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Abstract 
 

Using a neuronal cell type (N-type) of neuroblastoma (NB) cells, we have proposed a model in 

which Ku70, a nuclear DNA repair factor, also regulates a pro-apoptotic protein, Bax, by binding 

to and blocking Bax-dependent cell death activity in the cytosol. Ku70-Bax binding is regulated 

by Ku70 acetylation such that when Ku70 is acetylated, Bax dissociates from Ku70, triggering 

cell death. Some studies have suggested that stoichiometry binding of Bax to Ku70 is critical for 

this regulation. However, this is not consistent with current literature in which Bax is found to be 

inactive and monomeric in the cytosol. In this project, I have addressed this issue by 

determining whether all Bax binds to Ku70 in the NB N-type cells. Furthermore, we have also 

demonstrated that in NB N-type cells, Ku70 depletion triggers Bax-dependent cell death, 

suggesting that Ku70 may act as a survival factor. I have also addressed the question whether 

Ku70 acts as a survival factor in other cell types. Our results showed that in the N-type NB cells 

only a small fraction of Ku70 binds to a small fraction of Bax; the majority of Bax is monomeric. 

Interestingly, the majority of Ku70 is in several high molecular weight complexes, and there is 

no free Ku70 in the cytosol in these cells suggesting that the availability of Ku70 may be another 

factor that regulates Bax activity. Also, my results show that Ku70 may not be required for 

survival in some cell types because Ku70 depletion does not affect survival. Furthermore, Ku70 

acetylation does not dissociate or activate Bax in these Ku70-depletion insensitive cells 

suggesting that additional factors may be involved in regulating Ku70-Bax binding.  
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Chapter 1 

Introduction 

 

Apoptosis, programmed cell death, is triggered by Bax activation. One of the factors that 

regulate Bax activation is Ku70, a DNA repair factor. Previous research has suggested the 

model that Ku70 binds and inactivates Bax [1]. The binding between Ku70 and Bax is regulated 

by Ku70 acetylation such that when Ku70 is acetylated, Bax dissociates, triggering cell death. 

My project focused on understanding the regulation of Ku70-Bax complex in cells. 

  

1.1 What is apoptosis? 

 

Apoptosis is a form of programmed cell death described by Kerr, Wylie and Currie in 

1972 [2]. Apoptosis is characterized by distinct morphological changes in which cells undergo 

shrinkage, and where the cytoplasm of the cells becomes dense [3]. The nucleus undergoes 

fragmentation and chromatin condensation. One of the unique features of apoptosis is that the 

plasma membrane remains intact until the late phase [4]. The intracellular content of the 

apoptotic cells does not spill to the extracellular environment. Thus, unlike in other cell death 

mechanisms, the inflammatory response from the immune cells does not occur apoptosis [2]. 

 

Apoptosis can occur via either intrinsic or extrinsic pathways (fig.1.1). The extrinsic 

apoptotic pathway is activated by death receptor ligands, such as tumor necrosis factors (TNF) 

and Fas. These ligands bind to the death receptor and form a large death inducing signaling 

complex (DISC). DISC complex activates the protease caspase 8, which in turn activates the 
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downstream executioner caspases 3, 6, or 7 [5]. Activated caspase 8 will also truncate Bid (BH3 

only protein) proteins forming tBid [6-8] (the BH3 domain proteins will be described in detail 

below). tBid binds to the mitochondrial membrane and undergoes a conformational change. 

This activated tBid will in turn activate Bax (described below) [9-11]. 

 

The intrinsic apoptotic pathway can be triggered by stimuli like DNA damage, reactive 

oxygen species, and the unfolded proteins response (fig 1.1) [12, 13]. This pathway is strictly 

regulated by the members of the Bcl-2 family of proteins [14]. This family of proteins is 

characterized by the presence of a Bcl-2 homology domain (BH-domain) (fig. 1.2), but even 

though some family members of Bcl-2 proteins have conserved sequences and exhibited similar 

structures, they may have opposite activities [15, 16]. Pro-survival proteins [Bcl-2, Bcl-xl (long), 

and Mcl-1 (Myeloid Cell Leukemia-1)] contain four BH domains. They are usually embedded in 

the outer mitochondrial membrane (OMM), cytosol, and endoplasmic reticulum. These proteins 

preserve the outer mitochondrial membrane [17, 18]. Pro-apoptotic proteins, Bax (Bcl-2 

associated X), Bak (Bcl-2 homologous antagonist killer) or BOK (Bcl-2 related ovarian killer), 

consist of three BH domains. Both Bax and Bak are important in triggering apoptosis. However, 

the function of Bok is still unclear. The Bcl-2 family also contains a subset of proteins that 

possess only BH3 domains (Bad, Bik, Bid, Bmf, Hrk, Bim, Noxa, Puma). These BH3-only 

proteins can directly activate the pro-apoptotic proteins (Bax and Bak) or they may interact with 

the pro-survival proteins and inhibit their actions [19-23]. 

 

The balance between the pro-apoptotic and pro-survival proteins of the Bcl-2 (B-cell 

lymphoma) family of proteins controls the mitochondrial apoptosis pathway by regulating the 

activity of Bax, a cytosolic pro-apoptotic protein [15, 24]. When Bax is activated, it forms a pore 

in the outer mitochondrial membrane (OMM) and releases the apoptotic content, such as 

cytochrome c, SMAC/DIABLO and endonuclease G of mitochondria, to the cytosol. The 
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formation of the pore in the OMM is usually considered the “point of no return” in the apoptosis 

process [13, 25-27]. The changes of the mitochondrial membrane potential results in releasing 

the mitochondrial content including cytochrome c [28]. The released cytochrome c binds to 

APAF1 and pro-caspase 9 forming complexes known as apoptosomes. The binding of pro-

caspase 9 to the apoptosome complex results in the cleavage of pro-caspase 9 that becomes 

activated. The activated caspase 9 in turn activates downstream executioner caspases resulting 

in apoptosis [29].  

 

1.2 Bax  

 

Bax belongs to the Bcl2 family of proteins containing 3 BH domains. Bax has multiple 

isoforms (alpha, beta, gamma, delta, epsilon, zeta, psi, sigma) identified at the mRNA level. 

Whether all cells express all these Bax isoform proteins is not clear. The only well-characterized 

isoform of Bax is Bax alpha [30, 31], containing 192 amino acids (21kD). The full length of the 

alpha Bax protein consists of 9 α helixes. The last helix 9 at the carboxy (C-) terminus of Bax 

serves as a transmembrane domain, targeting Bax to mitochondria [32-34]. Helix 9 is embedded 

in a hydrophobic groove interacting with the amino (N-) terminus of the protein maintaining Bax 

as a monomer and inactive form [35]. The N-terminus of Bax consists of the N-segment 

(residues 1-15) and helix 1. N-segment is unstructured and exposed to solvent and interacts 

with helix 9. When residues 1-20 are truncated, the mitochondria targeting sequence at helix 9 

is exposed targeting Bax to mitochondria [36, 37]. Thus the N-segment is responsible for 

retaining Bax in an inactive form in the cytosol. Following apoptotic stimuli (by binding to the Bcl-

2 BH3 only proteins. For example) the N-segment undergoes conformational changes exposing 

helix 1 and releasing helix 9. In an effort to detect activated Bax, an antibody (6A7) was raised 
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against residues 1-19 of Bax, which is exposed when Bax is activated. Thus, this antibody has 

been used as a marker for Bax activation [38].  

 

While studies have shown that Bax is inactive and monomeric, how Bax is activated is still 

controversial [25, 39]. Some suggested that Bax is activated by the direct interaction with the 

BH3-only proteins. However this interaction is yet to be established in cells [40-42]. One reason 

for not detecting the interaction between BH3-only proteins and Bax is that it may be a ‘hit and 

run’ mechanism forming a transient interaction between BH3-only proteins and Bax [9, 20]. The 

conformational change in Bax after interaction with BH3-only proteins may release BH3-only 

proteins immediately [16]. BH3-only proteins also activate Bax by directly binding to pro-survival 

proteins and inhibiting their action.  

 

In addition to binding to the Bcl-2 family of proteins, Bax also binds to other non Bcl-2 

family proteins, such as Humanin, 14-3-3, and Ku70 [1, 43, 44]. Humanin and 14-3-3 have been 

shown to bind Bax when they were overexpressed, but it is not known whether they regulate 

Bax activity. The only well studied non-Bcl2 protein that binds to Bax is Ku70 [1, 45, 46]. Our lab 

focuses on the regulation of binding between Ku70 and Bax. 

 

Bax activation is also regulated by post-translational modifications, such as 

phosphorylation and ubiquitination [47, 48].  Akt or protein kinase B, a serine-threonine kinase, 

phosphorylates Bax at S184 in helix 9 [49], inhibiting Bax translocation to mitochondria [50]. 

Conversely, Bax dephosphorylation at S184 by PP2A activates Bax [51]. However, 

phosphorylation of Bax at S163 by GSK3β in neuronal cells activates Bax [47].   
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1.3 Biochemistry and function of Ku protein 

 

 Ku70 was originally identified as an auto-antigen in the sera of a patient with autoimmune 

disease [52, 53], and subsequently it was characterized as a double strand break (DSB) DNA 

repair factor [54]. In the nucleus, Ku70 forms a heterodimer with Ku80, and this dimer binds to 

DNA at the site of double strand break to initiate the first step of the Non Homologous End 

Joining (NHEJ) DNA repair process [55-57]. Ku70 and Ku80 have been implicated to form an 

obligate heterodimer i.e. each subunit is unstable in the absence of another [58-60]. Though 

their primary sequences vary, their secondary structures are similar [61, 62]. The full length 

Ku70 and Ku80 heterodimer structure has been elucidated with or without DNA in the complex 

by single particle electron microscopy [63, 64]. Each Ku protein has 3 domains: an amino (N) 

terminal α/β domain, a central β-barrel domain and helical carboxyl (C) terminal domain. The 

α/β domain of Ku70 and Ku80 binds to other proteins involved in DNA repair.  Ku70 and Ku80 

dimerize through the central domain and form a ring that binds to DSB DNA [65]. The Ku70 C-

terminal domain is flexible and is followed by a structured SAP domain (named after SAF-A/B, 

Acinus, and PIAS motifs). SAP domain increases the overall binding affinity to DNA [66-68]. 

 

In addition to its role in DNA DSB repair, Ku70/Ku80 is implicated in telomere function 

[69]. The exact mechanism of Ku association with the telomere is still not clear. It is not known 

whether Ku70 binds directly or by protein-protein interaction at the telomeres. Cells from Ku 

proteins deficient mice exhibit fused telomere and chromosomal aberrations [70, 71]. Studies 

have shown that Ku proteins promote telomere addition by recruiting telomerase [72, 73]. The 

presence of Ku proteins at the telomere ends also protects telomeres by inhibiting nucleolytic 

degradation [74, 75].  

 



	  

	   6	  
	  

Ku proteins have also been implicated in different diseases. Ku70-Ku80 deficiency results in 

various immune abnormalities. Ku70/Ku80 knockout mice have abnormal B-cell and T-cell 

development, and lymphocyte differentiation [76, 77]. The defect in the Variable (Diversity) 

Joining [V-(D)-J] recombination leads to severe combined immunodeficiency syndrome (SCID) 

[78]. Increased aging and senescence are observed in Ku deficient mice. This might be 

explained by the role of Ku proteins in maintaining telomere length. The absence of Ku proteins 

lead to shortened telomeres length contributing to accelerated aging [79, 80].  

 

As Ku protein plays an important role in maintaining chromosomal integrity and cell 

survival, its role in various cancer models has been studied [81]. Ku70 expression in tumors is 

associated with unfavorable responses to conventional chemotherapy and radiation treatment. 

Ku70 expression in cervical carcinoma is inversely correlated with radiation sensitivity and 

patient survival. Thus ectopic overexpression of Ku70 leads to resistance to agents inducing 

DNA break or Bax activation [58, 82-84]. 

 

1.4 Regulation of the Ku70-Bax complex in cells 

 

While Ku70 is known as a DNA repair factor in the nucleus, it has also been found in the 

cytosol [45, 85, 86]. While looking for Bax inhibiting factors by yeast-two hybrid assay, Sawada 

et. al. found that Ku70 was one of the factors that interact with Bax [1]. The Bax binding domain 

of Ku70 has been mapped to the C-terminal 578-609 of Ku70. A Bax-binding peptide has been 

designed that corresponds to Ku70’s Bax-binding domain sequence and this peptide binds to 

Bax and inhibits Bax mediated apoptosis [87]. The binding between Ku70-Bax is regulated by 

acetylation by the CREB-binding protein, CBP [85, 88, 89]. There are at least eight known 

acetylated lysines within the Ku70 molecule: K282, K331, K338, K539, K542, K544, K553 and 

K556 [89]. Two of these lysines K539 and K542, are located within the linker region of Ku70. 
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Acetylation of these two lysines causes a conformational change at the Bax-binding region of 

Ku70, allowing Bax to dissociate from Ku70. The function of other acetylable lysines within Ku70 

is still not clear. For example, K282 and K317 are found within the DNA binding domain of Ku70 

[90]. One study has suggested that acetylation of these residues may reduce Ku70 binding 

affinity to DNA [91]. Furthermore, K539, K542, K544, K533 and K556 are found in the nuclear 

localization signal (NLS) of Ku70. Acetylation of these lysine residues may regulate the 

subcellular localization of Ku70 [92]. Whether, acetylation of these lysines affects Ku70 

localization is not clear.  

 

 Ku70 acetylation is also regulated by two deacetylases: SIRT3 and HDAC6 (Histone 

Deacetylase 6) [45, 93-95]. However, SIRT3 is a mitochondrial protein, and it is unclear how a 

mitochondrial deacetylase deacetylates a cytosolic protein. Studies from our laboratory as well 

as from other laboratories have shown that HDAC6 deacetylates Ku70. HDAC6 is a class II b 

HDAC found in the cytosol. HDAC6 has been implicated in many cellular functions including 

tubulin stabilization, cell motility, and the regulation of the binding between HSP90 (Heat Shock 

Protein 90) and its essential co-chaperone p23 [96]. We have shown that HDAC6 forms a 

complex with Ku70 and Bax. Depletion of HDAC6 using HDAC6 specific siRNA increases Ku70 

acetylation and results in cell death [94]. Furthermore, treatment with class I HDAC inhibitors, 

such as TSA and SAHA, or a HDAC6 specific inhibitor, such as tubacin, induces Ku70 

acetylation and results in cell death. These results suggest that regulation of Ku70 acetylation is 

a factor in controlling Bax activity. 

 

In addition to Bax binding, cytosolic Ku70 has been shown to interact with other cytosolic 

factors, such as p18-cyclin E, FLIP, and Caveolin. Cyclin E/ Cdk2 (Cyclin-dependent kinase 2) 

complex plays an important role in cell cycle transition and DNA replication. Caspase mediated 

cleavage of cyclin E forms p18-cyclin E, which binds to cytosolic Ku70 and induces Bax 
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dissociation leading to apoptosis. However, the function of p18-cyclin E in regulating Bax activity 

is not clear [97]. Another pro-survival protein, FLIP (FLICE-like inhibitory protein), like Bax, also 

binds to Ku70 in an acetylation dependent manner. FLIP binds to the Ku80-binding domain of 

Ku70. When Ku70 is acetylated at the same two lysines, K539 and K542, Bax will dissociate 

from FLIP, triggering FLIP poly-ubiquitination and degradation [45]. Whether FLIP and Bax bind 

to Ku70 simultaneously and dissociate from Ku70 when Ku70 is acetylated at K539 and K542 is 

not clear (as discussed in Chapter 3). 

 

1.5 Our Model and Questions 

 

In the past several years, using SH-SY5Y cells, a neuronal type (N-type) neuroblastoma 

(NB) cells, we have been investigating how Ku70 regulates Bax activities in cells. NB is the 

most common extracranial solid pediatric cancer [98, 99]. The tumor arises from the 

sympathoadrenal neural crest stem cells [100]. NB tumors are highly heterogeneous, being 

principally comprised of tumor cells that are classified as either neuronal (N) type or stromal (S) 

type cells [101]. S-type cells are noninvasive and adherent cell types while N-type cells are 

aggressive expressing neuronal markers such as tyrosine hydroxylase and dopamine-β-

hydroxylase. N-type cells express high level of the N-myc proteins and are more commonly 

isolated from high-risk tumor explants. Thus, N-type cells are used to model a more aggressive 

and highly transformed NB cell type [101].  

 

In these SH-SY5Y cells, we have shown that Bax activation is regulated by binding to 

Ku70 [102] (fig. 1.3). Ku70 binding to Bax inhibits Bax’s pro-apoptotic activity. We and others 

have demonstrated that Ku70-Bax binding is regulated by acetylation of Ku70 such that when 

Ku70 is acetylated by the CBP, Bax dissociates from Ku70 [45]. The dissociated Bax enters 

mitochondria releasing cytochrome C triggering apoptosis. Ku70 acetylation is also regulated by 
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HDAC6 such that HDAC6 binds and deacetylates cytosolic Ku70. Inhibition of HDAC6, either by 

using class I and II HDAC inhibitors, such as SAHA and TSA, or by HDAC6-specific inhibitors, 

tubacin, or by depleting HDAC6 using siRNA, increases cytoplasmic Ku70 acetylation and 

results in Bax dissociation [94]. This model, however, assumes that all cytosolic Bax binds to 

and is regulated by Ku70. However, this model is inconsistent with a long-held model that Bax is 

monomeric and is found to be inactive in the cytosol [39]. Previously studies have shown that in 

unstimulated cells, using anti-Bax antibodies (6A7) that recognize activated Bax, a small 

amount of Bax was immunoprecipitated. However, following the treatment of Bax-activating 

compounds, like staurosporine, 6A7 antibody was able to pull down more Bax [45]. 

Furthermore, when Bax is analyzed by gel filtration chromatography, it was revealed that Bax is 

found in fractions at molecular weight corresponding to 29 kD proteins [103]. Here in this thesis, 

I have addressed two questions: The first question is whether all Bax binds to Ku70. Our results 

show that only a small fraction of Bax binds to a small fraction of cytosolic Ku70. The majority of 

Bax is monomeric. However, the majority of cytosolic Ku70 is in complex with other factors 

forming several high molecular weight complexes. There is no free or monomeric Ku70 found in 

the cytosol. These results suggest that other factors may also regulate Ku70-Bax binding by 

restricting the availability of Ku70 to bind Bax (fig. 1.4).  

 

In SH-SY5Y cells, we have shown that Ku70 depletion triggers Bax-dependent cell 

death, suggesting that Ku70 may act as a survival factor in these cells. The second question I 

have addressed in this thesis is whether the Ku70 acting as a survivor model in SH-SY5Y cells 

is also applicable to other cell types. I have provided evidence demonstrating that, in multiple 

cell types (SHEP-1, ES2, A2780, and HEK-293T cells), depletion of Ku70 does not affect cell 

survival. Interestingly, these cells are also not sensitive to HDAC inhibitor killing compared to 

that of N-type NB cells. Moreover, in these cells, while HDAC inhibitor treatment increases 

cytosolic Ku70 acetylation, Bax is not activated nor it dissociates from Ku70. These results 
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suggest that there may be another mechanism that regulates Ku70-Bax formation and Bax 

activation in these cells (fig. 1.4). Collectively, our results suggest that there may be at least two 

cell types in terms of Ku70 regulating Bax function: one is Ku70-depletion sensitive cells in 

which at the basal level Ku70 acts as a survival factor (like that in SH-SY5Y cells); the second 

cell type is Ku70-depletion insensitive cell type in which Ku70 is not required for survival, but 

Ku70 inhibits Bax activity when Bax is activated.  
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Figure 1.1: Schematic of Intrinsic and Extrinsic pathways of apoptosis  In the intrinsic 
pathway, Bax is activated by internal stimuli, like DNA damage. Activated Bax translocates to 
the mitochondria, causing the release of cytochrome c, which triggers the formation of 
apoptosome, activating pro-caspase 9, resulted in apoptosis. The extrinsic pathway is triggered 
by external stimuli, like the tumor necrosis factor, which binds to the dead receptor, activating 
caspase 8. Activated caspase 8 has two possible routes to induce apoptosis. One is to directly 
activate downstream caspases, like caspase 3, or it truncates a Bcl2 protein BID, forming tBID, 
which in turn activates Bax.  
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Figure 1.2: B cell lymphoma 2 (BCL-2) family of proteins  The Bcl2 family of proteins can be 
classified into three groups depending on the number of the Bcl2 homology (BH) domains. 
Proteins containing 4 BH domains, such as Bcl2 and Bcl-XL, are mainly anti-apoptotic proteins. 
Bax, Bax, and Bok contain 3 BH domains and are mainly pro-apoptotic. BH3-only proteins are 
mainly pro-apoptotic and either bind to the pro-apoptotic proteins directly or by inhibiting the 
function of anti-apoptotic proteins.  
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Figure 1.3: A model for the regulation of Ku70-Bax complex in cells  Our model indicates 
that Bax is monomeric and only a small fraction of Bax binds to a small fraction of Ku70. The 
majority of Ku70 forms complexes with other factors, including Ku80. There is no free Ku70 in 
the cytosol. This model suggests that the availability of Ku70 to bind to additional activated Bax 
may be a factor in regulating Bax’s cell death activity.  
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Figure 1.4: Schematic representation of Ku70-Bax regulation by cytosolic Ku70 
complexes  Using N-type NB cells as a model, we have shown that Ku70 binds to Bax in an 
acetylation dependent manner. When Ku70 is acetylated, Bax dissociates from Ku70, 
translocating into mitochondria, triggering the release of cytochrome C, resulted in apoptosis. 
Depletion of Ku70 in these cells also triggers Bax-dependent cell death. This model suggests 
that all Bax in cells must bind to Ku70 [102]  
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Chapter 2 

Materials and Methods 

 

Cell Culture  

 

HEK-293T, two ovarian cancer cell lines (ES2 and A2780) and human NB cell lines SH-

EP1, SH-SY5Y, SH-EP1, GOTO, KCN-69n and LA1-5s were cultured in modified Eagle’s 

minimum essential medium (MEM) supplemented with sodium pyruvate and 10% fetal bovine 

serum, and maintained at 37oC in a humidified 5% CO2 incubator. The human male foreskin 

fibroblasts were cultured in DMEM (Dulbecco’s Modified Eagle’s Medium) with 10% fetal bovine 

serum. 

 

Cell Viability Assays 

 

Cell viability was determined by either MTT [(3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium 

bromide)] or trypan blue exclusion assay. For the MTT assay, 96 well plates were used. N-type 

SH-SY5Y, S-type SHEP1 human NB cell lines and human male foreskin fibroblasts were 

treated with varying concentrations of SAHA (Suberoyl anilide hydroxamic acid). The human 

ovarian cancer cell lines A2780, ES-2 were treated with varying concentrations of TSA 

(Trichostatin A). The viability of the cell lines was determined after 24 and 48 hours post 

treatment by MTT assay as previously described [104]. All experiments were carried out three 

times with triplicates in each experiment and the average values and the standard deviations 

were calculated. 
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siRNA mediated silencing and over expression of Flag-Ku70 and Flag-Ku80 

 

For Ku70 knock down using siRNA (small interfering RNA) experiments, cell lines were 

plated at a density of ~2x106 cells per 10 cm plate 24 hours before transfection. The following 

day the cells were transfected either with smart pool Ku70 siRNA (silencing RNA) or the 

scrambled non-targeting siRNA (Dharmacon Inc.) using nucleofector kit V (Amaxa) as per the 

manufacturer’s instruction.  Mock transfection as well as the non-targeting siRNA transfection 

served as controls. The level of Ku70 was measured 72 hours after transfection by immunoblot 

analysis using Ku70 antibodies. Either GAPDH or β-tubulin was used as a loading control. The 

viability of cells after knockdown was measured by counting cells using trypan blue exclusion 

analysis. 

 

The cell line SH-SY5Y was transfected with pCMV-2B-Flag-Ku70, pCMV2B-Flag-Ku80 

or pCMV-2B vector alone using Lipofectamine 3000. Twenty-four hours after transfection, the 

cells are re-transfected with the expression vectors again. Twenty-four hours after the second 

transfection, cells are plated into 96 well plates. The rest of the cells are replated on tissue 

culture plates. One day later, the cells were treated with various doses of SAHA. Forty-eight 

hours after SAHA treatment, cell viability was determined by MTT assay. The level of 

expression of transfected Ku70 or Ku80 were determined by immunoblotting experiments using 

anti-Flag antibodies, anti-Ku70 antibody, and Ku80 antibody. All experiments were carried out 

three times with triplicates in each experiment and the average values and the standard 

deviations were calculated. 
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Western blot Analysis 

 

The proteins were separated by SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide 

Gel Electrophoresis), transferred to PVDF (Polyvinylidene Difluoride) membrane and then the 

blot was blocked using 5% milk. After blocking, blots were probed with different antibodies 

specific for different proteins. The following antibodies were used for western blot analyses:  

Ku70 (N3H10) from Santa Cruz; Ku80 (#2753), Bax (#2772S), anti-Bax antibody [6A7] 

(ab5714), COX IV (Cytochrome c Oxidase Subunit IV) (#4844), and acetylated lysine (Ac-K-

103) from Cell Signaling; GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) (6C5) from 

Millipore and β-tubulin from Upstate. Flag antibody (F3165) was from Sigma-Aldrich. The 

presence of protein was visualized by using Lumigen ECL (Enhanced Chemiluminescence) 

Plus PS-3 and Carestream Kodak BioMax Films. 

 

Immunoprecipitation 

 

Co-immunoprecipitations of Ku70, Ku80, and Bax were performed in CHAPS buffer 

according to the protocol described by Sawada et al. [105] with some modifications. Cells were 

lysed using lysis buffer (20 mM HEPES, pH 7.5, 120 mM NaCl, and 1% CHAPS) on ice for 30 

minutes. The extraction solution was spun twice 3000 rpm for 10 min. The protein concentration 

was determined by Bradford protein assay. One milligram of protein in 500 µl lysis buffer was 

used for immunoprecipitation.   
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Subcellular Fractionation: Cytosolic and Mitochondrial fraction 

 

Cells were grown in 10cm plates to 80% confluency. The cells were washed twice with 

PBS, and the cells were suspended in the mitochondrial isolation buffer (5 mM HEPES pH 7.5, 

210 mM Mannitol, 70 mM Sucrose, 1 mM EDTA) at 1 million cells /100 ml of buffer. The cells 

were swollen on ice for 30 minutes, and were dounced in a dounce homogenizer for 50 strokes. 

The lysed cells were pelleted at 1500 rpm for 5 minutes at 4°C. The supernatant was 

recentrifuged at 3000 rpm for 10 minutes. The remaining supernatant which contained cytosolic 

and mitochondrial fractions was recentrifuged at 10,000 g for 20 minutes at 4°C. The 

supernatant was collected as the cytosolic fraction and the pellet was collected as mitochondrial 

fraction. The mitochondrial pellet was washed once with the mitochondrial isolation buffer. Equal 

amounts of cytosolic and mitochondrial protein were separated by SDS-PAGE. The purity of 

mitochondrial fraction or cytosolic fractions was determined by immunoblotting with COXIV and 

β-tubulin antibodies, respectively. 

 

DC4 Crosslinking 

 

DC4 crosslinker was used in our cross-linking analyses [106]. Crosslinking was carried 

out in a buffer containing 100 mM HEPES, pH 7.5, 150 mM NaCl. Each cross-linking reaction 

contained 10-15 µg of cytosolic or nuclear proteins with 0, 0.1, 0.2, 0.4, 0.8, or 1.6 mM of DC4 

per each sample. The crosslinking reaction was carried on ice for 30 minutes. The reaction was 

stopped by SDS-loading buffer. Crosslinked samples were separated by 10% SDS-PAGE, and 

the blot was probed with Ku70, Ku80, or Bax antibodies. 
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Gel filtration 

 

 Gel filtration chromatography was carried out using a Bio-Rad Biologic DuoFlow system 

on a Superdex 200 HR 10/30 column at a flow rate of 0.5 ml per min. One milligram of cytosolic 

protein extract was injected into the column. The running buffer was the same as the extraction 

buffer containing 20 mM HEPES, pH 7.5, 120 mM NaCl and 1% CHAPS. Half a milliliter 

fractions were collected per fraction. Twenty microliters of each fraction was separated by SDS-

PAGE, and the blot was probed with Ku70, Ku80, or Bax antibodies.  
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Chapter 3 

Interaction between Ku70 and Bax 

 

3.1 Introduction 

	  
Ku70 was originally described as an auto-antigen [107]. Later, it was characterized as a 

DNA-binding factor in NHEJ DSB DNA repair [108]. In a yeast two-hybrid study, Ku70 was 

found to be one of the factors that bind and inhibit Bax activity [109]. Studies from our lab and 

others demonstrated that Ku70-Bax binding is important in regulating Bax-dependent cell death 

[110, 111]. The current model is that Ku70-Bax binding is regulated by Ku70 acetylation such 

that when Ku70 is acetylated by CBP, Bax dissociates from Ku70 [112]. On the other hand, 

HDAC6 binds and deacetylates cytosolic Ku70 such that inhibition of HDAC6 by HDAC6 

inhibitors or by depleting HDAC6 increases cytosolic Ku70 acetylation resulted in Bax 

dissociation. The dissociated Bax then enters mitochondria, triggering cytochrome c release, 

resulting in cell death. One notion of this model is that it is assumed that all Bax interacts with 

Ku70. However, it is known that Bax is found as inactive monomers in the cytosol. This model is 

supported by studies showing that in unstimulated cells, anti-Bax antibodies (6A7) that 

recognize activated Bax can only immunoprecipitate a small amount of Bax. In contrast, 6A7 

precipitates a larger amount of Bax when the cells are stimulated by Bax-activating compound 

like staurosporine [1]. Furthermore, when Bax is analyzed using gel filtration chromatography, it 

reveals that Bax is found in fractions at molecular weight corresponding to 29 kD proteins 

suggesting that Bax is monomeric in cells [103]. In this project, we determined the fraction of 

Bax that binds Ku70, and the fraction of Ku70 that binds Bax.  
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3.2 Results 

 

Cytosolic Ku70 forms high molecular weight complexes while Bax is found to be 

monomeric 

 

Gel filtration chromatography reveals that the majority of the cytosolic Ku70 was found in 

fractions corresponding to high molecular weight complex or complexes, and that Bax was 

found in a lower molecular weight complex (fig. 3.1) corresponding to 29 kD, as previously 

described [103]. There was a very little overlap between Ku70 and Bax. These results indicate 

that not all cytosolic Ku70 interacts with all Bax in the cytosol, there is only a small fraction of 

each found in the same fractions in the gel filtration chromatograph. Interestingly, the pattern of 

Ku80 in the gel filtration chromatography was different from that of the pattern of Ku70. The 

peak of Ku80 was found at 200 kD mark, and it was over lapped with fractions containing Bax.  

 

To investigate whether Ku70 is found in one high molecular weight complex as the 

results in fig. 3.1 suggested or it is found in many different distinct complexes, we conducted a 

cross-linking experiment using a cross-linker, DC4, provided by Dr. Phillip Andrews [106]. We 

cross-linked cytosolic extracts and nuclear extracts of SH-SY5Y cells with various 

concentrations of DC4 cross-linker as shown in fig. 3.2.  Cytosolic Ku70 was found in at least 

three high molecular weight complexes while nuclear Ku70 was found in only two high 

molecular weight complexes. One of the Ku70 containing complexes, in the cytosol or in the 

nucleus, co-migrates with a Ku80 positive cross-linked complex suggesting that they constitute 

a Ku70-Ku80 complex. However, unlike Ku70 in the cytosol forming several high molecular 

weight complexes, Ku80 seemed to form only one high molecular weight complex in addition to 

the complex that was also positive for Ku70. But in the nucleus, all Ku80 seemed to form only 

one complex that co-migrates with a Ku70 cross-linked complex. Most importantly, however, 
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there was no monomeric Ku70 or Ku80 in the cytosol and in the nucleus as monomeric Ku70 

and Ku80 disappeared in the SDS-PAGE immunoblot when increasing amount of DC4 was 

used. The cross-linking results of Bax are also consistent with the model that only a very small 

fraction of Bax is complexed with Ku70 as increasing cross-linking did not seem to reveal Bax-

Ku70 complexes due to the sensitivity of the western blot analyses.  

 

Ku80 mainly forms a complex with Ku70 in cells 

 

Ku80, when analyzed by gel filtration chromatography, was found in fractions closer to 

that containing Bax (fig.3.1), and Ku80 was only overlapped with Ku70 in a few fractions. These 

results suggest that Bax may interact with Ku80 in cells. However, our immunoprecipitation 

results did not support this hypothesis, at least in SH-SY5Y cells (fig 3.3). We have shown that, 

in SH-SY5Y cells, Bax was immunoprecipitated using anti-Ku70 antibody, however, SAHA 

treatment disrupted this interaction, as we have shown previously [113]. Importantly, 

immunoprecipitation of Bax, with or without SAHA (HDAC Inhibitor) treatment did not precipitate 

Ku80. These results suggest that despite the results observed in gel filtration chromatography 

that fractions of Ku80 were closer to fractions containing Bax, these two proteins may not bind 

to each other in cells.  

 

We next asked whether Ku70 and Ku80 bind to each other in the cytosol. We 

immunoprecipitated Ku70 or Ku80 in the cytosolic extracts of SH-SY5Y cells with or without 

SAHA treatment. We found that Ku70 or Ku80 immunoprecipitated each other with or without 

SAHA treatment (fig 3.4). Interestingly, both anti-Ku70 antibodies or anti-Ku80 antibodies did 

not precipitate Bax with or without SAHA treatment, suggesting that the Bax binding to Ku70 (or 

may be Ku80) may block the epitope of anti-Ku70 antibodies binding domains resulted in failure 
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in precipitating Bax. It may also be due to the possibility that fraction of Bax that interacts with 

Ku70 is small. 

 
3.3 Discussion 

  

 The main focus of this part of the project is to solve a long unanswered question 

regarding how Ku70 regulates Bax activity. When this model was established in 2003-2004 [1], 

despite the overwhelming evidence showing that Bax is an inactive monomer [28], this issue 

was not discussed. The model assumed that all Bax in the cytosol is regulated by Ku70. While 

we and others have shown that cytosolic Ku70 binds Bax [45, 91, 114], the stoichiometry of the 

binding between Ku70 and Bax has never been established.  

 

 Why is it important to know the stoichiometry of the binding between Ku70 and Bax? It is 

because it will distinguish various different competing models of how Ku70 regulates Bax 

function. The first model is that if all cytosolic Ku70 binds to Bax and all Bax binds to Ku70, it will 

suggest that the only function of cytosolic Ku70 is to regulate Bax. This model also suggests 

that the major regulator of Bax function is Ku70 because Ku70 needs to dissociate from Bax in 

order for Bax to be activated. The second model, which is similar to the first model, is that only a 

portion of cytosolic Ku70 binds to all Bax in the cell. The remaining Ku70 is either complexed 

with other proteins, such as Ku80 or is monomeric. This model, similar to the first model, also 

suggests that Ku70 is the major regulator of Bax function because Ku70 is required to 

dissociate from Bax in order for Bax to be activated. The second model is also consistent with 

findings reported in the literature that Ku70 associates with other factors in the cytosol [46, 95, 

97]. However, the first and the second models are inconsistent with the previous finding that 

Bax is an inactive monomer found in the cytosol.  
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 The third model, which is supported by our results shown in this chapter, suggests that 

only a small fraction of Ku70 and Bax bind to each other. The majority of Bax is still monomeric. 

Ku70 forms several distinguishable high molecular weight complexes with other proteins. 

Furthermore, there is no monomeric Ku70 in the cytosol.  

 

 These results support a model in which Ku70 acts as a survival factor to protect 

the cells from dying of Bax-dependent apoptosis. How could a small amount of cytosolic Ku70 

protect the cell from dying when there is a large amount of Bax? We believe that cells 

throughout life constantly receive stimuli, including dead signals that induce cell death. Some of 

the dead stimuli may lead to apoptosis while some of the small stimuli may only activate a few 

Bax molecules. As a survival mechanism, cells do not die after receiving weak signals that 

activate small amount of Bax. To survive these aberrant Bax-activation signals, cells developed 

a mechanism to block these signals. We believe that Ku70 may act as a survival factor, blocking 

the small amount of Bax that is being activated by weak cell dead signals. 

 

This model suggests because there is only a small amount of Ku70 that binds to a small 

amount of Bax, and additional Ku70 may be needed when more Bax is activated. However, 

where does the additional Ku70 come from if there is no free Ku70, and all remaining Ku70 that 

does not bind Bax is in complex with other factors? This model suggests another level of 

regulation of Ku70-Bax binding in which Ku70 has to be released from other complexes, or 

Ku70 is available from other Ku70-complexes that can bind activated Bax. As discussed above 

that Ku70 is known to bind to several factors in the cytosol [45, 46, 97]. One of these binding 

proteins is FLIP, which is an anti-apoptotic protein blocking caspase 8 activation by death 

receptors [45]. However, FLIP, like Bax, also binds to Ku70 in an acetylation dependent 

manner. FLIP binds to the Ku80-binding domain of Ku70. When Ku70 is acetylated at the same 

two lysines (K539 and K542) that regulate Bax binding, will also dissociate FLIP, triggering FLIP 
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poly-ubiquitination and degradation. This model suggests that Ku70 regulates apoptosis via the 

intrinsic pathway, through Bax, and the extrinsic pathway, through caspase 8. Whether FLIP-

Ku70 complex that can bind activated Bax is unknown.  

 

Ku80 is a DNA binding partner of Ku70 in the nucleus. Our results also show that Ku80 

binds to Ku70 in the cytosol forming complex (figs. 3.2 and 3.4). This complex formation is not 

affected by HDACI treatment (fig. 3.4). However, unlike cytosolic Ku70, Ku80 does not bind Bax 

(fig. 3.3). These results are also consistent with the report by Sawada et al showing that Ku80 

does not bind Bax, and that Ku70 does not bind Bax and Ku80 simultaneously [1]. Whether the 

Ku70-Ku80 complex can regulate Ku70-Bax binding remains to be determined.  
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Figure 3.1: Majority of cytosolic Ku70 is found in high molecular weight complexes.  
Cytosolic SH-SY5Y cell extracts were analyzed by Superdex 200 HR 10/30 column gel filtration 
chromatography. 20 µl of half a milli-liter fraction was separated by SDS-PAGE and the blot was 
probed with Ku70, Bax, and Ku80 antibodies.  
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Figure 3.2: Cytosolic Ku70 is found in several high molecular weight complexes in SH-
SY5Y cells. Cytosolic extracts were cross-linked using DC4 (0, 0.1, 0.2, 0.4, 0.8, 1.6 mM) as 
shown. Cross-linked proteins were separated by 10% SDS-PAGE, and the blot was probed with 
anti-Ku70, anti-Ku80 or anti-Bax antibodies. 
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Figure 3.3: Bax binds to Ku70 but not to Ku80. SH-SY5Y cells were treated with SAHA (4 
µM) for 48 hours. Control cells received the same volume of DMSO. Cytosolic extracts were 
immunoprecipitated using an anti-Bax antibody. Normal rabbit serum (NRS) was used as a 
negative control. Immunoprecipitated complexes were separated by SDS-PAGE and blot was 
probed with anti-Ku70, anti-Ku80 or anti-Bax antibodies.  
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Figure. 3.4: HDAC inhibitor treatment did not alter the binding between cytosolic Ku70 
and cytosolic Ku80. SH-SY5Y cells were treated with SAHA (4 µM) for 48 hours. Control cells 
received the same volume of DMSO. Cytosolic extracts were immunoprecipitated using an anti-
Ku70 or anti-Ku80 antibody. Normal mouse serum (NMS) or normal rabbit serum (NRS) was 
used as negative control, respectively. Immunoprecipitated complexes were separated by SDS-
PAGE and blot was probed with anti-Ku70, anti-Ku80, or anti-Bax antibodies.  
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Chapter 4 
 

Neuronal type Neuroblastoma cells are sensitive to Ku70-depletion induced cell death 
 

4.1 Introduction: 

 

In chapter 3, we have described a model in which, at least in N-type NB cells, Ku70 

plays a survival role in regulating Bax’s pro-apoptotic activity. We have shown that depletion of 

Ku70 in SH-SY5Y cells results in Bax-dependent cell death [85]. Studies have demonstrated 

that, in cells such as HeLa and HEK-293, depleting Ku70 using Ku70 specific siRNA did not 

induce cell death. However, consistent with our results, Longley et. al. in 2012 have 

demonstrated that knocking down Ku70 in colorectal cancer cell line (HCT116) induces the cells 

to undergo apoptosis, and that cells can be rescued by using a pan-caspase inhibitor, z-VAD 

[45]. These results suggest that there may be at least two cell types in terms of Ku70 regulating 

Bax activity: one cell type is Ku70-depletion sensitive cells in which Ku70 acts as a survival 

factor (like SH-SY5Y cells and HCT116 cells); the second cell type is Ku70-depletion insensitive 

cell type in which Ku70 is not required for survival (like HeLa cells and HEK-293 cells). In this 

chapter, we investigate the differences in terms of Ku70 regulating Bax activity in the Ku70-

depletion sensitive or Ku70-depletion insensitive cell types. 
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4.2 Results: 

 

Ku70 depletion induces apoptosis specifically in SH-SY5Y cells but not in other cancer 

cell types 

 

To address whether Ku70 depletion induces cell death, we knocked down Ku70 using Ku70 

specific siRNA in several cancer cell lines: N-type NB cells (SH-SY5Y), stromal-type (S-type) 

NB cells (SHEP-1), Ovarian cancer cells (A2780 and ES-2), and HEK-233T. Ku70 specific 

siRNA, or scrambled siRNA was transfected in various cell lines. Forty-eight hours after 

transfection, the cell viability of transfected cells was determined by the trypan blue exclusion 

assay. Results shown in fig 4.1 indicate that Ku70 depletion reduces cell viability of SH-SY5Y 

cells but not SHEP-1, ES2, A2780 and HEK-293T cells. 

 

Ku70 depletion reduces cell viability in N-type NB cells. 

 

To determine whether Ku70-depletion induced reduction of cell viability is specific to SH-

SY5Y cells, we determined cell viability in three other N-type NB cells (IMR32, KCN-69n, and 

GOTO) after Ku70 depletion using Ku70 specific siRNA. We used SH-SY5Y as a positive 

control and SHEP-1 and LA1-5s, two S-type NB cells, as negative controls. Forty-eight hours 

after siRNA transfection, cell viability was determined by the trypan blue exclusion assay. 

Results shown in fig. 4.2 indicate that, like for SH-SY5Y cells, cell viability of three other N-type 

NB cells was reduced by Ku70 specific siRNA transfection while the two S-type NB cells were 

not affected. These results suggest that the Ku70 requirement for survival is not exclusive to 

SH-SY5Y cells and maybe a general feature of N-type NB cells. 
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Ku70, Ku80, and Bax levels are similar in all cell types 

 

Next, we explored the differences between the Ku70-depletion sensitive cells and Ku70 

depletion insensitive cells. Here we tested a hypothesis in which Bax requirement for cell death 

may be different in these Ku70-depletion insensitive cells. One possibility is that Bax may be 

absent in these cells so Bax is no longer a cell death factor. Thus Ku70 depletion may not have 

any effect on cell survival.  We determined the protein expression of Ku70, Ku80, and Bax in the 

cytosolic extracts and in the whole cell extracts in SH-SY5Y, SHEP-1, ES2, A2780, and HEK-

293T cells. We separated these extracts by SDS-PAGE, and was probed the blot with Ku70, 

Ku80, or Bax antibodies. β-Tubulin was used as loading control. Fig. 4.3 shows that, in whole 

cell extracts, the level of Ku70, Ku80, or Bax in all cell lines is similar, except in ES2 in which the 

Bax level is lower. In the cytosolic extracts, the β-tubulin loading control was uneven; it was 

higher in SH-SY5Y and SHEP-1 cells, and to some extent also in HEK-293T cells, compared to 

that of ES2 and A2780 cells. However, the level of Bax followed the same pattern as that of the 

β-tubulin loading control, being higher in SH-SY5Y, SHEP-1, and HEK-293T cells, but was low 

in other cell types. The level of cytosolic Ku70 and Ku80 was similar despite the variations in β-

tubulin loading control. While we did not conduct a densitometry analyses of these bands, we 

felt that we can conclude from these results that there are no big variations of the level of Bax 

and Ku70 in the cytosolic extracts of SH-SY5Y, SHEP-1, and HEK-293T cells, in which their β-

tubulin loading control is very similar. These results suggest that the differences between the 

sensitivity to Ku70 depletion are not due to the differences in the Bax or Ku70 level.  

 

Differences in response to SAHA treatment in different cell types 

 

We have shown previously that SH-SY5Y cells are sensitive to HDAC inhibitor 

treatments. Using SAHA, TSA (both class I and II HDAC inhibitors) or tubacin (a HDAC6 
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specific inhibitor), we have shown that these HDAC inhibitors induce Ku70 acetylation and 

results in Bax dissociation leading to apoptotic Bax-dependent cell death. Here, we explored the 

differences between Ku70-depletion sensitive and Ku70-depletion insensitive cells in terms of 

their response to HDAC inhibitor treatment. Cells were treated for 48 hours with SAHA (0, 0.5, 

1, 2, and 4 µM) and cell viability was determined by the MTT assay. Results shown in fig. 4.4 

shows that the cell viability of SH-SY5Y cell was reduced to 20% while the cell viability of other 

Ku70-depletion insensitive cells were only reduced to 50% for HEK-293T and A2780, and to 

80% (20% reduction) for SHEP-1 cells. Thus, there are clear differences in terms of cell viability 

response to HDAC inhibitor treatment between Ku70-depletion sensitive and Ku70-depletion 

insensitive cell types.  

 

Ku70 depletion sensitive and insensitive cells have similar cytosolic Ku70 complex 

patterns under basal conditions  

 

 Using gel filtration chromatography and cross-linking studies, we have shown that in 

Ku70-depletion sensitive cells, SH-SY5Y cells, Ku70 forms several high molecular weight 

complexes, and that only a small fraction of Ku70 and Bax bind to each other (fig. 3.1). Similar 

to SH-SY5Y cells, here we show Ku70-depletion insensitive cells have similar patterns of 

protein elution in gel filtration chromatography (fig. 4.5, A2870 and HEK293T) and in cross-

linking studies (fig 4.6, SHEP-1, ES2, and HEK-293T). These results suggest that there is no 

difference in Ku70 complex formation amount in these cells. 
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HDAC	   inhibitor	   induces	   cytosolic	   Ku70	   acetylation	   but	   not	   Ku70-‐Bax	   dissociation	   in	   Ku70-‐

depletion	  insensitive	  cells 

 

We have previously shown that in Ku70-depletion sensitive cells (such as SH-SY5Y 

cells), HDAC inhibitor treatment induces Ku70 acetylation, Bax dissociation from Ku70, and 

apoptotic cell death [113]. In fig. 4.4, we have shown that the Ku70-depletion insensitive cells 

had a partial response to HDAC inhibitor treatment. Thus we next explored whether the Ku70-

Bax complex in the Ku70-depletion insensitive cells has similar response to HDAC inhibitor 

treatment. We first tested whether Ku70 is acetylated in response to HDAC inhibitor in Ku70-

depletion insensitive cells. We treated the cells with SAHA (4 µM) for 48 hours. Cytosolic 

extracts were immunoprecipitated using an anti-acetyl-lysine antibody (Ac-K-103). The 

immunoprecipitates were separated by SDS-PAGE and the blot was probed with an anti-Ku70 

antibody. Results shown in fig. 4.7 indicate that in both, Ku70-depletion sensitive (SH-SY5Y) 

and Ku70-depletion insensitive cells (SHEP-1, ES2, A2780, and HEK-293T), the cytosolic Ku70 

is acetylated following SAHA treatment. 

 

We have shown previously that in SH-SY5Y cells, Ku70 acetylation, either by inhibiting 

HDAC6 or by depleting HDAC6, resulted in Bax dissociation causing apoptotic cell death [94]. 

Here, we asked whether Bax is dissociated from Ku70 following HDAC inhibitor treatment in 

Ku70-depletion insensitive cells. In ES-2 and HEK-293T cells, 48 hours following TSA (10 µM) 

treatment for ES2 cells or SAHA (4 µM) treatment for HEK-293T cells, we immunoprecipitated 

Bax using a Bax specific antibody. Normal rabbit serum (NRS) was used as negative control. 

The immunoprecipitates were separated by SDS-PAGE, and the blot was probed with anti-Bax 

antibodies or anti-Ku70 antibodies. Results shown in fig. 4.8 show that the Bax antibody 

immunoprecipitated Ku70 in the cytosolic extracts of both cell types treated with or without 
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HDAC inhibitor. These results suggest that, unlike those in SH-SY5Y cells, Bax does not 

dissociate from Ku70 even though Ku70 is acetylated following HDAC inhibitor treatment.  

 

Bax is not activated following HDAC inhibitor treatment in Ku70-depletion insensitive 

cells 

 

While results shown in fig. 4.7 demonstrated that following HDAC inhibitor treatment 

Ku70 was acetylated, and that results shown in fig. 4.8 show that Bax did not dissociate from 

Ku70 in the Ku70-depletion insensitive cells, it is not clear whether Bax was activated while it 

still bound to Ku70. To address this question, we have used two approaches.  

 

First, we directly asked whether Bax was activated following HDAC inhibitor treatment in 

Ku70-depletion sensitive cells (SH-SY5Y) and Ku70-depletion insensitive cells (HEK-293T). We 

used an anti-Bax antibody (6A7) in an immunoprecipitation experiment. This antibody binds to 

the N-terminal of Bax when Bax is activated [38]. Using this method, we have demonstrated that 

in control untreated cells, Bax activation is very low in both SH-SY5Y cells and in HEK-293T 

cells (fig. 4.9). However, 24 hours following SAHA (4 µM) treatment, there was a significant 

increase in Bax activation in SH-SY5Y cells (increased in 6A7 antibody precipitation). In 

contrast, there was no increase in 6A7 antibody precipitation in HEK-293T cells. These results 

suggest that, in Ku70-depletion insensitive cells, HDAC inhibitor treatment did not induce Bax 

activation.  

 

The second approach we used was to determine the cleavage of pro-caspase 3, a 

downstream target of Bax activation. We used an anti-caspase 3 antibody that recognizes both 

pro-caspase 3 and cleaved caspase 3. Both SH-SY5Y cells and HEK-293T were treated with 

SAHA (4 µM) for 24 hours, equal amount of cytosolic extracts from treated or untreated cells 
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were separated by SDS-PAGE, and the blot was probed with the anti-caspase 3 antibody. β-

tubulin was used as loading control. Results shown in fig. 4.10 demonstrated that while in 

untreated cytosolic extracts, there was a basal cleavage of pro-caspase 3 in both cell types, 

there were no significant differences compared to the untreated and treated extracts in HEK-

293T, In contrast, in SH-SY5Y cells, pro-caspase 3 level was markedly reduced in SAHA 

treated cytosolic extracts. These results suggests that, as predicted, HDAC inhibitor treatment 

of SH-SY5Y cells activated Bax, resulted in Bax translocation to the mitochondria, leading to the 

activation of caspase 3 (cleavage of pro-caspase 3). However, in HEK-293T cells, HDAC 

inhibitor treatment did not activate Bax; thus Bax did not translocate into the mitochondria, and 

did not activate pro-caspase 3.  
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4.3 Discussion  

 

The focus of this chapter was to address a fundamental question in terms of Ku70-Bax 

complex regulation: Do all cells behave the same way in regulating Ku70-Bax binding? In 

chapter 3, using N-type NB cells, SH-SY5Y, we have proposed a model in which Ku70 is acting 

as a survival factor in protecting the sporadic activation of Bax. We have also provided evidence 

showing that there may be another level of regulation in which factors affecting Ku70 

dissociation from other factors may also be important for the survival of the cells.  In this 

chapter, we have provided evidence showing that Ku70 does not serve as a survival factor in all 

cell types tested. When Ku70 is acting as a survival factor, such as in SH-SY5Y cells, depletion 

of Ku70 results in cell death. However, when Ku70 is not acting as a survival factor such as in 

SHEP-1, A2780, ES2, HEK293T cells, Ku70 depletion does not result in cell death.  

 

Previous results have indicated that Ku70 is a desensitizer for Bax-activated cell death 

[105, 115]. Increasing level of Ku70 reduces the effect of cell death inducing agent, such 

staurosporine [1], which activates Bax. Thus, cytosolic Ku70 may have at least two different 

functions in different cells. One is that Ku70 is acting as a survival factor. Without it, the cell will 

die, as we see in SH-SY5Y cells. Another function of Ku70 may be to block Bax when Bax is 

activated by other means. However, in these cells, Ku70 does not act as a survival factor 

because depleting Ku70 did not induce cell death. There must be an additional mechanism that 

suppresses Bax-induced cell death at basal level.   

 

To distinguish the Ku70-depletion sensitive from the Ku70-depletion insensitive cell 

types, as our results suggest, is to see whether Ku70 is associated with Bax when Ku70 is 

acetylated. One established model is that Ku70-Bax binding is regulated by the ability of Ku70 

to be acetylated. Ku70 acetylation is regulated by CBP and HDAC6. Therefore, this model 
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suggests that in order for Ku70 to be a survival factor binding to Bax and inhibiting Bax 

activation, Ku70 needs to be actively deacetylated.  

 

Previously in our lab, using SH-SY5Y cells, we have provided evidence to support this 

hypothesis [102, 113]. However, in Ku70-depletion insensitive cells, using HDAC inhibitor 

SAHA, we have shown that even though cytosolic Ku70 is acetylated (fig. 4.7), Ku70 remains 

bound to Bax (fig. 4.8). These results suggest that in these Ku70-depletion insensitive cells, 

Ku70 acetylation may not be the sole factor that regulates Bax binding; there are some other 

factors controlling Bax binding to Ku70.  

 

However, one may argue that our experimental procedures have over-estimated the 

level of Ku70 acetylation. It is because we immunoprecipitated cytosolic extracts using an anti-

acetyl-lysine antibody, and the presence of Ku70 in these extracts were verified using 

immunobloting using an anti-Ku70 antibody. It is possible that the presence of Ku70 in the 

cytosolic extracts was the result of Ku70 association with other acetylated factors that were 

immunoprecipitated by the anti-acetyl-lysine antibody. This is a distinct possibility. We have 

attempted to immunoprecipitate Ku70 from cytosolic extracts using Ku70 specific antibody, and 

then determined Ku70 acetylation in immunobloting using an anti-acetyl-lysine antibody. The 

results of these experiments were variable and the signal was very weak. One possibility is that 

the total level of acetylated Ku70 is very low. It may be that only Ku70 that binds to Bax gets 

acetylated. Therefore, the percentage of Ku70 that is acetylated in total immunoprecipitated 

Ku70 may be lower than or at the limit of the detection of immunobloting.  

 

One means to determine acetylation of endogenous proteins is to label the cells with 

radio-labeled acetyl-CoA followed by immunoprecipitation using antibodies. However this 

method requires very high level of radio-labeled acetyl-CoA, and depending on the number of 
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acetylated lysines present, the signal may be low and it may take a long time (a month or more) 

to see any signal.  

 

It has been reported that Ku70 is at least acetylated on 8 lysines (K282, K331, K338, 

K539, K542, K544, K553, and K556) [89, 116]. When two lysines K539 and K542 are 

acetylated, Bax is dissociated from Ku70. We have attempted to raise antibodies against these 

two acetylated-lysines. However, we were unsuccessful due to low immunogenic properties of 

these sites.  

 

Another difference between Ku70-depletion sensitive and Ku70-depletion insensitive 

cells is their response following HDAC inhibitor treatment. We have shown previously that 

HDAC inhibitor treatment of SH-SY5Y cells results in Bax dissociation from Ku70. The 

dissociated Bax enters mitochondria, releasing cytochrome c, triggering cell death. However, 

the cell viability of the Ku70-depletion insensitive cells following HDAC inhibitor treatment is 

almost half of the response observed in the Ku70-depletion sensitive cells. Furthermore, HDAC 

inhibitor treatment of Ku70-depletion insensitive did not follow the classical pathway of 

apoptosis: Bax did not dissociate from Ku70, Bax was not activated (fig. 4.9), and the pro-

caspase 3 was not cleaved (fig. 4.10). These results suggest that HDAC inhibitor treatment of 

Ku70-depletion insensitive cells may trigger a different cell death pathway causing cell death.  
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Figure 4.1: Ku70 depletion reduces cell viability in SH-SY5Y cells but not in SHEP-1, ES2, 
A2780, and HEK-293T cells. Cells received two sequential transfections of Ku70 specific 
siRNA. Scrambled siRNA was used as negative control. Two days after last transfection, cell 
viability was determined by trypan blue exclusion assay. The degree of Ku70 depletion was 
determined by SDS-PAGE using anti-Ku70 antibody. β-tubulin was used as loading control. 
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Figure 4.2: Ku70 depletion reduces cell viability of neuronal neuroblastoma cells. Cells 
received two sequential transfections of Ku70 specific siRNA. Scrambled siRNA was used as 
negative control. Two days after last transfection, cell viability was determined by trypan blue 
exclusion assay.  
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Figure 4.3:  Ku70-depletion sensitive or insensitive cells have similar level of Ku70, Ku80 
or Bax. Cytosolic extracts or whole cell extracts were separated by SDS-PAGE and the blot 
was probed with anti-Ku70, anti-Ku80, or anti-Bax antibodies. β-tubulin was used as loading 
control. 
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Figure 4.4: HDAC inhibitor treatment is less effective in reducing cell viability in Ku70-
depletion insensitive cells compared to Ku70-depletion sensitive cells. Cells were plated 
into 96 well plates. One day later, they were treated with various concentrations of SAHA as 
shown. There were at least three wells per concentration. 48 hours after SAHA treatment, cell 
viability was determined by MTT. The results of the MTT assay were expressed as percent of 
DMSO only treated control in MEAN±SD. 
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Figure 4.5:  Ku70 and Bax have similar elution pattern in gel filtration chromatography in 
SH-SY5Y, HEK-293T, or A2780 cells. Cytosolic SH-SY5Y, HEK-293T, or A2780 cell extracts 
were analyzed by Superdex 200 HR 10/30 gel filtration chromatography. 20 µl of half a milliliter 
fraction was separated by SDS-PAGE and the blot was probed with anti-Ku70, anti-Bax, or anti- 
Ku80 antibodies.  
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Figure 4.6: SH-SY5Y, SHEP-1, ES2, and HEK-293T cells have similar Ku70 complex 
pattern in cross-linking studies. Cytosolic extracts were cross-linked using various DC4 
concentrations (0, 0.1, 0.2, 0.4, 0.8, 1.6 mM) as shown. Cross-linked proteins were separated 
by 10% SDS-PAGE, and the blot was probed with anti-Ku70 antibodies. 
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Figure 4.7:  Cytosolic Ku70 is acetylated by HDAC inhibitor treatment in cells. Cells were 
treated with SAHA (4 µM) for 48 hours. Control cells received the same volume of DMSO. 
Cytosolic extracts were immunoprecipitated using an anti-acetyl-lysine antibody. (Ac-K-103).   
Normal mouse serum (NMS) using HEK-293T cytosolic extracts was used as negative control. 
Immunoprecipitated complex was separated by SDS-PAGE and the blot was probed with anti-
Ku70 antibodies.  
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Figure 4.8: Bax is not dissociated from Ku70 following HDAC inhibitor treatment in ES2 
and HEK-293T cells. ES2 cells were treated with TSA (10 µM) for 48 hours. HEK-293T cells 
were treated with SAHA (4 µM) for 48 hours. Cytosolic extracts were immunoprecipitated using 
anti-Bax antibodies. Normal rabbit serum (NRS) was used as control. Immunocomplexes were 
separated by SDS-PAGE and the blot was probed with anti-Bax or anti-Ku70 antibodies.  
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Figure 4.9: Bax is activated following HDAC inhibitor treatment in SH-SY5Y cells but not 
in HEK-293T cells. SH-SY5Y or HEK-293T cells were treated with SAHA (4 µM) for 24 hours. 
Control cells received only DMSO. Cytosolic extracts were immunoprecipitated using an anti-
Bax antibody or an anti-activated Bax antibody (6A7). Normal rabbit serum (NRS) or normal 
mouse serum (NMS) was used as control. Immunoprecipitated complex was separated by SDS-
PAGE and the blot was probed with anti-Bax antibodies. 
  

	  

	  

N
R
S

-IP
 

IN
PU
T 

IN
PU
T 

BA
X-
IP

 

6A
7-
IP

 

SAHA 

N
M
S-
IP

 

N
R
S

-IP
 

N
M
S-
IP

 

BA
X-
IP

 

6A
7-
IP

 	  

SH-SY5Y 

HEK-293T Bax 

Bax 

	  

Control 



	  

	   49	  
	  

 
 
 
 
 
 

 
 
Figure 4.10: Caspase 3 is activated following HDAC inhibitor treatment in SH-SY5Y cells 
but not in HEK-293T cells. SH-SY5Y or HEK-293T cells were treated with SAHA (4 µM) for 24 
hours. Cytosolic extracts were analyzed by SDS-PAGE, and the blot was probed with anti-
caspase 3 antibodies. β-tubulin was used as loading control. 
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Chapter 5 
 

Conclusion and Future Directions 

 

In this thesis project, I have investigated two fundamental questions of how Ku70 

regulates Bax’s activities in cells. The first question was whether all Bax bound to Ku70; the 

second question was whether the Ku70 acting as a survival factor model was applicable to other 

cell types.  

 

We have addressed the first question in Chapter 3. We have provided evidence showing 

that only a small fraction of Bax and a small fraction of Ku70 bind to each other. The majority of 

Bax is monomeric. This raises an important question: what makes the small amount of Bax bind 

to Ku70? What is the difference between Ku70-bound Bax compared to the monomeric Bax? 

Our hypothesis is that Ku70 acts as a survival factor. At the basal level, Ku70 binds to 

aberrantly activated small amount of Bax, rendering Bax to be inactive and blocking Bax’s cell 

death function. This model suggests that Bax needs to be activated when it binds to Ku70. As 

discussed above in the Chapter 1 that the N-terminal of Bax is exposed when Bax is activated. 

Is it possible that the N-terminally exposed, activated Bax binds to Ku70? Studies have shown 

that Bax lacking 1-54 amino acids does not bind to Ku70 [105]. This suggests that Bax’s Ku70 

binding domain may be between 1-53 amino acids. However, it is possible that lacking 1-54 

amino acids in Bax may result in a conformational change of Bax molecule such that Bax can 

no longer bind Ku70. There is no in vitro binding data to verify where the Ku70-binding domain 

of Bax is.  
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Another possibility of how Bax can bind to Ku70 is that the Ku70-bound Bax may be 

post-translationally modified. Bax is known to be phosphorylated and ubiquitinated. However, 

there is no evidence that these modifications affect its binding to Ku70. To answer the question 

on what makes Bax binding to Ku70, one may need to use an unbiased approach to analyze 

Ku70-bound Bax using mass spectrometry. Sequential immunoprecipitations will be used to pull 

down Ku70-bound Bax. The first immunoprecipitation would use anti-Ku70 antibodies to 

precipitate Bax-bound Ku70, and the second would use anti-Bax antibodies to precipitate Bax 

from the Bax-Ku70 complex. The precipitated Bax will be analyzed by mass spectrometry to 

determine post-translational modifications of Bax. Targeting Bax modifications that affect it’s 

binding to Ku70 may be a new therapeutic approach in inducing cell death.   

 

In chapter 3, we have also provided evidence showing that the non Bax-bound Ku70 

forms several high molecular weight complexes in the cytosol. Most importantly, there is no 

monomeric cytosolic Ku70. The Ku70 acting as a survival factor model predicts that because 

there is no free Ku70 that can bind to more activated Bax. Ku70 needs to be from somewhere. 

Ku70 that is capable to bind Bax is either released from Ku70-containing complexes, or 

alternately, Ku70 that is in complex with other factors may still be able to bind to activated Bax. 

Thus there is another level of regulation of the availability of Ku70 to bind Bax. To understand 

what regulates Ku70 binding to other factors, we need to identify factors that bind to cytosolic 

Ku70. As discussed in the Introduction chapter, several studies have demonstrated that Ku70 

binds to other factors in the cytosol. We have also shown that Ku70 binds Ku80, its binding 

partner in the nucleus. However, how the binding of Ku70 to these factors affects Ku70-Bax 

binding remains unclear. It will be interesting to see whether the known Ku70-associated 

proteins like FLIP or caveolin-1 form complex with Ku70 in cross-linked studies. We have also 

proposed to use Ku70 immunoprecipitation followed by mass spectrometry to identify additional 
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cytosolic Ku70 binding proteins. This will be an unbiased approach identifying factors in Ku70-

depletion sensitive and Ku70-depletion insensitive cells.  

 

In our Ku70 acting as a survival factor model we have proposed that, at the basal level, 

cytosolic Ku70 acts as a survival factor suppressing Bax-mediated cell death. However, in 

contrast, in the nucleus, at the basal level, Ku70 does not bind DNA. Following DNA damages, 

like following irradiation, Ku70 in the cytosol as well as in the nucleus is acetylated [88]. At this 

time, in the nucleus, Ku70 dimerizes with Ku80 and binds to DSB-DNA to start the NHEJ repair 

process. Thus, nuclear Ku70 is acting as a pro-survival factor to repair DNA damage, protecting 

the cells from dying. However, simultaneously, in the cytosol, Ku70, upon acetylation, 

dissociates from Bax, allowing Bax to translocate to mitochondria triggering cell death, at least 

in Ku70-depletion sensitive cells. It is a pro-apoptotic process, opposing what Ku70 is trying to 

achieve in the nucleus. How can it be that one protein has two functions opposing each other at 

the same time? Do cytosolic Ku70 communicate with nuclear Ku70? Do cytosolic Ku70 and 

nuclear Ku70 regulate each other?  If they do, what is the mechanism?  We have previously 

shown that following irradiation in SH-SY5Y cells, the level of cytosolic Ku70 reduces while 

nuclear Ku70 level increases. This may mean that following irradiation, Ku70 is translocating 

from the cytosol to the nucleus. It is also possible that cytosolic Ku70 following irradiation is 

being degraded, and the synthesis of nuclear Ku70 is increased to meet the demand of DNA 

repair to protect the cells from dying. Currently, to what extent that cytosolic Ku70 affects the 

DNA-repair function of Ku70 in the nucleus is not known. Is it possible that Ku70 translocation 

following radiation depends on the degree of DNA damage caused by radiation, such that larger 

DNA damage will allow cytosolic, acetylated Ku70 to translocate into the nucleus, reducing the 

DNA-repair activity and allowing the cell to die? If this model is correct, how is it regulated? 

Currently, answers to these questions remain unknown.  
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The second question that I have addressed in this project was whether the Ku70 acting 

as a survival factor model was applicable to other cell types. We have addressed this question 

in Chapter 4. We have provided evidence showing that there is at least two types of Ku70 

responding cells: one is Ku70-depletion sensitive cells, which require Ku70 for survival, and one 

is Ku70-depletion insensitive cells, which do not require Ku70 for survival. While we have shown 

that Bax binding to Ku70 is regulated by the acetylation status of Ku70 in the Ku70-depletion 

sensitive cells, in the Ku70-depletion insensitive cells, acetylation of Ku70 does not dissociate 

Bax from Ku70, suggesting that there is another factor (or factors) that regulates Ku70-Bax 

binding. The requirement of Ku70 acetylation in regulation of Ku70-Bax binding in the Ku70-

depletion insensitive cells is currently unknown. To answer this question, it may require 

sequential immunoprecipitations using Bax antibodies following by Ku70 antibodies (or vice 

versa) to pull down complexes that contain both Bax and Ku70 in the Ku70-depletion insensitive 

cells. The immunocomplex can be analyzed by mass spectrometry to identify unknown factors. 

 

An important question raised by our results shown in chapter 4 is what are the markers 

that can distinguish between the Ku70 depletion sensitive cells and the Ku70-depletion 

insensitive cells? Is it neuronal cells (N-type cells), which are Ku70-depletion sensitive versus 

non-neuronal cell types, which are Ku70-depletion insensitive? To our knowledge, there is no 

neuronal cell specific death pathway. Some studies have shown that young neurons are 

sensitive to cell death signal compared to more mature neurons [117-119]. In some studies, N-

type NB cells are considered to represent immature neuronal cell type [120]. Thus, they may be 

more sensitive to cell death signals. However, Longley et. al. in 2012 have demonstrated that 

knocking down Ku70 in a colorectal cancer cell line (HCT116) also induces cell death [45], 

suggesting that not only neuronal cells are sensitive to cell death in response to Ku70 depletion. 

We have also attempted to answer this question by studying two neuronal cell types, PC-12 and 

neuro-2A cells (a gift from Dr. Michael D. Uhler). PC-12 is a rat pheochromocytoma cells, and 
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Neuro-2A is a mouse neuroblastoma cell line. We first determined the Ku70 level in these cells. 

However, the reason is still unknown to us, we were not be able to measure Ku70 in the 

extracts of these cells consistently. Even if we could observe Ku70 on a western blot, the signal 

was very faint. But, we could measure other proteins, like tubulin on the same blot. We also 

checked whether the Ku70 antibodies that we used were specific for rat and mouse Ku70. We 

purchased a new Ku70 antibody for this purpose. However, we still failed to detect Ku70 in 

these cells. It would be interesting to investigate whether different extraction procedures would 

produce more reliable detection of Ku70 in these cells.  

 

It is important to identify markers to determine the sensitivity to Ku70 depletion in cells. 

One can imagine that if we can identify cancer cells that are Ku70-depletion sensitive, we may 

be able to target the Ku70-Bax complex as a therapeutic end point.  Potential therapeutics will 

be developed to activate Bax causing cell death in these cells by separating Bax from Ku70. 

Studies have shown that a 5-residue peptide (VPMLK), corresponding to the Ku70 sequence 

between 578-582, competes with Ku70 to bind Bax blocking Bax-mediated cell death [105]. This 

reagent has been shown to block Bax’s cell death activities [105]. However, there is no 

equivalent reagent developed to bind and compete with Bax for Ku70 binding resulting in free 

Bax and causing cell death. This potential reagent may be important in the treatment of cancer 

cells that are Ku70-depletion sensitive, such as NB cancer and colorectal cancer.  

 

In summary, the results of my thesis re-define the Ku70-regulating of Bax activity model. 

While we have definitively shown that only a small amount of Bax binds to a small amount of 

Ku70 in cells, how Ku70 regulation of Bax activity depends on the response of the individual cell 

type to Ku70-depletion. In Ku70-depletion sensitive cells, in which Ku70-depletion triggers cell 

death, Bax binding to Ku70 is regulated by Ku70 acetylation such that when Ku70 is acetylated, 

Bax is dissociated from Ku70, triggering cell death. For this model, we have shown that the 
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availability of Ku70 to bind to increased amount of activated Bax is also a factor that regulates 

Bax activity in cells.  

 

In the Ku70-depletion insensitive cells, in which Ku70-depletion does not trigger cell 

death, Bax binding to Ku70 is not regulated by Ku70 acetylation. This finding is in contrast with 

the current model reported in the literature. We hypothesized that there is another factor (or 

factors) that regulates Ku70 and Bax binding.  

 

Our results reported in this thesis raise several interesting questions for future 

experimentations. I have already described these questions in more detail above in this chapter. 

I will summarize the future directions below: 

 

1. What is the characteristic of the small amount of Bax that binds to Ku70? 

2. What are other factors that bind to cytosolic Ku70 and how do these Ku70-containing 

complexes regulate Ku70-Bax binding? 

3. Do cytosolic Ku70 and nuclear Ku70 regulate each other’s activity? 

4. In Ku70-depletion insensitive cells, what factor or factors regulate the binding 

between Ku70 and Bax? 

5. What are the markers to distinguish between Ku70-depletion sensitive cells and 

Ku70-depletion insensitive cells? 

6. Can we generate a reagent that can compete with Bax for Ku70 binding resulted in 

freeing Bax to kill cells?  This reagent will be useful to trigger cell death in tumor cells 

in which they are Ku70-depletion sensitive. 

 

Regulating Bax activity is critical in maintaining cell survival. Triggering Bax release from 

Ku70-Bax complex in either Ku70-depletion sensitive or Ku70-depletion insensitive cells may 
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serve as a therapeutic endpoint in increasing cell death in these cells. Knowledge gained from 

answering the proposed questions will be beneficial in this approach.  
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Appendices 

 

Appendix A: A copy of a peer-reviewed article published in the Molecular Cancer Research in 

2013 (Vol. 11 pg.173-181) entitled “CREB-binding protein regulates Ku70 acetylation in 

response to ionization radiation in neuroblastoma” is included. I was the second name author of 

the article.  
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Appendix B: A copy of a peer-reviewed review article published in the Journal of Cell Death in 

2014 (Vol 7, page 11-13) entitled “Regulation of Ku70-Bax complex in cells” is included. I was 

the first name author of the article.  
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