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Bacterial respiratory infections significantly contribute to the morbidity and mortality 

associated with lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, and 

bronchiectasis. These patients feature abnormal mucus production and rheology that can impair 

host immune defenses, ultimately leading to chronic lung infection. Inhaled antibiotic delivery is 

currently used to treat these patients; however, its effectiveness is limited by an intrinsic 

dependence on airflow within the lung. Poor ventilation due to mucus plugging and lung damage 

restricts antibiotic delivery to the most burdened regions of the lung. In order to address these 

shortcomings, this research proposes a novel method of treatment entitled antibacterial 

perfluorocarbon ventilation (APV). During APV the lungs are filled with a breathable liquid 

[perfluorocarbon (PFC)] containing emulsified, micron-scale droplets of aqueous antibiotic. Such 

delivery has removed dependence on airflow and is thus capable of achieving more spatially 



xiv 
 

uniform delivery. APV should also be able to actively remove infected mucus from the airways as 

well as promote a return to normal lung function via anti-inflammatory properties of PFC. 

 This work represents an in-depth analysis and characterization of the emulsions used 

during APV. Initial efforts evaluated the feasibility of the emulsion’s use during liquid ventilation 

as well as its ability to effectively kill the tenacious bacterial biofilms found in the airways during 

infection. Following studies utilized both in vitro and in vivo methods to better understand the 

effects of emulsion formulation on the pharmacokinetics and availability of delivered drug and 

any potential cytotoxicity associated with the emulsion. A rat model of bacterial respiratory 

infection was developed and used at multiple points throughout this work to assess the potential 

treatment benefits of APV. 

 Great strides were made in developing and optimizing the emulsion. The emulsions have 

been shown to be an adequate ventilation medium and a viable means of pulmonary drug delivery 

during APV. Final efforts resulted in a promising emulsion formulation that exhibited no cytotoxic 

effects and drastically improved drug availability relative to those previously assessed in vivo. 

Further in vivo work is required to determine if this optimized emulsion formulation provides a 

treatment benefit over inhaled antibiotics. 
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CHAPTER 1  
 

 

Introduction 

 

 

1.1 Motivation and Objectives 
 

Bacterial respiratory infections are a major contributor to the exacerbation or progression 

of lung diseases such as cystic fibrosis (CF),4, 5 chronic obstructive pulmonary disease (COPD),1, 

6 and bronchiectasis.7 Diseases such as these feature irregular mucus production and impaired 

mucus clearance that can promote bacterial infections as well as make them exceedingly difficult 

to eradicate.7, 8 Chronic airway infection typically leads to significant airway inflammation which 

can further impair mucus clearance and ultimately accelerate declining lung function. Current 

treatment for bacterial respiratory infections typically includes the delivery of antibiotics via 

systemic administration or inhaled aerosolized delivery. Limited diffusion of antibiotics from the 

systemic circulation into the endobronchial space results in many infections being refractory to the 

relatively low intrapulmonary antibiotic concentrations achieved with systemic administration.9 

Inhaled treatment achieves delivery directly to lung and is thus able to produce higher pulmonary 

antibiotic concentrations while limiting systemic exposure.10  However, multiple aspects of 

aerosolized delivery limit its effectiveness and leave substantial room for improvement, especially 

in the setting of preexisting lung disease. Early impaction of aerosolized drug particles in the 
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delivery device, mouth, and proximal airway can lead to significant inefficiency and poor 

penetration of the lower and peripheral airways.11  Additionally, mucus plugging and poor 

ventilation during lung disease often results in minimal aerosolized delivery to the most burdened 

regions of the lung.11-13 Inadequate antibiotic delivery can result not only in the inability to clear 

the infection but also the development of antibiotic-resistant bacteria.14 

The goal of this research was to develop a novel method of pulmonary antibiotic delivery 

to address the previously described shortcomings of current therapy. More specifically, our focus 

was to develop a means of delivery via filling of the lungs with a liquid, thereby removing any 

dependence on airflow. One means of achieving this is through the use of liquid perfluorocarbon 

(PFC). Liquid PFCs exhibit the unique ability to uniformly distribute within the lung while also 

maintaining gas exchange. Our devised treatment, termed antibacterial perfluorocarbon ventilation 

(APV), is the filling and subsequent ventilation of the lungs with aqueous antibiotics emulsified 

within PFC. Such an application represents a relatively unexplored means of treatment and a new 

use of the specific emulsifiers used in this work. Therefore, the primary focus of this work was to 

characterize the effects of the formulation of the emulsion on varying aspects of its use during 

APV in an effort to optimize treatment. These aspects included the emulsion’s physical properties, 

bactericidal ability, pharmacokinetics and efficiency as a means of drug delivery, and 

biocompatibility. 

1.2 Lung Disease and Infection 
 

Acute lower respiratory infections alone cause more disease and death than any other 

infection in the United States.15 Although many of these cases can be effectively treated with 

systemic or inhaled antibiotics, improved treatment is still needed in the case of infection during 
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lung disease. Lung diseases such as COPD, CF, and bronchiectasis feature changes in the 

respiratory mucus and airway environment that render these patients particularly susceptible to 

bacterial infections and limit the effectiveness of current antibiotic therapy. 

Under normal physiological conditions, the liquid lining the airway surface is formed by a 

biphasic film consisting of an aqueous sol (or periciliary) layer immediately atop of the airway 

epithelial cells followed by a more gel-like mucus layer. The sol layer is a purely viscous layer 

with a depth of approximately 5-10 µm.8, 16 It surrounds the cilia of the epithelial cells, acting as a 

lubricant to allow their high-frequency beating. The mucus layer is composed of water, ions, lipids, 

proteins, and high molecular weight glycoproteins called mucins. Mucins have a rod-like structure, 

approximately 500-900 nm long and 10 nm wide, and are cross-linked into an entangled three-

dimensional network by disulphide bonds.17 It is this network that gives mucus its non-Newtonian, 

viscoelastic behavior, exhibiting characteristics of both an elastic solid and viscous fluid depending 

on the magnitude of shear stress experienced. Such a fluid tends to resist flow, or yielding, until a 

finite yield stress is exceeded at which point the polymer-like network of mucins is thought to 

begin to break down as flow is induced. The thickness of the mucus layer is thought to be quite 

variable but is commonly estimated to be 0.5-10 µm.8, 18 The mucus layer along with the movement 

of the underlying cilia represent a critical part of the innate immune system in the airways. When 

inhaled particulate or pathogens deposit on the surface of the airways, they become entrapped in 

the adhesive mucus layer. The beating cilia lining the epithelium then propel the overlying mucus 

toward the oropharynx where it can be expectorated or swallowed.  

The mucus environment is significantly altered during lung disease. COPD is a progressive 

lung disease characterized by reduced air flow in and out of the lungs due to loss of lung tissue 

elasticity, alveolar tissue breakdown, airway inflammation, or hypersecretion of mucus. COPD is 



 

4 
 

most commonly caused by smoking, affects approximately 13 million adults in the United States,19 

and is the third leading cause of death amongst Americans.20 In the case of CF, a mutation in the 

gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein causes 

impaired ion movement across the epithelium, resulting in the hyperabsorption of water at the 

airway surface. Mucus dehydration during both CF and COPD causes an increase in the relative 

fraction of glycoproteins, resulting in a significant increase in mucus viscosity and adhesivity.8, 21, 

22 It is believed that elevated levels of DNA in the mucus due to inflammatory cell necrosis also 

induce changes in rheology during such diseases.8, 23 These rheological abnormalities result in 

significantly impaired mucociliary transport and inefficient cough clearance.8 Additionally, during 

these diseases an inflammation-induced conversion of water-secreting serous cells to mucus-

secreting cells causes a hypersecretion of mucus,24 resulting in a mucus thickness much larger than 

that of healthy individuals. This also causes a depletion of the serous layer, resulting in mucus 

encroaching upon the cilia of the epithelial cells,24, 25 further impairing clearance of the abnormally 

thick mucus already present in excessive amounts. The inability to properly clear mucus represents 

a critical breakdown in the innate immunity of the lungs and, as such, leaves these patients 

especially vulnerable to respiratory infection. 

Bacterial airway infection is present in 50-60% of COPD patients with an exacerbation.26, 

27 Exacerbations during COPD consist of acute increases in cough and dyspnea that require 

medical treatment and typically occur one to four times annually.1 These exacerbations are a 

significant cause of morbidity and mortality26, 28 as well as an enormous source of healthcare 

costs.6, 29 Approximately 70% of the $24 billion estimated annual costs of COPD are related to 

exacerbations.30 Although the relationship between infection and COPD exacerbation has long 

been disputed, recent studies suggest that infection causes exacerbation due to increased host 
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inflammatory events.1, 26, 31 It has been shown that the presence of Haemophilus influenzae, 

Moraxella catarrhalis, Streptococcus pneumoniae, Pseudomonas aeruginosa (PA), and 

Staphylococcus aureus in the airways results in increased risk of an exacerbation during COPD.31 

The inflammatory response during such an episode leads to increased airway secretions, 

pulmonary edema, inhibited gas exchange, and an overall decrease in lung function.31  

Bacterial infections are even more prevalent in the case of CF patients, with infections 

typically beginning during childhood.5 Common and early acquisition of infection for CF patients 

is thought to be due to impaired mucociliary clearance, increased binding ability of bacteria to CF 

respiratory epithelial cells, and impaired ingestion of bacteria by CF host immune cells.5 Bacterial 

respiratory infections during CF can be due to a variety of organisms, with some of the most 

common being PA, Staphylococcus aureus, Haemophilus influenza, and Stenotrophomonas 

maltophilia.32 PA is widely considered the most common and damaging bacterial pathogen during 

CF.10, 33 PA is a Gram-negative bacterium found in moist settings throughout the environment. 

Most CF patients are chronically infected with PA by early adulthood34 and it is nearly impossible 

to eradicate.35 PA infection is one of the primary contributors to the short life expectancy of CF 

patients, with one study showing more than five times lower mortality rates for uninfected patients 

as compared to infected patients.36 PA is thought to enter the lower airways through the mouth or 

nasal passage and then bind to components of the mucus layer residing on top of the cilia.34 In 

vitro studies have shown that PA has the unique ability (not observed in other pathogens evaluated) 

to adhere to mucins as well as exhibit a chemotactic response to CF mucin.37 After the initial 

infection, PA typically undergoes a phenotypic adaption in which the organism converts to a 

mucoid variant characterized by the copious formation of exopolysaccharide alginate-coated 

microcolonies11, 12, commonly referred to as the biofilm mode of growth.33, 34 This form of PA is 
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nearly uniformly present during chronic lung infection in CF patients.34 Growth within the thick 

biofilms has been shown to grant a significant degree of resistance against antibiotics to the PA 

cell, with organisms within biofilm withstanding 20 to 1,000 times greater concentrations of 

antibiotic than that required to kill the nonmucoid form.38, 39 Additionally, the alginate matrix 

provides a degree of protection against the native immune response as well.40  

Although the inflammatory response is an integral part of innate immunity, it can often 

play a detrimental role during lung disease or injury. During both COPD and CF, a change in 

mucus rheology and production impairs host respiratory defense mechanisms, thereby presenting 

an opportunity for bacterial pathogens to colonize within the airways. These chronic or recurrent 

bacterial infections result in periods of prolonged inflammation with significantly increased 

neutrophil presence in the airways and pulmonary circulation.6 During binding and phagocytosis 

of a pathogen, neutrophils release a number of enzymes to aid in the degradation of the foreign 

matter in a process known as “respiratory burst.” The release of these enzymes results in the 

production of reactive oxygen byproducts that can be harmful to host bodily tissues. Consequently, 

much of the epithelial damage present during COPD and CF can be attributed to neutrophil-derived 

proteases and oxidants.41, 42 This damage to the respiratory mucosa, along with increased 

secretions, further hinders mucociliary clearance, and thus perpetuates infection. Such a cycle is 

described by the “vicious circle” hypothesis (Figure 1.1). 

Ultimately, this series of persistent infection and inflammation in the airways may lead to 

bronchiectasis, a condition characterized by permanent dilation of the larger airways, progressive 

smaller airway obstruction, and interstitial pneumonia.7 Bronchiectasis affects over 110,000 

American adults43 and can be due to a variety of causes including a compromised immune system 
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(such as with AIDS) or impaired mucociliary clearance (such as with CF and COPD). The total 

annual medical cost of treating these patients is $630 million.43 

1.3 Current Antibiotic Treatment 
 

The type of antibiotic to be used during respiratory infection treatment is dependent both 

on the bacterial strains present as well as the intended delivery method. The most commonly used 

antibiotics for treatment of infections during CF over the past 20 years are tobramycin, 

azithromycin, and aztreonam lysine.32 The method of action for tobramycin and azithromycin is 

similar and involves binding to bacterial ribosomes and thereby inhibiting the translation of mRNA 

in to essential proteins. Alternatively, aztreonam lysine inhibits synthesis of vital polymers in the 

bacterial cell wall. In order for these, or any, antimicrobial agent to be effective, the agent must 

reach the site of infection and remain there for a sufficient length of time.10 This task is an 

 

Figure 1.1: Schematic of the "vicious circle" hypothesis.1 
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especially challenging one in the case of respiratory infections, particularly for infections overlaid 

with preexisting lung disease.   

Systemic [intravenous (IV)] administration and inhaled delivery are currently the primary 

means of antibiotic delivery during bacterial respiratory infection. Systemic delivery grants the 

largest degree of freedom with regards to drug selection, as nearly all antibiotics can be delivered 

in this manner. However, systemic delivery has several disadvantages with regards to effective 

delivery to the site of infection. When administered IV, antibiotics must first travel throughout the 

bloodstream before arriving at the pulmonary circulation. Thus, delivery may be limited in any 

disease or injury in which pulmonary blood flow is compromised. Antibiotics are believed to move 

from the blood into the bronchial space via diffusion along a concentration gradient.44 Once in the 

lung, the antibiotics must then penetrate respiratory mucus to reach the infection. Due to the effect 

of sputum binding on antibiotic availability to the bacteria, endobronchial antibiotic concentrations 

of 10 to 25 times the minimum inhibitory concentration are required in order to be effective.45, 46 

In addition, many of the antibiotics used (including aminoglycosides such as tobramycin) have 

exhibited poor diffusion across lipid membranes34 and penetration of the respiratory sputum46, 47. 

For these reasons, large IV doses must be given in order to be effective at the site of infection, 

resulting in high serum concentrations that can increase the potential for nephrotoxicity48 and 

ototoxicity49.  

Inhaled aerosolized delivery of antibiotics offers an attractive alternative to systemic 

administration in that delivery is specifically targeted at the organ of interest. During such delivery, 

a suspension of drug-containing solid particles or liquid droplets in air (or other gases) is inhaled 

by the patient for delivery to the airways. A variety of devices have been created to achieve inhaled 

delivery. Devices that deliver a specific mass of drug for each actuation of the device are typically 
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referred to as metered dose inhalers. Such delivery is achieved with liquids via a pressurized 

metered dose inhaler (pMDI) which uses liquefied gas propellants (typically hydrofluoroalkanes) 

to emit droplets of liquid drug that can be inhaled by the patient. Metered doses of dry drug 

formulations are achieved with a dry powder inhaler (DPI). These devices rely on the patient’s 

own inspiratory effort to pull drug from the dosing chamber and as such require fairly high 

inspiratory flows to be used effectively. In contrast to metered dose delivery devices, continuous 

delivery devices, often referred to simply as nebulizers, deliver aerosolized drug at a constant flow 

while the patient continuously breathes over periods of up to 30 minutes. Aerosolization of the 

liquid drug in this setting is typically achieved through the use of an air jet, ultrasonic sound waves, 

or a vibrating mesh. Nebulizers tend to offer a wider variety of deliverable drugs than metered 

dose inhalers but also tend to be larger and less portable. Nebulizers also tend to be less efficient 

than metered dose inhalers due to drug emitted during exhalation that is not inhaled, although some 

newer nebulizers have incorporated features to pause delivery during exhalation. The first inhaled 

antibiotics were delivered via a nebulizer, with aerosolized tobramycin being the first approved by 

the Food and Drug Administration (FDA) in 1997. Currently approved nebulized antibiotics 

include aztreonam lysine and colistimethate sodium (colistin) in addition to tobramycin. Parenteral 

formulations of gentamicin, ceftazidime, and amikacin are also commonly used “off-label” via 

nebulized delivery.50 As previously mentioned, nebulizers tend to require long delivery times (up 

to 30 minutes) and thus are often considered a significant inconvenience to patients. Additionally, 

nebulizers require frequent and thorough cleaning in order to maintain proper functionality and 

avoid microbial growth. Issues such as these are thought to contribute to poor patient adherence 

and thus affect the practical effectiveness of nebulized treatment. Dry powder drug formulations 

used with DPIs require shorter treatment times (one to two breaths) and much less cleaning and 
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thus represent an attractive alternative to nebulized delivery. Dry powder antibiotic formulations 

of both tobramycin and colistin have recently been developed and are currently approved for use 

in CF patients. As one may expect with a more targeted delivery approach, inhaled antibiotics have 

been shown to produce higher intrapulmonary concentrations while limiting absorption into the 

blood relative to systemic administration. One study showed that inhaled nebulized antibiotics 

produced as much as 14 times greater antibiotic concentrations in the sputum with seven times 

lower systemic levels relative to IV delivery.10 A study comparing nebulized tobramycin with a 

dry power formulation (delivered via a DPI) showed larger lung depositions, similar central to 

peripheral distributions, and similar serum profiles for the powder formulation relative to 

nebulized tobramycin.3  

Although inhaled antibiotics have shown benefits over systemic treatment and been proven 

effective against many cases of infection, significant shortcomings still exist, especially in the 

setting of underlying lung disease. The use of inhaled delivery in lung disease (primarily CF and 

COPD) patients is inherently flawed due to its innate dependence on airflow. Poor ventilatory 

capacity due to both irregular physiology and mucus production significantly hinders effective 

delivery to the most diseased regions of the lung. In the case of CF, mucus plugs are primarily 

composed of negatively charged glycoproteins and DNA, causing positively charged 

aminoglycosides (such as tobramycin) to potentially bind to these compounds and be rendered 

unavailable.51, 52 During chronic infection with PA, bacteria is thought to reside in airway 

generations all the way down to the bronchioles.11 Thus, the high sputum production and mucus 

plugging typically present within the bronchi of the infected host often prevents distal drug 

deposition in the regions of highest infection.11, 13, 53 By relying on the convection of air to 

distribute the delivered drug throughout the lung, inhaled delivery preferentially treats the well-
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ventilated, typically less burdened, regions of the lung. Along the same lines, it has been shown 

that a lower forced expiratory volume in CF patients correlates with a smaller proportion of 

delivered drug reaching the periphery.13  

The narrow range of aerosolized particle size required to effectively penetrate the lower 

airways presents further challenges.11, 54 Aerosolized particles should be in the size range of 1-5 

µm in order to deposit in the lower airways.55 Particles with a mass median aerodynamic diameter 

(MMAD) of greater than 5 µm tend to precipitate within the conducting airways.54  Particles with 

a MMAD of less than 1 µm have a greater chance of being exhaled.55 Even if the average particle 

diameter is 2-4 µm, a larger range of particle sizes is always present, resulting in less than ideal 

deposition. Studies quantifying aerosol drug deposition in the lung are quite variable but have 

shown that 25-95% of emitted drug never reaches the lung, with the majority deposited in the 

oropharynx and delivery device.11, 13, 56, 57 Deposition tends to be even worse in very young children 

with reported values as low as 2% lung deposition.58 Patients on a mechanical ventilator also 

present additional challenges in achieving effective inhaled delivery. Lung deposition of nebulized 

drug during mechanical ventilation is approximately 20% of the delivered dose, with the majority 

of drug deposited in the delivery device and ventilator tubing.59, 60 Of the drug that does reach the 

lung during inhaled delivery, the majority is confined to the central lung (defined as the central 2/3 

of the total lung), with one study showing only 16% of pulmonary tobramycin being deposited 

peripherally in CF patients.13 The nonuniform intrapulmonary distribution of delivered antibiotics 

resulting from these challenges can lead to the inability to clear the infection as well as promote 

the development of antibiotic resistance.14, 34 For these reasons, a modified method of antibiotic 

delivery to the lungs resulting in more spatially uniform distribution with sufficient pulmonary 



 

12 
 

residence time could significantly improve the treatment of chronic respiratory infections.53, 61 One 

possible means accomplishing this is through the use of PFC as an antibiotic delivery vehicle.   

1.4 Liquid Ventilation with Perfluorocarbons 
 

Liquid ventilation (LV) is a respiratory support method that uses liquid PFC as a medium 

to achieve gas exchange in the lungs. PFCs are clear, odorless liquids composed primarily of 

covalently bonded carbon and fluorine atoms. Although there are many different types of PFCs 

suitable for LV, virtually all clinical LV trials have utilized Perflubron (perfluorooctyl bromide).62-

67 Much of the LV work done in animals has also utilized FC-77 (mixture of perfluorocycloether 

and perfluorooctane).2, 68-70 Note that the product name FC-77 was discontinued in 2007 by the 

manufacturer (3M Inc.) and the same liquid is now sold under the name FC-770. The molecular 

structures of both Perflubron and FC-77 are shown in Figure 1.2. Due primarily to the extremely 

strong covalent bonding between carbon and fluorine atoms (C-F bonds are 485 kJ/mol), PFCs 

 

Figure 1.2: Molecular structures of FC-77 and Perflubron. 
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have high intramolecular forces and tend to be very stable. In a biological environment, this 

translates to PFCs being bioinert and resisting any type of metabolism or enzymatic changes.71 

PFCs are also nonpolar and tend to have very low intermolecular, or van der Waals, forces. These 

low intermolecular forces are responsible for many of the properties of PFC critical to LV. First, 

due to these weak forces, PFCs tend to be quite volatile, with those used during LV typically 

evaporating at or below physiological temperatures. Second, weak van der Waals forces also give 

PFCs a very low surface tension (< 20 dyne/cm) which allow them to effectively penetrate the 

minute spaces of the small airways and alveoli. Lastly, and perhaps most importantly, it is these 

weak intermolecular forces that make PFC an excellent solvent for gases such as oxygen and 

carbon dioxide (solubility of ~50 mL O2 and 140-210 mL CO2 per dL of PFC).71, 72 Like the 

dissolution of most gases in a liquid, O2 dissolves in PFC through insertion into an intermolecular 

site within the solvent (PFC). Therefore, the weak intermolecular forces of PFC facilitate the 

dissolution of O2.
71 This is much different in comparison to the binding of O2 to hemoglobin. The 

conformational changes undergone by hemoglobin during this process result in a sigmoidal 

oxyhemoglobin dissociation curve. In contrast, O2 solubility in PFC is a linear function of the 

partial pressure of O2.
73 PFCs are also fairly dense (about twice that of water) and not soluble with 

water or lipids. As such, PFCs are immiscible with virtually all physiological substances other than 

gases.72  

 The concept of using liquid PFC to support respiration was first demonstrated in mice 

nearly 50 years ago.72 Early experiences with LV were focused on breathing in hyperbaric 

conditions and carried out via total body immersion or gravity-assisted ventilation to an intubated 

animal.72 Over time, LV techniques were refined and systems which mechanically assisted the 

movement of liquid tidal volumes to and from the lungs were developed. In its more recent use, 
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two modes of LV were developed: partial liquid ventilation (PLV) and total liquid ventilation 

(TLV). During PLV, the lungs are partially filled with liquid PFC (typically to end-expiratory 

volume) and gas ventilated with a conventional ventilator. In this setting, gas exchange occurs 

within the liquid PFC during each breath as oxygen-rich air is mixed with PFC within the larger 

airways. During TLV, the lungs are completely filled with liquid PFC and tidal volumes of PFC 

are moved into and out of the lungs typically using a piston pump. Additionally, a parallel, 

extracorporeal circuit continually achieves gas exchange within the PFC (oxygenation and CO2 

removal) while also filtering and heating the liquid. A schematic of such a setup is shown in Figure 

1.3. Due to the need for specialized equipment during TLV, PLV is considered much easier to 

implement in to clinical practice. Following LV, PFC can be mostly suctioned from the lung or 

 

Figure 1.3: Schematic of TLV circuit showing piston (A), one-way valves (B), mixing chamber 

(C), heater/oxygenator (D), roller pump (E), bubble trap (F), and endotracheal tube (ETT). 

Continuous flow through the conditioning circuit is shown in yellow while the inspiratory and 

expiratory flow to and from the patient is shown in dark and light blue, respectively.2 
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left to evaporate. The majority of PFC left in the lung evaporates, is exhaled, and cleared from the 

lung within seven days of instillation.74 The rate of evaporative PFC clearance from the lung has 

been shown to be largest immediately following administration and steadily decline thereafter.75 

Additionally, clearance tends to occur in the nondependent regions of the lung first.75 Although 

small amounts of PFC may be transported across the lung epithelium into the systemic 

circulation76, this amount has been shown to be less than 1% of the administered dose.75 Virtually 

all delivered PFC is believed to ultimately leave the body via evaporation through the lung or 

transpiration through the skin.72, 76 Even PFC delivered to the systemic circulation in the form of 

an emulsion for use as an imaging agent or blood substitute has been shown to be cleared via 

expired air after phagocytosis by reticuloendothelial macrophages.77 Although trace amounts of 

PFC have been shown to preferentially accumulate in fatty tissues and remain for relatively long 

periods of time, there has been no evidence of any negative consequences.72 Along the same lines, 

the long-term effects and toxicity of PFC have been studied extensively in animals and patients 

for periods up to 10 years without evidence of adverse effects.78-81  

Research surrounding LV has evaluated its effectiveness in treating a variety of respiratory 

conditions over the past 25 years. There is an overwhelming amount of evidence demonstrating 

improved survival and respiratory function following PLV treatment in the setting of acute 

respiratory distress syndrome (ARDS), acute lung injury, and respiratory failure in both animals82-

96 and humans62-67, 97. Additionally, treatment utilizing TLV has demonstrated improved outcomes 

in similar injury or disease settings in animals.2, 98-101 The observed improvements in survival rate 

and lung mechanics following treatment with LV are a result of a variety of mechanisms. The most 

common observation during LV was a marked improvement in gas exchange.2, 62, 63, 67, 82-87, 89-91, 

97, 99 The degree of pulmonary shunting in an injured lung has been found to be significantly 
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decreased following treatment with LV.64, 82, 84, 89, 97, 99 This effect is likely due to both the 

displacement of aqueous exudate in the alveoli impeding gas exchange as well as the recruitment 

of atelectatic regions. Due to the high density of PFC, as well as its lack of solubility with water, 

aqueous exudate in the peripheral airways and alveoli is displaced via a buoyant force during LV. 

The aqueous fluid is typically redistributed throughout the surface area of the lung or transported 

to the central airways where it can be removed via suctioning.64, 94 In addition, the high density 

and low surface tension of PFCs allow them to penetrate, expand, and recruit previously collapsed 

or deflated alveoli.64, 66, 98 Both of these actions result in increased alveolar surface area available 

for gas exchange, thereby decreasing shunting. In addition, LV may redistribute pulmonary blood 

flow from the dependent zones, typically experiencing the greatest degree of consolidation and 

atelectasis, to the nondependent zones of the lung, thereby improving ventilation-perfusion 

relationships.94 All of these factors likely contribute to the significantly improved gas exchange 

observed during LV.  

Another common observation during treatment utilizing LV is a significant increase in lung 

compliance.63, 64, 66, 67, 82-86, 97-99 Lung compliance can be affected by a number of factors, but 

surface tension is likely the most relevant regarding the changes observed during LV. The interface 

between air and the liquid film lining the alveoli results in a surface tension that works to minimize 

this interfacial area, thereby resisting alveolar expansion (Figure 1.4), largely contributing to the 

static recoil forces of the lung. In a healthy lung, type II alveolar cells lining the alveoli secrete a 

phospholipid surfactant that considerably lowers this surface tension, thereby decreasing the work 

of expanding the lung during inspiration. However, significantly reduced presence and function of 

endogenous pulmonary surfactants has been shown during lung diseases such as CF and COPD.102, 

103 During LV, the lungs are filled with PFC and the air-liquid interface is either partially or 
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completely eliminated, being replaced with an aqueous-PFC interface of a much lower interfacial 

tension (Figure 1.4). Thus lung volume recruitment is achieved at much lower pressures during 

LV and lung compliance is increased. In addition, it has been shown that LV may enhance 

surfactant synthesis and secretion in the lungs relative to conventional gas ventilation104, possibly 

also contributing to the improved lung compliance observed during LV. The elimination of the 

liquid-air interface, along with the low surface tension of PFCs, allows PFC to homogenously fill 

and expand dependent regions of the lung that are often minimally ventilated during gas 

ventilation82, 89, likely also contributing to the enhanced gas exchange associated with LV. 

Despite the existence of a large amount of positive data surrounding LV, the use of PFCs 

during LV remains unapproved by the FDA. The first application of LV in humans was performed 

as TLV in infants in 1989.105 In the mid to late 1990s, a number of clinical trials were performed 

by Alliance Pharmaceutical in an effort to receive FDA approval for the use of Perflubron during 

PLV in adult ARDS patients.105 These efforts culminated in a Phase III, multi-center clinical study 

that evaluated PLV with Perflubron relative to conventional mechanical ventilation in 311 adult 

ARDS patients.106 The results of this study showed no improvement in 28-day mortality or number 

 

Figure 1.4: Schematic showing reduced resistive effects of interfacial tension on alveolar 

expansion during liquid ventilation. Red arrows denote forces due to interfacial tension. 
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of ventilator-free days for PLV relative to conventional mechanical ventilation.106 It should be 

noted that although PLV showed no benefit over the control group, both groups exhibited better 

survival than was widely accepted at the time of the trial.105 Additionally, safety data from the trial 

showed that Perflubron was well tolerated by patients.105 Even so, due to the lack of treatment 

benefit relative to existing methods shown in this study, the FDA ultimately failed to grant 

approval for Perflubron and Alliance Pharmaceutical subsequently withdrew all effort and funding 

in this endeavor.105 Considering the abundance of positive data surrounding LV in animal models 

and small-scale clinical trials, the negative outcome of Alliance’s Phase III trial is somewhat 

puzzling. The discrepancy between this trial and most other work with LV has been attributed to 

factors ranging from poor and inconsistent clinical implementation of PLV during the Phase III 

study to a general lack of congruency between animal disease models and real-world patients.  

1.5 Effects of Perfluorocarbons on the Native Immune Response 
 

Numerous studies have shown that PFC exposure can significantly reduce the recruitment, 

activation, and function of cells involved in the innate immune response in the lungs.65, 68, 93, 107-111 

This finding is critically important for an application in which patients with a bacterial respiratory 

infection will undergo LV. A temporary and local reduction of the inflammatory response in the 

airways of these patients may be conducive to a return to normal mucociliary clearance and 

respiratory function. However, sustained impairment of the innate immune system could also 

hinder the patient’s ability to control or ultimately clear the infection after treatment. In order to 

account for these effects, an in-depth understanding of PFC’s effects on the innate immune system 

is vital.  
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The means by which PFC exposure decreases the innate immune response is still not 

completely understood. While evaluating the anti-inflammatory effects of PFC in vivo, it is 

sometimes difficult to discern a clear cause for the observed results. It is often unclear whether a 

suppressed inflammatory response is a direct effect of PFC or rather due to an improved disease 

state or increased pulmonary function.111 For this reason, much of the work investigating the 

mechanism by which PFC exposure dampens the immune response has been done in vitro. 

Multiple studies have shown that in vitro exposure to PFCs for a matter of hours can cause human 

neutrophils to have a decreased chemotaxis response.112, 113 Studies have also shown decreased 

levels of activation for stimulated human macrophages (measured by levels of pro-inflammatory 

cytokines such as IL-1, IL-6, and TNF) after exposure to PFC.114, 115 Additionally, a two-hour 

exposure to PFC has been shown to decrease the production of reactive oxygen species by alveolar 

macrophages.116 A reduction in levels of pro-inflammatory cytokines secreted by stimulated 

macrophages combined with a decrease in the ability of neutrophils to respond to chemokines 

likely results in significantly reduced neutrophil recruitment.  

However, the underlying mechanism by which PFC exposure causes these effects is still 

not completely understood. Almost all studies with neutrophil and macrophage exposure to PFC 

have shown little to no difference in cell viability between PFC-exposed cells and controls. This 

observation implies that the inhibition of a basic metabolic process causing accelerated cell death 

and, therefore, decreased levels of activation is an unlikely explanation. One initial speculation 

proposed that the observed effects could be explained by the presence of a physical coating of PFC 

surrounding cells, thereby interfering with the interaction between stimulant-containing cells and 

target cells.117 However, other studies have shown that decreased chemotaxis effects are observed 

even after PFC-exposed neutrophils were washed with fresh buffer before being exposed to a 
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stimulus.112 This may suggest that the anti-inflammatory effects are related to a sustained chemical 

effect rather than the presence of a physical barrier. Another proposed theory is that low levels of 

PFC diffusing in to the cellular membrane of human leukocytes exert inhibitory effects on 

transmembrane signaling.118 In support of this theory, one study has shown that the in vitro cellular 

effects of various PFCs increase proportionally with PFC lipid solubility.118 Additionally, by 

shearing PFC-exposed cells and separating the membrane and cytoplasmic fractions, it was shown 

that any PFC content present was associated with the membrane fraction.118 This data suggests 

that PFCs may have a nonspecific effect caused by PFC localizing in the lipid bilayer of the cellular 

membrane, resulting in a generalized protective or dampening effect on a variety of membrane-

associated responses to activation.118 Another study focused on the effects of PFC on the Syk 

pathway, a signaling system located early in a series of events leading to phagocytosis. Results 

showed that incubation with PFC reduced tyrosine phosphorylation of Syk, resulting in a 

corresponding reduction in phagocytosis of opsonized sheep erythrocytes.112 This phenomenon 

could be explained by PFC-induced alterations at the cell membrane causing disruptions in the 

transmembrane signaling process leading to Syk phosphorylation.112 Although evidence exists for 

PFC-induced modifications of the cellular membrane being responsible for the immune effects 

associated with PFC, skepticism still exists. Multiple studies have observed an attenuated response 

by PFC-exposed neutrophils to stimulation with phorbol myristate acetate.113, 116, 117 Phorbol 

myristate acetate evokes a cellular response through an intracellular mechanism, more specifically, 

activation of the protein kinase C pathway. This observation cannot be fully explained by the 

suggested modified interaction between a stimulant and cellular membrane receptor115, 116, 

possibly suggesting a combination of both intra- and extracellular effects. 
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1.6 Perfluorocarbon-Based Drug Delivery 
 

PFC-based pulmonary drug delivery has been explored for a variety of drugs, including 

vasoactive drugs119, plasmids120, 121, pulmonary surfactant85, 92, 122, and antibiotics123-128. PFCs 

represent an attractive medium for drug delivery not only due to their unique application during 

LV, but also due to their chemical stability. The inert nature of PFCs limits potential interactions 

with the drug that could hinder the drug’s mechanism of action or efficacy. In the case of antibiotic 

delivery, it has even been shown that the combination of PFC exposure and antibiotics may work 

synergistically to provide a more effective antibacterial effect than either agent alone.129 Note that 

although multiple studies have concluded that neat PFC has an inherent antibacterial effect of its 

own,129-131 such capabilities remain in question. The bacterial reduction following PFC exposure 

observed in these studies was likely due to a physical redistribution of the bacterial cells due to 

surface properties of PFC or decreased bacterial adhesion132 rather than bacterial killing. 

Regardless of its bactericidal ability alone, PFC represents an attractive vehicle for antibiotics to 

be delivered to the lung. However, the manner in which the antibiotics are added to the PFC phase 

presents a challenge. Due to the hydrophobic nature of PFC, a simple mixture of PFC and aqueous 

antibiotics will result in the less dense aqueous phase quickly separating and rising to the liquid 

surface. The earliest efforts at PFC-based antibiotic delivery used simple mixtures of aqueous drug 

solutions and PFC, relying solely on bulk flow turbulent mixing to disperse the aqueous phase 

throughout the PFC. In an attempt to increase dispersion of the drug-containing, aqueous phase, 

researchers often introduced the aqueous phase before filling the lungs with PFC, termed “top 

loading”126, 127, or in small boluses during the inspiratory phase of TLV124, 128. Although these 

creative methods of drug introduction result in a greater initial dispersion, phase separation and 

coalescence likely still occurs rather quickly. A method of PFC-based delivery able to achieve 
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sustained dispersion of drug throughout the PFC phase would likely result in increased therapeutic 

potential. Accordingly, multiple efforts have been made to utilize a drug-in-PFC suspension during 

LV. The first attempts at such a delivery scheme utilized solid, crystalline antibiotic microparticles 

suspended within PFC.123, 125-127 These suspensions were typically created by spray-drying a 

mixture of antibiotic, saline, PFC, surfactants, and bulking agents to create porous microparticles 

with a fluorophilic shell. A schematic of this process is shown in Figure 1.5. The microparticles 

were then added to PFC to form a stable suspension within a bulk PFC phase. Studies evaluating 

the pharmacokinetics of LV with these suspensions have shown the treatment’s ability to 

significantly increase pulmonary antibiotic concentration relative to IV or intramuscular (IM) 

delivery, while still maintaining non-toxic serum concentrations.123, 127 Treatment efficacy of these 

suspensions in the setting of a bacterial respiratory infection has also been evaluated. In one study, 

 

Figure 1.5: Schematic showing the fabrication process for solid, crystalline antibiotic 

microparticles, termed PulmoSpheres.3 
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various treatments employing different antibiotic delivery mechanisms were initiated one day after 

rats were intratracheally inoculated with Streptococcus pneumonia.126 Treatment with the 

microparticle-PFC suspensions showed significantly increased survival over a 10-day period 

relative to IM delivered antibiotics alone, but no advantage over other forms of antibiotic 

administration coupled with LV (IM or addition of unemulsified antibiotics to PFC).126 This 

suggests that the survival benefit may have been due to the anti-inflammatory properties of PFC 

or perhaps better oxygenation in consolidated lung regions. Similarly, prophylactic treatment 

utilizing LV with an antibiotic-PFC suspension was shown to more effectively prevent bacterial 

respiratory infection in rats relative to delivery via the IM route.125  

An alternative method of drug addition involves suspending the drug in aqueous form (i.e. 

emulsified aqueous droplets in a continuous PFC phase) rather than as solid particles. The use of 

aqueous antibiotics rather than solid particles presents both potential advantages as well as new 

challenges. In theory, if aqueous drug solutions were able to be added during emulsion preparation 

immediately prior to delivery, a much broader selection of drugs (or even combination of drugs) 

could be utilized as compared to dry particle suspensions. As previously mentioned, the 

preparation process required for dry particle suspensions is labor-intensive and thus a desired drug 

must undergo this individualized process well in advance and likely in a specialized facility. The 

reduced preparation associated with a liquid-in-liquid emulsion would likely translate to decreased 

overall costs as well. Additionally, having the drug phase present within the PFC mixture in an 

aqueous solution may also allow for more controllable kinetics. In the case of either dry particle 

suspensions or liquid emulsions, once the drug comes in to contact with an aqueous surface in the 

lung (i.e. bacterial biofilms, respiratory mucus, or the epithelium) it will likely be transported into 

or along that surface via passive diffusion. By having the drug present in a solution within the PFC 
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mixture, one is able to control the concentration of that solution and thus better control drug 

kinetics within the lung. Ultimately this would theoretically allow for more freedom and 

customization in the treatment process. Conversely, by including an aqueous phase in the PFC 

mixture, new mechanisms of instability are introduced that were previously absent in the case of 

dry particle suspensions. The primary stability concern within a suspension of dispersed solids is 

coagulation, or clumping, of the solid particles. For fluid-fluid dispersions, additional methods of 

de-mixing may be present. The types of phase separation present can depend on many factors, but 

the most important are likely the size of the dispersed droplets, the density difference between the 

two phases, and the solubility of the dispersed phase within the continuous phase. In the case of 

micron-sized, aqueous droplets within a continuous PFC phase, creaming of the less dense aqueous 

droplets will result in stratification of the two phases and is likely the most dominant form of phase 

separation. As creaming stratifies the mixture, bringing the droplets in closer vicinity to each other, 

the average thickness of PFC film separating each droplet decreases until it reaches a critically thin 

thickness and droplet coalescence occurs. Ostwald ripening, another de-mixing phenomenon in 

which smaller droplets dissolve in the continuous phase and redeposit on to larger droplets, could 

also be present but is more common in mixtures where the dispersed phase has a larger degree of 

solubility in the continuous phase. Only one study was found to have previously attempted the use 

of an emulsion of aqueous antibiotics in PFC rather than a suspension of solid particles.133 The 

emulsions were formed using natural bovine surfactant as the emulsifier. It was shown that PLV 

with such emulsions in healthy rabbits resulted in significantly higher intrapulmonary antibiotic 

concentrations and lower peak serum antibiotic concentrations relative to IV administration.133 

The bactericidal capacity and stability of such emulsions were not evaluated. 
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1.7 Antibacterial Perfluorocarbon Ventilation 
 

In order to address the shortcomings of current antibiotic therapy for respiratory bacterial 

infections, we propose a treatment termed APV. During APV, the lungs are filled with an emulsion 

containing a disperse phase (≤ 5% by volume) of aqueous antibiotics within PFC liquids. The 

initial dispersion of aqueous antibiotics during preparation of the emulsion is achieved 

mechanically by sonicating a mixture of the two phases. In order to stabilize the aqueous droplets, 

an emulsifier is added to the mixture prior to sonication. Due to the hydrophobic and lipophobic 

nature of PFC, the selection of suitable surfactants able to stabilize a water-in-PFC emulsion is 

extremely limited.134 The fluorosurfactants used in this work utilize a fluorinated synthetic oil 

based on hexfluoropropylene oxide, more specifically Krytox 157FS oil (DuPont, Wilmington, 

DE). In addition to the unmodified molecule, a copolymer form utilizing a central polyethylene 

glycol (PEG) block was also used. The PEGylated forms of the molecule (referred to as Krytox-

PEG) were formed by converting Krytox 157FS, a perfluoroether with carboxylic acid 

functionality, to an acid chloride which is then reacted with polyoxyethylene diamine.134 The 

molecular structures of both the unmodified Krytox 157FS and Krytox-PEG are shown in Figure 

1.6.  

Two different forms of the Krytox 157FS molecule were used in this work: a high 

molecular weight form (n = 41, MW = 7,250 Da) and a low molecular weight form (n = 13, MW 

= 2,500 Da). The high and low molecular weight forms of Krytox 157FS will be referred to simply 

as FSH and FSL, respectively, in the remainder of this work. The PEGylated forms of these 

molecules contained different size PEG blocks. The Krytox-PEG polymer utilizing FSH contained 

a smaller PEG chain (m = 22, MW = 1,000 Da) while the Krytox-PEG polymer utilizing FSL 

contained a larger PEG chain (m = 75, MW = 3,350 Da). The Krytox-PEG polymers utilizing FSH 
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and FSL will be referred to simply as FSH-PEG and FSL-PEG, respectively, in the remainder of 

this work. The total molecular weights for the FSH-PEG and FSL-PEG copolymers are 15,500 

and 8,350 Da, respectively. FSL-PEG was used in combination with equal masses of FSL in order 

to increase surface activity and produce a more stable emulsion, while FSH-PEG was able to be 

used alone. Similarly structured Krytox-PEG copolymers have exhibited favorable 

biocompatibility when used to encapsulate mammalian cells or small multicellular organisms 

within aqueous microcompartments surrounded by PFC.135, 136  

Similar to traditional LV, APV could be performed either as total APV or partial APV. 

During total APV, the patient would be sedated, intubated, and the lungs completely filled with 

emulsion. The lungs would then be tidally ventilated with emulsion for a relatively short period of 

time (< 2 hours) to ensure appropriate gas exchange while delivering antibiotic and breaking up 

and removing infected mucus. During this time, the lungs would be completely filled with 

emulsion and thus the airway surfaces throughout the entire lung would be in constant contact with 

the emulsion. During partial APV, the lung would only be partially filled with emulsion 

 

Figure 1.6: Molecular structures of the fluorosurfactants used as an emulsifier in the water-in-

PFC emulsions utilized during APV. 
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(approximately end-expiratory volume, ~10-20 mL/kg). The lung would then be gas ventilated 

using a conventional ventilator. This would provide gas exchange but with a lesser degree of tidal 

emulsion flow within the airways relative to total APV. In this setting, the entire lung would 

experience contact with the emulsion at the end of each expiration while some of the larger 

conducting airways would be gas filled during the rest of the respiratory cycle. In both cases, at 

the conclusion of treatment some portion of emulsion would be suctioned from the lungs with the 

remainder left in the lung and allowed to evaporate under normal gas ventilation. This would leave 

behind an antibiotic dose that is applied directly to the lungs with full access to dependent and 

previously occluded airways. Due to the need for the patient to be sedated and possibly given a 

paralytic, APV would likely be a one-time treatment used in conjunction with systemic or inhaled 

antibiotics. There is no question that inhaled antibiotic delivery presents a much less invasive and 

more convenient method of antibiotic treatment relative to APV. As such, inhaled delivery should 

still be attempted prior to APV in virtually all cases. APV, however, represents a more drastic line 

of treatment that could significantly improve morbidity and mortality in severe patients in which 

inhaled delivery is simply insufficient. Accordingly, APV would be best suited for patients already 

on a ventilator due to the need for the patient to be intubated during therapy. Respiratory bacterial 

infections in CF, COPD, and bronchiectasis are common and often exacerbate the disease state to 

the point that mechanical ventilation is required. Such patients groups could greatly benefit from 

APV with very little added procedures or discomfort. 

APV, both partial and total, could enhance current antibiotic therapy in several ways. First, 

antibiotic is delivered directly to the source of infection, allowing for higher concentrations in the 

lung and lower systemic concentrations and risk of toxicity. While inhaled antibiotics have been 

shown to produce much higher concentrations in the lung relative to systemic administration10, 
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this technique can only deliver antibiotics to areas of the lung receiving effective gas ventilation. 

Due to PFC’s unique ability to homogenously fill the lung, APV should result in more uniform 

distribution of antibiotic throughout the lung, including dependent, atelectatic, and edematous 

regions typically unreachable via inhaled antibiotics. Second, the previously discussed anti-

inflammatory properties of PFC may promote lung healing and a return towards normal 

mucociliary clearance. Lastly, the tidal flow of liquid emulsion during APV should actively 

remove infected mucus from airway walls. Considering the significant role that mucus plays in the 

progression of infection during lung disease, the debridement of abnormally thick mucus and 

biofilms from the airways should be a primary aim of treatment. 

The general mechanisms by which mucus is cleared during the cough reflex have been 

studied and are well understood. Numerous studies have examined the interaction between airflow 

(both laminar and turbulent) and a mucus-like layer.18, 137-143 During such a scenario, when the 

speed of airflow over the stationary mucus phase reaches a critical value, the result is an instability 

that is manifested via standing or propagating waves on the mucus surface.18, 141, 144 As the height 

of such waves continues to grow into the airway lumen, the effective cross-sectional area of the 

local lumen is decreased and the air velocity increased. Increased air velocity results in increasing 

values of local shear stress at the mucus interface that will eventually exceed the mucus yield stress 

thereby inducing flow. Mucus flow results in crests of mucus moving downstream and growing in 

height until nearly blocking the lumen cross-section, resulting in an extreme rise is pressure and a 

catastrophic clearance event in which the yield stress is exceeded for a large volume of mucus.141 

In vitro work with mucus or mucus simulants along with mathematical modeling have led to the 

understanding of how such clearance relates to the mucus physical properties and flow 

environment. Mucus detachment increases with shear magnitude and duration, and mucus 
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thickness.140 Mucus detachment is also greater in unhealthy, more elastic mucus than in healthy, 

less elastic mucus.22, 140 Thus, thick layers of tenacious mucus will bunch and detach under shear 

that only causes thin, healthy mucus to flow along the airway. This is in part why coughing does 

little to remove normal mucus but is effective against thick mucus during disease. Additionally, 

mucus clearance is impaired by high surface tension at the mucus-air interface, which stabilizes 

mucus and prevents it from detaching.18  

During tidal ventilation with the emulsion, mucus detachment is expected to occur in a 

manner similar to that during a cough. Thus, the removal of mucus during APV is dependent on 

shear stress, surface tension, and gravitational forces acting on the mucus, as well as the viscosity, 

elasticity, and thickness of the mucus layer.18, 22, 142, 143 A schematic showing these effects can be 

seen in Figure 1.7. Several of these factors differ from the cough scenario during APV, with many 

of these changes likely resulting in enhanced mucus removal. First, the emulsion would apply a 

level of shear stress to the airways comparable to that experienced during a cough, but the duration 

of the sustained stress would be significantly increased. Typical coughs have an initial flow rate 

 

Figure 1.7: Schematic of forces acting on mucus in airway during APV where FB is the buoyant 

force, τi and τe are the flow-induced shear stress during inspiration and expiration, respectively, 

σ are forces due to aqueous-emulsion interfacial tension, and g denotes the direction of gravity. 
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of 7-8 L/s for 30-50 ms followed by 3 L/s for 200-500 ms, resulting in a short duration of turbulent 

flow with a typical tracheal wall shear stress of 1.75 Pa.145, 146 During total APV with typical TLV 

parameters [respiratory rate = 7 breaths/min, tidal volume = 15 mL/kg, inspiratory-to-expiratory 

time ratio (I:E) = 1:2 or 1:4], calculated Reynolds numbers (using Equation 1 below and assuming 

a PFC viscosity of 1.3 cP and density of 1.8 g/mL, a 70-kg patient, and human airway 

measurements147) range from near zero in the small airways to approximately 13,000-50,000 in 

the trachea, representing both turbulent and laminar flows. For turbulent flow and assuming a 

smooth surface at the mucus interface, the flow-induced shear stress at the tracheal wall can be 

calculated according to Equation 2,148  

 𝑅𝑒 =  
𝜌𝑢𝑑

𝜇
     (1)           𝜏𝑤 =  

0.023𝜌𝑢2

𝑅𝑒0.2
     (2) 

where Re is Reynolds number, ρ is PFC density, u is the average linear velocity of PFC flow, d is 

the tracheal diameter, µ is the dynamic viscosity of PFC, and τw is shear stress at the tracheal wall. 

Assuming the previously mentioned PFC and ventilation parameters, the calculated tracheal wall 

shear stress at inspiration and expiration, respectively, would be approximately 17.5 and 1.4 Pa for 

I:E = 1:4 and 7.0 and 2.0 Pa for I:E = 1:2. The shear stresses during APV are up to an order of 

magnitude larger than those during a cough and applied for a much longer duration, with even the 

shorter inspiratory phase lasting more than an order of magnitude longer than the high flow phase 

of a cough.  

In addition, a lesser shear stress will be necessary to detach mucus during APV, as the 

mucus-PFC interfacial tension is reduced relative to the mucus-air interfacial tension. Although 

the mucus-air interfacial tension in a healthy individual can be as low as 20 dyne/cm149, this value 

is typically much greater during disease, with values of  72 and 81 dyne/cm measured for mucus 

from patients with CF and chronic bronchitis.150 This is similar to the surface tension of an air-
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water interface (72 dyne/cm) due to the aqueous nature of the mucus. The interfacial tension of a 

water-PFC interface (analogous to mucus-PFC interface) is approximately 45 dyne/cm.151 The 

reduced interfacial tension between mucus and the emulsion should allow for instabilities at the 

mucus surface to occur more readily, thereby allowing for easier release of mucus into the bulk 

fluid.18  

The effect of this interfacial tension can also be shown in terms of work of adhesion. Pillai 

et al investigated the work of adhesion of mucus, or the reversible work per unit area required to 

separate mucus from a substrate.152 The work of adhesion can be determined from the interfacial 

tensions between the multiple phases present and can be described for a gas-filled and PFC-filled 

lung according to Equations 3 and 4,152 

𝑊 = 𝛾𝑚𝑢𝑐𝑢𝑠−𝑎𝑖𝑟 + 𝛾𝑒𝑝𝑖𝑡ℎ𝑖𝑙𝑖𝑢𝑚−𝑎𝑖𝑟 − 𝛾𝑚𝑢𝑐𝑢𝑠−𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑢𝑚      (3) 

𝑊 = 𝛾𝑚𝑢𝑐𝑢𝑠−𝑃𝐹𝐶 + 𝛾𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑢𝑚−𝑃𝐹𝐶 − 𝛾𝑚𝑢𝑐𝑢𝑠−𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑢𝑚    (4) 

where W is the work of adhesion to separate mucus from the epithelium and γ is the interfacial 

tension between two phases. Assuming that both the mucus and epithelium can be described as 

aqueous surfaces, the interfacial tension between PFC and these surfaces (γmucus-PFC and γepithelium-

PFC) should be reduced relative to their counterparts in the gas-filled lung (γmucus-air and γepithelium-

air).  

Thus, from Equations 3 and 4, it can be seen that the work required to detach mucus from 

the epithelium should be less in a PFC-filled lung relative to a gas-filled lung. Once in the bulk 

fluid, mucus can be transported out of the lungs. This movement will be aided by the buoyant force 

acting upon the mucus. The density of PFC (1.7-1.9 g/mL) is nearly twice that of mucus. Thus 

mucus movement will improve if a patient is positioned with the head above the lungs, allowing 

the buoyant force to push mucus from the dependent airways towards the larger, conducting 
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airways. As a result of these factors, total APV should be able to wash thick, viscoelastic mucus 

from the lungs. During previous experiences with TLV in sheep with severe ARDS, 100-300 mL 

of thick, proteinacious fluid was removed within ventilator traps after a few hours of ventilation.2 

Mucus removal during partial APV should still be possible, although perhaps less effective. Due 

to the compressibility of gas, the tidal flow of emulsion will be decreased. However, buoyant forces 

and low interfacial tension will still promote the movement of mucus into the larger conducting 

airways, where it can be removed via suction. This was observed during PLV as respiratory support 

during ARDS, albeit with a less tenacious mucus.63, 64 Ultimately, active mucus removal should 

allow antibiotics to penetrate previously plugged airways during APV and subsequent inhaled 

treatments, resulting in more uniform antibiotic distribution. 

At the same time, this technique should not remove significant amounts of endogenous 

surfactant. First, pulmonary surfactant is not soluble in PFC.153 Second, it should flow along the 

airway rather than detach: the surfactant layer is only about 0.1 µm thick, inelastic, and has a far 

lower viscosity than mucus.154 Moreover, alveolar surfactant will experience very low shear due 

to the extremely low flow rates experienced at this generation of the airways. Accordingly, studies 

clearly demonstrate that surfactant is not removed after up to three hours of TLV, and lung 

compliance returns to normal after PFC evaporation.153, 155 Multiple studies have transitioned 

animals to conscious, spontaneous breathing with normal lung function after up to three hours of 

TLV.153, 155 Thus, there should not be enough surfactant depletion to cause respiratory distress 

during less than two hours of APV.  

Although PFC has previously been examined as a means of pulmonary antibiotic delivery, 

our approach differs in multiple ways. None of the previous approaches have delivered antibiotic 

within a true emulsion using an appropriate emulsifier. Previous attempts to deliver antibiotics via 
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PFC have used a simple mixture of PFC and aqueous antibiotics, a spray-drying process resulting 

in a suspension of solid microparticles in PFC, or aqueous antibiotics emulsified in PFC using 

natural bovine surfactant. Delivery of the two phases without an added stabilizing process or agent 

relies upon turbulent mixing to disperse the drug and likely fails to sustain therapeutic antibiotic 

concentrations in a large portion of the lung. The solid microparticle suspensions used in previous 

studies entail a costly and timely spray-drying process that has failed to show improved treatment 

efficacy over unstabilized mixtures of the two phases.126 The use of a liquid emulsion can likely 

decrease the cost of such a treatment as well as allow for delivery of a wider array of drugs with 

more controllable kinetics. Previous attempts to formulate an emulsion of aqueous antibiotics and 

PFC used natural bovine surfactant (composed of phospholipids) as the emulsifier.133 Due to the 

lipophobic nature of PFC, natural pulmonary surfactant is not an ideal emulsifier, likely resulting 

in a somewhat unstable emulsion. Lastly, our focus on removing lung exudates should also 

maximize this treatment. PLV and TLV mobilize lung exudates for removal, either by suction 

(PLV) or within ventilator mucus traps (TLV).2, 63, 64, 153 However, no one has utilized this aspect 

of LV to treat bacterial respiratory infections. For these reasons, we believe our approach differs 

from previous attempts and presents the potential for significantly improved treatment. 

1.8 Summary of Study 
 

The goal of this work was to investigate the use of tobramycin-loaded, water-in-PFC 

emulsions during LV (termed APV) as a means of antibiotic delivery and therapy for bacterial 

respiratory infection patients. Several different aspects of APV were evaluated using both in vitro 

and in vivo methods. Initial work evaluated the fluid mechanical aspects of the emulsion. The 

physical properties of liquid PFCs are integral to their use during LV. Thus, evaluating the effects 
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of the emulsification process on these physical properties is a critical first step in the development 

of APV. In the next phase of this work, we evaluated the bactericidal capacity of such emulsions 

against clinically relevant biofilms and how these effects vary with emulsion formulation. In vivo 

methods were then used to evaluate the pharmacokinetics of antibiotic delivery via APV with 

varying emulsion formulations.  Finally, following a lack of observed treatment benefit in a 

bacterial respiratory infection model in rats, simplified in vitro methods were used in an attempt 

to gain a better understanding of the physical transfer of drug from the emulsion to aqueous 

surfaces with which it comes in to contact. The results from such in vitro studies have resulted in 

significantly optimized, more effective emulsion formulations to be used during APV. 
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CHAPTER 2  
 

 

Initial Characterization of a Water-in-Perfluorocarbon 

Emulsion for the Pulmonary Delivery of Tobramycin 

 

 

2.1 Introduction 
 

Antibacterial perfluorocarbon ventilation (APV) is a proposed treatment that aims to 

address the shortcomings of inhaled antibiotic delivery. This current treatment is perhaps most 

lacking in the setting of bacterial respiratory infection during preexisting lung disease, such as is 

commonly the case during cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). 

During APV, the lung is filled with liquid perfluorocarbon (PFC) containing emulsified aqueous 

antibiotic (i.e. a water-in-PFC emulsion) and ventilated for a short period (< 2 hours). Such 

treatment would allow for improved penetration and distribution of delivered antibiotic as well as 

the ability to actively detach and remove infected mucus from the airways. In order to maintain 

uniform spatial distribution of aqueous drug within the immiscible PFC, FSL-PEG and FSL 

(molecular structures shown in Figure 1.6) are used as emulsifiers and added to the mixture prior 

to mechanical dispersal of the aqueous phase. Previous work with this fluorosurfactant focused on 

a water-in-PFC-in-water emulsion.1 Thus, the physical properties of the water-in-PFC emulsions 

to be used during APV are largely unknown.  
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Additionally, the application of the emulsions in this work also differs. Previous emulsions 

utilizing the fluorosurfactants were primarily intended for IV administration1 rather than during 

liquid ventilation (LV). As discussed in sections 1.4 and 1.7, the abilities of PFC to provide 

adequate respiratory support as well as effectively remove mucus during LV are largely dependent 

on its physical and rheological properties. Therefore, it is imperative to understand any potential 

changes that are induced in these properties as a result of the emulsification process. Such an 

evaluation will indicate the feasibility and mucus removal efficacy of using the emulsions during 

APV. In addition to providing a means of respiratory support and mucus removal, the emulsion 

must also be capable of effective antibiotic delivery. As discussed in section 1.2, bacterial biofilms 

represent a key pathological feature of chronic airway infections2, 3 and a significant impediment 

to effective antibiotic therapy.4, 5 Much of the therapeutic potential of APV rests on the ability of 

the tobramycin-loaded emulsions to achieve effective delivery to the lungs and eradication of 

bacteria in a biofilm setting. 

The general aim of the work presented in this chapter was to perform a comprehensive 

initial evaluation of a tobramycin-loaded, water-in-PFC emulsion in order to explore the feasibility 

and potential efficacy of APV. In the current study, we characterized the stability, rheology, and 

anti-biofilm characteristics of an emulsion consisting of aqueous tobramycin in a PFC vehicle. In 

addition, initial pharmacokinetic work was performed in order to compare antibiotic delivery via 

the emulsion to that of aerosolized delivery. To be effective in its intended application, the 

emulsion must (i) be effective against typical airway biofilm pathogens such as Pseudomonas 

aeruginosa (PA), (ii) be stable over the intended two-hour duration of treatment, and (iii) maintain 

surface tensions, aqueous interfacial tensions, and viscosity similar to those of neat PFC. Low 

surface tension and aqueous interfacial tension are necessary for the liquid to penetrate otherwise 



 

46 
 

plugged airways and aid in mucus detachment.6 The viscosity of PFCs has significant effects on 

the ability to adequately ventilate the lungs during LV7 and the shear stress-induced disruption of 

infected mucus lining the airways. 

2.2 Methods 

2.2.1 Emulsion Preparation 
 

The FSL-PEG fluorosurfactant was synthesized as previously described elsewhere.1 The 

emulsion was prepared by first dissolving 6 mg FSL (Krytox 157FSL, CAS # 51798-33-5; Dupont, 

Wilmington, DE, USA) and 6 mg FSL-PEG copolymer in approximately 0.6 mL of PFC liquid. 

The PFC used in all experiments was perfluorocycloether/perfluoroctane (FC-770; 3M Inc., St. 

Paul, MN, USA). FC-770 has been used in previously published studies on partial liquid 

ventilation (PLV).8-10 For eventual clinical translation, a PFC with a higher level of purity and 

larger amount of documented in vivo safety data would be used. Next, 125 µL of 0.4, 4, or 40 

mg/mL tobramycin (Abraxis Pharmaceutical Products, Schaumburg, IL, USA) in sterile saline was 

added. The mixture was emulsified via sonication (Model 450, 20 kHz, 3.2 mm diameter microtip; 

Branson Ultrasonics, Danbury, CT, USA) at 200 W/cm2 for 60 seconds in continuous mode. PFC 

was then added to the emulsion to a final volume of 5 mL and was sonicated for an additional 10 

seconds to disperse the aqueous droplets in the PFC phase. Additional PFC was then added to the 

emulsion to create the varying aqueous volume percentages examined. The primary emulsion 

formulation parameters that will be referred to throughout this work are aqueous volume 

percentage (Vaq), aqueous tobramycin concentration (Caq), and fluorosurfactant concentration 

(Cfs). The Vaq and Caq define the percentage of aqueous volume within the emulsion and the 

concentration of tobramycin within that aqueous phase, respectively. Thus, the total mass of 
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tobramycin within any particular volume of emulsion is defined by both Vaq and Caq. Cfs describes 

the total mass of fluorosurfactant (sum of FSL-PEG and FSL) used to emulsify the aqueous phase 

within the emulsion. Thus, values for Cfs are given as the mass of fluorosurfactant per aqueous 

volume used in the emulsion (i.e. units of mg/mL H2O) throughout this work. 

2.2.2 Particle Size and Number 
 

The number and size distribution of aqueous droplets in an emulsion with Vaq = 2.5% and 

Cfs = 96 mg/mL H2O were acquired via photomicrography using a hemocytometer (Brightline, 

Hausser Scientific, Horsham, PA, USA). Images were digitally acquired using Spot Advanced 

Software (Diagnostic Instruments Inc., Sterling Heights, MI, USA) and processed in MATLAB 

(The MathWorks Inc., Natick, MA, USA) to determine the number of droplets per volume and 

their size distribution. To determine emulsion stability, analysis was repeated one, two, and 24 

hours after preparation. Five different optical fields of view (FOV), each containing a minimum 

of 500 droplets/FOV, were analyzed to determine the droplet number density and size distribution 

at each time point. This manual droplet counting/sizing method has been used with similarly sized 

emulsions and shown to produce results not statistically different from those obtained using a 

Coulter counter.1, 11 

2.2.3 Emulsion Viscosity 
 

The dynamic viscosities of neat PFC and emulsions with Cfs = 96 mg/mL H2O and Vaq 

values ranging from 0.3 to 2.5% were measured using a cone and plate rheometer (AR 1000, TA 

Instruments, New Castle, DE, USA). Samples were interrogated at 37o C over a range of shear 

rates from 20 to 500 s-1, capturing a range of values estimated to be achieved at the airway 
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epithelium during total liquid ventilation. Three repeated measurements were taken for each set of 

conditions examined. 

2.2.4 Air and Aqueous Interfacial Tensions 
 

The surface tension and aqueous interfacial tension of neat PFC and an emulsion with Cfs 

= 96 mg/mL H2O and Vaq = 2.5% were measured using a DuNouy ring tensiometer with a 

platinum-iridium ring (6 cm circumference, Interfacial Tensiometer; CSC Scientific Company 

Inc., Fairfax, VA, USA). Immediately after emulsion preparation, 10-15 mL of emulsion or neat 

PFC was placed in a petri dish and allowed to reach room temperature (22-25o C) before being 

used for measurements. For aqueous-emulsion or aqueous-PFC interfacial tension measurements, 

10 mL of de-ionized, filtered water was introduced on top of the emulsion or neat PFC. Three 

repeated measurements were taken for each set of conditions examined. 

2.2.5 Anti-Biofilm Activity 
 

PA strain ATCC 27853, was generously provided by David McLeod (Gilead Laboratories, 

Foster City, CA, USA). This strain was selected for its biofilm forming capacity. Biofilms were 

grown on solid phase transfer pin lids as described elsewhere12 and as summarized in Figure 2.1. 

Bacteria were first grown in tryptic soy broth (TSB) with 1% glucose at 37o C on a gyratory shaker. 

A solution of approximately 108 colony-forming units (CFU) per mL of mid-log growth PA in 

growth medium was then placed into wells of a 96-well plate (150 uL/well). A solid phase transfer 

pin lid (Nunc-TSP 445497; Nunc, Rochester, NY, USA) was then placed such that pins were 

immersed in the bacterial broth. Trays were incubated for 18 hours at 37o C without shaking. Pin-
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adherent biofilms were then exposed to the emulsions, neat PFC, aqueous antibiotics, or growth 

medium by transferring the lid to a new 96-well plate containing the exposure medium (200 

µL/well). All emulsions in Table 2.1 were examined. After two hours of exposure, biofilms were 

centrifuged for 20 minutes at 840 x g into fresh growth medium (TSB with 1% glucose). Because 

centrifugally released biofilm material could not be reliably separated into individual cells to 

perform CFU counting, bacterial viability from recovered biofilms was quantified as the change 

in broth turbidity over six hours. LB agar (Lennox L agar; Life Technologies, Carlsbad, CA, USA) 

cultures were used to confirm complete biofilm killing in cases where no change in broth turbidity 

 

Table 2.1: Formulations of all emulsions examined for anti-

biofilm activity. 

 

 

 

 

Figure 2.1: Sequence of steps in biofilm exposure experiment. 
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occurred over six hours of observation. Sixteen wells were used for each type of exposure, 

resulting in 16 repeated measurements for each set of conditions examined. 

2.2.6 Pharmacokinetic Characterization 
 

Specific pathogen-free, male Sprague Dawley rats [n = 20, weight 401  14 g (mean  

standard deviation); Charles River Laboratories, Wilmington, MA, USA] were divided into the 

following groups: partial APV (referred to simply as APV in the remainder of Chapter 2) treatment 

(n = 10) and aerosolized treatment (n = 10). All rats were initially anesthetized with a mixture of 

ketamine hydrochloride [50 mg/kg, intraperitoneal (IP); Hospira Inc., Lake Forest, IL, USA] and 

xylazine hydrochloride (5 mg/kg, IP; Lloyd Laboratories, Shenandoah, IA, USA). Rats receiving 

aerosolized treatment were then placed in a prone position and orally intubated with a 16 gauge 

angiocatheter. Aerosolized delivery was accomplished via a Microsprayer Aerosolizer (Model IA-

1B; Penn-Century, Wyndmoor, PA, USA). Prior to intubation, the length of the angiocatheter was 

trimmed to ensure that the Microsprayer nozzle was sufficiently exposed when the Microsprayer 

was fully inserted into the angiocatheter. Following intubation with the trimmed angiocatheter, the 

Microsprayer was fully inserted into the angiocatheter and tobramycin (15 mg/kg in 250 µL of 

sterile saline) was delivered intratracheally. When performed in this manner, the nozzle tip was 

measured to be approximately 10 mm proximal to the carina (Figure 2.2). Although efforts were 

made to synchronize actuation of the Microsprayer to inspiration, the rats often became 

temporarily apneic following intubation and thus the aerosol was sometimes delivered in the 

absence of inspiratory or expiratory flow. Following delivery, rats were extubated and allowed to 

recover under supplemental oxygen provided via a nose cone. For rats receiving APV, intravenous 

(IV) access was acquired via the lateral tail vein following initial anesthesia. Sedation was 
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maintained with a constant IV infusion of ketamine hydrochloride (0.6 mg/kg/min). Heart rate and 

arterial oxygen saturation were monitored via a pulse oximeter (VetOx Plus 4800; Heska, 

Loveland, CO, USA). Rat body temperature was monitored and maintained with a homeothermic 

blanket system (Model 507220F; Harvard Apparatus, Holliston, MA, USA).  Rats were orally 

intubated with a 16 gauge angiocatheter and connected to a ventilator (Model 683; Harvard 

Apparatus, Holliston, MA, USA). Ventilation was carried out with a tidal volume of 9 mL/kg, a 

respiratory rate of 50-80 breaths/min, a positive end-expiratory pressure of 3 cmH2O, and a 

fraction of inspired oxygen of 1. Respiratory rate was adjusted to maintain peak inspiratory 

pressures less than 30 cmH2O. Preoxygenated emulsion (Vaq = 2.5%, Caq = 40 mg/mL, and Cfs = 

96 mg/mL H2O) was instilled (15 mL/kg) via a port connected to the angiocatheter, resulting in a 

delivered tobramycin dose of 15 mg/kg. When performed in this manner, the angiocatheter tip was 

measured to be approximately 5 mm proximal to the carina (Figure 2.2). The emulsion was 

prepared no more than 20 minutes before use and was instilled slowly over a period of less than 

three minutes without interrupting gas ventilation. Gas ventilation was continued for 60 minutes 

 

Figure 2.2: Image of intubated rat trachea showing angiocatheter (16 gauge, 1.77” long) and 

Microsprayer (Model IA-1B) tip locations relative to carina during treatment. 
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following delivery of the emulsion, after which the rats were either euthanized or allowed to 

recover under supplemental oxygen. 

 Rats were euthanized with pentobarbital sodium (175 mg/kg, IP, Fatal Plus; Vortech 

Pharmaceuticals, Dearborn, MI, USA) and the lungs removed aseptically at either one hour (n = 5 

for each treatment group) or four hours (n = 5 for each treatment group) following the delivery of 

tobramycin. In the four-hour groups, blood samples were drawn via the lateral tail vein at 30, 60, 

120, and 240 minutes following the delivery of tobramycin. Serum tobramycin concentration 

measurements were performed via an immunoassay by the Department of Pathology within the 

University of Michigan Hospital (Ann Arbor, MI, USA). Lung tissue was homogenized with 10 

mL of sterile saline and the presence of active tobramycin in the homogenate measured via a 

microbiological assay. 

The microbiological assay used in this work utilizes the agar well diffusion method that 

has been previously described by many researchers.13-15 Molten LB agar was dispensed (30 

mL/dish) into square, polystyrene petri dishes with a grid (Model FB0875711A; Thermo Fisher 

Scientific, Pittsburgh, PA, USA) on a flat surface. Note that accurately dispensed volumes are 

important because the resulting agar depth affects assay consistency. The dishes were allowed to 

cool at room temperature and stored at 4o C if not used immediately after preparation. Next, the 

agar surface of each plate was inoculated with approximately 500 µL of mid-log growth (optical 

density = 0.12-0.14) PA in TSB, ensuring that the entire agar surface was coated with bacterial 

solution. After allowing the plates to dry at room temperature, wells with a radius of approximately 

3.4 mm were made within the agar for each plate. Samples of the lung tissue homogenate were 

then loaded into wells (75 µL/well) within the inoculated agar. Standard solutions of known 

tobramycin concentration were also prepared and loaded into wells in an identical fashion. A set 
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of standards was included on each individual plate along with the experimental sample to be 

measured in order to minimize measurement variability due to differences in agar thickness 

between plates. Following loading of the samples, agar plates were incubated at 37o C for 24 hours 

before circular inhibition zones were imaged and measured. Examples of inhibition zones from 

such a plate are shown in Figure 2.3A. Measurement of inhibition zone areas was performed via 

ImageJ (US National Institutes of Health, Bethesda, MD, USA). The concentration of the unknown 

samples was then determined by interpolation from the inhibition zones of the standard solutions. 

Similar to previously described methods13, linear regression analysis of the standards was obtained 

by plotting the log transformation of the known tobramycin concentrations as a function of 

inhibition zone radii (Figure 2.3B). Standards curves typically had an R2 ≥ 0.98. The lower limit 

of detection using these methods was 5 µg/mL. Any result below this limit was assigned a value 

of 2.5 µg/mL. Each sample was measured in triplicate and the resulting values averaged to produce 

a single concentration for each trial. Five separate trials with independently prepared emulsions 

used in different rats were performed for each formulation evaluated. In addition to samples from 

rats receiving treatment, lung tissue from untreated rats and rats receiving an emulsion containing 

only sterile saline in the aqueous phase were examined as negative controls.  

 

Figure 2.3: (A) Example of inhibition zones resulting from the agar well diffusion method. (B) 

Example of standard curve used for interpolation during agar well diffusion method. 
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2.2.7 Statistical Analysis 
 

SPSS 22 (IBM Corporation, Armonk, NY, USA) was used to perform one- or two-way 

ANOVA and post hoc t-tests on comparisons of interest. The Tukey-Kramer method was applied 

to differentiate significant differences between groups. Repeated-measures ANOVA was used to 

determine the effect of treatment mode on serum tobramycin concentration with time after delivery 

used as the independent, repeated variable. Differences were deemed significant for p < 0.01 unless 

otherwise specified. All subsequent reported values are given as mean  standard deviation unless 

otherwise specified. 

2.3 Results 

2.3.1 Emulsion Physical Properties 
 

The aqueous droplet diameter, aqueous droplet number density, emulsion viscosity, 

emulsion surface tension, and aqueous-emulsion interfacial tension data are shown in Figure 2.4. 

Emulsion with Vaq = 2.5% and Cfs = 96 mg/mL H2O had an initial mean aqueous droplet diameter 

of 1.9  0.2 m and droplet number density of 3.5  1.7 x 109 droplets/mL. Aqueous droplet 

diameter was shown to be stable, with no significant change between zero and 24 hours. Aqueous 

droplet number density was shown to significantly change over time, exhibiting a nearly half-log 

decrease over 24 hours. The emulsions and neat PFC exhibited Newtonian behavior with constant 

viscosities over the range of shear rates examined (20 - 500 s-1
). No significant differences in 

viscosity were seen between neat PFC and emulsions. Over all of the shear rates tested, the ranges 

of average viscosities were 1.22 - 1.32 x 10-3, 1.21 - 1.34 x 10-3, and 1.26 - 1.37 x 10-3 Pa·s for 

emulsions with 2.5, 0.3, and 0% (neat PFC) aqueous volume, respectively. Lastly, the mean surface 

tensions of neat PFC and emulsion (Cfs = 96 mg/mL H2O and Vaq = 2.5%) were 15.0  0.1 x 10-3 
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and 14.6  0.6 x 10-3 N/m, respectively. The mean aqueous interfacial tensions were 46.7  0.3 x 

10-3 and 26.9  11.0 x 10-3 N/m (p < 0.01) for neat PFC and emulsion (Cfs = 96 mg/mL H2O and 

Vaq = 2.5%), respectively.  

 

 

Figure 2.4: (A) Size distribution of aqueous droplets in emulsion both initially and 24 hours 

post-preparation. (B) Droplet number density over time. (C) Viscosity over differing shear rates 

for neat PFC and emulsions of varying Vaq. (D) Air- and aqueous-interfacial tensions for neat 

PFC and emulsion. 
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2.3.2 Anti-Biofilm Capacity 
 

A typical biofilm recovered from an immersed pin is shown in Figure 2.5A. As shown in 

Figure 2.5B, tobramycin delivered via emulsion was capable of significantly limiting or altogether 

preventing growth in biofilm-derived PA after a two-hour exposure. Caq values of at least 4 mg/mL 

were necessary to reduce the proliferation of biofilm-derived bacteria following exposure, and 

bactericidal effects were achieved only with Caq = 40 mg/mL at the highest Vaq (2.5%). Under 

these conditions, the total emulsion concentration of tobramycin that the biofilm was exposed to 

was 1,000 g/mL and 8 of 16 replicates had no growth on follow-up culture at 24 hours. It is 

 

Figure 2.5: (A) Scanning electron micrograph (10,000 x) of typical biofilm from exposure 

experiment. (B) Six-hour biofilm growth after two-hour exposure to emulsions with varying 

Caq and Vaq. n = 16 for each condition. 
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important to note that a mean inhibitory concentration cannot be determined in a traditional way 

with this emulsion, as bacterial growth is likely a function of both Vaq and Caq rather than solely 

of the total overall tobramycin concentration. 

2.3.3 Pharmacokinetics 
 

Lung tissue from an untreated rat and a rat receiving ventilation with an emulsion 

containing only saline in the aqueous phase produced no distinguishable zones of inhibition. As 

shown in Figure 2.6A, tobramycin delivered via APV resulted in significantly higher 

concentrations in the lung tissue at both one and four hours post-delivery relative to aerosolized 

treatment. Mean lung tissue homogenate tobramycin concentrations at one hour post-delivery were 

197 ± 36 and 78 ± 18 µg/mL for APV and aerosolized treatment, respectively. Mean lung tissue 

homogenate tobramycin concentrations at four hours post-delivery were 82 ± 14 and 7 ± 5 µg/mL 

for APV and aerosolized treatment, respectively. Furthermore, three of five measurements in the 

aerosolized group at four hours post-delivery resulted in concentrations below the lower limit of 

 

Figure 2.6: Lung tissue homogenate (panel A) and serum (panel B) tobramycin concentrations 

at varying time points following tobramycin delivery via APV (Cfs = 96 mg/mL H2O FSL-

PEG+FSL, Vaq = 2.5%, and Caq = 40 mg/mL) and aerosolized delivery. Error bars represent 

standard deviations, n = 5 for each condition, and significant (p < 0.01) differences are denoted 

by an asterisk. 
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detection (5 µg/mL). A two-way ANOVA showed a statistically significant effect of treatment 

mode (APV or aerosolized delivery) (p < 0.01) and time post-delivery (one or four hours) (p < 

0.01) on lung tissue homogenate tobramycin concentrations. Serum tobramycin concentrations 

from rats receiving tobramycin delivered via APV or aerosolized treatment are shown in Figure 

2.6B. A repeated-measures ANOVA showed that tobramycin delivery via APV produced 

significantly (p < 0.05) lower serum concentrations relative to aerosolized delivery. Measured peak 

serum tobramycin concentrations for APV and aerosolized treatments were 9.1  1.5 and 14.4  

4.0 µg/mL and occurred at 60 and 30 minutes, respectively. 

2.4 Discussion 
 

In the current work, we demonstrated the feasibility of formulating a water-in-PFC 

emulsion containing tobramycin and its effectiveness as an antibiotic delivery vehicle. In order for 

this emulsion to be effective, it must be relatively stable over the likely application duration (< 2 

hours), preserve the viscosity and low interfacial tensions of PFC that allow for effective 

ventilation, and be bactericidal. Our emulsion has met these conditions. The sonication process for 

generating the emulsion is straightforward and could readily be performed just prior to 

administration, similar to the activation of ultrasound contrast agents [e.g. Definity (Lantheus 

Medical Imaging) or Optison (GE Healthcare)] or preparation of drug-laden emulsions used in 

chemoembolization.16  

Aqueous droplet size was sufficiently stable over a period of 24 hours while a significant 

decrease in aqueous droplet number density was observed over the same period. Multiple 

destabilization phenomena, including Ostwald ripening and coalescence, could be responsible for 

these observations. Coalescence of aqueous droplets within the emulsion would directly increase 
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mean droplet size as well as decrease droplet number density. During Ostwald ripening, larger 

droplets tend to grow in size at the expense of smaller droplets which decrease in size. Since the 

optical methods used to size the droplets was unable to measure nanometer-sized droplets, it is 

possible that Ostwald ripening caused some small, but initially countable, droplets to become 

undetectable at later time points. This would cause even a small increase in mean droplet size to 

correlate to a large decrease in the measurable droplet number density.  

The viscosity of the emulsion compared to that of neat PFC was not substantially different. 

This is not surprising given the low volumetric fraction of aqueous phase in the emulsion (0.3-

2.5%). The Vaq range examined was determined by considering the targeted mass of drug to be 

delivered relative to the lung fill volumes used in these trials (end-expiratory lung volume). The 

surface tension of the emulsion did not significantly differ from that of neat PFC, while the 

aqueous-emulsion interfacial tension was shown to be considerably less than the aqueous-PFC 

interfacial tension. This behavior is likely due to the addition of fluorosurfactant when preparing 

the emulsion. Due to their hydrophilic and fluorophilic moieties, the fluorosurfactants likely 

accumulate at the emulsion-aqueous interface causing a decrease in the interfacial tension. These 

results show that the emulsion exhibits the low surface tension of PFCs that allow them to penetrate 

small, branching airways and alveoli during LV and an even lower aqueous interfacial tension that 

should enhance mucus removal.17, 18 First, a low aqueous-PFC interfacial tension allows the PFC 

to more effectively penetrate airways that are partially or fully plugged with mucus. Second, it 

reduces the adhesivity of the mucus during LV, resulting in mucus detachment at lower flow rates 

and shear stresses.6, 17  

As expected, the tobramycin concentration needed within the aqueous phase to achieve 

bacterial killing against biofilms was substantially higher than the measured planktonic mean 
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bactericidal concentration against this strain (25 g/mL, data not shown). The reasons are likely 

twofold. First, antibiotic activity against biofilms is known to be reduced. Second, the physical 

means of antibiotic delivery from the droplets to the biofilm is not yet understood and may be 

reducing antibiotic effectiveness.  

It is worth noting that while the aqueous phase concentrations of tobramycin are quite high, 

the total dose administered to a patient using this technology is similar to currently used doses. If 

the highest Caq (40 mg/mL) and Vaq (2.5%) in our study were to be used clinically, a 70-kg patient 

undergoing PLV with 15 mL/kg of the emulsion (the dose used in previous clinical trials) would 

receive approximately one gram of tobramycin instilled into the lung. However, at the completion 

of therapy, a significant amount of the emulsion would be drained from the lung. Conservatively, 

estimating that 10 mL/kg is left behind, the delivered dose would be 700 mg, only slightly larger 

than the currently recommended 600 mg daily inhaled dose.19 However, the fraction of the 

administered dose actually delivered to the lungs may be higher during APV than aerosolized 

delivery due to aerosolized drug loss via exhaled drug as well as deposition in the oropharyngeal 

region and delivery device. It should be noted that the in vivo efficacy of different emulsion 

formulations has not yet been determined. The ideal Vaq, Caq, and fill volumes are all likely to 

change based on their in vivo efficacy. 

Based on these results, delivery of the same tobramycin dose via emulsion may lead to 

lower toxicity than aerosolized delivery. Pulmonary retention of the delivered tobramycin was 

significantly greater for APV than aerosolized delivery (2.5 times larger at one hour post-delivery 

and 10 times larger at four hours post-delivery). As a result, peak serum concentrations resulting 

from APV were smaller and occurred at a later time point relative to aerosolized treatment, 

suggesting delayed drug absorption into the pulmonary circulation. Clearance of tobramycin from 
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the systemic circulation after approximately 60 minutes post-delivery appears to be similar 

between the two modes of treatment. The difference in pharmacokinetics observed between the 

two routes of administration could also be due in part to a difference in the mass of drug reaching 

the lungs. Aerosolized delivery in this study was performed with the Microsprayer nozzle 

positioned within the rat trachea. Although this technique likely results in much greater lung 

deposition than shown with clinical devices in humans, it may still result in some drug deposition 

in the trachea, thereby potentially reducing the fraction of drug reaching the lungs.   

The physical means by which antibiotic is transferred from aqueous droplets within the 

emulsion to the aqueous surfaces of the lung (epithelial lining fluid or biofilm mass) is not yet 

understood and warrants further investigation. The bactericidal effects resulting from biofilm 

exposure to emulsions as well as the presence of tobramycin in the systemic circulation following 

APV treatment indicate that the antibiotic is available and delivery is achieved to some degree. A 

better understanding of this process would allow for easier optimization of the emulsion and 

therapy in order to achieve maximum treatment benefit. 

In conclusion, the emulsion assessed in this study exhibits a stable droplet size over a period 

of 24 hours, maintains the same viscosity as neat PFC, retains a low surface tension, creates an 

even lower aqueous interfacial tension than that of neat PFC, and is capable of significantly 

lowering bacterial growth in an in vitro setting. In addition, in vivo delivery of tobramycin via 

APV results in enhanced pulmonary retention as well as delayed absorption into the systemic 

circulation relative to aerosolized delivery. The next phase of this work will provide a more in-

depth evaluation of the in vivo effects of varying the emulsion formulation in an effort to further 

optimize the emulsion for effective treatment. It is important to note that the current study did not 

evaluate the effects of Cfs, and instead used excess fluorosurfactant to ensure emulsion stability. 
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Considering the unknown long-term biocompatibility of the fluorosurfactants, a better 

understanding of the effects of Cfs and the degree to which it can be reduced while still retaining 

the favorable properties of the emulsion is a primary aim of the following chapter.  
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CHAPTER 3  
 

 

Effects of Emulsion Formulation on the Pharmacokinetics of 

Pulmonary Tobramycin Delivery via Antibacterial 

Perfluorocarbon Ventilation 

 

 

3.1 Introduction 
 

As discussed in section 1.3, the current standard of pulmonary antibiotic treatment is 

inhaled delivery. The pharmacokinetics of such delivery have been studied in many settings and 

are well understood.1-4 Clinical treatment strategy utilizing inhaled antibiotic delivery is in large 

part based off of such data. Initial in vivo work with antibacterial perfluorocarbon ventilation 

(APV) was positive, but further development of APV requires a greater understanding of the 

temporal patterns of drug delivery and removal from the lung. However, the pharmacokinetics of 

these emulsions are complicated and not yet fully understood. It was hypothesized that the 

pharmacokinetics during APV are a function of the aqueous volume percentage (Vaq), aqueous 

antibiotic concentration (Caq), and fluorosurfactant concentration (Cfs). The Vaq and Caq are defined 

as the percentage of aqueous phase in the emulsion and the antibiotic concentration within that 

aqueous phase, respectively. Thus, together they define the total amount of drug delivered to the 

lungs upon initiating APV. The fluorosurfactant is responsible for maintaining emulsion stability 

and avoiding droplet coalescence and phase separation. Cfs, therefore, is likely to affect the 
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transport of antibiotic to the lung parenchyma and pulmonary capillaries. Previous studies 

(discussed in Chapter 2) indicate that in vitro bacterial killing of Pseudomonas aeruginosa (PA) 

biofilms is optimized by maximizing Caq, with a far smaller increase in killing with increasing Vaq. 

However, the in vivo setting is a vastly different scenario with a more complex geometry and 

multiple transport processes continually affecting antibiotic presence and availability. Therefore, 

this study sought to determine the effect of Vaq, Caq, and Cfs on antibiotic delivery to the lung via 

APV. 

As previously mentioned, APV can be performed as either partial or total APV. Partial 

APV was chosen for the following study for multiple reasons. During total APV emulsion is 

constantly cycled out of the lung, through a large extracorporeal circuit containing large-surface 

area devices (e.g. oxygenator and heat exchanger), and back into the lung. During such a process, 

it is likely that some degree of drug deposition occurs within the extracorporeal circuit. 

Additionally at the conclusion of total APV, some portion of emulsion must be removed from the 

lung in order to transition to partial APV. Processes such these make the determination of a total 

dose of drug delivered to the lung difficult and variable. Partial APV on the other hand involves 

delivery of a finite volume of emulsion (and thus a finite mass of drug) directly to the lungs. 

Although during partial APV in a human some portion of emulsion would be suctioned from the 

lung, emulsion delivered in this work was not recovered. Suctioning liquid from the airways of a 

rat has proven to be technically difficult and highly inconsistent. Thus, partial APV treatment 

(referred to in the remainder of the chapter simply as APV) without recovery of emulsion was used 

in this work in order to reduce treatment variability and allow for more accurate determination of 

delivered drug doses. 
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Because the fluorosurfactant enables the emulsification of the antibiotics within the 

perfluorocarbon (PFC) phase, there is a minimum Cfs value below which the dispersion of drug is 

not maintained following sonication. Phase separation within the emulsion diminishes the ability 

of APV to achieve uniform pulmonary drug distribution and thus limits its therapeutic potential. 

Although results from Chapter 2 showed sufficient stability over a 24-hour period, these trials 

evaluated emulsions utilizing a single, relatively large, Cfs value (96 mg/mL H2O). In order to 

better understand the effects of Cfs on emulsion stability as well as establish an appropriate range 

of Cfs values to be examined in vivo, a preliminary in vitro study was performed to determine the 

minimum value of Cfs that exhibited sufficiently stable drug dispersion. 

3.2 Methods 

3.2.1 Emulsion Preparation 
 

Tobramycin-loaded, water-in-PFC emulsions were prepared similar to those methods 

described in section 2.2.1. Briefly, equal masses of FSL-PEG and FSL were first dissolved in 250-

500 µL of PFC. Similar to previous in vitro work with the emulsions, the PFC used in all 

experiments was perfluorocycloether/perfluorooctane (FC-770; 3M Inc., St. Paul, MN, USA). 

Next, 100-500 µL of 20-100 mg/mL tobramycin (X-Gen Pharmaceuticals Inc., Horseheads, NY, 

USA) in sterile saline was added to the PFC solution. The mixture was then sonicated (Model S-

450D, 20 kHz, 3.2 mm diameter microtip; Branson Ultrasonics, Danbury, CT, USA) at 200 W/cm2 

for 20 seconds. The mixture was then added to a larger amount of PFC in order to bring the total 

volume to 10 mL and re-sonicated at 200 W/cm2 for 60 seconds. Emulsion was consistently 

prepared in 10-mL batches in an attempt to minimize preparation variability from batch to batch. 
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As in Chapter 2, Cfs refers to the total amount of fluorosurfactant used and is discussed in terms of 

fluorosurfactant mass per aqueous volume (i.e. units of mg/mL H2O).  

3.2.2 In Vitro Assessment of Emulsion Drug Dispersion 
 

The spatial distribution of tobramycin-containing, aqueous droplets within a column of 

emulsion was evaluated over a period of four hours following emulsion preparation in order to 

evaluate the effect of Cfs on emulsion stability. Emulsions with fixed Vaq (2.5%) and Caq (40 

mg/mL) were examined with varying Cfs (10, 30, or 96 mg/mL H2O). A graduated cylinder 

(polystyrene, 12.7 mm inner diameter) was filled with 30 mL of freshly sonicated emulsion to a 

height of approximately 24 cm. The graduated cylinder was modified to feature access ports with 

a needle (18 gauge) protruding through the cylinder wall into the center of the column lumen at 

heights of 4, 10, and 16 cm from the base. A schematic of the graduated cylinder can be seen in 

Figure 3.1. At 0, 30, 120, and 240 minutes following emulsion preparation, a 200-µL sample of 

emulsion was drawn from each height. In order to quantify the presence of active tobramycin in 

each sample of emulsion, the samples were diluted with 4 mL of sterile water and re-sonicated at 

200 W/cm2 for two minutes, resulting in an inverted emulsion (continuous aqueous phase with 

dispersed PFC phase). The phase inversion was visually confirmed by the observation of PFC 

droplets accumulating at the bottom of the continuous aqueous phase. The inverted emulsion was 

then centrifuged at 3,000 x g for 20 minutes in order to separate the PFC and aqueous phase. The 

presence of active tobramycin in the separated aqueous phase was then quantified via the 

microbiological assay described in section 2.2.6. Each sample was measured in triplicate and the 

resulting values averaged to produce a single concentration for each trial. Three separate trials with 

independently prepared emulsions were performed for each formulation evaluated. 



 

69 
 

All emulsion formulations evaluated had a total emulsion tobramycin concentration of 1 

mg/mL. In theory, if the tobramycin were homogenously distributed throughout the emulsion and 

all tobramycin were recovered during the emulsion inversion process, the assayed aqueous phase 

would have a tobramycin concentration of 50 µg/mL. Experimental values from this study were 

normalized by this concentration and are thus reported as a percentage of the theoretical 

tobramycin content.  

3.2.3 Pharmacokinetic Evaluation 
 

Pulmonary delivery of tobramycin (15 mg/kg) was achieved in specific pathogen-free, 

male Sprague Dawley rats [n = 40, weight 416  16 g (mean  standard deviation); Taconic, 

Hudson, NY, USA] via either intratracheal aerosolized delivery or APV with various emulsion 

formulations. APV and aerosolized delivery were performed with methods similar those outlined 

 

Figure 3.1: Schematic of the graduated cylinder used during in vitro assessment of emulsion 

drug dispersion showing height of access ports. 
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in section 2.2.6 with minor modifications incorporated in an attempt to improve treatment efficacy 

or experimental accuracy. Differences between the methods used for each study will be mentioned 

in the following description. During the pharmacokinetic trials discussed in Chapter 2, the process 

of repeated intraperitoneal (IP) sedation following recovery (necessary for blood sampling) 

appeared to cause some distress to the rats. Thus, in the current study intravenous (IV) access was 

acquired on all rats and a constant IV infusion of ketamine hydrochloride (1 mg/kg/min) was used 

to maintain sedation for the entire experiment. Vital signs were monitored and body temperature 

was maintained for all rats as previously described in section 2.2.6. Rats receiving aerosolized 

treatment were orally intubated with a 16 gauge angiocatheter and placed in a supine position 

(prone position used during Chapter 2 trials). Intratracheal aerosolized delivery of tobramycin (40 

mg/mL aqueous tobramycin concentration, 15 mg/kg) was performed as previously described. 

Following delivery, rats were extubated and provided supplemental oxygen via a nose cone until 

euthanasia.  

In order to ensure complete and accurate delivery of emulsion during APV, the current 

trials used a tracheal tie to create a seal around the angiocatheter within the trachea. Following 

sedation and IV access, the neck was shaved and cleaned with alcohol and a 1 cm midline incision 

made. The trachea was isolated and a tie positioned loosely around it. The rat was then orally 

intubated with a 16 gauge angiocatheter and connected to a ventilator (Model 683; Harvard 

Apparatus, Holliston, MA, USA). Immediately after beginning ventilation the tie was tightened 

around the trachea, creating a seal around the angiocatheter within it. Ventilation was carried out 

with the same parameters previously described in section 2.2.6. Preoxygenated emulsion was 

instilled (15 mL/kg) via a port connected to the angiocatheter, resulting in a delivered dose of 15 

mg/kg of tobramycin. Unlike the treatment methods described in section 2.2.6, instillation of 
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emulsion was performed with the rat a supine position. Filling in a supine position is more similar 

to what would be clinically implemented and has been shown to result in the most homogenous 

distribution within the lungs.5 The emulsion was prepared no more than five minutes before use 

and was instilled during gas ventilation in successive aliquots (2-3 mL/aliquot) with each aliquot 

instilled over a period of approximately 60 seconds. Gas ventilation was continued following 

delivery of the emulsion until euthanasia.  

 The delivery methods and emulsion formulations used are summarized in Table 

3.1. In order to evaluate the isolated effect of Vaq and Caq, emulsions with constant Cfs (30 mg/mL 

H2O) and varying Vaq (1, 2.5, and 5%) were assessed. Caq was varied inversely with Vaq in order 

to maintain a constant delivered dose of tobramycin. Similarly, in order to evaluate the effect of 

Cfs, emulsions with constant Vaq (2.5%) and Caq (40 mg/mL) and varying Cfs (30 or 96 mg/mL 

H2O) were assessed. Additionally, tobramycin delivery via a combination of PFC and aqueous 

tobramycin without fluorosurfactant was evaluated using a modified APV procedure. Due to the 

immiscibility of the two phases in the absence of fluorosurfactant, the emulsion delivery procedure 

described above was slightly modified in order to achieve accurate and consistent doses. For this 

group, neat PFC was instilled in an identical fashion to that described for emulsion delivery during 

APV. Next, the angiocatheter was temporarily disconnected from the ventilator and the aqueous 

 

Table 3.1: Summary of delivery methods and corresponding emulsion 

formulations used during pharmacokinetic evaluation. 
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tobramycin phase intratracheally delivered via the Microsprayer. As with the aerosolized delivery 

group, the angiocatheters used in this treatment were appropriately trimmed in order to ensure 

uninhibited aerosolized delivery. The rats were then reconnected to the ventilator and the 

remainder of the experiment carried out as described above.  

In all experiments, blood samples were drawn via the lateral tail vein (opposite side of the 

tail relative to IV infusion) at 30, 60, 120, and 240 minutes following delivery of tobramycin. In 

treatment groups showing peak serum concentrations at 30 minutes post-delivery, treatment was 

repeated with blood samples drawn at 10, 20, and 30 minutes post-delivery in order to better 

determine the time and magnitude of peak concentrations. A hematocrit measurement was taken 

at the time of each blood sampling and was ultimately used to normalize serum tobramycin 

measurements to account for hemodilution due to IV fluid delivery.  Five rats were analyzed for 

each set of conditions evaluated.  

Rats were euthanized with pentobarbital sodium (175 mg/kg, IP, Fatal Plus; Vortech 

Pharmaceuticals, Dearborn, MI, USA), the trachea immediately tied off with suture, and the lungs 

and trachea removed intact. The lungs were then thoroughly homogenized with sterile saline (25 

mL/kg bodyweight). Following brief centrifugation, supernatant from homogenized lung tissue 

samples was collected, serially diluted, and the presence of active tobramycin measured via the 

microbiological assay previously described in section 2.2.6. Any result below the lower limit of 

detection (5 µg/mL) was assigned a value of 2.5 µg/mL. Serum tobramycin concentration 

measurements were performed via an immunoassay by the Laboratory Medicine Department 

within Allegheny General Hospital (Pittsburgh, PA, USA). 
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3.2.4 Statistical Analysis 
 

SPSS 22 (IBM Corporation, Armonk, NY, USA) was used to perform all statistical 

analysis. A one-way ANOVA and post hoc analysis was performed on the peak serum tobramycin 

concentrations and lung tissue tobramycin concentrations. Due to unequal variances between 

groups, the Games-Howell method was used to determine significant differences. A mixed model 

analysis was performed to examine differences in the serum tobramycin concentrations with time 

post-delivery used as the repeated-measure variable. A similar analysis was also used in the in 

vitro stability studies to examine differences in tobramycin concentrations, using time post-

preparation and height as the repeated-measure variables. All error bars in presented figures 

represent standard deviations. 

3.3 Results 

3.3.1 Emulsion Drug Dispersion 
 

The formation of a distinct aqueous layer of varying sizes was observed at the top of the 

emulsion column between 0 and 30 minutes post-preparation for all trials performed. Figure 3.2 

shows tobramycin content for emulsions (Vaq = 2.5% and Caq = 40 mg/mL) with Cfs values of 10, 

30, and 96 mg/mL H2O. In Figure 3.2A, tobramycin content is shown as a function of height for 

each Cfs value and time point examined. Figure 3.2B shows the same data as a function of time for 

each Cfs value and height examined. Results showed a significant (p < 0.01) effect of Cfs on 

emulsion tobramycin content. Tobramycin content resulting from a Cfs of 10 mg/mL H2O was 

significantly (p < 0.01) lower than that for Cfs values of both 30 and 96 mg/mL H2O. Emulsion 

utilizing a Cfs value of 10 mg/mL H2O showed insufficient dispersion of antibiotic even 

immediately following preparation and was thus not evaluated during the in vivo pharmacokinetic 
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experiments. Tobramycin content for Cfs values of 30 and 96 mg/mL H2O did not significantly 

differ from each other. No significant effect was shown for time post-preparation or height on 

tobramycin content.  

 

Figure 3.2: Tobramycin content within the emulsion (normalized by theoretical value) as a 

function of height from the base of the column for varying Cfs values and times post-preparation 

(panel A) and as a function of time post-preparation for varying Cfs values and heights from the 

base of the column (panel B). n = 3 for each condition evaluated. 
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3.3.2 Pharmacokinetic Effects of Emulsion Formulation 
 

Lung tissue homogenate tobramycin concentrations at four hours post-delivery for all 

treatments evaluated are shown in Figure 3.3. Two of the five aerosolized delivery trials and all 

five of the aerosolized delivery in combination with PFC trials resulted in concentrations below 

the lower limit of detection (5 µg/mL). All APV treatments resulted in significantly (either p < 

0.01 or p < 0.05, see Figure 3.3 for distinction) greater pulmonary tobramycin concentrations 

relative to aerosolized delivery at four hours post-delivery. As shown in Figure 3.3A, pulmonary 

 

Figure 3.3: Effect of Vaq (panel A) and Cfs (panel B) on tobramycin concentration of lung tissue 

homogenate at four hours post-delivery. n =5 for each condition and statistically significant 

differences are denoted by an asterisk (* for p < 0.05, ** for p < 0.01). 
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tobramycin concentrations increased with increasing Vaq (decreasing Caq), with the largest Vaq 

(5%) resulting in 22 times greater concentration than aerosolized delivery. As shown in Figure 

3.3B, increased Cfs also resulted in larger pulmonary tobramycin concentrations, although the 

difference between the two Cfs values examined was not significant (p = 0.14).  

Serum tobramycin concentrations for all treatments are shown in Figure 3.4. A Vaq of 5% 

resulted in significantly (p < 0.01) lower serum tobramycin concentrations relative to all other 

groups shown in Figure 3.4A. Similarly, the largest value of Cfs (96 mg/mL H2O) had significantly 

(p < 0.01) lower serum tobramycin concentrations than all other groups shown in Figure 3.4B. The 

time and magnitude of peak serum concentrations for all treatments evaluated are shown in Table 

3.2. Peak serum concentrations for all APV groups occurred at a later time point than for both 

aerosolized delivery alone and in combination with PFC (60 minutes post-delivery for APV groups 

vs. 10 minutes post-delivery for aerosol groups). Peak serum concentrations resulting from 

aerosolized delivery or aerosolized delivery in combination with PFC were greater than all those 

 

Figure 3.4: (A) Serum tobramycin concentration out to 240 minutes following tobramycin 

delivery via aerosolized delivery and APV with Cfs = 30 mg/mL H2O and varying Vaq. (B) 

Serum tobramycin concentration out to 240 minutes following tobramycin delivery via 

aerosolized delivery, aerosolized delivery with PFC, and APV with Vaq = 2.5% and varying Cfs 

values. n = 5 for each condition evaluated. 
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produced by APV, although not significantly different in all cases. At the same Cfs value (30 

mg/mL H2O), a Vaq of 5% produced significantly (p < 0.01) lower peak serum concentrations than 

the 1% and 2.5% Vaq groups and aerosolized delivery. Similarly, a Cfs of 96 mg/mL H2O produced 

significantly (p < 0.01) lower peak serum concentrations relative to a Cfs of 30 mg/mL at the same 

Vaq (2.5%), aerosolized delivery, and aerosolized delivery in combination with PFC. 

3.4 Discussion 
 

Previous work has proven APV to be a viable means of pulmonary antibiotic delivery as 

well as shown the bactericidal ability of the used emulsions against PA biofilms. However, the 

effects of emulsion formulation on the resulting antibiotic delivery have yet to be fully 

investigated. Understanding these effects is a vital step in optimizing the emulsion formulation for 

safe and effective treatment. In this study we sought to evaluate the effects of emulsion formulation 

(Vaq, Caq, and Cfs) on the pharmacokinetics of antibiotic delivery via APV. Additionally, an in vitro 

study was also performed to assess the effects of Cfs on emulsion stability.  

As the long-term biocompatibility of the fluorosurfactants used (or rather any available 

fluorosurfactants) has not been evaluated, there is warranted caution regarding their use in the 

 

Table 3.2: Time and magnitude of peak serum concentrations following tobramycin 

delivery. Concentration values are reported as mean  standard deviation. 
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lung. This only highlights the importance of fully understanding the effects of the fluorosurfactant 

in order to determine the degree to which it can be minimized without impairing effective drug 

delivery. Results from this work suggest that a Cfs value as low as 30 mg/mL H2O (a nearly 70% 

reduction from previous APV in vivo trials discussed in Chapter 2) still exhibits uniform drug 

dispersion up to four hours following preparation. As noted in previous work with APV, the 

emulsion preparation is straightforward and could be performed immediately prior to 

administration, similar to processes for drug-laden emulsions used in chemoembolization.6 Thus, 

even the reduced value of Cfs (30 mg/mL H2O) evaluated should be able to maintain uniform drug 

dispersion for the entirety of the intended treatment duration (< 2 hours). This reduction of Cfs 

caused a slight decrease in pulmonary antibiotic retention, but the effect of this retention on the 

anti-biofilm activity of the emulsion is not yet known.  

Similar to work discussed in Chapter 2, the presence of pulmonary antibiotics following 

treatment was evaluated by measuring the tobramycin concentration of homogenized lung tissue 

via a microbiological assay. A significant advantage of this detection method is the assurance that 

the measured tobramycin content is still active and able to exert its intended bactericidal effect. 

The most clinically relevant measure of antibiotic presence in the lung is likely the aqueous 

concentration at the airway surfaces, however, such a measurement is difficult to perform in rats. 

Due to the complex environment present within the airways during APV, it is difficult to speculate 

how the tobramycin concentrations of lung tissue homogenate relate to the concentrations 

encountered at the aqueous surfaces of the lung. A greater understanding of the physical transfer 

of drug from the emulsion to the aqueous surfaces which it encounters would likely best be 

accomplished in a more controlled, in vitro setting and is a primary aim of work discussed in 

coming chapters. When interpreting the pharmacokinetic results of this work it is also important 
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to note that emulsion was not suctioned from the lungs prior to euthanasia and subsequent tissue 

tobramycin measurements. This differs from the clinical scenario in which some portion of the 

emulsion, along with dislodged mucus and biofilm, would be suctioned from the lungs within two 

hours of delivery. The volume of emulsion remaining in the lungs at the time of euthanasia was 

not measured in this work. However, a previous study evaluating partial liquid ventilation (PLV) 

with neat PFC in similarly sized rats noted that the addition of 0.8 mL of PFC every 30 minutes 

was needed to maintain a constant PFC volume in the lungs.7 Although the evaporative loss rate 

for PFC during PLV is known to decrease with time following delivery, clinical studies have 

shown that the rate remains fairly constant up to eight hours post-delivery.8 The average amount 

of emulsion instilled during this study was 6.2 mL. Thus, assuming a near-constant evaporative 

rate over the duration of the experiment (four hours), one would expect the PFC phase of the 

emulsion to have largely evaporated at the time of euthanasia and tissue tobramycin measurement. 

In addition, although efforts were not made to recover or measure any PFC that may have been 

present in the homogenized tissue, PFC was not typically observed during homogenization or the 

subsequent analysis. 

Similar to the pharmacokinetic work discussed in Chapter 2, increased pulmonary 

antibiotic concentrations were measured following APV (all emulsion formulations) relative to 

aerosolized delivery. Aerosolized delivery in combination with PFC showed low retention similar 

to aerosolized delivery alone. During such delivery, the aerosol droplets likely initially deposited 

on the epithelium or PFC surface. Any further dispersion of the aqueous drug would have relied 

solely on the mixing induced by tidal gas flow once ventilation was resumed. These results suggest 

that the increased retention of delivered drug observed during APV is a result of the initial 

dispersion of the aqueous drug throughout the PFC, the presence of the fluorosurfactant, or the 
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combination of the two. Although ventilation with PFC has been shown to alter the distribution of 

pulmonary perfusion,9 the similar lack of retention between aerosolized delivery alone and in the 

presence of PFC would suggest that PFC-induced differences in pulmonary blood flow are likely 

not the primary cause of the retention associated with APV. Regarding effects of emulsion 

formulation, increasing either Vaq or Cfs was shown to increase pulmonary retention, although the 

effect of Vaq was much stronger. A five-fold increase in Vaq (and corresponding five-fold decrease 

in Caq) resulted in a nearly identical increase in pulmonary tobramycin content four hours post-

delivery. In the case of Cfs, an approximately three-fold increase resulted in a less than 50% 

increase in pulmonary retention. These results indicate that increased Vaq in combination with 

decreased Caq slows diffusion of tobramycin from the airways into the pulmonary circulation. 

Antibiotics are believed to move between the bronchial space and blood at a rate dependent on the 

concentration gradient between the two compartments.10 During APV, as aqueous droplets come 

in to contact and combine with the aqueous lining of the airways, the local antibiotic concentration 

near the epithelium increases thus increasing diffusion into the blood. The rate at which this occurs 

is determined by both the frequency of droplet deposition as well as the antibiotic concentration 

within each droplet (i.e. Caq). An increase in Vaq increases the number of droplets and as such could 

increase the frequency of droplet deposition. However, these results suggest that increased Vaq 

does not increase droplet deposition enough to compensate for the decreased antibiotic mass within 

each droplet, leading to an overall slowed diffusion for increased Vaq and decreased Caq.  

Although not as profound as with Vaq, increases in Cfs also showed increased pulmonary 

antibiotic retention at four hours post-delivery. Additionally, serum tobramycin concentrations 

resulting from the largest Cfs value (96 mg/mL H2O) were significantly lower than those at 30 

mg/mL H2O, further suggesting delayed antibiotic absorption into the pulmonary circulation for 
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increased Cfs. The cause of this diminished absorption at increased values of Cfs is not yet fully 

understood. In vitro assessment of emulsion stability showed no difference between Cfs values of 

30 and 96 mg/mL H2O (both emulsions exhibited uniform antibiotic distribution) and thus suggests 

that the observed pharmacokinetic effect of Cfs is likely not due to gravity-driven phase separation. 

However, it is possible that coalescence and creaming is altered for emulsion in the airways at 

physiological temperatures and under constant ventilation as compared to our in vitro experiment. 

Increased phase separation within emulsion in the airways for the 30 mg/mL H2O group could 

accelerate movement of emulsified droplets out of the bulk of the emulsion and in to contact with 

the epithelial surfaces through which tobramycin will ultimately leave the lungs. Alternatively, the 

diminished absorption effects could be due to the accumulation of fluorosurfactant at the interface 

between the emulsion and airway aqueous lining. The fluorosurfactant molecules possess both 

hydrophilic and fluorophilic moieties and thus aggregate at aqueous-PFC interfaces. It is possible 

that some amount of fluorosurfactant accumulates at the boundary of the lung aqueous lining and 

impairs either the deposition of droplets or the diffusion of tobramycin following deposition. 

Further in-depth studies are needed to fully understand the effects of fluorosurfactant on drug 

transport from the emulsion in a physiological setting.  

Considering the results of this study, the optimal emulsion formulation for APV may utilize 

a significantly reduced Cfs value as compared to previous in vivo work. Additionally, pulmonary 

retention of the delivered antibiotic can be most effectively increased by increasing Vaq and 

decreasing Caq to achieve the desired delivery dose. However, it is unknown whether the rate of 

tobramycin delivery from the airway to the tissue has a significant effect on anti-biofilm activity 

and thus treatment efficacy. Studies comparing rapid, nearly complete delivery of the antibiotic 

must be compared to slower, controlled delivery. Whatever the outcome, the ability to reliably 
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control such kinetics represents an attractive quality of pulmonary drug delivery via water-in-PFC 

emulsions. There are multiple factors to consider when choosing an optimal Vaq and Caq for 

treatment. As Caq is decreased, a scenario could be approached in which the aqueous concentration 

of antibiotics in the lung during APV is less than that required for bacterial killing. Previous in 

vitro work (discussed in Chapter 2) has shown that emulsions utilizing Caq values as low as 4 

mg/mL (five-fold smaller than the lowest Caq value used in the present study) were still able to 

reduce proliferation of biofilm-derived bacteria following exposure. Additionally, as Vaq is 

increased, larger aqueous volumes will be delivered to the lung during APV. Therefore caution 

should be used when determining Vaq as to not increase this value to the point of inhibiting normal 

respiratory function. If the Vaq values evaluated in this study (1-5%) were to be used clinically 

during partial APV with a 15 mL/kg dose of emulsion (dose used in previous clinical trials of 

PLV), a 70-kg patient would receive approximately 10-50 mL of aqueous antibiotic delivered to 

the lung. However, at the conclusion of treatment, some portion of the emulsion would be 

suctioned from the lung. Conservatively estimating that only 1/3 of the emulsion volume would 

be removed from the lung, 7-35 mL of aqueous antibiotic would ultimately remain in the lung. 

During currently used nebulized tobramycin treatment for cystic fibrosis patients, approximately 

10 mL of aqueous antibiotics are delivered to the lung on a daily basis.11 Considering that such 

treatment is generally well tolerated without supplemental oxygen or ventilatory support, the range 

of Vaq values evaluated in this work are likely within reason for a patient on mechanical ventilation.  

The current study has confirmed the use of APV as a viable means of pulmonary antibiotic 

delivery and taken critical steps in further developing this emerging technology. APV has 

demonstrated the ability to significantly increase the pulmonary retention of delivered antibiotics 

relative to currently used methods in a predictable and controllable manner. However, the 
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therapeutic impact of this increased retention must be further investigated to ultimately optimize 

the emulsion formulation for effective APV treatment. 
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CHAPTER 4  
 

 

In Vitro Evaluation of the Effects of Emulsion Formulation 

on Cytotoxicity and Drug Availability 

 

 

4.1 Introduction 
 

The emulsions used during antibacterial perfluorocarbon ventilation (APV) consist of 

aqueous, drug-containing droplets dispersed in a continuous perfluorocarbon (PFC) phase (≥ 95% 

by volume) via the use of fluorosurfactants. The fluorosurfactant molecules serve as an emulsifier 

to stabilize the aqueous droplets and therefore must possess both hydrophilic and fluorophilic 

moieties in order to assemble at the aqueous-PFC interface. In the absence of such an emulsifier, 

the aqueous droplets almost instantaneously coalesce and rise out of solution (due to buoyancy) 

following sonication of the two phases, thereby hindering the ability to achieve spatially uniform 

drug delivery during APV. In support of this, previous in vitro work evaluating the stability of 

such emulsions (discussed in Chapter 3) has shown that as fluorosurfactant concentration (Cfs) is 

decreased below some critical value, the ability to maintain a spatially uniform distribution of drug 

is lost.  

Although previous work has characterized the pharmacokinetics of APV (discussed in 

Chapter 3), the physical process by which drug is transferred from aqueous droplets within the 

emulsion to the aqueous surfaces within the lung (i.e. epithelial lining fluid, biofilm, or mucus) is 
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still not completely understood. Because tobramycin is insoluble in PFC, the drug will not be 

available to diffuse into an aqueous surface in contact with the emulsion until a droplet has moved 

sufficiently close enough to the liquid interface to coalesce with it. It is likely that some portion of 

droplets undergo this process during filling of the lung at the initiation of APV. Following the 

filling process, droplet motion within the emulsion-filled lung is likely dominated by convective 

forces induced by the tidal fluid movement of continuous ventilation. As PFC evaporates during 

ventilation, the droplet number density (i.e. the number of droplets within a finite volume of 

emulsion) increases and contact between the droplets and airway surfaces would be expected to 

increase.  

If the emulsion is left to completely evaporate within the lung, one would expect virtually 

all tobramycin within the emulsion to be brought in to contact with an aqueous surface and 

ultimately be available for diffusion into a biofilm mass or the systemic circulation. However, 

previous studies evaluating the pharmacokinetics of APV in healthy rats (discussed in Chapter 3) 

have produced seemingly contradictory findings. Results from these studies showed that APV 

resulted in significant amounts of tobramycin remaining in the lungs at four hours post-delivery 

(up to 22 times that of aerosolized delivery), yet serum concentrations at the same time point were 

approaching zero, similar to those for aerosolized delivery. Although the volume of emulsion in 

the lung at the time of euthanasia (four hours post-delivery) was not explicitly measured, as 

discussed in section 3.4, the majority of emulsion is expected to have evaporated by this time. 

Similarly, treatment efficacy studies evaluating APV (to be discussed in Chapter 5) have also 

produced unexpected results. Although relatively large amounts of tobramycin remain in the lung 

long after delivery, APV has failed to show a reduction in pulmonary bacterial load in a rat model 
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of respiratory infection. Such findings raise questions regarding the availability of drug delivered 

via the emulsion during APV.  

One possible explanation for these observations is the impairment of droplet deposition or 

drug diffusion following deposition by the accumulation of fluorosurfactant at the interface 

between the emulsion and the aqueous surface for intended delivery. As previously discussed, the 

fluorosurfactant molecules are specifically designed to effectively assemble at aqueous-PFC 

interfaces (i.e. the droplet boundary) and prevent or delay the coalescence of neighboring droplets. 

However, it is likely that this same effect is induced to some degree at the boundary between the 

emulsion and aqueous surfaces in the lung. Previous in vitro and in vivo work with the emulsion 

has provided compelling evidence in support of such phenomena. During rheological 

characterization of the emulsion (discussed in Chapter 2), the interfacial tension between the 

emulsion and an aqueous phase resting on top of it was shown to be significantly reduced as 

compared to that of neat PFC. This effect was attributed to the accumulation of fluorosurfactant at 

the interface between the emulsion and bulk aqueous phase. Additionally, previous 

pharmacokinetic results showed increased pulmonary retention and decreased systemic absorption 

for tobramycin delivered via emulsions utilizing larger Cfs. Thus, it appears that the 

fluorosurfactant used in the emulsion may have significant effects on the availability of delivered 

drug within the lung. Considering this, the ideal Cfs for any particular fluorosurfactant to be used 

during APV should be determined with not only biocompatibility and emulsion stability in mind, 

but also drug availability. With regards to emulsion stability and drug availability, the optimal Cfs 

may lie between some low value at which significant phase separation begins to occur and a higher 

value at which the fluorosurfactant limits tobramycin delivery.   
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The primary goal of this study was to evaluate the effects of Cfs on drug availability and 

cytotoxicity for two different fluorosurfactant types in a controlled, in vitro setting. More 

specifically, we aimed to determine the ideal fluorosurfactant type and corresponding non-toxic 

Cfs that optimizes the diffusion of tobramycin from the emulsion into an aqueous surface in contact 

with the emulsion. A previously unused fluorosurfactant with a varied molecular structure was 

explored in this study. The fluorosurfactants used in all previously described APV work are based 

off of the low molecular weight form of Krytox 157FS, referred to as FSL (MW = 2,500 Da). As 

mentioned in section 1.7, FSL-PEG exhibited insufficient surface activity to stabilize a water-in-

PFC emulsion when used alone, thus it was used in combination with equal masses of the 

unmodified molecule (FSL) in this work. The structure of these molecules can be seen in Figure 

1.6. In addition to this previously used fluorosurfactant combination, a modified form of the 

fluorosurfactant, termed FSH-PEG, was also evaluated. FSH-PEG is synthesized in an identical 

manner as that for FSL-PEG (described in section 1.7) but utilizes the larger molecular weight 

form of Krytox 157FS, referred to as FSH (MW = 7,250 Da), as well as a lower molecular weight 

PEG block (MW = 1,000 Da). Ultimately, these modifications resulted in an increase in the 

fluorophilic portion of the molecule relative to the hydrophilic portion. This is most easily 

recognized by comparing the ratios of the molecular weight of the fluorophilic blocks to the 

hydrophilic block within each polymer. Such ratios are 1.5:1 and 14.5:1 for FSL-PEG and FSH-

PEG, respectively.  As a result, FSH-PEG proved to be surface active enough to be used alone 

rather than in combination with an unmodified form of the molecule as was done with FSL-PEG.  

As shown in experiments discussed in Chapter 3, as Cfs is decreased for a particular 

fluorosurfactant type, a critical concentration will be reached below which aqueous drug will begin 

to separate out of solution. In the case of phase separation, the amount of drug dispersed throughout 
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the bulk of the emulsion may be significantly diminished. Thus, when interpreting the diffusion of 

drug from an emulsion sample taken from a bulk volume, one must consider the mass of drug 

present within the sample in addition to the relative availability of the drug. In order to differentiate 

between decreased drug diffusion due to impairment caused by fluorosurfactant versus diminished 

diffusion caused by the absence of drug, a secondary experiment quantifying the presence of 

tobramycin within each emulsion sample was also included. 

As previously mentioned, the fluorosurfactant type and corresponding Cfs used during APV 

are also expected to have significant effects on biocompatibility. Although fluorosurfactants 

similar to those used in this work have exhibited favorable biocompatibility in cell-based 

applications (discussed in section 1.7), APV’s use of the molecules differs in significant ways. 

Previous applications were not related to the lung and thus did not evaluate relevant cell types. In 

addition, during APV, epithelial cells will likely be in regular contact with PFC containing 

dissolved fluorosurfactant. During previous uses of the fluorosurfactant, cells were primarily 

contained within aqueous vesicles emulsified in PFC.1, 2 Due to the varying solubility of the 

fluorosurfactants in the two phases as well as its tendency to assemble at an aqueous-PFC interface, 

such differences could significantly affect cytotoxicity. Therefore, when determining an optimal 

fluorosurfactant type and concentration, effects on emulsion stability and drug availability must 

be considered in combination with potential cytotoxic effects. Thus, in addition to evaluating 

effects on drug availability, a separate experiment investigating the cytotoxicity of the 

fluorosurfactants was also performed. 

Lastly, the effects of aqueous volume percent (Vaq) and aqueous tobramycin concentration 

(Caq) on tobramycin availability were also assessed. Previous pharmacokinetic results (discussed 

in Chapter 3) have shown significant effects of these parameters on the pulmonary retention of 
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delivered tobramycin. Thus, in order to ultimately determine an optimal emulsion formulation, the 

effects of Vaq and Caq on drug emulsification and availability must be assessed in the same manner 

as those of fluorosurfactant type and concentration. 

The availability of emulsified tobramycin for varying emulsion formulations was assessed 

by measuring its ability to readily diffuse into an agar surface in contact with the emulsion. In 

conjunction with this experiment, identical emulsion samples underwent a similar process as that 

described in section 3.2.2 in order to quantify the presence of tobramycin. The measured drug 

content of the emulsion samples serves to clarify the cause of the observed drug diffusion for any 

particular emulsion formulation. That is, in order to completely interpret the observed drug 

diffusion for a particular emulsion sample taken from a larger volume, one must know whether 

drug content has been diminished due to emulsion instability and phase separation prior to 

sampling. The cytotoxicity of the fluorosurfactants was evaluated with human alveolar epithelial 

cells using common in vitro techniques. The evaluation of these varying aspects should afford a 

comprehensive understanding of the effects of emulsion formulation and provide the insight 

needed to ultimately determine an optimal fluorosurfactant type, Cfs, Vaq, and Caq to assess in 

further in vivo treatment efficacy studies. 

4.2 Methods 

4.2.1 Emulsion Preparation 
 

Tobramycin-loaded, water-in-PFC emulsions were prepared with the same equipment and 

sonication settings as those described in section 3.2.1 using two different fluorosurfactant types. 

Similar to previous studies, emulsions utilizing a combination of equal masses of FSL-PEG and 

FSL were assessed. Although synthesized in an identical manner, it should be noted that a new 
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batch of FSL-PEG was used for the current study relative to all previous work with the emulsions. 

Emulsions using FSH-PEG, a previously unevaluated fluorosurfactant, were also assessed. As 

mentioned in section 1.7, the FSH-PEG polymer was synthesized in an identical manner to that 

for FSL-PEG but utilizes different sized perfluoroether and PEG polymer blocks. The 

fluorosurfactant concentrations and molarities discussed in this work take in to account the total 

amount fluorosurfactant used for any particular emulsion formulation. Thus, in the case of 

emulsion formulations using FSL-PEG and FSL, the specified concentrations or molarities are 

based on the sum of the masses or moles of each molecule. Similar to previous work with APV, 

the PFC used in all experiments was perfluorocycloether/perfluorooctane (FC-770; 3M Inc., St. 

Paul, MN, USA). 

4.2.2 Evaluation of Drug Emulsification and Availability 
 

The relative availability of emulsified tobramycin to an aqueous surface in contact with the 

emulsion was quantified via the commonly used agar well diffusion method. During such a 

measurement, a liquid sample of unknown antibiotic concentration is dispensed into a well within 

inoculated agar and allowed to completely evaporate during subsequent incubation. The antibiotic 

within the sample diffuses into the agar and creates a circular zone of inhibited bacterial growth 

with a radius proportional to the unknown antibiotic concentration. When performed in 

conjunction with samples of known antibiotic concentrations, a concentration for the unknown 

sample can then be determined via interpolation.  

Initially, in order to isolate the effects of fluorosurfactant type and concentration, emulsions 

with fixed Vaq (2.5%) and Caq (40 mg/mL) were examined with Cfs values of 0.5-96 mg/mL H2O 

for each of the two fluorosurfactant types. Following this evaluation, the effects of Vaq and Caq 
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were assessed by examining emulsions with Cfs = 2 mg/mL H2O of FSH-PEG, Vaq = 0.5-2.5%, 

and Caq = 40-200 mg/mL. The specific emulsion formulations used are shown in Table 4.1. Similar 

to previous studies, Vaq and Caq were varied inversely to maintain a constant total tobramycin 

content of 1 mg/mL of emulsion.  

For each formulation evaluated, approximately 10 mL of emulsion was prepared in a 15-

mL conical tube and allowed to sit at room temperature without agitation for five minutes before 

sampling. Three samples (75 µL/sample) of emulsion were taken from the middle height of the 

emulsion (midway between the conical bottom and emulsion surface). Samples were taken from 

the middle height of the emulsion in order to assess the effects of creaming and phase separation. 

Previous emulsion stability evaluation (discussed in Chapter 3) has shown that drug content at the 

middle height of the emulsion should be indicative of content throughout the bulk of the emulsion. 

Emulsion samples were placed directly into wells within previously inoculated agar. LB agar 

 

Table 4.1: Emulsion formulations evaluated during assessment of drug emulsification and 

availability. 
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plates inoculated with Pseudomonas aeruginosa (PA) were prepared using those methods 

described in section 2.2.6. Aqueous samples of known tobramycin concentration were also loaded 

into identical wells for later comparison. Plates were then incubated at 37o C for 24 hours, thereby 

allowing the sample volume (either emulsion or aqueous tobramycin) within each well to 

completely evaporate. Following incubation, circular inhibition zones produced by tobramycin 

that had diffused into the agar were imaged and measured as described in section 2.2.6. Bacterial 

inhibition zones produced by some emulsion formulations had a secondary zone of affected growth 

outside of the inner zone of completely inhibited growth. An example of this effect can be seen in 

Figure 4.1A. This same effect was observed for some aqueous tobramycin solutions as well. For 

both emulsion and aqueous tobramycin solutions, this phenomenon was observed primarily for 

those trials resulting in larger inhibition zones. A similar effect has also been observed in previous 

studies by other investigators using the agar well diffusion method.3 Measurement of the inner 

inhibition zone was used for all further analysis. Interpolation from the inhibition zones of the 

standard solutions was then used to determine equivalent aqueous tobramycin concentrations (i.e. 

 

Figure 4.1: (A) Example of dual bacterial inhibition zones observed during evaluation of drug 

emulsification and availability. (B) Standard curve used during availability assessment (n = 3). 

Note x-error bars are included but may be too small to distinguish. 
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the aqueous tobramycin concentration resulting in an identical inhibition area) for each emulsion 

evaluated. Similar to methods described in Chapter 2, linear regression analysis of the aqueous 

standards was obtained by plotting the log transformation of the known tobramycin concentrations 

versus inhibition zone radii. However, different from methods described in Chapter 2, a separate 

set of standards was not included on each agar plate for each measured sample. The larger size of 

inhibition zones in the current experiment required the aqueous standards to be performed on a 

separate plate from the emulsion samples. Although such a modification may be expected to 

increase measurement variability, consistency among standards was high as can be observed by 

the small error bars (x-direction) in the plot of standard solutions in Figure 4.1B. The set of aqueous 

standards were measured in triplicate on separate agar plates. An aqueous tobramycin solution 

with a concentration of 5 µg/mL produced the smallest measurable inhibition zone. Emulsion 

samples resulting in immeasurably small inhibition zones were assigned an equivalent aqueous 

tobramycin concentration of 2.5 µg/mL. Each prepared emulsion was tested in triplicate and 

averaged to produce a single measurement for each trial. Three separate trials were performed for 

each emulsion formulation evaluated.  

In order to further confirm the role of fluorosurfactant on drug availability, a modified 

exposure procedure from that described above was also performed. Samples from an emulsion 

with a formulation exhibiting the optimal combination of emulsion stability and drug availability 

were taken in an identical manner as that described above. Prior to the addition of samples to the 

agar wells, the wells were filled (75 µL/well) with a solution of FSH-PEG dissolved in PFC (2.4 

mg/mL, contained no drug or aqueous phase) and allowed to rest at room temperature for 10 

minutes. The concentration of FSH-PEG in PFC used for the pre-exposure is equivalent to an 

emulsion (Vaq = 2.5%) with the maximum Cfs value examined (96 mg/mL H2O) with no aqueous 
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phase present. Following the exposure, the FSH-PEG in PFC solution was thoroughly aspirated 

from each well and the emulsion samples added. Agar plates were then incubated and processed 

in an identical manner as that described above. 

A decreased inhibition zone in the experiments described above represents a decrease in 

the mass of tobramycin diffusing into the agar. The decreased diffusion could be due to either 

direct effects of the fluorosurfactant or decreased drug content due to phase separation occurring 

within the bulk emulsion volume prior to sampling. In order to distinguish between decreased 

diffusion due to impaired drug availability versus decreased drug presence caused by phase 

separation, the presence of tobramycin within the emulsion was quantified in conjunction with all 

diffusion trials described above. This evaluation used the identical agar well diffusion method 

described above following an initial phase inversion and separation process (similar to that used 

during drug dispersion evaluation described in section 3.2.2). More specifically, two samples (240 

µL/sample) of emulsion were taken in an identical manner as that described above (taken five 

minutes post-sonication from middle height). The samples were then diluted with 8 mL of sterile 

water and re-sonicated at 200 W/cm2 for one minute, resulting in an inverted emulsion (continuous 

aqueous phase with dispersed PFC phase). The inverted emulsion was then centrifuged at 3,000 x 

g for 20 minutes in order to separate the PFC and aqueous phases. Samples from the aqueous phase 

were then loaded into wells (75 µL/well) within the inoculated agar along with standard solutions 

of known tobramycin concentration and assayed as described above. Separate sets of aqueous 

standards were included on each individual plate with each sample measured. Each sample was 

measured in triplicate and the resulting values averaged to produce a single concentration. The 

concentration for each of the two samples for a given emulsion were averaged to produce a single 

value for each trial and three separate trials performed for each emulsion formulation. All emulsion 
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formulations evaluated had a total emulsion tobramycin concentration of 1 mg/mL. In theory, if 

the tobramycin were homogenously distributed throughout the emulsion and all tobramycin was 

recovered during the emulsion inversion process, the assayed aqueous phase would have a 

tobramycin concentration of 30 µg/mL. Experimental values from this study were normalized by 

this concentration and are thus reported as a percentage of the theoretical tobramycin content. 

Samples from emulsions using either fluorosurfactant type at the largest Cfs value (96 mg/mL H2O) 

with sterile saline in the aqueous phase were also examined via the methods described for both 

drug emulsification and availability as negative controls. 

4.2.3 Cytotoxicity Evaluation 
 

The relative cytotoxicity of the fluorosurfactants was evaluated using human alveolar basal 

epithelial cells (A549 cells; Sigma Aldrich, St. Louis, MO, USA).  Cells were cultured in 

Dulbecco’s Modified Eagle Medium supplemented with 10% fetal bovine serum, 100 units/mL 

penicillin, and 100 µg/mL streptomycin at 37o C in an incubator with 5% CO2. A 96-well plate 

(Nunc MicroWell, Model 266120; Thermo Scientific, Waltham, MA, USA) was seeded at 10,000 

cells/well (200 µL/well complete growth medium) and allowed to grow overnight. Following 

overnight growth, the growth medium was aspirated from each well and replaced with either sterile 

phosphate-buffered saline (PBS), neat PFC, fluorosurfactants dissolved in PFC, or emulsion 

containing sterile PBS in the aqueous phase (200 µL/well). The PFC used in all cytotoxicity 

experiments was filtered with a 0.2 µm-filter prior to use in order to reduce the probability of 

contamination.  

Initial evaluation utilized solutions of fluorosurfactant dissolved in PFC rather than 

emulsions containing an aqueous phase to ensure that emulsion stability did not affect the toxicity 
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measurements. In an emulsion, lower Cfs would lead to greater phase separation, transporting 

surfactant up and away from the cells and thus exaggerating reductions in toxicity at lower Cfs. 

Both FSL-PEG+FSL and FSH-PEG were evaluated at molar concentrations of 10-8 to 10-3 mol/L. 

For FSL-PEG+FSL, these concentrations are the sum of the molar concentrations of each FSL-

PEG and FSL in mixtures containing equal masses of each molecule. Ultimately, cytotoxicity 

evaluation was repeated for an emulsion with the formulation exhibiting the optimal combination 

of emulsion stability and drug availability.   

Following addition of the exposure medium, the plates were returned to the incubator for 

a period of six hours. After incubation, the exposure medium was removed and replaced with 

complete growth medium (200 µL/well) and the cells allowed to grow overnight. Approximately 

18 hours following the conclusion of the exposure, the viability of the cells was assessed using an 

alamar blue-based cell viability assay (alamarBlue; Life Technologies, Carlsbad, CA, USA). 

Following the addition of alamarBlue, the cells were returned to the incubator for a period of four 

hours prior to performing absorbance measurements at wavelengths 570 and 600 nm. Preliminary 

studies (data not shown) showed that a four-hour incubation time following the addition of 

alamarBlue combined with a seeding density of 10,000 cells/well resulted in the greatest assay 

sensitivity. The percent reduction of added alamarBlue was calculated from measured absorbance 

values according to the manufacturer’s instructions and is an indicator of cellular proliferation and 

metabolic activity (increased reduction indicates increased viability). The viability of cells exposed 

to fluorosurfactants dissolved in PFC or emulsion was normalized by the viability of those cells 

exposed to neat PFC within the same 96-well plate. Eight wells were used for each type of exposure 

and ultimately averaged to produce a single measurement for each trial. Four independent trials 
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were performed for each condition evaluated resulting in four independent measurements. Control 

exposures (PBS and neat PFC) were repeated with each individual experiment.   

4.2.4 Statistical Analysis 
 

SPSS 22 (IBM Corporation, Armonk, NY, USA) was used to perform all statistical 

analysis. A two-way ANOVA was used to determine significant effects for the tobramycin content 

and availability data. The same analysis was used in the cytotoxicity evaluation to determine the 

significance of the effects of fluorosurfactant type and Cfs on cell viability. The Bonferroni method 

was applied to determine significance between comparisons of interest. An independent t-test was 

used to determine the effect of pre-exposing the agar well to FSH-PEG on tobramycin availability. 

An identical analysis was also performed to compare cell viability of cells exposed to emulsion to 

that of cells exposed to neat PFC. All subsequent reported values are given as mean  standard 

deviation and all error bars in presented figures represent standard deviations. 

4.3 Results 

4.3.1 Emulsion Formulation Effects on Drug Emulsification and Availability 
 

Samples from negative control emulsions with 96 mg/mL H2O of either fluorosurfactant 

type containing no tobramycin produced no bacterial inhibition zones. Emulsion tobramycin 

content and relative availability are shown in Figure 4.2A and 4.2B, respectively, for emulsions 

(Vaq = 2.5% and Caq = 40 mg/mL) using either FSH-PEG or FSL-PEG+FSL. In both 

fluorosurfactant groups, tobramycin content at the lowest Cfs (0.5 mg/mL H2O) resulted in values 

less than the lower limit of detection in two of three trials. During evaluation of drug availability, 
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samples from emulsion using FSL-PEG+FSL at the largest Cfs (96 mg/mL H2O) produced 

immeasurably small inhibition zones in all three trials.  

 Tobramycin content (Figure 4.2A) was greater than 80% of the theoretical value at the 

larger Cfs values examined for both fluorosurfactant types. However, content diminished as Cfs 

decreased. For emulsions utilizing FSL-PEG+FSL, tobramycin content was shown to significantly 

decrease (p < 0.01) at Cfs ≤ 2 mg/mL H2O. For FSH-PEG, tobramycin content was significantly 

decreased (p < 0.01) only for the lowest Cfs value examined (0.5 mg/mL H2O).  Because of the 

greater stability at lower Cfs, tobramycin content was found to be statistically greater (p < 0.01) for 

the FSH-PEG emulsions. 

Tobramycin availability as indicated by drug diffusion (Figure 4.2B) was lowest at both 

high and low Cfs, reaching a peak at intermediate values. The largest measured tobramycin 

availability had an equivalent aqueous tobramycin concentration of 393  115 µg/mL at Cfs = 10 

 

Figure 4.2: Tobramycin content (normalized by theoretical value; shown in panel A) and 

availability (as indicated by equivalent aqueous tobramycin concentration; shown in panel B) 

as a function of Cfs for emulsions utilizing Vaq = 2.5%, Caq = 40 mg/mL, and FSL-PEG+FSL 

or FSH-PEG. n = 3 for each condition and an asterisk denotes statistically significant (p < 0.01) 

differences. 
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mg/mL H2O for FSL-PEG+FSL and 569  74 µg/mL at Cfs = 2 mg/mL H2O for FSH-PEG. 

Tobramycin availability was found to be statistically greater (p < 0.01) for emulsions utilizing 

FSH-PEG as compared to those utilizing FSL-PEG+FSL when considering all values of Cfs. 

Measured tobramycin availability was lowest at the maximum Cfs value examined (96 mg/mL 

H2O) for both fluorosurfactant types.  

Pre-exposure of the agar well lumen to FSH-PEG in PFC significantly decreased (p < 0.01) 

tobramycin availability in the emulsion with optimal availability (Cfs = 2 mg/mL H2O of FSH-

PEG, Vaq = 2.5%, and Caq = 40 mg/mL; Figure 4.3).  Equivalent aqueous tobramycin 

concentrations for the trials with and without pre-exposure to FSH-PEG were 264  25 and 569  

74 µg/mL, respectively.  This result confirms that the fluorosurfactant diminishes drug availability. 

Lastly, to determine an overall optimal formulation, we examined the effect of varying Vaq 

and Caq on tobramycin content and availability (Figure 4.4A and 4.4B, respectively) in emulsion 

using the flourosurfactant type and Cfs exhibiting optimal emulsification and availability (Cfs = 2 

 

Figure 4.3: Tobramycin availability (as indicated by equivalent aqueous tobramycin 

concentration) for emulsion (Cfs = 2 mg/mL H2O of FSH-PEG, Vaq = 2.5%, and Caq = 40 

mg/mL) with and without pre-exposure of the agar well to FSH-PEG in PFC (2.4 mg/mL). n = 

3 for each condition and an asterisk denotes a statistically significant (p < 0.01) difference. 
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mg/mL H2O of FSH-PEG). Tobramycin content was greater than 85% for all Vaq and Caq values 

examined and not significantly different at varying Vaq (p = 0.18).  Tobramycin availability appears 

to increase with increasing Vaq, but this effect was not deemed significant (p = 0.09). 

4.3.2 Cytotoxic Effects of Fluorosurfactants 
 

Cytotoxicity studies demonstrated increased growth for alveolar epithelial cells exposed to 

neat PFC versus PBS. Cells exposed to neat PFC and PBS resulted in 83  9% and 35  5% 

alamarBlue reduction, respectively. Thus, it should be noted that subsequently reported cell 

viability results greater than 42% of that for cells exposed to neat PFC represent increased growth 

relative to PBS-exposed cells. 

Cell viability following exposure to varying concentrations of either FSH-PEG in PFC or 

equal masses of FSL and FSL-PEG in PFC are shown in Figure 4.5. Figure 4.5A shows the 

fluorosurfactant concentrations in terms of molar concentration while Figure 4.5B shows the same 

data in terms of mass concentration. Cell viability is significantly greater (p < 0.01) for FSH-PEG 

 

Figure 4.4: Tobramycin content (normalized by theoretical value; shown in panel A) and 

availability (as indicated by equivalent aqueous tobramycin concentration; shown in panel B) 

as a function of Vaq for emulsions utilizing FSH-PEG at Cfs = 2 mg/mL H2O. Caq was varied 

inversely to Vaq to maintain a total tobramycin content of 1 mg/mL. n = 3 for each condition. 
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as compared to FSL-PEG+FSL based on molar concentration. Cell viability was greater than 90% 

of that for cells exposed to neat PFC for both fluorosurfactant types at molarities of 10-6 M and 

lower. Cell viability began to decrease at higher concentrations of fluorosurfactants before 

reaching a viability of approximately 35-45% at molarities of 10-4 M or greater for both types. The 

transition in to the cytotoxic region occurs at slightly larger mass concentrations for FSH-PEG due 

to its larger molecular weight relative to FSL-PEG and FSL (15,500 Da for FSH-PEG versus 8,350 

Da for FSL-PEG and 2,500 Da for FSL). As can be seen in Figure 4.5B, viability begins to decrease 

at fluorosurfactant concentrations of 0.02 and 0.004 mg/mL for FSH-PEG and FSL-PEG+FSL, 

respectively. Thus, when determining an optimal Cfs for either fluorosurfactant type based on drug 

emulsification and availability, FSH-PEG affords a larger non-toxic range of mass concentrations 

to be used.  

 Lastly, viability for cells exposed to emulsion with the formulation exhibiting optimal 

emulsification and availability (Cfs = 2 mg/mL H2O of FSH-PEG) containing 2.5% PBS was 97  

10% of that for cells exposed to neat PFC. An independent t-test comparing the percent reduction 

 

Figure 4.5: Cell viability (normalized by that of cells exposed to neat PFC) as a function of 

(panel A) fluorosurfactant molarity and (panel B) fluorosurfactant concentration for FSL-

PEG+FSL and FSH-PEG. n = 4 for each condition. 
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of alamarBlue of cells exposed to the emulsion to that of cells exposed to neat PFC showed no 

significant difference (p = 0.5), indicating that this emulsion formulation is not cytotoxic in this 

setting. 

4.4 Discussion 
 

In vivo studies (discussed in Chapters 3 and 5) have shown that although APV significantly 

increases the pulmonary retention of delivered tobramycin, it does not affect bacterial growth in 

the lung during infection. Such findings warrant investigation in to the availability of drug within 

the water-in-PFC emulsions used. Thus, the primary goal of this work was to explore the effects 

of fluorosurfactant type and concentration on the availability of emulsified tobramycin to an 

aqueous surface analogous to that encountered in the lungs. In order to achieve this, a simplified, 

in vitro scenario was used in which emulsion was loaded into a cylindrical agar well, thereby 

creating a large surface area of contact between the emulsion and a primarily aqueous surface. The 

ability of antibiotics to freely diffuse into such a surface in a reliable manner has been commonly 

utilized and documented for over 40 years in microbiological assays.3-5 Similar to standard agar 

well diffusion methods, the degree of drug diffusion from emulsion into the agar was measured 

via inhibited growth of bacteria (PA) that had been seeded on to the agar prior to emulsion loading. 

Such a measurement technique ensures that the delivered drug being measured is still active and 

capable of exerting its intended bactericidal effect. Following inhibition zone measurements, the 

degree of drug diffusion for each emulsion formulation was equated to the aqueous tobramycin 

concentration producing an equivalent inhibition zone. As mentioned in previous chapters, the 

most clinically relevant measure of drug in the lungs is likely the drug concentration at the aqueous, 

liquid surface of the airways or biofilm. Such a measurement is difficult, if possible at all, to carry 
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out in an emulsion-filled lung. Thus, the measurement technique described determines the 

analogous aqueous tobramycin concentration resulting in the same degree of drug diffusion in an 

identical setting. In order to confirm that any observed differences in drug diffusion were due to 

impaired availability rather than a lack of drug presence due to phase separation, tobramycin 

content of identical samples was measured concurrently. It should be noted that although 

tobramycin content was only evaluated at a single height within the emulsion at five minutes post-

preparation, previous work evaluating drug dispersion (discussed in Chapter 3) has shown that 

such a sample should be indicative of drug content throughout the bulk of the emulsion up to four 

hours post-preparation. 

Results from this work have shown that the presence of fluorosurfactant significantly 

impairs the availability and delivery of emulsified tobramycin to an aqueous surface such as agar. 

The availability of emulsified tobramycin was shown to be lowest at the largest Cfs values 

examined and increased with decreasing Cfs until reaching a maximum at Cfs values of 10 and 2 

mg/mL H2O for FSL-PEG+FSL and FSH-PEG, respectively. Within these ranges, tobramycin 

content of the emulsion did not vary significantly and was greater than 85% of the theoretical 

value. As Cfs was decreased further, measured tobramycin availability decreased as did the 

tobramycin content within the samples. Thus, the measured decrease in tobramycin diffusion at 

Cfs values less than 10 and 2 mg/mL H2O for FSL-PEG+FSL and FSH-PEG, respectively, is due 

to a lack of drug rather than impaired availability. These effects are illustrated in Figure 4.6. Note 

that phase separation (indicated by a decrease in tobramycin content within samples) was observed 

for FSL-PEG+FSL only at Cfs < 10 mg/mL H2O, whereas a previous evaluation (discussed in 

Chapter 3) showed significant phase separation at Cfs = 10 mg/mL H2O for FSL-PEG+FSL. This 

minor discrepancy can likely be attributed to batch to batch variability of the fluorosurfactant. In 
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a separate experiment, the exposure of dissolved fluorosurfactant (FSH-PEG) to the agar surface 

prior to emulsion loading for a period of only ten minutes reduced the relative availability and 

diffusion of emulsified tobramycin by greater than 50%. Such an observation further confirms the 

accumulation of fluorosurfactant at an aqueous surface in contact with the emulsion and its 

significant role in impairing subsequent drug delivery to that surface.  In contrast to the profound 

effects of Cfs, changes in Vaq and Caq within the ranges evaluated (Vaq = 0.5-2.5% and Caq = 40-

200 mg/mL) were shown to have relatively small effects on drug availability. 

The intended effect of the fluorosurfactants is to assemble at the aqueous-PFC boundary 

of the drug-loaded droplets and delay their coalescence and creaming, thereby maintaining 

homogenous drug dispersion. Thus, it is reasonable to expect that increased levels of 

fluorosurfactant may also prevent droplet deposition on and coalescence with an aqueous surface 

in contact with the emulsion. However, even when left to completely evaporate within the agar 

 

Figure 4.6: Tobramycin availability as a function of Cfs showing proposed causes of decreased 

drug diffusion observed over varying ranges of Cfs for each fluorosurfactant type. Note error 

bars have been removed for clarity. 
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well, maximum drug diffusion from the emulsion was shown to be equivalent to an aqueous 

tobramycin concentration of approximately 570 µg/mL. Thus, either a portion of the measured 

drug content (approximately 940 µg/mL for formulation with maximum diffusion) was ultimately 

unavailable to freely diffuse into the agar or the general diffusional capability of tobramycin is 

hindered. In either case, the effects of fluorosurfactant on drug availability are likely beyond those 

of inhibited droplet deposition. Due to the active nature of emulsified tobramycin following 

recovery via the described phase inversion and centrifugation process, the formation of a chemical 

bond between tobramycin and fluorosurfactant molecules is an unlikely explanation for the 

observed lack of availability. Rather a more likely explanation is the impairment of mass transfer 

into an aqueous surface due to the fairly quick (effects shown after only 10 minutes of pre-

exposure) aggregation of fluorosurfactant. Similar effects were observed in vivo during APV 

pharmacokinetic trials evaluating tobramycin delivery via emulsion utilizing FSL-PEG+FSL at Cfs 

≥ 30 mg/mL H2O. Results from these studies showed relatively large amounts of drug remaining 

in the lung, seemingly unavailable for systemic absorption, at a time point at which the PFC phase 

of the emulsion is expected to have largely evaporated. Thus, the effects of impaired drug diffusion 

into an agar surface measured in this work are likely indicative of a similar phenomenon occurring 

in the lung during APV. 

The cytotoxicity evaluation carried out in the current work showed a concentration-

dependent cytotoxic effect for fluorosurfactants dissolved in PFC. Cells exposed to FSL-

PEG+FSL and FSH-PEG at concentrations of 10-6 M or less exhibited growth similar to that of 

cells exposed to neat PFC, while exposure to larger concentrations resulted in decreased cell 

viability. Exposure to FSH-PEG was shown to produce significantly higher cell viability relative 

to FSL-PEG+FSL when considering all molarities evaluated. Because drug content and 
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availability data comparing the two fluorosurfactant types is in terms of fluorosurfactant mass 

rather than molarity, the cytotoxicity data should be considered in the same manner. The relatively 

larger molecular mass of FSH-PEG as compared to FSL-PEG and FSL translates to an even greater 

advantage for FSH-PEG when comparing cell viability at similar mass concentrations of 

fluorosurfactant. Although this initial evaluation was performed with a mixture of 

fluorosurfactants and PFC without an aqueous phase, emulsion with Vaq = 2.5%, Cfs = 2 mg/mL 

H2O of FSH-PEG, and sterile PBS in the aqueous phase was also evaluated. Emulsion exposure 

exhibited no cytotoxic effects, showing cell viability statistically unchanged from that of cells 

exposed to neat PFC. It is also worth noting that the viability of cells exposed to the emulsion was 

greater than that predicted (using Figure 4.5B) for an equivalent amount of fluorosurfactant 

dissolved in PFC. This effect is likely due to the accumulation of fluorosurfactant at the droplet 

interfaces within the bulk of the emulsion thereby resulting in reduced fluorosurfactant exposure 

to the cells located at the boundary of the well. 

The optimal emulsion formulation that will ultimately maximize the treatment efficacy of 

APV should maintain a spatially uniform distribution of drug while simultaneously maximizing 

drug availability to an aqueous surface such as a biofilm. The results of this work indicate that the 

effect of Cfs on these two parameters may be working against each other to some degree. Thus, the 

optimal emulsion formulation must balance these opposing effects by utilizing the minimum 

concentration of fluorosurfactants necessary to maintain suitable drug dispersion in order to also 

maximize drug availability. This is accomplished for FSL-PEG+FSL at a Cfs value in the range of 

4-10 mg/mL H2O and at a lower value of 2 mg/mL H2O for FSH-PEG. Ultimately, FSH-PEG 

resulted in emulsions with significantly greater drug availability as well as lower cytotoxicity 

relative to FSL-PEG+FSL, the fluorosurfactant used during all prior APV work. Furthermore, 
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emulsion utilizing FSH-PEG at the optimal Cfs value (2 mg/mL H2O) exhibited no measurable 

cytotoxic effects. Thus, future work towards the advancement of APV should utilize FSH-PEG as 

the sole fluorosurfactant component until an alternative molecule is shown to be favorable. Further 

efforts towards optimizing APV treatment should evaluate the treatment efficacy of APV utilizing 

the optimized emulsion formulations discussed in this work. Additionally, the current cytotoxicity 

evaluation represents positive initial work towards ensuring the safety of such emulsions, but 

should be followed by more in-depth, in vivo biocompatibility studies. 
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CHAPTER 5  
 

 

In Vivo Treatment Efficacy of Antibacterial Perfluorocarbon 

Ventilation in a Rat Model of Bacterial Respiratory 

Infection 

 

 

5.1 Introduction 

5.1.1 Study Motivation and Design 
 

In vitro evaluation of the emulsions used during antibacterial perfluorocarbon ventilation 

(APV) discussed in Chapter 2 has shown effective killing of Pseudomonas aeruginosa (PA) 

biofilms following a two-hour emulsion exposure. However, the more relevant metric of APV’s 

bactericidal capacity lies in the treatment’s ability to effectively eradicate bacteria in an in vivo 

setting of bacterial respiratory infection. Accordingly, the primary goal of the work presented in 

this chapter was to evaluate the ability of APV to reduce pulmonary bacterial load in a rat model 

of chronic PA lung infection relative to that of conventional aerosolized tobramycin. 

 The ideal animal model for this work would mimic the disease characteristics clinically 

observed in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients 

during infection. This is primarily the presence of mucoid PA growth (i.e. biofilms) in the airways, 

increased production of thick respiratory mucus by the host, as well as a severe airway 

inflammatory response. Multiple approaches have been taken to develop such a disease model in 
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rats. The simplest method used to inoculate the airways is via intratracheal delivery of mobile 

bacteria in a buffered solution.1-3 However, experience with this model has shown that it often 

results in either rapid clearance of the pathogen or acute sepsis and death.4 Thus, it is more 

representative of an acute bacterial challenge than the chronic infection seen clinically during CF 

or COPD. In order to better achieve the characteristics of a chronic infection, models have been 

developed in which the bacteria is embedded into some form of protective matrix prior to delivery. 

Impregnation of bacteria into agar beads was first introduced nearly 40 years ago5 and has since 

been used extensively.6-8 More recently, a similar method has utilized bacteria entrapped in 

alginate microspheres.9-12 Use of bacteria within agar or alginate provides an additional barrier 

between the bacteria and the pulmonary environment, thereby typically resulting in a less 

immediate immune response and more prolonged infection. A study comparing the agar and 

alginate methods has shown that both result in comparable infections, but also notes that the 

alginate method may offer a theoretical advantage in that the coating substance is more chemically 

similar to the alginate produced by PA in a biofilm.13 Thus, the following work utilized the alginate 

microsphere method of inducing lung infection in rats. 

The most clinically relevant method of evaluation would be to intervene with treatment 

only after the bacteria has been introduced to the airways and given sufficient time to acclimate as 

well as evoke a host response (i.e. inflammation and mucus production). However, many previous 

studies evaluating the effectiveness of perfluorocarbon (PFC) mediated treatment in this setting 

have implemented treatment either prior to or immediately following (≤ 4 hours) the delivery of 

bacteria to the airways.1, 14, 15 Such studies likely evaluate the treatments’ ability to disrupt the 

delivered bacteria’s initial attachment and colonization rather than the more relevant treatment of 
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the underlying pathology of bacterial infection during lung disease. Considering this, all treatment 

intervention in this work was initiated no earlier than 48 hours following bacterial delivery. 

 Although APV could ultimately be performed as either partial APV (lungs partially filled 

with emulsion and ventilated with gas) or total APV (lungs completely filled and tidally ventilated 

with emulsion), only partial APV was assessed in the current work. There are multiple reasons for 

the decision to focus solely on partial APV. First, a period of partial APV is always present during 

total APV while transitioning a patient back to gas ventilation. Thus, any efficacy shown for partial 

APV should be indicative of that for total APV to some degree. Second, partial APV is unarguably 

a simpler approach. Gas mechanical ventilation in rats has been used extensively and the effects 

of ventilation parameters are well established and understood. Although work has been done to 

characterize the effects of liquid ventilation parameters as well, the methods and equipment to 

carry out such a procedure are less standardized. An initial evaluation and characterization of APV 

is more easily accomplished in the simplest setting (i.e. partial APV as opposed to total APV). 

Lastly, previous work characterizing the pharmacokinetics of APV (discussed in Chapter 3) 

utilized partial APV. Thus, the results of the current work would be most easily and accurately 

interpreted if performed in a similar manner. However, there are also drawbacks to the use of 

partial APV rather than total APV. During total APV virtually all surfaces within the lung are in 

constant contact with the emulsion. Conversely, during partial APV the upper airways are gas 

filled during the majority of the respiratory cycle. As PFC evaporates during treatment, an even 

greater portion of the lung will lose contact with the emulsion and thus have limited access to the 

delivered antibiotics. Although this might be addressed by intermittently altering the positioning 

and inclination of the lungs during ventilation, the experimental setup used in this work did not 

allow for easy manipulation of the rat’s position relative to the ventilator. 
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 The work discussed in this chapter is composed of two different studies evaluating 

the efficacy of partial APV in different modes of treatment at varying time points throughout the 

development of APV. Ultimately, the partial APV treatments implemented during either study 

were both shown to be unsuccessful in eradicating pulmonary bacteria during infection. In addition 

to describing the studies and resulting data, the remainder of this chapter will discuss the 

motivation behind the study designs as well as the proposed reasoning for their lack of success. 

Chapter 5 also serves to review and validate the alginate microsphere method used for induction 

of a PA respiratory infection in rats. Methods outlining a refined method of both inoculum 

preparation and delivery are described in detail. Review and validation of such a model may prove 

useful for future work towards further developing APV. 

5.1.2 Earlier Efficacy Trials (APV + Aerosol) 
 

The earlier efficacy trials to be discussed were performed following initial physical and 

bactericidal characterization of the emulsions (discussed in Chapter 2), prior to the 

pharmacokinetic studies (discussed in Chapter 3) and assessment of drug availability (discussed 

in Chapter 4). In vitro bactericidal evaluation showed emulsions utilizing increased Caq to be most 

effective in killing PA biofilms. Thus, the emulsion formulations used during early efficacy trials 

utilized maximized Caq (with minimized Vaq) and were expected to be similarly effective against 

in vivo PA. In an effort to recreate the clinical setting to the greatest degree possible, earlier studies 

evaluated partial APV in conjunction with subsequent aerosolized tobramycin over a multi-day 

course of treatment. As discussed in section 1.7, APV is envisioned as an adjunct treatment to be 

used in combination with subsequent aerosolized delivery. Initial treatment with APV should 

provide a therapeutic lavage of the lungs in which the airways are mechanically ridded of a large 
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portion of mucus and biofilm while simultaneously receiving an evenly distributed loading dose 

of antibiotics. Theoretically, clearance of the airways should enhance subsequent inhaled delivery 

which is often hampered by mucus plugging and the resulting decreased airflow.16 Lastly, the 

earlier trials also evaluated treatment utilizing two different lung fill volumes. As mentioned 

above, the lack of complete and constant contact between the emulsion and surfaces of the lung is 

believed to be a significant disadvantage of partial APV. In order to confirm this hypothesis, a 

relatively large and small lung fill volume were each evaluated. In theory, partial APV can be 

carried out with the lungs filled with emulsion to any volume up to end-expiratory lung volume 

(EELV). Using EELV should result in the entire lung in contact with the emulsion at the end of 

each exhalation while any smaller volume will leave portions of the lung unfilled throughout the 

entire respiratory cycle. The lung fill volume will also likely affect the amount of oxygen transfer 

achieved during ventilation, the degree of liquid tidal flow in the airways, as well as the time course 

of emulsion evaporation. These earlier trials will be referred to as “APV + aerosol” trials in the 

remainder of this chapter.  

5.1.3 Later Efficacy Trials (APV Alone) 
 

Later efficacy trials were performed following evaluation of the pharmacokinetic effects 

of emulsion formulation (discussed in Chapter 3) but still prior to assessment of emulsified drug 

availability or varying fluorosurfactant types (discussed in Chapter 4). The pharmacokinetic study 

showed reduced pulmonary residence times for tobramycin delivered via emulsions utilizing 

decreased Vaq with increased Caq (such as those described above for APV + aerosol trials). Thus, 

the later efficacy trials utilized increased Vaq with decreased Caq relative to the APV + aerosol trials 

in an effort to increase pulmonary drug retention and bacterial killing. Both efficacy trials were 
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performed prior to assessment of FSH-PEG and thus FSL-PEG+FSL was used as the sole 

fluorosurfactant for all work discussed in this chapter. The Cfs used during both trials (30 mg/mL 

H2O) was chosen primarily with biocompatibility and emulsion stability in mind given what we 

understood at the time. Due to the observed lack of benefit of aerosolized delivery following partial 

APV in the APV + aerosol trials, a simplified, single-dose treatment procedure was evaluated. 

Lastly, in an effort to ensure complete delivery of the intended drug dose to the airways, a tracheal 

tie was implemented during partial APV in the later trials in order to create a seal around the 

angiocatheter (used as an endotracheal tube) within the airway. These later efficacy trials will be 

referred to as “APV alone” trials in the remainder of this chapter. 

5.2 Methods 

5.2.1 Preparation of Bacterial Inoculum 
 

The chronic PA respiratory infection rat model used in both efficacy studies was induced 

using a slightly modified version of a previously established alginate microsphere technique.10, 13 

The same PA strain used in all previous APV work (ATCC 27853) was used for all inoculation 

procedures. Bacteria was grown for 6-8 hours in tryptic soy broth (TSB) supplemented with 1% 

glucose (approximately 40 mL) at 37o C on a gyratory shaker to mid-log growth. The optical 

density of the resulting solution was measured and a volume of bacterial solution containing 

approximately 5.5 x 108 colony forming units (CFU) (approximately 1-10 mL depending on the 

solution’s phase of growth) was then centrifuged at 3,725 x g at 4o C for 20 minutes. Following 

centrifugation, supernatant was discarded and the bacteria were re-suspended in approximately 10 

mL of sterile phosphate-buffered saline (PBS). The previously described centrifugation and re-

suspension step was repeated once more in order to ensure removal of growth medium from the 
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bacterial suspension. Next, a small sample (100 µL) of the bacteria in PBS solution was taken for 

serial dilution and quantitative culture in order to ultimately confirm the amount of bacteria 

delivered to each rat. Quantitative cultures were performed on this solution rather than the final 

solution because serial dilution of the microsphere solution was shown to be inaccurate and 

unreliable. Following the final re-suspension of bacteria in PBS, 2.5 mL of bacterial suspension 

was added to 7 mL of previously prepared sodium alginate solution. The sodium alginate solution 

was prepared by dissolving sodium alginate (Alginic acid sodium salt, CAS # 9005-38-3; Sigma 

Aldrich, St. Louis, MO, USA) in sterile saline to a concentration of 11 mg/mL and autoclaving the 

resulting mixture.  

The solution of sodium alginate and bacteria was loaded into a sterile 10-mL syringe and 

thoroughly mixed via repeated inversion. Next, the solution was forced through a small-gauge, 

polyethylene tubing with an inside diameter of 0.58 mm (BD Intramedic Polyethylene Tubing, 

Model 427411; Becton Dickinson, Franklin Lakes, NJ, USA) while a jet of air was aligned coaxial 

to the tubing to blow off the droplets. Droplets were blown into a sterile flask containing 40 mL 

of a cross-linking solution of 0.1 M CaCl2 in TRIS-HCl buffer (0.1 M, pH 7.0). The alginate 

microspheres were allowed to cure for one hour in the calcium solution under continuous stirring 

at room temperature. Following curing, the alginate solution was centrifuged at 3,725 x g at 4o C 

for five minutes in order to separate the microspheres out of solution. Following centrifugation, 

the supernatant was discarded and the microspheres re-suspended in 25 mL of sterile PBS. The 

solution was again centrifuged at the same settings, supernatant discarded, and the microspheres 

re-suspended in sterile PBS to a final volume of 8 mL. The final solution contained 9.625 mg/mL 

of sodium alginate and approximately 105-106 CFU/mL. The resulting solution was then stored at 

4o C until being delivered to rats within two hours of preparation. 
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5.2.2 Inoculation Procedure 
 

Specific pathogen-free, male Sprague Dawley rats (weighing approximately 400 grams) 

were initially anesthetized with a mixture of ketamine hydrochloride [50 mg/kg, intraperitoneal 

(IP); Hospira Inc., Lake Forest, IL, USA] and xylazine hydrochloride (5 mg/kg, IP; Lloyd 

Laboratories, Shenandoah, IA, USA). Rats were placed in a prone position and orally intubated 

with a 16 gauge angiocatheter. Immediately following intubation, a length of small-gauge, 

polyethylene tubing with an inside diameter of 0.58 mm was inserted through the angiocatheter 

such that the tip of the tubing extended approximately 2 mm past the end of the angiocatheter 

within the trachea. From Figure 2.2, one can see that such placement results in the end of the tubing 

resting approximately 2-3 mm proximal to the carina. The appropriate length of tubing was 

measured and marked prior to the procedure in order to ensure correct positioning within the 

angiocatheter. Also prior to the procedure, 200 µL of freshly prepared inoculum was loaded into 

a length of approximately 24 inches of tubing and a 5-mL syringe full of air attached to one end 

of the tubing via a 24 gauge angiocatheter. Following placement of the tubing in the trachea, the 

syringe was used to evacuate the contents of the tubing, thereby intratracheally delivering the 

inoculum. Inoculum doses of 104-106 CFU/rat were used throughout the trials discussed in this 

chapter. Experiences during this work would suggest that the ideal bacterial dose is approximately 

6 x 104 – 1 x 105 CFU/rat. Such a dose tends to result in low mortality while also producing a 

lasting infection. Earlier trials provided supplemental oxygen following inoculum delivery and 

relied on the rat’s own respiratory efforts to maintain normal breathing. This method ultimately 

resulted in frequent apneic episodes following inoculum delivery and increased overall mortality 

at this point in the model. Therefore, later trials incorporated a short period (approximately 30 

seconds) of low tidal volume mechanical ventilation following inoculum delivery in order to 
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resuscitate breathing. Following delivery of the inoculum and resumed spontaneous breathing, rats 

were provided supplemental oxygen until observed to be ambulatory at which point they were 

returned to housing with free access to food and water. All rats remained in housing for a period 

of 48 hours before undergoing treatment. 

5.2.3 Emulsion Preparation 
 

Tobramycin-loaded, water-in-PFC emulsions were prepared with the same equipment and 

sonication settings as those described in section 3.2.1. All emulsions evaluated in the current work 

used equal masses of FSL-PEG and FSL. Similar to previous chapters, Cfs refers to the total amount 

of fluorosurfactant used. Larger Caq values were used in this work than in previous chapters. While 

preparing the aqueous tobramycin phase of emulsions utilizing Caq = 1,000 mg/mL, the solution 

had to be warmed to 37o C using a heated water bath in order to achieve complete dissolution of 

the tobramycin. Similar to previous work with APV, the PFC used in all experiments was 

perfluorocycloether/perfluorooctane (FC-770; 3M Inc., St. Paul, MN, USA). 

5.2.4 Antibacterial Perfluorocarbon Ventilation and Aerosolized Treatment 
 

Two different partial APV (referred to in the remainder of Chapter 5 simply as APV) 

treatment efficacy studies are discussed in the remainder of Chapter 5. The primary difference 

between the two studies is the timing and number of treatments received by each rat following 

inoculation. APV + aerosol trials evaluated APV in conjunction with subsequent aerosolized 

tobramycin at two different lung fill volumes (3 and 15 mL/kg). Previous studies have found the 

larger volume used (15 mL/kg) to be approximately equivalent the EELV of a rat.2, 17 The emulsion 

used for both lung fill volumes utilized Caq = 1,000 mg/mL and Cfs = 30 mg/mL H2O of FSL-
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PEG+FSL. The large and small lung fill volume treatments used emulsion with Vaq values of 0.1 

and 0.5%, respectively, resulting in a total delivered tobramycin dose of 15 mg/kg for both cases. 

Following APV, five smaller maintenance doses of tobramycin (2.5 mg/kg) were delivered via 

aerosolized delivery every 8-12 hours, resulting in three full days of treatment. 

 In order to compare APV to conventional treatment, a second treatment group received 

only aerosolized tobramycin. The aerosolized treatment group received identical delivered doses 

at the same time points as the APV treatment groups. Thus, the only difference between the groups 

was the delivery method for the larger, initial tobramycin dose. All rats were euthanized with 

pentobarbital sodium (175 mg/kg, IP, Fatal Plus; Vortech Pharmaceuticals, Dearborn, MI, USA) 

approximately 24 hours following final treatment. A timeline describing the experiment is shown 

in Figure 5.1.  

Additionally, a negative control group of inoculated rats receiving no tobramycin was also 

included. The negative control group was anesthetized in an identical manner to and at the same 

time points as the APV and aerosolized treatment groups. Although data sets may include rats 

from multiple rounds of inoculation (i.e. inoculated on different dates with independently prepared 

inoculum), an approximately equal number of rats within each round was randomly assigned to 

receive APV, aerosolized delivery, or no treatment. APV treatment with large and small lung fill 

 

Figure 5.1: Timeline showing treatment schedule used during APV + aerosol trials. 
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volumes were evaluated separately from each other (each performed in rounds with only 

aerosolized treatment and negative controls). The total number of rats assigned to each treatment 

group for each set of trials is given with the results in section 5.3.2. 

 APV alone trials (the later efficacy study performed) evaluated pulmonary bacterial load 

at eight hours following a single APV treatment (also initiated at 48 hours post-inoculation). 

Although the goal of these trials was to evaluate pulmonary bacterial presence immediately post-

treatment, necropsy was delayed eight hours post-delivery in an attempt to allow adequate time 

for tobramycin to leave the lungs via systemic absorption. Tobramycin still present in the lung 

tissue at the time of homogenization may affect the accuracy of subsequent quantitative cultures. 

APV during these trials utilized a single emulsion formulation with Vaq = 2.5%, Caq = 40 mg/mL, 

and Cfs = 30 mg/mL H2O of FSL-PEG+FSL. A lung fill volume of 15 mL/kg was used, resulting 

in a total delivered tobramycin dose of 15 mg/kg (same as for APV + aerosol trials). A second 

treatment group received an identical delivered tobramycin dose via aerosol at the same time point. 

A negative control group of inoculated rats receiving no tobramycin was again included. During 

these trials, a throat swab (Peel Pouch Dryswab Fine Tip, Model MW113; Medical Wire and 

Equipment Co., Wiltshire, England) was performed immediately prior to tobramycin delivery and 

cultured to confirm the presence of PA in the airways. Following swabbing of the back of the 

throat, the swab tip was cut off into a microcentrifuge tube containing 1 mL sterile water. The tube 

was allowed to sit at room temperature for 30 minutes and then vortexed for 30 seconds before a 

sample (100 µL/sample) was plated on PA-selective agar (Cetrimide Agar Base; Becton 

Dickinson, Franklin Lakes, NJ, USA) and incubated at 37o C overnight. In contrast to the trials 

discussed above, the negative control treatment group received no sham anesthesia. Throat swabs 

on the negative control group were performed immediately prior to euthanasia. All rats in the APV 
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alone trials were euthanized with pentobarbital sodium (175 mg/kg, IP) at eight hours post-

treatment.  

APV treatment for both studies was performed according to those methods described in 

section 2.2.6 with some minor differences between APV + aerosol and APV alone trials. Due to 

the need to recover animals following treatment in the APV + aerosol trials, no neck incision was 

made during intubation or tie placed around the trachea. Preliminary studies (data not shown) 

showed that such a process significantly increased mortality during a recovery procedure. For the 

APV alone trials, APV-treated rats were kept under sedation for the entire eight hours between 

treatment and euthanasia and thus a tracheal tie was used. For APV + aerosol trials, emulsion was 

instilled with the rat in a prone position, while a supine position was used for the APV alone trials. 

For the APV + aerosol trials, gas ventilation was continued for a period of approximately one hour 

following emulsion instillation at which point intravenous sedation was ceased and the tail wound 

closed with skin adhesive. Rats were then weaned off gas ventilation and extubated once 

spontaneous breathing was observed. Supplemental oxygen was given until rats were ambulatory 

at which point they were returned to housing with free access to food and water. For APV alone 

trials, gas ventilation was continued until euthanasia at eight hours following emulsion instillation.  

 Aerosolized delivery of tobramycin (either 15 mg/kg or 2.5 mg/kg for maintenance doses 

in APV + aerosol trials) was performed according to those methods described in section 2.2.6 with 

minor differences between APV + aerosol and APV alone trials. Aerosolized delivery was 

achieved with the rat in a prone position during APV + aerosol trials, while a supine position was 

used for APV alone trials. Following delivery, rats were immediately extubated and provided 

supplemental oxygen. Once rats were observed to be ambulatory, they were returned to housing 
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with free access to food and water until further treatment (during APV + aerosol trials) or 

euthanasia. 

5.2.5 Evaluation of Pulmonary Bacterial Load Post-Treatment 
 

A sterile necropsy was performed following euthanasia in all trials in order to remove the 

lungs for measurement of remaining pulmonary bacterial load. The excised lungs were 

immediately added to sterile saline (approximately 25 mL/kg bodyweight) and thoroughly 

homogenized (LabGEN 7b Series Portable Homogenizer; Cole Parmer, Vernon Hills, IL, USA) 

for further processing. The homogenizer was immersed in ethanol followed by three separate 

rinses in sterile water in between samples in order to avoid cross contamination. A sample (100 

µL) of the tissue homogenate was then serially diluted and cultured on PA-selective agar in order 

to quantify the amount of viable bacteria present. Agar plates were incubated overnight at 37o C 

before counting was performed. The lower limit of detection using these methods was 20 CFU/mL. 

Any samples resulting in no measurable bacterial growth were assigned a value of 10 CFU/mL. 

5.2.6 Statistical Analysis 
 

A log transform was performed on all pulmonary bacterial load measurements prior to 

further analysis. A one-way ANOVA was performed on the log transformation of the data in order 

to determine the effect of treatment group on pulmonary bacterial load remaining at the time of 

euthanasia. All figures describing pulmonary bacterial load in the remainder of this chapter present 

the mean and standard deviations (represented by error bars) of the log transformation of the 

original bacterial measurements. 
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5.3 Results 

5.3.1 Respiratory Infection Model 
 

The alginate microsphere methods described in this work were shown to produce a 

consistent bacterial respiratory infection with reasonably low mortality. Inoculum doses of 6 x 104 

- 1 x 105 CFU/rat were found to result in a survival rate of greater than 70% while larger doses 

resulted in significant mortality, typically within the 48 hours immediately post-inoculation. Rats 

were sacrificed at either two (APV alone trials) or five (APV + aerosol trials) days post-inoculation 

in the collection of trials discussed. In the time following inoculation, rats were typically observed 

to be lethargic with decreased appetite and moderately labored breathing. Porphyrin staining 

around the eyes and nose, a common indicator of stress or sickness in rats, was often observed. At 

the time of necropsy, viscous, mucus-like exudate was often observed in the airway or 

angiocatheter (used as endotracheal tube). Examples of mucus-filled angiocatheters at the time of 

necropsy are shown in Figure 5.2A and 5.2B. As seen in Figure 5.2C, lungs from infected rats 

were also commonly observed to have signs of pulmonary edema.  

The pulmonary bacterial load of negative control rats receiving no treatment at two and 

five days post-inoculation is shown in Table 5.1. It is important to note that because pulmonary 

bacterial load values can vary over orders of magnitude, large outliers can have much greater 

effects on the mean values of the raw data than the mean values of the log transformed data. 

Although not measured in all trials, the total homogenized lung volume for most trials was found 

to be approximately 13 mL. Using this value, the total lung bacterial load for rats at two and five 

days post-inoculation can be estimated to be approximately 6.8 x 106 and 2.0 x 107 CFU, 

respectively. Note that negative control rats sacrificed at five days post-inoculation (APV + aerosol 

trials) were sham anesthetized twice per day for the three days prior to sacrifice while those 
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euthanized at two days post-inoculation (APV alone trials) were essentially untouched following 

infection. APV + aerosol trials had one negative control rat with no measurable pulmonary 

bacterial load while APV alone trials showed viable pulmonary bacterial measurements for all 

negative controls. Furthermore, the throat swab method used in APV alone trials proved to be a 

reasonably reliable means of confirming infection prior to treatment, producing a positive culture 

for rats with viable pulmonary bacteria in 14 of 15 trials (93% of trials) for negative controls, or 

31 of 32 trials (97% of trials) overall. 

 

Figure 5.2: (A and B) Mucus-like secretions from infected rats observed in angiocatheter (used 

an endotracheal tube) at time of euthanasia. (C) Typical lungs removed from infected rats 

showing signs of pulmonary edema (darker red regions). 

 

 

 

Table 5.1: Pulmonary bacterial load of negative control (untreated) rats at two and five days 

post-inoculation. Log transform values are given as mean  standard deviation. 
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5.3.2 Treatment Effect on Pulmonary Bacteria 
 

The pulmonary bacterial load of rats at five days post-inoculation (APV + aerosol trials) 

following varying three-day tobramycin treatments is shown in Figure 5.3. APV for each lung fill 

volume is shown compared to only those negative controls and aerosolized-treated rats that were 

performed within the same rounds of inoculation. Figure 5.3A shows pulmonary bacterial load for 

evaluation of APV treatment utilizing the smaller lung fill volume (3 mL/kg). One rat from each 

the aerosolized and APV treatment groups produced no measurable pulmonary bacteria. Figure 

5.3B shows pulmonary bacterial load for evaluation of APV treatment utilizing the larger lung fill 

volume (15 mL/kg). One rat from each the aerosolized treatment and negative control groups 

produced no measurable pulmonary bacteria. A one-way ANOVA performed separately on each 

data set (shown in Figure 5.3A and 5.3B) showed no significant effect of treatment method on 

pulmonary bacterial load for the small (p = 0.9) or large (p = 0.8) lung fill volume trials. 

 

Figure 5.3: (A) Pulmonary bacterial load for groups receiving no treatment (n = 6), aerosolized 

tobramycin (n = 5), or APV with 3 mL/kg lung fill volume (n = 10). (B) Pulmonary bacterial 

load for groups receiving no treatment (n = 8), aerosolized tobramycin (n = 5), or APV with 15 

mL/kg lung fill volume (n =8). 
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Figure 5.4 shows the pulmonary bacterial load of rats at two days post-inoculation (APV 

alone trials) eight hours following varying methods of single-dose treatment. Again, APV is shown 

in contrast with only those negative controls and aerosolized-treated rats that were performed 

within the same round of inoculation. All rats produced measurable pulmonary bacteria and 

positive pre-treatment throat cultures. Although pulmonary bacterial load was observed to be lower 

for rats receiving aerosolized treatment relative to other groups, the effect of treatment method was 

not deemed significant (p = 0.06) for this small-sample data set. 

 5.4 Discussion 
 

The current findings have failed to provide evidence of a potential advantage for APV with 

the specified emulsion formulations in eradicating a chronic PA respiratory infection. Considering 

the increased understanding of the emulsions that has been gained since these trials, the observed 

lack of success is likely predominantly due to the use of suboptimal emulsion formulations. The 

selection of emulsion formulations to be used during the efficacy trials was largely driven by 

results from the in vitro biofilm exposure experiments (discussed in Chapter 2) and 

 

Figure 5.4: Pulmonary bacterial load for groups receiving no treatment (n = 3), aerosolized 

tobramycin (n = 3), or APV (n = 2). 
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pharmacokinetic studies (discussed in Chapter 3). The failed translation of the positive results 

observed in each of these studies to the in vivo treatment scenario can likely be attributed to 

multiple factors. Initial studies evaluating biofilm killing capacity likely overestimated the 

bactericidal ability of the emulsion due to a less than ideal experimental setup. During such 

experiments biofilms were immersed from the top surface of the emulsion (schematic of 

experimental setup shown in Figure 2.1). In this orientation, any creaming occurring during the 

emulsion exposure increases contact between the aqueous drug and biofilm surface. Thus, the 

positive bactericidal results from this experiment could have been partly a result of a small amount 

of separated aqueous drug rather than completely indicative of the killing ability of the bulk of the 

emulsion. Additionally, these experiments neglected the effect of systemic absorption of the drug. 

Pharmacokinetic studies (discussed in Chapter 3) later showed that increased Caq values, as used 

in the APV + aerosol efficacy trials, results in quicker and larger drug absorption into the systemic 

circulation, thereby removing it from the site of infection. Accordingly, lower Caq values (in 

combination with larger Vaq values) were implemented during the APV alone efficacy trials in 

order to prolong exposure between the drug and pulmonary bacteria. The primary oversight of this 

reasoning was that it neglected to take in to account the availability of the measured pulmonary 

drug in the emulsified state in which it exists within the lungs. The method of pulmonary 

tobramycin measurement used during the pharmacokinetic trials likely increased the drug’s 

availability during measurement relative to its prior emulsified state. More specifically, the 

dilution and homogenization process used during tissue tobramycin measurement likely increased 

tobramycin availability in a manner similar to that achieved during the phase inversion and 

separation process used to quantify tobramycin content discussed in Chapters 3 and 4. Thus, some 

portion of the pulmonary tobramycin measured during the pharmacokinetic experiments may have 
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been unavailable to contribute to APV’s in vivo antibacterial effect. Ultimately, these effects were 

not fully brought to light until the studies assessing drug availability discussed in Chapter 4. During 

these studies it was shown that the presence of fluorosurfactant can significantly impair the 

availability of emulsified drug to a surface in contact with the emulsion. Both efficacy trials 

implemented emulsions utilizing FSL-PEG+FSL at Cfs = 30 mg/mL H2O. As can be seen in Figure 

5.5, emulsion utilizing these parameters (containing a loaded tobramycin mass of 1,000 µg/mL) 

resulted in an equivalent aqueous tobramycin concentration of 108 µg/mL. Thus, the 

fluorosurfactant type and concentration used during both efficacy trials likely resulted in a 

significantly decreased available tobramycin dose, possibly as small as an order of magnitude 

lower than the intended dose. Considering this, the lack of bactericidal activity observed during 

the efficacy trials is not necessarily surprising. 

Other valuable inferences stand to be gained from the results of these trials. The APV + 

aerosol efficacy trials showed that APV implemented in combination with subsequent aerosolized 

 

Figure 5.5: Tobramycin availability (reproduced from Chapter 4) showing fluorosurfactant 

type and Cfs used during efficacy trials. 
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delivery was no more effective than aerosolized delivery alone. Thus, the expected benefits of 

airway clearance during APV on subsequent aerosolized delivery were likely absent in this study. 

Multiple factors could have contributed to such an effect. At the conclusion of APV performed on 

a patient, some portion of the emulsion would be suctioned from the lungs along with any 

dislodged mucus or biofilm. However, previous experience with rats has shown that suctioning of 

PFC from the lung is difficult and highly inconsistent. Thus, during APV in the current studies, 

emulsion was instilled in the lung and left to completely evaporate during subsequent ventilation. 

Such a technique may dislodge mucus or biofilm but fails to remove it from the airways. In 

addition, the effect of mucus plugging on the distribution of aerosolized drug seen clinically may 

differ from that in a rat. As mentioned in Chapter 2, intratracheal placement of the Microsprayer 

in the rat can sometimes induce apnea, resulting in aerosol delivery in the absence of airflow. The 

effects of poor ventilation distal to mucus plugging on aerosolized delivery are surely diminished 

in such a scenario.  

The current work also evaluated APV utilizing lung fill volumes of 3 and 15 mL/kg. These 

values represent either end of the spectrum, resulting in the lung being approximately 20 or 100% 

filled at the end of expiration. The lack of difference in effectiveness between the two treatments 

suggests that although contact between the emulsion and lung is an important treatment parameter 

to be considered during APV, it was likely not the critical issue at the core of APV’s observed 

shortcomings. Alternatively, the lack of difference between the two lung fill volumes is consistent 

with the diminished treatment effects of impaired drug delivery proposed above. If the available 

drug dose was as low as previously estimated (approximately 10% of intended dose), reduction of 

bacterial killing would likely be insignificant regardless of the degree of contact between the 

emulsion and bacterial surface.  
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Lastly, although ineffective in resolving the bacterial infection, APV treatment appeared 

to be well tolerated by the inoculated rats. Mortality during treatment was rare and arterial oxygen 

saturation (data not shown) during APV was typically observed to be similar to or better than that 

of unventilated rats on supplemental oxygen. Additionally, rats recovering from APV (during APV 

+ aerosol trials) exhibited similar traits and behavior as those of the other treatment groups.  

The disease model developed and refined in preparation for these studies also represents a 

positive outcome of this work. The methods used were based off of previously established rat 

models10, 13 of PA lung infection in which viable bacterial colonies are immersed in a synthetic 

alginate and delivered intratracheally. The inoculation methods described were shown to produce 

a pulmonary bacterial infection with reasonably low mortality (< 30%) that was typically unable 

to be cleared by an untreated rat. Furthermore, the resulting infection was also shown to be 

unresolved following aerosolized treatment, thereby providing a useful testbed to show potential 

improvements over currently used therapy. Additionally, the use of the described throat swab 

technique proved to be a reliable, relatively non-invasive method to confirm the presence of 

infection prior to treatment. It is recommended that future APV work utilizing a rat disease model 

use the inoculation methods described in this chapter in conjunction with a throat swab prior to 

treatment. 

The current work represents the most clinically relevant measure of APV’s therapeutic 

potential at varying time points in the midst of its development. Although APV was shown to 

provide no treatment benefit in either evaluation, the negative outcomes ultimately guided the 

direction of future efforts towards emulsion optimization. Such efforts have ultimately resulted in 

a drastically increased understanding of APV and a significantly more optimized emulsion 

formulation that is yet to be evaluated in an in vivo infection model. The tobramycin availability 
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of the optimal emulsion formulation from work discussed in Chapter 4 (Cfs = 2 mg/mL H2O of 

FSH-PEG, Vaq = 2.5%, and Caq = 40 mg/mL) is more than five times greater than that of the 

formulations evaluated in the efficacy evaluation trials described in this chapter. Thus, the optimal 

emulsion formulation will likely exhibit a greater bactericidal effect in the lung. 
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CHAPTER 6  
 

 

Conclusions, Limitations, and Future Work 

 

 

6.1 Conclusions 
 

The presented work explored the use of tobramycin-loaded emulsions during antibacterial 

perfluorocarbon ventilation (APV) as a novel treatment for bacterial respiratory infections. Initial 

studies evaluated the bacterial killing capacity of such emulsions as well as the feasibility of their 

use as a liquid ventilation (LV) medium. In vivo studies were then used to confirm the ability of 

APV to successfully deliver tobramycin to the lung and characterize the effects of emulsion 

formulation on the resulting pharmacokinetics. A chronic bacterial respiratory infection model in 

rats was used at multiple points throughout this work to evaluate the efficacy of APV treatment 

relative to currently used treatments. Due in part to poor in vivo results, in-depth in vitro studies 

were performed to analyze the effects of emulsion formulation on drug availability and 

biocompatibility. The aim of this in vitro work was further optimization of the emulsion for 

maximal treatment efficacy and safety. From these studies, it can be concluded that: 

1. The fluorosurfactants used in this work (PEGylated perfluoroether copolymers) are capable 

of sufficiently emulsifying aqueous tobramycin within a naturally immiscible 

perfluorocarbon (PFC) phase. The presence of the aqueous drug in the form of micron-
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scale droplets was confirmed via microscopy. The emulsion preparation process is 

straightforward and could be performed at the bedside immediately prior to administration.  

2. The addition of aqueous tobramycin and fluorosurfactants, along with the remainder of the 

emulsification process, does not negatively alter the rheological properties of PFC critical 

to its use as a LV medium. The viscosity and air interfacial tension of the emulsion are not 

significantly different than that of neat PFC. The aqueous interfacial tension of the 

emulsion is reduced relative to that of neat PFC, potentially resulting in increased mucus 

removal capabilities during treatment. 

3. Exposure to the tobramycin-loaded emulsions for the intended treatment duration (two 

hours) results in effective killing of Pseudomonas aeruginosa biofilms in a simplified in 

vitro setting. Bactericidal effects in this setting increased for emulsion formulations 

utilizing increased aqueous tobramycin concentration (Caq), and to a lesser extent, aqueous 

volume percent (Vaq). 

4. Partial APV utilizing the emulsions is capable of successful pulmonary tobramycin 

delivery and the ensuing pharmacokinetics are largely determined by the emulsion 

formulation. Changes in Vaq and Caq were found to have the largest effect on the kinetics 

of delivered drug. At a constant fluorosurfactant concentration (Cfs), increased Vaq in 

combination with decreased Caq results in significantly increased pulmonary drug 

retention, with formulations examined exhibiting up to 22 times greater retention than 

aerosolized delivery at four hours post-delivery. 

5. The distribution of tobramycin (in the form of small aqueous droplets) throughout the bulk 

of the emulsion is spatially uniform over the intended treatment duration for emulsion 

formulations utilizing a sufficiently large Cfs. The critical Cfs value below which emulsion 
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instability is present and phase separation occurs is dependent on the fluorosurfactant type, 

but was shown to range from 2 to 30 mg/mL H2O for those used in this work. 

6. In addition to assembling at the boundary of the aqueous droplets within the emulsion, the 

fluorosurfactants also appear to accumulate at an aqueous surface in contact with the 

emulsion (surface for intended delivery) and impede tobramycin transport into such a 

surface. The availability of drug to diffuse into an aqueous surface thus decreases with 

increasing Cfs, and the ideal Cfs for a particular fluorosurfactant type is the minimum value 

necessary for sufficient emulsification of the loaded aqueous drug. Such a value should 

result in maximal drug availability while also maintaining homogenous drug dispersion 

throughout the emulsion. 

7. The drug emulsification and availability properties of an emulsion were found to 

significantly vary with fluorosurfactant type. FSH-PEG exhibited superior properties when 

compared to the relatively less fluorophilic fluorosurfactant used in initial studies (FSL-

PEG+FSL). Emulsions utilizing FSH-PEG resulted in emulsion stability at lower values of 

Cfs while also showing significantly greater drug availability. Stable emulsions using FSH-

PEG showed a maximum drug availability at Cfs = 2 mg/mL H2O that was greater than five 

times the availability of emulsions used during in vivo treatment evaluation. 

8. Partial APV with emulsions utilizing FSL-PEG+FSL at a relatively large Cfs (30 mg/mL 

H2O) showed no advantage in reducing pulmonary bacterial load in a rat model of chronic 

lung infection relative to aerosolized tobramycin delivery. Furthermore, neither treatment 

(APV or aerosolized) produced a significant decrease in pulmonary bacterial growth 

relative to no treatment. The lack of in vivo bactericidal ability observed for APV was likely 

a result of suboptimal emulsion formulations. More specifically, the type and concentration 
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of fluorosurfactant used during the efficacy trials likely resulted in poor drug availability 

to the bacterial surfaces within the lung. 

9. The fluorosurfactants used in this work exhibited concentration-dependent cytotoxic 

effects when exposed to human alveolar epithelial cells in an in vitro setting for a period 

of six hours. FSH-PEG resulted in reduced cytotoxicity as compared to FSL-PEG+FSL. 

Emulsion utilizing the optimal Cfs value for drug emulsification and availability (Cfs = 2 

mg/mL H2O of FSH-PEG) exhibited no measurable cytotoxic effects as compared to cell 

exposure to neat PFC. 

6.2 Limitations and Future Work 
 

The major limitations of this work primarily resulted from the use of a rat model as opposed 

to a larger animal species. The use of rats severely limited our ability to evaluate the mechanically-

induced mucus and biofilm removal effects of APV. The significant role of abnormal mucus and 

biofilm presence in the progression of bacterial respiratory infection during lung disease is well 

established. Mucus removal has been previously noted during LV with neat PFC.1-3 Moreover, 

there is ample theoretical evidence to expect that ventilation with emulsion during APV should 

result in equivalent or even greater mucus removal effects (discussed in Section 1.7). Mucus and 

biofilm removal during initial treatment with APV would not only make an immediate positive 

impact on the disease state, it should significantly increase the effectiveness of subsequent inhaled 

treatment. Yet all rat treatment trials performed in this work utilized emulsion delivery without 

subsequent removal, a setting that does not adequately allow for such effects to be manifested. The 

small airways of rats make suctioning of emulsion, as well as dislodged mucus and biofilm, 

technically difficult to perform in a consistent and reliable manner. Future APV work in a larger 
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animal model (likely rabbits, ferrets, pigs, or sheep) would allow for the use of equipment (e.g. 

cuffed endotracheal tubes) and treatment procedures (e.g. bronchoscopy) more akin to those used 

clinically. Additionally, the use of a larger animal model may afford the opportunity to work with 

a more relevant disease model as well. Although the rat model discussed in the current work 

recreates many of the symptoms exhibited during cystic fibrosis (CF) in humans, recent work has 

made strides in developing genetically-altered CF pig and ferret models that resemble the clinical 

disease state much more closely.4, 5 Pigs generated with mutated cystic fibrosis transmembrane 

conductance regulator (CFTR) genes even demonstrate impaired pulmonary host defenses as 

indicated by the spontaneous development of mucus accumulation, bacterial infection, and airway 

inflammation.6  

Another limitation within these studies was the lack of an ideal experimental testbed to 

evaluate the bactericidal capacity of the emulsions used during APV. The ability of the emulsions 

to effectively eradicate bacteria in the setting of lung infection is integral to the treatment efficacy 

of APV. Initial studies evaluating the bacterial killing effects of the emulsions (discussed in 

Chapter 2) used a previously developed biofilm susceptibility assay.7 The primary drawback of 

this experimental setup is that the biofilm-coated pins are immersed in the emulsion from the top 

surface. Thus, any aqueous drug that was brought to the surface via creaming of the emulsion 

(which is present to some degree for all emulsion formulations) was brought in to direct contact 

with the biofilm surface. Additionally, the ratio of bacterial surface area to emulsion volume, and 

thus drug mass, is likely much smaller in this scenario relative to the physiological one. These 

effects likely resulted in an overestimation of the bactericidal ability of the varying emulsion 

formulations examined. In order to address this, later studies (discussed in Chapter 4) used an 

adaption of the agar well diffusion assay to measure the ability of emulsified drug to be delivered 
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to an aqueous surface and subsequently inhibit bacterial growth. Although the orientation of 

contact between the emulsion and delivery surface is improved, the bacteria in this setting greatly 

differ from that in the airways during infection. As discussed in section 1.2, the biofilm 

environment found in the airways during respiratory infections affords the bacteria a significant 

degree of protection against antibiotic therapy. Bacteria seeded on to an agar surface are likely 

more susceptible to antibiotic exposure. Although a significantly more realistic bacterial 

environment can be found in the airways of an infected animal, the in vivo setting is complicated 

with numerous factors often left unaccounted for. A more controlled, in vitro setting is often ideal 

during the initial development and optimization phases of a technology such as APV. A much 

improved in vitro experimental setup would expose a large surface area of bacterial biofilm to 

emulsion in a manner such that buoyancy effects are directing drug away from the surface. 

Although the physiological scenario would include bacterial surfaces in nearly every orientation 

relative to gravity, the described setup would represent the most challenging scenario, and thus a 

useful experimental testbed. The easiest and most relevant method to achieve this may involve 

emulsion exposure to a portion of an excised infected airway or lung. 

 The next step for further development of APV is re-evaluation of APV treatment with the 

optimal fluorosurfactant (FSH-PEG) and emulsion formulation (Cfs = 2 mg/mL H2O, Vaq = 2.5%, 

and Caq = 40 mg/mL) in the chronic lung infection rat model previously described in Chapter 5. 

As shown in Chapter 4, the optimized emulsion formulation exhibits greater than five times the 

drug availability of those formulations previously evaluated in the rat model. Due to the likely 

diminished benefits of APV to subsequent aerosolized delivery in a rat (discussed in Chapter 5), 

evaluation should use the simpler approach of a single-dose treatment comparing partial APV and 

aerosolized delivery. A more clinically relevant evaluation of a multi-day course of treatment 
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including APV with subsequent aerosolized delivery should be postponed until a larger animal 

model is available. Similar to previous efficacy trials, pulmonary bacterial load remaining 

following treatment should be the primary outcome measure. In addition to continuing to optimize 

the efficacy of APV, further biocompatibility testing should also be pursued in parallel. Initial 

cytotoxicity results are promising, but more in-depth in vivo trials should be performed in rats or 

a larger animal model. In vivo trials should assess lung function as well as liver and kidney function 

at multiple time points following APV treatment.   

 Although the current work made great strides in optimizing the emulsion formulation, 

further optimization is likely possible and should be explored. The current studies have 

demonstrated the immense importance of nearly every emulsion formulation parameter and 

established a strong understanding of their corresponding effects on APV treatment. It is worth 

noting that only a small collection of fluorosurfactants have been evaluated in this application. 

Although the selection of fluorosurfactants available is somewhat limited, even small changes in 

the molecular structure and size may have significant effects on treatment potential. Additionally, 

this work assessed emulsions utilizing only a single type of PFC (FC-770). The current studies 

represent initial optimization and proof-of-concept work, and thus the use of a single PFC which 

is readily available and affordable is justified. However, multiple PFCs with varying molecular 

structures have been used during LV and have even been shown to produce varying cellular 

responses.8 The type of PFC used will ultimately affect its interaction with the fluorosurfactants 

within the emulsion and thus is a determinant of the resulting emulsion properties. Exploration of 

the use of other PFC types has the potential to further improve APV treatment and should be 

pursued. 
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In a much broader sense, future work should also explore the same basic delivery principles 

used during APV to deliver other therapeutic agents in other disease states. In theory, drug delivery 

via ventilation with a water-in-PFC emulsion using the methods developed in this work could be 

used to achieve spatially uniform delivery of any aqueous soluble drug. Any disease states in which 

inflammation is a primary concern would also benefit from the inherent anti-inflammatory effects 

of PFC. Any treatment in which a primary aim is to lavage the lungs and rid the airways of an 

aqueous media would benefit from the ability of PFCs to displace aqueous fluid. Commonly 

performed whole-lung lavages of pulmonary alveolar proteinosis patients in order to rid the lung 

of lipoproteinaceous material may represent an opportunity for application of this technology. 

Such a lavage could be performed with emulsion in order to simultaneously deliver therapeutic 

agents (such as granulocyte macrophage colony-stimulating factor) that are typically given via 

aerosol following lavage. The delivery of similar growth factors via an emulsion could also be 

utilized during acute respiratory distress syndrome while simultaneously ridding the lungs of 

aqueous exudate and benefiting from the anti-inflammatory properties of PFC. The general 

strategy used during APV possesses unique treatment capabilities and likely has the potential to 

improve the efficacy of respiratory treatments beyond antibiotic therapy.  
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