudden drop in solar photons below
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Figure 7.1: A MAVEN orbit example (Orbit 520) begins at universal time (UT) Jan.
5, 2015, 8:00:00. From top to bottom, solar zenith angle (degree), alti-
tude (km), STATIC ion energy spectrum, STATIC ion mass spectrum,
MAG magnetic field measurements in MSO coordinates, SWEA normal-
ized electron pitch angle distribution (111.2 - 140.3 eV), SWEA electron
energy spectrum. Both electron and ion energy fluxes are in units of eV
s−1 cm−2 sr−1 eV−1.
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Figure 7.2: An example of low-altitude nightside photoelectron observation of the or-
bit 520, Jan. 5, 2015, 08:10:44, when MAVEN’s periapsis in the northern
hemisphere. The black line is for pitch angle 0− 90◦ and the red line for
pitch angle 90◦ − 180◦.

15 nm (e.g. Mitchell et al., 2000; Liemohn et al., 2003). For PA 0◦− 90◦ (black line),

the spectrum is smoother and arguably photoelectron-like with the flux decrease near

40− 70 eV. These electrons might be inflowing photoelectrons magnetically reflected

or scattered back out.

Since this electron population is unambiguously produced in the dayside iono-

sphere, these observations demonstrate that the deep Martian nightside is at times

magnetically connected to the sunlit hemisphere. We investigated the occurrence rate

of ionospheric photoelectrons as a function of altitude, solar zenith angle, and mag-

netic field orientation, and found that photoelectrons are more likely to be observed
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Figure 7.3: Observed O+
2 density by STATIC of Orbit 520, colored in blue and cal-

culated O+
2 density through photoelectron impact ionization, colored in

red.

at low altitudes and high solar zenith angles when the local field is more vertically

oriented. This implies that the magnetic field extends to high altitudes between the

night hemisphere, where photoelectrons are observed, and the source region in the

dayside ionosphere, thus avoiding significant attenuation in transit. The BATS-R-

US Mars multi-fluid MHD model (Dong et al., 2014) suggests the presence of closed

crustal magnetic field lines over the northern hemisphere that straddle the termina-

tor and extend to high SZA. Simulations with the SuperThermal Electron Transport

(STET) model show that photoelectron transport along such field lines can take place

without significant attenuation. Closed crustal magnetic loops extending thousands

of kilometers are common at low altitudes (below ∼200 km), even over the weakest

crustal sources. Thus, there is probably no region on Mars with a purely ionospheric

interaction with the solar wind.
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7.2 Implications for the Nightside Ionosphere

The Martian nightside ionosphere is known to have low densities and be quite

patchy. Precipitation of photoelectrons into the nightside atmosphere should cause

ionization (e.g. Lillis et al., 2009; Fillingim et al., 2007; Fillingim et al., 2010) and

possibly auroral emissions (e.g. Haider et al., 1992; Seth et al., 2002; Brain et al.,

2006a) in localized regions. From Figure 7.1, it is easy to see that the ion energy flux

corresponds with the electron energy flux well. The electron flux has a sharper cutoff

than the ions because ions’ collision frequency with neutral particles is much higher

than electrons so that below 200 km the ions are much more diffusive than electrons.

From 08:02 to 08:12, STATIC measures an ion population with 32 amu and 3 eV

(due to the spacecraft speed), i.e. the thermal O+
2 . Based on such measurements, the

O+
2 density can be calculated, shown in the blue line in Figure 7.3. There are a few

possible mechanisms that might be responsible for such a nightside ionosphere, such

as the bulk thermal plasma transport from dayside to night, ion transport along a

magnetic field due to ambipolar electric fields, and also electron precipitation. Here

we test if the observed electron precipitation, especially photoelectron precipitation,

is able to support such an ion density.

The main chemistry to produce O+
2 on the Martian nightside is to first ionize CO2

through electron impact ionization. The produced CO+
2 ions then rapidly convert

to O+
2 through dissociative recombination. Assuming photochemical equilibrium and

O+
2 being the main ion species, according to Chapman theory (Chapman, 1931a,b),

the electron number density can be calculated from the equation

ne(z) = (P (z)/αeff (z))0.5 (7.1)

where P (z) is the ion production rate, and αeff (z) is the effective recombination rate.

Because of the fast chemical reactions between CO2 and O, αeff (z) is approximately
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the dissociative recombination rate of O+
2 (e.g. Sheehan and St-Maurice, 2004):

αeff (z) = 1.95× 10−7(300/Te(z))0.7 (7.2)

where Te(z) is the electron temperature. Assuming charge neutrality, then the O+
2

density is equal to the calculated electron density. The outputs from the Mars Global

Ionosphere-Thermosphere Model (M-GITM) (Bougher et al., 2015) are used to de-

termine the ion production rate. The neutral profiles and the electron temperature

profile used are at latitude 67.5◦ and local midnight from a M-GITM run at solar lon-

gitude 270◦ and driven by an Earth F10.7 of 130 sfu. The ion production rate is the

product of electron flux, electron impact ionization cross sections and CO2 density.

The calculated O+
2 is shown as the red line in Figure 7.3.

As we can see, the observed and calculated O+
2 densities have similar profiles.

The calculated O+
2 density due to the electron precipitation is also much higher than

the STATIC measurements for the time range 08:07-08:12, which suggests that the

observed electrons can totally support such a nightside ionosphere. As to why it is

higher, these electrons are assumed to be lost locally instead of to an altitude range.

This would be an overestimation.

7.3 Summary

To briefly summarize, this preliminary study with MAVEN measurements suggests

that even in the Martian northern hemisphere, a region that is usually considered con-

sisting of weak crustal sources, there are closed magnetic loops extending thousands

of kilometers at low altitudes and straddling the terminator. Such a surprising mag-

netic connectivity to the dayside ionosphere also provides energetic electrons as energy

and particle sources to the Martian nightside atmosphere. While photoelectron mea-

surements are found in 35% of the orbits, the magnetic connectivity should be of a
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higher percentage of this number because some electron samples might be photoelec-

trons but too degraded, due to collisions, to be identified through features described

above. Through simple calculations, it is concluded that these photoelectrons that

precipitate to nightside are able to support the observed ion density. In all, this work

exhibits a perfect example of the importance and usage of superthermal electrons:

an excellent magnetic tracer and also redistributing energy over the Martian space

environment.
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CHAPTER VIII

Conclusions and Future Work

In this chapter, I will first recap three main studies of this dissertation and dis-

cuss their future work, especially with the Mars Atmosphere and Volatile EvolutioN

(MAVEN) mission, and finally close this thesis with a summary and its broad impact.

8.1 Photoelectrons and Dust Storms

To study the relation between dust storms and photoelectron fluxes, we have con-

ducted a survey of the Mars Global Surveyor (MGS) electron data across all the

pitch angles of 12 usable energy bins (11-746 electron volts) for dayside photoelec-

tron observations over regions of strong crustal fields. Studies have shown that the

solar EUV flux is the main controlling factor but dust storms play an important

role as well. Our study of different energies and pitch angles has shown that the

unusual bimodal solar flux dependence is not a common feature but mainly found in

low energies and a few bins of higher energy channels. By multiplying time-history

dust opacity with a solar EUV proxy as a new controlling function, the statistically

significant increase of the correlation of photoelectron flux against this function in-

dicates that dust storms have a long-lasting influence on high-altitude photoelectron

fluxes, especially at low energies and the pitch angle source regions of high energy

channels. The correlation increases experienced by the pitch angle source regions of
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all examined energy channels suggest that dust storms’ influence most likely happens

in the thermosphere-ionosphere source region of the photoelectrons, rather than at

exospheric altitudes at or above MGS. Furthermore, by isolating the global-scale dust

storm in Mars Year 25 (2001) from the rest, the results suggest that this storm is en-

tirely responsible for the second solar flux dependent trend. While not excluding the

possibility of this phenomenon being a one-time event, we hypothesize that there is a

threshold of dust opacity at which the low-altitude dust’s influence on high-altitude

photoelectron fluxes begins to be significant.

Then the SuperThermal Electron Transport (STET) model was used to investi-

gate what kinds of atmosphere can replicate observations, especially focusing on the

role that thermospheric composition and density play in high-altitude photoelectrons.

It was found that high-altitude photoelectron fluxes at more field-aligned pitch angles

are very sensitive to composition change and surprisingly independent of density. For

more perpendicular pitch angles, both composition and density take part in deter-

mining photoelectron fluxes. This investigation suggests that the global dust storm

altered the photoelectron fluxes via causing CO2 to be the dominant species at a

much larger altitude range than usual.

There are a few issues remaining unresolved. Firstly, to answer if the global dust

storm in 2001 is a special event in terms of atmospheric response, it is important to

investigate how the global dust storm at Mars Year (MY) 28 affects the photoelectron

fluxes by analyzing the electron data from Mars Express Analyser of Space Plasma

and Energetic Atoms (ASPERA)-3 electron spectrometer (ELS) (e.g. Barabash et al.,

2006), combined with the dust opacity values from Thermal Emission Imaging System

(THEMIS) (e.g. Smith, 2009). However, the lack of a magnetometer on Mars Express

complicates the interpretation of these measurements with respect to photoelectrons

on closed magnetic loops. Then, it is still mysterious as to why dust storms have such

long-living effects. More neutral atmosphere modeling and observations are needed
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to answer this question.

8.2 Photoelectrons and Solar Zenith Angle

Numerous studies have shown that ionospheric quantities depend on solar zenith

angle (SZA), according to Chapman theory. One would assume that photoelectron

fluxes are also SZA dependent, especially when transport along a magnetic field line

is significant. However, Martian high-altitude (∼ 400 km) superthermal electron

observations from the magnetometer/electron reflectometer on board Mars Global

Surveyor show that the photoelectron fluxes are better correlated with just the solar

irradiance, without SZA factored in and that the median photoelectron fluxes are

independent of SZA, especially for high energies. For low energies, the observed

fluxes tend to be partially controlled by SZA. Such counterintuitive results are due

to the existence of a photoelectron exobase, only above which the photoelectrons are

able to transport and escape to high altitudes. In this study, two methods were used

to determine the altitude range of this exobase, which varies between 145 km and

165 km depending on the atmosphere and SZA. Through our SuperThermal Electron

Transport (STET) model, we found that the integral of the production rate above

the photoelectron exobase, therefore the high-altitude photoelectron fluxes, is rather

independent of SZA.

This finding has a few implications. Firstly, high-altitude photoelectrons are ob-

served and modeled in the Martian tail (Liemohn et al., 2006, 2007b; Frahm et al.,

2006b,a). Frahm et al. (2010) estimated a Martian photoelectron escape rate of

∼ 3 × 1023s−1, which was then compared with ion escape estimations. Frahm et al.

(2010) and Coates et al. (2011) suggest that these escaping photoelectrons may at

least partially contribute to Martian atmospheric loss. In particular, these photo-

electrons can set up ambipolar electric fields that facilitate ion escape along open

magnetic fields. Our study implies that such an effect is probably the same for open
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field lines at all SZAs. On the other hand, this study also discourages the possibility

of relating escaping photoelectron fluxes on an open magnetic field to the footprint

of this field line, as there is no SZA dependence and therefore the source region can-

not be specifically identified. Furthermore, as shown in this study, the properties

of photoelectrons above the photoelectron exobase can be quite counterintuitive and

should be treated with extra care. In particular, with the new data from Mars Atmo-

sphere and Volatile EvolutioN (MAVEN) (Jakosky et al., 2015), it is critical to take

into account the observation altitudes relative to this exobase to employ the correct

analysis. Finally, such an independence relation between high-altitude photoelectron

fluxes and SZA should be expected at planets for which vertical transport can be

significant, such as Earth, but detailed data analysis is required.

8.3 Solar Wind Electron Precipitation

Measurements made by the magnetometer/electron reflectometer on board the

Mars Global Surveyor spacecraft have shown spatially localized enhancements in elec-

tron fluxes over the strong crustal fields on both the dayside and night, which are

used to identify the cusps in between the closed magnetic fields. This dissertation

provided a comprehensive statistical study on the occurrence rate of dayside solar-

wind/magnetosheath precipitation over the strong crustal fields. Also, the occurrence

rate’s dependence on the magnetic elevation angles and the solar zenith angle is pre-

sented. A seasonal variation of the precipitation is also expected and found, due to

both the tilt and the orbital eccentricity of Mars. The maximum occurrence rate is

40%, when the solar zenith angles are small and the magnetic fields are nearly verti-

cal. Finally, the energy flux deposition of the solar wind electrons was calculated as

well, which is 0.1%−2% of solar extreme ultraviolet (EUV) flux input.

However, this simple comparison of energy input does not take into account the

effects of the solar zenith angle or the different deposition processes. The local-
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ized effects of the solar wind electrons might be significant. Gurnett et al. (2005)

and Gurnett et al. (2008) found that oblique echoes from Mars Advanced Radar for

Subsurface and Ionosphere Sounding (MARSIS) onboard Mars Express arise from

ionosphere bulges, which geographically coincide with Martian crustal field regions

where field lines tend to be strong and vertical. These two studies also suggest that

the bulges are likely due to solar wind electron precipitation, which causes heating to

the ionosphere and therefore a larger plasma scale height. The energy deposition of

the solar wind electrons, especially the heating rates, at different altitudes and SZAs

can be further studied by modeling, such as the multi-stream superthermal electron

transportation model (Khazanov and Liemohn, 1995; Liemohn et al., 1997, 2003,

2006). Furthermore, the magnetic fields in the Martian northern hemisphere, where

the crustal fields are weak, are more likely to be draped. The solar wind electrons

may have access to the atmosphere through these draped fields lines and deposit their

energy at some altitude range through collision with the neutral particles and/or ions.

Gan et al. (1990) conducted a study on how the solar wind superthermal electrons

affect the electron temperature near the ionopause on Venus. Their results suggested

that except for solar EUV heating, the additional heating from the energy deposition

of solar wind electron fluxes moving along the magnetic field lines was also needed to

explain the high electron temperature in the magnetized upper ionosphere and in the

mantle region on Venus. However, few studies have been conducted on the heating

effect of solar wind electrons, which may deposit energy into the Martian upper atmo-

sphere while moving along the draped magnetic field lines. Further investigations of

this potential heat source are needed to have a better understanding of the Martian

upper atmosphere.
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8.4 Future Work With MAVEN

Observations from multiple instruments onboard MAVEN can be utilized to carry

this thesis work to the next step. To name a few:

Firstly, the direct measurements at several wavelengths (0-7 nm, 171 nm, and

121.6 nm) from the instrument LPW/EUV will vastly improve our understanding

of solar irradiance at Mars. Furthermore, the new superthermal electron data from

SWEA can used to validate the solar irradiance models, such as the Hinteregger-81

model, Flare Irradiance Spectral Model (FISM) and the Heliospheric Environment

Solar Spectral Radiation (HESSR) model.

Secondly, case studies of MGS dayside photoelectron data (e.g. Liemohn et al.,

2003; Brain et al., 2007) have exhibited more isotropic pitch angle distributions than

expected, especially compared to STET model results. It is necessary to convey

a statistical study with MGS and MAVEN electron data on whether this dayside

photoelectron isotropy is only occasionally present or more of a general case. Either

way, the STET model can be used to investigate the physical processes behind this

isotropy.

Also, in this thesis, it is confirmed that the global dust storm in late 2001 sig-

nificantly altered the thermospheric composition, which caused the enhanced photo-

electron fluxes observed by MGS. The neutral composition measurement from the

Neutral Gas and Ion Mass Spectrometer (NGIMS) instrument (Mahaffy et al., 2014)

onboard Mars Atmosphere and Volatile EvolutioN (MAVEN) should shed light on

what species is/are responsible. In particular, to more quantitatively match large

photoelectron flux enhancement during the global dust storm seen in the MGS obser-

vation, it is important to quantify the crossing altitude from CO2 dominating to O

dominating and also the superthermal electron exobase. NGIMS data can be utilized

to investigate how the two altitudes vary with solar conditions, seasons, and also dust

storms.
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Finally, it is very useful to conduct statistical studies on the occurrence rate of

photoelectron transport to the Martian deep night and how this occurrence rate varies

with solar wind parameters, with MAVEN measurements. Also, accompanied with

STET modeling, it is possible to further quantify how the energy of these cross-

terminator-transport photoelectrons deposit the Martian nightside.

8.5 Summary of Dissertation

Because of the complex magnetic topology of Mars, superthermal electrons, mainly

including photoelectrons and solar wind electrons, are important to localized atmo-

spheric dynamics as they can carry and rapidly transport energy from one place to

another, especially to nightside. These electrons, in return, are also a reliable tool to

deduce the Martian magnetic topology, which is critical to understand the electro-

magnetic dynamics of the Martian space environment. This dissertation has explored

three aspects of superthermal electrons at Mars mainly by analyzing observations

from Mars Global Surveyor and also simulations with the SuperThermal Electron

Transport (STET) model.

• How does full energy and pitch angle distribution of high-altitude

photoelectrons respond to low-altitude dust storms? What is the

physics governing this connection?

Upon discovering the long-lived influence of Martian dust storms on photoelec-

tron fluxes, this dissertation determined that such an influence is common for

a wide range of energy and pitch angles and originated from the thermosphere-

ionosphere source region of the photoelectrons, rather than at exospheric alti-

tudes at or above MGS (at ∼400 km). The global dust storm that occurred in

late 2001 was also found to be unique in terms of the thermospheric response,

compared to other smaller dust storms. Through simulations, we concluded
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that instead of simply increasing the neutral densities, composition changes

were needed to replicate the observed photoelectron flux enhancement caused

by the global dust storm. This investigation suggested that the global dust

storm altered the photoelectron fluxes by causing CO2 to be the dominant

species at a much larger altitude range than usual.

• Do the observed high-altitude photoelectron fluxes really depend on

solar zenith angle?

When transport is significant, such as over the Martian strong crustal fields,

the photoelectron flux had previously been thought to be solar zenith angle

dependent. However, only photoelectrons produced above the superthermal

electron exobase can transport to high altitudes. Due to the fact that the

integral of production rate above this exobase is about the same for all the

solar zenith angles, it was found, observationally and numerically/theoretically,

that the high-altitude photoelectron fluxes are quite independent of solar zenith

angle.

• What is the occurrence rate of dayside solar wind/magnetosheath

electron precipitation over strong crustal fields and also their energy

deposition into the Martian atmosphere?

Half of the magnetic fields over the strong crustal field regions tend to be

oppositely-directed with respect to interplanetary magnetic fields most of the

time, thus they are more likely to be open here than elsewhere on the planet.

Such open paths allow energy and particle exchange between solar wind and the

Martian atmosphere. Based on the energy spectral (flux against energy) dif-

ference between photoelectrons and solar wind electrons, a statistical approach

was taken to distinguish the two populations. This also makes it possible to

quantify the occurrence rate of solar wind electron precipitation that can be as

163



high as 40% at small solar zenith angles and near vertical magnetic field lines.

On the other hand, the energy flux deposition of the solar wind electrons is

around 0.1-2% of the solar EUV flux input.

This dissertation provides answers to those specific questions, but its impact ex-

tends beyond. To name a few, the investigation of low-altitude dust storms and high-

altitude photoelectrons demonstrates the coupling between the lower atmosphere and

thermosphere. Also, the high-altitude photoelectron flux depends on only a few pa-

rameters and can be used to validate solar EUV models, such as the Flare Irradiance

Spectral Model (FISM) and the Heliospheric Environment Solar Spectral Radiation

(HESSR) model, as well as to monitor the thermospheric composition changes. Fur-

thermore, high-altitude photoelectron fluxes being independent of solar zenith angle

implies similar ambipolar electron field setups for open field lines, thus similar polar-

wind type ion escapes, all over the planet. In addition, the study of the solar wind

precipitation and the preliminary work with MAVEN data are examples of superther-

mal electrons being important energy carriers and magnetic tracers. These electrons

can be critical to localized dynamics and even to understand the large scale interac-

tion between the solar wind and Mars. The superthermal electron measurements, as

well as other neutral and plasma measurements from MAVEN, should greatly deepen

our understanding of the Martian space environment. Finally, many of the findings

and future work can be carefully applied or adapted to planets with significant ver-

tical superthermal electron transport along magnetic fields, such as Earth, Jupiter,

and Saturn.
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Lillis, R. J., S. W. Bougher, F. González-Galindo, F. Forget, M. D. Smith, and
P. C. Chamberlin (2010a), Four martian years of nightside upper thermospheric
mass densities derived from electron reflectometry: Method extension and compar-
ison with gcm simulations, Journal of Geophysical Research: Planets (1991–2012),
115 (E7).

Lillis, R. J., D. A. Brain, S. L. England, P. Withers, M. O. Fillingim, and A. Safaeinili
(2010b), Total electron content in the mars ionosphere: Temporal studies and
dependence on solar euv flux, Journal of Geophysical Research: Space Physics
(1978–2012), 115 (A11).

Ma, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Toth (2014), Mar-
tian ionospheric responses to dynamic pressure enhancements in the solar
wind, Journal of Geophysical Research: Space Physics, 119 (2), 1272–1286, doi:
10.1002/2013JA019402.

Mahaffy, P. R., et al. (2014), The neutral gas and ion mass spectrometer on the mars
atmosphere and volatile evolution mission, Space Science Reviews, pp. 1–25.

Mantas, G. P., and W. B. Hanson (1979), Photoelectron fluxes in the martian iono-
sphere, Journal of Geophysical Research: Space Physics, 84 (A2), 369–385, doi:
10.1029/JA084iA02p00369.

Medvedev, A. S., T. Kuroda, and P. Hartogh (2011), Influence of dust on the dynamics
of the martian atmosphere above the first scale height, Aeolian Research, 3 (2), 145–
156.
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