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Abstract 

Resistive switches, commonly referred to as resistive memory (RRAM) devices 

and modeled as memristors, are an emerging nanoscale technology that can revolutionize 

data storage and computing approaches. Enabled by the advancement of nanoscale 

semiconductor fabrication and detailed understanding of the physical and chemical 

processes occurring at the atomic scale, resistive switches offer high speed, low-power, 

and extremely dense nonvolatile data storage. Further, the analog capabilities of resistive 

switching devices enables neuromorphic computing approaches which can achieve 

massively parallel computation with a power and area budget that is orders of magnitude 

lower than today’s conventional, digital approaches. 

This dissertation presents the investigation of tungsten oxide based resistive 

switching devices for use in neuromorphic computing applications. Device structure, 

fabrication, and integration are described and physical models are developed to describe 

the behavior of the devices. These models are used to develop array-scale simulations in 

support of neuromorphic computing approaches. Several signal processing algorithms are 

adapted for acceleration using arrays of resistive switches. Both simulation and 

experimental results are reported. Finally, guiding principles and proposals for future 

work are discussed. 
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Chapter 1. Introduction 

1.1 The von Neumann Bottleneck 

In 1945, John von Neumann proposed [1] a computing architecture that 

proscribed separating program and data memory from arithmetic and logical 

computations. Instructions and operands are to be fetched from memory, a computation 

performed in the arithmetic-logic unit (ALU), and the results returned to memory. 

Broadly speaking, the stored program paradigm has been used in nearly all computing 

systems to date due to its ease of programming and intuitive operation. The von 

Neumann architecture, however, suffers from a fundamental drawback: the separation of 

memory and computing elements requires a constant movement of data across a finite-

width bus (or several busses) in order to perform operations, and this movement requires 

significant energy and time expenditures [2]. 

An alternative computing approach is found in biological systems which must 

operate on a highly constrained power budget. For example, the human brain, arguably 

the most powerful computer for certain tasks, is estimated from blood flow measurements 

to perform all of its functions while using approximately 35 watts [3]. It is believed that 

the brain accomplishes this feat by approximating computational tasks in the analog 

domain and by integrating the memory and computational elements, thereby avoiding the 

von-Neumann bottleneck [4], [5]. The details of how this is accomplished remain an open 

question in the fields of neuroscience and computational biology; nonetheless, insights 
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into the functioning of the brain have inspired new computing paradigms, termed 

“neuromorphic computing” that can achieve significant performance and efficiency over 

traditional computer organizational designs [6]–[8].  

  

1.2 Neuromorphic Computing 

Carver Mead coined the term “neuromorphic” in the early 1990s to describe a 

neural information processing paradigm that is fundamentally different, and orders of 

magnitude more energy efficient, from digital computation. A fundamental principle of 

neuromorphic computing is to use the governing physics of a device to perform 

computation, rather than using the device merely as a digital switch as is done with 

transistor logic today [9], [10]. Furthermore, a defining characteristic of neuromorphic 

systems is that they use distributed memory and computational elements [11]. This 

paradigm eliminates the von Neumann bottleneck, described above, enabling massively 

parallel computation while drastically reducing the energy required to shuttle data to and 

from storage elements to an arithmetic-logic unit where it can be used. Resistive switches 

are emerging devices that provide a key technology that allows designers to combine 

memory and computing elements to save space and energy. This reorganization of the 

computing datapath requires a rethinking of computer architectures and the algorithms 

they run. Conventional algorithms with sequential processing steps, resulting in complex 

data dependencies, are often not well suited to massively parallel, distributed computing 

systems [12]. This dissertation will examine both novel hardware architectures 

constructed using resistive switching elements and neuromorphic algorithms that are 

designed to use the new hardware efficiently.  
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In the proposed approach, resistive switching elements are used to both store 

analog weights and directly perform information processing. The system relies on the 

intrinsic hysteresis of the devices to perform an accumulation function of weight updates 

during learning. The variable resistance of the device is used to modulate a current signal, 

effectively performing a multiplication operation. Finally, we rely on the crossbar 

structure of arrays of devices, combined with Kirchoff’s current law, to sum current 

signals from multiple devices to calculate a weighted sum. Because of the limited 

precision inherent in analog systems, we have targeted applications that can tolerate 

imprecision and occasional inaccuracy. Additionally, we rely heavily on feedback 

mechanisms to self-correct errors. The following section will describe the characteristics 

of resistive switching devices in more detail before system-scale structures are examined 

for computing. 

1.3 Resistive Switching 

Resistive switching phenomena has been investigated as a possible successor to 

Flash memory technologies for non-volatile data storage due to its high packing density, 

stackability, speed, and low power operation.  While hysteretic resistors have been 

studied at least since the 1960s [13], [14], interest has surged as advances in lithography 

and semiconductor fabrication techniques have reduced device dimensions to the 

nanoscale which has improved resistive switching device characteristics [15], and our 

group has been working on resistive switching devices since 2005 [16], [17]. In 2008, HP 

researchers connected the hysteretic behavior of titanium-dioxide-based resistive 

switches with the theoretical framework of a memristor [18], a device postulated to be the 
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fourth fundamental circuit element by Leon Chua in 1971 [19]. A memristor is a two 

terminal device wherein the conductance between the two terminals is a function of the 

history of signals applied to the device.  The hysteretic behavior gives rise to the 

characteristic pinched current voltage loop as shown in Figure 1. 

 

 

Figure 1.1:  Hysteresis loop characteristic of resistive switching devices.  

 

The physical manifestion of a memristor can be created by sandwiching an 

electrically switchable resistance layer between two electrodes. A three-dimensional 

representation of such a switch is shown in Figure 1.2 below. 
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Figure 1.2:  A three-dimensional representation of a generic resistive switch. A 
resistive switching layer (shown in pink) is sandwiched between two conductive 
electrodes (shown in grey). Conductance modulation is achieved by rearranging the 
conductive elements (shown in blue). 

 

For a voltage-controlled resistive switch, a voltage is applied between the top and bottom 

electrodes. The resultant current provides an electrical signal that is used to probe the 

state of the device. If the voltage is of sufficient magnitude, it will simultaneously cause a 

measurable change in the state of the device. This is accomplished by causing the 

rearrangement of the conductive elements (depicted as blue spheres in Figure 1.2) within 

the otherwise insulating layer (depicted in pink). The arrangement of the conductive 

element does not change instantaneously and normally can maintain for a very long time 

even after the applied voltage is removed. This allows the new state to be ‘memorized’ 

and is the origin of the observed hysteretic behaviors. In this sense, the device 

‘remembers’ the history of applied voltages. In the absence of an applied voltage signal, 

the current output will be zero (hence the resistive switch will always have a zero 
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crossing—or pinched—hysteresis curve as shown in Figure 1.1). This is an important 

feature of a resistive switch or memristor: unlike a capacitor or inductor, the device does 

not store energy as an electric charge or magnetic field (except via parasitics). The nature 

of the resistive switching layer and the conductive elements is discussed in more detail in 

Chapter 2. 

1.3.1 Competing Technologies 

Resistive switches (RRAMs) are not alone in the competition for neuromorphic-

enabling technologies. Approaches such as DRAM and SRAM offer an alternative, with 

the latter even achieving commercial success in high-speed content addressable memories 

[20], but suffer from relatively large area and power requirements [21]. Furthermore the 

volatile nature of DRAM and SRAM limits power efficiency, particular in applications 

that require only intermittent operations. Flash memory, by contrast, offers high density, 

non-volatile storage. The recent emergence of commercial 3D NAND Flash [22], [23] 

has extended the usefulness of the technology and its continued development offers 

exciting possibilities for data storage. However, high programming voltages, long write 

times, block-erase, and limited endurance limit the technology [24] in computing 

applications. Phase change memory (PCM) is another viable technology that offers many 

of the same advantages as RRAM, namely high density, non-voltage storage and random 

access. For this reason PCM has seen some commercial success [25] but is limited by a 

power intensive write process [26] which limits its density due to thermal coupling 

among neighboring cells, and the use of exotic materials which affects its 

manufacturability and cost/bit.  Additionally, while a PCM cell can be used to store 

multiple bits, its resistance cannot be easily incrementally adjusted, particularly during 
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the erase process. For these reasons, RRAMs offer the greatest promise for enabling 

scalable, reliable, low-power neuromorphic computing. 

1.4 Organization of Dissertation 

The first chapter discusses resistive switching device characteristics and physical 

mechanisms of operation. A framework for device modeling is developed both at the 

single cell SPICE level and for larger arrays of memristive devices. A framework for 

implementing network scale learning architectures is outlined and used in the chapters 

that follow. Chapter 2 discusses the test and measurement setups that have been 

developed to support data collection and network implementation. Integration with 

CMOS circuits is demonstrated as well as larger arrays used for network learning. 

Chapters 3 and 4 review network-level learning approaches that make use of 

resistive switching devices for accelerated computation. Chapter 3 examines a common 

machine learning task, vector quantization, while Chapter 4 investigates the use of 

memristors to develop a sparse coding accelerator for natural images.  

The next two chapters discuss the implementation of computation acceleration 

with real RRAM devices formed in a crossbar array. Chapter 5 discusses the test and 

measurement systems that were constructed as part of the dissertation work including an 

array measurement platform and CMOS chip integration. Chapter 6 makes use of these 

systems to experimentally show a sparse coding algorithm’s implementation and 

acceleration using resistive switching hardware.  

Finally, the dissertation draws conclusions in Chapter 7. A section is included to 

discuss possible future directions for this and related research. This includes the 

implementation of in-situ network learning for sparse dictionary construction as well as 
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new approaches to using resistive switching crossbar hardware. The final chapter 

includes all references found in the dissertation.
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Chapter 2. Device Simulation 

Device modeling plays an important role in motivating and directing experimental 

research with RRAM devices (memristors). In order to facilitate accurate device and 

array simulations, several models were developed with differing levels of speed and 

accuracy. Network level simulations were implemented both in the industry standard 

Simulation Program with Integrated Circuit Emphasis (SPICE) and a custom simulation 

framework. The custom framework allowed the comparatively rapid exploration of the 

design space and testing of learning parameters while sacrificing limited fidelity to actual 

network operation. The first model focused on cation conduction in a solid electrolyte, 

also known as electrometallization cell or conductive bridging RAM. An additional 

model was developed for anionic devices based on oxygen vacancy movement. To 

explore learning algorithms in larger memristive networks, a simulation framework was 

developed in Python. 

2.1 SPICE Modeling 

Two-terminal resistive switches, often termed memristors [18], [19], [27], [28], are 

electronic devices that exhibit hysteretic resistance switching behavior in their I–V 

characteristics and have been proposed in a broad range of applications including, but not 

limited to, resistive random access memory (RRAM) [29]–[31], neuromorphic systems 

[32], Boolean logic implementation [33], signal processing, and circuit design [34]. Such 

circuits can extend the functional scaling of integrated circuits beyond CMOS, and offer 
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non-volatility and 3D integration potential [35], [36]. In particular, as a potential 

replacement for Flash memory technology, RRAM has generated significant interest in 

ultra-high density non-volatile information storage applications. A broad range of 

materials have been studied that can act as RRAM devices [37]–[40]. 

On the other hand, there has been a lack of well-established models that can simulate 

and predict the resistance switching effects observed in RRAM devices. Previous 

attempts to simulate RRAM memory or circuits have either focused entirely on the steady 

state, with fixed resistances assigned to the devices, or used a fixed threshold voltage, 

fixed switching time and predetermined on-resistance Ron (e.g. by using a voltage 

controlled switch to emulate an RRAM device). Unfortunately, these approaches do not 

correctly capture the critical dynamic switching properties of RRAM devices. In 

particular, previous experimental studies have shown that the threshold voltage, 

switching time, and Ron are not fixed parameters but rather are dynamic effects and vary 

with differing circuit conditions even for the same device [41], [42]. In this section, we 

discuss the development of a physics-based device model that can accurately predict the 

dynamic effects during resistance switching. In addition, we show the analytical model 

can be incorporated into standard circuit simulators such as SPICE, by creating a 

subcircuit and using floating node voltages to represent the internal state variables. Such 

a SPICE model can accurately predict the switching characteristics of the RRAM device, 

such as the dependence of switching time on voltage, the apparent threshold effect and its 

dependence on sweep rate, and the multi-level storage effect. The development of the 

device and SPICE model will greatly aid the simulation and design of memory and logic 
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circuits based on RRAM devices. Furthermore, the framework developed here can be 

applied to a broad range of resistance switching devices. 

 

2.1.1 Cationic Devices 

A memristor model for cationic devices based on the field-driven movement of 

metal ions in an insulating matrix was developed in SPICE. The research resulted in the 

publication of a journal article in Nanoscale [43]. At the time of publication, most 

memristor models [18], [44] were phenomenological in nature, with a number of free 

parameters to allow fitting of observed data. In developing our model, we sought to use 

physical constants, obtained either through experiment or available literature, to simulate 

device behavior from a first principles approach. 

The model is based on a typical cation RRAM device structure consisting of a 

bottom palladium electrode and a top silver (Ag) electrode sandwiching a switching layer 

of amorphous silicon (α-Si). By applying a positive voltage to the silver electrode, while 

holding the bottom electrode at ground, silver atoms in the electrode near the α-Si 

interface can be oxidized and dissolve in the α -Si. The Ag cations can then hop between 

defects in the α-Si matrix and the accumulation of the Ag cations eventually forms a Ag 

conductive filament allowing the conduction of electrons through the otherwise insulating 

α-Si. This is shown schematically in Figure 2.1. A voltage of the opposite polarity can be 

used to reverse the process and return the device to a highly resistive state. 
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Figure 2.1:  Filament growth dynamics. Schematics of filament length (a) and width 
(b) growth. (c) Energy potential seen by a metal ion in the insulating matrix. (d) 
Resulting hysteresis curve (with current compliance). 

 

The disassociation and hopping of Ag ions is primarily a field-driven process. 

After fabrication, a voltage on the order of ~5V is necessary to form the devices. During 

this electroforming process, relatively large amounts of Ag cations are injected into the α-

Si, decreasing the gap between the top and bottom electrodes. Subsequent voltage pulses 

of lower amplitude can then be used to switch the device since the filament only needs to 

bridge a smaller gap after the initial forming process. Joule heating is also thought to play 

a role in switching by increasing the local temperature, exponentially expediting the Ag 

ion hopping process. 

The dynamics of the ‘‘filaments’’ will in turn be determined by the motion of 

their constituent ions. As a first example, we consider a growth model where the state 

variable, renamed l, represents the length of a conductive filament. With the application 
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of a positive bias to the top electrode while keeping the bottom electrode grounded, 

filament growth can be initiated inside the insulating material. The filament body is 

assumed to be metallic and with low resistance and thus, to model the growth of the 

filament, we need only consider the motion of the leading ion. For simplicity, it is further 

assumed that the ion moves in one dimension—parallel to the applied electric field. The 

growth rate of the filament is then determined by the ‘‘drift’’ speed of the leading ion, 

which can in turn be derived by calculating how long it takes for the ion to hop over an 

energy barrier to reach to a new site, schematically illustrated in Fig. 2.1 (c) and given by 

𝑑𝑙
𝑑𝑡
= 𝑑𝑣 exp

−𝑞𝑈! + 𝑞𝑉𝑑/2(ℎ − 𝑙)
𝑘𝑇

− exp
−𝑞𝑈! − 𝑞𝑉𝑑/2(ℎ − 𝑙)

𝑘𝑇
 (2.1a) 

which can be expressed equivalently as 

𝑑𝑙
𝑑𝑡 = 2𝑑𝜐 exp

−𝑞𝑈!
𝑘𝑇 sinh

𝑞𝑉𝑑
2𝑘𝑇(ℎ − 𝑙)  (2.1b) 

 

where 

l is the filament length 

d is the inter-site hopping distance 

𝜐 is a characteristic attempt frequency 

k, T, q is Boltzmann’s constant, temperature, and electron charge respectively 

𝑈! is the activation energy 

h is the total gap height between the post-forming top electrode and bottom electrode 

 

We can intuitively understand Eqn. (2.1) as follows: the particle’s ‘‘drift’’ 

velocity is a product of the distance travelled in each hop, d, and the frequency with 

which these hops occur. The latter is given by the attempt frequency, v, scaled by a factor 
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exponentially dependent on the apparent barrier height since the hopping process is 

thermally activated. Under an applied bias, the apparent barrier height will be reduced 

from the barrier at zero-bias, Ua , to  Ua-Ed/2, where E is the local electric field, as 

schematically shown in Fig. 2.1(c). Assuming the voltage is dropped linearly along the 

distance between the filament tip and the opposing electrode (h-l), the apparent barrier 

seen by the ions will then be lowered by qVd/2(h-l). As a result, the filament growth rate 

will be enhanced exponentially as a function of the applied voltage. This is contrary to 

the typical linear drift-field relationship, which can be considered as a low-field 

approximation. The exponential growth of the filament as a function of the applied field 

(Eq. 2.1) is a key characteristic of RRAM devices and enables the device to be 

programmed quickly (within 10ns) at high field while maintaining very long data 

retention after the field (voltage) is removed.  

The second exponential term in Eqn. (2.1a) is included to account for the 

probability that the particle will hop backwards, towards the originating electrode. On the 

other hand, one should note that Eqn. (2.1) is limited to the voltage ranges such that Ua 

Vd/2(h-l) > 0. At very high field, such as when V is very large or (h-l) is very small, Ua 

Vd/2(h-l) < 0, a result that is not physical. As a consequence, Eqn. (2.1) will overestimate 

the filament growth rate at high field. In addition, under these high-field conditions, the 

filament growth will instead be dominated by other processes such as the oxidation rate 

of the metal atoms, rather than the field at the tip of the filament. At high biases, it is thus 

reasonable to re-write Eqn. (2.1) as 
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𝑑𝑙
𝑑𝑡 = 𝑠 exp

−𝑞𝑈!
𝑘𝑇 sinh

𝑉
𝑉!

 (2.2) 

 

where V0 and s are treated as free parameters to replace the previous free parameters v 

and d. 

The exponential dependence of the filament growth on V (Eq. 2.2) suggests that 

the filament growth is a self-limiting process. As the filament grows and the device 

becomes more conductive, progressively more voltage is dropped on the resistance in 

series with the device. With less voltage across the device, the filament growth is 

dramatically slowed as dictated by the exponential dependence of the growth rate on V.  

In this manner, the final state of the device can be controlled by changing the resistance 

in series with the device, which is normally implemented through a current compliance. 

Simulation results for this self-limited growth effect are shown in Figure 2.2 below. 
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Figure 2.2: DC voltage sweep simulations. (a)  Circuit schematic. (b) Filament 
growth during the DC sweep. (c) The voltage seen by the resistive switch. As the 
filament grows and the device becomes more conductive, progressively more voltage 
is dropped on the series resistor. (d) Similar feedback effect is obtained by using the 
current compliance instead of a series resistor.  

 

The state-variable, filament length l (or filament width w), was stored as a voltage 

across a floating capacitor as done in [44]. A schematic of how this is implemented is 

shown in Figure 2.3. The model was later translated into Verilog-AMS, which allowed 

for a more direct coding of the model, while maintaining the ability to compile it for use 

with SPICE. 
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Figure 2.3:  SPICE implementation of RRAM component. State variable 
parameters are stored on capacitors. Reproduced from [43]. 

 

The next step is to determine the I–V relationship of the device for Eqn. (2.1) or 

(2.3). Following the arguments above, in an RRAM device where the filament has not 

bridged the electrodes, the resistance will be dominated by that between the tip of the 

filament and the opposing electrode with a distance expected to be on the order of a few 

nanometres. At such distances, it is reasonable to assume that current is dominated by 

tunneling [45]. Using the expressions for a square barrier obtained from [46] the current 

can be expressed as: 

𝐼 = 𝐴
4𝑞𝜋𝑚 𝑘𝑇 !

ℎ!!
exp −𝑏!

1
𝑐!𝑘𝑇 !

𝜋𝑐!𝑘𝑇
sin 𝜋𝑐!𝑘𝑇

(1− exp  (𝑐!𝑞𝑉) (2.3) 
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where  

 

A is the filament area, m is the effective electron mass, h0 is Planck’s constant, and 𝜙! is 

the barrier height at zero applied bias and  

𝛼 =   
2 2𝑚
ℏ  

 

To reduce the computational complexity for modeling purposes, the tunneling expression 

was simplified to 

 

 

(2.4a) 

 

(2.4b) 

 

Figure 2.4 shows comparisons of results obtained from the simplified (Eqn. (2.3)) and the 

full expression (Eqn. (2.4)), illustrating the accuracy of the simplification 
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Figure 2.4:  Comparison between the full tunneling expression (eqn (2.3)) and the 
simplified, smoothed function (eqn (2.4)) at different tunneling gap (h-l) conditions. 
The two functions agree well in the voltage range of interest, allowing us to use the 
simpler expression without losing accuracy. 

 

By self-consistently solving the filament grow dynamic equation (Eqn. 2.2) and the I-V 

equation (Eqn. 2.4) the dynamic resistive switching model can be established. 

Simulations can then be used to predict device behaviors as shown in Figs. 2.5 and 2.6 

below: 
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Figure 2.5:  Multi-level programming obtained in RRAM cells. (a) Dependence of 
the filament length l on the series resistance RS. (b). Dependence of the final device 
resistance Ron on the series resistance RS, plotted in log–log scale. (c) Dependence of 
the Ron on the compliance current, plotted in log–log scale 

 

The final resistance of the device can be controlled using either a series resistance or the 

compliance current, as shown in Fig. 2.5. The ability to reliable control device resistance 

allows for the multiple bits of information to be stored in a single cell (termed multi-level 

cell—MLC RRAM). 

The device model can also be used to predict the switching time (defined to be 

when the current exceeds 1µA) as shown in Fig. 2.6. There is an exponential relationship 

between applied voltage and switching time (Fig. 2.6(b)). The model allows circuit 

designers to determine necessary programming voltages to achieve a desired 

programming speed. Furthermore, this model has been extended [47] to include 

stochastic switching effects and the relationship between voltage and switching time 

provides a means to build a biased random number generator for stochastic computing. 

Finally, the equations also explain the apparent threshold voltage in device switching and 

demonstrate that there is not a fixed threshold, but that it is dependent on voltage sweep 

rate as shown in Fig. 2.7 
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Figure 2.6:  (a) RRAM dynamics during pulse programming. The circuit in Fig. 
2.2(a) is used with 𝑹𝒔 = 𝟏𝟎𝒌𝜴. Top to bottom: applied voltage, voltage across the 
RRAM cell, current, and device resistance. The switching event is defined as when 
the current is >1μA and is marked by the dotted line. (b) Dependence of the 
switching time on applied voltage. 
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Figure 2.7:  Switching characteristics with two different sweep rates. The apparent 
threshold voltage is dynamic and dependent upon the sweep rate, with a faster 
sweeping rate resulting in a larger “threshold voltage.” 
 

2.1.2 Anionic Devices 

Resistive switching devices based on anion (typically in the form of oxygen 

vacancy, VO) motion form another class of RRAM devices. Here the VOs in transition 

metal oxides, such as TiOx, TaOx, HfOx, WOx, NiOx, and AlOx [40], [48] act as donors in 

the material and the accumulation (depletion) of VOs leads to the increase (decrease) of 

the device conductance. Additionally, by incrementally changing the local VO 

concentration, the conductance can be modulated incrementally allowing the device to 

exhibit analog switching behavior. As shown in Figure 2.8b-d, gradual resistance changes 

can be obtained, in contrast to the abrupt (digital) resistance switching behaviors 

exemplified in Figure 2.1d.  
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Figure 2.8: WOx based anionic resistive switch. (a) Device structure (SEM inset). (b) 
Hysteresis curve. Repeated positive (c) and negative (d) voltage sweeps.  
 

In these devices, the conducting path (filament) is considered to be a region rich 

in VO. In analog resistive switching devices the VO migration activation energy is low 

and multiple conductive paths can form in parallel [49]. The overall device conductance 

is then determined by the total area of the conducting regions, and the conducting area 

(scaled with the total device area) w was chosen as the state variable. The electron 

conduction will be dominated by tunneling (in the conducting region) or Schottky 

emission (in the non-conducting region) [49] and the total current includes both 

contributions weighted by the state variable w. The electronic current can then be 

modeled by the following equation: 

 

𝐼 = 𝑤 γ  sinh 𝛿𝑉 + (1− 𝑤)𝛼(1− exp(−𝛽𝑉)) (2.5) 
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The first term in the equation models the tunneling current in the conducting region, 

while the second term models the Schottky component in the non-conducting region. The 

state variable w represents the relative area of conductive over the total device area. 

Like the cation-based devices, the operation of the anion-based devices critically 

depends on the dynamics of the state variable. The oxygen vacancy movement is driven 

by both drift in an applied electric field and spontaneous diffusion effects. This is 

modeled by the following equation: 

 

𝑑𝑤
𝑑𝑡 = 𝜆 sinh 𝜂!𝑉 𝐹(𝑤,𝑉)−   

𝑤
𝜏  (2.6) 

 

The first term describes the non-linear drift of oxygen vacancies when a voltage 

V, is applied between the electrodes, very similar to Eq. (2.2) used for the cation-based 

devices. 𝐹(𝑤,𝑉) serves as a window function to bound the growth of w in the physically 

meaningful range of [0,1]. The second term describes the tendency of oxygen vacancies 

to diffuse away from the conductive filaments, thus reducing the conductance of the 

device. The 𝜏 term is highly dependent on fabrication parameters including oxide 

thickness and quality. It has also been suggested that 𝜏 has a dependence on w which may 

result from an increased stability when vacancy concentration reaches a high enough 

concentration [50]. 

Similar to the cation-based devices, by self-consistently solving the filament 

dynamics equations (2.5) and the I-V equation (2.6), the hysteretic characteristics of the 

anion-based devices can be well-modeled, as shown in Fig. 2.9. 
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Figure 2.9: Hysteresis curve of a WOx device. The gradual or analog conductance 
modulation is typical of anionic devices. 
 

2.2 Array Simulation Framework 

While SPICE simulation provides a very accurate picture of what is happening in 

the device, it requires significant computational effort, particularly as the network size 

grows. To make large network simulations more tractable, a simulation framework was 

built in Python. The network simulation framework was subsequently used in the 

simulation of RRAM-based neuromorphic systems discussed in Chapters 4 and 5. While 

the new framework uses the same device model developed for SPICE, some simplifying 

assumptions were made regarding array behavior which significantly reduced 

computational requirements. Specifically, it was assumed that array electrode resistances 

and sneak-path currents could be neglected. This allowed the current through each device 

to be solved analytically rather than simultaneously solving coupled equations 
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numerically, as is done by SPICE. The validity of these assumptions were verified with 

some long-running SPICE simulations and it was found that the direct approach proves 

adequate for algorithm development. 

The simulation framework consists of a number of Python modules and classes 

that allow for multithreaded simulation with selectable degrees of realism. Network 

training and sparse coding can be run with several learning rules and coding algorithms 

using a pure software reference implementation, an ideal network using the device model, 

or a network with devices that incorporate parameter variations and/or noise. 

 

An overview of the more significant units of the simulation framework is given below: 

• An instance of the Python simulation_object class encapsulates all aspects 

relevant to a network simulation and stores the results of network training and 

algorithm executions within its fields. 

• The LCA module performs the sparse coding of an input using the parameters 

from a simulation object. 

• The  images_sim_utils module encapsulates functions needed to generate training 

and testing samples as well as displaying the results from a sparse coding 

execution. 

• Several training functions are defined within the simulation module that can be 

used for training the weights of a simulation_object. These functions cycle 

through the training samples provided and keep track of statistics about training 

operations. They are implemented so that they spawn a separate process so as to 

allow multiple simultaneous simulations. 
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• The training functions rely on the update functions, Oja_update or 

gradient_descent, to perform the calculations necessary for weight updates. 

 

2.3 Conclusions 

Physics-based models have been developed to describe the operations of cation-

based and anion-based RRAM devices. Key to the model developments is the 

identification of the right state variable(s) and deriving the dynamic equations related to 

the state variable(s) and the associated I-V equations for given state variable(s). The 

device models and simulation framework have proved invaluable to the development of 

neuromorphic systems using these devices discussed in the following chapters. In larger 

arrays simulations certain aspects have been neglected (e.g. sneak-path current and 

device decay) after it was found from SPICE that these did not significantly impact 

network outcomes. 

Continued device measurement has led to refined models that better incorporate 

temperature and vacancy diffusion effects. This has led to the development of so-called 

higher-order memristors with multiple state variables in a similar theoretical framework. 

The use of multiple state variables allows better emulation of the dynamic behaviors of 

biological synapses [51] and can improve the device switching characteristics. These 

recent results highlight that memristors are not just simply analog memory devices, but 

can actually offer rich internal dynamics that may lead to new neural circuit emulation or 

computational hardware developments beyond current approaches which emphasizes the 

network topology and weight.
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Chapter 3. Learning Vector Quantization with Crossbars 

Learning Vector quantization (LVQ) is a technique that maps an input vector to 

the nearest vector in a learned, stored dictionary [52]. The approach is a relatively simple 

form of lossy data compression with applications in signal processing and pattern 

recognition [53], [54]. Because of its reliance on a distance measure that is easy to 

compute with crossbar arrays, LVQ is a good candidate for implementation in resistive 

switching hardware. The following chapter will describe how LVQ can be implemented 

in a crossbar array. Simulation results demonstrating the feasibility of the approach will 

be shown and an experimental approach is outlined. Classification results from the 

MNIST handwritten data set are shown. 

3.1 Description 

Given a dictionary of stored vectors, 𝛷, and an input vector 𝑝, vector quantization 

approximates 𝑝 with 𝜙! where 𝜙! is the min! 𝑝 − 𝜙  and 𝜙  are the columns of 𝛷.  In 

the case of data compression, only the index of 𝜙! in 𝛷 needs to be recorded. In the 

classification task, the class of the input, 𝑝, is assumed to have the same class as the 

winning dictionary element, 𝜙!. The approach divides the input space into regions of 

proximity to dictionary elements, with the boundaries occurring along a hyperplane that 

is equidistant from two dictionary elements. An example of this is shown graphically for 

the case of two dimensions in Fig. 3.1 below. 
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Figure 3.1:  Voronoi diagram. The black dots represent dictionary elements while 
the black lines indicate equidistant boundaries between the dots. Any sample to be 
classified is assumed to have the same class as the black dot within the same region. 
 

When an input is to be approximated (or classified), the nearest dictionary element 

(represented in black dots) is found and substituted for the original input (or its class used 

to determine the class of the input). The quality of the approximation depends on how 

well the dictionary elements divide the input space given the statistics of the inputs to be 

classified. The purpose of learning in LVQ is to distribute the dictionary elements to 

achieve a useful classification criterion. 

3.2 Distance Measure 
A key element of vector quantization is the ability to measure the distance of an 

arbitrary input to each element in the stored dictionary. If all of the elements in the 
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dictionary have the same L2 (Euclidean) norm, then the distance comparisons can be 

easily accomplished using the dot-product operation as a result of the following relation: 

𝑝 ⋅ 𝜙 =    𝑝    𝜙 cos𝜃 (3.1) 

 

where 𝜃 is the angle between  𝑝 and  𝜙. 

 

Since 𝑝 is shared between all comparisons, and if all 𝜙 have the same norm, then  

min
!

𝑝 − 𝜙 =   min
!
𝜃 = min

!
𝑝 ⋅ 𝜙 (3.2) 

 

 

Figure 3.2:  Graphical representation of vector quantization. An input vector (green  
arrow) is approximated as the nearest vector (yellow highlight) in a dictionary of 
stored vectors (red dots). 
 

This gives us a straightforward way to find the nearest vector: we simply take the 

matrix-vector product, 𝛷  𝑝, which is simply the dot-product of 𝑝 with each of the 

columns of 𝛷, and chose the index with the largest value. This is shown graphically for 2 

dimensional inputs in Figure 3.2. 
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3.3 Crossbar Acceleration 

An array of resistive switches can be used to accelerate the matrix-vector 

calculations. The following section will detail how this operation can be performed in an 

analog manner. The analog implementation allows computation to occur in memory, thus 

avoiding the von Neumann bottleneck. Additionally, a learning algorithm is presented 

that allows in-place update of memristor weights with the accumulation of update pulses 

performed by the intrinsic nature of the memristor. 

First the values of the dictionary are stored as the analog conductances in a 

crossbar array of resistive switches. Each dictionary element, 𝜙, which corresponds to a 

column of 𝛷, is stored element-wise in a column of the crossbar array. Specifically, the 

first element of 𝜙 is stored in the first row of the column, and so on up to the last element 

which appears in the last row of the crossbar matrix. In an analogy to biological neurons 

in the visual cortex, 𝜙 is considered to be the receptive field associated with the neuron 

connected to the column. Like biological receptive fields, the neuron’s response to an 

input will be determined by how similar the input is to the neuron’s receptive field; how 

this is accomplished is explained below. 

The vector multiplicand, 𝑝, is used to represent the inputs to the array, which are 

applied on the rows. Each element 𝑝! of 𝑝 is translated into an input pulse where the 

duration is linearly proportional to the magnitude of 𝑝!, while the sign of 𝑝! determines 

the input pulse polarity. The magnitude of the voltage for these input pulses is chosen to 

be of sufficient magnitude to allow the device state to be read, but not so large as to 

significantly modify the stored conductance; this is possible because of the strong non-
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linearity of device state-change with respect to programming voltage discussed in Ch. 2. 

When the input pulse is no longer active, the corresponding row is connected to ground.  

All of the column nodes are connected to virtual ground circuits (neurons) where 

the currents are collected and integrated. The charge that passes through an individual 

resistive switch is proportional to the product of the duration of the input pulse on its row 

electrode and its stored conductance value. Since all of the currents in a given column are 

summed (via Kirchoff’s current law), the total charge integrated by the output neuron is 

proportional to the dot-product of the input and stored weights. Thus, the network has 

effectively performed vector-matrix multiplication in an analog-computing manner 

through a simple read process. Additionally, because the input pulses are shared among 

all of the columns of the crossbar array, all of the calculations occur in parallel, yielding 

another significant speedup. 

3.4 Learning 

Thus far, we have discussed how to perform vector quantization assuming we 

have a dictionary, 𝛷. This begs the question: how do we obtain an optimized 𝛷 that 

allows reasonable LVQ results? In this section, the topic of learning vector quantization 

is discussed followed by how this can be accomplished in a crossbar array of resistive 

switches. 

First, we adopt a winner-take-all learning strategy. For each training sample, we 

choose the closest dictionary element and update only its receptive field. All other 

neurons’ receptive fields remain unchanged. Oja’s learning rule [55] is used to learn 

features from the input training data and build a dictionary, 𝛷. The rule modifies a 

neuron’s receptive field, 𝜙, according to the following equation: 
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𝜙!!! = 𝜙! + 𝜂𝑦!(𝑝! − 𝑦!  𝜙!) (3.3) 

 

where 𝑦! is the neuron activation, given by 𝑝! ⋅ 𝜙! 

and 𝜂 is a learning rate parameter less than one. 

A consequence of Oja’s rule is that each of the dictionary elements will converge 

to having a euclidean unit norm. As mentioned earlier, all dictionary elements having the 

same norm is a prerequisite for our vector quantization algorithm. To provide further 

motivation for the use of Oja’s rule and to understand how it results in normalized weight 

vectors, consider the following derivation. We begin with Hebb’s rule for synaptic 

weights and add the additional constraint that after each weight update, the norm remain 

equal to one: 

𝑦 = 𝑝   ⋅ 𝜙! (3.4a) 

𝜙!!! = 𝜙! + 𝛽𝑦×𝑝 (3.4b) 

𝜙!!! =
𝜙!!!

𝜙!!!
 (3.5) 

 

Equation 3.4 is the standard Hebbian learning rule which can be summarized as 

“neurons that fire together, wire together.” The superscript, t, in the equations indicates 

the state of the weights at each training sample. If y is the activity of an output neuron, 

then the Hebbian rule will increase the weights, 𝜙, in proportion to the activity and the 

strength of the inputs as seen in (3.4). In this equation, 𝛽, is simply a learning parameter 

less than one to provide a gradual weight change across all training inputs, 𝑝. Equation 
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3.5 imposes the additional constraint that the weights remain normalized to one. This is 

both intuitive and necessary because application of Hebb’s rule without such a constraint 

would lead to unbounded weight increase; as the weights increase, input and output 

neurons become more highly correlated which leads to yet more weight increase. This is 

clearly not physical and so the normalization constraint must be included. 

To see how Hebb’s rule, combined with the normalization constraint leads to 

Oja’s rule, consider the following. First, assume that the weights are already normalized 

(in practice this need not be true, so long as the norm of the weights is close to one; how 

close determines the region of convergence for the learning algorithm and will depend on 

𝛽). 

Assume 𝜙! = 1  

Consider the Taylor expansion of 𝜙!!!:  

𝜙!!!
!
= 1+ 2𝛽𝑦! + 𝒪(𝛽!) (3.6a) 

𝜙!!!
!!
≈ 1− 𝛽𝑦! + 𝒪(𝛽!) (3.6b) 

𝜙!!! ≈ (𝜙! + 𝛽𝑝𝑦)(1− 𝛽𝑦!) (3.6c) 

𝜙!!! ≈ 𝜙! + 𝛽 𝑝 − 𝜙!𝑦 𝑦 + 𝒪(𝛽!) (3.6d) 

𝜙!!! ≈ 𝜙! + 𝛽 𝑝 − 𝜙!𝑦 𝑦 (3.6e) 

 

By starting with Hebb’s rule and imposing a normalization constraint, we can use 

a Taylor expansion to derive Oja’s rule. As can be seen in (3.6) this derivation depends 

on neglecting higher order terms 𝒪(𝛽!). Thus, as long as 𝛽 (and thus 𝛽!) is kept small, 

Oja’s rule will result in correlated input and output neurons (via Hebb’s rule), yet cause 
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the weights to converge to a Euclidean norm of one, which is useful in many learning 

algorithms. 

This approach is similar to “neural gas” [56] or a K-means algorithm, whereby 

dictionary elements move to cluster centers within the input data. As will be shown in the 

next section, the dictionary elements find “features” that are common to all training 

samples in a cluster. 

3.4.1  Crossbar Learning 

Each training sample is applied as input to the network as described above. The 

winning neuron—the neuron with the most similar receptive field—is chosen, and it’s 

activation, y, is recorded. Next, a pulse, with duration proportional to y, is applied to the 

network in the reverse direction, collecting the charge on the rows. The collected charge 

is simply the receptive field of the winning neuron scaled by y. This term is then 

subtracted from the original input to obtain the term (𝑝 − 𝑦𝜙), then multiplied with y.  A 

writing voltage, with duration proportional to the final expression, 𝑦(𝑝 − 𝑦𝜙), is used as 

input to the network while grounding the winning neuron.  All other neurons are 

subjected to a half-voltage protection scheme to prevent altering their receptive fields. 

The choice of writing voltage essentially determines the 𝜂 term; higher voltages will 

cause the dictionary to learn faster, but may lead to overshoot, overfitting, and slow 

convergence. The voltage can also be adjusted as training progresses as in simulated 

annealing. 
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Figure 3.3: Updating a dictionary element (highlighted in yellow) based on a 
winner-take-all Oja’s rule. After sufficient training, all dictionary elements will be 
constrained to have unit norm (thus lying on the unit hypersphere). 

3.5 MNIST Learning 

To demonstrate the feasibility of learning in the vector quantization algorithm as 

implemented in resistive switching hardware, a vector quantization learning module was 

developed in the simulation framework described above. The MNIST handwritten digit 

database [57] was used to test the usefulness of the algorithm. In order to perform 

classification, an additional feature was added to each training input and the crossbar 

array: the training label for each sample was used to set one of the first 10 pixels in its 

respective training input. For example, if the training label is a 6 then the sixth pixel 

(counting from 0) in the first row is set fully on, while the remaining 10 pixels are set 

identically to 0. Examples of training inputs with embedded labels are shown in Figure 

3.4. This label will then be learned, along with the features from the handwritten digit, 

and later used to classify the test inputs. Learning is therefore conducted in an 

unsupervised manner—the label is not used to dictate which neuron should win. During 

inference, the final classification can be performed using a conventional, supervised 

network or, as was done in this study, simply by taking the strongest label of the winning 

neuron. 
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Figure 3.4: MNIST training sample inputs with embedded labels. 
 

After sufficient training, the network forms prototypes of the digits which can be 

used for pattern matching later. The dictionary elements developed from training are 

shown in Figure 3.5. The inset shows a larger version of one of the learned dictionary 

elements. By inspection, we can see that this neuron’s receptive field resembles a ‘5’ and 

that the 5th pixel in the first row is white while the others a dim. This neuron, therefore, 

would have strong activity if the input is a similarly drawn ‘5’ and the label pixel can be 

used to identify it. 
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Figure 3.5: Learned receptive fields using a winner-take-all strategy combined with 
Oja’s rule. An enlarged image of one of the fields is shown in the inset. 

3.6 Recognition 

In order to test the effectiveness of the algorithm, the network was used to classify 

handwritten digits from the MNIST test database. Inputs to the network appear much like 

those in Figure 3, but without the labels. The classification procedure is straightforward:  

an input test image is applied to the network and the neuron with the highest membrane is 

selected as the winner. The classification label is chosen as index of the pixel (of the first 

10 pixels) with the highest intensity.  For example, if the neuron with the receptive field 

shown in the inset of Figure 4 was chosen as the winner, the label would be chosen as 5, 

since the 5th pixel (counting from 0) has the brightest intensity.  This label is then 

compared to the true label for the test input. The process is repeated for all 10,000 test 
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samples and the accuracy recorded. The results for different network sizes are shown 

below in Figure 3.6. 

 

 

Figure 3.6:  Recognition error rate for MNIST test set. 
 

As can be seen in Figure 3.6, larger networks produce more accurate results. This 

can be intuitively explained by the fact that a larger network can more effectively cover 

the range of possible inputs; neurons, for example, are able to specialize more towards 

specific styles of handwriting. While the network results do not demonstrate state-of-the-

art performance on the MNIST task, they do suggest a method of performing a common 

machine learning task in hardware. It should be noted that this naïve approach could be 

implemented with far fewer resources (area and power) than a conventional software 

approach. Quantifying the power and area advantages is an area of ongoing research. 
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3.7 Conclusion  

The chapter demonstrated how memristor arrays can be used the accelerate the 

computations necessary to implement a classic machine learning algorithm, learning 

vector quantization. A neuromorphic computing approach to matrix-vector multiplication 

with crossbar arrays was introduced. The technique was used to enable in-memory 

computing in an analog manner. A winner-take-all approach was combined with Oja’s 

rule to enable efficient in-place, incremental weight updates without the need for a 

normalization step. The approaches to computation and learning developed in this chapter 

are applicable to many learning algorithms and will be used again in Chapter 4.
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Chapter 4. Sparse Coding 

4.1 Introduction 

The problem of sparse coding involves finding an efficient representation for an 

input signal. Given an input vector and dictionary of feature vectors, the goal is to 

represent the input as a linear combination of features, while using as few features from 

the dictionary as possible. 

 

Formally, the problem of sparse coding is given as minimizing an energy 

function: 

 

min
!,!

( 𝛷𝑎! − 𝑝 !
! + 𝜆 𝑎 !) (4.1) 

 

where 

Φ is a dictionary with each column representing a dictionary element,  

p is a column vector of input signals,  

a is a sparse row vector of coefficients,  

⋅ ! is the L2 or Euclidean norm,   

⋅ ! is the L0 norm, which is a count of the number of non-zero elements, 

λ is a constant chosen to control the sparsity. 
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𝛷𝑎! is the linear combination of dictionary elements, or the reconstructed input. Thus, 

the first term in the energy function ( 𝛷𝑎! − 𝑝 !
!) is the reconstruction error, or how 

well the sparse encoding represents the original input.  The second term (𝜆 𝑎 !) is a 

measure of the sparsity of the encoding.  The relative importance of reconstruction 

fidelity to sparsity is controlled by λ; higher values of λ result in more sparse solutions 

and in general a poorer reconstruction of the input, while lower values of λ are better able 

to represent the input, but with a less compact encoding. 

Sparse coding is a non-convex problem which can make finding the globally 

optimum solution difficult and computationally expensive[58]. It is for this reason that a 

memristive accelerator solution has been investigated. The problem can be separated into 

two parts in a technique known as forward-backward splitting [59]. The parts can be 

described as follows:  the inference process—given a dictionary, finding an optimal 

representation of inputs using a combination of dictionary elements [60]–[63]; and the 

learning process—optimizing the dictionary to improve sparseness and reduce 

representation error [64]–[66]. We will develop an algorithm, using memristors, and 

apply it to both simple bar patterns and natural images with the goal of identifying 

primitive features present in the image. The efficacy of the algorithm is determined by 

comparing the original image with a reconstruction of the image obtained by linearly 

combining the extracted features in proportion to their extracted amplitudes. 

4.2 Applications 

Sparse coding finds a number of applications including data compression, signal 

restoration, and machine learning [67]–[69]. Because the coefficient vector, 𝑎, of a 

sparsely encoded signal is primarily filled with zeros, it is sufficient to know only the 
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indices and values of the non-zero coefficients to (approximately) reconstruct the original 

signal. If the original signal vector contains m b-bit values, it requires 𝑚  ×𝑏 bits to 

represent. If it can be encoded using 𝑙  elements from a dictionary of size 𝑛 using d-bit 

coefficients, it requires 𝑙×(log!(𝑛)+ 𝑑) bits.  As an example, if 𝑑 = 𝑏 = 8 and 

𝑛 = 5𝑚 = 5×64 for (5× overcompleteness), it is not uncommon for 𝑙 = .01𝑛 for natural 

images, thus the compressed signal requires just 𝑙× (log!(𝑛)+ 𝑑) 𝑚𝑏 ≈ 1 10 of the 

storage space. For bandwidth limited communication or compressed storage, this 

technique can be useful. This sparse representation can also be used in systems that 

employ event-address communication, such as spiking neural network simulators. 

Additionally, the sparse coding process identifies the primary features of an input 

and drastically reduces the representation dimensionality, making it easier for subsequent 

data analysis. Sparse feature representation has been successfully employed in 

conjunction with other machine learning techniques to perform object classification [69]–

[71]. 

 

4.3 Locally Competitive Algorithm 

While there are many algorithms that can be used to attack the problem of sparse 

coding, the Locally Competitive Algorithm (LCA) [72] by Rozell was chosen for its 

excellent match with the memristor crossbar hardware. LCA falls into a general class 

known as iterative shrinkage threshold algorithms (ISTA) [73]–[75] that can be used to 

solve the constrained optimization problem of sparse coding. 

While a full description of the locally competitive algorithm can be found in [61], 

a brief introduction is provided here for discussion. LCA uses a vector of signal inputs 
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(image pixels in this study) to excite the network. In our approach the pixel values (e.g. 

intensity in a gray-scale image) are translated to voltage pulse durations with a fixed 

voltage amplitude, so that the total charge passed by the memristors is linearly 

proportional to the input, weighted by the memristor conductance. For each output 

neuron, the crossbar modulates the inputs with a synaptic weight vector (represented by 

the conductances of the memristors in the same column) and converts them into currents 

that flow into the neuron. The current is then integrated to determine the neuron’s 

membrane potential, as shown in Fig. 4.1. Additionally, the membrane potential is 

affected by a leakage term, as well as inhibiting inputs from other active neurons. In 

LCA, the inhibition is proportional to the similarity of the neurons’ receptive fields; this 

is done to improve sparsity by preventing duplicate neurons with the similar receptive 

fields from firing. Finally, the membrane potential of a neuron is compared to a threshold 

to determine the output activity of the neuron. Equation (4.2) describes this dynamical 

process. 

 

𝑑𝑢
𝑑𝑡 =

1
𝜏 −𝑢 + 𝑝! ⋅Φ− 𝑎 ⋅ (Φ!Φ− 𝐼)    (4.2a) 

 

which can be rewritten as: 
 

𝑑𝑢
𝑑𝑡 =

1
𝜏 −𝑢 + (𝑝! − 𝑎Φ!) ⋅ 𝛷 + 𝑎  (4.2b) 

𝑎 = 𝑇 𝑢, 𝜆 =
𝑢      if   𝑢 ≥ 𝜆

4𝑢 − 3𝜆      if  .75𝜆 < 𝑢 < 𝜆
0                      if   𝑢 ≤ 0.75  𝜆

 (4.2c) 
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where 𝑢 is the neuron’s membrane potential, x is then input vector, Φ is the matrix of the 

receptive fields (represented by memristor conductances along the columns), I is the 

identity matrix and a represents the activities of the neurons and is determined by 

𝑇(𝑢, 𝜆), an element-wise thresholding function. The set of active neurons (the non-zero 

elements of a) forms the sparse representation and their receptive fields contribute to the 

reconstruction of the input:  𝑝 = 𝛷 ∙ 𝑎! = 𝑎 ⋅Φ! !.  

From Eqn. (4.2a) it can be seen that the membrane potential dynamics include 

three terms: a leak term (-u), a driving term proportional to the similarity between the 

input and the neuron’s receptive field (𝑝! ⋅Φ), and an inhibition term from other active 

neurons (−𝑎 ⋅ (𝛷!𝛷 − 𝐼)  ). The amount of inhibition is determined by the degree of 

similarity between the competing neurons’ receptive fields, represented by the 𝛷!𝛷 term, 

multiplied by their activation, a, so that only active neurons inhibit other neurons. The –I 

term is included so that a neuron does not inhibit itself. Equation (4.2b) describes the 

same system dynamics, but is presented in a form that is easily implemented in a crossbar 

architecture. In particular, 𝑟 =   𝑝 − 𝛷 ∙ 𝑎! can be considered as an “error” or “residual” 

term that is fed back to the network [61], [76]. This interpretation is summarized in (4.3) 

below. 

𝑑𝑢
𝑑𝑡 =

1
𝜏 −𝑢 + 𝑝! − 𝑎 ⋅ 𝛷! ⋅ 𝛷 + 𝑎  (4.3a) 

=
1
𝜏 −𝑢 + 𝑝 − 𝑝 ! ⋅ 𝛷 + 𝑎  (4.3b) 

=
1
𝜏 −𝑢 + 𝑟! ⋅ 𝛷 + 𝑎  (4.3c) 
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4.4 LCA Memristor Crossbar Implementation 

To implement LCA in memristive hardware, a crossbar array structure is used in 

which vector-matrix multiplication as well as matrix transpose can be performed simply 

through read operations. Inputs are interpreted as the duration of fixed-amplitude voltage 

pulses and applied to the rows of the array. The voltage amplitude is selected to be high 

enough to be able to perform the computation, but not so high that the memristor’s state 

is altered. “Leaky integrate” neurons are placed on the columns, and the memristors in a 

given column serve as the synapses for that column’s neuron and their weights form the 

receptive field for the given neuron. This is shown schematically in Fig. 4.1. 

 

 

Figure 4.1:  Memristor crossbar architecture. Inputs are indicated on the rows as 
Xx, while the charge is collected on the columns, schematically shown as Ax. 
Memristors are formed at the crosspoints, and each column of synaptic weights 
(represented by memristor conductances), Wx, constitutes the receptive field of a 
neuron. 

The integration of the membrane potential is broken into steps. 

• First, the residual, R, is initialized as the input image, p. 
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• Next, variable length input pulses, proportional to R, are applied and the charge, C1, is 

collected at the bottom. 𝛼𝐶! is added to the neuron’s membrane potential, u. (𝛼 is a 

scale factor to relate charge with pixel intensity). 

• A leakage term, proportional to u, is subtracted to obtain an adjusted membrane 

potential. 

• The membrane potential of each neuron is stored and compared to a threshold, and 

the activation a, is determined, with a fraction being added back to u 

• Pulses with durations proportional to a are applied at the bottom of the array, and the 

charge, C2, is collected at the left-end of the rows 

• The residual is updated as the original input minus the active neuron contribution, 

𝑟 = 𝑝 − 𝛼𝐶2. 

The process is repeated in a tic-toc manner, alternating input between the rows 

and columns, until the membrane potentials reach steady state. In this way, the network is 

allowed to settle to a state where the set of active neurons is unchanging and a sparse 

representation that minimizes a cost function that includes of reconstruction error and 

sparsity is achieved [61]. For a more analog approach the collection of current and 

leakage adjustment can be performed with a capacitor and low conductance resistor, 

respectively. 

To test the ability of the algorithm to correctly identify underlying constituent 

components, a dictionary of white bars, with varying placement and angle, on a black 

background was created; shown in Fig 4.2(a). A test image was then generated by 

randomly sampling 10 elements from the dictionary and averaging together the selected 

dictionary elements as shown in Fig 3(b). The sparse coding LCA with λ = .02 was run 
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on the test image to determine if the indices of the active neurons matched the dictionary 

elements used to construct the image. 

 

(a) 

 

(b) 

 

 Figure 4.2:  Standard bars test for inference. (a) Test dictionary of white bars 
on black background—random sample of 90 out of 392 dictionary elements 
shown. (b) Example test image constructed by averaging 10 randomly selected 
dictionary elements. 

 

The process was repeated on 1000 test images and it was found that the sparse code 

exactly matched the components used to construct the image with a success rate of 94%. 

This demonstrates the ability of LCA sparse coding to discern constituent features from a 

composite image. On more complex inputs, natural images for example, the goal is to 

extract the features that make up the image. This information can then be used to 

reconstruct the image or even identify objects within it. 

4.5 Dictionary Learning 

The LCA algorithm, as described in [61], addresses the first challenge of feature 

extraction—namely, how to sparsely represent an input with a given dictionary, but LCA 
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itself does not cover the topic of how to learn a dictionary of feature primitives (ideally in 

an unsupervised fashion) while taking into consideration the efficiency and limitations 

imposed by the hardware. In this section we discuss our approaches to learn the 

dictionary of feature primitives using memristor crossbars. 

For optimal sparse coding, it is necessary to find a dictionary that is well suited to 

the types of inputs to be sparsely encoded. The extraction of features from an input is 

only possible if the dictionary contains those features. We first review the use of 

stochastic gradient descent and discuss the drawbacks of implementing this algorithm in 

hardware. This discussion will motivate the use of the learning technique (WTA + Oja’s 

rule) developed in Chapter 3 to learn dictionaries of features from training samples; the 

learned dictionary will resemble the feature primitives found in the training set. The first 

experiment will use horizontal and vertical bars to test the ability of the learning 

algorithm to identify features. Next, the same algorithm will be applied to samples drawn 

from natural images; the learned dictionary elements resemble Gabor filters which are 

theorized to underlie the receptive fields in the visual cortex [65]. 

4.5.1 Stochastic Gradient Descent 

An intuitive approach is to begin with an untrained dictionary of random receptive 

fields, apply the LCA sparsification algorithm to a training patch to obtain the 

coefficients, and then use stochastic gradient descent to adapt the receptive fields of 

active elements to reduce the reconstruction error [65], [77]. Briefly, the stochastic 

gradient descent algorithm modifies the weight vectors of active neurons by an amount 

proportional to the negative of gradient of the cost function’s gradient for each training 

sample. It is a first-order optimization approach commonly used in machine learning, but 
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requires the computation of the error gradient for each training sample. 

At each step, a training sample is chosen at random and applied to the network. 

The network is then allowed to evolve following the LCA algorithm discussed in Section 

4.3. For training, λ was arbitrarily chosen to be 0.3 as this produces an intermediately 

sparse solution. After the network has reached steady state, only a few neurons will be 

active. The gradient of the error with respect to the dictionary is given as 𝛻𝐸 =

− 𝑝 − 𝛷𝑎! ⊗ 𝑎. To descend the error field, the following learning rule is applied: 

ΔΦ! = 𝛽 𝑝 − 𝛷𝑎! ⊗ 𝑎 where 𝛽 is a scale factor << 1; a full derivation is given in [65].  

While gradient descent in conjunction with LCA produces very good results, it is 

a complex learning process, requires normalization of the weight vectors, and results in 

negative as well as positive weights—implying a non-physical negative conductance in 

the memristor. The error produced by LCA is typically small, and thus the adjustments 

made to the receptive fields are also small. Further, for each training step, the full LCA 

algorithm must be run until steady state to obtain the representation coefficients, and then 

training pulses must be applied for each active neuron. The result is a network that takes 

significant resources and time to train effectively. 

4.5.2 Winner Take All & Oja’s Rule 

As an alternative to the complexity of stochastic gradient descent, we opt for the 

same training algorithm developed in the previous chapter, namely, a winner-take-all 

strategy coupled with Oja’s update rule. To test the ability of the learning algorithm to 

learn a basis dictionary, we performed the following experiment: 
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• An array of 10 vertical and 10 horizontal lines, each 1 pixel wide, shifted and 

embedded in a 10x10 black pixel field was generated. The elements are shown 

Fig. 4.3. 

• From this array 2 elements were chosen and linearly combined; this combination 

was added to the training set. Thus the training set consisted of all !"
! = 190 

combinations of 2 elements. 

• The network was initialized to have 20 neurons with random receptive fields. 

• The WTA/Oja learning was performed as described in Chapter 3 repeatedly using 

the training set as inputs. 

 
(a) 

 
 
(b) 

 
Figure 4.3:  (a) Basis set of vertical and horizontal elements used to 
form the training samples. (b) A random sampling of 30 out of 190 
training samples formed by selecting 2 of the bases from (a). 
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Figure 4.4:  Learned dictionary from training patterns consisting of 2 
basis elements. 

 
As can be seen in Fig. 4.4, most dictionary elements have evolved to resemble a 

single vertical or horizontal bar. This demonstrates that the learning algorithm is able to 

discern the basis set that was used to construct the training examples. The results are 

encouraging and suggest that the training algorithm could also find a basis set for natural 

images. 

 

4.5.3 Application to Natural Images 

The winner-take-all—Oja learning rule was then applied to the more complex 

task of learning a dictionary from a set of natural images. To train the network, 10x10 

pixel patches are sampled from a set of 9 natural images shown in Fig. 4.5. Each patch is 

scaled and reshaped into a column vector as input. Training then proceeds as described in 

Chapter 3, Section 3.4.1. 
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Figure 4.5: Natural training images. All 110,889 10x10 pixel patches are extracted 
(by sliding the 10x10 sample window across and down each of the 9 120x120px input 
images) for training. 
 

 

 

Figure 4.6: Receptive fields formed using (a) stochastic gradient descent and (b) 
WTA and Oja’s rule directly (neglecting device model) on natural images. 
 

A comparison between the receptive fields obtained by gradient descent and the 

WTA-Oja learning rule is shown in Figure 4.6. The two sets of fields are qualitatively 

similar (quantitative LCA results are compared in a later section) and resemble gradients 

and Gabor filters of various orientation and frequency. These fields are similar to those 
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found by other techniques and thought to exist in the mammalian visual cortex [62]. 

Gabor filters are useful for identifying edges and identifying textures [78], [79], so the 

emergence of Gabor-like receptive fields from a Hebbian-derived learning rule is a 

promising outcome.  

 

4.6 Sparse Reconstructions 

To test the learned dictionaries, a natural image, shown in Fig. 4.7 and not 

included in the training set, was compressed using LCA and the trained memristor 

network and then reconstructed from the active coefficients obtained from compression 

and their corresponding dictionary elements.  

 

 

Figure 4.7:  Test image of a leopard. 10x10 non-overlapping pixel patches were 
extracted from this 120x120 resolution image to test the performance of the training 
algorithms in conjunction with LCA used in this paper. 

During this phase, the test image is broken into 144 square patches of 10x10 

pixels each. Each 100-valued input is applied to the memristor network, consisting of 300 

columns, where each column consists of a 100-valued dictionary element (i.e. 100 rows). 

The network dynamics are allowed to reach steady-state following LCA. The activities of 

the neurons are recorded and this forms the sparse representation of the image (since 
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most of the activities are exactly 0, only the index and value of the above threshold 

neurons are recorded). The number of active coefficients (equivalently, the compression 

ratio) is influenced by the λ parameter in the thresholding function of (Eqn. 4.2c). 

Next, the set of patches are reconstructed by linearly summing the receptive fields 

of the active dictionary elements, weighted by the stored activities obtained during sparse 

coding. These decompressed patches are then tiled to form the reconstructed image; 

examples of reconstructed images are shown in Fig. 4.8. By increasing the threshold 

parameter λ, it becomes harder for neurons to become active and contribute to the coded 

representation, and thus the solution becomes more sparse. For each reconstructed image 

in Fig. 4.8, the λ parameter used during LCA as well as the resulting number of active 

neurons (average L0 over all 144 patches) is shown above it. As λ increases, the solutions 

become more sparse and the reconstruction quality in general deteriorates, so LCA sparse 

coding can be thought of as a form of lossy compression. 

(a) 
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(b) 

 

(c) 

 

Figure 4.8:  Image reconstructions using coefficients obtained from the LCA 
algorithm after different training implementations: (a) gradient descent, (b) WTA 
software implementation, (c) WTA using the device model. 
 

 

While Fig. 4.8 (a-c) all use LCA for reconstruction, they differ in the method used 

to train the dictionary used by LCA. The dictionary trained with stochastic gradient 

descent produces a good, low-distortion reconstruction of the image, particularly at low-

sparsity solutions (with an average of 42.6 active neurons per patch). At a high λ = 2.06, 

however, the gradient descent result appears worse than that obtained by the WTA 
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software implementation. This can be understood on the grounds that gradient descent 

was trained and optimized at λ=0.3, while the high sparsity solutions requires a higher λ. 

The WTA-Oja approach shown in (b-c) is offered as an alternative to stochastic gradient 

descent and requires significantly less computation. From Fig. 4.8(b) it can be seen that 

the use of Oja’s rule in a winner-take-all training strategy performs well, with 

reconstruction quality degrading gracefully with increasing λ. Fig. 4.8(c) shows that 

WTA-Oja strategy implementation with the device model works with the low-sparsity 

constraint but exhibits markedly reduced performance as the solution becomes more 

sparse. This can be attributed to the non-linear response to programming arising from the 

window function term (𝐹(𝑤,𝑉)) of the device model (see Eqn. 4.4b below). This 

nonlinearity, shown in Fig. 4.11a below, distorts Ojas rule by reducing the effectiveness 

of programming pulses when the device state is near its extremes (it becomes harder to 

erase a device that is already close of OFF and harder to program a device that is close to 

ON); the issue will be addressed in a later section. 

 

4.7 Impact of Device Variability 

Memristor devices are inherently variable since the resistance change is driven by 

the migration of oxygen vacancies (for an oxide-based memristor) which are essentially 

defects in the oxide matrix. The resistance switching process is strongly affected by the 

local field and oxygen vacancy profile and shows significant device-to-device and cycle-

to-cycle variations [47]. In order to assess the impact of device variability on the network 

performance, random variations were introduced to the device modeling parameters. The 

device model is repeated from Chapter 2 below for  reference: 
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𝑑𝑤
𝑑𝑡 = 𝜂! sinh 𝜂!𝑉 𝐹(𝑤,𝑉)−   

𝑤
𝜏  (4.4a) 

𝐼 = 𝑤 γ  sinh 𝛿𝑉 + (1− 𝑤)𝛼(1− exp(−𝛽𝑉)) (4.4b) 

 

Percent variation for each parameter was chosen to reflect realistic deviations 

resulting from processing conditions and material properties; sources of variation for 

each parameter are discussed below. Variations in these parameters affect not only the 

computation stage but also the learning stage. In these studies, the decay term, −!
!
, was 

considered to be negligible and was not included. This was done so that the network 

learning algorithms become time-independent. This is a reasonable approximation so 

long as the decay time constant, 𝜏, is sufficiently large compared to the speed at which 

the LCA algorithm and network learning is performed. Experimental evidence has 

suggested this is the case. It is noted that if the network weights decay appreciably, any 

system using these weights will likely have to continue learning periodically to reinforce 

and restore the weights (interestingly there is evidence that this occurs in mammalian 

brains as well [80], [81]), although the weight decay effects are an area for future 

research. 

Variable Nominal Value Rel. Std. Dev. (%) 

𝜂! 7.21e-8 3 

𝜂! 18.54 1 

𝛾 2.05e-5 10 

𝛿 1.03 2 

𝛼 1.03e-5 10 

𝛽 0.515 5 

Table 1:  Nominal device parameters with estimated variances. 
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4.7.1 Sources of Variation 

𝜂! describes the ion hopping dynmics and is largely influenced by the attempt 

frequency and hopping distance of oxygen vacancies and is related to film non-

homogeneity. 

𝜂! characterizes the distortion of the energy barriers for ion hopping in response 

to an applied electric field. Variation can occur as a result of local field enhancement, 

though this is mitigated by the averaging effect of having multiple parallel conduction 

paths form. 

𝛾 is a prefactor for the tunneling current associated in transport through the 

conductive regions. While there are many variables that affect 𝛾, total device area can 

have a significant impact. Area variations arise primarily from lithographic constraints. 

𝛿 appears in the sinh term of the tunneling current. Variations can occur in 

tunneling distance between the conductive region and the electrodes, though this is 

somewhat self-regulated by the dynamics of filament growth when a series resistance is 

present in the circuit. 

𝛼 is a prefactor for the Schottky current component. Like 𝛾, variations can be 

attributed primarily to area nonuniformity resulting from lithographic constraints. 

𝛽 is found as a multiplicative factor with the voltage in the schottky current 

equation. Variations in 𝛽 represent variations in the ideality factor of the diode. 

4.7.2 Impact 

The effects of these variations were tested using a Monte Carlo approach and the 

resulting device behavior can be seen in Fig. 4.9. Here we model the effects of variation 

in the current equation variables (Fig. 4.9(a)) and dynamics equation variables (Fig. 
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4.9(b)) using a normal distribution centered at the nominal value and with relative 

standard deviations given in Table 1. Figure 4.9(c) shows the combined effect of these 

variations. The results from the combined variation in Fig. 4.9(c) appear reasonable and 

are consistent with variation observed in real devices. The magnitude of the effective 

variation, defined as (𝐼!"# − 𝐼!"#) 𝐼!"# where Imin and Imax are measured at the highest 

conductance state (i.e. after 20 programming pulses), can be in excess of 100% and is 

certainly significant in memristor devices. The large variation can be attributed to 

uncertainties in fabrication but more fundamentally uncertainties in the local 

electrochemical environment for ion motion and the stochastic nature of the ion hopping 

process. To determine the effects of this large variation on the network performance, we 

repeated the WTA training with this device variation model and the results are shown in 

Fig. 4.10. The device variations result in less distinct feature elements and consequently 

poorer image reconstructions. 
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Figure 4.9:  Effects of variations in (a) current equation parameters, (b) state 
dynamic equation parameters, (c) all parameters. 

 

(a) 
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(b) 

 

Figure 4.10:  (a) Receptive fields resulting from WTA training using a device model 
that incorporates parameter variations. (b) Resulting image reconstructions using 
these receptive fields with LCA. 

 

4.8 Nonlinearity Compensation 

From the results above, it is evident that, while the LCA algorithm adapts to the 

dictionary, the impact of the device non-idealities results in degraded performance. The 

non-idealities can be classified into two effects:  parameter variation, as discussed 

previously, and nonlinearity during training with respect to programming pulse number 

(seen in Fig. 4.11(a) and resulting from the window function, F(w,V), in Eqn. 4.4b). The 

nonlinearity reduces the effectiveness of Oja’s rule since Oja’s rule assumes the weight 

update is linearly proportionally to the neuron activity and error while, in an actual 

memristor, the weight update is additionally affected by the window function: as the 

memristor reaches saturation (near the levels of minimum and maximum conductance), it 

requires increasingly more programming time to achieve the same conductance change. 

Below we show that effects of nonlinearity in programming can be corrected and that, as 
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a result, algorithm performance can be greatly improved even in the presence of large 

device variations.  

Using the device model, a relationship between desired state change and pulse 

duration can be derived to compensate the nonlinearity effect and produce desired linear 

weight updates. Employing such a relation, once the state update is calculated using Oja’s 

rule, a corresponding pulse duration can be calculated and applied to the memristor. 

Given a desired state update of Δ and current state of w, the pulse duration is given as: 

𝑓(𝑉)  log  
𝑤 − 𝑘

𝛥 + 𝑤 − 𝑘  (4.5) 

 

where 𝑤  is the current weight, 𝑓 𝑉  depends only on the voltage and material 

parameters, Δ is the desired change, and 𝑘 = 1    if  𝛥 ≥ 0
0    if  𝛥 < 0 

 

As can be seen from Eqn. (4.5), it is necessary that the current state of the 

memristor be known. This can be obtained by applying a read pulse on the columnar 

electrode and simultaneously reading out the states of the memristor from each row. This 

comes at the expense of an additional step in the training process. However, only the 

synaptic weights associated with the winner neuron needs to be read out, and the read can 

be performed in parallel which will help minimize delays in the training process. It 

should be noted that if 𝑤 + Δ > 1 or 𝑤 − Δ < 0 then Eqn. (4.5) gives a non-finite pulse 

duration; in this case, a fixed long pulse is used to drive the w close to bound. 

 Figure 4.11 contrasts the effects of using an adjusted pulse duration with those of 

using a fixed duration for a series of 10 positive pulses, followed by 10 negative pulses, 
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repeated 3 times, showing the scheme can effectively compensate the nonlinear effect 

and produce the desired linear weight updates. 

 

 

Figure 4.11:  Device programming linearization. (a) Device read current following 
repeated write and erase pulses of fixed duration. (b) Linearized device behavior 
obtained through compensated write/erase pulse duration in accordance with Eqn. 
(4.5). 

Using the non-linearity compensation scheme developed above, the WTA training 

was repeated. It can be seen in Fig. 4.12(a) that the receptive fields after training using 

this method are closer to those obtained using the ideal software model, and importantly, 

that the Euclidean norm of the fields is closer to one with less deviations. Fig. R(b) 

demonstrates that the reconstruction performance is indeed greatly improved as a result, 

even in the presence of large device variations. 
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  (a) 

 

(b) 

 

Figure 4.12:  Linearization improvement. (a) Receptive fields obtained through non-
linearity compensation when using WTA training with a device model that 
incorporates parameter variations. (b) Improved LCA image reconstructions using 
the compensated fields. 
 

4.9 Quantitative Error 

To quantitatively measure the degree of distortion, the mean-squared error (MSE) 

between the original image pixels and the reconstruction is calculated:  

 



 

 
66 

𝑀𝑆𝐸 =   
1
100 𝑋 −Φ!𝑎 !

!""

!!!

 (4.6) 

 

This metric can be used to compare algorithm performance and measure the effect 

that device parameters have on reconstruction quality as is shown in Figure 4.13. From 

the figure, it can be seen that while the full LCA training using gradient descent yields 

the best results at lower sparsity, WTA can yield comparable performance with reduced 

complexity in implementation and even surpass gradient descent at high sparsity. Further, 

the result shows that the network is capable of compensating device-to-device parameter 

variations that result in maximum current levels differing by over 100%. On the other 

hand, dictionary training suffers from the device non-linearity, but this limitation can be 

overcome using the training pulse-width compensation scheme discussed the previous 

section. It is interesting to note that results using the device model with variations, 

coupled with the compensation scheme outperformed the compensated device model 

without variations and even the software implementation, though the improvement is 

slight. It is hypothesized that parameter variations may help prevent the dictionary from 

becoming trapped in local minima during training, although detailed analysis of the effect 

of variations (noise) in network performance will be a topic of future research. 
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Figure 4.13:  Quantitative comparison of LCA reconstructions. Comparison 
between gradient descent, winner take all, and device models—with and without 
parameter variations and non-linearity compensation. 
 

4.10 Device Failures 

Memristive devices can fail in a number of ways and it is important in some 

applications that isolated device failures not result in catastrophic system failure. To 

investigate the effects of device failure on LCA sparse coding performance, we simulated 

algorithm performance with defective devices. 

In this preliminary work, we chose to examine stuck-at faults since these are 

expected to be of more severe consequence than transient faults. Since learning is an 

iterated process, transient faults are expected to rectified with additional training. During 

network inference, transient faults are expected to result in degraded sparse code 

generation and/or degraded image reconstruction, but the effect should be limited to the 

duration of the fault. Stuck-at faults, on the other hand present a persistent over- or under-

estimation of the true or desired weight within the array and it was found that their 

presence can distort network training. 
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4.10.1 Nonconductive Defects 

Devices that fail in the OFF state are said to be stuck-at zero (SA0). This can be a 

result of a broken electrode or a failure to form a conductive path between the top and 

bottom electrodes. To test LCA performance, we first generate a memristor array with 

randomized weight values, following the same procedure for simulating a fault-free 

array. To simulate SA0 faults, we then generate a second boolean matrix of the same size 

where each element is True with a probability given by p. The locations of True elements 

are stored and weight values corresponding to these locations are set to 0. At each 

training step, the learning rule updates for these locations are ignored and the value kept 

at 0. 

(a) 
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(b) 

 

(c) 

 

Figure 4.14: Demonstrating the effects of SA0 faults on dictionary learning. (a) 
0.1%, (b) 1% and (c) 10% of devices randomly selected as defective. 
 

Figure 4.16 shows the effect of nonconductive faults on algorithm performance. It 

can be seen that SA0 do not degrade network performance, and in fact may improve 

sparse coding error slightly. It is believed that this may be the result of SA0 faults further 

de-correlating dictionary elements, but more investigation is required to confirm if this is 

the case. At higher rates of SA0 faults (not shown), algorithm performance is observed to 

be negatively impacted. 
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4.10.2 Maximally Conductive Defects 

Memristors can also fail in such a way that they are effectively stuck in the ON 

state. These stuck-at one (SA1) faults can be the result of pin-hole defects in the 

switching medium that occur during fabrication, static discharge, abnormally high 

programming voltages, or ionizing radiation. 

The simulation of SA1 faults follow the same procedure for SA0, with the 

exception that faulty weights are given a value of 1 rather than 0. It was observed that 

unlike SA0 faults, SA1 defects negatively impact algorithm performance (Fig. 4.16). 

Even a single SA1 fault effectively renders the column in which is occurs unusable. This 

can be understood by examining the effect of Oja-rule training on memristor weights. 

After training, the weights will converge such that the L2 norm of weights in a given 

column will be equal to one. If one (or more) of the weights is stuck at one, the learning 

rule will force the remaining weights close to zero. The dictionary element is then 

effectively able to encode only a single pixel. The element can still be used when sparsity 

constraints are weakly enforced, but at higher sparsity, the algorithm will not use an 

element that encodes only one pixel. Furthermore, the presence of SA1 faults can 

effectively prevent training of other dictionary elements as seen in figure below. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.15: Demonstrating the effects of SA1 faults on dictionary learning. (a) 
0.1%, (b) 1% and (c) 10% of devices randomly selected as defective. 
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Even if a dictionary element (crossbar column) does not contain a SA1 fault, its 

training can be impeded by SA1 faults that are present elsewhere in the array. This results 

from the winner-take-all approach to training. Before training all memristor weights will 

start in a relatively low conductance state (with the state naturally settling near close to 

0), with the exception of the SA1 faults. When the training samples are applied the 

columns with SA1 faults will naturally win simply because of their high conductance 

fault. The persistent winning of the faulty elements effectively prevents the other 

elements from being trained. 
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Figure 4.16:  Quantitative comparison of LCA with SA faults. The left column 
shows the results of sparse reconstruction using a SA0 dictionary, while the right 
columns shows the results of a SA1 dictionary. Defect densities range from .1% (row 
1), 1% (row 2), to 10% (row 3). 

 

4.11 Conclusion 

In-memory sparse coding using the locally competitive algorithm (LCA) and 

crossbar arrays of memristors has been presented. The adaptation of the algorithm to 

memristor hardware was discussed and compared with ideal software solutions. The WOx 

device model and simulation framework developed in Chapter 2 is used to simulate 

realistic array behavior and device non-idealities including parameter variation and 

failure were considered. Key to the success of the implementation is the reliance on 

feedback mechanisms to compensate device non-idealities. The iterative forward-

backward algorithm proposed to numerically integrate (with a crossbar array) the neuron 

dynamics (Eqn. (4.2)) can effectively compensate over- and under-represented pixels that 

may be present in the dictionary features as well as noise. Likewise, the iterative 

application of Oja’s rule can compensate device over- or under-programming while the 

winner-take-all approach targets untrained dictionary elements (because their norms are 
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greater than one). However, the effect of the window function limits the effectiveness of 

weight updates by causing an asymmetry in weight change depending on the current 

weight. To solve this problem, an adjusted programming pulse scheme is presented and 

good results are obtained. 

Unlike device variability, the effect of SA1 memristors presents a serious 

challenge for LCA sparse coding. Given that a single SA1 fault in a column renders it 

useless for sparse coding, as the probability p of faults increases, the dictionary size is 

effectively reduced. The impact is also related to the patch size; more inputs per patch 

increases the likelihood that at least one of them is defective. Given a patch size n, the 

probability that a dictionary element is defective is given by 1-(1-p)n. In the examples 

given in the study, a 16x16 input patch was used; with even a low defect rate of p=.001, 

there is a 22.6% chance that a given dictionary element is defective. For this reason, 

smaller patch size may be preferable, though this will reduce the total sparsity of an image 

encoded patch by patch. Techniques to repair a SA1 fault, or at least remove its current 

contribution from the column, would prove very useful in developing larger robust 

systems in the face of these kinds of faults. 
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Chapter 5. Test and Measurement 

Through the course of the research, several test and measurement platforms have 

been constructed. Resistive switches do not operate without additional circuitry to control 

reading and writing operations. In order to provide high performance and minimize area 

utilization, the crossbar arrays can be directly integrated with and over CMOS circuitry. 

Previous work has demonstrated the feasibility of integrating digital switching devices 

with CMOS devices [31], [82], but an integrated analog array had not been shown. 

Presented below is the successful integration of analog switching WOx memristor arrays 

on a test and measurement setup developed as part of the DARPA SyNAPSE program. 

An additional measurement board was developed to allow testing of larger 

crossbar arrays of devices. This system included the development of a system-on-chip 

targeted for Xilinx FPGAs to provide both control for the crossbar array and for 

executing neuromorphic algorithms. Hardware and software was co-designed to 

successfully use the arrays to accelerate algorithm execution. 

5.1 CMOS Integration 

Since the memristors’ operation and fabrication do not involve the single-

crystalline Si substrate, they can be fabricated over existing circuitry in the Back-end-of-

the-line (BEOL) fashion. In this study, the memristors were fabricated on top of an 

integrated test circuit designed in collaboration with HRL Laboratories.  The chip acted 

essentially as a decoder:  given an address for a row and column, connections were made 
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from the input to the corresponding memristor electrodes. Signals could then be passed to 

the device for reading or writing the device state.  The first chips were designed with 

IBMs 180nm 7RF process using Al interconnects; later devices used the 90nm 9RF 

process using Cu interconnects.  Schematic of the memristor integration processes and 

the scanning electron micrographs (SEMs) of the exposed Cu vias (for the 90nm chips) 

and integrated memristor chips are shown below in Figure 1: 

 

(a)

 

(b) 

 

(c) 

 

Figure 5.1:  CMOS Integration. (a) Fabrication flow for exposing Cu landing pads 
to electrically connect electrodes. (b) An SEM of the landing pads. (c) An SEM of a 
completed 10x10 array. Adapted from [83]. 
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In order to provide the necessary control and device signals, a test and 

measurement setup that included a probe card, a National Instruments data acquisition 

system, and custom software written in Matlab was used. A schematic of the setup is 

shown in Figure 2. 

 

 

Figure 5.2:  Test and Measurement setup for 7RF and 9RF memristor chips. 
 

5.2 Array Testing Board Design 

A special purpose board was designed to test memristor arrays in neuromorphic 

computing applications including the sparse coding tasks. The board is capable of 

applying timed voltage pulses and performing current measurements, with an integrated 

controller system to perform these tasks in an automated manner. Both the board and 
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controller designs have undergone several rounds of revisions as the project requirements 

were refined and deficiencies addressed. 

A functional schematic of the board is given in Figure 5.3. The board was 

developed in collaboration with Professor Zhengya Zhang’s research group at the 

University of Michigan. It can measure arrays in size of up to 32 rows and 32 columns. 

There are four digital to analog converters (DACs) capable of producing 0-5V 

independently. Two voltages are connected, through the matrix switches, to the rows, and 

two to the columns. The matrix switches are connected in such a way as to perform 2x32 

routing, with a 32-bit binary word used to configure which of the rows (columns) is 

connected to DAC0 (DAC2) while the remaining rows (columns) are connected to DAC1 

(DAC3). The board is capable of performing standard tests to characterize memristive 

devices including DC Sweeps, pulse measurements, and importantly, read and write 

procedures for memristor crossbar arrays. 

A virtual ground with negative feedback is used to convert the current flowing to 

ground to a voltage that can be read by the analog to digital converters (ADCs). A 

variable resistor in the feedback back is used to control the amplification of the current 

signal. A multiplexer is included in the signal path to allow connection of either the 

virtual ground or the DAC. All control and data signals are passed through logic level 

converted to pin headers so the signals can be used off-board. 
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Figure 5.3:  Functional schematic of the board (top) and complete system (bottom) 
of the test and measurement setup designed in collaboration the Zhang group. 
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5.3 Controller 

The system controller was initially implemented as a finite state machine with a 

custom instruction set, detailed below. After completion, however, deficiencies were 

identified and the controller was redesigned using a soft microcontroller with custom 

peripherals. The main tasks of the controller were identified as: 

• Load instructions 
• Set DAC voltages 
• Configure matrices 
• Read ADC 
• Store data 
• Delay 
• Transmit stored data 

5.4 Finite State Machine 

Initial designs were based on a finite state machine implemented on a Xilinx 

Spartan-6 field programmable gate array (FPGA). While basic operation is largely a 

sequential process, the particular design of the board demanded some parallel signals. For 

each task listed above, a module was implemented in Verilog that would perform the 

sequence of steps necessary to accomplish the task. A central control module was used to 

coordinate these actions using handshaking signals to determine when to proceed to the 

next task. 

A primary benefit of this design is the speed of execution. A series of instructions 

are generated on the attached computer and downloaded to the controller. After receiving 

a start signal, the state machine will execute each instruction in order. Because the clock 

frequency is known and there are no branching or flow control instructions, execution 

time can be tightly controlled. This is particularly useful for creating sub-10ns pulse 

widths on the board. This tight timing control comes at the expense of code size as well 
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as difficulties in programming. Requiring strictly sequential instruction execution without 

the ability to branch precludes the use of looping structures or function calls. Thus, if 

some task needs to be repeated, the instructions are effectively inlined and require storage 

space for each repetition. Furthermore, because of the speed and synchronous nature of 

the block RAMs (BRAM) on the FPGA, the control unit was designed to have a 2 stage 

pipeline with instruction fetch and execution occurring in parallel. Unfortunately, not all 

instructions execute in the same number of clock cycles and so complicated handshaking 

is necessary to stall the pipeline for longer instructions. This proved to add unnecessary 

complications to the design and motivated the redevelopment of the control unit around a 

microprocessor-peripheral paradigm. 

5.5 Microcontroller & Peripheral 

5.5.1 Version 1 

To address the challenges of flexibility and code size of the previous controller, a 

new controller was developed that uses a system-on-chip for modular design. Operations 

are initiated by a standard microcontroller, communicated with added peripherals via a 

shared bus. The use of a microcontroller allows flexibility for sequential programs, while 

the peripherals achieve the necessary parallelism for system control. A schematic of the 

control unit showing the functional units is given in Figure 5.4. 
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Figure 5.4: Test and measurement control system-on-chip targeted at a Spartan6 
FPGA. 
 

A soft microprocessor for implementation on the Xilinx FPGA was sought and 

the OpenRISC 1000 (OR1K) was investigated for use. After considering the limited 

resources of the Spartan6, a modified and stripped down version of the OR1K, known as 

the Alternative OpenRISC 1000, or AltOR32, was selected. This reduced version 

removes several instructions from the processor including the floating point unit, 

hardware multiplier, and pipeline delay slot. The AltOR32 used fewer than half of the 

available logic resources on the Spartan6 FPGA, leaving room for peripheral 

development as well as BRAM storage for collected data. 

A general purpose input-output (GPIO) module was developed which could 

interface with the AltOR32 via the Wishbone bus. This enabled many of the test board 

functions to be implemented in software by simple reading and toggling appropriate 

control lines. The matrix control module from the previous control unit was recycled by 



 

 
84 

adding a Wishbone interface so that the AltOR32 could control the matrices via memory 

mapped registers. The handshaking required for this task was greatly simplified by 

having the processor repeatedly poll the module until its task completes. 

The AltOR32 microcontroller executes standard RISC instructions, and the Gnu 

compiler toolchain (gcc) has been ported to the implementation. This allowed control 

functions to be implemented in standard C code and debugged via a UART peripheral. A 

five-stage pipeline, combined with compiler optimizations and garbage collection of 

unused functions during linking, helps keep code size to a minimum, while instructions 

execute nearly as fast as with the FSM design. 

5.5.2 Version 2 

Several shortcomings of the Version 1 test and measurement setup were identified 

and are briefly summarized below: 

• DAC and op-amp offsets result in measured non-zero current even when input 
voltages are zero 

• ADC resolution not sufficient to differentiate states when on/off ratio is reduced 
• Communication delays too long when devices have limited retention 
• Inability to apply negative voltage pulses 

 

To address these issues, the test and measurement board was redesigned with the 

following changes: 

• ADC resolution increased from 12 to 14 bits 
• DAC resolution increased from 8 to 12 bits 
• Additional multiplexor added to allow direct input of ground (rather than DAC 

output of 0V) 
• Low-offset, unity-gain-stable op-amps used 
• Dual supply DAC and matrix chips to allow negative voltage inputs 
• High-speed USB2.0 communication interface for control board 
• Onboard DRAM chip for pattern/data storage 
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A schematic of the new controller SoC is shown in Figure 5.5. To address the 

communication latency and throughput, the design was migrated to the OpalKelly 

XEM6010-LX45 board which offers a larger Spartan6 FPGA, significantly higher 

bandwidth via the Cypress USB to parallel conversion chip, and an integrated DRAM 

chip. 

 

 

Figure 5.5:  Schematic of new controller. The changes are highlighted in yellow. 
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Figure 5.6:  Test and measurement board revision. The board uses a new controller 
implemented with an Opal Kelly (left), and includes several upgraded components 
and design changes to address previous shortcomings. 

 

The upgraded board design allows faster algorithm execution and higher training 

throughput by using larger on-board memories and a faster clock rate (up to 100MHz). 

Additionally the inclusion of multiplexers to allow the application of ground, as opposed 

to 0V DAC output, significantly reduces the problems associated with DAC and op-amp 

offsets as shown in Figure 5.7 below. 
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Figure 5.7:  Effect of DAC offsets. A 1Kohm resistor is placed in the upper right 
corner of the array. While measuring each cell, the remaining rows are connected to 
a 0V DAC output (top) or directly to ground via a multiplexing input (bottom). 
Offset currents are eliminated by using an actual ground. Note the maximum 
measurable current is 24.8uA. 

 

The top of Figure 5.7 demonstrates the problem of DAC/op-amp offsets when a short 

exists in the array. In this setup a 1KOhm resistor (a very low conductance compared to 

typical device resistances; typical of a shorted device) is placed in the upper right of the 

array and all other connections are completely open. Nonetheless, an appreciable current 

is apparent when measuring locations in the same column as the resistor short. This can 
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be understood by considering an offset in the DAC output.  When measuring the second 

through thirty-second rows, an output of nominally 0V is applied to the first row (because 

it is not being read). However, a DAC offset of even a few millivolts will cause a current 

of several microamps to flow through the short, thus distorting the measurement for all 

locations that share the column. By passing an actual ground, rather than using the DAC, 

the offset is eliminated which greatly reduces the erroneous current. 

The use of a popular and well-tested open source soft processor eliminated many 

of the shortcomings of the previous control unit design. With branching abilities, code 

size was greatly reduced which left more room for data storage. As a result, multiple 

readings could be made from the ADC to allow averaging, effectively reducing 

measurement noise. 

5.6 Software Stack 

The project code is written in a mixture of Python and C code. The Python 

functions direct the pre-processing and compilation of C routines and download the 

compiled binaries to the board. The generated data is received from within Python, 

averaged, and displayed with the Python-based Matplotlib library. Algorithm execution is 

directed by the Python code to reduce the processing load on the soft microcontroller, 

while board control routes benefit from the real-time execution of the microcontroller. 

Low level board tasks such as setting the output voltages and configuring the 

matrix switches were written exclusively in C using memory-mapped control registers 

while higher level functions such as reading an array or programming a pattern were 

written in a mixture of C and Python. C code templates were developed to execute 

generic tasks. The Python code acted as a preprocessor for these templates, filling in 
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parameters such as hexadecimal values corresponding to a voltage or 32 bit 

configurations for the matrices. The SCons build tools are used to control compilation 

and linking which is performed by the or1knd-toolchain developed for the AltOR32. 

 

5.7 Test and Measurement Results 

Using the board test setup discussed above, a number of array measurements can 

be successfully performed.  A few samples are included below to demonstrate the 

capabilities of the board. The current results show that, when using the memristor arrays 

as a memory, patterns can be effectively stored and retrieved. This servers a first step to 

demonstrating a learning system. 

 

(a) 

 

(b) 
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Figure 5.8: Binary checkerboard patterns stored in the array. 
 

Figure 5.8 demonstrates that binary patterns (array element is either written or 

not) can be stored in the array and that there is a reasonable amount of uniformity 

between devices. Fig. 5.8(b) shows that small granularity can be achieved and that sneak-

path currents are not significantly affecting the ability to distinguish off-cells from nearby 

on-cells. 

 



 

 
91 

 

Figure 5.9: Mona Lisa pattern stored in the array. 
 

Figure 5.9 demonstrates that, by varying the width of the programming pulse, the 

memristor cells can be effectively tuned to different conductance values to store a grey-

scale image. No feedback mechanism or adaptive write pulse is necessary to achieve this 

effect. 

5.8 Conclusions 

Systematic simulations were performed to test the feasibility to achieve sparse 

coding and learning in memristor crossbar arrays. We should note that the memristor 

network can tolerate device variability in excess of 100%. However, the non-linear 

weight update can significantly deteriorate the network performance. By using a scheme 

to compensate the nonlinearity effects, successful learning and sparse coding can be 

achieved in simulations based on realistic device models even in the presence of realistic, 

large device variations. Several versions of test and measurement platforms were 
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developed and discussed. These measurement platforms allow for the experimental 

implementation of network-scale learning algorithms (discussed in the next chapters) in 

memristor crossbar arrays. 
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Chapter 6. Experimental Demonstration of LCA 

There have been few experimental demonstrations of hybrid RRAM-computing at 

a network scale [84]–[87], and thus far, they have tended to be limited in size or 

functionality. In this chapter we describe the use of a 32x32 (1 kilobit) array to accelerate 

the computations of the locally competitive algorithm (LCA) as discussed in Chapter 4. A 

typical device fabrication flow is described followed by experimental results obtained 

using the array. LCA sparse coding is demonstrated and the effects of the dictionary size 

and choice of threshold parameter are investigated. The successful demonstration of 

memristor-based in-memory-computing at the network scale is an important milestone in 

the development of neuromorphic computing. 

6.1 Device Fabrication 

An important advantage of memristor technology is its compatibility with 

traditional CMOS devices. The low temperature fabrication process allows memristor 

devices to be integrated with fabricated circuits in a back-end-of-line process. This allows 

transistor-based technology to provide control signals for reading and writing operations 

for memory or neural circuit implementations. Additionally memristor devices can be 

stacked for increased density [35], [88], [89]. WOx-based memristor arrays are used in 

this study. The fabrication processes include: 

1. Starting with a non-conductive substrate. Typically Si wafer with 100-200nm 

grown SiO2 

2. W sputter deposition. Commonly 40 – 80 nm. 
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3. Patterning bottom electrodes. Typically done with e-beam lithography. 

4. Ni hardmask deposition via e-beam evaporation. Thickness depends on W 

thickness, ~40nm for 60nm W. 

5. Liftoff in Acetone or MicroChem Remover PG. 

6. W etch using reactive ion etching. Etch chemistry is Cl2 and O2 gas mixture. 

7. Ni hardmask removal in 1:1 HCl:DI solution for 30 minutes. 

8. W oxidation to form WOx via rapid thermal annealing. Temperatures range from 

350 – 450 °C for 1 – 4 minutes depending on desired characteristics. 

9. Patterning top electrodes. Typically with e-beam lithography. 

10. Pd+Au top electrode deposition. Thickness must cover W/WOx step height. 

11. Liftoff in Acetone or MicroChem Remover PG. 

12. WOx etch using top electrode as mask. Reactive ion etch with SF6/C4F8 mixture. 

 

 

(d) 

 

(e) 

 

Figure 6.1: (a) SEM image of a single-cell device. (b) Cross section of the WOx film. 
(c) Schematic cross-section of a complete device. (a-c).  SEM images of completed 
crossbar arrays (d-e). 
 

The basic device fabrication flow is relatively simple with the major steps 

consisting of the formation of a bottom electrode, an oxidation step to create the resistive 
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switching layer, and the formation of a top contacting electrode. The creation of the 

resistive switching oxide is a critical step in this process. The layer is formed by a timed 

rapid thermal annealing between 350°C and 450°C. The time and temperature determine 

the oxide thickness and material properties and have a strong influence on the resultant 

device behavior [83]. 

After fabrication, the memristor chip is placed in a chip carrier and the crossbar 

array’s column and row electrodes are wire-bonded to the chip carrier’s lead pads.  

Device characterization can then be conducted with the test and measurement board. 

Important parameters such as write, erase and read voltages, as well as write and erase 

durations must be determined in order to use the network for higher functioning. These 

parameters are then fed back into the simulation framework to update device models and 

network parameters to more accurately perform simulations. 

6.2 Sparse Coding 

6.2.1 Introduction 

To demonstrate the full potential of the approach, the locally competitive 

algorithm (LCA) proposed in [61], [72] and discussed in Chapter 4, was implemented in 

a 32x32 WOx-based memristor crossbar array. The algorithm is executed in a combined 

digital-analog computing approach. The memristor crossbar is used to accelerate the 

matrix-vector multiplications and matrix transpose operations in the analog domain, 

while neuron and ‘residual’ updates are conducted in the digital domain. Both the neuron 

update and system control functions are coordinated by a microcontroller and system-on-

chip implemented on an FPGA as described in the previous chapter. 
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While a full description of the process is given in Chapter 4, Section 4, an outline 

of the procedure is given below for reference. The network is organized such that the 

residual is input on the rows of the matrix, while the neurons are positioned on the 

columns, as shown in Fig. 6.2. The governing equation for neuron dynamics, presented as 

(4.3) is repeated below for reference: 

𝑑𝑢
𝑑𝑡 =

1
𝜏 −𝑢 + 𝑝 − 𝛷 ∙ 𝑎! ! ⋅ 𝛷 + 𝑎  (6.1a) 

=
1
𝜏 −𝑢 + 𝑝 − 𝑝 ! ⋅ 𝛷 + 𝑎  (6.1b) 

=
1
𝜏 −𝑢 + 𝑟! ⋅ 𝛷 + 𝑎  (6.1c) 

 

 
Figure 6.2: LCA network schematic. Residual drivers on the rows indicated in red. 
Neurons on the columns indicated in orange. Inset shows a leaky integrative neuron. 

 

The LCA is implemented as a sequence of forward-input pulses to calculate the input to 

the neurons followed by a sequence of backward-input pulses to calculate the estimated 

(or reconstructed) input. The forward-input operation effectively calculates the matrix-

vector product of the network weights with the input (residual), 𝑟!𝛷 = 𝑝 − 𝑝 𝛷. 
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Similarly the backward-input pulses calculate the matrix-vector product of the transpose 

of the network weights with the neuron activities, 𝛷𝑎!. The backward-input operation is 

accomplished by reversing the positions of the drivers and integrators between the rows 

and columns, respectively. 

The network dynamics are such that neurons with receptive fields (the column of 

weights connected to it) that better match a feature in the input will be charged faster. 

Once these neurons’ membrane potentials reaches above a threshold (set by 𝜆), they 

become active and begin to contribute to the reconstruction of the input, 𝑝. Because the 

network is driven by the difference between the original input and the reconstruction, 

𝑟 = (𝑝 − 𝑝), when a neuron becomes active, it effectively removes the feature from the 

residual—the driving inputs of the network. By doing so, the neuron deprives other 

neurons of the input current associated with that feature, effectively suppressing their 

activation.  In this manner, the network implements competition through the inhibition 

term in Eqn. 6.1(a), which prevents over-representation of the features and enables better 

reconstruction of the input. 

6.2.2 Critically Complete and Over Complete Dictionaries 

The dynamics of this process can be seen in Fig. 6.3. In this experiment, a 

dictionary, shown in Fig 6.3(a), is programmed into the columns of the array. Each 5x5 

pixel dictionary element corresponds to a single column of the array. Hence the crossbar 

array required to hold this dictionary will have dimension 25x10. Next, an input is 

constructed using a linear combination of a subset of the dictionary elements; this 

experiment used dictionary element 0 + element 4 and the resultant input is shown in Fig 

6.3(b). Plotted in Fig. 6.3(d) is the membrane potentials of all neurons after each iteration 



 

 
98 

of the forward-backward LCA algorithm. The threshold for neuron activation is plotted 

as a horizontal line and is set to 60.  

From the figure it can be seen that for the first few cycles, no neuron is above 

threshold and so all the neurons are steadily charging. At this point it is important to note 

that even neurons with receptive fields that share no pixels in common with the input 

(neurons 1, 2, and 3) are also being charged (although at reduced rates). While this would 

not occur in an ideal setup, in the experiment some non-zero currents will still pass 

through devices even in the minimal conductance state (since the minimal conductance of 

the memristors are ~0.5uS and are non-negligible), causing the charging of the neurons, 

albeit to a lesser extent than those neurons that do have pixels in common with the input. 

 

 

Figure 6.3: Sparse coding with a nearly critically complete dictionary. The 
algorithm activates the two neurons that represent the input. 

 

After approximately the 7th iteration, two neurons, neuron 9 and neuron 0, cross 

the threshold and begin to contribute to the reconstruction. When neuron 0 becomes 

active, it effectively removes the top horizontal bar from the residual input, depriving all 

other neurons of this input. This has an immediate effect on neuron 9:  deprived of it’s 
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input (likely the upper right corner pixel), the membrane potential quickly begins to 

decay and once it crosses below the threshold, it no longer contributes to the 

reconstruction. At this point, however, the bottom horizontal bar is still not being 

represented in the reconstruction, or in other words, its pixels remain in the residual, 

continuing to charge neurons with overlapping receptive fields. At approximately 

iteration 14, neuron 4’s membrane potential has charged sufficiently for it to begin 

contributing to the output. When it does so, the residual is greatly reduced and the 

neurons no longer continue to charge. As can be seen on the right side of Fig. 6.3(d), the 

active neurons have reached a comparative equilibrium and thus the coding task is now 

complete. The reconstructed input can then be created by summing the receptive fields of 

the two active neurons (neurons 0 and 4), weighted by their activities, as shown in Fig. 

6.3(c). The reconstruction correctly reproduced the original input and at the same time 

identified the two major features from the dictionary (neurons 0 and 4). Ideally, the 

activity of neurons 0 and 4 should be identical, since the input was simply the sum of two 

horizontal bars. As can be seen that Fig 6.3(c), differences in the experimentally observed 

neuron activities (Fig 6.3b) lead to a reconstruction that is not a perfect match of the 

original input. This can be attributed to device variations and possibly also may have 

resulted from the discretized nature of the input (due to the limited resolution of the 

microcontroller when calculating the charges). 

This first experiment used a limited dictionary size of 10 neurons and their 

associated receptive fields. While some neurons share an overlap of pixels from other 

neurons, the amount of overlap is minimal. In fact, while there are 25 input pixels (thus 

25 input rows), the dimensionality of the input vector space is reduced to 9 by limiting 
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inputs exclusively to horizontal and vertical bars and their linear combinations (the 

dimension can be determined by the matrix rank of dictionary). Thus, with an input 

dimensionality of 9, and an output dimensionality 10, the dictionary can be said to be 

only marginally over-complete (if the input and output dimensions are equal, the 

dictionary is said to be critically complete). The solution to sparse coding with a critically 

complete dictionary is significantly easier than with an over-complete; an optimal 

solution can be found analytically and forms the basis of principal component analysis. 

However, a more sparse representation can be obtained by using over-complete 

dictionaries. Over-complete dictionaries allow neurons to ‘specialize’ their receptive 

fields to a particular feature rather than seeking an average of potentially several distinct 

features. 

 In the next experiment, we study sparse coding using an over-complete 

dictionary (dictionary size 25x20). The same input, reproduced as Fig. 6.3(c) is used to 

test the ability of the over-complete dictionary to choose a more efficient representation.  

 

Figure 6.4:  Sparse coding with an over complete dictionary. The algorithm 
activates only one neuron to represent the input more sparsely. 
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In this experiment, the dictionary has been expanded to include all 52  doublet horizontal 

bars; the full dictionary is shown Fig. 6.4(a). With 20 total dictionary elements, the 

dictionary is now more than two times over complete (again, considering the input 

dimensionality to be 9). From the membrane potential plot in Fig. 6.4d, it can be seen 

that, like in the previous experiment, many of the neurons begin charging until one or 

more neurons crosses the threshold, 𝜆. In this case neurons 13 and 19 become active and 

begin contributing to the reconstruction. At this point (iteration number 5), both neurons 

subtract the bottom horizontal bar from the input. In this case, the feature is being over-

represented, and thus the residual for these pixels will be negative.  A negative input 

residual causes matching neurons to discharge faster due to the 𝑟!𝛷 term in the neuron 

dynamics Eqn. (4.3). This causes neuron 19 to sink below the threshold and become 

inactive; once this occurs, the feature is no longer over-represented and the membrane 

potential of neuron 19 settles to just below the threshold. Since neuron 13 in the new 

dictionary is able to completely capture the input pattern, it becomes the sole active 

neuron after the network has stabilized. The reconstructed image can now be created by 

the receptive fields weighted by the activities of the output neurons (in this case only 

neuron 13) and shown in Fig. 6.4(c). The ability for the network to identify a more sparse 

representation, despite the initial solution suggesting otherwise, is a key feature of sparse 

coding. In this case with an over-complete dictionary a more sparsely encoded solution 

can indeed be identified than in the case with the smaller dictionary (Fig. 6.3), after the 

network reaches a stable state and despite that initial solutions suggesting otherwise. 
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6.2.3 Effect of Threshold Parameter, 𝝀 

Since the neurons do not become active or contribute to the reconstruction until their 

membrane potentials have crossed the threshold parameter, 𝜆, this parameter can be used 

to control the sparsity of the final solution, with a high 𝜆 preventing weakly matching or 

redundant neurons from becoming or remaining active. This effect was observed in Fig 

6.4:  the activation of neuron 13 more closely matched the input and thus forced neuron 

19 below the threshold, thus increasing the sparsity of the solution. To examine more 

thoroughly the effect that 𝜆 has on neuron dynamics, an experiment was performed where 

the dictionary and input pattern was kept constant while the 𝜆 parameter was varied from 

0 to 240. The results, including the reconstructed image and number of active neurons as 

a function of  𝜆, are presented in detail in Fig. 6.5, while detailed neuron membrane 

potential dynamics at different 𝜆 values are shown in Fig. 6.6. 

 

(a)  
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(b) 

 

Figure 6.5:  The impact of the threshold parameter on sparse coding. As 𝝀 is 
increased from 0 to 240 in increments of 30, the reconstructions in general become 
less faithful to the original input (a) and more sparse (b). Successful reconstruction, 
however, is not extremely sensitive to the choice of 𝜆. 
 

Several interesting conclusions can be drawn about the impact of the threshold parameter 

on the neuron dynamics. Perhaps most intuitive result is that increasing 𝜆 results in fewer 

neurons being activated as shown in Fig. 6.5.  With the leak and competition terms 

pushing the membrane potential down, a higher threshold makes it harder for neurons to 

activate. Interestingly, however, the network dynamics are not extremely sensitive to 𝜆  

(as long as 𝜆 is within a certain range) and increasing the threshold above a neuron’s 

existing steady state value does not automatically cause the neuron to become inactive. 

For example, we can see that increasing the threshold from 120 to 180 did not reduce the 

sparsity of the solution or change the reconstruction. This is despite the fact that, in the 

case of 𝜆 = 120, the final values of the active neurons is only ~157 (Fig. 6.6). Put 

differently, one might naively expect that no neurons would be active when the threshold 

is increased to 𝜆 = 180; in fact, this is not the case. Instead, the network adapts to the 

higher threshold by allowing neurons to be charged and settle at a higher value. When the 
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threshold is raised further, however, different dynamics may emerge since different 

neurons charge at different rates depending on how well their receptive fields match the 

input pattern, and a new sparse solution may be obtained, as shown in Figs 6.5 and 6.6 

where the previously active neurons no longer become active and new solutions (neuron 

15) are found.  

This behavior can be further explained by examining Eqn. (4.1), repeated below 

for reference: 

min
!,!

( 𝛷𝑎! − 𝑝 !
! + 𝜆 𝑎 !) (6.2) 

From [61], we know that the algorithm is attempting to minimize Eqn. (6.2), with the 

second term in the cost function corresponding to a sparseness penalty. The exact value 

of 𝜆 determines the relative importance of accurately reconstructing the input versus 

achieving a sparse representation. Increasing  𝜆 increases the penalty for activating each 

additional neuron, but it does not necessarily tip the balance of Eqn. (6.2) in favor a 

suppressing a neuron. Instead, an increase in 𝜆 may simply cause the neurons’ membrane 

potentials to rise (causing a corresponding rise in their activations) in order to remain 

active. This has the effect of over-representing features in the input, but the relative 

penalty for it can be less than suppressing a neuron from being active altogether. Further 

increases in 𝜆 can result in too high a sparsity penalty to keep a neuron active and so the 

network will favor a new, more sparse representations as seen when 𝜆 increases from 90 

to 120 and again when it increases from 180 to 210 (in the latter case, the sparseness 

penalty is so high, it becomes more favorable to activate no neurons—a blank sparse 

representation). 
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The non-linear behavior of the network dynamics makes it hard to predict what 

value of 𝜆 to choose to achieve a given sparsity. Fortunately, as can be seen in Figs. 6.5 

and 6.6, the network dynamic is not extremely sensitive to the exact value of 𝜆 as long as 

𝜆 is within a proper range. Additionally, there is a clear relationship between the 

magnitude of the input and 𝜆. For example, if we have achieved an acceptable sparse 

coding of input p using threshold 𝜆 and then decide to scale the magnitude of p by 100 

(𝑝! = 100𝑝), then we should scale 𝜆 by a similar amount (𝜆! = 100𝜆) to achieve the 

same sparsity. This effect is due to the fact that no normalization was performed for the 

input in our experiments. This property is evident from Eqn. (6.2): 𝜆 must be scaled to 

keep the sparseness penalty proportional to the reconstruction error term.  
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Figure 6.6:  The impact of threshold on 
neuron dynamics. 𝝀 is increased from 0 
to 240 in increments of 30 (a-i). 
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6.3 Conclusion 

A WOx-based memristor crossbar array was fabricated and tested to implement 

the sparse coding algorithm using LCA. It is important to note that all fabrication steps 

occur below 450°C which allows the process to be integrated in a back-end-line manner 

with CMOS technologies [90]. Furthermore, the introduction of new materials into a fab 

environment is a costly process due to the need for extensive process development and 

risk of contamination [91]. Tungsten, however, has been used extensively in standard 

CMOS chips and thus is a good candidate for integration [90]. As discussed in Chapter 5, 

Section 1, successful integration with 180nm and 90nm CMOS chips has already been 

demonstrated and future work will look at implementation of a larger array.  

The locally competitive sparse coding algorithm, presented in Chapter 4, was 

experimentally demonstrated using the fabricated array with the test and measurement 

platform presented in Chapter 5. Programmable device behavior was confirmed, allowing 

a pre-computed dictionary to be stored in the array. The success of the algorithm 

execution serves as a proof-of-concept for the matrix-vector multiplication and in-place 

matrix-transpose operations. The robustness of the algorithm to tolerate device non-

idealities was confirmed as well as the predicted response to an increasing sparseness 

penalty. It is interesting to note that many of the neuron membrane potentials tend to 

settle very close to the threshold; this is indicative of the driving forces in the sparse 

coding algorithm and suggests that a careful or contrived choice of threshold parameter is 

not necessary. The results are the first known example of sparse coding with resistive 

switching devices and one of the largest scale examples of neuromorphic computing with 

memristors to date. 
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Chapter 7. Conclusions 
7.1 Summary 

In this work we developed the theoretical and measurement frameworks for  

neuromorphic computing applications using resistive switching devices and demonstrated 

functions such as learning vector quantization and sparse coding in memristor crossbar 

arrays through simulation using realistic devices models and experiments using 

nanofabricated memristor crossbar arrays.  

Starting from device developments, we fabricated resistive switches with analog 

switching characteristics that can be used in a crossbar network. Physics-based and 

compact models were developed to capture both the static conductance as well as the 

dynamic switching behaviors of the device. The models provided an understanding of the 

physical phenomena underlying the resistive switching effects as well as a means to 

perform realistic, yet tractable network simulations. Subsequently, our network-level 

simulations based on the compact model demonstrated the usefulness of resistive 

switching crossbar arrays in accelerating matrix-vector multiplication and learning 

operations. The development of a modular, multithreaded simulation framework allowed 

for several algorithms, including vector quantization and the locally competitive 

algorithm (LCA), to be combined with learning mechanisms to test the feasibility of 

experimental hardware implementations.  

Finally, a test and measurement system was constructed to enable implementation 

of a sparse coding algorithm on actual resistive switching hardware. The algorithm was 
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modified to run on fixed point hardware using crossbar arrays of resistive switches for 

weight accumulation, storage and matrix-vector product acceleration. Using the system, 

the sparse encoding of simple bar patterns was successfully demonstrated. These 

experiments are the first known demonstration of a neuromorphic sparse coding platform 

using resistive memristive elements. The results show that resistive switches can not only 

be used for data storage, but can allow combined memory and computing operations that 

lead to significant acceleration in neuromorphic applications. 

7.1.1 Device Modeling 

The modeling work presented in this dissertation provides both an understanding 

of the physical processes underlying resistive switching phenomena as well practical 

tools to guide the design and simulation of crossbar arrays of these devices. Chapter 2 

introduces a detailed dynamic memristor model based on a metal cation based system 

using Ag/𝛼-Si. The model is able to accurately capture switching dynamics and explain 

the apparent voltage threshold for device switching. The work resulted in a journal 

publication [43] and a stochastic extension of the model was used for developing the 

experiments in another journal paper [47].  

A similar model was developed to describe resistive switching in non-

stoichiometric tungsten oxide devices based on the electric-field induced movement of 

oxygen vacancies. The work resulted in two journal publications [49], [92] and was used 

as a foundation for development of the learning networks presented in the remainder of 

the dissertation. In Chapter 4 the model was extended to consider device variability, 

noise, and device failures and was used in developing ways to address these nonidealities. 
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7.1.2 Neuromorphic Algorithms 

Chapters three and four discuss the co-development of algorithms and 

architectures for performing neuromorphic computing using memristor crossbar arrays. 

Learning vector quantization (LVQ) is used as a case study in Chapter 3 to discuss how 

memristors can be used to accelerate accumulation and matrix-vector operations in a 

parallel manner. The Winner-take-all—Oja’s learning rule is presented as an 

unsupervised, constrained-Hebbian rule amenable to implementation in crossbar arrays. 

Results demonstrating the use of memristive LVQ to classify handwritten digits from the 

MNIST database were presented and published in a conference proceeding [93]. 

Chapter four makes use of the crossbar acceleration techniques, developed in the 

previous chapter, to implement an adaptive sparse coding algorithm. The Locally 

Competitive Algorithm (LCA) by Rozell [72] was chosen for its advantages over 

competing approaches, its biological inspiration, and its adaptability to a memristive 

hardware implementation. A modular array simulation framework was developed to test 

and simulate sparse coding as well as dictionary learning approaches. Our system-level 

simulation results based on realistic device models demonstrate the feasibility of 

accelerating LCA with memristor crossbar arrays and the impacts of device non-idealities 

on algorithm performance. The work highlighted the importance of incorporating 

feedback mechanisms in neuromorphic computing to compensate device parameter 

variations. Specific techniques including adjusting write durations and serially connected 

anti-fuses were proposed to address issues related to device programming nonlinearity 

and conductive device failures. The simulation work has resulted in several journal and 
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conference publications [93], [94] and another journal paper just accepted for publication 

in IEEE Transactions on Neural Networks and Learning Systems [95]. 

7.1.3 Experimental Demonstration of Sparse Coding in Memristor Crossbars 

A programmable test and measurement setup for characterizing single cell and 

crossbar arrays of resistive switches was designed and constructed and is described in 

Chapter 5. A combination of Verilog, C, and Python was used to build a system-on-chip 

controller that allowed for device programming and algorithm execution in a real-time 

manner. The LCA algorithm with crossbar acceleration discussed in Chapter 4 was 

migrated to a fixed-point implementation for execution with the system. By using an 

over-complete dictionary set, we show experimentally in Chapter 6 that the memristor 

network can effectively implement sparse coding by minimizing an energy function that 

includes both the error term and sparsity penalty. The neuron membrane potential 

dynamics were systematically analyzed as a function of input patterns and the threshold 

parameter. A journal paper based on studies in Chapter 6 is currently in preparation. 

These experimental results serve as a proof-of-concept demonstration for using 

memristor crossbar arrays to combine memory and computing elements and achieve 

efficient computation with high parallelism. The successful application of this approach 

to the task of signal sparse coding will also motivate future experimental for a more 

tightly integrated system and to reduce power and area while improving signal 

throughput. 

7.2 Future Work 

The next step in the research is to implement in-situ network learning using the winner-

take-all strategy combined with Oja’s rule as described in Chapter 4. A successful 
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implementation of this learning would constitute a complete, adaptable sparse coding 

system in memristor hardware. Further developments will focus on the supporting 

circuitry and network size scaling. As a first step, the test and measurement board will be 

condensed into a single CMOS chip. This will provide improved performance by 

reducing parasitic capacitances and reduce training and inference time. The area and 

energy usage can be further improved by converting many of the neuron circuits, 

currently implemented in digital CMOS, to analog circuitry. Larger memristor arrays, 

(e.g. 7.2 kilobit) will also be fabricated. The 49x147 array can be used to process 7x7 

sized-patches while achieving 3x over-completeness. We believe such a network size can 

be used to effectively process natural images.  Such demonstrations, combined with 

continued device optimizations to improve update linearity, analog switching dynamic 

range, device variability, yield and switching current, will form significant steps forward 

to bring efficient, high-performance memristor-based neuromorphic computing systems 

to reality. 
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