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ABSTRACT 

 

Surfaces with patterned wettability have well-defined domains containing both 

wettable and non-wettable regions. One of the key features of the surfaces with patterned 

wettability is their ability to localize wetting of liquids preferentially within the patterned 

wettable regions. This ability of the patterned surfaces has been widely explored as a 

simple route to pattern both liquids, as well as, solids for various applications such as 

microfluidics, electronic and optical devices, surfaces with enhanced heat transfer 

properties, etc. However, most of the patterned surfaces exhibit wettability contrast only 

with high surface tension liquids such as water, thereby limiting the applications of the 

patterned surfaces to only aqueous systems.  

Herein, we utilize the design principles of superomniphobicity (repellency 

towards all liquids) to develop the first-ever patterned superomniphobic-superomniphilic 

surfaces that exhibit extremely wettability contrast with both high and low surface 

tension liquids. Utilizing these patterned surfaces, we demonstrate site-selective self-

assembly of various liquids including: oils, alcohols, polymer solutions and solid 

dispersions. We also demonstrate site-selective condensation and boiling with low 

surface tension liquids, which is crucial when designing surfaces with significantly 

enhanced, phase-change, heat-transfer properties. We have further utilized surfaces with 
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patterned wettability as templates for fabricating monodisperse, multi-phasic micro- and 

nano-particles. The developed technique termed WETS (Wettability Engendered 

Templated Self-assembly) provides us with an unprecedented ability to manufacture 

multi-phasic particles, on a large-scale, with precise control over the size (down to 25 

nm), shape, chemistry and surface charge of the particles. We further demonstrate the 

utility of the WETS technique in developing amphiphilic building blocks for self-

assembly and multi-functional cargo carriers. Finally, we have also studied stimuli-

responsive shape reconfigurations of the multi-phasic WETS particles. Overall, this 

dissertation puts forward design principles for developing surfaces with patterned 

wettability that are universal to almost all liquids, thus enabling novel applications for the 

patterned surfaces, such as the WETS technique reported here. 
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CHAPTER 1 

Introduction 

 

1.1. Introductory Remarks 

Surfaces with patterned wettability have well-defined domains of both wettable 

and non-wettable regions. One of the key features of surfaces with patterned wettability is 

their ability to localize liquids preferentially within the patterned wettable regions1-8. 

Since the first observation of this phenomenon, researchers have utilized surfaces with 

patterned wettability for various applications including microchannels and 

microreactors3-8, well-defined arrays of polymer films and particles for electronic and 

optical applications9-15, patterned arrays of DNA, proteins and cells for biological 

applications,16 and more recently as interfaces with enhanced heat transfer properties17-22.  

This chapter serves to introduce some important concepts of the wetting behavior 

of liquids on patterned surfaces and background information on the applications of the 

patterned surfaces. In addition to this background, each chapter has its own introduction 

that will provide a more detailed background to the specific topics discussed. 
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1.2. Fundamentals of wetting 

When a liquid droplet comes in contact with a solid surface, it can either wet the 

surface completely, or partially, making a finite contact angle with the surface. The 

contact angle that liquid makes on a surface is a convenient measure of wettability on a 

solid surface. Based on the value of the contact angle θ  of a water droplet, surfaces can 

be classified as superhydrophilic when θ ≈ 0º, hydrophilic when θ < 90° , hydrophobic 

when θ > 90°  and superhydrophobic when θ >150° . Similarly, based on the contact 

angle of an oil droplet, surfaces can be classified as superoleophilic when θ ≈ 0º, 

oleophilic when θ < 90° , oleophobic when θ > 90°  and superoleophobic when θ >150° . 

Surfaces with θ >150° , typically have low adhesion with the liquid droplet owing to very 

low solid-liquid contact area. Thus, to develop surfaces that are extremely repellent to 

liquids, it is desired to have contact angles θ >150°  with liquids.  

The equilibrium contact angle ( θE ) on a smooth homogenous surface, is 

determined by the balance between the solid-vapor (γSV or the surface energy), solid-

liquid (γSL ) and liquid-vapor (γLV or the surface tension) interfacial tensions acting at the 

three-phase contact line, and is given by the Young’s relation23: 

 (Equation 1.1) cosθE = (γSV −γSL ) γLV  

 

Figure 1.1 A liquid droplet on a smooth solid surface. 

From the Young’s relation, we can see that surfaces with low solid surface energy 
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(γSV ) can yield high contact angles24. However, based on the literature so far, even on 

surfaces with the lowest solid surface energy reported to date25, 26  (γSV ~ 6 mN/m), the 

water contact angle was not larger than ~125° . Thus, it is not possible to develop super-

repellent surfaces (θ >150° ) on smooth solid surfaces. However it has been shown that 

super-repellent properties (θ >150° ) are possible on textured surfaces, as discussed 

below. 

1.3. Wetting on textured surfaces 

When a liquid droplet comes in contact with a textured surface, it adopts either a 

Cassie-Baxter27 state, which supports a composite solid-liquid-air interface or a fully 

wetted Wenzel28 state (Figure 1.2). The apparent contact angle that a liquid droplet makes 

on the textured surface can be very different from the equilibrium contact angle (from 

Young’s equation 1.1) for the liquid on the solid surface. In the case of the Cassie-Baxter 

state, as shown in Figure 1.2a, the liquid droplet locally makes the equilibrium contact 

angle with the surface and does not fully penetrate the surface. Consequently, air pockets 

remains trapped at the interface forming a solid-liquid-air composite interface. The 

apparent contact angle (θ * ) in this state is given by Cassie-Baxter relation27: 

(Equation 1.2) cosθ * = fSL cosθE + fLV cosπ = fSL cosθE − fLV  

Here fSL  and fLV  are the areal fractions of the solid-liquid interface and the liquid-air 

interface per unit projected area of the composite interface. From the Cassie-Baxter 

relationship, apparent contact angle can be thought of as a weighted average between the 

values of the equilibrium contact angle of the liquid on the solid (θE ) and on the air 

pocket (i.e., π ). Thus, a liquid droplet that adopts the composite Cassie-Baxter state on a 

textured surface can have apparent contact angles (θ * ) much higher than the equilibrium 
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contact angle (θE ) for the liquid on a smooth solid surface.  

 On the other hand, if the liquid cannot reach its equilibrium contact angle without 

penetrating fully into the pores of the textured surface, then the liquid droplet wets the 

surface completely and the apparent contact angle in this state is given by Wenzel 

relation28: 

(Equation 1.3) cosθ * = rcosθE  

Here r is the surface roughness defined as the ratio of actual surface area to the project 

area. By comparing equation 1.3 and 1.4, we can see that Wenzel relation is a special 

case of Cassie-Baxter relation for fLV = 0  ( fSL = r ).  

Figure 1.2 Liquid droplets on textured surfaces29. (a) A schematic illustration of a liquid 
droplet in the Cassie-Baxter state forming a composite solid-liquid-air interface. (b) A 
schematic illustration of a liquid droplet in the ‘fully-wetted’ Wenzel state.  
 
 For liquids with θE > 90°  on surfaces with r >>1 , equation 1.4 predicts that very 

high apparent contact angles are possible in the Wenzel state. However, the liquid 
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droplets in the Wenzel state are strongly adhered to the solid surface owing to the high 

fraction of solid-liquid interfacial area ( fSL ).  

On the other hand, the liquid droplets in the composite Cassie-Baxter state can 

have a very low fraction of solid-liquid contact area leading to weak adhesion between 

the liquid droplet and the solid surface. The adhesion between the solid surface and liquid 

droplets is characterized by contact angle hysteresis (Δθ * ), defined as the difference 

between the measured values of the apparent contact angles as the liquid droplets 

advances or recedes (Δθ * =θA
* −θR

* ) on the solid surface. Typically, the hysteresisΔθ *  in 

the Wenzel state is significantly higher than the hysteresis in the Cassie-Baxter state.  

Further in the case of liquids with θE < 90°  (different low surface tension liquids), 

we can see from equations 1.2 and 1.3 that high apparent contact angles (θ * >>θE ) are 

possible only in Cassie-Baxter state. So, the composite Cassie-Baxter state is the 

preferred configuration for developing super-repellent surfaces that can repel both high 

and low surface tension liquids.  

1.4 Design of superomniphobic surfaces 

Figure 1.3 The critical role of re-entrant texture29. A schematic illustration of a textured 
surface with ψ > 90°  showing a) a liquid droplet with θE > 90° in the Cassie-Baxter state 
and b) a liquid droplet with θE < 90° , here the capillary forces (indicated as F) cannot 
oppose the pressure exerted on the liquid-vapor interface and thus leading to fully wetted 
wenzel state. c) A schematic illustration of a re-entrant textured surface (ψ < 90° ) 
showing a liquid droplet with θE < 90° in the Cassie-Baxter state.  
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Superomniphobic surfaces refer to surfaces that display very high contact angles 

and very low contact angle hysteresis with both high and low surface tension liquids. In 

other words superomniphobic surfaces display both superhydrophobicity and 

superoleophobicity.29-33 From the discussion in last section, it can be seen that 

superomniphobic surfaces are possible only on textured surfaces that form a stable 

composite interface (Cassie-Baxter state) with both high and low surface tension liquids. 

However not all types of textured surfaces can yield a stable composite interface, 

particularly for low surface tension liquids with θE < 90° . To illustrate this, let us 

consider two different textured surfaces (shown in figures 1.3a and 1.3c), one with 

texture angle ψ > 90°  and another with texture angle ψ < 90° . In both cases, any liquid 

droplet forming a composite interface with the textured surface displays an equilibrium 

contact angle (θE ) locally at the solid-liquid-air interface. A stable composite Cassie-

Baxter state is possible on the textured surfaces, only when the liquid equilibrium contact 

angle θE ≥ψ . This is because when θE <ψ , the net traction on the liquid-vapor interface 

(below the liquid droplet) is pointed downwards due to the surface tension forces, which 

causes the liquid droplet to penetrate the pores and wet the surface completely. Thus, the 

textured surface shown in Figure 1.3a with ψ > 90°  can support a stable composite 

interface with high surface tension liquids but not with low surface tension liquids. On 

the other hand, the textured surface shown in Figure 1.3b can form a stable composite 

interface with both high and low surface tension liquids. Such textures with ψ < 90° are 

called re-entrant textures, i.e textures that bend back on itself26, 30, 34, 35.  Therefore, re-

entrant textured surfaces that enable θE ≥ψ  for both high and low surface tension liquids 

can lead to superomniphobicity.  
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1.5. Design parameters for patterned superomniphobic-superomniphilic surfaces 

 For the design of the patterned superomniphobic-superomniphilic surfaces, the 

superomniphobic regions should support a sable composite interface with almost all 

liquids, while the superomniphilic regions should form a completely wetted, Wenzel state 

with all liquids. In this section, we discuss design parameters that correspond to the 

transition between the Cassie-Baxter state and Wenzel state.  

As discussed in section 1.4, reentrant texture where θE ≥ψ  is a necessary 

condition for formation of a stable composite interface with low surface tension liquids. 

However, it is not a sufficient condition for superomniphobicity36-38. In addition to 

possessing re-entrant texture, a superomniphobic surface should possess a sufficiently 

high breakthrough pressure Pbreakthrough  to withstand the applied pressure Papplied  (such as 

hydrostatic pressure, Laplace pressure, and so on) from the contacting liquid. In other 

words, a superomniphobic surface must be designed in a manner that Pbreakthrough > Papplied to 

prevent the transition from the Cassie– Baxter state to the fully wetted Wenzel state.  

To correlate Pbreakthrough with the parameters of a given textured surface, previous 

works30, 32 have proposed a dimensionless parameter A*  called the robustness factor. A*

represents the ratio between the breakthrough pressure Pbreakthrough  and a characteristic 

reference pressure Pref , given as Pref = 2γLV lcap  , where lcap = γLV ρg   is the capillary 

length (here ρ  is the liquid density, and g is the acceleration due to gravity). This 

reference pressure Pref  is near the minimum possible pressure difference across the 

composite interface for millimetric sized or larger liquid droplets (or puddles) on 

extremely non-wetting textured surfaces.30-33 For textured substrates with discrete 
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spherical particles, the robustness factor A*  is given as:30-33, 39  

(Equation 1.4) A* =
Pbreakthrough
Pref

=
2π lcap

R(2 3D* −π )
(1− cosθ )

( D* −1+ 2sinθ )
 

Any surface with A*  >> 1 indicates the formation of a robust composite interface 

with very high breakthrough pressures, whereas surfaces with A*  < 1 cannot form a 

stable composite interface, causing the liquid to penetrate the textured surface. Thus, to 

design patterned superomniphobic-superomniphilic surfaces, the surfaces should have 

well-defined domains of regions that have A*  >> 1, as well as, regions that have A*  < 1. 

To fabricate such patterned superomniphobic-superomniphilic surfaces (discussed in 

chapter 2), we first designed and fabricated surfaces with A*  >> 1 for almost all liquids. 

The surfaces were then selectively patterned with domains with A*  < 1 for almost all 

liquids.  

1.6. Site-selective self-assembly of liquids on patterned surfaces 

 When a liquid is brought in contact with a non-wettable surface patterned with 

wettable domains, the liquid preferentially wets and assembles only within the wettable 

domains. When the liquid droplets come in contact with a patterned surface, the droplets 

easily roll-off the non-wettable regions even at very small tilt angles (< 5° ), facilitating 

the migration of liquid droplets into the wettable regions.  

Further, in the case of liquid droplets that are in contact with both a non-wettable 

surface (possessing low surface energy γSV ) and a wettable surface (possessing high γSV ), 

such as shown in Figure 1.4, the droplet experiences a force driving it to assemble 

preferentially within the wettable domains. This force is due to an imbalance in surface 

tension forces acting on the droplet edge (the solid-liquid-air three phase contact line). 
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The imbalanced force (dFS) experienced by a section of the droplet, with thickness dx is 

given by3 : 

(Equation 1.5) dFS = γLV cosθH − cosθL( )dx    

Here, γLV is the surface tension of the liquid, and θH  and θL  are the contact angles of the 

liquid in the high and low surface energy regions, respectively (see Figure 1.4). The total 

force (FS) on the droplet can be obtained by integrating equation 1.5 over the entire width 

of the droplet. This force drives the droplet towards the surface with higher solid surface 

energy because θH < θL . However, for surfaces that display high contact angle hysteresis, 

the receding contact angle on the non-wettable surface may be smaller than the advancing 

contact angle on the wettable domains. In such cases, the liquid droplet will not advance 

into the wettable domains3. Thus, a non-wettable surface possessing a low contact angle 

hysteresis, when patterned with wettable domains, can act as a template to engender the 

self-assembly of liquids within the wettable domains. The ability to assemble liquids in 

desired geometries and dimensions on patterned surfaces has been widely explored in the 

past decade for various applications. 

 

Figure 1.4. Schematic showing cross-section of a liquid droplet in contact with both 
wettable (high γSV ) and non-wettable (low γSV ) regions. 
 

Manipulating minute volume of liquids within micron scale channels/domains is 

crucial for the design and fabrication of microfluidic devices for applications like 
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bioassays, microreactors, sensors, actuators etc.3-8, 40, 41 Traditionally microfluidic devices 

have been developed using microfabricated 3-Dimensional polydimethylsiloxane 

(PDMS) channels. However the fabrication of PDMS based microfluidic devices 

involves multiple steps and costly procedures. In addition, these microfluidic devices 

require external hardware including pumps, valves and associated electrical components, 

making the devices unsuitable for applications like point-of-care diagnostics, and rapid 

diagnostic tests.40, 41 

On the other hand, surfaces with patterned wettability have shown to serve as 

cheaper, portable, and easy to operate alternatives for the traditional microfluidic 

devices.40, 41 Microfluidic analytical devices based on the patterned surfaces combine the 

following capabilities on to a single device: ease of distributing a liquid sample into 

multiple spatially assembled regions to enable multiple assays; movement of the liquid 

samples by capillary action (no external pumps are needed); compatibility with small 

sample volumes, which is very important when the sample size is limited (drops of blood 

from finger pricks, tears and saliva). These advantages have led researchers to develop 

microfluidic devices based on patterned surfaces for rapid diagnostic tests such as 

immunoassays42, 43, urinalysis44-46, food safety and environmental monitoring devices41 

etc.  

Patterned surfaces have also been demonstrated as convenient lab-on-chip 

platforms for conducting chemical reactions with limited reactants6, 47-49. Further, liquid 

assemblies on patterned surfaces enable easy access to the liquid-vapor interface and thus 

make the liquid-gas reactions feasible in microfluidic systems6.  

 Even though the site-selective assembly of liquids has been widely explored on 
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patterned surfaces, the compatibility of the patterned surfaces with low surface tension 

liquids such as oils, alcohols and organic solvents has been a great challenge. This is 

primarily because of the inherent difficulty in controlling the wetting of low surface 

tension liquids on a surface. 

1.7. Site-selective self-assembly of solids on patterned surfaces 

 The site-selective self-assembly of solids can be obtained on patterned surfaces 

through the assembly of a dispersion of solid particles in a liquid or alternately polymer 

solutions within the wettable domains9-15. Upon evaporation of the liquid dispersant or 

the solvent, we obtain the assembly of solid particles or polymer films within the 

wettable domains. Therefore, surfaces with patterned wettability can be used as templates 

to develop solid patterns in desired geometries and dimensions. Several hydrophobic-

hydrophilic and superhydrophobic-superhydrophilic patterned surfaces have been 

developed and utilized for site-selective self-assembly of solids including conducting 

polymer patterns for electronic applications9-15, cell microarrays for genetic screening41, 

DNA and protein arrays for biological studies40 and ink patterns for off-set printing50 etc. 

1.8. Phase change heat transfer on patterned surfaces 

 Phase change heat transfer processes such as boiling and condensation heat 

transfer are desired in many industrial applications51, 52 including thermal generation of 

electricity, desalination, high-performance heat exchangers, metallurgy, and electronics 

cooling.  

 In boiling heat transfer, a hot surface to be cooled is adjacent to a liquid that 

vaporizes by taking in a large heat of vaporization. The boiling performance is measured 

in terms of two parameters, the heat transfer coefficient (HTC) and the critical heat flux 
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(CHF)21, 51. The HTC is the ratio between the heat flux and the temperature difference 

between the hot surface and the liquid. The CHF is the highest heat flux that can be 

exchanged before the nucleated vapor bubbles merge into a continuous vapor film that 

insulates the surface from the liquid51. An optimum surface for boiling heat transfer is 

therefore a surface that has high values of both HTC and CHF.  

Both HTC and CHF are very dependent on the wetting properties of the surface. 

Usually a non-wettable surface facilitates high HTC, while a wettable surface facilitates 

high CHF. So, an ideal boiling surface has complex requirements for surface wettability: 

a non-wettable surface to promote nucleation and high HTC at low heat flux and a 

wettable surface to maintain liquid transport to the hot surface for preventing low CHF20, 

21, 51. Therefore, a wettable surface patterned with non-wettable domains offers an elegant 

solution to develop the ideal surface with optimum heat transfer properties. For example, 

Betz et al. have shown that patterned superhydrophobic-superhydrophilic surfaces have 

doubled the HTC and increased CHF by 80% compared to a homogenous 

superhydrophilic surface21. 

  In condensation heat transfer, a cold surface is adjacent to liquid vapors, which 

condense on the surface releasing a large latent heat of fusion to the cold surface. Similar 

to the boiling process, the condensation heat transfer process is also dependent on the 

wettability of the surface17, 53. A wettable surface promotes high rates of nucleation of 

water droplets, while a non-wettable surface prevents the early formation of an insulating 

water film across the cold surface (high CHF). In order to have both high nucleation 

rates, as well as, to avoid the early formation of an insulating water film, it is desired to 

have a non-wettable surface patterned with wettable domains.  
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 However, most of the reports on enhancement of phase change heat transfer 

properties on a patterned surface have so far been focused on hydrophobic-hydrophilic or 

superhydrophobic-superhydrophilic patterned surfaces, using surfactant free water as a 

heat transfer liquid. As reported in a recent review51, one of the key challenges in surface 

engineering for enhanced phase change heat transfer is to develop surfaces that are 

compatible with low surface tension liquids such as refrigerants used in the heating, 

ventilation, and air-conditioning industries.  

 In light of the requirements for various applications discussed here, we first 

focused on designing and developing patterned surfaces that are universal to almost all 

liquids. We then extended the above-discussed applications to low surface tension 

liquids. Further, using the patterned surfaces as templates, we have developed a novel 

methodology to fabricate multi-phasic micro and nanoparticles of virtually any desired 

geometry and chemistry. 
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CHAPTER 2 

Patterned superomniphobic-superomniphilic surfaces 

 

2.1. Introduction 

Superhydrophobic surfaces display apparent contact angles greater than 150° and 

low contact angle hysteresis with water, while superoleophobic surfaces display apparent 

contact angles greater than 150° and low contact angle hysteresis with low surface 

tension liquids such as oils and alcohols.1-4 Superomniphobic surfaces display both 

superhydrophobicity and superoleophobicity. Similarly, superomniphilic surfaces display 

both superhydrophilicity and superoleophilicity i.e., apparent contact angles ~ 0° with 

both water and low surface tension liquids.5 Patterned surfaces containing well defined 

domains that display both these extreme wetting properties have many potential 

applications in fog harvesting and liquid transport,6,7 microchannels and microreactors,8-

13 enhanced condensation14-16 and boiling17-19 heat transfer, and the directed growth of 

thin films.20-22 Further, such surfaces can also serve as templates for the wettability-

driven self-assembly of liquids,8-13 micro- or nano-particles,23-26 and DNA.27 However, 

the majority of patterned surfaces developed, thus far, exhibit extreme wettability 

contrast only with high surface tension liquids such as water (surface tension, γLV = 72.1 
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mN m-1), thereby limiting the applications of such surfaces mostly to surfactant-free 

aqueous systems.8-27 

In order to expand the application range to non-aqueous systems, especially those 

with low surface tension liquids such as oils (e.g., heptane, γLV  = 20.1 mN/m) and 

alcohols (e.g., methanol, γLV  = 22.5 mN/m), it is crucial to develop patterned 

superomniphobic-superomniphilic surfaces. While there have been a few reports on 

switchable superoleophobic-superoleophilic surfaces,28-31 there have been no reports on 

either superoleophobic or superomniphobic surfaces that are patterned with regular, well-

defined superomniphilic domains (or vice-versa).  

Recent work1-4,32-34 has explained how re-entrant surface texture, in conjunction 

with surface chemistry and roughness, can be used to design superomniphobic surfaces. 

In this work, we report a simple, fast and practical methodology to develop patterned 

superomniphobic-superomniphilic surfaces that exhibit stark contrast in wettability with a 

wide range of polar and non-polar liquids. Here first we fabricate superomniphobic 

surfaces that repel almost all liquids. Then the superomniphobic surfaces were patterned 

with superomniphilic domains of desired geometries and dimensions. Using the surfaces, 

we demonstrate the site-selective self-assembly of heptane within the patterned 

superomniphilic domains upon dipping and spraying the liquid. We also demonstrate site-

selective condensation and boiling with low surface tension liquids, which is crucial to 

design surfaces with enhanced heat-transfer properties. We further demonstrated site-

selective self-assembly of both polymers and microparticles within the patterned domains 

upon spraying polymer solutions and particle dispersions, respectively.  
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2.2. Design principles 

When a liquid comes in contact with a textured surface, it adopts either the fully-

wetted Wenzel35 state or the Cassie-Baxter36 state, which supports a composite solid-

liquid-air interface. The Cassie-Baxter state promotes high apparent contact angles (θ * ) 

and low contact angle hysteresis.37-39 Development of superomniphobic surfaces requires 

the design of substrates that promote the formation of the Cassie-Baxter state with both 

water and low surface tension liquids. In recent work,1-4 two dimensionless design 

parameters, spacing ratio D*  and robustness factor A* , were discussed for the systematic 

design of superomniphobic surfaces. D*  is a measure of the air trapped underneath a 

liquid droplet in the Cassie-Baxter state. For textured substrates composed of discrete 

spherical particles (such as those considered here), D* = (R+D) R[ ]2 , where R is the 

radius of the spherical particle and D is half the inter-particle spacing. The Cassie-Baxter 

relationship can be written in terms of D*  as:1-4  

(Equation 2.1) cosθ * = −1+ 1
D*

π
2 3

(1+ cosθ )2
"

#$
%

&'
 

Here, θ  is the Young’s contact angle.40 Higher values of D*  result in higher 

apparent contact angles (Equation 2.1). The robustness factor A*  represents the ratio 

between the breakthrough pressure Pbreakthrough  required to force the transition from non-

wetting Cassie-Baxter state to the fully-wetted Wenzel state and a characteristic reference 

pressure Pref , given as Pref = 2γLV lcap , where lcap = γLV ρg  is the capillary length (here 

ρ  is the liquid density and g is the acceleration due to gravity). This reference pressure 

Pref  is near the minimum possible pressure difference across the composite interface for 
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millimetric sized or larger liquid droplets (or puddles) on extremely non-wetting textured 

surfaces.1-4 For textured substrates with discrete spherical particles, the robustness factor 

A*  is given as:1-4  

(Equation 2.2) A* =
Pbreakthrough
Pref

=
2π lcap

R(2 3D* −π )
(1− cosθ )

( D* −1+ 2sinθ )
    

Any surface with A*  >> 1 indicates the formation of a robust composite interface with 

very high breakthrough pressures, whereas surfaces with A*  < 1 cannot form a stable 

composite interface, causing the liquid to penetrate the textured surface. 

 To fabricate patterned superomniphobic-superomniphilic surfaces, we first 

designed and fabricated surfaces with A*  >> 1 for almost all liquids. Subsequently, the 

surfaces were selectively patterned with domains with A*  < 1 for almost all liquids. This 

allowed us to develop patterned surfaces that can assemble a wide range of liquids within 

patterns of different shapes and sizes.  

2.3. Experimental Procedure 

2.3.1. Materials 

Poly(methylmethacrylate) (PMMA) with a weight-average molecular weight of 

Mw  ~ 35,000 and polyisobutylene (PIB, Mw ≈ 400,000) were obtained from Scientific 

Polymer Products. Poly(vinylpyrrolidone) (PVP, Mw ≈ 1,300,000), fluorescent dyes: 

rhodamine B, fluorescein isothiocyanate isomer I (FITC)!  were obtained from Sigma-

Aldrich. 1H, 1H, 2H, 2H-heptadecafluorodecyl polyhedral oligomeric silsequioxane 

(fluorodecyl POSS) was synthesized as described elsewhere.2 UV fluorescent red and 

green polyethylene microspheres of diameter 10-45 µm were obtained from Cospheric 

LLC. Asahiklin AK-225 solvent was obtained from Structure Probe, Inc. Heptane, 
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methanol and hydrofluoric acid were obtained from Fisher Scientific. Silicon wafers, 

photoresist SPR 220 3.0 and photoresist developer AZ300 MIF were obtained from the 

cleanroom (Lurie Nanofabrication Facility) at the University of Michigan. 

2.3.2. Substrate preparation 

10 mg/mL solutions of 50 wt% 1H,1H,2H,2H-heptadecafluorodecyl polyhedral 

oligomeric silsesquioxane (fluorodecyl POSS) + poly(methylmethacrylate) were prepared 

in 95:5 vol:vol solvent mixture of Ashakilin AK-225 (Asahi Glass Co.):Dimethyl 

Formamide. The solutions were electrospun onto silicon wafers using a custom-built 

setup, at flow rate, voltage and plate-to-plate distance of 0.03 mL/min, 15 kV and 25 cm, 

respectively. Non-textured surfaces were prepared by spin-coating (Specialty Coating 

Systems Spincoater G3P–8) 10 mg/mL solutions of 50 wt% fluorodecyl POSS + PMMA 

in Ashakilin AK-225 on silicon wafers at 1500 RPM for 30 s.  

2.3.3. Surface patterning 

The electrospun superomniphobic surfaces were exposed to O2 plasma 

(Plasmatherm 790) at single bias RF source power of 100 Watt and a pressure of 10-2 

Torr for 5 min. Stainless steel perforated mask (McMaster-Carr) with hole diameters of 

840 µm and 150 µm and center to center spacings of 1400 µm and 280 µm respectively 

were used to obtain superomniphobic surfaces patterned with superomniphilic domains. 

We have also developed a novel photoresist mask transfer method (see section 2.4.3) to 

obtain superomniphobic surfaces patterned with superomniphilic domains of different 

shapes and sizes.  
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2.3.4. Polymer solutions and particle dispersions 

UV fluorescent red and green polyethylene microspheres (Cospheric LLC) of 

diameter 10-45 µm were dispersed in heptane and water, respectively, at 25 mg/mL using 

a vortexer. 50 mg/mL solution of poly(isobutylene) (PIB) in heptane containing a red 

fluorescent dye and 50 mg/mL solution of poly(vinylpyrrolidone) (PVP) in water 

containing a green fluorescent dye were prepared using a vortexer. 

2.3.5. Characterization techniques 

2.3.5.1. X-ray photoelectron spectroscopy (XPS) 

XPS analysis was conducted using a Kratos Axis Ultra X-ray photoelectron 

spectrometer. A monochromatic Al-Kα X-ray source was operated at 15 kV and 10 mA. 

Photoelectrons were collected at a takeoff angle of ~ 65° relative to the sample surface. 

Wide-scan survey spectra were acquired at an analyzer pass energy of 160 eV and a step 

size of 1 eV. O 1s, F 1s and C 1s high-resolution spectra were collected at an analyzer 

pass energy of 60 eV and a step size of 1 eV. The peaks in the high-resolution C 1s 

spectra were indexed by comparing the binding energy at the peak maximum with 

standard spectra available for PMMA and poly(vinylidene fluoride).41  

2.3.5.2. Contact angle measurements 

The contact angle measurements were conducted using a Ramé-Hart 200-F1 

goniometer. All contact angles reported in this work were measured by advancing or 

receding a small volume of liquid (~ 2 µL) onto the surface using a 2 mL micrometer 

syringe (Gilmont). At least three measurements were performed on each substrate. 

Typical error in measurements was ±2º. 
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2.3.5.3. Microscopy 

The surfaces were imaged using a Hitachi SU8000 ultra-high resolution scanning 

electron microscope (SEM) at 5 kV and an Olympus BX 51 fluorescent microscope. 

2.4. Results and discussion 

2.4.1. Superomniphobic and superomniphilic surfaces 

Superomniphobic surfaces were fabricated by electrospinning solutions of 50 wt% 

fluorodecyl POSS1-4 + poly(methyl methacrylate) (PMMA) in Asahiklin AK-225 (see 

section 2.3.2). The fabricated electrospun surfaces as shown in Figure 2.1 are highly 

porous and have re-entrant, bead morphology. We estimated the porosity of the 

electrospun surfaces terms of spacing ratio, D*= 15.9. We used equation 2.1 in the main 

manuscript, in conjunction with contact angle measurements (Table 2.1), to estimate the 

spacing ratio. From Figure 2.1a, we obtained the average size of the electrospun beads, 

2R = 13.4 µm. The high porosity of the electrospun surface, combined with the low 

surface energy of 50 wt% fluorodecyl POSS + PMMA blend (γSV = 11.1 mN m-1, see 

section 2.5), leads to superomniphobicity1-4 with a high robustness factor, high advancing 

contact angle (see Figure 2.1b), and low contact angle hysteresis for water ( A*  = 16.2, 

θadv
* = 162° and Δθ *  = 2°), as well as, for various low surface tension liquids (see Table 

2.1), such as heptane ( A*  = 3.4, θadv
*  = 151° andΔθ *  = 10°).  

To switch the superomniphobic surfaces to superomniphilic, we exposed the 

surfaces to O2 plasma. This resulted in θadv
*  = θrec

*  ≈ 0° for both water and heptane (see 

Figure 2.1b). These contact angles remain unchanged with time (see Figure 2.2). The 
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morphology of the electrospun beads also remains unaffected after O2 plasma treatment 

(see Figure 2.1a). 

Figure 2.1. Patterned superomniphobic-superomniphilic surfaces. a) An SEM image 
showing electrospun bead morphology at the interface of the areas exposed and not 
exposed to O2 plasma. This image indicates that there is no change in the bead 
morphology after O2 plasma treatment. b) An electrospun bead surface (composed of 50 
wt% fluorodecyl POSS + PMMA) that was exposed to O2 plasma on the left 
(superomniphilic) and not exposed to O2 plasma on the right (superomniphobic). Water 
(dyed blue) completely wets the superomniphilic region, but shows a high contact angle 
on the superomniphobic region. Heptane (dyed red) and methanol (dyed green) also show 
high contact angles on the superomniphobic region. The reflective surface visible 
underneath the droplets on the superomniphobic surface indicates the presence of 
microscopic pockets of air due to the formation of a composite interface. 
 

However, O2 plasma treatment results in oxygen enrichment and simultaneous 

defluorination of the surface as indicated by the change in peak intensities for the oxygen 

1s, fluorine 1s (see Figure 2.3) and the -CF2 and -CF3 groups in the high-resolution 

carbon 1s (see Figure 2.3) XPS spectra. The surface is likely defluorinated due to the 

degradation of the fluorinated end groups in fluorodecyl POSS.42,43 The change in surface 

chemistry and consequently the change in surface energy (increased to γSV = 67.8 mN m-1, 

see section 2.4.2) upon O2 plasma treatment are also confirmed by contact angle 

measurements on non-textured surfaces spin-coated with 50 wt% fluorodecyl POSS + 

PMMA blend. For non-textured surfaces, the contact angles for water decreased from 

θadv  = 123°, θrec  = 110° to θadv  = 20°, θrec  = 0°, while those for heptane decreased from 
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θadv  = 61°, θrec  = 38° to θadv  = 10°, θrec  = 0° upon O2 plasma treatment. This results in 

extremely low robustness factors, A*= 0.8 for water and A*  = 0.1 for heptane on the 

electrospun bead surface, which explain the superomniphilic behavior after O2 plasma 

treatment. 

Table 2.1. Contact angles on electrospun surfaces composed of 50 wt% fluorodecyl 
POSS + PMMA before and after O2 plasma treatment. 
 

 Electrospun surface 
Water Heptane Methanol 

      
Before 

O2 
plasma 

treatment 

 
162° 

 
160° 

 
151° 

 
141° 

 
153° 

 
145° 

After O2 
plasma 

treatment 

 
0° 

 
0° 

 
0° 

 
0° 

 
0° 

 
0° 

 

 

Figure 2.2. The apparent advancing contact angles of water and heptane on the 
superomniphilic surface at various times after O2 plasma treatment. 
 
 

θadv
* θrec

* θadv
* θrec

* θadv
* θrec

*
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Figure 2.3. XPS spectra for the superomniphobic surface and the superomniphilic 
surfaces. a) and b) Survey spectra showing intensity of different elements present on a 
superomniphobic surface and a superomniphilic surface, respectively. The characteristic 
peaks for carbon, fluorine, oxygen and silicon within the spectra are labeled. (c) Fluorine 
and oxygen elemental peaks for superomniphobic and the superomniphilic surfaces. (d) 
High- resolution carbon 1s peaks corresponding to the different carbon moieties present 
on the surface. 
 
2.4.2. Estimation of solid surface energy 

We used the Owens and Wendt approach44 to estimate the surface energy γSV  of 

the 50 wt% fluorodecyl POSS + PMMA blend surface before and after O2 plasma 

treatment. According to this approach, the solid surface energy is the sum of 

contributions from two types of intermolecular forces at the surface:  

(Equation 2.3) γSV = γ
p
SV +γ

d
SV  
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Here γ dSV  accounts for the dispersive component of the surface energy, while γ p
SV  

accounts for the polar component of the surface energy. Further, this approach postulates 

that: 

(Equation 2.4) γSL = γ SV +γ LV − 2 γSV
d γLV

d − 2 γSV
p γLV

p  

Here, γ p
LV and γ dLV are the polar and dispersive components of the liquid surface tension 

respectively. Combining equations 2.3 and 2.4 with the Young’s equation (equation 1.1) 

and recognizing that the polar component of liquid surface tension is zero γ p
LV  for non-

polar liquids such as oils, the dispersive component of solid surface energy is given as: 

(Equation 2.5) γ dSV = γLV
1+ cosθ
2

!

"
#

$

%
&
2

 

Here, γLV  is the surface tension of a non-polar liquid and θ  is the equilibrium contact 

angle of the same non-polar liquid on the solid surface. We used heptane (γLV  = 20.1 

mN/m) as the non-polar liquid to estimate γ dSV . After determining the dispersive 

component γ dSV , the polar component of the solid surface energy γ p
SV , is determined using 

a polar liquid: 

(Equation 2.6) γ p
SV =

1
γ p
LV

γLV (1+ cosθ )
2

− γ dSVγ
d
LV

"

#
$

%

&
'
2

 

Here γ p
LV  and γ LV are the polar component of the surface tension and the total surface 

tension of a polar liquid and θ is the equilibrium contact angle for the same polar liquid 

on the solid surface. We used water (γ p
LV = 51.0 mN/m and γ dLV =21.1) as the polar liquid 

to estimate γ p
SV . Finally total solid surface energy γSV  is given by the summation of γ p

SV  

and γ dSV . 



!
28 

The solid surface energy values were estimated by using the advancing contact 

angles measured on spin-coated surfaces before and after O2 plasma treatment (Table S2). 

The calculated surface energies are reported in Table 2.3. 

Table 2.2. Contact angles on spin-coated 50 wt% fluorodecyl POSS + PMMA surfaces 
before and after O2 plasma treatment. 
 

 Spin-coated surface 
Water Heptane Methanol 

θadv  θrec  θadv  θrec  θadv  θrec  
Before O2 

plasma 
treatment 

 
123° 

 
110° 

 
61° 

 
38° 

 
64° 

 
43° 

After O2 
plasma 

treatment 

 
20° 

 
0° 

 
10° 

 
0° 

 
11° 

 
0° 

 
 
Table 2.3. Estimated solid surface energies for 50 wt% fluorodecyl POSS + PMMA 
blend before and after O2 plasma treatment. 

 

 

 

 

 

 

 

 

 Surface energy (mN m-1) 
Polar 

component 
(γ p

SV ) 

Dispersive 
component 

(γ dSV ) 

Total 
(γSV ) 

Before O2 plasma 
treatment 

11.08 0.02 11.1 

After O2 plasma 
treatment 

19.8 48.0 67.8 
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2.4.3. Photoresist mask transfer (PRMT) method 

Figure 2.4. Schematic showing the steps of the photoresist mask transfer (PRMT) 
method. 
 

In order to make the fabrication of patterned superomniphobic-superomniphilic 

surfaces with different sizes and shapes easier and more universal, we have developed the 

photoresist mask transfer method, as shown in Figure 2.4. Since the photoresist cannot be 

spin-coated on a superomniphobic surface due to its extreme non-wettability, we used an 

alternative technique to transfer the photoresist mask onto the superomniphobic surface. 

In this method, a 1 µm thick layer of silicon dioxide (SiO2) is deposited on a silicon wafer 

using plasma enhanced chemical vapor deposition (PECVD). The photoresist (SPR 220 

3.0) is spin-coated at 3000 rpm on the SiO2 surface. This resulted in a 3 µm thick 

photoresist film. The photoresist film is then patterned with the desired geometry using 

photolithography and developed (in AG 300 MIF, manufacturer). The developed 

photoresist film is then lifted off from the silicon wafer by dissolving SiO2 in dilute 

hydrofluoric acid and transferred onto the electrospun superomniphobic surface. Using 

the developed photoresist film as a mask, the electrospun superomniphobic surface is 

exposed to O2  plasma. After O2  plasma exposure, the photoresist mask is removed by 

degrading with ultraviolet light (365 nm) and dissolving in the photoresist developer (AG 

300 MIF). Thus, patterned superomniphobic-superomniphilic surfaces are obtained. 
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Overall the PRMT methodology allows us to easily fabricate superomniphilic domains of 

different sizes and shapes. 

2.4.4. Site-selective self-assembly of liquids 

 When such a patterned surface (see Figure 2.5a) is dipped in heptane (dyed red), 

heptane selectively wets each of the superomniphilic domains due to the extreme contrast 

in wettability, resulting in the self-assembly of heptane droplets within the 

superomniphilic patterns (see Figure 2.5b). This self-assembly is also assisted by the low 

contact angle hysteresis of heptane (Δθ *= 10°, roll-off angle ≈ 7°, the minimum angle at 

which liquid droplets roll-off the surface under it’s own gravity) on the superomniphobic 

regions. Similar self-assembly of heptane droplets is also obtained by spraying heptane 

on the patterned surfaces. Figures 2.5c-5f show the site-selective self-assembly of 

heptane droplets on superomniphobic surfaces patterned with either circular or striped 

superomniphilic domains. Such self-assembled organic liquids can serve as surface-

directed microchannels and microreactor arrays for liquid-phase reactions. 8-13,45,46  
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Figure 2.5. Site-selective self-assembly of heptane a) A superomniphobic surface 
patterned with superomniphilic domains before dipping in a beaker filled with heptane 
(dyed red). b) Site-selective self-assembly of heptane droplets within the superomniphilic 
domains after dipping in heptane. c), d), e) and f) Site-selective self-assembly obtained by 
spraying heptane on patterned surfaces with superomniphilic domains. Surfaces in c), d), 
and e) have circular superomniphilic domains of diameters 800 µm, 510 µm, and 150 µm, 
respectively. Surface in f) has striped superomniphilic domains of width 500 µm.  
 
2.4.5 Patterned surface to enhance condensation and boiling heat transfer 

It has been recently demonstrated that superhydrophobic surfaces with 

superhydrophilic domains enhance condensation heat transfer,14,47 while superhydrophilic 

surfaces with superhydrophobic domains enhance boiling heat transfer.17,18 However, 

such surfaces can enhance heat transfer only when water is the heat transfer fluid. Many 

heat transfer operations (e.g., refrigeration and distillation) involve non-aqueous liquids 

with low surface tension. Here, we demonstrate the applicability of our patterned 

superomniphobic-superomniphilic surfaces in potentially enhancing condensation and 

boiling heat transfer even with low surface tension liquids.  
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2.4.5.1 Site-selective condensation of heptane vapors 

We used the setup shown in Figure 2.6 to expose the superomniphobic surface 

patterned with superomniphilic domains to heptane vapors. The reservoir of liquid 

heptane was heated to 50°C using a hot plate and the patterned substrate was at room 

temperature (~ 25°C). Figures 2.7a and 2.7b illustrate how heptane vapors preferentially 

condense on, and wet, the superomniphilic domains. This is because of the strong 

dependence of heterogeneous nucleation on the Young’s contact angle of the surface.8 

We estimate that the nucleation rate for heptane condensation on the superomniphilic 

regions of the surface is ~ 5 orders of magnitude higher than that on the superomniphobic 

regions, based on Volmer’s classical nucleation theory48,49 (see section 2.4.5.2). Note that 

this site-selective condensation in superomniphilic domains is observed even though the 

Young’s contact angle for heptane on both the superomniphobic domains (θadv = 61°) and 

the superomniphilic domains (θadv = 10°) is less than 90º, i.e., both the domains are 

inherently oleophilic. In our control experiments, we observed a similar site-selective 

condensation of heptane vapors on non-textured (smooth) surfaces with patterned 

wettability. However, similar to previous reports,9 we observed that the patterned non-

textured surfaces do not promote roll-off of the condensed droplets like the patterned 

superomniphobic surfaces. Surfaces that provide high nucleation rates for condensation 

(superomniphilic domains), while also providing efficient roll-off of the condensed 

droplets, are important as they promote drop-wise condensation over film-wise 

condensation.14,47 
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Figure 2.6. Experimental setup used for the condensation of heptane on superomniphobic 
surface patterned with superomniphilic domains 
 

 

Figure 2.7. Site-selective condensation and boiling of liquids a) and b) Superomniphobic 
surface patterned with superomniphilic domains before and after exposure, respectively, 
to heptane vapors. The site-selective condensation of heptane vapors within the 
superomniphilic domains is evident in (b). c) Superomniphilic surface patterned with 
superomniphobic domains immersed in boiling methanol. It is evident that the methanol 
vapor bubbles preferentially nucleate on the superomniphobic domains (black dashed 
circles). 
2.4.5.2 Comparison of heptane nucleation rates in superomniphobic and 

superomniphilic regions 

 
The free energy barrier for the nucleation of a liquid droplet on a flat surface is 

strongly dependent on the Young’s contact angle θ . According to Volmer’s classical 

nucleation theory, the free energy barrier for nucleation is given as14,48,49:  

(Equation 2.7) ΔG = πγLVr
2 (2−3cosθ + cos3θ ) 3  
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Here, γLV  is the surface tension of the liquid and r  is the critical radius. The critical 

radius is given by Kelvin’s classical equation:  

(Equation 2.8) ln P Po( ) = 2γLVMV RTr  

Here, Po  is the vapor pressure over the flat surface of the liquid, P is the vapor pressure 

over a curved surface of a condensed liquid droplet with radius r , MV  is the molar 

volume of the liquid, T is the temperature and R is the universal gas constant. The vapor 

pressure over the flat surface of a liquid at a given temperature T (in °C) is given by the 

Antoine equation50: 

(Equation 2.9) lnPo = A−
B

T +C
        

Here, Po  is in kPa. A, B and C are the parameters for the Antoine equation. For heptane, 

A =13.86, B = 2910.26 and C = 216.43.50 From equation 2.9, the vapor pressure Po  = 5.2 

kPa at 25°C (substrate temperature). Assuming equilibrium between the reservoir of 

liquid heptane (at 50°C) and the heptane vapors, the vapor pressure over the curved 

surface of a condensed heptane droplet P = vapor pressure of heptane Po  at 50°C. Thus, 

from equation 2.9, we obtain P = 18.9 kPa. Substituting the values of P andPo  into 

equation 2.8, we estimate the critical radius r  of nucleation for heptane  = 2.1 nm. The 

nucleation rate, J,  is related to the free energy barrier ΔG  by the relation14,48,49:  

(Equation 2.10) J = Jo exp ΔG kT( ) = Jo exp πγLVr
2 2−3cosθ + cos3θ( ) 3kT( )  

Here, k is the Boltzmann’s constant. From equation (2.10), we obtain the ratio of 

nucleation rates for heptane condensation in the superomniphilic regions (with θadv  

= 10°) to that in the superomniphobic regions (with θadv  = 61°) to be ~105. 
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2.4.5.3. Site-selective evaporation of methanol 

We also immersed our superomniphilic surface patterned with superomniphobic 

domains in boiling methanol at 65°C (the boiling point for methanol). Figure 2.7c 

illustrates that the methanol vapor bubbles preferentially nucleate on the 

superomniphobic domains. Surfaces that are not easily wet by the boiling liquid (i.e., 

surfaces with low surface energy) exhibit a high value for the boiling heat transfer 

coefficient (HTC) because they facilitate bubble nucleation. In our control experiments, 

we observed that low surface energy, non-textured surfaces facilitate bubble nucleation. 

However, as reported previously,18 the cavities (air trapped) in low surface energy 

textured surfaces provide additional sites for nucleation of vapor bubbles. Consequently, 

superomniphobic surfaces are expected to yield high values for the HTC,18 even for low 

surface tension heat transfer liquids. As the heat flux increases, the rate of nucleation of 

bubbles increases, and at the critical heat flux (CHF), the over-crowded bubbles coalesce 

to form a continuous vapor film between the heating surface and the boiling liquid.17,18 

This vapor film possesses a high thermal resistance and acts as a barrier to heat transfer. 

Thus, it is desirable to increase the CHF.17,18 High CHF can be achieved by utilizing 

surfaces that are easily wet by the boiling liquid (i.e., surfaces with high surface energy). 

18 Consequently, superomniphilic surfaces are expected to yield a high CHF. Surfaces 

that provide high nucleation rates for boiling (superomniphobic domains), while also 

efficiently preventing the formation of a continuous vapor film (superomniphilic surface), 

even with low surface tension liquid systems, such as those developed here, are therefore 

of significant importance for simultaneously increasing both HTC and CHF.  
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Our patterned surfaces provide an avenue for systematically varying the domain 

size and the inter-domain spacing in order to study enhanced condensation and boiling 

heat transfer14,17,18,47 with both high and low surface tension liquids. 

2.4.6. Site-selective self-assembly of microparticles and polymers 

Additionally, we have utilized our superomniphobic surfaces patterned with 

superomniphilic domains as templates for wettability-driven site-selective self-assembly 

of microparticles and polymers. When a dispersion of UV fluorescent green microspheres 

in water is sprayed on the patterned surface, water droplets and consequently the 

microspheres are confined within the superomniphilic domains. After the water dries, the 

microspheres are deposited within the superomniphilic domain (see inset in Figure 2.8a), 

resulting in site-selective self-assembly of microspheres (see Figure 2.8a). Similarly, we 

obtained site-selective self-assembly of UV fluorescent red microspheres in heptane (see 

Figure 2.8b). We also obtained site-selective self-assembly of poly(vinyl pyrrolidone) 

(PVP, Mw ≈ 1,300,000) films (see Figure 2.8c) and poly(isobutylene) (PIB, Mw ≈  

400,000) films (see Figure 2.8d) by spraying solutions of PVP (10 wt%) in water and PIB 

(10 wt%) in heptane, respectively.  

We also obtained PIB films of different sizes and shapes using our PRMT 

methodology (see Figures 2.8e-8h). Thus, our methodology offers a simple route to make 

precisely tailored arrays of microparticles and polymer films of different sizes and shapes 

on textured surfaces, using both high and low surface tension liquids. Such precise 

control over the site-selective self-assembly of particles and films can be useful in 

developing electronic and optical devices,23,24 patterned assembly of cells, and growth of 

well defined thin films and nanostructures (3-D assembly).20-22 
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Figure 2.8. Site-selective self-assembly of solids within the patterned superomniphilic 
domains. a) and b) Site-selective self-assembly of UV fluorescent green microspheres 
dispersed in water and UV fluorescent red microspheres dispersed in heptane, 
respectively. (a) and (b) were obtained under a 365 nm UV lamp and the corresponding 
insets show higher magnification optical microscope images. c) Site-selective self-
assembly of PVP dissolved in water using 800 µm diameter circular superomniphilic 
domains. d) and e) Site-selective self-assembly of PIB dissolved in heptane using 800 µm 
and 100 µm diameter circular superomniphilic domains, respectively. f), g), and h) Site-
selective self-assembly of PIB using superomniphilic domains of non-circular shapes. c), 
d), e), f), g) and h) were obtained using fluorescent microscopy and scale bars represent 1 
mm. 
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2.5. Conclusions 

In conclusion, we have demonstrated a facile methodology to create patterned 

superomniphobic-superomniphilic surfaces. Utilizing our patterned surfaces, we have 

obtained site-selective self-assembly of heptane droplets via dipping and spraying. Such 

self-assembled organic liquids can serve as microreactor arrays for liquid-phase reactions. 

We have also demonstrated the preferential condensation of heptane within patterned 

superomniphilic domains and preferential boiling of methanol on patterned 

superomniphobic domains. Such surfaces provide an avenue to study enhanced 

condensation and boiling heat transfer with both high and low surface tension liquids. We 

have also utilized our superomniphobic surfaces patterned with superomniphilic domains 

as templates for wettability-driven site-selective self-assembly of microparticles and 

polymers.  
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CHAPTER 3 

Wettability engendered templated self-assembly (WETS) for 

fabricating multi-phasic particles  

 

3.1. Introduction 

Precise control over the geometry and chemistry of multi-phasic (monophasic, 

biphasic or Janus, tri-phasic, quad-phasic etc.) micro- and nano-particles is of significant 

importance for a wide range of applications including drug delivery,1-3 vaccines and 

inhalation biotherapeutics,4 biological sensors,5 optical devices,5 and nanomotors.6 

Further, in the bottom-up approach envisioned for building materials and devices of the 

future, it is necessary to develop precisely designed particles (building blocks) that can 

assemble in a preprogrammed manner to yield desired structures and properties.7-14 

However, typically, fabricated particles have a uniform distribution of all materials 

(isotropic). In order to design particles that self-assemble in a preprogrammed manner, it 

is essential to control the size, shape, and distribution of dissimilar materials within each 

particle to form anisotropic particles, such as Janus, tri-phasic, or quad-phasic particles.7-

11  
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In addition, in case of medical therapies such as combinatorial treatment methods, 

which uses more than one medication to treat a disease, requires encapsulation and 

release of multiple drugs, ideally with independently controlled release kinetics. To 

address this challenge, nanoparticles with multiple compartments, each being made of 

distinct polymer phases encapsulating different drugs, would be very beneficial. However 

there hasn’t been an easy way to fabricate monodisperse multi-phasic nanoparticles at 

large-scale while precisely controlling geometry and dimensions of the particles.  

In past few decades, many strategies have been developed to fabricate multi-

phasic particles. These include pickering emulsion method, electrohydrodynamic 

cojetting, photopolymerisation within microfluidic devices and Particle Replication on 

Non-wetting Template (PRINT) methods.15-19 Although these techniques have been 

successful in fabricating specific types of multi-phasic particles, a simple and universal 

technique for the fabrication of mono-disperse, multi-phasic particles of any desired 

composition and size, with precise control over particle geometry has not been developed 

thus far. In this work, we have developed a facile technique termed WETS (Wettability 

Engendered Templated Self-assembly) which provides an unprecedented ability for the 

large scale manufacturing of monodisperse, multi-phasic particles possessing almost any 

projected shape, composition, modulus, and dimensions as small as 25 nm, using a 

simple dip-coating process. 

3.2. Design principles 

When a liquid comes in contact with a smooth homogenous surface, it can either 

wet the surface completely, or partially, making a finite equilibrium contact angle (θE ) 

with the surface. The equilibrium contact angle is determined by the balance between the 
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solid-vapor (γSV or the surface energy), solid-liquid (γSL ) and liquid-vapor (γLV or the 

surface tension) interfacial tensions acting at the three-phase contact line, and is given by 

Young’s relation cosθE = (γSV −γSL ) γLV .20 The contact angles for a liquid as it advances 

or recedes from a smooth surface are called the advancing (θA ) and receding (θR ) contact 

angles respectively. When a substrate with a receding contact angle, θR = 0  is pulled 

through a liquid, the substrate is coated with a uniform liquid film of finite thickness, 

controlled by the dip-coating velocity21-24. In contrast, when a partially wetting surface (

θR > 0 ) is dip-coated, the liquid film is unstable and dewets off the surface, leaving the 

surface completely dry21-24. Similarly, when a non-wettable (or low surface energy) 

surface patterned with wettable domains is dip-coated, the liquid wets and coats only the 

wettable (or high surface energy) domains and leaves the non-wettable surface 

completely dry24-26.  

Another important parameter to consider while dip-coating a patterned surface is 

that there is a maximum dip-coating velocity (critical velocity VC ) above which a liquid 

will not dewet off a surface, even if the surface exhibits a finite receding contact angle. 

This critical velocity depends on the viscosity (η ) and surface tension (γLV ) of the liquid, 

and is given by23:  

(Equation 3.1) VC = k
γLV
η
θE
3  

Here, k is proportionality constant. Below this critical dip-coating velocity, the liquid 

dewets off a non-wettable or partially wettable surface completely. The non-wettable 

surfaces developed in this work have high receding contact angles (θR  > 20º), see Table 

3.1) for different liquids and polymer solutions (including very low surface tension 
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liquids) used in this work. This leads to relatively high critical dip-coating velocities, 

typically in the range of several cm/sec.  

 Further, in case of liquid droplets that are in contact with both non-wettable 

surface (possessing low surface energy γSV ) and a wettable surface (possessing high 

surface energy), as discussed in section 1.6, experiences a force driving the droplets to 

assemble preferentially within the wettable domains.  

There have been several reports25-28 on using surfaces with patterned wettability 

to engender the self-assembly of water (γLV ~ 72 mN/m), and water-based polymer 

solutions or dispersions. However, typically, it has been more difficult to self-assemble 

low surface tension organic liquids (such as alcohols, dimethylformamide, 

tetrahydrofuran, toluene etc.) or polymer solutions within patterned high surface energy 

domains.29 This is because organic solvents and polymer solutions possess low surface 

tension values (γLV ~ 15 – 30 mN/m), and as a consequence they tend to wet and spread 

on both the high and low surface energy patterned domains, forming a film over the 

entire surface.  

3.3. Experimental Procedure 

3.3.1. Materials 

Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane (HDFTS) was purchased 

from Gelest Inc. Poly(vinylidene fluoride) (PVDF, with a weight-average molecular 

weight of Mw ≈ 275kDa) and polystyrene (PS, Mw ≈ 190kDa) were purchased from 

Scientific polymer products Inc. SU-8 (2010) purchased from MicroChem Corp. 

Poly(sodium 4-styrenesulfonate) (PSS, Mw ≈ 70 kDa), poly(ethyleneglycol)diacrylate 

(PEGDA, Mw ≈ 700Da), fluorescent dyes: rhodamine B, fluorescein isothiocyanate 
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isomer I (FITC), 4’, 6-diamidino-2-phenylindole dihydrochloride (DAPI)  and solvents: 

dimethylformamide (DMF), toluene, propylene glycol monomethyl ether acetate 

(PGMEA) and perfluorodecalin (PFD) were purchased from Sigma-Aldrich. Ferrofluid 

(EMG 304) was purchased from Ferrotec. Silicon wafers were obtained from the 

cleanroom (Lurie Nanofabrication Facility) at the University of Michigan. 

3.3.2. Templates fabrication 

A ~5 nm thin film of titanium dioxide (TiO2) was deposited on to silicon wafers 

through e-beam evaporation. To make the TiO2 surface non-wettable, the surface was 

exposed to HDFTS silane vapors at 100°C for 30 minutes. Next, the silanised TiO2 

surfaces were exposed to deep ultraviolet radiation (UV, 254 nm) for 90-120 minutes 

through a quartz photomask with desired patterns. The exposed TiO2 domains through the 

photomask switched from non-wettable (low surface energy) to wettable (high surface 

energy). This gave us non-wettable templates with wettable domains possessing any 

desired geometry. 

3.3.3. Nanotemplates fabrication 

The WETS templates with wettable domains of 700 nm and 25 nm in diameter 

were fabricated using photolithography and block copolymer   lithography, respectively. 

Here, we used standard photolithography, and a stepper (GCA AS200 Autostep), to 

obtain the photoresist mask with a uniform array of 700 nm holes on top of a silicon 

wafer. We used block copolymer lithography, using an asymmetric block copolymer, 

polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) forming cylindrical 

nanostructures (molecular weight: PS/PMMA – 46 kDa /21 kDa) to develop a 

polystyrene mask with 25 nm hexagonally packed holes array on top of a silicon wafer. 
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Next the Si wafers with the polymer masks were deposited with 5 nm (for 25 nm 

templates) and 15 nm (for 700 nm templates) thin TiO2 through e-beam evaporation. 

Following TiO2 deposition, the polymer masks were lifted off the surface in their 

respective solvents. This produced silicon substrates with TiO2 nano-domains of diameter 

700 nm, as well as substrates with TiO2 nano-domains of diameter 25 nm. Then, the 

substrates were made non-wettable by exposing them to HDFTS vapors. Finally, the 

substrates were exposed to deep UV radiation. This increased the surface energy of the 

TiO2  nano domains, while the rest of the silicon substrate remained non-wettable.  

3.3.4. Polymer solutions for dip-coating 

PSS, PVDF and PS solutions used for dip-coating were 15 wt% solutions of the 

polymers in deionized water, DMF and toluene, respectively. For the PS deposition 

within the 25 nm and 700 nm patterned domains we used low molecular weight 

polystyrene (molecular weight 2000 – 5000 Da). The sugar solution used was a 30wt% 

solution in water. PEGDA and SU-8 were used as received. We also used 80 wt% (SU-8 

0.8) and 50 wt% (SU-8 0.5) solutions of SU-8 in PGMEA for additional depositions. For 

magnetic polymer dispersion, ferrofluid was added to SU-8 at 0.5 % (v/v). All solutions 

were dip-coated using a syringe pump (KD Scientific) at a constant dip-coating velocity 

in the range of 0.1 to 1 cm/sec. 

3.3.4. Characterization techniques 

3.3.4.1. Contact angle measurements 

The contact angle measurements were conducted using a Ramé-Hart 200-F1 

goniometer. All contact angles reported in this work were measured by advancing or 

receding a small volume of liquid (~ 2 µL) onto the surface using a 2 mL micrometer 
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syringe (Gilmont). At least three measurements were performed on each substrate. 

Typical error in measurements was ±2º. 

3.3.4.2. Microscopy 

Tapping-mode atomic force microscopy (AFM) was conducted using a Veeco 

Innova instrument. Veeco TESPA tips and Hi Res C probes were used for imaging. The 

surfaces were imaged using a Hitachi SU8000 ultra-high resolution scanning electron 

microscope (SEM) at 5 kV and an Olympus BX 51 fluorescent microscope. The multi-

phasic particles were visualized using a FCLSM (Nikon A1 Confocal). Three different 

lasers, 405 nm laser, 488 nm Argon laser, and 533 nm Helium-Neon green (HeNeG) laser, 

were used to excite the dyes DAPI, FITC, and Rhodomine B respectively.  

3.4. Results and discussion 

3.4.1. Templates for wettability engendered templated self-assembly 

There have been several reports25-28 on using surfaces with patterned wettability 

to engender the self-assembly of water (γLV ~ 72 mN/m), and water-based polymer 

solutions or dispersions. However, typically, it has been more difficult to self-assemble 

low surface tension organic liquids (such as alcohols, dimethylformamide, 

tetrahydrofuran, toluene etc.) or polymer solutions within patterned high surface energy 

domains.29 This is because organic solvents and polymer solutions possess low surface 

tension values (γLV ~ 15 – 30 mN/m), and as a consequence they tend to wet and spread 

on both the high and low surface energy patterned domains, forming a film over the 

entire surface.  

In this work, we employed smooth, low surface energy, silanized, titanium 

dioxide (TiO2) surfaces (see section 3.3.2) that possess finite receding contact angles (θR ) 
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for both water and different low surface tension liquids (including fluorinated liquids), 

and patterned them with high surface energy domains (θR = 0) of different shapes and 

sizes. Such surfaces serve as templates to engender the self-assembly of both aqueous and 

organic polymer solutions and dispersions (Table 3.1). We fabricated the patterned 

templates by irradiating the TiO2 surfaces with deep UV light (254 nm) through a quartz 

photo-mask possessing any desired pattern (see Figure 3.1). Upon deep UV irradiation, 

the surface energy of TiO2 surfaces in the unmasked regions increases significantly due 

to the photo-catalytic cleavage of the TiO2 – silane bond.28, 30, 31 This simple fabrication 

process gave us a non-wettable surface patterned with wettable domains defined by the 

mask geometry. When such templates are dip-coated with a polymer solution (or 

dispersion), the solution preferentially wets and self-assembles within the patterned 

wettable domains. Upon evaporation of the solvent, the polymer (or particles from a 

dispersion) deposits within the patterned high surface energy domains, conforming to 

their shape and size (see Figure 3.2 and 3.3).  

We observe similar assembly of liquids within the patterned high surface energy 

domains for spin- or spray-coating. Further, this wettability-engendered templated self-

assembly of polymers or particles works effectively with a wide variety of polymer 

solutions and dispersions (as listed in Table 3.1). 

 

Figure 3.1. A schematic illustrating the fabrication of TiO2 templates with patterned 
wettability. 
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3.4.2. Wettability engendered templated self-assembly (WETS) methodology 

 

Figure 3.2. A schematic illustrating the WETS technique for fabricating multi-phasic 
particles. 
 

Table 3.1 lists many of the different liquids and polymer solutions that 

demonstrated wettability engendered self-assembly within the patterned surfaces 

developed in this work. The table also lists the advancing and receding contact angles for 

all liquids on both the wettable and non-wettable regions of the patterned surfaces. All 

the polymer solutions used for contact angle measurements are 15 wt% solutions. 
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Table 3.1. Advancing (θA ) and receding (θR ) contact angles for over 30 different liquids 
and polymer solutions on the non-wettable and wettable regions of the patterned surfaces. 

Liquids 
Non-wettable surface Wettable surface 

θA θR θA θR 

Water 120o 112o <10o 0o 

Dimethylformamide 
(DMF) 

76o 66o <10o 0o 

Toluene 72o 62o <10o 0o 

Ethanol 50o 38o 0o 0o 

Hexane 47o 33o 0o 0o 

Acetone 62o 47o 0o 0o 

Methanol 52o 39o 0o 0o 

Isopropanol 56o 42o 0o 0o 

Tetrahydrofuran 
(THF) 

66o 53o 0o 0o 

Chloroform 64o 51o 0o 0o 

Propylene glycol 
monomethyl ether 
acetate (PGMEA) 

66o 57o 0o 0o 

SU-8 68o 55o 0o 0o 

PEGDA 85o 72o <10o 0o 

AK 225 

(Fluorinated solvent) 
28o 14o 0o 0o 

Hexadecane 66o 53o 0o 0o 



!
52 

 

PSS-Water 108o 97o <10o 0o 

PVDF-DMF 72o 59o <10o 0o 

PS-Toluene 72o 58o <10o 0o 

PMMA-Toluene 70o 57o <10o 0o 

Sugar-Water 112o 99o <10o 0o 

PMMA-DMF 73o 60o <10o 0o 

PMMA-AK 225 32o 17o 0o 0o 

PVDF-Acetone 66o 52o 0o 0o 

Polydimethylsiloxane 
(PDMS) 

30o 15o 0o 0o 

Polyvinylalcohol 
(PVA)-Water 

108o 96o <10o 0o 

SU-8-PGMEA 68o 56o 0o 0o 

Polyisobutylene 
(PIB)-Hexane 

50o 32o 0o 0o 

PEGDA-DMF 78o 68o <10o 0o 

SU-8-DMF 70o 59o <10o 0o 

PVA-Ethanol 52o 37o 0o 0o 

PIB-THF 53o 39o 0o 0o 

PMMA-Chloroform 58o 42o 0o 0o 
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Thus, the WETS technique can serve as a facile, bottom-up approach to pattern a 

wide variety of polymers and particles with precise control over geometry. In addition, 

utilizing the WETS technique, we sequentially deposited multiple polymers and 

inorganic particles, one on top of another within the wettable domains, to fabricate multi-

phasic assemblies. Upon releasing the multi-phasic assemblies from the template by 

dissolving away a pre-deposited sacrificial layer, we obtained multi-phasic particles with 

precisely controlled geometry and chemistry. After release of the particles from the 

template, the templates can be readily reused (over 20 times in our experiments) for 

fabricating a new batch of multi-phasic particles (see Figure 3.2), enabling a rapid, 

inexpensive, waste-free (significant when fabricating particles that encapsulate expensive 

biomolecules and drugs)1 and easily reproducible method for manufacturing multi-phasic 

particles.  

In order to demonstrate the fabrication of multi-phasic polymer particles using the 

WETS technique, we first deposited poly(sodium 4-styrenesulfonate) (PSS; using PSS in 

water solution) within the wettable domains (see Figure 3.3a), followed by 

poly(vinylidene fluoride) (PVDF; using PVDF in dimethylformamide solution) on top of 

PSS (see Figure 3.3b) and finally polystyrene (PS; using PS in toluene solution) on top of 

PVDF and PSS  (see Figure 3.3c). Note that the preferential assembly of polymer 

solutions on top of the preceding polymer patterns is driven by the difference in receding 

contact angles between the polymer patterns and the non-wettable background (see Table 

3.2). After depositing each polymer layer, we annealed the surfaces slightly above the 

glass transition temperature of the polymers to ensure good adhesion between the layers. 

We confirmed this sequential deposition of polymers, one on top of another, using 
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fluorescence microscopy and atomic force microscopy height measurements (see Figure 

3.3a-3c, corresponding insets). Additional layers can be stacked within the wettable 

domains from other polymer solutions, as long as the solvents don’t affect the already 

deposited polymer layers. The projected shape and size of the multi-phasic assemblies 

(PSS-PVDF-PS) can be precisely controlled by utilizing a patterned surface possessing 

the desired geometry as a template (see Figure 3.3d-3f).  

Figure 3.3. WETS enabled multi-phasic assemblies. Fluorescent micrographs showing 
wettability engendered assembly of (a) poly(sodium 4-styrenesulfonate) (PSS; dyed blue), 
(b) poly(vinylidene fluoride) (PVDF; dyed red) on top of PSS, and (c) (d) (e) and (f) 
polystyrene (PS; dyed green) on top of PVDF and PSS. The top insets in a-c show 
schematics of the polymer layers within the high surface energy (or wettable) domains. 
The bottom insets in a-c, e and f show the corresponding AFM height images and the 
thickness (t) of the polymer assembly.  
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Table 3.2. Receding contact angles (θR ) for dip-coated polymer solutions on other 
polymers used in the fabrication of multi-phasic particles. 

Polymer pattern 
Polymer solution dip-

coated 

Receding contact angle 

(θR) 

PSS 

PVDF-DMF 0o 

SU-8 0o 

PEGDA 0o 

SU-8-PGMEA 0o 

PEGDA-DMF 0o 

PMMA-Chloroform 0o 

PS-Toluene 0o 

PVDF PS-Toluene 0o 

 

3.4.3. Wettability engendered self-assembly of polymers within nanoscale wettable 

domains. 

Further, the methodology works across a wide range of domain sizes. Figure 3.4 

shows the assembly of PS, on top of SU-8, on top of PSS (see AFM measurements in 

Figure 3.4), within 700 nm domains. Fascinatingly, the WETS technique even extends to 

the sub-50 nm length scale (see AFM measurements in Figure 3.5). Figure 3.5d shows 

the assembly of PS, on top of SU-8, on top of sugar within patterned 25 nm wettable 

domains. The templates with 25 nm wettable domains were developed utilizing block-

copolymer nanolithography (BCNL). BCNL was necessary to fabricate these 

monodisperse (~ 25 nm diameter) domains because the inherent diffraction limit of light 

precludes the use of common photolithographic techniques. BCNL is a scalable alternate 
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approach that utilizes molecular self-assembly processes to generate regular nanoscopic 

patterns, ~5 − 50 nm, in size.32, 33.  

To engender assembly of polymers within nanoscale wettable domains (of 

diameters 700 nm and 25 nm), we utilized non-wettable surfaces patterned with wettable 

TiO2 nano domains (as shown in Figure. 3.4a, 3.4e and 3.5a, 3.5e) as templates. First, 

these templates were dip-coated with a sacrificial polymer layer. Here, we used PSS (15 

wt% solution in water) and sugar layers (30 wt% solution in water) as sacrificial layers 

for templates possessing 700 nm and 25 nm wettable domains, respectively (see Fig. 3.4b, 

3.4f and 3.5b, 3.5f). Next, the substrates were dip-coated with SU-8 and cross-linked 

using UV radiation (365nm). Subsequently, the substrates were dip-coated with 

polystyrene (molecular weight ~ 2000 – 5000 Da). This gave us polystyrene, SU-8 and 

sacrificial polymer layers stacked one upon another, within the wettable domains, as 

shown in Figure 3.4 and Figure 3.5. The substrates were annealed above the glass 

transition temperatures of the polymers after each polymer deposition. The AFM height 

images (Figure 3.4 and 3.5) show an increase in height after each polymer layer 

deposition within the wettable domains, indicating successful depositions of polymer 

layers one on top of another within the wettable domains. 
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Figure 3.4. WETS for fabricating 700 nm multiphasic nanoparticles. AFM height images 
and thickness ‘t’ for (a) High surface energy TiO2 domains; (b) PSS deposited on top of 
the wettable TiO2 domains; (c) SU-8 deposited on top of PSS; (d) Polystyrene deposited 
on top of SU-8 and PSS. Corresponding SEM images of (e) High surface energy TiO2 
domains; (f) PSS deposited within the wettable domains; (g) SU-8 deposited on top of 
PSS; and (h) Polystyrene deposited on top of SU-8 and PSS. 

Figure 3.5. WETS for fabricating 25 nm multiphasic nanoparticles. AFM height images 
and thickness t of (a) High surface energy TiO2 domains; (b) Sugar deposited on top of 
the wettable TiO2 domains; (c) SU-8 deposited on top of Sugar; (d) Polystyrene deposited 
on top of SU-8 and sugar. Corresponding SEM images of (e) High surface energy TiO2 
domains; (f) Sugar deposited within the wettable domain; (g) SU-8 deposited on top of 
Sugar; and (h) Polystyrene deposited on top of SU-8 and sugar. The thickness ‘t’ of the 
patterned domains is an average value across 30 domains. The variation in thickness 
across the domains is ~ ±0.5 nm. This highlights the uniformity in thicknesses for the 
particles fabricated using the WETS technique.  
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3.4.4. Tuning thickness of polymers deposited within wettable domains 

 

Figure 3.6. A plot comparing the predicted (solid black line) and measured (individual 
data points) thicknesses for a variety of polymers. The thickness t for the polymer 
depositions within patterned domains is an average value across 30 domains. 
 

The thickness (t) of the liquid or polymer solution film deposited within the 

wettable domains of a patterned surface is dependent on the width of the wettable domain 

(W) and the capillary number (Ca = µV γ LV ) for dip-coating. Here µ is the viscosity of 

the polymer solution, and V is the dip-coating velocity. The thickness of the polymer 

solution deposited within the wettable domain is given by t = kWCa1 3 where k is a 

proportionality constant.26 After the solvent has evaporated, the thickness of the polymer 

layer deposited within the wettable domain can be approximated as t = kφWCa1 3 , where 

φ  is the volume fraction for the polymer in the solution. The thicknesses predicted using 

this approach matched well with our experimental thickness measurements (as shown in 

Figure 3.6) for different polymer solutions deposited within wettable domains, possessing 

a range of different sizes (25 nm – 50 µm). Using this understanding, it is possible to 
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directly control the specific thickness of each individual layer within the multiphasic 

particles to within a few nm of any desired value.  

Figure 3.7. Variation in thickness of polymer depositions across different 700 nm TiO2 

wettable domains. (a) and (b) 3-Dimensional AFM height images of multi-phasic 
polymer assemblies shown in 5c and 5d respectively. (c) and (d) Height scan profiles of 
the different polymer assemblies shown in a and b respectively. The thickness ‘t’ of the 
patterned domains is an average value across 30 domains. The variation in thickness 
across the domains is ~ ± 1 nm for bi-phasic (PSS–SU-8) and ± 2 nm for tri-phasic (PSS–
SU-8–PS) polymer assemblies. This highlights the uniformity in thicknesses for the 
particles fabricated using the WETS technique. 
 

The variation in thickness of the bi-phasic (PSS–SU-8–PS) and tri-phasic (PSS–

SU-8–PS) polymer assemblies deposited within 700 nm wettable domains, is ±1 nm and 

±2 nm respectively (Figure 3.7). The thickness (t) values reported for the particles here 

correspond to the thicknesses measured at the center of the particle. The thickness profile 

for the polymer solutions deposited within the wettable domains is convex due to the 

liquid droplet morphology. However, upon evaporation of solvent, the thickness profile 

of the polymers deposited within the patterned domains can be either convex or flat or 
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concave (coffee-ring effect) shaped depending on the solvent evaporation rate and 

contact-line pinning34. The assembled multi-phasic particles can be released upon 

dissolving the sacrificial polymer layer (PSS) in water. In this manner, the WETS 

technique allows for the fabrication of a wide variety of monodisperse, multi-phasic 

particles with precise control over the size, projected shape, composition, thickness, and 

placement of the different polymer phases within the particle. 

3.4.5. Multi-phasic amphiphilic particles in different shapes and sizes 

We also fabricated multi-phasic particles by utilizing cross-linkable oligomers. 

The cross-linkable oligomers offer the freedom to deposit multiple layers using the same 

polymer solution without any detrimental effects on the already deposited layers. Here, 

we chose one of the cross-linkable oligomers to be hydrophobic (SU-8) and the other to 

be hydrophilic (poly(ethyleneglycol)diacrylate, PEGDA) in order to impart 

amphiphilicity to the cross-linked multi-phasic particles. To fabricate these amphiphilic 

particles, first PSS patterned templates were dip-coated with SU-8 and cross-linked with 

UV irradiation (365 nm). Next, the templates were dip-coated with a mixture of PEGDA 

and its cross-linker (Darocur 1173) and also cross-linked with UV irradiation (365 nm). 

This process resulted in bi-phasic amphiphilic assemblies deposited on top of PSS within 

the patterned domains (see Figure 3.8). The amphiphilic particles were subsequently 

released from the templates by dissolving the PSS sacrificial layer in water (see Figure 

3.9). By changing the volume fraction of the cross-linker, it was easy to control the 

modulus of each individual phase within the amphiphilic particles.35 Precise control over 

the modulus35, 36 and projected shape1, 2, 4, 35-37 of the fabricated particles can be critical in 

developing drug carriers with enhanced circulation times and enabling their accumulation 
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within specific target sites. Figure 3.9 show PEGDA–SU-8 amphiphilic particles of 

different shapes, fabricated using the WETS technique.  

 

 

Figure 3.8. Cross-section SEM images of multi-phasic assemblies. (a), (c), (e) SEM 
cross-section images showing sequential deposition of SU-8 and PEGDA on top of  the 
scarifical layer PSS within wettable domains of diameter 50 µm (a) 10 µm (c) and 1.5 µm 
(e). (b) (d) (f) show higher magnification images of the area indicated by the dashed red 
square shown in a, c, e.  
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Figure 3.9. Multi-phasic particles of different shapes fabricated using the WETS 
technique. (a)-(c) SEM images of the released bi-phasic amphiphilic particles comprising 
SU-8 and PEGDA polymers of hexagon (a) square (b), complex shapes (c) and circular 
shapes of diameter 50 µm. The top insets show corresponding 3-D stacked fluorescence 
confocal microscopy images of the particles before release. SU-8 is dyed red and PEGDA 
is dyed blue. Scale bars for the top insets in a-c represent 100 µm. The bottom insets in a 
and b show the corresponding AFM height images and thickness (t) of the released 
particles. 

Figure 3.10 show different circular biphasic (PEGDA – SU-8) particles, of 

different dimensions, fabricated in this work. Cross-sectional SEM images of the multi-

phasic assemblies in different sizes clearly highlight the distinct phases comprising the 

multi-phasic particles (see Figure 3.8 and Figure 3.10). We also fabricated bi-phasic, 

polymer nanoparticles with diameters as small as 25 nm (see Figure 3.10d) by releasing 

the multi-phasic polymer assemblies shown in Figure 3.5d and 5h. While there have been 

a few previous reports38, 39, in general it has been extremely difficult to fabricate organic 

nanoparticles of desired chemistry possessing all dimensions below 50 nm.16, 35 Thus, 

although various inorganic nanoparticles, possessing different shapes, and with all 

dimensions below 30 nm are commercially available, even single-phase organic 

nanoparticles possessing similar dimensions are not. To the best of our knowledge, the 

WETS technique is the only methodology that allows for the fabrication of monodisperse, 

multiphasic particles of essentially any projected shape, composition, and dimensions as 

small as 25 nm. Particles within the size range of 10-100 nm, when used as drug carriers, 

exhibit high circulation time in blood and provide high tumor accumulation.1, 2, 36 In 
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addition, we fabricated hybrid, organic-inorganic, bi-phasic particles with SU-8, and SiO2 

nanoparticles (see Figure 3.11). 

Figure 3.10 Multi-phasic particles of different sizes fabricated using the WETS 
technique. (a)-(d) SEM images of the released bi-phasic amphiphilic particles comprising 
SU-8 and PEGDA polymers of circular shapes of diameter 50 µm (d), 10 µm (e) and 1.5 
µm (f). (g) SU-8–PS biphasic polymeric nanoparticles, 25 nm in diameter. The top insets 
in a-c show the corresponding SEM cross-section images of the multi-phasic particles 
before release.  

 

Figure 3.11 Inorganic-organic bi-phasic WETS particles composed of SU 8 polymer and 
SiO2 nanoparticle (~500 nm) layers. The bottom inset shows AFM height image of the bi-
phasic particle. 



!
64 

3.4.6. Fabrication of Hexaphasic particles 

Furthermore, we stacked up to 6 polymer layers, comprising alternate layers of 

hydrophobic and hydrophilic phases, within the wettable domains (see Figure 3.12). 

Cross-sectional SEM images of the multi-phasic assembly clearly show the deposition of 

alternating SU-8 and PEGDA layers on top of PSS. Note that we can independently tailor 

the thickness of each layer within the hexa-phasic particles. The assembled tri-phasic and 

hexa-phasic particles were released from the template (see Figure 3.12m and 3.12n) by 

dissolving the sacrificial polymer (PSS) layer in water. Such multi-phasic particles, if 

formulated with alternating layers of a biodegradable polymer and a pharmacologically 

active agent, with precisely controlled thicknesses, may be ideal for the controlled and 

sustained delivery of drug molecules at the optimal rate and dose regimen, over several 

days.3 
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Figure 3.12 Fabrication of hexa-phasic particles. (a), (c), (e), (g), (i), (k) SEM images 
showing the cross section after sequential polymer depositions within a single wettable 
circular-shaped domain (50 mm in diameter). These images distinctly show the 
deposition of six alternating layers of SU-8 and PEGDA, on top of the sacrificial PSS 
layer. (b), (d), (f), (h), (j), (l) show high magnification images of the area indicated by the 
dashed red square shown in a, c, e, g, i, k respectively. (m) released hexa-phasic particles 
upon the dissolution of the sacrificial PSS layer. (n) SU-8–PEGDA–SU-8 tri-phasic 
particles. The top inset in n shows corresponding 3-D stacked fluorescence confocal 
microscopy images of the particles before release. SU-8 is dyed red and PEGDA is dyed 
blue. Scale bar for the top inset in n represent 100 µm. The bottom insets in n shows the 
corresponding AFM height images and thickness (t) of the released particles. 
 
3.4.7. Fabrication of multifunctional particles 

The multiple phases within the particles may be independently loaded with 

different cargos to provide the particles with multi-functional capabilities. Such particles 

can be beneficial in developing multi-functional therapeutic systems,1, 2, 35, 36 as they can 

encapsulate multiple drugs simultaneously. It is also possible for the different drugs to 

possess different, independently controlled release kinetics, depending on the 

degradation/swelling behavior of their respective encapsulant phases in the target 

environment. In addition, some of the particle phases can be loaded with functional 

nanoparticles or molecules to aid in the imaging and transportation of the particles within 

a biological system using an external field.40 For example, as shown in Figure 3.13, we 

have developed tri-phasic particles integrated with three different functionalities. Here, 
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the first phase is SU-8 loaded with magnetite nano-particles, second phase is SU-8 loaded 

with a fluorescent red dye, and the third phase is a hydrogel (cross-linked PEGDA). Such 

tri-phasic particles can function as drug carriers (hydrogel phase) that are easy to track 

(fluorescent imaging) and manipulate using a magnetic field to evade biological hurdles, 

and guide towards the target site. Figure 3.13d shows the trajectory of the motion of the 

particles upon application of the field in different directions. 

Figure 3.13. Multi-functional particles fabricated using the WETS technique. (a) A 
cross-sectional SEM image of a tri-functional particle comprising magnetic, fluorescent 
and hydrogel phases. (b) shows higher magnification image of the area indicated by the 
dashed red square shown in a. (c) shows a fluorescent microscope image of the tri-
functional particles, released from the WETS template. (d) A cluster of tri-functional 
particles on a water surface. The cluster was transported along the trajectory indicated by 
the white dashed line using an external magnetic field. The inset is a higher magnification 
optical micrograph of the particle cluster indicated by the white circle in d.  
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3.4.8. Two dimensional self-assembly of amphiphilic particles 

We have also studied the two-dimensional self-assembly of the fabricated bi-

phasic amphiphilic particles at an oil-water interface. First, we added the amphiphilic 

particles to oil-water mixture and agitated the system vigorously through sonication. 

Then, the amphiphilic particles were allowed to settle at the oil-water interface. Further, 

we have used a vibrating stage to induce in-plane movement of the particles. The 

frequency and amplitude of the vibrations were adjusted to bring the particles close to 

one another, and to break misaligned particle aggregates. The bi-phasic amphiphilic 

particles assembled into close packed structures with the hydrophobic phase (SU-8) 

preferentially oriented towards the oil layer, and the hydrophilic phase (PEGDA) towards 

the water layer. The assembled structures grew in size with time (see Figure 3.14). This 

assembly of particles is driven by the minimization of interfacial free energy at the oil-

water interface.41 Figure 3.15 shows that the self-assembled close packed structures 

obtained were defined by the geometry (circle, square and hexagon shapes) of the 

amphiphilic building blocks. These results illustrate the utility of the WETS technique for 

developing a variety of amphiphilic building blocks that are expected to be of importance 

for fundamental studies on particle self-assembly, as well as, the bottom-up approaches 

envisioned to build materials and devices of the future. 
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Figure 3.14. Assembly of SU-8–PEGDA biphasic particles at an oil-water interface. 
Optical microscopy images taken at times (a) T= 30 sec (b) T= 2 min (c) T= 5 min (d) T= 
15 min (e) T= 1 hr and (f) T= 10hrs. 
 

Figure 3.15. Two-dimensional self-assembly of amphiphilic particles. Self-assembled, 
close packed structures at an oil-water interface formed by (a) circle-shaped (b) hexagon-
shaped, and, (c) square-shaped, bi-phasic amphiphilic particles. The top insets show 
corresponding 3-D stacked fluorescence confocal microscopy images of the assemblies. 
Scale bars in the insets represent 50 µm. 
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3.5. Conclusions 

In conclusion, we have demonstrated that the WETS technique can be used to 

fabricate a wide variety of monodisperse, multi-phasic particles in complex shapes, and 

sizes as small as 25 nm, while maintaining control over the thickness, composition, and 

modulus of each particle phase. We have also fabricated a range of multi-phasic, 

amphiphilic particles that are anisotropic in both geometry and chemistry. We have 

further demonstrated the utility of the WETS technique in developing multi-functional 

nanoparticles and cargo carriers that are of significant importance in developing drug 

carriers with controlled release kinetics, increased circulation half-life, and enhanced 

targeting efficacy. 
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CHAPTER 4 

Fabrication of charged biocompatible multilayered WETS 

particles 

 

4.1. Introduction 

Polymeric micro- and nanoparticles have been widely investigated for a broad 

range of biomedical applications, in particular for drug delivery systems1-5. Polymeric 

nanoparticles offer many advantages as drug carriers, including encapsulation, targeting 

efficiency and sustained release of drugs at a diseased site3-5. The drug delivery efficiency 

of the nanoparticles is governed by the composition, size, shape, surface charge and 

chemistry of the particles1-5. It is necessary to precisely control the different 

characteristics of the fabricated nanoparticles to develop efficient nanoparticle drug 

delivery systems. In addition, combinatorial therapy, aimed at inducing synergism would 

require encapsulation and release of multiple drugs at diseased sites, ideally with 

independently controlled release kinetics3, 6, 7. To address this challenge, nanoparticle 

drug-carriers should have multiple compartments that can encapsulate and deliver 

different drugs simultaneously3, 6, 7. Also given the differences in physio-chemical 

properties of the therapeutic moieties to be delivered, it is necessary that the nanoparticle 
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drug carriers possess compartments of different chemistries (Eg, Hydrophobic, 

Hydrophilic, charged polymers etc) and physical properties. However there hasn’t been a 

easy route to fabricate monodisperse multi-layered nanoparticles at large-scale with 

precise control over composition, geometry and dimensions of the particles3.  

In our recent work, we have developed one of the simplest methodologies termed 

WETS to fabricate multiphasic particles of desired composition with precise control over 

size and shape of the particles8. Using WETS technique, we have fabricated a wide range 

of multi-phasic particles (comprising polymers such as polyethyleneglycoldiacrylate, 

polylacticglycolide polystyrene, polyvinylidenedifluoride etc). While these particles are 

capable of encapsulating a wide variety of drug molecules and diagnostic agents 

simultaneously, they are not ideally suited for encapsulation of highly charged 

therapeutic molecules such as small interfering RNA (siRNA)9-11. In theory, 

appropriately designed siRNA can silence nearly any gene in the body, giving it a 

broader therapeutic potential than typical small molecule drugs. Further, co-delivery of 

siRNA and chemotherapeutic drugs holds a great potential of treating specific tumor 

types that have been resistant to available therapies, such as triple-negative breast 

cancers9-11. Combining genetic targeting of specific resistant pathways of tumor cells 

with corelease of chemotherapetutic drugs can prove successful in ‘turning off’ the ability 

of tumor cells to fight/recover from a given chemotherapy. Thus, it would be beneficial to 

develop multi-layered particles comprising both charged as well as neutral polymeric 

layers, which are capable of encapsulating both charged macromolecules as well as 

hydrophobic chemotherapeutic drugs. So, in this work, we demonstrate a simple strategy 

to assemble charged multi-layered polyelectrolyte (PEL) films on to polymeric particles 
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(Polymer-PEL). Such particles are capable of incorporating broad range of therapeutics 

such as small molecule drugs, proteins and nucleic acids within polyelectrolyte nano 

layers, in addition to the drugs or diagnostic agents encapsulated within the core 

nanoparticle6, 7, 10, 12, 13. In addition, PEL assembly on to nanoparticles has shown to 

improve systemic circulation lifetime of drug carriers, reduce off-target drug delivery and 

also allows us to control the cellular internalization kinetics6, 7, 12, 14.  

Polyelectrolyte films are assembled on to bulk solid surfaces through Layer-by-

Layer (LbL) adsorption process. This process typically involves dip-coating a surface of 

interest consecutively in polycationic and polyanionic aqueous solutions and each PEL 

deposition is followed by a washing step. While LbL process is a well characterized, 

automated and highly reproducible technique on bulk surfaces, the LbL assembly of 

PELs on to nanoparticles is very time-consuming process and involves multiple 

centrifugation and purification steps1, 2, 10, 12. To address this challenge, several alternate 

techniques have been developed including surface acoustic wave atomization15, 

membrane filtration16 and microfluidic methods17-19. Though these techniques avoid time-

consuming centrifugation steps, it is difficult to scale up these techniques for high 

throughput fabrication of PEL-polymer particles. To utilize multilayered PEL-Polymer 

particles for medical applications, it is highly desirable to develop an easy-to-fabricate, 

high throughput methodology, ideally that uses similar dip-coating procedures that have 

been well characterized for bulk substrates. 

For large-scale fabrication of multilayered Polymer-PEL particles, it would be 

advantageous to utilize template based techniques that localize polymer particles in well 

defined arrays on a substrate, in turn enabling standard LbL process on the particle arrays 
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using dip-coating or spray-coating methodologies. This has been achieved recently using 

spray-assisted LbL process on Particle Replication on Non-wetting Templates (PRINT) 

particles14. In a similar fashion, here we report an alternate, rapid and inexpensive WETS 

methodology to fabricate multi-layered Polymer-PEL particles of different shapes and 

sizes using simple dip-coating procedures. 

4.2. Experimental Procedure 

4.2.1. Materials 

Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane (HDFTS) was purchased 

from Gelest Inc. Polymers: poly(4-vinylphenol) (PVP, with a weight average molecular 

weight of Mw ≈ 25 kDa), Poly(D,L-lactide-co-glycolide) (PLGA, Mw ≈ 24-38 kDa, 

lactide:glycolide 50:50, acid terminated), Poly(sodium 4-styrenesulfonate) (PSS, Mw ≈ 

70 kDa), Poly(allylaminehydrochloride) (PAH, Mw ≈ 15 kDa), fluorescent dyes: 

rhodamine B, fluorescein isothiocyanate isomer I (FITC), 4’, 6-diamidino-2-phenylindole 

dihydrochloride (DAPI)  and solvents: ethanol, chloroform, were purchased from Sigma-

Aldrich. Silicon wafers were obtained from the cleanroom (Lurie Nanofabrication 

Facility) at the University of Michigan. 

4.2.2. Templates fabrication 

A ~5 nm thin film of titanium dioxide (TiO2) was deposited on to silicon wafers 

through e-beam evaporation. To make the TiO2 surface non-wettable, the surface was 

exposed to HDFTS silane vapors at 100°C for 30 minutes. Next, the silanised TiO2 

surfaces were exposed to deep ultraviolet radiation (UV, 254 nm) for 90-120 minutes 

through a quartz photomask with desired patterns. The exposed TiO2 domains through the 

photomask switched from non-wettable (low surface energy) to wettable (high surface 
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energy). This gave us non-wettable templates with wettable domains possessing any 

desired geometry. 

4.2.3. PLGA-PEL particle fabrication 

WETS templates were dip-coated consecutively in PVP (25 wt%) in ethanol, 

PLGA (10-55 wt%) in chloroform, PAH (2.5 wt%) in deionized water and PSS (2.5 wt%) 

in deionized water solutions. All solutions were dip-coated using a syringe pump (KD 

Scientific) at a constant dip-coating velocity of 40 mm/min. For PVP and PLGA (on top 

of PVP) depositions within wettable domains, templates were dipped into their 

corresponding solutions and pulled out immediately (40 mm/min) without any wait time. 

For PAH deposition on PLGA, the surfaces were dipped in PAH aqueous solution for 2 

min before pulling out of the solution. For subsequent polyelectrolyte (PEL) depositions 

the substrates were dipped in the solutions for 30 sec before pulling out. Each PEL 

deposition is followed by washing in water for 10 sec. Finally PLGA-PEL particles were 

released in ethanol. Then the particle dispersion in ethanol was diluted using water and 

sedimented for further characterization. For fluorescent microscopy measurements, 

rhodamine B, FITC and DAPI were added to PVP, PLGA and PSS solutions respectively 

before dip-coating. 

4.2.4. Characterization techniques 

4.2.4.1. Contact angle measurements 

The contact angle measurements were conducted using a Ramé-Hart 200-F1 

goniometer. All contact angles reported in this work were measured by advancing or 

receding a small volume of liquid (~ 2 µL) onto the surface using a 2 mL micrometer 
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syringe (Gilmont). At least three measurements were performed on each substrate. 

Typical error in measurements was ±2º. 

4.2.4.2. Microscopy 

Tapping-mode atomic force microscopy (AFM) was conducted using a Veeco 

Innova instrument. Veeco TESPA tips and Hi Res C probes were used for imaging. The 

surfaces were imaged using a Hitachi SU8000 ultra-high resolution scanning electron 

microscope (SEM) at 5 kV and an Olympus BX 51 fluorescent microscope. The multi-

phasic particles were visualized using a FCLSM (Nikon A1 Confocal). Three different 

lasers, 405 nm laser, 488 nm Argon laser, and 533 nm Helium-Neon green (HeNeG) laser, 

were used to excite the dyes DAPI, FITC, and Rhodomine B respectively.  

4.3. Results and discussion 

4.3.1. Templates for Polymer-PEL multilayered assembly 

In the WETS technique, we employ smooth, low surface energy, silanized, 

titanium dioxide (TiO2) surfaces (see chapter 3) that possess finite receding contact 

angles (θrec ) for both aqueous and different organic liquids, and pattern them with high 

surface energy domains (θrec ) of different shapes and sizes. When such surfaces with 

patterned wettability are dip-coated with a polymer solution, the solution preferentially 

wets and self-assembles within the patterned wettable domains. Upon evaporation of the 

solvent, the polymer deposits within the patterned high surface energy domains, 

conforming to the shape and size of the domains. Similarly, multiple polymers can be 

sequentially deposited one on top of another within the wettable domains by dip-coating 

the templates in their respective polymer solutions. By varying the geometry and 

dimensions of the wettable domains, we can fabricate multi-phasic particles (comprising 
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polymers of distinct chemistries) in different shapes and in sizes as small as 25 nm8. 

Thus, this technique allows us to build multiple polymeric layers within localized micron 

and nanoscale domains of different shapes. In similar fashion, we can deposit PEL 

multilayers (followed by wash steps) on top of previously deposited polymeric layers 

within the wettable domains. This process of PEL assembly on nanoparticles avoids time-

consuming centrifugation and purification steps1. Thus WETS can be easily coupled with 

well-characterized LbL process (on bulk substrates) to facilitate large-scale production of 

multi-layered particles composed of charged PEL multilayers as well as other neutral 

biocompatible polymeric layers (see Figure 4.1).  

4.3.2. Fabrication and characterization of Polymer-PEL multilayered particles 

To fabricate, multilayered Polymer-PEL particles, we first deposited 

polyvinylphenol (PVP, using PVP in ethanol solution) as a release layer within the 

wettable domains, followed by polylacticglycloicacid (PLGA, using PLGA in chloroform 

solution). This gave us uniform arrays of bi-phasic assemblies of PLGA and PVP (PLGA 

on top of PVP, see Figure 4.2) in well-defined shapes. Then the templates with PLGA-

PVP patterns were dip-coated consecutively in aqueous solutions of cationic and anionic 

polyelectrolytes, similar to the procedures established for macroscopic surfaces. 

However, the difference here is PEL multilayers deposition is restricted to localized 

PLGA domains. Finally the PLGA particles coated with multi-layered PELs were 

released from the template by dissolving the sacrificial layer (PVP) in ethanol. We chose 

PVP as a release layer, as it doesn’t dissolve in most of the solvents (including water and 

organic solvents such as chloroform, toluene etc) and thus allowed us to assemble 

multiple polymeric layers from both aqueous and organic solutions on top of the release 
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layer. After the release of multi-layered particles from the template, the templates can be 

readily reused for fabricating a new batch of multi-layered particles (see Figure 4.1), 

enabling a rapid, inexpensive, waste-free (significant when fabricating particles that 

encapsulate expensive biomolecules and drugs)4 and easily reproducible method for 

manufacturing multi-layered particles. 

Figure 4.1. A schematic illustrating the fabrication of multi-layered PEL coated 
polymeric particles using WETS technique. 
 

In this work, we utilized polly(allylaminehydrochloride) (PAH) and poly(sodium 

4-styrenesulfonate) (PSS) as cationic and anionic polyelectrolytes respectively. We 

confirmed the sequential deposition of PVP, PLGA and polyelectrolytes (PAH-PSS) 

preferentially within the wettable domains using both confocal fluorescent microscopy 

and atomic force microscopy (AFM) measurements. We performed the measurements 

after each polymer deposition. Figure 4.2a, 2b and 2c shows confocal microscopy images 
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after polymer depositions of PVP, PLGA on top of PVP and finally PSS (before wash 

cycle) on top of PAH functionalized PLGA on top of PVP respectively.  

Figure 4.2. WETS enabled Multi-layered polymer depositions within localized wettable 
domains. Confocal fluorescent microscopy images showing wettability engendered 
assembly of (a) poly(4-vinylphenol) (PVP; dyed red), (b) poly(lactide-co-glycolide) acid 
terminated (PLGA; dyed green) on top of PVP, (c) poly(sodium 4-styrenesulfonate) 
(PSS; dyed blue) on top of polly(allylaminehydrochloride) (PAH; followed by water 
rinsing) on top of PLGA and PVP. The images below a b and c show corresponding 
composite confocal microscopy images indicating different phases present within the 
wettable domains. The top insets in a-c show schematics of the polymer layers within the 
high surface energy (or wettable) domains. 
 

Here, in contrast to spray LbL on PRINT technique or other macroscopic LbL 

deposition techniques, PEL solutions are deposited only on PLGA patterned domains but 

not on the template background, during dip-coating of PEL aqueous solutions. This is due 

to non-wettable nature of the template background towards different polymer solutions 

(see Table 4.1). Localized PEL deposition minimizes the wastage of PEL aqueous 

solutions and it is of significant importance when fabricating particles that encapsulate 

expensive biomolecules and drugs.  

Table 4.1 lists the advancing and receding contact angles for different liquids and 

polymer solutions on both the wettable and non-wettable regions of the patterned 
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surfaces. These measurements indicate that the polymer solutions utilized in the 

fabrication of PLGA-PEL particles would assemble preferentially within wettable 

domains upon dip-coating. 

Table 4.1. Advancing (θA) and receding (θR) contact angles for different liquids and 
polymer solutions on the non-wettable and wettable regions of the patterned surfaces. 

 

As shown in Figure 4.3, we can easily tune the shape and size of the multi-layered 

assemblies by changing the geometry and dimensions of wettable domains (see section 

4.2.2). Finally, the multi-layered PEL-PLGA particles were released in ethanol. 

Liquids 
Non-wettable surface Wettable surface 

θA θR θA θR 

Water            120o       112o       <10o 0o 

Chloroform 64o 51o 0o 0o 

Ethanol 50o 38o 0o 0o 

Toluene 72o 62o <10o 0o 

Dimethylformamide 
(DMF) 

76o 66o <10o 0o 

        PVP-Ethanol 54o 39o 0o 0o 

PLGA-Chloroform 66o 52o 0o 0o 

PAH-Water 110o 99o <10o 0o 

PSS-Water 108o 97o <10o 0o 
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Figure 4.3. WETS enabled Multi-layered polymer depositions within localized wettable 
domains of different shapes. (a)-(c) Fluorescent images of multi-layered polymer patterns 
of different shapes: poly(sodium 4-styrenesulfonate) (PSS; dyed blue) on top of 
polly(allylaminehydrochloride) (PAH; followed by water rinsing) on top of PLGA and 
PVP. (d) (e) and (f) Atomic force microscopy height images of PVP, PLGA on top of 
PVP and 3 bilayers of PAH-PSS ((PAH-PSS)3) on top of PLGA and PVP respectively, 
deposited within a wettable domain of 10 µm in diameter. Thickness t is the average 
thickness of polymers deposited within the patterned domains. The insets in h and i show 
corresponding AFM height images at smaller scan sizes. These images indicate change in 
surface morphology upon PEL deposition. The scale bars in insets for e and f represent 
1 µm. 
 

Figure 4.4a and 4c shows released PLGA particles and PLGA particles coated 

with 2 bilayers of PAH-PSS polyelectrolytes (PLGA-(PAH-PSS)2) respectively. The 

carboxyl end groups present on PLGA gives the PLGA particles a net negative surface 

charge in aqueous medium (also indicated in zeta-potential measurements, Figure 4.4e). 

So, we first dip-coated PLGA patterned WETS templates in aqueous solution of PAH 

(cationic), followed by aqueous solution of PSS (anionic) solution. Zeta potential 

measurements for PLGA-PAH and PLGA-(PAH-PSS) particles are consistent with the 
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corresponding polyelectrolytes present on the surface of the particles (Figure 4.4e). We 

also see change in the surface morphology of the PLGA particles upon (PAH-PSS)2  

deposition (Figure 4.4b, Figure 4.4d). Figure 4.4f and 4.4h show scanning electron 

microscopy (SEM) images of cross-section of (PLGA-(PAH-PSS)2) and PLGA particles 

(10 µm in diameter) respectively. These images indicate a thin film (~8 nm) of (PAH-

PSS)2 coated on top of PLGA.  

Figure 4.4. Multi-layered polyelectrolytes coated PLGA particles. Scanning electron 
microscopy (SEM) images of (a) PLGA circular disc shaped particles (b) PLGA particle 
at higher magnification showing surface morphology of the particle (c) PLGA-(PAH-
PSS)2 circular shaped particles (d) PLGA-(PAH-PSS)2 particle at higher magnification 
showing surface morphology of the particle. The insets in a and c show corresponding 
schematics of multilayered particles (e) Zeta-potential measurements showing shift in 
surface charge of the PLGA particles upon layer by layer deposition of PAH and PSS. (f) 
Cross-section SEM image of PLGA-(PAH-PSS)2 particle. (g) Higher magnification 
image of the region indicated by red dotted square in f. (h) Higher magnification SEM 
image of PLGA (uncoated) particle. These images indicate the deposition of 
polyelectrolyte thin film on top of PLGA. 
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4.3.3. Fabrication of Polymer-PEL multilayered particles in different shapes and 

sizes 

One of the main advantages of using WETS technique to develop PLGA-PEL 

particles is that the technique allows us to fabricate the particles in a wide range of shapes 

and sizes8. Figure 4.5 show fabricated multi-layered PEL-PLGA particles in different 

shapes and sizes. In addition, we have previously reported that the preferential assembly 

of polymer solutions within the wettable domains on WETS templates is universal to 

almost all polymer solutions. So, similar to the fabrication of PLGA-(PAH-PSS) 

particles, this technique can be utilized for other  polymer-PEL combinations as well.  

Figure 4.5. Multi-layered PEL-PLGA particles of different shapes and sizes. (a) (b) and 
(c) SEM images showing fabricated PLGA-(PAH-PSS)2 particles of square shapes, 
Hexagon shapes and circular shapes (10 µm in diameter) respectively. The scale bar for 
the insets in a and b represent 25 µm and inset in c represent 5 µm. 
 
4.3.4. Precise control over the thickness of polymer and PEL layers 

Figure 4.6a and 6b show cross-section of a PLGA-(PAA-PSS)8 particle (W = 10 

µm) indicating the presence of PLGA phase and multilayered PEL phase of thickness 

about 31 nm. It is also possible to independently control the thickness of both PLGA and 

PEL layers independently while maintaining the projected shape and size of the particles. 

PLGA thickness (t) can be tuned by varying capillary number (Ca = µV γLV ) and PLGA 

volume fraction (φ ) of the polymer solution8, 20 during dip-coating process, t = kφWCa1/3 . 

Here µ is the viscosity of the polymer solution, V is the dip-coating velocity, W is the 
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diameter of the wettable domain and k is proportionality constant. Figure 4.6d shows 

variation in thickness of 10 µm and 50 µm PLGA particles upon varying the PLGA 

concentration in the polymer solution during dip-coating. Note that variation in polymer 

concentration varies both φ  and µ . Multi-layered PEL coating thickness can be tuned by 

varying the number of cycles of (PAH-PSS) bilayer depositions. Figure 4.6e shows the 

variation of PEL thickness with increase in number of bilayers deposited on top of PLGA 

particles of diameter 50 µm and 10 µm.  

Figure 4.6 Control over the thickness of PLGA and PEL layers. (a) SEM cross-section 
image of PLGA-(PAH-PSS)8 particle of 10 µm in diameter. (b) Higher magnification 
SEM image of the red dotted region indicated in a. The image shows deposition of PEL 
multilayered thin film on top of PLGA. (c) AFM height images of PLGA particle and 
PLGA-(PAH-PSS)3 particle. (d) Plot showing variation in PLGA thickness of 10 µm and 
50 µm particles with increase in PLGA concentration (increases both φ  and µ) of the 
polymer solution during dip coating. (e) Plot showing variation in thickness of 
polyelectrolyte multilayers with increase in number of PAH-PSS bilayers deposition on 
top of PLGA particles of diameter 10 µm and 50 µm.  
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4.4. Conclusions 

In conclusion, we have demonstrated that WETS methodology can serve as a 

rapid and inexpensive route for large-scale fabrication of multilayered PEL coated 

polymeric particles, with precise control over the composition, surface charge, shape and 

size of the particles. This ability to fine tune design parameters of multi-layered particles 

is very useful in optimizing and designing ideal drug carriers for combinatorial therapies 

and theranostics applications. 
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CHAPTER 5 

Dynamic shape and size reconfigurations in multi-phasic 

particles 

5.1. Introduction 

In past two decades, numerous strategies have been developed in an attempt to 

mimic nature’s ability to precisely tune shape, size, and composition of the nanoparticles 

in response to changes in environment1-6. Synthetic nanoparticles with stimuli responsive 

properties are expected to have significant impact on various applications including drug 

delivery4, 5, 7, biosensors6, self-assembly of superstructures8, 9 etc. In case of nanoparticle 

drug carriers, the particles journey is very complex and requires different physiological 

properties at different stages of the particle journey. For example, previous reports 

indicate that non-spherical drug carriers are better suited for targeted delivery of drugs to 

the diseased sites, while spherical particles are internalized faster by the diseased cells 

compared to non-spherical or elongated particles4, 5, 7. Similarly, different sizes5, 10 and 

surface chemistries11-13 are preferred at different stages of the drug carrier journey. These 

variations in requirements for the design parameters of the nanoparticles at various stages 

of an application, necessitates the need to develop polymer particle systems that can 

dynamically change their shape, size and composition5.  
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As reported recently, one way to switch shape of the polymeric particles, is to 

increase the local temperature of the polymer particles above glass transition temperature 

of the polymer, using stimuli such as heat, pH or ultra-sonication4, 6. This simple 

approach to switch the shape and size of the particles can be useful in developing 

biomimetic actuators, sensors and artificial camouflage systems4, 6, 14. In addition, 

nanoparticle drug carriers with dynamic shape and size change properties have shown to 

improve cellular internalization kinetics and timely elimination of drug carriers4, 5, 7.  

However, except for a few reports, most of stimuli responsive polymer particles 

studies have been focused on single-phase systems. But in nature, most stimuli 

responsive systems are multi-phasic systems. Utilizing multi-phasic particles broadens 

the number of reconfigurations, in terms of number of shapes, sizes and surface 

chemistries, a particle can assume in response to stimulus. So, in this work, we fabricated 

a range of different multi-phasic particles and studied their shape shifting and size-

switching process in response to increase in temperature of the surrounding liquid 

medium. We have further developed mathematical relationships that predict the exact 

change in geometry and dimensions of the multi-phasic particles upon providing the 

stimulus.  

5.2. Experimental Procedure 

5.2.1. Materials 

Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trichlorosilane (HDFTS) was purchased 

from Gelest Inc. Polymers: polyvinylacetate (PVAc, with a weight average molecular 

weight of ≈ 25 kDa), poly(D,L-lactide-co-glycolide) (PLGA, ≈ 24-38 kDa, 

lactide:glycolide 50:50, acid terminated), polystyrene (PS with a weight average 

Mw Mw
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molecular weight of ≈ 1.2 kDa and ≈ 45 kDa), polymethylmethacrylate (PMMA, 

≈ 25 kDa), polycaprolactone (PCap, ≈ 55 kDa) fluorescent dyes: rhodamine B, 

fluorescein isothiocyanate isomer I (FITC), 4’, poly[tris(2,5-bis(hexyloxy)-1,4-

henylenevinylene)-alt-(1,3- phenylenevinylene)] (PTDPV, blue fluorescent dye) and 

solvents: ethanol, chloroform, were purchased from Sigma-Aldrich. Silicon wafers were 

obtained from the cleanroom (Lurie Nanofabrication Facility) at the University of 

Michigan. 

5.2.2. Templates fabrication 

A ~5 nm thin film of titanium dioxide (TiO2) was deposited on to silicon wafers 

through e-beam evaporation. To make the TiO2 surface non-wettable, the surface was 

exposed to HDFTS silane vapors at 100°C for 30 minutes. Next, the silanised TiO2 

surfaces were exposed to deep ultraviolet radiation (UV, 254 nm) for 90-120 minutes 

through a quartz photomask with desired patterns. The exposed TiO2 domains through the 

photomask switched from non-wettable (low surface energy) to wettable (high surface 

energy). This gave us non-wettable templates with wettable domains possessing any 

desired geometry. 

5.2.3. Shape-shifting procedure 

 For shape-shifting, first multi-phasic particles were fabricated using WETS 

technique (discussed in chapter 3 and 4). Then the particles were transferred to water 

medium and the particle-water dispersion is heated above the glass transition temperature 

(Tg ) of the polymers comprising the particle. In case of particles that have Tg higher than 

100°c (such as PMMA, high molecular weight PS etc.) we used glycerol-water mixtures 

as the liquid medium for shape-shifting experiments.  

Mw Mw

Mw Mw
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5.2.4. Characterization techniques 

5.2.4.1. Contact angle measurements 

The contact angle measurements were conducted using a Ramé-Hart 200-F1 

goniometer. All contact angles reported in this work were measured by advancing or 

receding a small volume of liquid (~ 2 µL) onto the surface using a 2 mL micrometer 

syringe (Gilmont). At least three measurements were performed on each substrate. 

Typical error in measurements was ±2º. 

5.2.4.2. Microscopy 

Tapping-mode atomic force microscopy (AFM) was conducted using a Veeco 

Innova instrument. Veeco TESPA tips and Hi Res C probes were used for imaging. The 

surfaces were imaged using a Hitachi SU8000 ultra-high resolution scanning electron 

microscope (SEM) at 5 kV and an Olympus BX 51 fluorescent microscope. The multi-

phasic particles were visualized using a FCLSM (Nikon A1 Confocal). Three different 

lasers, 405 nm laser, 488 nm Argon laser, and 533 nm Helium-Neon green (HeNeG) laser, 

were used to excite the dyes DAPI, FITC, and Rhodomine B respectively.  

5.3. Results and discussion 

5.3.1. Fabrication and shape-shifting of multi-phasic particles 

In this work to study shape and size switching of multi-phasic particles, we have 

utilized the WETS technique15 to fabricate multi-phasic particles of different non-

spherical shapes, sizes and chemistries (type of polymers and number of polymeric 

phases). In the WETS technique, we first fabricated WETS templates similar to 

procedures described in chapter 3. As shown in Figure 5.1, WETS templates are then dip-

coated with a polymer solution, the solution preferentially wets and self-assembles within 
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the patterned wettable domains. Upon evaporation of the solvent, the polymer deposits 

within the patterned high surface energy domains, conforming to the shape and size of 

the domains. Similarly, multiple polymers can be sequentially deposited one on top of 

another within the wettable domains by dip-coating the templates in their respective 

polymer solutions. Finally particles were released from template by dissolving first dip-

coated polymer release layer in water (Figure 5.1). Further, for shape shifting of the 

multiphasic particles, we increased temperature of the multi-phasic particles and water 

dispersion above the glass transition temperature of the polymers comprising the 

particles.  

Figure 5.1. Shape-shifting process of multi-phasic particles fabricated using WETS 
technique. a) Schematic showing the shape-shifting process. b) PS-PLGA biphasic 
particles fabricated using WETS technique. c) Cross-section SEM image of the particles 
shown in b. d) PS-PLGA spherical particles after shape-shifting of the corresponding 
WETS particles. e) PLGA compartments after selective dissolution of PS compartments 
from the particles shown in d. 
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5.3.2. Driving factors for shape-shifting of multi-phasic particles 

When the temperature of single phase polymer particles (of any shape) is 

increased beyond it’s glass transition temperature in an immiscible liquid medium, the 

particles switch into spherical shapes. Switching of the particles shape is driven by 

minimization of interfacial free energy of the polymer-liquid interface ( ). Here, 

increase in temperature acts as a stimulus and provides mobility to polymer chains to 

reconfigure themselves in to shapes with minimum polymer-liquid interfacial area. While 

for single-phasic particles, spherical shape is always the configuration with minimum 

interfacial energy, multi-phasic particles can have many different configurations in terms 

of both external shape and internal structure of different polymeric phases comprising the 

particle. The stable configuration is dictated by the minimization of the sum of interfacial 

surface energies of multiple interfaces present in the system.  

Figure 5.1b-1e show shape shifting of biphasic disc shaped WETS particles 

(composed of polystyrene and polylacticglycolide (PLGA) polymers) into monodisperse 

spherical particles. To understand the internal structure of the shape-shifted particles, we 

have preferentially dissolved polystyrene phase in cyclohexane leaving only PLGA 

compartments of the particles unaffected. Figure 5.1e shows the structure of PLGA 

compartment within PS-PLGA shape-shifted particles. Figure 5.1e clearly indicates that 

the PLGA phase partially encapsulates the polystyrene phase. This behavior can be 

correlated to higher PS-water interfacial surface energy ( ) compared to . 

Since , the biphasic particles tend to minimize the interfacial area between 

PS and water. Similar behavior has been observed for all of the multi-phasic polymer 

particles investigated in this work. Figure 5.2 and Table 5.1 clearly indicate that the 

γP,L

γPS,W γPLGA,W

γPS,W > γPLGA,W
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polymeric phase with higher polymer-liquid interfacial energy  always encapsulates 

the polymer phase with lower . 

Table 5.1 lists different multi-phasic particles fabricated in this work for shape-shifting 

studies. The table also shows the comparison between  and internal structure of the 

shape-shifted particles.  

Table 5.1. Correlation between polymer-liquid interfacial energies and configuration of 
shape-shifted particles. 

Initial WETS particles Shape-shifted particles 

Polymer 1,  Polymer 2,  Outer phase Inner phase 

PLGA, 1 PS, 26 PLGA PS 

PVAc, 4 PS, 26 PVAc PS 

PMMA, 10 PS, 26 PMMA PS 

PLGA, 1 PMMA, 10 PLGA PMMA 

PCap, 14 PS, 26 PCap PS 

PLGA, 1 PVAc, 4 PLGA PVAc 

 

Figure 5.2. Shape-shifted biphasic particles. a-c) confocal microscopy images of shape-
shifted PMMA (dyed green) - PLGA(dyed red) (a), PMMA (dyed green) – PS (dyed 
blue) (b),  PLGA (dyed red) – PS (dyed blue). The insets in a and b show the 
corresponding theoretically predicted configurations. 
 

γP,L

γP,L

γPL

γP1L γP2L
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In addition to partially encapsulated particles, we found that some biphasic 

particles, such as PS-PMMA particles and PLGA-PVAc particles shape-shifted into core-

shell type particles. Here polymers with low  ( =10, =1) were 

completely encapsulating the polymers with high  ( =26, =4) leading to 

core-shell particles. The final configuration of shape-shifted particles (partially 

encapsulated or core-shell particles) is determined by the minimization of total surface 

free energy ( ). Figure 5.2 shows the confocal 

microcopy images of different shape-shifted particles and the insets show the 

corresponding simulated images. We have obtained the simulated images by calculating 

the conformation for which E is minimum, as discussed in following section 5.3.3.  

5.3.3. Relationships to predict configuration of shape-shifted biphasic particles  

To understand the correlation between the shape-shifted configurations and 

interfacial surface energies, we have developed the following conditions by calculating 

the difference in surface free energy between the three different particle configurations: 

(Equation 5.1)  ( ) for core-shell configuration 

(Equation 5.2) and for partially encapsulated 

configuration 

(Equation 5.3) for completely phase separated configuration 

γP,L γPMMA,W γPLGA,W

γP,L γPS,W γPVAc,W

E = γP1,LAP1,L +γP1,P2AP1,P2 +γP2,LAP2,L

γP1P2 < γP2L −γP1L γP1 < γP2

γP1P2 > γP2L −γP1L γP1P2 < γP1L +γP2L

γP1P2 > γP1L +γP2L
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Figure 5.3. Schematics showing models of the particle configurations used to derive 
conditions for predicting stable configuration a) partially encapsulated and core-shell 
configurations b) partially encapsulated and completely phase separated configurations. 
 
 To derive condition for core-shell structures, we calculated the difference in 

surface free energy between the partially encapsulated configuration and core-shell 

configuration shown in Figure 5.3a. As we aim to derive the border condition here, it is 

convenient to assume that the difference in  between the two conformations is very 

small = . Consequently  and  are  and −dA respectively. Now, 

the the difference in surface free energy between the two conformations can be calculated 

as:  

(Equation 5.4)ECS −EPE = γP1LdA+γP1P2dA−γP2LdA  

Here, the subscripts PE and CS correspond to partially encapsulated and core-shell 

configurations respectively. The condition for the stable core-shell configuration can be 

given as:  

(Equation 5.5)ECS −EPE = γP1LdA+γP1P2dA−γP2LdA < 0  

From this equation, we obtain the condition ( ) shown in equation 5.1 

for stable core-shell configuration. 

AP1,P2

ΔAP1,P2 dA ΔAP1,L ΔAP2,L dA

γP1P2 < γP2L −γP1L
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Similarly by comparing the surface free energy for the two configurations shown in 

Figure 5.3b, we can obtain the following expression for stable completely phase 

separated (CP) configuration:  

(Equation 5.6)ECP −EPE = γP1LdA−γP1P2dA+γP2LdA < 0  

From this equation, we can obtain the condition ( ) shown in equation 

5.3 for stable completely phase separated configuration. 

Now, the condition for stable partially encapsulated structure can be obtained from the 

following expressions:  

(Equation 5.7)ECS −EPE = γP1LdA+γP1P2dA−γP2LdA > 0   

(Equation 5.8)ECP −EPE = γP1LdA−γP1P2dA+γP2LdA > 0  

These equations result in the conditions (  and γP1P2 < γP1L +γP2L ) for 

stable PE configuration. 

 Further, we have also verified these conditions, by plotting the variation in E with 

the increase in extent of encapsulation of phase P2  (high ) in P1  (low ). We 

expressed the extent of encapsulation in terms of the ratio (as indicated in Figure 

5.4b). Here h is the height of the spherical cap of phase  encapsulated within phase 

and D2 is the diameter of the  phase compartment. In the plots,  at which E 

is minimum,  corresponds to the stable configuration of the multi-phasic particles upon 

shape-shifting. We obtained the E vs  plots (Figure 5.4c-4e) for different 

combinations of  , and  and found that the stable configuration predicted 

by Emin always matches with the configurations given by the conditions in the equations 

5.1 to 5.3.  

γP1P2 > γP1L +γP2L

γP1P2 > γP2L −γP1L

γP,L γP,L

h /D2

P2

P1 P2 h /D2

h /D2

γP1P2 γP1L γP2L
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Figure 5.4. Theoretical models predicting configurations of shape-shifted WETS 
particles. a) Schematics showing three possible shape reconfigurations upon shape-
shifting of WETS particles.  b) Model particle geometry considered for the E vs h/D2 
plots.  c-e) E vs h/D2 plots showing the minimum free energy states for the biphasic 
particles with different combinations of interfacial surface energies. c corresponds to 

, d corresponds to  and  and e 
corresponds to . 
 

 
Figure 5.5. Schematic showing interfacial surface tension vectors  
 

Further, we have observed experimentally that the encapsulated phase doesn’t 

have a perfect spherical shape, but it instead takes a lens shape of a finite angle . This 

effect is expected, as all the phases (polymers and surrounding liquid) in contact are in 

γP1P2 < γP2L −γP1L γP1P2 > γP2L −γP1L γP1P2 < γP1L +γP2L
γP1P2 > γP1L +γP2L

P2

α
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liquid state at the shape-shifting temperatures. It is possible to estimate the lens angle of 

phase  and the contact angle between  and  interface by balancing the 

interfacial surface tension vectors (as shown in Figure 5.5) at the three phase contact line. 

This results in the following expressions: 

 

 

Note that at the boundary conditions of  (completely phase separated) and 

(core-shell) corresponds to the limiting conditions given by the equations 5.1-

5.3. 

5.3.4. Shape-shifting of multiphasic particles of different compositions 

Figure 5.6a-6c shows both partial encapsulated and core-shell particles at 

different compositions of  and . We see from these results, type of particle 

configuration remain constant across different compositions of the particles.  

We have also shape-shifted tri-phasic particles composed of PLGA, PS and PVAc 

polymeric phases (see Figure 5.6d-6f). To understand the internal structure of these 

particles, we preferentially dissolved the PS in cyclohexane without affecting PVAc and 

PLGA phases (Figure 5.6e). Further we have also dissolved the PVAc in ethanol without 

affecting PS and PLGA phases (Figure 5.6f). These images clearly demonstrate the 

internal structure of the shape-shifted triphasic particles. 

 

P2 P1P2 P1L

cosθ = γP2L
2 −γP1P2

2 −γP1L
2

2γP1P2γP1L

cosα = γP1L
2 −γP1P2

2 −γP2L
2

2γP1P2γP2L

α = 0°

α =180°
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Figure 5.6. Shape-shifted particles of different compositions. Shape-shifted biphasic 
particles composed of a) 80 volume percent (vol%) PLGA and 20 vol% PS b) 20 vol% 
PLGA and 80 vol% PS c) 50 vol% PMMA and 50 vol% PS. The bottom insets in a and b 
show corresponding confocal microscopy images. PLGA is dyed red and PS is dyed blue. 
Top insets in a and c show SEM images of the particles after selective PS dissolution 
from the particles shown in a and c respectively. Top inset in c shows that cyclohexane 
doesn’t affect the particle shape. This indicates PS is completely encapsulated within 
PMMA shell. The scale bars in a and b represent is 20 µm and in c represent 10 µm. 
 
5.3.5. Shape-shifting of multiphasic particles of different sizes and shapes 

One of the main advantages of using WETS technique for the fabrication of 

shape-switching multi-phasic particles is that, this technique allows us to fabricate multi-

phasic particles from a wide range of polymers and in different sizes and shapes. Figure 

5.7a and 5.7b shows the shape shifting of PS-PLGA bi-phasic particles of different sizes. 

The size of the shape-shifted particles can be easily estimated by equating the volume of 

the shape-shifted particles with the initial volume of the disc-shaped particles. Further, 

the size of the shape-shifted particles can be tuned by either varying the thickness or the 

diameter of the initial disc shaped particles. The ability to reconfigure the particle shape 

and size has significant importance for drug delivery applications. For example, 

nanoparticle drug carriers of non-spherical shapes have shown to accumulate better at the 
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targeted tumor tissues due to marginal effect. But at the same time, previous reports 

indicate that the internalization of non-spherical particles by tumor cells is very slow 

compared to their spherical counter parts4, 5. Therefore, non-spherical particles that have 

an ability to reconfigure their shape into spherical shapes at the tumor tissues can have 

huge impact on the targeting efficiency of nanoparticle drug carriers. 

 
Figure 5.7. Shape-shifting of biphasic particles of different sizes. Shape-shifted PS-
PLGA biphasic particles with average diameter of a) 2.5 µm and b) 840 nm. Plots 
showing the control over the size of the shape-shifted particles by varying c) thickness 
and d) diameter of the disc shaped WETS particles before shape-shifting. 
 

In figure 5.8, we demonstrate the ability of WETS particles of different shapes to 

reconfigure themselves in to different shapes based on the temperature-time profile. Note 

that, in addition to change in shape and size, the shape-shifting process of WETS 

particles also involves the change in surface composition and modulus of the particles. 
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Figure 5.8. Shape-shifting of biphasic particles of different shapes. a) Triangle shaped 
PS-PLGA biphasic WETS particles b) Particles shown in a after shape-shifting at 50  
for a brief period c) phase diagram showing the reconfiguration of the WETS particles 
upon exposure to different temperature-time schedules. 
 
5.4. Conclusions 

In conclusion, we have demonstrated the shape-shifting of a wide range of multi-

phasic particles of different compositions, sizes and shapes. We have also developed 

mathematical relations that predict the configuration of multi-phasic particles upon shape 

shifting. In addition to the applications of the reconfigurable particles discussed in this 

work, these results will also help us better understand and mimic various actuating and 

sensing mechanisms available in nature. 

 

 

 

 

°c
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CHAPTER 6 

Summary and Future Outlook 

 

6.1. Thesis Summary 

My thesis work was focused on designing surfaces with patterned wettability and 

utilizing the patterned surfaces for different applications. As part of this work, we first 

developed patterned surfaces that are universal to almost all liquids and then utilized the 

patterned surfaces for applications like microchannels/microreactors, surfaces for 

enhanced heat transfer properties, polymer and particle arrays etc. We have also 

developed a facile fabrication methodology for the fabrication of multi-phasic particles 

using the patterned surfaces as templates.  

The majority of patterned surfaces developed previously exhibit wettability 

contrast only with high surface tension liquids such as water, thereby limiting the 

applications of such surfaces mostly to surfactant-free aqueous systems. In order to 

expand the application range to non-aqueous systems, especially to low surface tension 

liquids such as oils, alcohols and organic solvents, it is crucial to develop patterned 

superomniphobic-superomniphilic surfaces. In the first part of my thesis work, we 

developed a simple, fast and practical methodology to fabricate patterned 



!
108 

superomniphobic-superomniphilic surfaces that exhibit a stark contrast in wettability, for 

a wide range of polar and non-polar liquids. To fabricate these unique surfaces, we first 

fabricated superomniphobic surfaces that repel almost all liquids. Next, the 

superomniphobic surfaces were patterned with superomniphilic domains in desired 

geometries and dimensions. Using these surfaces, we demonstrated the site-selective self-

assembly of a low surface tension liquid like heptane within the patterned 

superomniphilic domains upon dipping and spraying the liquid. We also demonstrated the 

site-selective condensation and boiling of different low surface tension liquids, which is 

crucial when designing surfaces with enhanced phase-change heat-transfer properties. We 

further demonstrated the site-selective self-assembly of both polymers and microparticles 

within the patterned domains upon spraying polymer solutions and particle dispersions, 

respectively.  

In the second part of my work, we developed smooth, patterned surfaces that can 

engender the self-assembly of a wide range of polymer solutions within the patterned 

wettable domains. Utilizing these patterned surfaces as templates, we developed a novel 

methodology termed WETS (Wettability Engendered Templated Self-assembly) to 

fabricate multi-phasic particles of different shapes and sizes. Using the WETS technique, 

we have fabricated a wide variety of monodisperse, multi-phasic particles in complex 

shapes, and sizes as small as 25 nm, while maintaining precise control over the thickness, 

composition, and modulus of each particle phase. We have also fabricated a range of 

multi-phasic, amphiphilic particles that are anisotropic in both geometry and chemistry, 

and we have utilized such particles as building blocks for 2-D self-assembled structures.  

We have further demonstrated the utility of the WETS technique in developing multi-
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functional nanoparticles and cargo carriers that are of significant importance in 

developing drug carriers with controlled release kinetics, increased circulation half-life, 

and enhanced targeting efficacy. 

 We also extended the WETS technique to fabricate charged, biocompatible, 

multi-layered polyelectrolyte (PEL) coated polymeric particles (Polymer-PEL) in 

different shapes and sizes. Such particles are capable of incorporating a broad range of 

therapeutics such as small molecule drugs, proteins, and nucleic acids within the 

polyelectrolyte nanolayers, in addition to the drugs or diagnostic agents encapsulated 

within the core nanoparticle. Further, PEL assembly on nanoparticle drug carriers can 

improve the systemic circulation lifetime of the drug carriers, reduce off-target drug 

delivery, and also allow us to control the cellular internalization kinetics. 

 In the final part of my work, we have demonstrated stimuli responsive behavior of 

multi-phasic WETS particles that can dynamically reconfigure their shape, size, and 

surface composition in response to an increase in temperature of the surrounding medium. 

As a part of this work, we have also developed mathematical relations that predict the 

shape-shifted configuration of the multiphasic particles in response to the stimulus.  

 

6.2. Future Outlook and Applications 

6.2.1. Multiphasic nanoparticles for drug-delivery 

There has recently been significant interest in fabricating nanoparticles for a range 

of drug-delivery applications.1-3 These applications stem from the fact that nanoparticles 

have many advantages as drug carrier over free drugs, including encapsulation, reduced 

off-target toxicity and targeted delivery (based on the nanoparticles size and shape)2 and 
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sustained circulation in the blood stream (as many nanoparticles escape renal clearance).3 

For example, it has been shown that sub 100 nm particles when injected intradermally 

avoid entrapment within the tissue, and can be efficiently transported to the lymph nodes 

(critical for generating an immunity response).4 Further, it has also been shown that the 

size3, 5 and shape3 of the nanoparticles are critical in determining whether a particular 

particle is able to pass the cell membrane. Thus, for a range of biomedical applications, it 

is critical to fabricate monodisperse nanoparticles with precisely controlled size, shape, 

and composition for both the active and passive targeting of cells.2, 3  

In addition, combinatorial therapy aimed at inducing synergism, would require the 

encapsulation and release of multiple drugs at diseased sites, ideally with independently 

controlled release kinetics6-8. To address this challenge, nanoparticle drug-carriers should 

have multiple compartments that can encapsulate and deliver different drugs 

simultaneously6-8.  

As demonstrated in Chapter 3-5, the WETS technique can be used to fabricate 

multiphasic nanoparticles from various biocompatible (such as poly lactic-co-glycolic 

acid and polycaprolactone) polymers in different shapes and sizes. These particles can be 

encapsulated with various drugs including standard chemotherapeutics (such as 

Doxorubicin, Fluorouracil, Cisplatin, Topotecan, Gemcitabine), as well as novel cancer 

stem-cell targeting drugs (BMP2/4 inhibitor Noggin9, STAT3 inhibitor static10, 

metformin11, 12, repertaxin13, tocilizumab14, disulfiram15, mullerian inhibitory 

substance16). Thus, WETS particles combined with the wide library of drugs available 

will allow for a systematic study of the behavior of various nanoparticles (including both 

monophasic and multiphasic particles) as drug carriers, resulting in systematic design 
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parameters / criteria for ideal drug carriers.  These studies may include the test for the 

effectiveness of nanoparticles in encapsulating various drug molecules, the correlation 

between design parameters (shape, size and composition) of nanoparticles and drug 

delivery properties including circulation or sustained release, and the effectiveness in 

targeting and killing of cancer cells both in vitro and in vivo.  

6.2.2. Patterned surfaces for enhanced boiling heat transfer properties 

We have shown (Section 2.1.4) that the patterned superomniphobic-

superomniphilic surfaces can improve the boiling heat transfer characteristics of a surface 

with both high and low surface tension liquids17. The boiling heat transfer properties of 

the patterned surfaces are expected to be dependent on the geometry and dimensions of 

superomniphilic patterns and also on the areal fractions of superomniphobic and 

superomniphilic regions18.  So, in order to develop patterned surfaces with optimum 

boiling heat transfer properties, it is necessary to systematically design different patterned 

surfaces and study their boiling performance through quantitative measurements. The 

boiling heat transfer performance is expressed in terms of critical heat flux (CHF) and 

heat transfer coefficient (HTC) values. The CHF is the highest heat flux that can be 

exchanged before the nucleated vapor bubbles merge into a continuous vapor film that 

insulates the surface from the liquid. The HTC is the ratio between the heat flux and the 

temperature difference between the hot surface and the liquid19. In case of the patterned 

surfaces developed in our work, we expect that the superomniphilic regions would 

facilitate high CHF values while the superomniphobic regions would facilitate high HTC 

values. So, the correlation between the design of the patterned surfaces with HTC and 
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CHF values through quantitative measurements would enable the development of 

patterned surfaces with optimum boiling heat transfer properties for a given application. 
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