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ABSTRACT

ASYMPTOTIC, HOMOGENIZED SP, APPROXIMATIONS TO THE NEUTRON
TRANSPORT EQUATION

by

Thomas Saller

Co-Chairs:
Edward W. Larsen
Thomas J. Downar

Many current-generation reactor analysis codes use the diffusion approxi-
mation to efficiently calculate neutron fluxes. As a result, there is considerable
interest in methods that provide a more accurate diffusion solution without
significantly increasing computational costs. In this work, an asymptotic anal-
ysis, previously used to derive a homogenized diffusion equation for lattice-
geometry systems, is generalized to derive a one-dimensional, one-group ho-
mogenized SP, equation as a more accurate alternative to the standard homog-
enized diffusion equation. This analysis results in new diffusion coefficients
and an improved formula for flux reconstruction. The asymptotic SP, formu-
lation is compared to standard SP,, asymptotic diffusion, and standard diffu-
sion for several test problems. Both the eigenvalue and reconstructed fluxes
are examined. In general, the asymptotic equations are more accurate than the
standard equations, and SP» is more accurate than diffusion theory, especially

for optically small systems.



The calculation of more accurate multigroup cross sections is considered.
Standard multigroup cross sections are designed to preserve both the (multi-
group) infinite medium neutron spectrum and eigenvalue; this property still
holds if the multigroup cross sections are modified by a multiplicative scaling
factor. In this thesis, a formula for the scaling factor is derived that makes
the modified multigroup cross sections satisfy the asymptotic diffusion or SP;
limit of the neutron transport equation. Numerical simulations demonstrate
that the resulting scaled multigroup cross sections yield more accurate results
than standard, unscaled cross sections for multigroup eigenvalue problems in
finite media.

Finally, the asymptotic analysis is then extended to a hypothesized multi-
group, spatially homogenized SP, equation. The hypothesized equation uses
standard homogenized cross section definitions, but leaves the diffusion co-
efficients undefined. The asymptotic analysis of the multigroup SP, equa-
tion results in a monoenergetic SP, equation, similar to the one obtained for
the continuous energy transport equation. By requiring that the hypothesized
multigroup SP, equation have the same asymptotic limit as the continuous
energy transport equation, we establish a condition that the additional multi-
group diffusion coefficient, D5 ,, must satisfy. Two logical definitions for D; ¢
are chosen, but numerical results indicate that they are inconsistent in their ac-
curacy, and are frequently outperformed by both standard multigroup diffusion

and SP».
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CHAPTER 1

Introduction

In this chapter, we motivate the asymptotic derivations performed in Chapters 3, 5, and 7.
We present a brief history of the simplified P, method and the application of asymptotic

theory to neutron transport. Then we present an outline of the rest of this dissertation.

1.1 Motivation

Reactor physics, a field dedicated to calculating the distribution of reaction rates in a nu-

clear reactor core, involves solving the Boltzmann transport equation for neutron fluxes:

Q-Vy(x,QE)+%Z,(x,E)y(x,Q,E)

= f f X (x,Q > QE - E)y(x,Q E")dQY dE’ (1.1)
0 4n

x(x,E)

+A
A

f f vEf (X, E )y (x, Q' E")dQ'dE’,
0 4n

orin 1-D:

0
,Lla—lil (.X,,Ll,E) +Zt (.X, E)‘ﬁ(x»/l,E)

00 1
=f fEs(x,u'—w,E’HE)w(x,y’,E’)dﬂ’dE’ (1.2)
0 -1

x (x,E)

o 1
+1 3 f f VI (x,EN Y (x, 1, E")dy' dE’
0 -1




where

1
A= K- 1 —p = eigenvalue,

and
W (x,u, E) = eigenfunction.

The neutron angular flux, ¥ (x,u, E), is a fundamental component of reactor analysis.
For example, the angular integral of ¥ (x,u, E) is required to calculate fission rates that,
when combined with thermal-hydraulic codes, are used to assess the safety of a core. The
angular flux may also be used to estimate breeding ratios and determine fuel utilization
factors.

The field of computational reactor physics can be subdivided into three classes of nu-
merical methods: deterministic transport, Monte Carlo, and diffusion. The first two refer
to methods that solve the Boltzmann equation for angular fluxes. Deterministic methods
(e.g. discrete ordinates, or method-of-characteristics) discretize Eq. (1.1) in space, angle,
and energy, and solve the resulting differential equation. The reactor core geometry is mod-
eled in detail, and many energy groups are used to capture resonance effects as accurately
as possible [1]. In the Monte Carlo method, individual neutrons are followed on random
walks, and their average behavior is used to estimate quantities like neutron fluxes, reaction
rates, or neutron currents [2].

Both deterministic and Monte Carlo methods can generate high fidelity, pin-resolved
solutions. This accuracy, however, comes at a cost. The Westinghouse AP1000, for exam-
ple, has 41,448 fuel pins [3], each of which must be spatially subdivided both radially and
axially to be accurately simulated. The computational burden for performing a full-core,
pin-resolved simulation often requires computing clusters, or even supercomputers, like the

Cray XK7 Titan supercomputer at Oak Ridge [4].



In diffusion theory, the angular variable in Eq. (1.2) is eliminated by assuming that the
angular flux is a linear function of angle and integrating Eq. (1.2) over all angles. This

yields the approximate neutron diffusion equation, which is discretized only in space and

energy:
g](x,E)+Z,(x,E)¢(x,E):f X0, E > E)p(x,E")dE’
X 0
+/l)((x,E)f vis(x,E)¢(x,E")dE’", (1.3a)
0
where
J( E)_—;2 (x, E) (1.3b)
W) = s p e ) '
and

(6 E) =% (x,E)-Z51 (X, E) . (1.3¢)

In Egs. (1.3a) and (1.3c), X, (x, E) is the n-th Legendre moment of the differential scatter-
ing cross section.

Modern diffusion codes further reduce the number of unknowns by (i) “homogenizing”
over some spatial region (typically either a fuel pin or assembly) and (ii) collapsing in en-
ergy, reducing the number of energy groups from tens or hundreds to as few as two. This
involves taking a weighted average (e.g. flux weighted) of space- and energy-dependent
cross sections for a specified spatial region and energy group structure. The resulting sys-
tem of equations can be solved efficiently using finite difference or nodal methods, making
transient calculations more tractable than with transport theory.

Fig. 1.1 illustrates the homogenization process. Each unique assembly in a core is
simulated with zero-current boundary conditions. The resulting assembly flux solution
is used to generate homogenized cross sections, which are used in a full-core diffusion
calculation.

Due to its relatively low memory and CPU requirements, homogenized diffusion is fre-
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Figure 1.1: Homogenization

quently the workhorse in full core depletion and transient calculations. The commercial
pressurized water reactors (PWRs) and boiling water reactors (BWRs) that have been built
and operated successfully for the past 50 years have largely relied on homogenized diffu-
sion for core analysis. However, in our current economic climate, many utilities find the
cost of a new 1000 MW, nuclear power plant prohibitive [5]. Furthermore, most develop-
ing countries do not have the infrastructure necessary to accommodate large reactors [6].
In response to these concerns, there is a push to develop Small Modular Reactors (SMRs);
reactors that are smaller, less expensive, more easily manufactured, and can be assembled
at a plant [5].

The linear-function-of-angle assumption made in the derivation of standard diffusion
theory implies several other assumptions. One of them, the assumption that spatial flux
gradients are small relative to the neutron flux, may not be valid in SMRs, where the small
core leads to sharp flux gradients at the reactor core boundaries. We do not expect standard
diffusion methods to treat steep flux gradients with sufficient accuracy. For this reason,

there is a need for more accurate diffusion-like models of lattice-geometry neutron trans-



port that do not significantly increase the computational costs for the current generation of
computing platforms. Therefore, we seek to develop more accurate diffusion-like methods
that maintain the simplicity and speed of diffusion calculations while increasing accuracy.

The development of such diffusion-like models is the primary theme of this thesis.

1.2 History

The use of homogenized multigroup diffusion and SPx methods in reactor core simulations
is routine today. However, the theoretical foundation of these methods is incomplete, and
numerous open questions exist. Here, we briefly review the methodologies currently in
practice.

The term “homogenized multigroup diffusion” indicates that approximations are made
in space (homogenized), energy (multigroup), and angle (diffusion). These three general

types of approximations are usually (but not always) considered separately.

1.2.1 Multigroup Approximation

Arguably, the most basic and difficult of the discretizations of the independent variables
in the neutron transport problem occurs with the energy variable. In practical problems,
neutron energies range over eight orders of magnitude, and over that range, neutron cross
sections can vary rapidly with respect to the energy variable E. To “resolve” these rapid
variations on an energy grid would require thousands, if not millions, of energy groups.
Instead, a more sophisticated approach is taken, in which many fewer energy groups are
used (often, 2-50), and the group constants are defined to preserve features of simpler
problems that are “close to” the problem under consideration.

This procedure is not unique — and yet, the generation of “accurate” multigroup cross
sections is a fundamental prerequisite for performing accurate reactor core simulations.

The discretizations of the angular and spatial variables in the transport equation are, in



comparison to the discretization of the energy variable, straightforward. The discretization
of E is arguably the weak link in discretizations of the transport equation for practical
neutron transport problems.

Everything written in the preceding paragraph applies to each of the relevant cross sec-
tions in the Boltzmann transport equation. The multigroup approximation is a common one
in reactor physics, and has been covered in many basic texts [7-9]. Often, the multigroup
approximation is discussed in conjunction with the diffusion approximation [10], which is

covered in Section 1.2.3.

1.2.2 Homogenization Approximation

For a “lattice” system (a periodic array of pin cells or assemblies), typically the next step
after the multigroup approximation is the simplification of the multigroup transport equa-
tion by “homogenizing” the cross sections. For the original lattice system, the multigroup
cross sections are periodic functions of the spatial variable, having the periodicity of the
lattice. In homogenization theory, these highly space-dependent cross sections are replaced
by “homogenized” cross sections, which are independent of space, but are nonetheless cho-
sen to accurately capture the neutron flux. Often, the highly detailed cross sections within
each assembly are homogenized, producing a histogram-like map of cross sections across a
reactor core in which the (homogenized) cross sections are constant within each assembly,
but can vary spatially between different assemblies.

Traditionally, the homogenization process is done in such a way that certain features
of an idealized (e.g. infinite-medium) problem are preserved. Other than this, there is
little (if any) theoretical justification for the process of homogenizing the cross sections
in the multigroup Boltzmann transport equation. To say this more directly: there is no
known theoretical justification for replacing the multigroup transport equation for a lattice
medium by a multigroup transport equation with homogenized coefficients. Basically, this

procedure is ad hoc.



Homogenization, at least for the transport equation, is infrequently covered in standard
texts. Stamm’ler and Abbate briefly cover homogenization [8], as does Stacey [7]. More
frequently, homogenization is considered with the diffusion approximation, discussed in
the next section.

In Chapters 5 and 6 of this thesis, we address the process of homogenizing the multi-
group lattice-geometry transport equation. In particular, we show in Chapter 5 that a stan-
dard homogenization method — which preserves certain features of an infinite-medium
problem — can be generalized to preserve an asymptotic feature of finite homogenized
transport problems. In Chapter 6, we present numerical results to demonstrate that the
generalization developed in Chapter 5 is more accurate than the standard homogenization

method.

1.2.3 Spherical Harmonics and Diffusion Approximations

At this point, the energy variable in the transport equation has been discretized with the
multigroup approximation, and the cross sections have been spatially homogenized. We
now address the discretization of the angular variable Q. A classical method for discretizing
Q is the spherical harmonic method. Here, the angular flux is expanded in a truncated series

of spherical harmonics,

e (x, Q) = i Z Do (X) V1 ()

n=0m=-n
N n
20D beam DY@, (14)
n=0m=-n

where Y, (€2) are spherical harmonic functions. The spherical harmonic equations for
¢¢.n,m (X) are obtained by introducing Eq. (1.4) into the transport equation, Eq. (1.1), and
operating by:
f4 Y (Q)()dQ,  0<n’ <N,-n'<m’ <n. (1.5)
n



In practice, the N = 1 (Py) approximation is most widely used. For problems with
anisotropic scattering, if a further approximation (which effectively diagonalizes the first
angular moment of the group-to-group scattering matrix) is used, then the resulting approx-
imation to the Pj equation is called the “diffusion” approximation [8, 9].

At this point, we have derived a “homogenized multigroup diffusion approximation”
to the Boltzmann transport equation. The homogenized, multigroup diffusion approxima-

tion has been repeatedly addressed in the literature [8—10], as have attempts to improve its

‘< 6

solution (e.g. Koebke’s “equivalence theory” [11], Smith’s “generalized equivalence the-
ory” [12], and “current discontinuity factors” [13]).

Remark: It is known that (i) the homogenization approximation greatly simplifies the
spatial and angular dependence of the neutron flux, (ii) this simplification facilitates the use
of the Py approximation, and (iii) these approximations may not be justified in practice.
This realization led to a significant amount of work that attempted to derive multigroup

diffusion equations without the ad-hoc homogenization step [14—16].

1.2.4 Simplified Py

In an attempt to generate multidimensional solutions of homogenized multigroup transport
equations that are more accurate than the P; approximation but less expensive than the
Py approximation, N > 1, [which has O(N?) equations], Gelbard proposed the Simplified
P~ (SPy) approximation for the angular variable [17]. For many years, Gelbard’s intuitive
derivation of these equations was viewed with suspicion, but it was later found that the
SPn equations can be derived (1) asymptotically and (i1) variationally [18-24]. Today, it
is widely recognized that SP3 approximations to the homogenized multigroup transport
equation are more accurate than Py approximations, and are often sufficiently more accurate
to justify the computational cost of solving a larger system of equations.

Nevertheless, in applications of homogenized SPy;, the error associated with the ad hoc

homogenization step is still present. To date, there has been no systematic attempt to extend



to SPN the work by Gelbard, Benoist, Trahan, et al. to systematically derive homogenized

multigroup diffusion equations without the ad-hoc homogenization step [15,25].

1.3 Goals of this Thesis

Here we provide an overview of the goals of this thesis. A more detailed description follows
in section 1.4.

The novel research included in this thesis consists of three parts. The first part is covered
in Chapters 3 and 4. In Chapter 3, the 1-D lattice-geometry continuous energy neutron
transport equation is subjected to an asymptotic expansion, which was first considered by
Trahan [25]. The expansion involves a small parameter €, which indicates the inverse of
the thickness of the system. [e = 0 denotes an infinite system, while 0 < € < 1 denotes a
large, finite system.] If the asymptotic analysis is performed with 0(62) error, one obtains
Trahan’s result [15], a monoenergetic homogenized diffusion equation. In this thesis, we
perform the asymptotic analysis with O (64) error and obtain a monoenergetic homogenized
SP, result. However, the coefficients in our SP, equation are very different from those in
the standard SP, equation. In Chapter 4, we provide numerical results that confirm the
validity of the asymptotic analysis in Chapter 3.

The second part of this thesis is presented in Chapters 5 and 6, which focus on the
definition of multigroup transport cross sections. We show that the standard method for
deriving multigroup cross sections can be generalized in a way that preserves extra physics.
The primary analytic tool in Chapter 5 is an asymptotic expansion similar to that considered
in Chapter 3. The difference is that in Chapter 3, the goal is to derive an asymptotic limit of
the transport equation - a homogenized SP; equation. In Chapter 5, the goal is to improve
the accuracy of the homogenized multigroup cross sections.

The third part of this thesis is detailed in Chapters 7 and 8. Here we attempt to gen-

eralize Trahan’s asymptotic homogenized multigroup diffusion results to multigroup SP;.



Thus, we conjecture a form of the homogenized multigroup SP; equations, and we design
the definitions of the homogenized cross sections and diffusion coefficients in these equa-
tions so that as many exact elements of transport physics as possible are preserved. [For an
infinite medium, the exact eigenvalue and homogenized eigenfunction are preserved.] The
theoretical derivations of this homogenized SP; theory are given in Chapter 7. In Chapter
8, numerical results are presented. Unfortunately, these results do not demonstrate that the
new (asymptotic, multigroup homogenized SP») results are a systematic improvement over
Trahan’s asymptotic, multigroup homogenized diffusion results. A major issue is that the
prescription of the homogenized multigroup SP; diffusion coefficients is not unique. The
prescription that Trahan used for his diffusion coefficients worked well for his problems,
but similar prescriptions for the SP, equations do not seem to yield a systematic improve-
ment in accuracy. Our results indicate that further work should be done before a practical

homogenized SP, approximation could be used in practice.

1.4 Outline of the Remainder of this Thesis

A detailed description of the remainder of this thesis is as follows.

In Chapter 2, we review some of the common methods of solving the neutron transport
equation. These are subdivided into deterministic transport methods, Monte Carlo methods,
and homogenized diffusion-based methods.

In Chapter 3, we consider a continuous energy, spatially periodic 1-D system, compa-
rable to a 1-D model of a reactor core. We apply an asymptotic analysis to this problem,
assuming that the system is optically thick, as defined by the small parameter € = 1/N,
where N is the number of spatial cells. The asymptotic analysis yields a result which is
exact when € = 0 (an infinitely thick system with a periodic solution), but which is approx-
imate when 0 < € < 1 (a finite, optically thick system with a nearly-periodic solution and a

weak spatial “buckling”). Our analysis is similar to that performed earlier by Trahan [15],
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but we carry the analysis to higher order. In Trahan’s work, a monoenergetic homogenized
diffusion equation is the final result, having an O(€?) error. Our work extends the analysis
to O(e*) error, which yields a more complicated homogenized P, equation. We also obtain
a higher-order “flux reconstruction” formula, which expresses the angular flux ¢ in terms
of (i) specified energy-dependent functions that are spatially periodic, and (ii) the solu-
tion of the monoenergetic homogenized SP, equation, which is not spatially periodic. The
leading-order term in this expansion of ¢ is the usual “flux reconstruction” formula com-
monly used in reactor physics calculations. One of the higher-order terms in this expansion
was derived by Trahan [15], while the others are new and unfamiliar.

Next, in Chapter 4, we consider several 1-D monoenergetic transport problems that
are solved (i) directly, using the discrete ordinates approximation with diamond differenc-
ing, and (i1) using the approximate homogenized P, theory developed in Chapter 3. For
the problems considered, numerical results demonstrate that the new asymptotic homog-
enized SP, approximation is a significant improvement over the asymptotic homogenized
diffusion theory developed by Trahan. (Trahan himself showed that his asymptotic homog-
enized diffusion theory was an improvement over standard homogenized diffusion meth-
ods.) Overall, the numerical results presented in Chapter 4 demonstrate that for problems
in which the asymptotic analysis is justified (1-D, spatially periodic, many spatial cells in
width), the results of the analysis are significantly more accurate than standard homoge-
nized diffusion and SP, approximations.

In Chapter 5, we consider a fundamentally different problem — that of accurately defin-
ing multigroup cross sections for multigroup transport problems. As in Chapter 3, we con-
sider a 1-D continuous-energy transport problem and begin with the standard methodology
of defining multigroup cross sections for this problem, by calculating weighted averages
of the cross sections over each energy group. The “weights” are taken to be the infinite-
medium neutron spectrum function (the solution of the infinite-medium problem). The

resulting multigroup cross sections preserve both the infinite medium eigenvalue and the

11



infinite medium multigroup eigenfunction. However, it turns out that there are many other
multigroup cross sections that preserve these two properties. In Chapter 5, we show that
a simple modification of the multigroup cross sections - obtained by multiplying the cross
sections by a group-independent scaling factor p - will, if p is chosen properly, enable the
scaled multigroup transport equations to preserve an asymptotic limit of the continuous-
energy transport equation. Essentially, the scaling factor p allows the multigroup transport
equation to preserve some space-dependent transport physics that are not preserved by the
standard, unscaled multigroup cross sections. In Chapter 5, we derive two explicit expres-
sions for the scaling factor p.

In Chapter 6, we numerically test the theory developed in Chapter 5. We initially pose
several 1-D problems hat use higher-order multigroup cross sections. Then we consider
approximate transport problems, using fewer energy groups with group-collapsed cross
sections, both with and without the scaling factor derived in Chapter 5. We show that for
all the cases considered, (i) the inclusion of the scaling factor improves the accuracy of the
few-group calculation, and (ii) the scaling factor p is nearly equal to unity when the number
of groups is large but is not necessarily close to unity when the number of groups is small,
as expected.

In Chapter 7, we apply an asymptotic analysis to a hypothesized, spatially homoge-
nized, multigroup, 1-D SP; equation. The hypothesized equation uses standard homoge-
nized cross section definitions, but leaves the diffusion coefficients undefined. To facilitate
the asymptotic analysis, we again assume that the system is thick relative to the size of a
single cell. The analysis is comparable to one performed by Trahan [15], but with a hypoth-
esized multigroup SP;, equation rather than a hypothesized multigroup diffusion equation.
Indeed, we select the same definition for the multigroup diffusion coefficient (Bo,g) that
Trahan chose. The asymptotic analysis of the multigroup SP; equation results in a mo-
noenergetic SP, equation, similar to the one obtained in Chapter 3. By requiring that the

hypothesized multigroup SP, equation have the same asymptotic limit as the continuous
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energy transport equation, we establish a condition that the other multigroup diffusion co-
efficient, Ez,g, must satisfy. There are many ways to define Bz,g, and we choose two logical
definitions to be tested in Chapter 8.

In Chapter 8, the SP, equation hypothesized in Chapter 7 is tested for a series of homo-
geneous media. The multigroup SP, equations with asymptotically-defined coefficients are
inconsistent in their accuracy, and are frequently outperformed by standard SP, and even
diffusion. The most likely explanation for these inconsistencies is the definition of Bz,g,
as Eq. (7.31) does not lend itself to an unambiguous definition of Bz,g. Future work is
suggested to try an obtain a less ambiguous, more accurate definition for Bz,g.

Finally, in Chapter 9, we summarize our work and numerical results, and we discuss

potential future work.
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CHAPTER 2

Standard Neutron Transport Methodology

Before we discuss the derivation of the asymptotic SP, equations, several standard reac-
tor physics methods are first summarized. The discrete ordinates method, the method of
characteristics, and the spherical harmonics method all represent deterministic transport
methods. Monte Carlo characterizes stochastic transport methods. Finally, homogenized
diffusion theory and homogenized simplified Py are the two primary diffusion-based meth-

ods.

2.1 Deterministic Transport Methods

In deterministic transport methods, the neutron transport equation is discretized and solved.
Common deterministic methods include discrete ordinates, the method of characteristics,

and spherical harmonics.

2.1.1 Multigroup, 1-D Discrete Ordinates (Sn)

In the discrete ordinates (Syn) method [1, 2], the continuous Boltzmann equation, Eq. (1.2),
is broken up into discrete angular bins, resulting in a series of differential equations for

each discrete angle. If we also apply the multigroup approximation from Section 1.2.1, we
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have the multigroup, 1-D discrete ordinates equations:

G N
l//ng (%) +Ztg(x) ‘/’ng(x) = Z Z 5.8/ —>g (X, iy = ) U g (%) )Wn’
:1 =1
/\/ (X G N
520 20 (VR g () 2.1)
g=1n'=1

If we integrate Eq. (2.1) over a spatial bin (x;_1,2 to x;11,2), define:

hi = Xiv1/2 = Xi-1/25 (2.2a)
1 Xi+1/2
Ying = 0 f Yo (X, un)dx, (2.2b)
LY Xi-1/2

M E [Hn—1/2,Mn+1/2],

and

Yix1/2.ng = W (Xix1/2:Hn) » (2.2¢)

HE [Hn—1/2:Mn+1/2],

and apply the diamond difference approximation:

1
wi,n,g = E(wi+1/2,n,g + wi—1/2,n,g) s (23)

Eq. (2.1) becomes:

N
/;: (wl+l/2ng Wi 1/2ng)+ztlg‘/’lng - Z Z:“l(zs,i,g'ﬁg (/ln’ _>,un)lr//i,n’,g’)wn

G N
Xg
+/l?ZZ szlngn .8 Wn (24)

g=1ln'=1
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Egs. (2.3) and (2.4) are the 1-D, multigroup, diamond-differenced, discrete ordinates equa-
tions.

The spatial index ranges from i = 1 to / and the angular from n =1 to N. Eq. (2.3),
the diamond difference auxiliary equation, provides the additional relationship necessary
to solve Eq. (2.4).

Egs. (2.3) and (2.4) are solved in a sweeping, iterative manner. The right side of
Eq. (2.4) (the source) is lagged, beginning with an initial guess. For a 1-D problem, the
equations can be solved starting at the left boundary and moving to the right for n =[1, N/2]
(un > 0). Then, starting from the right and moving to the left, the equations are solved for
n=I[N/2+1,N] (u, <0), completing a single iteration. This is repeated, updating the
source on the right side of Eq. (2.4) at the end of each iteration, until some convergence is
achieved.

Deterministic methods can be as accurate as the user desires by increasing the number
of angles, energy groups, and spatial bins (though non-planar geometries can get compli-
cated). However, this is limited by the computer resources available and, as in all neutron

transport calculations, the accuracy of the cross section data.

2.1.2 Method of Characteristics (MOC)

The method of characteristics (MOC) [1,2,9] is an “integral transport” method, in which
the integro-differential transport equation is converted to an integral equation. Like Sy,
the problem is split into discrete spatial regions, angles, and energy bins. Unlike Sy, the
transport equation itself is not discretized. Rather, it is solved analytically in each region
along a line in a single (characteristic) direction. Scalar quantities, like the neutron flux or
reaction rates, are constructed by summing their individual angular components in a region.

To calculate the angular flux in a given region, Eq. (1.2) is first converted to integral
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form:

S
1,//(x0+s;1,,u,E):exp(—f Zt(xo+s'/1,E)ds’)t,//(x0,,u,E)
0

S S
+f exp( - f ¥ (xo+ 5" u,E) ds")q (xo+ 5" u,u, E)ds’, (2.5a)
0 s/

where

00 1
q(x,u,E)=f fEs(x,u’—>u,E’—>E)w(x,u’,E’)du'dE’
0 -1

E (oo} 1
+/1X(xz’ ) f f VE (0 E W (xoi B dy dE (2.5b)
0 -1

and xg lies on the region’s boundary.

Eq. (2.5a) can be analytically solved if the incoming angular flux  (xg,u, E) is known
and we assume that the cross sections and source in the region are constant. The latter
condition is known as the “flat source approximation,” and is one of the key disadvantages
of MOC. However, it is only a significant disadvantage if the flux varies rapidly in the
region; if the shape of the flux is relatively flat, then this approximation has small errors.

With these assumptions, the angular flux inside a flat source region i is

s i E) s
lﬁi (XO + SuU, U, E) =e Zr,z(E)Slp(xo,/J,E) + %(1 —e Zz,z(E)) , (263)

where

00 1
qi (W, E) = j(; I]ZS,,- W - uwE - E),(W E"du'dE’

. o pl
+2X ;E) f f vE£i(E Wi \E')dudE' (2.60)
0 -1

Eq. (2.6a) is solved along “rays” that overlay the entire problem, with the exiting flux

from one region used as the incoming angular flux for the next region in a ray’s path. A
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region may contain more than one ray in a given direction; more rays in a region can lead
to a more accurate solution.

These rays allow MOC to handle complex geometries more easily than Sy. Rather than
trying to discretize over a complex geometry, MOC only needs to calculate the distance
from one surface to another. Furthermore, MOC solutions describe a more accurate repre-
sentation of the flux within a cell than Sy with diamond differencing. However, if the step
characteristics auxiliary equation is chosen instead of diamond difference, Sy and MOC, at
least in 1-D, will be identical.

Finally, the MOC angular quadrature is often modified for a problem to ensure that all
of the rays will line up. This process is called “modularization.” Without properly ad-
justing the angular weights, modularization can lead to errors when quantities are summed

(integrated) over angle.

2.1.3 Spherical Harmonics (Py)

In the spherical harmonic, or Py, approximation [1,26], the angular dependence of ¢ (x,Q, E)

is approximated by a spherical harmonics expansion:

v (x,Q.E) = i Z Gnm (. E) Y ()

n=0m=—n
N n

D bum BV, 2.7)
n=0m=-n

where Y, (€2) is the spherical harmonic function of order n, m.
Introducing Eq. (2.7) into the 3-D transport equation, Eq. (1.1), multiplying the result
by the complex conjugate of the spherical harmonic function, )_’21 (Q) =Y, (L), and inte-

grating over Q € 4 yields (N + 1)? equations that are only functions of x and E.
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In 1-D, planar geometry, these equations reduce to (N + 1) equations,

i[ n n+1

Dol 101 W Bt S g e (W E) [+ (5 E) (. E) (2.8)

:f an(x,E/—>E)(]Sn(x,E/)dEl+Q(X,E)6n,0,OSnSN,
0
where Q (x) is the source (fission, fixed, etc.), and

-1 (X, E) = ¢n+1 (v, E) =0. (2.9)

The Pn method has the benefit of eliminating the angular variable, but at the cost of
greatly increasing the number of differential equations to be solved, especially in 3-D. For
N =1, the Py method yields the diffusion equation. Py is also the basis for the simplified

Pn (SPyn) method, discussed in Section 2.3.2.

2.2 Monte Carlo Transport Methods

Monte Carlo methods [2,27, 28] are stochastic methods that do not make direct use of the
neutron transport equation. Rather, they use probabilities and random numbers to simulate
individual neutrons’ journeys from birth (by fission, or some other source) to death (from
absorption, or leaking out of the system). By simulating large numbers of neutrons (on the
order of millions+), an approximate solution to the neutron transport equation is obtained.
The success of Monte Carlo methods underscores that the Boltzmann equation describes
the average behavior of a distribution of neutrons, obtained (in principle) by averaging over
an infinite number of Monte Carlo particles.

The random walk of a individual neutron in a Monte Carlo method can be described as

follows:

1. A neutron is generated with a random location, energy, and angle.

19



2. The distance the neutron travels before colliding is stochastically determined.

3. If the collision point of the neutron is still in the system, then a collision type (e.g.
scattering or fission) is determined, based on the material region the collision oc-

curred in.

4. If the neutron scatters, then a new direction and energy are calculated, and steps 2-4
are repeated.

5. If the neutron is absorbed, or leaks out of the system, then its history is terminated

and any quantities of interest are tallied.

Each random event, such as the starting location, the distance to collision, or the di-
rection of a scattered neutron, is calculated using a pseudo-random number generator and
probability distribution functions (pdfs). Sampling from a pdf using a random number on
¢ =10, 1] requires calculating the cumulative distribution function (cdf) and inverting it; if
a cdf is too difficult to invert, then rejection sampling may be used [28].

Monte Carlo has several advantages over deterministic transport methods. First, Monte
Carlo is theoretically capable of modeling any 3-D geometry that can be described by
equations. (Deterministic methods are commonly restricted to geometries with piecewise
planar surfaces.) Second, Monte Carlo does not require any discretization (for space, angle,
or energy), eliminating any discretization errors. The ability to sample cross sections on a
continuous energy spectrum - thereby eliminating any resonance calculations - is a signif-
icant advantage. Third, at any point in a simulation the results can be tallied and used as
an estimate of the variables of interest. The solution does not need to be converged before
it can provide a meaningful value, as long as one takes into account the solution’s standard
deviation.

However, Monte Carlo also has disadvantages. The primary disadvantage is that the
errors in Monte Carlo are statistical in nature, and these decrease slowly with computational
effort. According to the Central Limit Theorem, the expected statistical error in the estimate

of a quantity of interest is proportional to 1/VN, where N is the number of histories sampled
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(which is proportional to the computational effort). Therefore, to reduce the statistical error
in a Monte Carlo simulation by a factor of 10, it is necessary to increase the run time of the
simulation by a factor of 100!

For more information on Monte Carlo methods, we direct the reader to [2,27, 28].

2.3 Homogenized Diffusion-Based Methods

2.3.1 Homogenized Diffusion Theory

In diffusion theory, the diffusion equation, Eq. (1.3a), is solved rather than the transport
equation, Eq. (1.2). Without an angular dependence, the number of unknowns is consid-
erably reduced. While the diffusion equation can be solved as-is with finite difference or
finite element approximations in space and energy (similar to Sy), it is more frequently
further simplified to what is known as homogenized diffusion theory.

In homogenized diffusion theory, Eq. (1.3a) is integrated over a region of interest (L; =

[xi+1/2, Xi—1/2]), typically a pin or assembly, yielding:

fﬁ](x,E)dx+fZ,(x,E)qb(x,E)dx:ffoozs,o(x,E'—>E)¢(x,E’)dE’dx
L,‘ Li Li 0

ox
+/lf)((x,E)foovzf(x,E’)gb(x,E’)dE’dx, (2.10a)
Li 0
or
1 _ 00
F(J(XHI/Z,E)_J(xi—l/Z,E))+Zt,i(E)¢i(E):L Y50i(E' = E)¢;(E')dE’
J”b?i(E)fooﬁf,i(E')fﬁi(E’)dE', (2.10b)
0
where
¢i(E)=leI+l/2¢(x,E)dx, (2.11a)
hi Xi—1/2
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and

hi = Xiy172 = Xi—1/2 -
Using Eq. (1.3b) to eliminate J, Eq. (2.10b) becomes

D (x; 12,E 0 D(X'_l 2,E 0
_M_(ﬁ(xlﬂ/z,E)Jr#

h; Ox h; dx
+§t,i(E)¢i(E):j(; 2,04(E' = E)¢;(E")dE’

¢ (x141/2,E)

+ A;(E) f wﬁf,i (E")¢;(E")dE’,
0

where
1

DB =55 G

(2.11b)

(2.11¢c)

(2.11d)

2.11e)

2.11)

(2.12)

(2.13)

Eq. (2.12) can be solved in a variety of ways, including finite difference and nodal methods.

Homogenized diffusion can be alternatively derived by first homogenizing the transport

equation, Eq. (1.2), rather than the diffusion equation, Eq. (1.3a), and then deriving the

diffusion equation from the homogenized transport equation. This leads to an altogether

different definition of the diffusion coefficient, D [7].

A problem with homogenized diffusion is that the “homogenized” parameters in

Eqgs. (2.11b-2.11d) require the core scalar flux that we are trying to solve for, ¢ (x, E).
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In order to avoid this chicken-and-egg problem, the homogenized parameters are typically
calculated with a transport calculation (e.g. Sy, or MOC) for each unique region with re-
flecting boundaries; this “lattice” calculation is one of the key approximations made in
homogenized diffusion. The same lattice calculation can be used to generate shaping func-

tions for flux reconstruction and discontinuity factors for a diffusion calculation.

WV TN

Olat Gdiffusion

¢reconstructed

Figure 2.1: Flux Reconstruction

Fig. 2.1 illustrates the basic concept behind flux reconstruction. The detailed spatially
periodic flux from a lattice calculation is combined with the non-periodic result from a full
core diffusion calculation to achieve an estimate of the detailed scalar flux in the core. In

standard homogenized diffusion theory,

(2.14)

_ . . ¢lat (-x, E)
Geore (X, E) = Qdiftusion (X, E) X [—< bt > (E)] ,

where < ¢, > (E) indicates that ¢y, (x, E) has been averaged over a cell.

Discontinuity factors are a natural extension of flux reconstruction. If we have a contin-
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uous diffusion solution, @gifrusion, then there is no guarantee that the reconstructed solution
is continuous. However, if we allow ¢gifrusion to be discontinuous at the interface between
two different homogenized regions, like in Fig. 2.2 (reproduced from [12]), then it is pos-

sible to make the reconstructed flux continuous.

& &
/, "L ~|_+1
@l(X) q)i q)i+1

& (X
| \fsbmm
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Figure 2.2: Discontinuity Factors [12]

Homogenized diffusion theory remains one of the most widely used methods in reactor
physics. Its speed, combined with the accuracy provided by pin power reconstruction and

discontinuity factors, make it the preferred technique for transient and burnup calculations.

2.3.2 Homogenized Simplified Py (SPN)

The 2-D and 3-D SPy approximations are a further simplification of the planar 2-D and 3-D
Pn equations, respectively. In the traditional derivation, the 1-D Py equation, Eq. (2.8), is

formally modified by replacing any 1-D spatial derivative by the gradient operator,

d
d—¢(x) =Vo(x), (2.152)
X
or
iDirzﬁ(x) =V-DVo(x) . (2.15b)
dx dx

A downside to SPy theory is that it, as opposed to Py theory, does not converge to

the transport solution as N — co. Regardless, it provides a more accurate alternative to
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diffusion theory with computational costs still much less than the transport methods.

It has been shown [18-23] that the SPN equations can be derived using both asymp-
totic theory and variational methods. However, homogenized SPy has, until this work, no
theoretical justification. Homogenized SPy is similar to homogenized diffusion theory;
by averaging flux-weighted cross sections over a region of interest, a coarse grid can be
used and the number of unknowns reduced. However, the choice of diffusion coefficients,
already ambiguous in homogenized diffusion theory, is even more uncertain with homog-
enized SPN. [As we have already discussed, this leads to practical difficulties discussed in
Chapters 7 and 8.]

Current derivations of homogenized SPy equations are as follows. First, the transport
equation with spatially periodic cross sections is approximated by the transport equation
with homogenized cross sections. (This step is ad hoc.) Second, the 1-D planar, homoge-
nized Py equations are obtained by approximating the angular flux for this second, homog-
enized transport equation with a spherical harmonics expansion. (This step is theoretically
justified.) Third, the homogenized SPy equations are obtained by applying the standard
SPn approximation, shown in Eq. (2.15), to the 1-D planar, homogenized Py equations.
(This step has also been theoretically justified by asymptotic and variational analyses.) The
Achilles’ heel in this current derivation of homogenized SPy equations is the ad-hoc step
of homogenizing the cross sections in the multigroup transport equation. This generally
has a profound simplifying effect on the spatial and angular dependence of the transport
solution. As has already been explained, the goal of this thesis is to develop methods that

do not rely on the ad-hoc step of homogenizing the multigroup transport equation.
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CHAPTER 3

Asymptotic Analysis of the 1-D Continuous

Energy Lattice-Geometry Transport Equation

In this chapter, an asymptotic analysis is applied to the 1-D, continuous energy, lattice-
geometry Boltzmann transport equation. For a large, periodic lattice system, the solution
is assumed to have two length scales ¢; (the width of a pin or assembly) and ¢; (the width
of the core). The dimensionless ratio € = £1/{, = 1/N, where N is the number of pins or
assemblies in the system, is assumed to be small (i.e. < 1). The solution is then expanded
in powers of €, and the Boltzmann transport equation is split into equations with equal
orders of €. These equations are solved sequentially for €” to €, and the result, obtained
from the solvability conditions for € to €, is a 1-D, one group simplified P, equation.
When € = 0, we have an infinite lattice with a periodic asymptotic solution, which is
exact. When 0 < € < 1, then the system is large, yet finite. In this case, the asymptotic
solution is periodic with a small spatial “buckling.” This is representative of a nuclear reac-
tor, which contains several assemblies filled with repeating pins. The asymptotic analysis
provides an expression for the angular flux that, to leading order, is identical to the standard
“flux reconstruction.” Higher-order terms provide corrections to standard flux reconstruc-

tion that, as shown in Chapter 4, improve the accuracy of the solution.
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3.1 Asymptotic Analysis

We begin by stating the 1-D, continuous energy, anisotropically-scattering transport equa-

tion,
2
po o o E) + 2 (x, E) Y (xo . E)
= f:[i X (o = uE' = E)y(x,p E")dy' dE (3.1)
+/1X(XZ’E) foooIivZf(x,E’)t//(x,u',E’)d,u’dE’,
where
1=p=1-p. (3.2)

To perform the asymptotic analysis, we assume that the physical system is periodic,
consisting of a symmetric cell (e.g. a pin or an assembly) repeated N times, with N large
enough that

e=1/N«1. 3.3)

This allows us to represent the angular flux ¢ (x, u, E) as a function of two spatial variables:
one periodic “fast” variable (y) that operates on the cell (variations in the cell), and one
non-periodic “slow” variable (z) that operates on the entire core (variations in the core), as
seen in Fig. 3.1.

If the periodic system is infinite (i.e. € = 0), the angular flux would be periodic, and
would depend solely on the periodic “fast” spatial variable. Once we perturb the infinite
system to make it finite (i.e. € < 1), we introduce a weak, non-periodic spatial dependence

(the “slow” spatial variable) that we can assume is independent of the periodic variation.
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Figure 3.1: Fast versus Slow Scales

With this assumption, we rewrite ¥ (x,u, E) as:

o E) =Yy, 2,1, E) ,

where

Y is a periodic function of y (when y and z are independent), and

0 0 0
_lp(xa#’E) = _\IJ(Y’Z,M’E)"‘f_\P(yaZ,IJaE) .
0x oy 0z

The cross sections depend solely on the fast scale in a periodic manner:

Zj(x,E) :2j(y,E) ZZj(y+h,E) ,

(3.4a)

(3.4b)

(3.4¢)

(3.4d)

(3.5)

where £ 1s the width of a single cell. If the center of a cell is at y = 0, then its symmetry can

be expressed as

Ej()/,E) ZEj(—y,E) .
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With these assumptions, we expand ¥ and A in €:
W (.2t E) = Wo (3,240 E) + €91 (0,241, E) + € ¥ (1,21, E) + ... (3.7a)

A=A +€ 1. (3.7b)

There is no €4; in Eq. (3.7b) because, as shown in [25] (and Appendix A), 41 = 0.
Introducing Egs. (3.4) and (3.7) into Eq. (3.1) and assuming a Legendre polynomial

expansion of the differential scattering cross section, we obtain:

u(%[% (02, E) + W1 (0, 2,40, E) + €W2 (0, 2,1, E) + .|
+ e,u(%[‘l’o 0z E) + €Y1 (0,2, 1, E) + €W (v, 2,1, E) + .. ] (3.8)
+3, (0. E) [P0 0.2 1. E) + €91 (.2 E) + € P2 (.2, E) + ... |
= fooo j:ZS i’ =, E" = E)[Yo(y, 2,14, E" )+ €¥1 (v, 2,1/, E )+ ... |du'dE’

+/1X O

’E) « 4 1 7 /7 4 4 ’ /4
> f vZf(y,E)f [Po (v, z, i, E")+ €V (v, 2,14/, E")+ ... |du’dE" .
0 -1

We now equate the coefficients of the different powers of e:

EO:
LYy (y,z,u, E) =0, (3.9a)
61:
0
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e forn > 2:

0
L\I’I’l (y’zallaE) = _/'t_\Iln—l (y’Z7/l’ E)

0z
x O, E)

00 1
+hT f vZr(v,E') f Y2 (v,2.4', E")dy' dE’ (3.9¢)
0 -1

where L is the “infinite-lattice” transport operator:

0
L\P(y,Z,,U,E) :ﬂa_yT(y7Z’ﬂ7E)+Et(y7E)\P(yaZ9ﬂaE)

00 1
—f f SO = E - E)Y (v, 1 E ) du' dE’ (3.10)
0 -1

’E « /4 1 ’ 4 ’ 7
—xlo)((y2 )f VZf(y,E)f ¥ (y,z,4', E)dy dE" .
0 -1

The properties of L are detailed in Appendix B and summarized here:

1. Lacts only on y, u, and E. It is independent of the slow spatial operator z.

2. Lis symmetry-preserving. If g (y,u, E) is symmetric,

g1 E) =g(-y,—w, E) , (3.11)

then Lg is symmetric,

Lg(y.u, E) = Lg(=y,—p.E) . (3.12)

Likewise, if g (y,u) is antisymmetric,

g E) =—g(-y,—i,E), (3.13)

then Lg is antisymmetric,
Lg(y,pu,E) = —=Lg(=y,—1. E) . (3.14)
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3. The solution of

Lfo 0.1, E) = 0| (3.15)

is the infinite-medium lattice solution (with Ag equal to the infinite-lattice eigenvalue,
chosen so that the solution fj is positive). fy is both a periodic function of y and a

symmetric function of y and pu.

4. The inner product of two periodic (in y) functions g (y,u, E) and h(y,u, E),

h oo 1
(g,h)=f0f0 flg(y,u,E)h(y,u,E)dudEdy, (3.16)
has the property
(8,Lh) = (L g,h). (3.17)

Here the integral foh(-)dy denotes a spatial integral over a single cell, and L* is the

adjoint operator.

5. The adjoint operator L* is defined by:

0
Lg(y,u,E) = —ua—yg(y,ﬂ,EHZt 0,E) gy, E)
00 1
—fo f] X - E—> Eg (' E")dy dE (3.18)

WEHOE e [ ' ENVdW dE’
“d—— |, x(,E") _lg(y,u, Ydu'dE” .

6. The solution of L*fj (y,u, E) = 0 is the adjoint infinite-medium lattice solution, and

it is also a periodic function of y and a symmetric function of y and u. For one group

in 1-D, fg (ynu) = f() (y’ _,u)

Egs. (3.9) are solved sequentially, beginning with Eq. (3.9a). Because L acts solely
on the angular variable y, the fast spatial variable y, and the energy variable E, the gen-

eral solution of Eq. (3.9a) is the solution of the infinite-lattice problem multiplied by an

31



unspecified function of z, Ag (z):

W0 021, E) = foy,u E) Ao (2) | (3.19)

Introducing Eq. (3.19) into Eq. (3.9b), we use the Fredholm Alternative theorem (FAT)
[29], discussed in detail in Appendix A, to ensure that a solution Wi (y,z,u, E) exists. As

seen in Appendix A, this requires taking the inner product of f;j (y,u) with Eq. (3.9b):

. 0
(f(;k (y’ﬂaE)7L\Pl (y,Z,,U»E)) = (f(;< (y’ﬂaE)’(_lla_Z\PO (y’Z’M’E) )) . (320)

The left side of Eq. (3.20) is equal to zero by the definition of the inner product and L*:

(f5 0o E), L¥) (v, 2.0 E) ) = (L f 0ot B), W1 (0,218, E))

0,%1 (2.1, E) ) (3.21)

0.

Therefore, the right side must also equal zero:

0
(f; (y’/l»E),(—,Ua—Z‘PO 021, E) ))

h 00 1
. 0
:ff ffo(W,E)(—ﬂa—‘Po(y,z,u,E))dudEdy
0 JO -1 Z

h 00 1 a
= j; fo f 1fJ (y’/l,E)(,Ua—z(fo(y,u,E)Ao(z)))dydEdy (3.22)

(9 h ) 1
:—(a—Ao(z)) f f f ufy st E) fo (v, i, E) dudEdy .
Z 0 0 -1

Both fo (y,u, E) and f; (y,u, E) are symmetric functions of y and y, while u is antisym-

metric. The integrand in Eq. (3.22) is therefore antisymmetric, so the integral is equal to
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zero (see Appendix B for details):

0
(fJ(y,ﬂ,E),(—ua—Z‘Po (.21, E) ))

0

h 00 1
—~(gm0@) [ [ [ ufs 0 fo s Erdday
4 0 0 -1

P h 00 1
=- G_AO () f f f (antisymmetric) (symmetric) (symmetric) dud Edy
< 0o Jo J-1

) h ) 1
=—|=—Ap(2) f f f (antisymmetric) dudEdy
9z 0o Jo Ja

=0. (3.23)

By Eq. (3.23), the solvability condition is satisfied, so by the FAT a particular solution of
Eq. (3.9b) exists:

0
W parictar 021, E) = L = fo 0ot E) Ao 2|
0
=L |ufo . B) | 5-Ao @) (3.24)
Z

= _fl (Y’,U,E) aQAO (Z) ,
Z

where L~! is the pseudo-inverse, and

AGuwE) =L ufo (. B) | (3.25)

In Egs. (3.24) and (3.25), f (y,u, E) = L™ [g (v, 11, E)] is the unique solution to the fixed

source lattice transport problem with an external source g (y,u, E), defined by:

Lf(y,p, E)=g(y,p) , (3.26)
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where g (y,u) and f (y,u) both satisty

(fo 0., E), g (y,u,E)) =0, (3.27a)

(fo O E), f s, E)) = 0. (3.27b)

Eq. (3.27a) ensures that f exists, and Eq. (3.27b) ensures that f is unique.

The solution to Eq. (3.9b) is the sum of the particular solution, Eq. (3.24), and the
solution to the homogeneous problem LY jomoq (v, 2,4, E) = 0. As with ‘P, the solution to
the homogeneous problem is the product of fy with another as-yet undefined function of z,
A1 (2):

\Pl,homog 0z, E) = fo(y,u, E)A1(2) . (3.28)

Combining Egs. (3.24) and (3.28) yields a final solution for ¥:

0
Y10.z.4.E) = fo(y. 1, E)A1 (2) = f1 (.11, E) a—ZAo (@) . (3.29)

Here fo(y,u,E) and fi (y,u, E) are specified periodic functions of y and u, and Ag(z) and
A1 (z) are as-yet unspecified functions of z.
The methodology for solving Eq. (3.9¢) (n = 2) is similar to the n = 1 case just treated.

We begin by taking the inner product of both sides with f (v, u, E):

(V5 ot ) L2 0210,

, 0
= (f() (y,/*taE)a_:ua_ZlPl (y7Z’ﬂ7E) (330)

’E OO ’ ! ’ ’ I4 ’
+/12X(y2 )f vir(v,E )f Yo (y,z,u1',E" ) du'dE" ).
0 -1
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As before, the left side is equal to zero:

(f& 0, E), LY (v, 2,1, E)) = (L*fo* O, E), Y2 (y,z,ﬂ,E))

O,Tz(y,z,u,E)) (3.31)

0,

so the right side of Eq. (3.30) must also equal zero. Introducing Egs. (3.19), (3.29), and

(3.31) into Eq. (3.30) we obtain the condition:

0 0
0= (f(;< (ynu’E)7_:ua_Z(f0 (y,,u,E)A1 (Z)_fl ()’,#,E) a_ZAO (Z))

x(,E)

+A
)

0o 1
\fO sz(y’El)flfO(y’/l,’E,)AO(Z)d//dE,)

d &%
= (fg 0., E) = fo (v, 1, E) 0—ZA1 (@) +uf1 ,u, E) 6_z2A° () (3.32)

x(,E)
2

+ A

o0 1
Ao(z)j(; vZf(y,E’)flfo(y,u’,E’)du’dE’)

0 e
= =(f5 OB o bt ) ) -t + (f5 0 B iy 0511, B) ) 5540 2)

’E 0 4 l 4 4 7 4
+ﬂz(f5(y,u,E),X(y2 )fo vEf(y,E)flfo(y,ﬂ,E)du dE )Ao(z)-

From Eq. (3.23), (f; (.. E) ufo (3.1, E) ) = 0, yielding:

62
0=(/f; 0. ), ufi (y,u,E))a—Zon (2) (3.33)

7E © 14 l / 4 V4 /
+ﬂz(f5(y,ﬂ,E),X(y2 )fo sz(y,E)f]fo(y,ﬂ,E)d# dE )AO(Z)-

This is the solvability condition for Eq. (3.9¢) (n = 2) that must be satisfied for Eq. (3.9¢)

(n = 2) to have a solution.
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To obtain a particular solution for ¥, we multiply Eq. (3.33) by

f() (y,,u,E)
(fr &/ W BN o o E))

and subtract the result from Eq. (3.9¢) (n = 2). The resulting equation, Eq. (3.34), automat-

ically satisfies the solvability equation:

0
L\PZ (y,Z,/l, E) = _#_Tl (y’Z’N’E)

0z
’E « 4 1 4 4 ’ 4
+/12X(y2 )f vis(v,E )f Yo(y,z, i, E")dy'dE
0 -1
fo. i, E) g

(f5 OB, ptfi (11, E) ) 5540 ()

- X
(f5 071 BN fo 0o EN)

’E 0 4 1 V4 4 4 4
+/12(f5‘(y,u,E),X(y )fo vEf(y,E)ﬁlfo(y,ﬂ,E)dﬂ dE )Ao(z)]

2

0 0
= —#a—z(fo O E)A1(2) = f1 (o, E) 6_on (z))

E) (™ () o .
”2X(y2 )fo VEf(y,E)Lfo(y,u,E)Ao(z)du dE (3.34)
M E ) 9

(f5 0" BN fo & ) 2

’E a ’ 1 ’ ’ ’ ’
+/12(fg(y,u,E),X(y2 )j; vZf(y,E)Lfo(y,u,E)du dE )Ao(z)]-

Defining the “identity” operator I, Ig(y,u, E) = g(y,u, E), and the “projection” operator P,

fO (y,,U,E)

Pg(y,u,E) =
(fg o END, fo (y',,u’,E’))

(f O g0 ED), (339)

Eq. (3.34) becomes:
d 9?
L\PZ(y’Z’/J’E) = _(/’lfo (y’/l’E))a_ZAl (Z) + ((I_P)/'lfl (y’:u’E))a_ZZAO (Z)

x(,E)
2

+/12((1—P) L VZf(y,E/)FO (y,E')dE')Ao (2), (3.36)
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where

1
Fo(y,E) = flfo(y,u’,E)dM’. (3.37)

Eq. (3.36) now automatically satisfies the solvability condition. Therefore, by the FAT,
a solution W (y,z,u, E) of Eq. (3.36) exists. As with Egs. (3.9a) and (3.9b), ¥> (y,z,u, E)
consists of the sum of the homogeneous solution to LW; (y,z,u, E) = 0 and the particular

solution to Eq. (3.36):

0
Y2041, ) =fo (5t E) A2 @)+ L7 = (1o 011, ) ) 5-A1 2

62
(U= PRAGB)) 5540 @)

E (o)
+/12((1_P))%f0 vEf(y,E')Fo(y,E')dE’)AO(Z)]

0
=fo (ot EY A2 @ = L7 [ufo 0 ) | -1 @ (3.38)

02
+L7! [(I—P),Ufl (y,,u,E)]a—ZZAO @)

x(,E)
2

el U=PEGE [ 0B Fo b E)E [0,

or

0
\PZ (Y,Z’ﬂ, E) = fO (y’/J’E)AZ (Z) _fl (y,/,t,E) a_ZAl (Z)

82
+ 30,1, E) 6_z2A0 @)+ 22 (y,u, E)Ap (2) - (3.39)

Here f>(y,u, E) and f3 (y,u, E) are new lattice functions defined as

x O, E)
2

HGuE)=L""(I-P) fo vZf(y,E’)Fo(y,E’)dE’], (3.402)

and

OB = L7 (= Pufi 5o E) | (3.40b)

Next, we perform the same analysis for Eq. (3.9c) (n = 3). First, we take the inner
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product of both sides with f; (y,u, E) to obtain the solvability condition:

0
(fo* O, E), L3 (y,z,u,E)) = (fS O, E), —p—

3 ‘Pz(y,z,,u,E))
<

. 0.E) [ o[ P
+Az(fo(y,u,E),Xy2 )fo VZf()’aE)fl‘Pl(y,Z,/J,E)d,u dE). (3.41)

As before, the left side is equal to zero:

(/5 0t ). L¥3 0218 B) ) = (L5 001t B W 0.2,

(0 W, (y,z,,u,E)) (3.42)

The right side of Eq. (3.41) must therefore also equal zero. Introducing Eqgs. (3.29) and

(3.39), we obtain the condition:

0 0
0 :(f(;< (y’/“l’ E)»_/la_z(fo (y’:u’E)AZ (Z) _fl (y’/*l,E) (9_ZA1 (Z)

62
#0uE) 25 A0 @)+ dafo (ot E) Ay (z))

N /12)( 0, E)

0
fo sz(y,E')fl fo(y,#',E')A1(z)—f1 (y,u’,E’)a—ZAo(z))dy’dE’)

2

(fo Yot E)ifo O, u,E>) aAz(z)+(fo Guts E)oifi O, ﬂ,E)) Ly

3

0
A2 f() (.y ,Ll,E) ,uf3(y /.I,E))
XG,E)
2

d
A0 (@) - (fo O, E) 1 fa (3, M,E)) Ao (2)

+/12 f‘(;k (Ya,u’ E)a

f vE; (0 E') oy, E’)dE’)A1 @) (3.43)
0

’E « 4 1 7’ 4 7 4 a
- fS(y,u,E),)((y2 )fo VZf(YaE)flfl O E")du' dE )a_zAO(Z)'

To simplify Eq. (3.43), we recognize that fo (v, u, E), f> (y,u, E) and f3 (y,u, E) are sym-
metric functions, while fj (y,u, E) is antisymmetric (see Appendix B). With that in mind,

the first, third, fourth, and sixth terms in Eq. (3.43) contain antisymmetric integrands that
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integrate to zero, leaving us with:

2

0
0= (f(;k (y,,U,E),,Uf] (ynu’E))a_ZzAl (Z)

9E « ’ 4 4
el 0w XEE [ 0B R0 EE G, G4

Eq. (3.44) is identical to the solvability condition for Y¥> (y,z,u, E), Eq. (3.33), but with

A1(z) instead of Ag(z). As with W7 (v,z,u, E), we subtract

fO (y’ﬂ’E)
(g O EN fo .1, EN))

times Eq. (3.44) from Eq. (3.9¢) (n = 3) to obtain an equation for V3 that automatically

satisfies the solvability condition:

0 &
L3 0,00, E) = = (1o 0ot )} 5= A2 @)+ (( = Pfi 0t B) )51 2)

& 0
~(1fs ot E) ) 240 )= oo 0011, E) - A0 @ (3.45)

X, E)
2

o= PG [ 0 ) FobnE)E A1 )

’E « 4 l ’/ 4 !’ 4 6
—ﬂz(X(yz )fo vZf(y,E)Lfl(y,ﬂ,E)du dE )a_zAO(Z)'

The exact solution to W3 is the sum of the particular solution to Eq. (3.45) and the
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homogeneous solution to LY3 (y,z,u, E) = O:

0
W3 001, E) =fo (01, ) A3 @)+ L7 = (o 01, B) ) 5-A2 )

82
HU=PRAOBD) 7541 @)

& 0
~ (B 01 E)) 5540 = Aol (0, ) ) -A0 @)

E (o)
X(yz’ ) fo vZf(y,E')FO(y,E')dE')Al(Z)

JE) [ ! , N0
—ﬂz(X(y )fo VEf(y,E’)flfl(y,u’,E’)du dE )a_zAO(Z)]

; 42((1— P)

2

0
=fo 0 E) A3 @) = L |ufo (ot ) | 5-A2 @)

& &
L= Pfi 0 B) |25 A1 @ = L s Gt ) | 540 @
0
= L7 |ufo (1, B) | -A0 @) (3.46)

x(,E)

+/12L‘1[(I—P) 5

fosz(y,E’)Fo(y,E’)dE’]Al(Z)

- ’E 0 4 1 / 4 / 4 a
- L 1[)%[) VZf(y,E)flfl(y,u,E)du dE]a_zAO(Z)’

or:

0
lP3 (y,Z,,U,E) :f() ()’aﬂ,E)A3 (Z) _fl ()’a/l,E) a_ZAZ (Z)

d? &
+f3 (y’/l9E) @Al (Z) _f6 (y,/l,E) (9_Z3AO (2)

0
_/12f5 (y?/l7E) a_ZAO (Z)+/12f2 (y’/l’E)Al (Z) (347)

0
— L fa (1, E) 0_ZAO (2) .

Here we have defined
— ( ’E) 0 4 1 7 /4 ’ ’
foE) =L 1[)%[) 08 [ 0 Bl dE ] (3.482)

SO E) = L ufr o, B) | (3.48b)
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and
foOi B) = L' [ufs 5o, B) | (3.48¢)

We perform the same analysis for Eq. (3.9¢) (n = 4):

0
LYy (y, 2,4, E) = —,ua—z% 2,1, E)

E
+/12X0; )

00 1
f vif(y,E') f Y2 (v, 2, i, E")dy' dE’ (3.49)
0 -1

or

0 0
LY4(y,z, 1, E) = —ﬂ—[fo .u, E)A3(2) = f1 (y. 1, E) —Az ()

2 83
+f3(y,U,E) Al(Z) J6 ., )—AO(Z) ﬁzfs(y,u,E)—Ao(Z)

+ 0 (1, E)A1 (2) = A2 fa (v, i1, E) Ao(Z)] (3.50)

JE
Azx(y )

P
fo VZf(y,E')fl[fo(y,u’,E’)Az(z)—ﬁ (y,,u’,E’)a—ZAl(z)
32
FROAE) 25 A0 @)+ o (o E)Ao(z)]dﬂ'dE'

Performing the same steps as before, we obtain a solvability condition for W4 (y,z,u, E):

2
(fo O, E) 1 fi (y, u,E))—Az (2)

&
o7
82
+ 2a( 5 0ottt f5 0 u,E>) Z0(2) (3.51)

+ (0 B9, X% )f V2 0B Fo 0, E)E Yo 2
+ o fg o B ,X(y’ )f vE (y,E)f FO E)dudE’)—AO@
A

w2 f (o, ) X )f zf(y,E)f POk Bl dE Yo )

+(f5(y,u,E),ufe(y,u,E)) Ao (2)
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and the final equation for Wy:

0
V020, B) = fo 0 ) As @) = L[ <y,u,E>]a—ZA3 @)

(92
i (1 P),ufl(y,uE)]—Az(Z)
3

~L! ,uf3(y,uE)] —A1)

64
i1 (1 PYufs (o, E)]—Ao(z>

62
F AL (1 PYufs (o, E)]—Ao<z>

~LL! .Ufz(Y,U E)] A1 (2)
2
+ L7 uf4(y Ky E)]—Al(z)

E
+ L7 (I—P)X(yz ) fo vzf(y,E’)FO(y,E’)dE’]Az(z)

a[xOLE)
~ DL 1g)((y2

00 1
4 4 4 ’ 4 a
f vzf(y,E)f fr ot )yt dE | 241 2
0 -1 Z

x(,E)
2

+ LL Y (I -P)

» E
+ 2L (I—P)X(yz’ )

This simplifies to:

00 1
fo vEf (v, E') f 1fz(y,u',E’)du’dE’]Ao(z)-

0
Vi (v, 2,1, E) =fo (v, 11, E) A4 (2) = f1 (v, 11, E) 6_ZA3 ()

62 83
+ 30, 1, E) Az(z )= fo (v 1, E)_AI(Z)

04 9%
+f11(yME) AO(Z)+/12f10(Y,UE) Ao(Z)

02
_/12](‘5 (ynu’E) a_ZA] (Z) +/12f9 (y,,U,E) a_ZZA] (Z)

0
+ 02, E)Az (2) — A2 fa (v, u, E) 0—ZA1 (2)

62
+ 25 (01 E) 5540 @+ 5 0 E)Ao (2)

42

(3.52)

00 1 2
’ ’ / ’ ’ a

(3.53)



where the new lattice functions are:

FOmE) =L (1 - P)X(yz’E) fom vEr (v, E') F 0. E)dE |, (3.54a)
fou By = L (1= P ()12 E) fo N LB P (B dE | (3.54b)
foOuE) =L ufs o, B) | (3.54c)
foGop B) = L7 (I = Pufs 0o, B) | (3.54d)
fir 0w By = L7 (1= Pufs 0o, B | (3.54¢)

and
Fy(v,E)= Ii VAN YT (3.55)

For W5 (v,z,u, E), we are only interested in the solvability condition, which is identical

to Eq. (3.51), but with A;(z) instead of Ay(z), and A3(z) instead of A3 (z):

62
0={£5 Gt B i (ot ) | 55430

4

0
+ (f(;k (y,/.l,E),/lfﬁ (y’/*t’ E))@Al (2)

82
" /lz(fg (ot E) i fs (v 11, E) )(9_Z2A1 @ (3.56)

E o0
+/lz(f§(y,u,E),X(y2’ ) fo vzf(y,E’)Fo(y,E’)dE’)A3<z>

x(,E)

* * / 4 ’ 62
v o 0 2. X fo VB (0 EVFs 0B dE |5 A1 Q)

E) (7 / T
#B( 0B K52 [0 Fa BV 1 0.

We now have all the pieces necessary to derive the monoenergetic asymptotic homoge-
nized diffusion and SP; equations and their associated flux reconstruction formulas. While
the number of lattice functions (11) may seem large, we will see that only the first two are

required for asymptotic diffusion, and only the first five for asymptotic SP;.
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3.2 Asymptotic Diffusion

To derive a homogenized diffusion equation, we first multiply Eq. (3.33) by €2, use Eq. (3.7b)

to eliminate A, and rearrange, to obtain

82
0=(f5 01 B, tfi (41, E) )€ 2540 @) (3.57)

’E © 4 4 4
xo )fo VE (. E) Fo (. E')dE Ao 2)

+(ﬂ—ﬂo)(fo* O, E),

or

h 00 1 62
02( fo fo f 1ufo* .1, E) fi (y’/l,E)d,udEdy)eza—Zon(z) (3.58)

h 00 E %)
+(/1—/10)( [ [ roo = [ vzf(y,mFo(y,E')dE'dEdy)Ao<z>,

where

1
R0 = [ f0w B (3.59)

To obtain an expression for Ay, we integrate Eq. (3.15):

0
LfO (y’/“l’E) :ﬂa_yfo ()/’M’E) +Zt(y’E)f0 (y,ll»E)

00 1
—f fEs(y,u’—>/1,E’—>E)fo(y,/~t',E’)dﬂ’dE'
0 -1

X, E)

_AO >

00 1
fo vEf(y,E’)flfo(y,u’,E')du’dE’

44



over a cell, all angles, and all energies, to obtain:

fff( — fo i, E)+ 2, (0, E) fo (v, 11, E)

—f fZs,n(y,ﬂ’—>ﬂ,E’—>E)fo(y,u’,E’)dE’
0 -1

E)
P

f vEr (0, E") Fo(y, E')dE')d,udEdy :
0

(3.60)

The symmetry of fy(y,u, E) (see Section 3.1 and Appendix B) and reflecting boundary

conditions at x = 0 and x = h imply that fo (0,u, E) = fo (h,u, E). Therefore:

h
0
fo g o0 Edy = U fo it E)= foO,pi, E) [ = 0

and Eq. (3.60) becomes

h 00 1
= f f f (Zt(Y,E)fO(y,ﬂ,E)
0 JO -1

00 1
—j; fZs(y,//—>#,E’—>E)fo(y,/1’,E’)dE’
-1

7E 0 4 4 4
- XEE [ 0B Fo B dE )dﬂdEdy,
0

or

h 00
0=f (f >, EYFo(v,E)dE
0 0

ff Y00, E — E)Fo(y,E')dE'dE

—/lofo (yE)f vEr (0, E")Fo(y,E")dE’ dE)d .

Also, if we recognize that:
X0(E") = f X,0(E" > E)dE,
0

45

(3.61)

(3.62)

(3.63)

(3.64a)



2 (E) =Z50(E)+ 24 (E) ,

and

f YO,E)dE =1,
0

then Eq. (3.63) can be simplified further as:

h 00
0:f (f 20, E)Fo(v,E)dE
0 0

- /lof vEr (v, E")Fo (y, E')dE’dE)a’,udy :
0

Solving Eq. (3.65) for 49, we obtain

h 00
f f 5 (v.E) Fo y, E)dEdy
_ 0 0

a
]

)
A
vXf

0 — h 00
f f vE£(y, E) Fo (y, E)dEdy
0 JoO

where

— B 4 (v E) Fo (v, E)dEdy
I Fo (v, E)dEdy

and

— B Ve (. E)Fo (v, E)dEdy |
BT Fo (v, E)dEdy

Introducing Eq. (3.66) into Eq. (3.58) yields

h oo 1 62
o=( [ [ [ 1 00 Brnazr)e a0
0 Jo J-1 0z

+[ e (y,E>Fo<y,E>dEdy]
foh Iy vZs (0. E) Fo (y,E)dEdy

(3.64b)

(3.64c)

(3.65)

(3.66)

(3.67a)

(3.67b)

(3.68)

h 00 00
x( f f Fi (. EyX ) f vzf(y,E’)Fo(y,E')dE'dEdy)Ao(z).
0 0 0

2
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To put Eq. (3.68) in a more familiar form, we multiply through by

B Ve (0,E) Fo (v, E)dEdy
[ [ Fo(y, EydEdy

2
X
h oo * 0 ’ ’ ’
I b Fo0E)x0.E) ) vEr (v, E") Fo(y, E')dE'dEdy

to obtain

— 502 _ __
—Doeza—zon (2) + 2440 (2) = WE;Ap(2) . (3.69)

Here X, and Ef are the standard flux-weighted homogenized absorption and nu-fission

cross sections defined in Eqgs. (3.67), and

B - B vEr(0,E) Fo (v, E)dEdy
BT Fo(y,E)dEdy
foh fooo f_ll ufy O, E) f1 (v, u, E) dudEdy

X —— — : (3.70)
I | Fo0-E)sx 0L E) fy vEf (v, E") Fo(y, E")dE'dEdy

We perform the same steps for Eq. (3.44) to yield an identical equation for A{(z):
— 5 0% _ __
—DoezﬁAl (2) +Z4A1(2) = WAL (2) . (3.71)
Z
Adding e times Eq. (3.71) to Eq. (3.69), we obtain:
2

— 4,0 _ _
—Do€za—zz®o (2) + 2P0 (2) = WVE ;D (2) (3.72)

where

Qo (2) =Ao(2)+ €A1 (2) . (3.73)
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Finally, we return to the original spatial variable x:

5 0 9?
€ G_ZZCDO (2) = @fﬁo (x), (3.74a)
Do (z) = go(x) . (3.74b)

Substituting Eqs. (3.74) into Eq. (3.72), we obtain the following 1-D, monoenergetic,

asymptotic homogenized diffusion equation:

—_ O _ _
—DO@% (%) +Zapo (x) = AVZ o (x) (3.75)

with constants described by Egs. (3.67) and (3.70).
The asymptotic analysis also provides an estimate for the reconstructed angular flux,

Eq. (3.7a). Taking the first two terms in the expansion, we have
¥ (.21 E) = Yo (0,214, E) + €¥1 (v, 2.4, E) + O(€) . (3.76)
Substituting Egs. (3.19) and (3.29) into Eq. (3.76), we have

llj(y’z’:u’E) :fO (y’:u9 E)AO (Z)

0
+e(fo 0o VAL @ = L0, B) 5-A0 @) ) +0(€)
=fo (.1, E) (A0 () + €A1 (2) ) (3.77)

9
[0 E)eo-A0(@)+0(€?).

Because Eq. (3.77) is 0(62), we can add an 0(62) term without increasing the asymptotic
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order of the error:

¥ (0,21, E) = fo (511, E) (Ao () + €A1 (2))

~ i, E)ea%(Ao (@) +€A1(2))+0(€) (3.78)

0
:fo (y,,U,E) CDO (Z) _fl (y,,u’E) ea_Z(DO (Z) + 0(62) .

Returning to the original spatial variable x, we substitute Eq. (3.74), Eq. (3.4a),

fn(y’M’E) :fn(x’,u’E) 5 (3.79a)
and
0 0
€0 = oo (), (3.79b)
into Eq. (3.78) to obtain
0
¥ (ot E) = fo . E) o (0) = fi (ot E) -0 (x) + O(€°). (3.80)

In traditional homogenized diffusion theory, the reconstructed flux includes only the
first term in Eq. (3.80). Therefore, Eq. (3.80) represents an O (¢€) correction to standard flux
reconstruction.

Egs. (3.75) and (3.80) were previously derived by Trahan [25]. In the following section,

these results are generalized to higher order.

3.3 Asymptotic SP,

To derive an asymptotic SP, equation, we build on the results from Section 3.2. By gen-
eralizing the previous derivation to higher order, we achieve a correction to asymptotic

diffusion theory.
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We begin by adding e times Eq. (3.56) to Eq. (3.51):

2

0
0=(f5 0utt BDttfy ot E))—‘Dz @)

4

0
(fo O E) i fs (v, u,E)) 70 (2)

82
2o fy 0t Bt 0, u,E>) 0y (2)

)((y)

(0o B, f VEf (0, E') Fo (v, E')E' 03 () (3.81)

62
[0 R0 EaE ) o

)((y)

+A

(
+2o(fy 0
(o

VLE ,X(y )f VZf(y,E)Fz(y,E)dE)CDO(z)

or

= f f f fo O E)pfi (y,u,E)dudEdy]—ZCDz (2)
0o Jo J-1 07

+[ f f f fo O E)pfe (y,u,E)dudEdy]—4d>o (2)
0o Jo J-1 07
[ h 00 1 82

0 Jo R _
E3 (7E) 74 ’ ’
+ﬂzf0f0 Fo(y,u,E))%fo 2/ (nE) Fo (3. E')dE'dEdy| 022

i h 00 o 2
* (9E ’ ’ / 6
wfofo Fi (it E)2=5 )fo VE O\ E) F3 (0 E)dE'dEdy |5 00 2)

\8}
1T

+A4

h o 00
3 ( ,E) / /4 ’
2 f f Fo(y,,u,E)Xyz f VE/ (v, E")Fy (v, E')dE dEdy Do (2)
| JO 0 0 ]

where @ (z) is defined as in Eq. (3.73), and

Dy (2) =A2(2) +€A3(2) . (3.83)
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To simplify the notation in Eq. (3.82), we multiply this equation by

4 J(;h f()00 vEr(y,E)Fo(y, E)dEdy
€
I Fo(y E)dEdy

2
X
h oo * 0 ’ ’ ’
I b Fo0E)x0.E) ) vEr (v, E") Fo(y, E')dE'dEdy

and use Eq. (3.66) to get

— P — 48 — =
0= Doe2a—zze2q>2 () + Dle4a—z4<l)0 @ +(WVE; —Z4)ED, (2)

2
+ (/l@_z_a)(if,o +ff,1)628a—z2¢’0 (2) + (JE—Z_a)sz,zq)o (2) .

Here Dy is defined in Eq. (3.70),

= BB 0B Fow, B dEdy
1 Foly, E)dEdy
PR [ 1 0u B) fo Ot E) dpd Edy
RS Fy 0B b 0.E) [VEf (0. B Fo (v, EY)dE"dEdy

h oo ol .
5 Jo Jo Lo 1fs G B) f5 0o, E) dud Edy
f’(): h 0 % (S 9
b I Fs 0B x5 E) [ VEf (v, E7) Fo (v, EY) dE' dEdy
h oo . o , ) ;
< _ b b PO E) o 0uE) VR O B 3 (0 E) dE dEdy
f’lz h oo 0o s
Io Iy FoO-E)sx O0LE) [y vEf (0, E") Fo (v, E") dE’dEdy
and
h oo B oo / —
5o L bl F O B T 0B R 0 B B dEdy
Je T —=— ~h oo " 0o , ) ) .
Vi [ F 0 E) A 0. B) [ VEf (0, EY) Fo (v, E)dE'dEdy

(3.84)

(3.85a)

(3.85b)

(3.85¢)

(3.85d)

Egs. (3.84) and (3.72) are combined in the following steps to obtain an SP,-like equa-
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tion.

1. We eliminate %Cbo (z) from Eq. (3.84) by taking 96_222 times Eq. (3.72), solving for
4
s ®0(2), -
ot (/b/Zf—Za) 52
— = —O , 3.86
A% el (3.86)

and substituting the result into Eq. (3.84):
(/l@ - Z_a) (92

B,
0

— 5 0?
0 = Dpe* — €D (z) — D €
922
~ T )\.2 ~ T\ = 2‘92
+(AVEf —Za)E 02 @)+ (WVEf - Za)(Zpo+Zp1 Je pEac (3.87)

R Y
+(AVEf—Za) Tpa®0 (2) -

N
2. We eliminate (/IVZ = Za) 22D (z) by introducing Eq. (3.72) into Eq. (3.87):

(VE-52) @ —
2
5—08—Z2(D0(z)+(/lv2f—2a)6 D2 (2)  (3.88)

— 5 0% _
0 :Doeza—zzezfl)z (z)—D; €

2 2
+ (/1@ - Z_a)(if,() + Ef,l)ezs—zzq)() (2)— (/IE - Z_a)if’zﬁoezaa—zzq)o (2) .

3. We add Egs. (3.72) and (3.88) together:

0 =50€2:—Z22[<D0 @+ () |- (WEf - Z_a)g—;ezj—;% @
+ (V- Za)[ @0 (2) + €22 (2) | (3.89)
2
+ (ﬂE—Z_a)(ff,o +§f,1)€2:—zz®o ()
2

— = = L0
—(E -Z)E f,zDoeza—chDO ).

4. Because Eq. (3.89) has an error of O (66), we can add terms of O (66) without increas-

ing the asymptotic order of the error. Recognizing that (/IE—E_Q) =0 (62), we add
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three g—;ezd)z (z) terms to Eq. (3.89), yielding

2 51 2

0 =5062§—Z2[<Do (2)+€D02(2) | —(ﬂ@—z_a)ﬁ—ezaa—zz[cbo )+ (2) |

0
+ (AE - E_G) [CDo @) +ED(2) ]

2
+(VZp ~Z)(Ero+ if,l)ezs—zz (@) + €D (2]

2
+(VEr-)E f,zﬁoezg—zz[cbo @+ ()|,

or
— , 8 — —\D; ,8
2 12
0 =Dye a—ZZQ(z)—(Mf—za)B—Oe e
- — = _ 2
2
+ (/IVE - 2a)®(z) + (/wz = za)(z F0+2 f,l)e a_z2q) (2)
. _ 252
- (/le = za)z raDoe a—zzd)(z) :
where

() (Z) = (I)() (Z) + 62(1)2 (Z) .
. Rearranging, we obtain:

-y — —( D = = = — i
D0+(/1V2f —Za)( — 5—1 +Zf’0 +Zf’1 _Zf’ZDO)]Gza_Z2®(Z)
0

+2,0(2) = WEfD(2)

or
_ - 5% — S
Do + (/le = za)Dz]eza—chD @) +ZaP(2) = VE[D(2)

where

Dy =—— +2f’() +2f’1 —Zf’zD().
Dy

53

(3.90)
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(3.92)

(3.93)

(3.94)

(3.95)



6. Returning to the original spatial variable x, we obtain:

_ . 16% _ -
Do + (/wzf - Za)Dz] @d) (X)+Zadp(x) = Vs (x) . (3.96)

This is the homogenized asymptotic SP; equation, with constants defined in Egs. (3.67),

(3.70), and (3.95).

It must be noted that calling Eq. (3.96) a SP, equation is misleading. In 1-D, SPy and
Py are generally equivalent. However, Eq. (3.96) includes constants that have been inte-
grated over all energies. Standard P, is continuous-energy (or monoenergetic if one begins
with a monoenergetic transport equation). We therefore refer to Eq. (3.96) as “SP;” be-
cause, for general energy-dependent problems, it does not depend on energy, whereas the
conventional P, equation does depend on energy. [However, for mono-energetic problems,
Eq. (3.96) and the standard P, equation are identical; we show this later.]

For the reconstructed flux, we keep the first three terms of the expansion in Eq. (3.7a):
¥ (3, 2.0 E) = Yo (0. 2.0, E) + €91 (0 2.1, E) + €9 (3. 241, E) + O(€)) . (3.97)

Substituting Egs. (3.19), (3.29), and (3.39) into Eq. (3.97), we obtain:

0
¥ (3,24, E) =fo (0., E) Ao (2) + € fo (v, 1, E) A1 (2) = fi (v 1, E) 320 @)

0
+62(fo 0t ) A2 = i 0t E) A1 (2

2

0
+ 00 ) 25 A0 Q)+ Ao (0ot E) A0 ) )+ O(€)
<

=fo (311, E) (A0 (2) + €A1 (2) + €42 (2)) (3.98)

0
~ [0 E) s (A0 @) +eA @)

62
+ O E)E 2540+ €01 E) Ao )+ O(€7).
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Adding O (63) and higher order terms, we get:

¥ (0,24, E) =fo (511, E) (Ao (1) + €A1 (1) + € (A2 (1) + €A3 (2)))

0
~fi o EYeq- (A0 () + €A1 () + €42 () + €43 2)))

52
+ A0 E)E (40 @)+ ed1 @)+ (A2 () + €43 (2)

+E0f (511, E) (A0 (2) + €A1 (2) + €(A2 (1) + €A3(2))) + O (€7)

0
:fO ()/a,u9 E)(D(Z) - fl Q’a/l) Ea_Z(I)(Z)
32
+ 30, E) eza—zsz (@) +€ELfr (1, E)D(2) + 0(63) ,

and returning to the original spatial variable x yields:

82

0
l//(x,,U,E) :fO (xaﬂ,E)¢(X) _fl (X’N’E) agb(X) +f3 (X,/J,E) _2¢(X)

Ox
+(A=20)f2 (e E)p(x)+0(€1)

(3.99)

(3.100)

L . 2 .
In practice, it can be difficult to accurately calculate 6‘97¢(x) without an extremely fine

mesh. To avoid this possible source of error, we eliminate the second derivative term using

Eq. (3.96):

0
w(x’/l’E) :fO (X,/.l,E)(b(X) _fl (x’/'l’E) a¢(3€)

-3
_f3 ()C,/J,E)(_

— )¢<x>
Do+ D, (VZf — Za)

+(A=20)f2 (e E)p () +0(€1)

(3.101)

If we set every lattice function other than fo(x,u, E) and f] (x,u, E) equal to zero, then

D reduces to zero, and our homogenized SP, equation, Eq. (3.96), reduces to the homoge-

nized diffusion equation, Eq. (3.75). Likewise, the SP, flux reconstruction, Eq. (3.101), re-

duces to the diffusion reconstructed flux, Eq. (3.80). This is equivalent to setting higher or-

der terms [€* in Eq. (3.96) and € in Eq. (3.101)] to zero, confirming that the SP, equations
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represent a higher order correction to the diffusion approximation defined in Section 3.2

[Egs. (3.75) and (3.80)].

3.4 Monoenergetic, Homogeneous Medium

In a monoenergetic, homogeneous medium, many of the expressions from Sections 3.2 and
3.3 reduce to simple functions of y and u. For a monoenergetic, homogeneous medium, the

infinite-lattice operator L becomes:

1
LF () = 5uf Gt = (Eo+ d0vy) [ 7O ) (3.102)

and the adjoint infinite-lattice operator L* equivalent to L:

1
L'F ) =5f G ~(E+ v2y) [ F 0y

=Lf(y,1) . (3.103)

The solution to Lfy(y,u) = 0 is now independent of y and u, and therefore must be a

constant. The same is true of f (y,u). If we propose the normalization

1
Fo(y)=f1fo(y,u)du= L, (3.104a)
and
1
FL() = f S Guidu=1, (3.104b)
then
. 1
JoQ,p) = fo Osp) = X (3.1052)
Thus, Ay reduces to:
/l _ VZf _ VZf 3 106
R ST S P (3.106)
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If we hypothesize that fi (y,u), the solution to

! 1
Lfi(y,p) =Zef1 (o) — (zs +ﬂovzf)fl fi (y,,u')d,u’ = pfo(y,p) = E:u ’ (3.107)

is a linear function of y, then introducing our ansatz fi (y,u) = Cu into Eq. (3.107), we find

that:

fi o) = 2% (3.108)

For Lf> (y,u), we note that the source (I — P)%Fo (y) =0, yielding Lf> (y,u) = 0. By
Eq. (3.27b), we have

[ [ ompomaar=[" [ Lpow

=0, (3.109)

which implies that

L20)=0. (3.110)

Following the same analysis for f3, f1, fs, and fg, we obtain:

_ 3u? -1
O =LNI=-Pufi 00 | = ——=—, (3.111a)

3 [ ! ] 22?

| vEs
JaG,uw)=L [TFI()’)]ZO, (3.111b)
f ) = L_l[,ufz (y,m] -0, G.111c)
and
33 —

f6(y,u)=L‘1[uf3(y,u)]= ’;23“. (3.111d)

Converting back to x and substituting Egs. (3.105), (3.108), (3.110), and (3.111) into
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Egs. (3.70) and (3.95), we find that

— 1
=—), 3.112
0= 35, ( a)
and
Dy=—— (3.112b)
SR '
The diffusion equation, Eq. (3.75), then reduces to
Lo (X) + Zapo (X) = AV pbo (x) (3.113)
————do(x x)=Av x), .
3%, 0.2 b0 aPo 90

the standard (isotropic scattering) diffusion equation, while the diffusion expression for

flux reconstruction, Eq. (3.80), becomes

Y () = —¢0( )—z—zt—¢0(X)+0( ), (3.114)

the standard 1-D, monoenergetic P; approximation for the angular flux.

Likewise, Eq. (3.96) reduces to

1 4
[ﬁ‘@(ﬂ vif—X )] 2<f>(x)+2a<z>(x) AVE 6 (x) (3.115)

the standard SP; equation, with flux reconstruction given by

3u>—1 62
) (3.116)

Y (xp) = ¢()_2_2;_¢() 5

the standard 1-D, monoenergetic P, prescription for the angular flux.
This implies that, for one energy group in a homogeneous medium, the asymptotic
equations derived in Sections 3.2 and 3.3 are equivalent to the standard Py and P, approximations.

While this does not fully justify previous applications of diffusion and P, theory, it presents
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a case that their derivations are valid in certain circumstances.

3.5 Summary

In this chapter, we applied an asymptotic analysis to the 1-D, continuous energy, lattice-
geometry, Boltzmann transport equation. In this analysis, we defined six important lattice

functions [Egs. (3.15), (3.25), (3.40), and (3.48)]:

Lfo(x,u,E) =0, (3.117a)
A E) = L7 ufo (v B) | (3.117b)
A E) = L‘l[(I—P)X();’ ) fom vSs (. E') Fo (x. E’)], 3.117¢)
£ E) =L [(I- Pufi (. E) | (3.117d)
fa(x, i, E) = L—l[@ fom VI (x,E')F) (x,E’)dE’], (3.117e)
S E) = L7 pp (o B) |, (3.117f)
and
fo e E) = L7 ufs (. E) | (3.117g)

In Egs. (3.117), L~ !is the pseudo-inverse.

The lattice functions were used to define the homogenized parameters [Eqgs. (3.67)]:

f_ﬂﬁ;@mmmmwm
L=
I Fo(x, E)dEdx

, (3.118a)

and .
" I Jo vEr (5. E)Fo(x,E)dEdx

VEf —— (3.118b)
Iy [ Fo(x.E)dEdx
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as well as the asymptotic diffusion coefficients [Eq (3.70)]:

- BT vE s (0, E) Fo (x, E)dEdx
0 =

I Fo(x,E)dEdx

h oo rl s
y b Jo [y G B) fi G, B) dpd Edx G119)

h (&) * 0 ’ ’ ’ ’
Iy Jo FyE)3x (x.E) [)" vEf(x, E") Fo(x,E')dE'dEdx

and [Eq (3.95)]

D — — -
D; = —5—1 +2f,0 +2f,1 —Zf,zD(). (3.120)
0

Here

— Bk YR B Fo e B dEd
[ [ Fo(x, E)dEdx
foh b f—ll wfy (e, E) fo (x, 1, E) dud Edx

X —— — . (3121a)
I o FouE)sx (x.E) )" vEs(x, E") Fo(x,E')dE'dEdx

h ool
. b |5 o Sy s E) 5 (s E) dud Edix
10 = T o o >
Is [ Fy(E)3x(x.E) [, vy (x,E") Fo(x,E')dE'dEdx

(3.121b)

h oo ©0 ’ ’ ’
5 fo fo Fo(x,u,E)%X(x,E)fo vEif(x, E")F3(x,E")dE’ dEdx
1= h oo 00
Io o FouE)3x (x.E) [)" vEf(x, E") Fo(x,E')dE'dEdx

, (3.121¢)

and

s IR Fy o EYYSE [ VS, (x, E') F (x, E') dEdEdx G121
2= =" — : :
Vs [ [ Fy (G E) by (% E) [ VEf (x, ") Fo (x, E')dE'dEdx

The homogenized parameters are then used in the 1-D, homogenized, asymptotic SP; equation

[Eq. (3.96]:
_ 16 _ -
Do +(AvEs - Za)Dz]@(p(x) + 200 () = WE o (%) (3.122)

60



with the corresponding flux reconstruction formula (Eq. (3.101):

0
',[/(.X',/l,E) :fo (X,ﬂ,E)¢(X) _fl (.X,',,Ll,E) —¢(X)
2
Dg +D2(

- f3x, u,E)( ))qb(x) (3.123)

+(A=10)f2 (x, 1, E) p (x) + 0(63) :

We have not discussed boundary conditions, instead saving that for Chapter 4, when we

discuss the numerical implementation of Eq. (3.122).
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CHAPTER 4

Asymptotic Analysis of the 1-D Continuous
Energy Lattice-Geometry Transport Equation —

Numerical Results

In this chapter, we numerically evaluate the 1-D, monoenergetic, homogenized SP, equation
derived in Chapter 3. Because any evaluation of SPy is incomplete without also including
discontinuity factors, we first present a brief discussion and derivation of discontinuity fac-
tors for 1-D asymptotic SP,. Our numerical results show that the asymptotic SP, equation
significantly reduces the scalar flux errors within the core, but not necessarily in the reflec-
tor region. This improvement in accuracy is particularly evident in small problems with

steep flux gradients, in which the diffusion approximation is less valid.

4.1 Discontinuity Factors

During the past thirty years, one of the most important innovations in diffusion codes for
LWR analysis has been the application of discontinuity factors (DFs) [12], which are based
on Equivalence Theory [11]. DFs were introduced to ensure that angular moments of the
reconstructed angular flux would be continuous at an interface, while allowing the diffusion
solution to be discontinuous.

The same idea can be applied to the asymptotic diffusion and SP; equations, which
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have (i) a diffusion form, and (ii) a reconstructed angular flux that is easily suited to calcu-
lating angular integrals. The fact that the classic SP, solution is discontinuous at material
interfaces is irrelevant, since DFs will be used at these locations anyway.

In this section, we obtain DFs at an interface for the diffusion and SP, equation by
setting angular integrals (angular moments) of the reconstructed flux equal to each other at

that interface (x):

1 1
Ilg(u)t//(xa,u)du=Ilg(u)w(XS,u)du, (4.1)
where
Xy = liII(l) [x0+€], (4.2a)
Xy = lir% [x0—€], (4.2b)

and g(u) can be any function of u. The choice g(u) = 1 is equivalent to requiring the
reconstructed scalar flux to be continuous, and the choice g () = i is equivalent to requiring
the reconstructed current to be continuous. In this section, both g(u) =1 and g (1) = u are
used to obtain two sets of DFs. A similar approach can be used to derive DFs with g (u) = 1.
While we derive DFs for the monoenergetic problem, the same process can be extended to

energy-dependent problems.

4.1.1 Diffusion

To obtain discontinuity factors for the asymptotic diffusion equation defined in Section 3.2
[Eq. (3.75)], we use the reconstructed flux defined in that same section, Eq. (3.80).

Introducing Eq. (3.80) into Eq. (4.1), we obtain
! 0
| 0[5 (55000 (55) =17 (55.8) 360 (55)
1
= f 1g(u)[fg(xa,u)m(xg)—fr(xa,u)%m(xg)]du, 43)
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where f;F (x) corresponds to the n-th lattice function of the assembly to the right (+) or left
(-) of the interface. In Section 3.1 and Appendix B, we saw that fy (xg, 1) is an even function

of u and fi (xg,u) is an odd function of u. Therefore, for g (u) = 1, Eq. (4.1) simplifies to

(iifo_(x‘;’”)d")‘bo(%):(Iif(f(x&ﬂ)du)cbo(xg), 4.4)

or

a” oo (xa) =a" ¢y (xa“) , 4.5)

where the flux discontinuity factors are defined as:
1
at = flfoi (x(i;,y)du. (4.6)
For g (u) = u, Eq. (4.3) reduces to

! d ! 9
—(Luff(xa,u)du)acbo(xa)=—(Luf1+ (xg,u)du)arzﬁo(xg). 4.7)

From Eq. (4.7), we can obtain an expression for discontinuity factors for the derivative of

the flux. In practice, however, we are interested in an expression for the diffusion current:
Jdif fusion = —502% (x) . (4.8)
0x
Combining Eqgs. (4.7) and (4.8) yields an equation for continuity of the diffusion current:
-B D, %qm (x0)=5"Dy %% (x5) - (4.9)
where the current discontinuity factors are defined as:

+ 1 ! +( +
ﬁ‘=_—if pfit () dpe. (4.10)
Dy J-1
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Eq. (4.6) is the standard diffusion flux discontinuity factor. Most modern diffusion

codes, however, do not include any form of discontinuity factor for the current. Therefore

Eq. (4.10), first introduced in Trahan’s work [15], is unique to these asymptotic derivations.

4.1.2 SP,

To derive asymptotic SP, DFs, we perform the same analysis as in Section 4.1.1, but

with the SP, expression for the reconstructed angular flux. Introducing Eq. (3.100) into

Eq. (4.1), we obtain

! 0
[ lg(ﬂ)[f({(xg,u)sbo(xa)—ff (x5-1) 7 -0 (x5)
2
15 (55om) g (35) + (4= 45) (g 0 (55) [l
! d
— [ 2G| (5500 (s5) 7 (5.0 500 57)

2
15 (50 0 (58) + L A ()0 (53) .

or, from Eq. (3.101),

1
[ 20| fy (55.) 0 (55) (v51) 50 (35)
V-3 -

o o) 5=y ()

Dg +52 (E—Za)

+ (A=) (a0 (55 |du

! 9
~ [ 2G| ()0 (s5) 7 (5s) 5-0()
-3,

+f3+(x5,u)(_ — ia))+¢(x5)

D0+52 (VZf—

A=A (551) 6 (55) |
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where f;f (xz—)’) again corresponds to the n-th lattice function of the assembly to the right (+)

or left (-) of the interface, A7 corresponds to the infinite lattice eigenvalue for the right or
+

IO A N .
left cell, and | =—=—-L—“—| indicates whether the homogenized parameters are from the
D0+D2(V2f—2a)

cell to the right or left.
In Section 3.1 and Appendix B, it was shown that fy (xo,), f2 (x0,u), and f3 (xo,u) are
even functions of u, and f; (xp, ) is an odd function of u. Therefore, for g(u) =1, Eq. (4.1)

simplifies to

Il[fo_(x(},/i)+f3—(xa’ﬂ)(_ -, )_

1 Dy +52 (E_Ea)

+(A= )5 (% ,ﬂ)]d,uqio(xa)
_ ! +( + +( .+ /IE_EQ "
= f |/ (5m)+ 15 (xo,ﬂ)(ﬁwﬁz(ﬁ_ia)) (4.13)

+(A= ) f (xa,ﬂ)]dm ()

or

o ¢o(xg) = o (x5) » (4.14)

where the SP, flux discontinuity factors are defined as:

+ _ : + (. + + (. + AE_Ea *
- f 1 [fo (x6-1) + 15 (XO”“‘)(BMBZ(E—EQ)) (4.15)
+(/l—/l§)ff(x§,/1)]d/,t.
For g (1) = u, we obtain
! —(— 0 - ! +(,+ a +
—(Lufl (xo,u)du)aqﬁo(xo):—(ﬁlufl (xo,u)du)aaﬁo(xo). (4.16)

Again, Eq. (4.16) only gives us an expression for discontinuity factors for the derivative of
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the flux. However, we are interested in an expression for the SP, current:
Jspr = | Do+ (W7 ~Z,)Bal 500 @17)
Ox

Combining Eqs. (4.16) and (4.17) yields an equation for continuity of the diffusion

current:

7| Bo+ (17 -Z)Da| -0 (x5)

X

= 5*| Do+ (0% - Ea)52]+%¢0(x3), (4.18)

where the current discontinuity factors are defined as:

+ 1 ! +( +
pre=————— f WS (o) du. (4.19)
[DO + (Mf - Ea)Dz] =
Egs. (4.15) and (4.19) form the monoenergetic discontinuity factors for Eq. (3.96). They
include the clear disadvantage of changing with A, which requires the discontinuity factors

to be periodically updated.

4.1.3 Reflector

In Chapter 3, the lattice functions f, (x,u, E) were calculated with the assumption that the

cell of interest is fissile, i.e.

h
f vir(x,E)dx>0. (4.20)
0

In a non-multiplying region, such as a reflector or absorber, this assumption no longer
holds. We are therefore left with the question of what ¢ should be in a non-multiplying

region.
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4.1.3.1 Naive

The naive answer is to assume the non-multiplying region is a homogeneous medium and

use Egs. (3.114) and (3.116). Under this assumption, Egs. (4.6), (4.10), (4.15), and (4.19)

become
a;_reflector,diffusion =1, (4213-)
I 1
leeflectordiffusion T =3y b (4.21b)
’ DO 32;
-2,
a,rieflector,SPz =1+ 0(50 +52 (E—i )) +0[=1, 4.21¢)
a
and
+ _ 1 1
reflector,SPy — __ £ avy.
[D() + (/h/zf - Za)Dz] 3%
Dy
=T T (4.214d)
[Do + (/le ;- za)Dz]
respectively.

Egs. (4.21) are overly simple. They imply that in a non-multiplying region, the diffusion
equation captures the complexity of the solution at an interface in its entirety. Moreover,
Eq. (4.21d) suggests that the diffusion current is more accurate than the SP, current in a

reflector.

4.1.3.2 Analytic

While Egs. (4.21) may be used to obtain a solution in the reflector, we desire something
with greater accuracy. A second way to derive standard DFs in the reflector is to use an

analytic solution of the transport equation in a non-multiplying region with constant cross
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sections,

) (! N
,ua—w(x,,uHZM(x,,u): —f W(x,u')du' .
X 2 -1

(4.22)

Assuming that the solution ¢ is separable in space and angle, we have the ansatz:

x ~ (1) o~ Z
Ureflector = a* (we X0 4 g (u)e X/

(4.23)

If we consider a reflector on the left side of the problem, we know that e >*/"0 grows large

at the left boundary of the problem, when ¢ — 0. Therefore, a~ (1) < 0 and can be ignored,

and Eq. (4.23) becomes

Zex/vo

Ureflector = @ (we
Substituting Eq. (4.24) into Eq. (4.22), we have

1
1

o (G0 S, (o ) =2 [ (ale) e )y

2 > 1
) T+ oz = 2 [ ahd

¥ (!
a(u)Zt(vﬁoH):?fla(u’)du’

(/J) 1 ZS fl (#,)d ’
a = — a M
(£+1)22t -1
Yo
V0 zs ! ’ /
= = i’ .
a(u) ) _la(ﬂ) u
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The constant vq is found by integrating Eq. (4.25) over angle,

a = —_— a
-1 a S+ 28 H K

1 ' v 5 1
a(pw)d =(f d ) . f a(W)dy
[1 Wy 1M+ K 2% J W) dp

3 1
- "0 \au (4.26)
2% J\p+»o

VoXs vo+1
1= In ,
22; Vo — 1

and iteratively solving the resulting transcendental equation for vp. Combining Egs. (4.25)

and (4.24) yields

Y0 X5 s/vg

u+vo 2%,
Es Yo
22[ V(z) —#2

Ure flector =A

X x/vo

=A

o

2 Y0 JIA%0) 0 ]
= - 4.2
e [vmb(x) s, FRAS) (4.27)
T, Vv

_2_2”/(2)—,112

[¢<x)—§ta%¢(x>]

%)
=fo () ¢ (x) - fi (w) o ¢(x),
X

where A is an unknown constant,

¢ (x) = A= (4.282)
2
X
o) = ————, (4.28b)
is an even function of u, and
T, Y p
filw) = — (4.28c¢)

25 v —p? P

is an odd function of u.
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Our ansatz ¥/ . fiecor can also yield a diffusion coefficient for the reflector. The diffusion
equation in the reflector is

2
DY )+ b () =0. (4.29)
0x?

Substituting Eq. (4.28a) into Eq. (4.29) and solving for D, we obtain

p (4.30)
= EIZ . .
We perform the same analysis from Section 3.1 to obtain DFs. For diffusion,
1
ar_eflector,diffusion = j:l fO (,u) d,u
2 1
VoLs f 1
= du (4.31)
2% J_ V% — 2
_ Vo2 In 140 +1
22[ Yo — 1 '
Using Eq. (4.26), Eq. (4.31) simplifies to
a;_Leflector,diffusion =1. (432)
Likewise,
. e
reflector,dif fusion — —_if pfi (W) du
Dy J-1
2 1 2
1 vy,
== f Ly (4.33)
D, 2% J-1vj—H
_ _L_,_VOZS[ Oln(V0+ 1)_2]
D, 2%} vo—1
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We use Eqgs. (4.26) and (4.30) to simplify Eq. (4.33),

" 1 V%(Zl -X)
reflector,dif fusion — 5_3 th

=1. (4.34)

The results for SP; are the same, although the analytic solution for . fiecror implies

that D, = 0 for the SP; current.

4.2 Implementation

In order to evaluate the asymptotic, homogenized, monoenergetic SP, theory, several test

cases were run. The test cases were designed to:

1. compare standard homogenized diffusion and SP, with asymptotic homogenized dif-

fusion and SP»;

2. evaluate asymptotic homogenized SP, flux reconstruction versus asymptotic homog-

enized diffusion flux reconstruction and standard flux reconstruction;

3. and compare DFs calculated with various moments of angle and analytic reflector

DFs.

For each case, the six lattice functions (fy (x,u, E) to f5(x,u, E)) and four homogenized
parameters required to solve Egs. (3.75) and (3.96) were calculated with a 1-D, monoener-
getic, fine-mesh discrete ordinates (S33) code. The same code was used to obtain reference
scalar fluxes for each test problem.

Once the lattice functions and homogenized parameters are calculated for each cell,
Egs. (3.75) and (3.96) can be solved. A central finite-difference approximation with dis-

continuity factors is used.
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While the eigenvalue problem described by Eq. (3.75) can be solved with traditional
iterative techniques, like the power method, Eq. (3.96) requires a special solution method.
When the standard diffusion equation is discretized, a fixed iteration matrix is obtained.
This is not true for SP,. In a fissile material, the 62¢(x) /dx* term in Eq. (3.96) includes A4,
the global eigenvalue. The discretization of the SP, equation, therefore, results in a matrix
that changes with A. This will inherently increase the computational cost, but without
affecting the iteration scheme.

An alternate, simpler method for solving Eq. (3.96) uses a change of variables. If we

define: _ B
E(x) = [1 —ft&]cﬁ(x) + &Q(x) : (4.35)
Dy Dy
where
Q) =(VZp+Z,)¢(x) (4.36)
then Eq. (3.96) becomes:
— 0% % 1
-Dy— ++———=&(x) = —Q(x). (4.37)
o -5k 1-52

Eq. (4.37) can be solved much like Eq. (3.75), but with an intermediate step in which
& (x) 1s converted to ¢ (x) in order to calculate Q (x) for the next iteration.

For the rest of this chapter, the following standards are followed:

* When eigenvalues (k-eff) are tabulated, they are typically given as differences from

the Sy reference. These differences are given in per cent mille:
Akerr = (keff,SN - keff’d,'ff/gpz) x10°. (4.38)

* When fluxes are plotted, they are (unless otherwise noted) plotted as a ratio of the
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reconstructed scalar flux to the Sy scalar flux,

1
Wrecon (X, 1) du
Lll recon , (4'39)
I sy () du
to give the reader a sense of the relative accuracy of these methods.
4.2.1 Boundary conditions

The transport boundary conditions for (monoenergetic) Eq. (3.1) are:
yO.m =y, @, O<up<l (4.40a)
YL =y, w, -1<pu<0 (4.40b)

where x = 0 is the left side of the system, x = L is the right side, and ¢’ (1) can be any
prescribed angular flux on the left (+) or right (—) boundary. Typically, for a vacuum
boundary condition, ¢ (1) = 0.

To obtain Py boundary conditions for the left edge of the system, we multiply Eq. (4.40a)
by uP, (u) for n even and integrate over the incident angles, u = [0, 1]. Using the standard

definition for the Py angular flux,

X 2m+1

WO = Y T () P 0. (4.41)
m=0

Eq. (4.40a) becomes:
1 . N om+1( !
fo P GOU (O du= Y = (fo yin>Pm<u>du)wm<0> :
m=0

n=0,2,4,--- ,N—-1. (4.42)
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Performing the same steps on the right edge of the system, Eq. (4.40b), we obtain:

1 N om+1( (!
fo P GOU (O du= ) = (fo yin>Pm<u>du)wm<0> ,
m=0
n=0,24,-- ,N-1. (4.43)
For P,, Eq. (4.41) becomes:
1 3 5 3u? -1
Y (x,p) = Etﬁo (x) + 5!&1 () u+ Et//z (X)( E 3 ) , (4.44)
where
14 (1 4 =
N=-za (gkﬁo t e (Zapo (0 - Q(x))) : (4.452)
2
U () = = (S (1) - Q(0)) (4.45b)
5%,
and
Q(x) = (VE;+Z,) o (x) . (4.45¢)
Or, using the standard definitions for 50 and 52:
— 0 Do —
¥1(x) = Do~ (wo + =2 (Swo () - Q(X))) : (4.462)
X DO
Dy —
Y2 () = —= (Zwo () - Q) , (4.46b)
2Dy
and
Q(x) = (VEf+Z,) o (x) . (4.46¢)

Substituting Eqs. (4.44) and (4.46) into Eqs. (4.42) and (4.43) yields:

1 1 5 b
Z¢o(0)+5¢1(0)+ﬁw2(0)= fo W, (Wdu, (4.47)
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or

—wo(O)——Do (wo+D—(ztwo(0> Q(O)))

%g—(ztwom) 00)- | iy G di, (4.48)
for the left boundary, and
1 1 5 0
=301 O+ 12 = [ ] (4.49)
or
—wo<L>+ Do~ (wo+D—(ztwo<L> Q(L)))
;—ZD—(ZMO(L) o) = f o, G, (4.50)
for the right boundary.

4.3 Test Problem Parameters

Three sets of one-group cross sections were used to create five types of problems, described
below. The first set of cross sections, from the C5G7 benchmark [30], are used to show how
asymptotic SP; performs for thermal cross sections with two standard fuel types, uranium
oxide and mixed-oxide. The second set, from the Zero-Power Plutonium Reactor [16],
explores how accurate asymptotic SP; is for fast neutrons, where the mean free paths are
longer. With the final set of cross sections, we attempt to emulate a real light water reactor

with a mixture of fuel assembly types [15].

76



4.3.1 C5G7 Thermal Cross Sections

Four sets of macroscopic cross sections were obtained from the C5G7 benchmark [30]:
one mixed-oxide fuel (MOX), one uranium-oxide fuel (UOX), and two types of light water
moderator. Total, nu-fission (taken as v times Xr), and scattering (X, — Z,;) cross sections
were taken from the thermal (7th) group data provided in the benchmark. For more varia-
tion between pin types, different light water cross sections from [15], for water at a 315 C
and a pressure of 155 bar with a boron concentration of 1500ppm, were used for MOX fuel

pins. The cross sections for all four materials are given in Table 4.1.

Table 4.1 C5G7 Cross Section Data (Thermal)

MOX Light Water UOX Light Water
(MOX) (UOX)
T(em™) | 0.688910 | 2432572 0.570610 3.305700
Zy(em™) | 0279560 | 2.390965 0.287830 3.268461
vEp(em™) | 0.713990 0.0 0.5257105 0.0

Each C5G7 test case was run with 5 (or 6 for the MOX-UOX case), 10, 20, and 40
fuel pins. As the number of fuel pins increases, the problem becomes more like an infinite
medium, and we expect all four methods to perform well. It is in the smaller cases (5 or 10
pins) that we anticipate a significant improvement with the asymptotic methods.

Each fuel pin has three regions; the dimensions for a single MOX or UOX fuel pin are

given in Table 4.2.

Table 4.2 C5G7 Fuel Pin Dimensions
Pin Type Region 1 Region 2 Region 3
Thickness 0.21 cm 0.84 cm 0.21 cm
MOX Pin | Light Water (MOX) MOX Light Water (MOX)
UOX Pin | Light Water (UOX) Uox Light Water (UOX)
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Homogenized cross sections are listed in Table 4.3. While the asymptotic diffusion co-
efficients (Do) are only slightly different from the standard diffusion coefficients
(< 3% difference), the asymptotic diffusion coefficients (D») are about twice as large as
their standard counterparts. It should be noted, however, that in the asymptotic SP; equation
D> is multiplied by an 0(62) smaller number than Dy, so this difference may be less im-

pactful than it appears.

Table 4.3 C5G7 Homogenized Cross Sections

XS MOX 100). ¢
% 1.26281 cm™! | 1.47107 cm™
;| 097450 cm™ | 1.26913 cm™
VEZr | 047899 cm! | 0.35263 cm’!
Dy 0.25779 cm | 0.22011 cm
Std. Dy | 0.26396cm | 0.22659 cm
Dy | -0.29882 cm? | -0.28426 cm?
Std. D, | -0.16722 cm? | -0.12322 cm?

4.3.2 Zero-Power Plutonium Reactor (ZPPR) Cross Sections

The ZPPR was a plate-fuel reactor at Argonne National Laboratory West (now Idaho Na-
tional Laboratory), with plates made of uranium-oxide (UOX) and a uranium-plutonium
mixture (UPM), separated by sodium coolant. Macroscopic cross sections for the ZPPR
were obtained from a paper by Gelbard [16] and are listed in Table 4.4. The reflector

consists solely of liquid sodium.

Table 4.4 ZPPR Cross Section Data

UOX Sodium UPM
T (em™!) | 01815510 |0.0452915 | 0.2526480
Ss(cm™) | 0.1178900 | 0.0267661 | 0.0860426
vEf(em™) | 0.0099800 0.0 0.1850000
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A single ZPPR fuel pin consists of 5 sections, with dimensions given in Table 4.5. Like

the C5G7 test cases, the ZPPR was run with 5, 10, 20, and 40 fuel pins.

Table 4.5 ZPPR Fuel Pin Dimensions

Material | Dimension (cm)
UoXx 0.500
Sodium 0.625
UPM 0.250
Sodium 0.625
UOX 0.500

Homogenized parameters are listed in Table 4.6. Here the difference between the stan-
dard diffusion coefficients and the asymptotic diffusion coefficients is less significant. It is
also important to note that the homogenized total cross section is small, implying that each

pin is optically thin.

Table 4.6 ZPPR Homogenized Cross Sections

XS ZPPR
o 0.12022 cm’™!
B 0.06865 cm’!
vZ; | 0.02308 cm’!
Dy 2.67982 cm
Std. Dy | 2.77269 cm
D, | -20.33761 cm?
Std. D, | -18.45080 cm?

4.3.3 Light Water Reactor (LWR)

The final test case, designed by Han Joo and detailed in [15], aims to be representative of
a real LWR. It includes five fuel assembly types and a reflector assembly type. The fuel
assemblies contain four fuel types: uranium oxide (UOX), uranium oxide with a lower
enrichment (UOX-1), uranium oxide with gadolinium burnable poisons (UOX-Gd), and
mixed oxide (MOX). Each fuel assembly has two densities of water, one for the fuel pins

(H,O-Fuel) and one for water holes (H,O-WH), with a third density of water for the re-
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flector (H,O-Refl). The monoenergetic macroscopic cross sections for the 7 materials are

given in Table 4.7.

Table 4.7 LWR Cross Section Data

Material x, (cm‘l) ) (cm‘l) vEf (cm‘l)
Uox 3.32734E-1 2.74910E-1 7.97840E-2
UOX-1 3.33356E-1 2.75534E-1 7.96455E-2
UOX-Gd 8.58463E-2 4.32728E-2 1.85589E-3
MOX 2.82548E-1 2.14888E-1 8.64238E-2
H;O-Refl 7.85602E-2 7.77942E-2 0.0
H,O-Fuel 1.74713E-1 1.73779E-1 0.0
H,O-WH 9.01554E-2 8.96296E-2 0.0

The geometry of the LWR case is complex. There are seven pin types, each with three

regions of uniform thickness. The fuel pin thicknesses and materials are listed in Table 4.8.

Table 4.8 LWR Pin Data

Pin Type Region 1 Region 2 Region 3

Thickness 0.425 cm 0.425 cm 0.425 cm

UOX Pin H;,O-Fuel 8104 H;O-Fuel

UOX-1 Pin H;O-Fuel UOX-1 H,O-Fuel

UOX-Gd Pin H;,O-Fuel UOX-Gd H;,O-Fuel

MOX Pin H;O-Fuel MOX H;O-Fuel

H;O-Refl Pin H,O-WH H,O-WH H,O-WH

H,O-WH Pin H;O-Refl H;O-Refl H,O-Refl

Table 4.9 details the homogenized cross sections for each assembly type. Again, the
asymptotic Do shows little deviation from the standard Dy, while the asymptotic D, once

more shows significant variation (8-15%) from the standard Ds.
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Table 4.9 LWR Homogenized Cross Sections

Assembly UOX UOX-1 | UOX/UOX-Gd | MOX
T (em™) | 0.21027 | 0.21045 0.20058 0.19563
Ty(em™) | 0.19279 | 0.19297 0.18368 0.17527
vEf(cm™!) | 0.02328 | 0.02324 0.02020 0.02522
Do (cm) 1.58518 | 1.58382 1.66245 1.70371
Std. Do(cm) | 1.58526 | 1.58391 1.66185 1.70390
Dy(em?) | -6.56708 | -6.55525 -7.87304 -7.63486
Std. Dy (cm?) | -6.03134 | -6.02103 -6.62817 -6.96783

The geometry of each assembly is shown in Fig. 4.1. The UOX-Gd assembly is the only
assembly with gadolinium fuel pins. Fig. 4.1 also shows the core configuration, which is

symmetric except for the single UOX-1 assembly on the right side of the problem.
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[[] UOX-Gd Pin[_] H,O-WH Pin

UOX-1 Assembly

UOX-Gd Assembly

UOX Assembly

MOX Assembly

Reflector Assembly

LWR Core Configuration

Figure 4.1: LWR Assembly and Core

4.4 Numerical Results

4.4.1 Unreflected Cases

For an initial test, two unreflected (i.e. without reflector regions bounding the problem)
cases were run. The first, a pure C5G7 MOX pin problem, is a simple comparison of the
methods without any discontinuity factors. The second, a mixed C5G7 MOX-UOX core
(MOX on the left, UOX on the right), allows us to evaluate the effectiveness of the various

discontinuity factors without the additional complication of a reflector.
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44.1.1 C5G7MOX

Our first test is an unreflected C5G7 MOX case. With a single pin type and no reflector,
discontinuity factors are not a factor. We are therefore only comparing the four methods:
standard homogenized diffusion (HD), standard SP, (HSP,), asymptotic homogenized dif-

fusion (AHD), and asymptotic SP, (AHSP;). Eigenvalue results are tabulated in Table

4.10.
Table 4.10 MOX Unreflected k-eff Results
Ref Kesr | AKegr (pecm)
# of Pins SN AHD AHSP, HD HSP,

5 1.442140 -1599.5 -802.6 | -1949.3 | -1499.8
10 1.588159 -217.9 -121.7 | -363.8 | -309.1
20 1.640565 -24.7 -16.5 -70.5 -65.8
40 1.655860 -2.8 -2.2 -15.4 -15.1

As we hoped, the asymptotic results show considerable improvement over the stan-
dard homogenized results, and the homogenized SP, results show significant improvement
over the homogenized diffusion results. These improvements are more pronounced in the
smaller problem, where flux gradients are more pronounced and the assumptions for clas-
sical diffusion break down. Fig. 4.2 shows a ratio of the reconstructed scalar fluxes to the
scalar Sy flux for the left half of the problem (because the problem is symmetric the right

half is a mirror image of this half) for the 10 pin case.
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Figure 4.2: Unreflected MOX Flux Ratio - 10 pins

In Fig. 4.2 and all future figures, HD stands for homogenized diffusion, HSP, stands
for homogenized SP;, and an A in front of either means it is asymptotic homogenized
diffusion/SP,. Both the standard methods (HD and HSP,) use only the first term in the flux
reconstruction equations in order to match what is currently done in diffusion theory. For
this reason, the HD flux curve is hidden under the HSP;, curve. AHD uses Eq. (3.80), while
AHSP; uses Eq. (3.101).

It is clear that the additional terms in Egs. (3.80) and (3.101) have a “smoothing” effect
on the error of the reconstructed flux; each additional term decreases the fluctuation of the
error in the pin cells. Furthermore, it appears that for capturing the scalar flux the model
used (HD, AHD, HSP,, AHSP) is less important than the reconstructed flux equations
used. HD and HSP», both of which use only the first term in Eq. (3.80), overlap despite a
54.7 pcm difference in the eigenvalue. While the overall trend is the same, the fluctuations

in the error are considerably lessened with AHD and almost completely eliminated with
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AHSP,. This improvement gives us hope and motivation for future testing with more

difficult problems.

44.1.2 C5G7 MOX/UOX

Our second test is intended to evaluate the effectiveness of the various discontinuity factors
at a fuel-fuel interface. While the homogenized cross sections for the MOX and UOX pins
are similar, they are different enough that we expect boundary layer effects at the interface.
Eigenvalue results are tabulated in Table 4.11. The total number of pins are tabulated; the
number of MOX or UOX pins is exactly one half of the tabulated value. Each run with p?
written beside the number of pins refers to a case in which the discontinuity factor for the
scalar flux used g (u) = u? rather than g(u) = 1; these runs were only performed with the

asymptotic equations.

Table 4.11 MOX-UOX Unreflected k-eff Results

Ref Kesr | AKegr (pecm)
# of Pins SN AHD AHSP, | HD | HSP,
6 1.508725 | -11052 | -550.0 | -1474.3 | -1206.3
6u> | 1508725 | -1103.9 | -550.4 - -
10 1.617643 | -289.2 -138.4 | -493.5 | -432.9
104> | 1617643 | -286.8 -133.6 - -
20 1.688828 -82.2 255 | -187.7 | -170.0
20> | 1.688828 -79.7 -18.1 - -
40 1.725228 -19.7 5.2 712 | -66.8
40> | 1.725228 -18.9 2.4 - -

Again (this will be a common theme in this chapter), the asymptotic results show clear
improvement over the standard results. Likewise, SP, shows a similar improvement when

compared to diffusion. More surprisingly, using g (u) = x> shows little improvement over
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Figure 4.3: Unreflected MOX-UOX Flux Ratio - 6 pins
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Figure 4.4: Unreflected MOX-UOX Flux Ratio - 10 pins

g () = 1. It only makes an appreciable difference when the number of pins is large, and the

the results are already accurate.
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Figs. 4.3 and 4.4 give reconstructed scalar flux comparisons between the standard and
asymptotic methods. Each diffusion or SP; solution is normalized by the total flux in the
core. Again, AHSP; yields results that are the smoothest and closest to unity, followed by
AHD and the standard methods, with HD and HSP; mostly overlapping. It is also important
to notice that the error is much greater in the six-pin case than in the ten-pin case. The flux
gradients are sharper in the smaller problem, and even though AHSP; gives better results,

it is still not capable of fully capturing these effects.

1.10 T T T T T T
1.05
¢reC0n
1.00
¢SN
0.95| — AHD (1,u)
— AHSP, (1,u)
— AHD (4% ,p)
— AHSP, (4 ,p)
0.90 : : ‘ ‘ : :
0 2 4 6 8 10 12
X

Figure 4.5: Unreflected MOX-UOX Flux Ratio (1 vs x?) - 10 pins

Fig. 4.5 compares the fluxes for g (i) = 1 versus g(u) = u>. Here we can see slight im-
provement for g () = u%, which matches with the improvement in the eigenvalue. However,
we can also see that the scalar flux is discontinuous at the middle of the problem. This is a

natural side-effect of preserving an integral of u? rather than 1.
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4.4.2 Reflected Cases

In each of the following cases, the core is surrounded on both sides by several centimeters

of the same moderator used in each pin. The C5G7 MOX, C5G7 UOX, and ZPPR cases

allow us to investigate the various reflector discontinuity factors.

44.2.1 C5G7MOX

For the C5G7 MOX case, also explored without a reflector, a range of reflector discontinuity

factors are tried. Table 4.12 lists the cases and their eigenvalue results, and Pcur refers to a

case that used the partial currents to obtain discontinuity factors, where

1 1
fo Y (x p)dp = fo Y~ (xp)du, (4.51a)
0 0
fl Yt (o) dp = f1 Y (xp)du, (4.51b)
are used instead of Eq. (4.1).
Table 4.12 MOX Reflected k-eff Results
Ref K Ak (pcm)

#of Pins | g(u) | Analytic? SN AHD | AHSP, | HD HSP,
5 (1,u) No 1.567390 | -235.6 | 80.6 | -452.7 | -302.3
5 (1%, 1) No 1.567390 | -280.7 | 162.5 | -498.7 | -301.5
5 (1,u) Yes 1.567390 | -238.8 | 35.1 - -
5 (12, 11) Yes 1.567390 | -283.9 | 31.2 - -
5 Pcur Yes 1.567390 | -218.2 | 75.0 - -
10 (1,u) No 1.621938 | -39.0 19.9 | -132.0 | -98.6
10 (1%, 1) No 1.621938 | -54.0 404 | -147.4 | -98.3
10 (1,p) Yes 1.621938 | -40.0 4.1 - -
10 (1%, 1) Yes 1.621938 | -55.1 5.3 - -
10 Pcur Yes 1.621938 | -33.1 13.7 - -
20 (1,p) No 1.647175 | -4.7 4.1 -38.5 | -324
20 (1%, 1) No 1.647175 | -84 8.4 -42.3 | -32.3
40 (1,u) No 1.656913 | -04 0.7 -11.1 | -10.1
40 (1%, 1) No 1.656913 | -1.1 1.5 -11.8 | -10.1
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Standard diffusion and SP, were only run for the non-analytic cases. In general, the
analytic representation of the returns a more accurate kegr with g(u) = (1,u) providing the
best solution, followed by the partial current solution.

Fig. 4.6 shows the flux ratio for the 10-pin case, while Fig 4.7 zooms in on the core-
reflector interface for the same case. Here the extra A refers to “Analytic” solutions. There
are several important things to notice. The first is that AHSP; appears to perform the best
in the reflector. However, it is also the worst in the core near the core-reflector interface.
Clearly, the eigenvalue is influenced more by accuracy in the core. However, in direct
contrast, the AAHSP, solution with g (u) = (,uz, ,u) is more accurate than the g(u) = (1,u)
case in the core, but less accurate in the reflector; however, their eigenvalue results imply
the opposite.

Again, the discontinuities at the interface are for cases without g (u) = 1.

44.2.2 C5G7U00X

Eigenvalue results for the reflected C5G7 UOX case are given in Table 4.13. The trends
are the same as with the MOX case, except that the partial current AHD performs slightly

better than the g (u) = (1,u) case.
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Table 4.13 UOX Reflected k-eff Results

Ref Kes Ak (pcm)

#of Pins | g(u) | Analytic? SN AHD | AHSP, | HD HSP,
5 (1,1) No 1.631711 | -2744 | 79.5 | -596.0 | -468.4
5 (12, 1) No 1.631711 | -316.3 | 138.5 - -
5 (1,1) Yes 1.631711 | -276.1 | 13.1 - -
5 (12, 1) Yes 1.631711 | -317.9 | 32.1 - -
5 Pcur Yes 1.631711 | -265.1 68.3 - -
10 (1,10) No 1.697512 | 457 | 194 |-186.3 | -157.3
10 (12, 1) No 1.697512 | -60.1 | 34.4 - -
10 (1,1) Yes 1.697512 | -46.2 6.4 - -
10 (1%, ) Yes 1.697512 | -60.6 | -3.7 - -
10 Pcur Yes 1.697512 | 424 | 122 - -
20 (1,1) No 1.728467 | -5.5 4.0 574 | -52.0
20 (1%, ) No 1.728467 | -9.1 7.1 - -
40 (1,1) No 1.740598 | -0.5 0.7 -17.0 | -16.1
40 (12, 1) No 1.740598 | -1.2 1.3 - -

The flux plots for UOX were almost identical to those from the MOX cases, and are
hence not shown. Instead, Fig. 4.8 shows the difference between standard and asymptotic
flux reconstruction for a reflected problem. The trends are similar to what was seen with the
unreflected case. However, there are two important things to note. First, the SP; solution
is almost horizontal in the reflector, implying that it has the correct shape. Second, the

SP, solution has a bump at the core-reflector interface that causes it to be off by a constant.

This implies that there is still some issue with our discontinuity factors.
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Figure 4.8: Reflected UOX Flux Ratio Standard vs. Asymptotic - 10 pins

44.2.3 ZPPR

The ZPPR presents a unique challenge, due to the optical thinness of each pin, as well as
the reflector. Table 4.14 lists the eigenvalues for each case. It takes 25 pins before the
eigenvalues become reasonably accurate, though the analytic reflector expression yields a
few good results in the 11 pin case. However, as the flux plots show, an accurate eigenvalue
does not ensure an accurate reconstructed flux.

In Figs. 4.9 and 4.10 (for the 11 and 25 pin cases, respectively), we see the error increase
rapidly as soon as the solution reaches the reflector. Furthermore, any DF that allows a
discontinuous scalar flux has a very large jump at the fuel-reflector interface. This implies
that there is an extreme disconnect between the fuel and reflector that must be compensated
for with large adjustments. From these figures, it is difficult to determine which method

performed the “best”. Furthermore, in many cases the diffusion solution is more accurate
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Table 4.14 ZPPR Reflected k-eff Results

Ref Kes Ak (pcm)

#of Pins | g(u) | Analytic? SN AHD | AHSP, | HD | HSP,
5 (1,10) No 0.259660 | -2608.7 | -2012.3 | -2989.3 | 1297.9
5 (%, 1) No 0.259660 | -2792.5 | -4649.4 - -

5 (1,1) Yes 0.259660 | -2959.3 | 643.3 - -

5 (%) Yes 0.259660 | -3141.2 | 2286.2 - -

5 Pcur Yes 0.259660 | -1090.3 | 2940.2 - -
11 (1,1) No 0.349135 | -966.1 | 718.1 | -1247.7| 368.2
11 (1%, 10) No 0.349135 | -1066.75 | 1845.4 - -
11 (1,1) Yes 0.349135 | -1158.1 | -161.3 - -
11 (1%, 10) Yes 0.349135 | -1257.9 | 163.5 - -
11 Pcur Yes 0.349135 | -138.1 916.6 - -
25 (1,1) No 0.412677 | -169.9 | 151.1 | -285.9 | 324
25 (%, 1) No 0.412677 | -194.8 | 4184 - -
25 (1,1) Yes 0.412677 | 2173 | -98.5 - -
25 (12, 1) Yes 0.412677 | -241.7 -90.5 - -
25 Pcur Yes 0.412677 | 402 162.5 - -
40 (1,10) No 0.430925 | -48.4 503 | -1053 | -6.1
40 (1%, ) No 0.430925 | -56.8 142.9 - -
40 (1,1) Yes 0.430025 | -64.4 -38.4 - -
40 (1%, 10) Yes 0.430925 | -72.7 -41.6 - -
40 Pcur Yes 0.430925 24.1 50.7 - -

than the SP; solution, an unusual occurrence.
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44.24 LWR

The LWR presents a unique reflected case. It does not have a variable number of pins, it
homogenizes over an entire assembly rather than a single pin, and it contains greater variety
between cells. Due to the size and complexity of the problem, an analytic expression for
the flux in the reflector was not used. Instead, we explored the impact of g (u).

Table 4.15 lists the eigenvalue results for each calculation. The problem is optically
thick, and so the errors are small. Again, we find that AHSP; is better than AHD. More

surprisingly, we see that g(,uz, ,u) yields the best result for AHSP;.

Table 4.15 LWR Reflected k-eff Results

Method g, | kefp/Akers(pem)
SN - 1.212207

Standard Homog Diffusion (1, ) -32.0

Standard Homog SP; (1, -12.9

Asymptotic Homog Diffusion | (1,u) -31.5

Asymptotic Homog SP; (1,p) -10.4

Asymptotic Homog Diffusion (,uz, ,LL) -32.9
Asymptotic Homog SP; (,uz, u) 3.1

Fig. 4.11 shows the flux ratios for the four asymptotic cases. This case shows the
effectiveness of g(u) = (,uz, u) in full, along with the discontinuities it creates. Looking at
Fig. 4.11, it 1s clear why AHSP, captured the core eigenvalue better than any other method.
Furthermore, we see how the additional terms with the AHSP; flux reconstruction improve

the scalar flux towards the outer edges of the problem, where the flux gradients are steeper.

4.5 Summary

Using five test cases, with variations in size and whether the core was reflected or not, we
have shown the accuracy of the newly derived asymptotic SP, method and its accompa-
nying flux reconstruction formula. In most cases, asymptotic homogenized SP; is more

accurate than asymptotic diffusion, standard SP; , and standard diffusion. Only in prob-
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Figure 4.11: LWR Flux Ratios (1 VS.,u2)

lems that are optically thin with large discontinuity factors does asymptotic diffusion yield
slightly better results.

When choosing which angular moments to make continuous at an interface, the best
choice appears to vary from problem to problem, making it impossible to choose one for
a general scenario. In addition, discontinuity factors and diffusion coefficients for the re-
flector that are generated from an analytic expression for the angular flux generally pro-
duce better solutions in the fuel than a naive diffusion expression. Finally, the asymptotic
SP, reconstructed flux formula captures the spatial oscillations in the scalar flux much more
accurately than the asymptotic diffusion solution (i.e. the AHSP; errors are much smoother

and closer to zero).
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CHAPTER 5

Derivation of a Scaling Factor for the

Homogenized, Multigroup Transport Equation

“Standard” homogenized multigroup cross sections are defined to preserve the multigroup
infinite lattice eigenfunction and eigenvalue. These cross sections can be altered through
multiplication by an arbitrary scaling factor while still preserving the infinite lattice eigen-
function and eigenvalue. In this chapter, we show that the multiplicative scaling factor can
be chosen so that the “scaled” multigroup transport equations (with the properly scaled
multigroup cross sections) satisfy an extra element of transport physics. In addition to pre-
serving the infinite lattice eigenfunction and eigenvalue, these equations also preserve the
asymptotic diffusion or SP; limit of the continuous energy Boltzmann equation.

Because the “scaled” multigroup equations preserve additional space-dependent trans-
port physics, it is logical to hypothesize that the solution of these equations will be more
accurate than solutions of the standard multigroup equations. That is, the “scaled” multi-
group solution should agree more closely with the continuous energy transport solution. In

Chapter 6, we confirm this hypothesis through numerical simulations.
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5.1 The Homogenized Multigroup Transport Equation

To derive the 1-D, homogenized, multigroup transport equation, we begin with the 1-D,

lattice-geometry, continuous-energy transport equation introduced in Chapter 3:

0
B (it B+ 54 (5 E) (1,

00 1
= f f Ss(ou’ > u,E' = E)y(x,u’,E")du'dE’ (5.1)
0 J-1
B ([
+/l)((x2 )f f VEf(xEN Y (x, 1 E")dy' dE’,
0 J-1
where
1 .
A= K= 1 —p = eigenvalue,
and

W (x,u, E) = eigenfunction.

In the case of an infinite periodic lattice with symmetric cells, we denote the solution

to Eq. (5.1) as fy(x,u, E), with 4 = Ao, as in Eq. (3.15):

0
:ua_];O ()C,,U,E) +Et (-x’ E)f() ()C,,U,E)

00 1
- f f 5, (rpl = i E' = E) fo (o' E')d' dE” (52)
0 -1

,E (oo 1
1% (x2 ) f f VI (0, E') fo (xud E ) dy dE”
0 -1

We then define an energy-grid of G bins, with boundaries ranging from Eg = Epij, to

Eo = Emax. Any energy integral may now be written as a summation of integrals over the
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G energy groups, e.g.:

00 G Eg—l
f vEf(x,E)lp(x,,u,E)dE:Zf ‘ vif(x, E)¢ (x,u, E)dE . (5.3)
0 g=1 E,

If we integrate Eq. (5.2) over a spatial cell i (x = [x;-1/2, Xi+1,2]), an energy bin g (E =

[Eg, Eg_1]), and all angles (u = [-1, 1]) we have:

1 ngl ngl
flﬂ( Jo (xi+1/2aﬂ,E)dE— fo (x,'_1/2,,u,E)dE)d,u

E, Eg
Xir12 (Eg-1
+f f X (x,E)Fo(x,E)YdEdx
Xi-1)2 VEg

Xiv1/2 (Eg-1 o0
= f f f X50(x,E' = E)Fo(x,E")dE'dEdx (5.4)
Xi—1/2 E, 0

Xir1/2  (Eg-1 00
+4o f f x(x,E) f vIfr(x,E")Fo(x,E")dE dEdx,
E, 0

Xi-1/2

where

1
%mm:fﬁm%mw, (5.5)

and

1
Y00, E' > E)= f Y (e, > u,E" - E)du
-1

1 (o]
2n+1 , ,
:f1 PGPS (G E > Bl (56)

"t n=0

= P() (,u’)zs,o (x,E' - E) .

In Eq. (5.6), we have assumed a Legendre polynomial expansion of the differential scatter-
ing cross section.

The streaming term can be eliminated by noting that each cell is symmetric:
Jo(Xiv1/2, 1 E) = fo (Xi-1/2,1, E) - (5.7
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With this simplification, we rewrite Eq. (5.4) in homogenized, multigroup form:

G

Q

it,i,gFO,i,g = Zis,o,i,g’ﬁgfo,i,g’ + AO)?i,g Zﬁf,i,g’ﬁo,i,g’ 5 (5.8)
g=1 g=1
where
_ Xir172  (Eg-1
FO,i,g = f F() (x, E)dde, (5.9&)
Xi-1/2 VEg
Xir12 (Eg-1
f f X (x, E)Fo(x,E)dEdx
s _ VYXiap VE
Xrig = s Eo , (5.9b)
f f Fo(x,E)dEdx
Xi-12 VEg
Xitv172 (Eg-1 Eg
f f X50(x,E' > E)Fo(x,E")dE'dEdx
= xi-12 JEg o
ZS,O,i,g/—)g = X,'+1/2 Eg,_l s (5.90)
f Fo(x,E")dE'dx
Xi-1/2 o
Xir12 (Eg-1
f f vZis(x,E)Fo(x,E)dEdx
- VX VE
VEfig = o E , (5.9d)
f Fo(x,E)dEdx
Xi-12 YEg
and Xiv1/2  (Eg-1 00
f f )((x,E)f vi¢(x,E")Fo(x,E")dE'dEdx
— Xi—12 VE 0
Xl,g = gxi+1/2 00 M (5‘96)
f f VE (r E') Fo (x, E') dE'dx
Xi-1/2 V0

Egs. (5.4) and (5.9) are exact; however, an approximation is introduced when we gen-

eralize Eqgs. (5.9) to the finite-medium, homogenized multigroup transport equation:

57, o G 1
H 6;g () + X gl g (X, 10) = ZZS,O,i,g’—ng f] Vi (o )y’
g=1 -

+A¥szﬁi,g,fl¢i,g, (e )dy . (5.10)

g=1
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Using the standard multigroup cross sections defined in Egs. (5.9), we see that Eq. (5.8)
preserves the homogenized infinite-lattice solution fo,g and Ap. This statement is still true

if we multiply Eq. (5.8) by a constant, pg:

G G
(pGZl,i,g)FO,i,g = Z(pGZs,O,i,g’%g)FO,i,g’ +/1)?i,gz (pGVZf,i,g’)FO,i,g’ s

g=1 g=1
or
G G
z:t,i,gFO,i,g = Z 2:s,i,g’—>gFO,i,g’ + /l)_(i,g Z sz,i,g’FO,i,g’ ’
g=1 g=1
where
T =062 (5.11)

In the remainder of this section, we use the cross sections defined in Eq. (5.11) with the
following understandings:

1. If we set pg = 1, we obtain the standard homogenized multigroup approximation.

2. For any G, pg can be chosen to improve the accuracy of the multigroup transport

solution without affecting the infinite-lattice eigenvalue or eigenfunction.

3. AsG - o0, pg — 1.

With these thoughts in mind, we propose the following multigroup, finite lattice-homogenized-
medium transport equation with the scaled cross sections from Eq. (5.11) to approximate

Eq. (5.1):

aJ s . o 3 _ ’ ’
et () + Bl (1) = ) Tt f i ()
=1 -
Tig & !
g = - ’ ’
+472vzﬁi,g,Lwtg, (i) dy (5.12)

g=1

X € [xi-1/2,Xi+1/2]

101



or

u
p_ (9 (X/J)+Etzg'//lg(xll) ZZSOzgﬁgf l,b,g(x,u)dﬂ
g=1
Tig & 1
i.g — — , ,
tA5 ;sz,i,g' Vg (B (5.13)

X € [xi—1/2,Xix1/2] -

In the following sections, we use the result of an asymptotic analysis to define pg in a

way that improves the accuracy of Eq. (5.13).

5.2 Asymptotic Analysis

As in Chapter 3, we consider an optically thick system, in which A = Ap. This can be done

by fixing /Z\Z(E ) and letting x = O(1/e) for € < 1, or defining a slow spatial variable:
7= €X. (5.14)

Because the lattice has already been homogenized, there is no periodic variable y. Intro-

ducing Eq. (5.14) into Eq. (5.13), and defining

Wi (zopt) = ;o (x,10) (5.152)
and
A=A+ €1, (5.15b)
we obtain:
o¥ _ G 1
Eﬁ 8;8 (z,p) + Et,i,g\}’i,g (z,p) = Z Z:s,O,i,g’—>g‘[. \Pi,g’ (Z,,U/)d/-l/
g=1 -1
Tig & !
L N ’ ’
+ (Ao + 62/12)7g Z Vifig f WYig (z.u")dy’ . (5.16)
g=1 -1
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There is no e4; in Eq. (5.16) because, as in Chapter 3, 11 = 0. Setting € = 0 produces the
correct infinite-medium transport equation.
The following asymptotic analysis is similar to the one performed in Chapter 3. The

only differences are:
1. Eq. (5.16) has cross sections that are independent of y.
2. Eq. (5.16) is multigroup, rather than continuous energy.
3. Eq. (5.16) contains an unspecified constant, pg.

To solve Eq. (5.16), we assume that ¥; , can be expanded in powers of e:
8

Wig @) = ) €V @) . (5.17)
=0

Introducing Eq. (5.17) into Eq. (5.16) and equating the coefficients of €, we obtain the

following system of equations:

EOZ
©0) _q.
LY, (z0) =0; (5.18a)
612
d
YO )= -EZeO ¢ ) 5.18b
ig (G P g (K (5.18b)
€" forn > 2:
o Yio & 1
(n) _ K Y gh-1 tig ~ . , (n=2) ’ ’
LY o) = == W @)+ o= g’Z:lvzf,l,g i G (5.180)

Here L is the homogenized, infinite-medium multigroup transport operator, with the infinite-
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medium eigenvalue Ag:

G 1
LYig (2 p) =2pigWig (z,00) — Z 250, g'—>gf Vi (zu")au’
g'=1

X
—Aoizvzf,gf Wig (gt )y . (5.19)
By design, Eq. (5.18a) has the general solution:
W (2,0) = Fo 29, (5.20)

where @ (z) is unspecified.
From the properties of L and the Fredholm alternative theorem (FAT) [29], we know

that an equation of the form:

Lf,(u) = Qg (1), (5.21)

has a solution if and only if:

G 1
> Fog f 1 Q¢ () du=0. (5.22)
g=1 N

This is called the solvability condition for Eq. (5.21).
Introducing Eq. (5.20) into Eq. (5.18b) and applying Eq. (5.22), we obtain the solvabil-

ity condition for ‘I’g;:

G
= > Fol0ldu (5.23)
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which is automatically satisfied. Eq. (5.18b) therefore has a homogeneous solution (the

solution to L‘I’( = = 0) and a particular solution. Combining the two, we obtain:

1 1
v )(z,,u) ghomog (zp0) + P! I)Jart (z.)

1— I [u= 10
=—Fo, (w0 (- —L 1[—F ,]—cp(o)
>Fos W (2) oG > Foz| ()

_ 1= Wy L7 9 a0
=7Fog () prl,g(ﬂ)aZ(D (@),

where @ (z) is another unspecified function and

Fre =17 £ Fo,|.

We next consider Eq. (5.18c) for n = 2. The solvability condition is:

1 G

Fog

f

o
Il

1

Fog

—ﬁﬁ( F0g®“’<z>——f <m— <0><z>)
1L pcd

o
Il
—_

G
Xsg - 0
$5ED vE Fo @ )(z)]du

7

g'=1
29O

1 (& 0
= Z(Z fuflg(,u)du 522
PG =
G
+/12 [Z Fs,g)(gJ[Z VZf,ngo,g/]CD(O) (Z) .

g=1 g'=1

The adjoint operator adjoint operator L* is defined, such that:

L'F,

O,g:O’

F (’-_‘;, g = infinite medium multigroup adjoint spectrum,
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) Xg , O (g
‘I’ ,p)+/12 5 E VEfe —1\Pi’g’ (z,1")du ]a’,u

(5.24)

(5.25)

(5.26)

(5.27)



and

G
ZFS’gFo,g =1. (5.28)
g=1

We also define the operators Py and P:

G 1
Pong () = ZFS,g f e W)dy’ (5.29)
g=1 N
and
G 1
Png () =Fog Z FEk),g fl Mg () du'
g=1 -
=fo.g () Pong (1) , (5.30)
where
P*=P. (5.31)

We can therefore rewrite Eq. (5.26) as:

1 0?00
0=—P 5.32
p (1f1600) = (5.32)
X G
8 E 0
+/12P[?g/zlvxf,g’F0,g’]q)( '@,
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and, by subtracting Eq. (5.32) from Eq. (5.18c¢) for n =2, we have:

0
LY ) = — (I - P) o Ve @r)
Xe o
+h(-P) S szf,gf f YO (e )yt
g'=1 -l

0|1 1 0
=-U-P) = [EFo,gdﬂ“ (@)= = fig () 720 (z>]

0G 02
X G
+h(-P)F D VEpgFog®@dy (5.33)
g'=l1
oD 52O
=5, Fog =5 +U=P) flg(m}

d® ).

G
Xg
+h(-PF [g; VEfg L Fog

Eq. (5.33) now automatically satisfies the solvability condition, and by the FAT, its

solution can be written:

1 1 acD(U 1 (92@(0)
Wi @0 =3 F0, 00 @ = =L [ Fo [+ 17 U= P g )| =
G
_ X
+ L7 (I—P)f[;vzf,g,Fo,g, 20 (y), (5.34)
or
oo 1 a2<1><0>
W () =5 Fog<1><2><z>——f1g<u> o —fz W) ———
+ /3.4 (WO (2) . (5.35)
Here
Fra@ =L U=P)ufi @) (5.36)
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and

fe@w=L" (5.37)

G
Xg
(I-P) 7[2 VEfg Fo’g,]

g'=1

are new multigroup lattice functions.

Next, we consider Eq. (5.18c) for n = 3. The solvability condition is:

1 G

1
@) , Y] ™A,
‘P ( ,,u)+/12 3 E Vife [lTi’g, (z,1")dp ]d,u

Sl >
Ll

Fog

ki
.

g'=

1 (D
A el F ® -
1 o 8z 0,¢P7 (2) flg(ﬂ)

Fog

og
Il
—_

82 0)
fzg(/J) —+f (00 Q)

G 1
Xg — s L= 08 ,]
+/12 B Z Vz:f,g/ fl (FO,g(D (Z) prl,g (I,,l )aZ(D (Z) dl’l d/,l

= [ZFogf wfig

8

o)
02

G
ol oo

=1 ’

(5.38)

g'=1

or, multiplying through by fo,:

a2c1><1>

= (,Ufl g<u))
G

+42P[X2g 2 sz,g'Fo,gf]dﬂ“(z) : (5.39)
§'=1
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As with ‘I’l(.?, we subtract Eq. (5.39) from Eq. (5.18c) for n = 3, yielding:

LY (z,p) = —(I - P)-= GW)( 1)

1
_pXs . D N dud
Fh(-P §,_ e [ W Ga)dn

al Loy 52q><0>
- (- P)——[ZFO <D<2>(z)——f1g<u) - —f2g(/J)

G
+ /12f3,g (ﬂ) CD(O) (Z)] + Ay (I - P))% Z sz,g’

g'=1

1
1 1 d
X f [EFO,g(D(I)(Z)—_fl,g(ll/)_‘b(o)(Z)]dﬂ/ (5.40)
-1
1 p aq><2> 52q><1>
=———Fpg——+—{-P
G2 08 g ( Mg ] =5
a3c1><0> 1 acb<0>
p3 ,ufz () ——=— #f3g(u)

G

Xs 1
? Z VZf,g/Fo,g/](D( )(Z)

g'=1

+ A, (I—-P)

Eq. (5.40) now automatically satisfies the solvability condition, and the solution for ‘P?g (z,m)

is:

aq><2> achU)
W (zp) =5 Fog@”(z)——ﬁgm) o fzg(ﬂ)
PR ) aq)(o)
3f4g<u> /12/)—6f5,g(/1)6—z+/12f3,g(/1)<1)(1)(2), (5.41)
where
frg@ =L ufrg @], (5.42)
and
Fa@ =L ufie )], (5.43)

are new multigroup lattice functions.
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Finally, we consider Eq. (5.18c) for n = 4. The solvability condition is:

G 1 G 1
3 X 2 ’ ’
0=y F; gf ‘P() ,,U)+/12782V2f,g’f: V2 (i) dy'|d
G 1 (2)
0 o0
:ZF gf —ia— FOg(D(?,)(Z)__flg(#)
=1 1t PG
ach(D 1 o
2 f2 g (/1) p_3f4,g (;u) 6Z3

(9(D(0)
—/lz—fs (1) ==+, w0 @)

G 1))
Xg 1 @) oD
+/1272V2f, Il(zFo ) (Z)——flg(u)

g'=1
ach(O)
P2 f 2.6 (W) +2f35 (1) D (2) )dﬂ,]dﬂ
c ! @
_ . _Ho_ L oD
—;Fo,gL[ 50— flg(u) (5.44)
53(1)(0)
3 f4g(ﬂ)
5(D(0>
_/12_f5g(/1) )
G 1
+/12)%Z:: fl 0,02 ()0
62q><0>
P2 f2g('“ ) +A2f35 (1) D (2) )dﬂ’]dﬂ,
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or, more clearly,

G 22
1 . R
0:—2(§ Fig f uflgwdu)
Pe g=1

G 1 415(0)
1 . R
+—4(ZFo,g f 1#f4,g(ﬂ)dﬂ)a—z4
0?0
+Az—(ZFogf fsg,(u)du)

G
A [Z FS,gxg][Z sz,g’Fo,g'](D(z) @, (5.45)

g=1 g'=1

oy ~ Z st || 2w [ G| @)
P \g=1 g=1 -1
G G 1

+45 ZFS,ng Z"Zﬁg’ flflg’ (W) dy’
g=1 -

g'=1

2, ).

The procedure outlined above can be repeated to obtain a solution for ‘I’Ei,). However,
we are only interested in the solvability condition for ‘I’l(.i,) and ‘PE? For brevity, we state
that the solvability condition for ‘I’f? is identical to Eq. (2?), but with ® and ®® in place
of ®© and @@, respectively.

Derivations of one group asymptotic diffusion and SP; equations are performed in the
same manner as Sections 3.2 and 3.3, with linear combinations of solvability conditions. If

we define:

¢ (x) = V() + edV(2), (5.46)

then we obtain a monoenergetic diffusion equation:

+z 20 () = E 0 (x) (5.47)
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where

a — G B
2 Fos
g=1
G
ZFongng
P g:l
Zf ==
2. Fo
g=1
and
G 1
Eyﬁ&f#ﬁgmwt
g=1 B
Dy = - - .
2 *
PG ZFo,ng ZFO,g
g=1 g=1

Likewise, if we define:
¢(x) = (@) +ed V(@) + (@ (2) + €0V (@),
we obtain a monoenergetic SP; equation:

—  =\]0% = _
—[DO + DAV - za)]@ + T (x) = AVE4 (x)
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(5.48b)

(5.49)

(5.50)

(5.51)



where Dy is defined in Eq. (5.49), and

e
2 Fog f g () dn ZFOg f ag () d

=1

oq

1

| & ! ’
G " % — —
ZFngfl'ufl’g('u)d’u [ZFO’ng][ZFQ’gVZﬁg]
L g=1 B = =
ZF.’J,gEf ZFng l'lflé (W) du

g=1
+
G

FogvZyg [Z FoX g] [Z F O,szf,g]

=1 g=1 g=1

G G Y
Z Fg,g)?g Z szgvzf’g
g=1 g=1

G G L ’
Z F e Z FogvZfg
g=1 g=1 ]

D, =

Q

(5.52)

8

5.3 Solving for pg;

The final step in our analysis is to determine pg, the scaling factor for the multigroup cross
sections. This can be carried out in one of two ways, by either (i) preserving the asymptotic
diffusion limit of the continuous energy transport equation, or (ii) preserving the asymptotic
SP, limit of the continuous energy transport equation. Both cases are presented here, with

numerical results compared in Chapter 6.

5.3.1 Asymptotic Diffusion Limit

One of the constraints mentioned earlier was that as G — oo, pg — 1. Taking this limit,

Eq. (5.49) becomes:

(fooo Fy(E) f_ll K (#,E)d,udE) .
D= . | s
(" Fs(E)x (BYLE)( [y Fo(E)dE)
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We define pg such that the multigroup and continuous energy transport equations have

the same asymptotic limit, or, equivalently, that Egs. (5.49) and (5.53) are equal:

(Zfﬁ:l Fog f_ll 1fig (u)d,u)
06 (Zg(v;:l FS,ng) (Z§=1 Fog)
(f()oo FS (E) f_I] :ufl (/Ja E) d/ldE)

= e S . (5.54
(| Fy(E)x (E)AE)( [y Fo(E)dE) )

This equation yields the following asymptotic diffusion definition of the multigroup scaling

factor pg:

PG =

(o)

0 FS(E)f_llllfl (u, E)dudE
[fow F; (E)X(E)dE]]l/z
>< .
ZgG=1F8,ng

[[ 38 Fy, [ mfie(dp
k

(5.55)

5.3.2 Asymptotic SP; Limit

For SP, , we cannot consider a single diffusion coefficient. Instead, we consider the con-

stant in front of the spatial derivative of ¢:
Do+ Dy (AVEf-X,) . (5.56)
As in Section 5.3.1, we take the limit as G — oo, pg — 1, to obtain:
pié[Do,Gwz,G (W5 —£.)] = Do + B (W5 - %) (5.57)

where Dy and D, ¢ are defined as in Egs. (5.49) and (5.52) (G is the number of energy

groups),
— (fo(>o Fy (E)f_llﬂfl (#,E)dudE)
Po= s = : (5.58)
(5" Fs (EYx (EYE)( [y Fo(E)dE)
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and

00 1 00 1
[ Fie [ npseerrdar vz [ AoEdue
] ) ]

00 1 00
f F§(E) f wfi (u, E)dudE j; vEf(E) Fo(E)dE
0 -1

00 1
fo R [ fy . E)ddE
(foo)((E)FS(E)dE)(foovZf(E)Fo(E)dE)
0 0

00 |
[ 7o [ whiwrdua
- 0 -1 (5.59)

(foo)((E)FS(E)dE)(fOOvEf(E)FO(E)dE)
0 0

00 1
fo VZf(E)f]fz(y,E)dpdE

+

X

fOOVZf(E)FQ(E)dE
0

This equation yields the following asymptotic SP, equation for the multigroup scaling

factor pg:

D(),G + DZ,G (/IV_Zf - ia) 12

(5.60)

PG =

5() + 52 (/lV_Zf - ia)

Eq. (5.60) has one obvious disadvantage; it requires knowledge of the unknown eigen-
value A. This can be mitigated by lagging the calculation of pg, and updating it only peri-
odically, or with large changes in 4. However, as we shall see in Chapter 6, this increased

computational cost may not be worth the accompanying increase in accuracy.

5.4 Discussion

By our definitions of Dy, Da, Bo,g, and Ez,g, it is clear that Egs. (5.55) and (5.60) will ap-

proach unity as G — oo. By applying the scaling factors, we are preserving the asymptotic
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limit of the homogenized continuous energy transport equation. Alternatively, pg could be
defined to preserve the asymptotic limit of the lattice continuous energy transport equation,
a topic for future work.

In the following chapter, the scaling factors defined in Egs. (5.55) and (5.60) are nu-

merically tested for a set of test problems.
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CHAPTER 6

Derivation of a Scaling Factor for the
Homogenized, Multigroup Transport Equation —

Numerical Results

In this chapter, we numerically evaluate the scaling factors pg defined in Chapter 5 using
a 1-D, multigroup Sx code. Because continuous energy solutions for fp and f; were un-
available, we used two “fine” group structures for our “continuous energy” libraries, and
performed energy group collapses on these libraries.

Two sets of cross section libraries were used. The first, a 56-group library, was obtained
from the MPACT code [31] with a homogeneous mixture of UO;, and light water. The
second, a seven-group library, comes from the C5G7 reactor benchmark [30]. The 56
group library demonstrates the efficacy of the scaling factors for homogeneous media with
fine group structures, and is meant to mimic the ultra-fine group 0- and 1-D calculations
performed at an early stage in cross section generation. The C5G7 library establishes the
accuracy of the scaling factors for problems with a relatively coarse energy group structure
and heterogeneous geometry.

The 56-group numerical results show that the scaling factor significantly reduces the
eigenvalue and flux errors for a homogeneous medium. In most cases, SP; scaling fac-
tor proves to be slightly more accurate than the diffusion scaling factor. Results from

seven group simulations also show an improvement in accuracy when the scaling factor is
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used; however, the diffusion-based scaling factor outperforms the SP,-based scaling fac-
tor for these problems. Because the SP; scaling factor is more expensive to calculate, the

diffusion-based pg formulation is recommended for most practical calculations.

6.1 56-Group Library

The 56-group library was obtained using the MPACT code [31] with a homogeneous mix-
ture of UO, fuel and light water (borated) moderator. Number densities for the fine group
library were obtained from the VERA benchmark [32] for 3.1% enriched fuel and 0.743
g/cc light water moderator with 1300 ppm boron, and were then volume weighted to obtain

the number densities presented in Table 6.1.

Table 6.1 Test Problem Number Densities

Fuel U-234 U-235 U-236 U-238 O-Fuel
N bztr‘;% 2.03134E-06 2.38415-04 1.09511-03  7.35517E-03 1.51934-02
Moderator O-16 H-1 B-10 B-11

N l;ﬁ% 1.65741E-02 3.31481E-02 7.15235E-06 2.87892E-05

Forward and adjoint scalar fluxes were obtained for an infinite homogeneous medium,
and were used to collapse the cross sections in energy. Forward and adjoint homogeneous
infinite medium scalar fluxes were again calculated using the few-group cross sections,
and, combined with the fine group fluxes, were substituted in to Eqgs. (5.55) and (5.60) to

calculate pg.

6.1.1 Results

The few and fine group cross sections obtained from the infinite homogeneous medium
calculation were used in a series of homogeneous medium simulations for finite systems of
varying widths L. All results were generated using a 1-D, isotropic scattering Sy code with

vacuum boundary conditions. The 56 group results were used as a reference solution, with
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the eigenvalue error reported in percent mille (pcm):

Akeff = (keff,56G - keff,Few Group) X 105 (pcm) . (6.1)

Fig. 6.1 and Tables 6.2-6.4 show the eigenvalue error with standard, diffusion-scaled
and SP,-scaled few group cross sections for 2, 4, 16, and 24 energy groups, as functions of
the system width L. As the number of energy groups increases, we approach the continuous
energy problem, and the eigenvalue error decreases. Likewise, as L increases, the problem
becomes more like the infinite homogeneous medium problem that the cross sections are
meant to designed, and the error decreases.

When the scaled cross sections are used, we see a decrease in the eigenvalue error of
up to two orders of magnitude. This error reduction becomes even more significant as
the problem width increases. Since the scaling factor is chosen to preserve a diffusion

approximation of Eq. (5.1), it performs less consistently as the problem size decreases.
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Figure 6.1: Eigenvalue Error (Ak) in pcm
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Table 6.2 Unscaled Results

Length 56 Group (Reference) 24 Group 16 Group 4 Group 2 Group
(cm) k-eff Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm)
12 0.426928 -512.1 -564.4 -5694.3  -7799.6
24 0.746386 -303.1 -351.4 -3882.4  -4812.5
36 0.870090 -181.3 -224.3 -2604.3  -3109.2
48 0.926879 -118.1 -153.7 -1810.1  -2122.7
72 0.974806 -60.1 -83.7 -987.6 -1137.8
96 0.993721 - -52.2 -611.7 -697.8
120 1.003003 -23.0 -35.0 -413.0 -467.0
Table 6.3 Diffusion Scaled Results
Length 56 Group (Reference) 24 Group 16 Group 4 Group 2 Group
(cm) or p k-eff Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm)
PG - 0.99256  0.98892  0.86060  0.84002
12 0.426928 -140.3 -9.6 1501.1 209.6
24 0.746386 -25.8 63.1 1628.5 1408.0
36 0.870090 -4.3 40.3 871.3 835.6
48 0.926879 0.3 23.2 473.5 474.0
72 0.974806 1.7 8.5 173. 183.7
96 0.993721 1.7 3.7 80.3 89.8
120 1.003003 1.7 1.7 43.5 52.5
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Table 6.4 SP, Scaled Results

Length 56 Group (Reference) 24 Group 16 Group 4 Group 2 Group

(cm)orp k-eff Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm)
0G - 0.99258  0.98895 0.086061 0.84004
12 0.426928 -75.6 -564.4 -159.4 -95.5
24 0.746386 -12.4 -55.4 1214.3 1330.6
36 0.870090 -0.2 4.0 742.3 811.4
48 0.926879 1.9 8.9 423.2 464.5
72 0.974806 2.1 5.0 161.7 181.4
96 0.993721 1.9 2.5 76.2 89.0
120 1.003003 1.7 1.2 41.5 51.5

Fig. 6.1 and Tables 6.2-6.4 only show that the scaling factor improves the eigenvalue.
To more locally characterize the scaling factor’s effect, we consider the spatially-dependent

fission source,

G
FG()= ) VEfete (x). (6.2)

g=1
In Eq. (6.2), the flux has been normalized such that the total fission source (integrated over
the spatial domain) equals unity.
Figs. 6.2 and 6.3 show, for 2 / 4 groups and 16 / 24 groups respectively, the absolute
error € = Fs56G(x) — Fyg for L =36 cm. An error of zero indicates that the multigroup

results exactly reproduce the 56 fine group solution.
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Figure 6.2: Fission source error for 2 and 4 groups
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Figure 6.3: Fission source error for 16 and 24 groups

In Fig. 6.2, we see that the maximum errors for the unscaled fission rates for 2 and 4
groups are approximately twice the maximum errors for the scaled fission rates. In Fig. 6.3,
for 16 and 24 groups, this improvement is even greater. Furthermore, we see that for 2 and
4 groups, the diffusion and SP; scaling factors lead to almost identical fission sources (the
curves lie almost on top of each other). It is only for 16 groups that the two curves do not
overlap.

The improvement in accuracy that results from using the SP;-based p¢ instead of the
diffusion-based pg is modest and inconsistent, even for small problems. Since the SP; pg
requires periodic updates as A is updated, it also takes longer (both in run time and con-
vergence, as one also must wait for pg to converge). These drawbacks, combined with the

results from the next section, lead us to recommend the diffusion-based scaling factor over
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the SP,-based scaling factor for practical calculations.

6.2 C5G7 Library

The seven-group C5G7 cross sections were taken directly from the benchmark document
[30]. In the C5G7 benchmark problem definition, cladding is already homogenized with
the fuel. To represent the 2-D pin geometry from the benchmark in 1-D, area fractions
were preserved. Thus, the 2-D fuel pin was converted to an effective 1-D “fuel pin.” The
geometry conversion is summarized in Table 6.5. While the dimensions and areas are not

identical, the ratio of the fuel area to moderator area is similar.

Table 6.5 C5G7 Problem Geometry

Dimensions Fuel Dimension Fuel Area Moderator Length Moderator Area

Original 0.54 cm (radius) 0.916088 cm? 1.26 cm 0.671512 cm?

Converted 1.01 cm (length) 1.01 cm? 0.74 cm 0.74 cm?

The same geometry was used for each fuel pin, guide tube, and fission chamber. Four
fuel types are present, as defined in the benchmark; a UO; pin, and three MOX pins with

4.3%, 7.0% and 8.7% MOX.

6.2.1 Homogeneous Pin

A strategy identical to that of Section 6.1 was initially pursued, in which each pin was indi-
vidually homogenized and tested as a homogeneous medium of variable size with vacuum
boundary conditions. In each case, the reference solution was generated using seven groups
and an array of heterogeneous 1-D pins. The reference case is compared to homogeneous
cases with seven energy groups, two energy groups, two energy groups with the diffusion-
based scaling factor in Eq. (5.55), and two energy groups with the SP,-based scaling factor

in Eq. (5.60).
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The eigenvalue errors (in pcm) for the four fuel pin types, with problem sizes ranging

from 5 to 40 homogenized fuel pins, are presented in Tables 6.6-6.9.

Table 6.6 Homogenized UO, Pin

# Pins 10 20 40 80

Reference 0.661406 1.038419 1.22705 1.291361

G -339 -144.1 -45.1 -13.2

2G -12664.4  -5546.7  -602.5 1359.1

2G Diffusion  -2070.3 118.3 127.8 32.6

2G SP, 1020.7 742.1 195.3 37.9

Table 6.7 Homogenized MOX 4.3% Pin

# Pins 10 20 40 80

Reference 0.602261 0911137 1.064162 1.116335

7G -175.7 -58.7 -15.8 -4.4
2G -5569.7  -2458.6 -899.7 -275
2G Diffusion  -1618.1 162 115.2 25.3
2G SP, 744.9 635.7 166.4 29.3

Table 6.8 Homogenized MOX 7.0% Pin

# Pins 10 20 40 80

Reference 0.634581 0.942415 1.093713 1.145177

G -104.8 -23.4 -3.9 -0.7
2G -5285.9  -2318.3 -854.7 -261.4
2G Diffusion  -1408.6 224.9 124.8 27.9
2G SP, 772.5 658.1 171.5 31.5
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Table 6.9 Homogenized MOX 8.7% Pin

# Pins 10 20 40 80

Reference 0.65204 0.959192 1.10947 1.160509

G -71.7 -8.2 0.6 0.3
2G -5109.6 -2243 -834.8 -259.2
2G Diffusion -1052.7 405.6 183 41.2
2G SP, 802.9 667.5 169.1 27.4

As anticipated, we see that for all four fuel pin types, the seven-group homogenized
cross sections outperform all of the two-group result, and that the scaling factor improves
the two-group solution. Unexpectedly, we note that the diffusion scaling factor outperforms
the SP, scaling factor for most of the cases presented here. Only when the problem is very
small (10 fuel pins), or occasionally for the 8.7% MOX fuel pin, does the SP, scaling factor

result in a smaller eigenvalue error than the diffusion scaling factor.

6.2.2 Heterogeneous Assembly

To further explore the effect of spatial homogenization on the scaling factor, a “slice” of
the C5G7 core was simulated. This was taken as a single row cutting through both a UO,

and MOX assembly. The geometry is presented in Fig. 6.4.
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DI,

Figure 6.4: Assembly Slice Geometry

Each assembly slice was homogenized separately to both seven and two groups, and the
two homogenized assembly rows were modeled next to each other. In addition to eigenval-
ues, core absorption and leakage (from the left side of the problem) were calculated. All
three values are shown in Table 6.10. With the exception of the reference case, eigenvalue

errors are reported in pcm, and absorption and leakage errors are given as relative percent

CITOrS.

Table 6.10 Two Assembly

k Absorption Leakage
Reference 1.19872 0.809933 -0.0243002
G -31 0.098279734  -2.378992765
2G -361 0.022717929  9.585517815
2G Diffusion 156 -0.034817695 5.520530695

2G SP, 180 -0.035928898

5.322178418
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As before, we see an improvement in eigenvalue accuracy when the scaling factor is
included. However, due to the relatively small size of the problem, the improvement is less
significant. We also note that the SP, scaling factor yields a less accurate eigenvalue than
the diffusion scaling factor. In each case, the total absorption was calculated with minimal
error. However, the scaling factor clearly helps the two-group solution more accurately

capture the leakage from the core.

6.3 Summary

In this chapter, the scaling factor formulations derived in Chapter 5 were numerically tested
using two multigroup cross section libraries. When the “continuous energy” library was
coarse, the SP,-based scaling factor, defined in Eq. (5.60), wass less accurate than the
diffusion-based scaling factor, defined in Eq. (5.55). This was generally not the case for
the fine-group cross section library. However, even with 56 energy groups, the SP>-based
scaling factor yielded inconsistent results.

The diffusion-based scaling factor emerges as a clear favorite when one considers the
additional computational burden in calculating the SP,-based pg, which in practice leads

to longer run times per iteration and slower convergence.
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CHAPTER 7

Asymptotic Analysis of the Hypothesized 1-D

Homogenized, Multigroup SP, Equation

In this chapter, an asymptotic analysis is applied to a hypothesized system of 1-D, multi-
group, homogenized SP, equations. We again define the dimensionless ratio e = 1/N <« 1,
where N is the number of homogenized pins or assemblies in the system. The solution to
the hypothesized equation is expanded in powers of €. As in Chapter 3, these equations
are solved sequentially, from €” to €*. The solvability conditions for € and €* are used
to generate a 1-D, monoenergetic SP, equation. We define the multigroup diffusion co-
efficients in our hypothesized SP, equation by equating this monoenergetic SP; equation
with the one derived from the continuous energy lattice-transport equation in Chapter 3.
There are an infinite number of ways to define the multigroup diffusion coefficients, and
we choose a few logical definitions to test in Chapter 8. Each definition is chosen such that
the hypothesized multigroup SP, equation has the same asymptotic limit as the continuous

energy transport equation.
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7.1 The Hypothesized Multigroup SP, Equation

We begin by hypothesizing the 1-D, homogenized, multigroup simplified P; eigenvalue

equation:
d* = — G ¢
-5 [Do,g¢g (x)+ D2,g(2z,g¢g (x)— le 2o oghy (X) — /L\_/g Z:l VEf e (X) )]
g/: g':
_ G G
+E0600 (0= ) Togogty () + A0, ) VErgdy (). (7.1)

g’=1 g/=1

where
1 .

A= K 1 —p = eigenvalue,

and

¢4 (x) = multigroup eigenfunction, for £ = [E,, E,_1].

The multigroup cross sections, as in Egs. (5.9), are homogenized with the scalar flux of

the lattice solution, F(x, E):

h Eq 1
f f 2(x,E)Fo(x,E)dEdx
= Jo JE

L8~ h Eg—l
f f Fo(x,E)dEdx
0 JE,

) (7.2a)

h (Eei (Eg_
f f f Y0(x,E" > E)Fo(x,E")dE'dEdx
0 JE, .

7 By
f f Fo(x,E")dE'dx
0 o

, (7.2b)

5,8'—g =
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VIS
f f vir(x,E)Fo(x,E)dEdx
— 0 JE,

Vifo = T E
f f Fo(x,E)dEdx
0 JE,

, (7.2¢)

and

h Eq 1 o
f (f )((x,E)dE](f vZf(x,E’)Fo(x,E’)dE’)dx
0 \JE, 0

X = Py . (7.2d)
f f vif(x,E")Fo(x,E")dE dx
0 Jo

Here h is the width of a single cell in the lattice, and [E,, E,_1] are the energy bounds of
group g. Bo,g and Bz,g are unknown group constants, to-be-determined.

While Egs. (7.1) are hypothesized, if we set Bo,g = Ez,g = 0 and use the homogenized
cross sections defined in Egs. (7.2), then Eqgs. (7.1) are satisfied by the exact infinite-
medium eigenfunction and eigenvalue. Furthermore, if we set Bz,g =0 in Egs. (7.1), we

arrive at the result previously obtained by Trahan [15], with

Z?”:l F;,g”/\_/ g’ Zg'=1 V_Zf,g’FO,g’
B Fy B (E)AE)(Jy vEs (x.E) Fo (x,E)) dx
20 Jo [ iy opt E) fy Cxpts E) dpud Edlx
X

—
F O,gF 0.g

Do’g =

(7.3)

This definition of 50,g is not unique; other definitions exist that satisfy the asymp-
totic condition derived by Trahan. Nonetheless, Eq. (7.3) is more intuitive than other
asymptotically-consistent definitions, and consistently yields more accurate numerical re-
sults than conventional homogenized diffusion coefficients [15].

In this thesis we use the same definition for Bo,g [Eq. (7.3)] as Trahan. In doing so,
the only undetermined constants remaining in Eq. (7.1) are Eg,g. In order to determine a
condition that Bz,g should satisfy, we employ an asymptotic analysis. We then propose

several definitions of Bz,g that satisfy this condition. These definitions are numerically
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tested and compared in Chapter 8.

7.2 Asymptotic Analysis

We perform the same asymptotic scaling of the spatial variable as in Chapters 3 and 5:

Pg(x) = Dg(2) s (7.4a)
where
7=€x, (7.4b)
and
0 0
chpg (x) = ea—zﬂbg (@) . (7.4c)

Because Eq. (7.1) is homogenized, the fast variable y does not appear.

With this scaling, we expand ®, and A in €:

Dy (2) = g g (2) + €D g (2) + €Dy g (2) + -+, (7.5a)

A=A+ €. (7.5b)
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Introducing Egs. (7.4) and (7.5)) into Eq. (7.1), we obtain:

d* [—
—62@ [Do,g[(l)o,g )+ 62(D2’g )+ 64(D4’g ) +-- ]

+1_)2,g(§,,g (0,4 () + D0 () + €Dy g (2) 4]

G
- Z Zs,g’—>g [(DO,g’ (2) + 62(D2,g’ (2) + E4(I)4,g’ (@) +-- ]
g'=1
G
/10+6 /12 Z ‘DOg(Z)+E Drg (2) + € Dy (2)+ - ])]

2[R0 (2) + €D g (1) + €Dy g (2) + |

D'M?Q

sg—g| Doy (D) +EPr g () + €MDy g )+ ] (7.6)

G
_(/l()+62/12)_g2_f [(DOg (Z)+6 CD2g (Z)+E CD4g @)+ ]

We now equate the coefficients of the powers of e:

GOZ
Le®pg(z) =0; (7.7a)
62:
G . . d2
Ly®24 () = 1T, ), VE 1 Do )+ Doy P04 (2
g'=1
2 — — —
+_2 D2,g(2t,g(b0,g (2) - Z z:s,g’—m;(I)O,g’ () (7.70)
g'=1
G —
- /l())?g Z VZf,gf CDO,g’ (2) )] >
g'=l
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e" forn > 4:

G 2

_ — —  d
Le®,5(2) = 0¥y ) VE¢ Pu- g (2)+Dog 22 2D
§'=1
21 —
+E D2,g(2t,gq)n—2,g (2) - Z Lsg'—g P24 (2)
g'=1

G
— /10/\_/g Z VZf,g/ (Dn_z’gr (9] )] (7.7¢)
§'=1

d2
B 24 2[D28Xg Z"ng’q)n 4. (Z)}
g'=1

Here L, is the homogenized, infinite-lattice SP, operator (which, coincidentally, is identical

to the homogenized, infinite-lattice diffusion operator):

G
Le®, (1) = Ty 0@ ()= ) Tygrg @y () =AYy VEf Py (2). (7.8)
g'=1 g'=l1

We now solve Egs. (7.7) sequentially, beginning with Eq. (7.7a). Noting that Eq. (7.7a)
is simply the neutron balance equation for an infinite homogenized lattice, it is clear that the
solution to this equation will be the cell-integrated multigroup lattice function multiplied

by an arbitrary function of z:

(I)O,g (2) = FO,gAO (), (7.9)
where
— h L1
Fog= f f Fo(y,E)dEdy, (7.10)
0 JE,
and
LyFog=0. (7.11)
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We now define the adjoint of Eq. (7.8):

G G
L0} (2) = 2,05 () = ) Tygag @l ()= A0vEg Y X (D), (7.12)
g1:1 glzl

and its eigenfunction I?S’g:
LyFg,=0. (7.13)
Unlike Fo,g, fg’g has no direct relation to Fj(y,E), i.e.:
— h Eg 1
Fo,g?éf f F(y,E)dEdy. (7.14)
0 JE,

For Eq. (7.7b) to have a solution, its solvability condition must be met. The solv-
ability condition for the multigroup SP; equation is obtained by multiplying both sides of

Eq. (7.7b) by 17:;,5, and summing over all energy groups:

G G G 2
—k — _ — — d
D Fogle®rg@= ) Fo’g{/lz)(g D Vi @0y (2)+ Do g5 Pog (2) (7.15)
dz
g=1 g=1 g'=1
21, G _ G e
+ 2 | Pe(Frs s @ D TPy ()= Ty D V0 Doy (2) )]} ,
g'=1 g=l1

By the definition of Lg, L, and 17375,, the left side of Eq. (7.15) is zero, implying the right

side must also be zero:

G G G
OZZ_;g(/lngZVng/(DOg (z)) Z (Bogd 2q>0g(z)) (7.16)

g=1 g'=1

G . d2 . - B
+ g; FO’g(@[DZ,g(Z[,gq}O,g (Z) - g’ZZI zs’g/_)gq)o’g/ (Z) (717)
G —_—
— /l())?g Z VZf’g/(I)()’g/ (Z) ):|) X
g'=1
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Eq. (7.16) is the solvability condition for ®; .. Substituting into this Eq. (7.9), we obtain:

G G G 2
. — - = — \d
0= /12( g; F ,g)(g)( Z sz,g’ FO,g)AO (Z) + (Z FO,gDO,gFO,g)EAO (Z)

’

g'=1 g=1
G

G
e [— = _— _ _
+ § F o,g(DZ,g(Zt,gF 0.8~ E Xsg—glog
g=1 g'=1

G L d2
- ﬂo)?g Z vireFog )) (d_ZZAO (Z))

g'=l1

G G
- AZ(Z F*’g)?g)( Z sz,g’FO,g)AO (2) +

G . _\p
(ZFO,gDO,gFO,g)d ZAO (Z)

G _ _ 2

+Z o,g(Dz,ngF o,g)(d—zon (z)) (7.18)

g:
& X d?
:/lz(z O,g)zg)(z vEs g Fo, g)AO(z)+(ZFO Do Fo, g)dzon(z).

g=1 g'=l1 g=1

Once rearranged, (Eq. (7.18) is similar to the 1-D diffusion equation obtained from the
continuous energy analysis, and identical to the result obtained in [25].

If we define the operator P:

G
Phg =TFog ) Fohe, (7.19)
g=1
and require:
G — —
Z FogFo,=1, (7.20)
g=1

then P is a projection operator, and we can subtract the product of fo,g and Eq. (7.18) from

Eq. (7.7b). The resulting expression automatically satisfies the solvability condition, and
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can be inverted to obtain a solution for @; g:

G
4 (2) = Foga () + L7 [( (=% D VEreFoe )]Ao @

’

g'=1
- d’A
) 1[(1 P)Dio,Fo, g] = (7.21)

d*Ay

=F0,4A2(2) + 12F 1 gAo (2) + FZ,gd—Zz :

Here,
—_— G —_— —_—
Fra=L;' [((1 =P)%e)( D 7 Fog )] , (7.220)
g'=l1

and

Fag = L;‘[(I—P)BO,gfo,g]. (7.22b)

The solvability condition for Eq. (7.7¢) (n = 4) is:

G

G
— — — d*0,,
O:ﬂz(ZFo’ng)(ZVZf’gl(Dlgl (Z)) (ZFOgDOg = 2g)

7

g=1 g'=1

G —k G —_— G —k — dz(DZg
= /12( Z FO,ng)( Z sz,g’q)Z,g’ (Z)) + (Z FO,gDO,g?) (7.23)

g'=l

M -
X
X
=
OQ\
=
S
%\
=~
Al
N—"

N—
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or, after rearranging,

G G
0= AZ(ZFS,g}g)( Z sz,g'FO’g)Az (Z)

g=1 g'=1
G . G L
+ A%(Z F ’gyg)( > vzf,g,Fl,g)Ao (2)
g=1 g'=1
G G 2
Y —  — \d%4,
+/12(Z O’ng)(ZVng/ Zg) a 3
g=1 g'=1
G 2 G 2
—_ —  — dA2 —_—% — — d AO
+(ZFOgD0gFOg)—2+/12(ZF gDOgFlg) =
po z po z
G 4 G
e 0 —% — —_ = d A()
+(ZF0g Ongg) : +(ZFOgD2g[DOgFOg]) o~
g=1 g=1
G G 2
e — — — d“Ay
+/12(ZF gng[Xngzfg,Fog]) .
g=1 g'=1
G G 2
— = d?A
—/12(2 OgDZng)(ZVng/FOg/ (Z)) d 5
g=1 g'=1
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We then use Eq. (7.18) to eliminate d AO and /12 from Eq. (7.24), which yields:

G

G
0= /12( Z 0.gX g)( Z V_Zf,g’TVO,g’)A2 @)
g=1

g'=l1
G — —
( Z sz,g'Fl,g’)
=1 d*Ay

(g,

. dz?
( Z sz,g"FO,g”)
g//=1
G — \d*Ao
Z g)(g szg’FZg d 2
g=1 =1 <
g
G 2 G 2

e d A, —* = = d AO
+ (; FO,gDo,gFO,g)d—Z2 + /12( ; Fo’gDo,gFl,g)d—Z2

— % — —
( Z FO,g”DO,g” F2,g”

S S ) d*Ag
_ ,12(2 Fo,g)?g)(zvzf,g,Fo,g,) . ) = (7.25)

=1 /=1 —k - —
8 8 E Fo,g,” DO,g”' F07g/ll
g’//zl

G
G G ( Z Fg,g"ﬁz,g” [Bo,g//ﬁo’g,,]) d2A

, e dz?
Z Fo’glnDO,g”’FO,g”/

g=1 g'=1

gl!l_l
G

d*Ag

+/12(Z OgDZg[Xg Vng'Fog )

g=1 g'=
G

d AO
g=1 g
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or

G
i (Z Fg’gﬁo’gfl’g) (7.26)

[

—_—k e —
S Fow Do)
gl//:]

G

| . P Do D P
G 3k —_ J—

( > Fo,g,,,DO,ngo,gm)
g7=1
G G

(ZFOgng[)(g Z szg’FOg’])

g'=1

G

(Z(:;F()gﬁzgxg)( Z Lo Fog )]Ao (Z)}-
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Rearranging, we have:

G G
= /lZ(ZFS,g)?g)( Z SreFog )A2 @)

LS 5
{(ZF DOgFOg)Az(Z)‘F/lzZFog[DOgF]g
o=1 g=1
G —_— —
+/\_/g( Z vzf’g/ang’)

7 .
( Z VZf’g/fl,g/)

g'=1
g’=1

—DogFog

Vng//FO gn)
gll_l

G
( D Fé,gu?g,)( > E f,g,,fo,g,,)

= = 8
~DogFag (7.27)

— J— —
( Z Fo’gluDO’g”’ F()’g/”)

/// 1

G
+ Dz,g;g( > Vi Fo,g,)

’ G _ G
( > Fo’g,)?g,)( > f,gnFO,gn)
=1

g'=1
= [ F 8 g"=1
—D2,g[D0,gF O,g]

G
. —
( Z Fg g Do,y Fo, g,,,)

gll/:1

G
- DZ,g/\_/g( Z sz,g’FO,g’)]AO () } .

g'=l1

We now multiply Eq. (7.27) by €, add the result to Eq. (7.18) (introducing additional €*

terms as needed), and divide through by:

G _ G
(Z 0,0X g)( Z VifeF O,g')

g=1 g'=1
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we obtain:

G 7 7 T
G T o= ¢ %..F
(Zg’:l FO,g’/\/g')(Zg”:l sz’g“FO,g//)

J— 50’ Fl,
+/122F0’g g 8

= G = G o i
8=l (Zglzl FO,g/Xg/)(Zguzlsz,g”FO,g")

G —% G — —
(Zgllzl Fo’g//)(g//)( Zg”'zl VZf’gNI Fo’gu/)

G J— J—
(Z sz,g’Fl,g’)

— R g/=1
— DO,gFO,g G G >
( Z Fogx g”)( Z VifgrF O,g’“)
g”:l gluzl
_ 5O,gFZ,g ngg)_(g
G o G = —
(ZFO,g’DO,g’FO,g’) (Zg’leO,g'Xg’)
g'=l1
D2 [Do’g Fog ] 52’8)? g d?
TS - D),
—_—f — — G ?* _ dZ
( Z FogDog F O,g’) (Zg’=1 0.g'X g’)
g'=1

where

D(2) = Ap(2) + €42 (2) .

(7.28)

(7.29)

The expression in Eq. (7.28) closely resembles the monoenergetic asymptotic SP, equa-
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tion obtained from the continuous-energy analysis (shown again below):

0= { BB [ 15 Qoo E) fi .1, E) dud Edy
B P 0.E) by 0LE) [ vE s (v, E") Fo (v, E')dE’dEdy
_ foh b f_ll ufy st E) fo (v, 10, E) dudEdy
foh N f_ll ufy 0.1, E) fi (v, 1, E) dud Edy
foh N f_ll pfy O, E) f5 (v, E) dud Edy
BB Fy 0 E) S 0. E) [ vEf (0. EY) Fo (. E')dE’dEdy
. BB Fa 0o B S 0, B) [VE (v, E') F3 (v, E') dE' dEdy
B Fy0.E) Sy 0,E) [ vEr (v, E") Fo (v, E")dE’dEdy
_ B Fo 0o BY 5 0, B) 57 vEf (v, E') Fa (y,E’)dE’dEdyX
B Fy0.E) Sy 0,E) [ vE s (v, E") Fo (v, E")dE’dEdy
B [ fr s B) £ 0ot E) dud Edy ]} # o
B Fy0.E) Sy 0,E) [ vEr (v, E7) Fo (v, ") dE’dEdy

072
+ D (7).

+A;

+

(7.30)
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If we equate Egs. (7.28) and (7.30), we obtain a condition for Ezgg:

DooF1,

G T = G ~N. T
Z“@"=1 F O,g’Xg’)( Zg”=1 el O,g”)

G —k
Z Fo,s
g=1 (

(Zg/ﬂ V_Ef,g’FZ,g’)

+)?g G —x G — —
(Zg//zl F()’gu)(gu )( Zg,,,zl sz,g”’FO,g”’)

G J—
(Z VZf,grfl’g/)

§'=1

G ., G o _ 2
(S S men]

g”z 1 glllz 1

—DogFog

l_)(),gfzgg N Bz’gyg

G
—% — P G =t
( Z FO,g’DO,g’FO,g') (Zg’=l FO,g’Xg’)

g'=l

Dy.¢| Do gFo, D> ¥
- o Paafod - 2k (7.31)

G
—_—k  — —_ G %
(Z FO,g’DO,g/FO,g') (Zg’zl FO,g’Xg’)

g'=l1 |
_ hf“’ fl [_ 1fy G E) fo (.1, E)
oo S foh b f_]lu’f(;“ O 1 E) iy 1 E)dw dE'dy
N wfy O, E) fs (0,1, E)
B F 6 ED S O ED [ VE R (67 B Fo (v E7) dE" dE" dy’
. Fy 0. E)3x O0.E) [ vEr (0, E) F3 (3, E") dE’
foh fooo Fo ", E”) %X()",E")LOO vEr(,E")Fo(y',E"”)dE" dE" dy’
F;0.E) Sy 0, E) [ vEr (0, E') F2 (v, E')dE’
_ f()h f()oo Fo O, E”) %X(Y"E")fooo vIf (Y, E") Fo(y,E")dE" dE" dy’
foh N f_ll WO WL ED A L Edu' dE dy'
B 07 BN b 07 B [ Ve (07 B Fo (3 E")AE™ dE" dy"”

dudEdy .
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Eq. (7.31) is the condition that we require Bz,g to satisfy.

To calculate Ez,g, we rewrite Eq. (7.31):

G 00
> (Ag+BeDay) = f C(E)dE
g=1 0
G Eq_1
:Zf C(E)dE, (7.32)
g=1"Es

where Ay, B, and C(E) are chosen such that Egs. (7.31) and (7.32) are equivalent. This
can be done in a number of ways; however, we restrict our discussion to the most logical

formulations.

7.3 Defining D,

If we require that Eq. (7.32) hold for each individual energy group g, we obtain a straight-

forward expression for D g:

_(fewa)-
Dyg=-— : (7.33)
Bg

Although there are numerous ways to define Ez,g, we consider only two in this work.
Both expressions for Bz,g are based on Eq. (7.33), but differ in their definition of the func-
tion C (E).

The first definition is the most logical:

(" eV @aE)-a

=
Dz’g =

: (7.34a)
D
Bg
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where

_ Do F
1 * 0.g" 1.g
AEz '= Fog
G T = G oy Fal
(Zg’=1 FO,g’Xg')(Zg"zl VZf’g//FO,g//)
(Zgj:l Ef,g’FZ,g’)
+Xg
G = = G RS Fn
(Zg,,:] Fo’g//)(g//)(zg,,,:] VZf,gm Fo’gu/)
G — —
( Z VIfgF l,g’)
J— — g/zl
~DogFog— _ - (7.34b)
( Z Fo’gu/\_/g//)( Z Vz.f’g///FO’g’/’)
gl/zl g///zl
_ 5O,gFZ,g
G _ . . b
( D FoyDog Fo,g,)
g'=1 |
— /? 50, f(), )?
B = F,, $ -— [DosFos] g . (1340)
G T = B G T =
(ngzl FO’g/Xg/) (ZFO,g/DO’g,Fng,) (Zg’zl FO,g/Xg/)
L g'=1 |
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and

h 1
C(l)(E):f f
0 -1

~ wfy O E) fo (v, 1, E)
foh N f_ll WO W ED AW Edp dE'dy’
N ufy O E) f5 (v, 1, E)
SO0 ED A 0 BN [ VEF (7 E7) Fo (v E7) dE" dE"dy
. Fy0.E) Sy 0LE) [[7vEp (0, E) F3 (v, E')dE’
BRSO B S 07 B [ Ve (7 B Fo (v E")dE" dE" dy
B Fy0E)3x O,E) [y vEZr (v, E") F2 (y,E")dE’
foh I Fa O EN A 0 E) [ VvEp (67 E") Fo (v, E”)dE" dE” dy’
foh I f_ll WO W EN A W Edu' dE dy'
B [ Fy o B Sy o B [ vs, 0, ) Fo (v, B dE™dEY dy”

(7.34d)

dudy.

The second definition is similar to the first, but with an alternate definition of the energy-

dependent function C (E):

Eg-1 ~(2) e
_(2)_(f CO (E)E) - A

Eg
2,8 Béz) P (7353)
where
(2) _ 4
A=Ay, (7.35b)
BY = BY, (7.35¢)
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and

h 1 * ,E ’ ,E
C(Z) (E) — f f [_ — llf() (ynu )f6 (y M ) (735(1)
0 -1 j(; j(‘) L]'ulfék (y/’ul’E/)fl (y/,,u/’E/)dﬂ/dE,dy,

. wfy O E) fs (v, E) dud Edy
h oo . 00
j(; j(‘) Fo(y/,E/)%X(yl’E/)j(; VZf()/',E”)F()(y',E”)dE”dE/dyl
. vEr (0, E)F3(.E) [1 Fy (v, E") S (v, E")dE’
f()h f()oo FS ', E") %X(y/’Eu)fooo VZf(y',E”/)F() (', E")dE" dE" dy’
vEr (0. EYF2 (. E) [) Fy(v.E") 5x (v, E")dE’
B h 0 * / 144 / ’” 0 / 1244 / 1244 1444 4 4
b o FoOE3x (7. E”) [ VEr (v E") Fo (', E”")dE" dE" dy
h oo rl «
J(') j(') f_llu,fo (yl,ll,,El)fl (y',,u’,E’)dy’dE’dy’
h 0 * 1/ 144 44 ’” 0 1/ 1444 44 1244 1444 ’” 144
I |5 Fe O BN A L ET) [ VEF (L E) Fo (v ") dE" dE" dy

dudy.

The two Bz,g expressions presented in this chapter are very similar in form. However,
the numerical results presented in Chapter 8 will demonstrate that the subtle differences

between them have a significant effect on the multigroup SP; solution.
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CHAPTER 8

Asymptotic Analysis of the Hypothesized 1-D
Homogenized, Multigroup SP, Equation —

Numerical Results

In this chapter, we present numerical results for the hypothesized homogenized, multi-
group, 1-D SP, equation and asymptotic diffusion coefficients defined in Chapter 7.

Three sets of multigroup cross sections were used in our simulations. The first took
a 56-group library, obtained from the MPACT code [31] with a homogeneous mixture of
UO; and light water, and group-collapsed down to two energy groups. The second and
third cross section sets are taken from the seven C5G7 reactor benchmark [30], for both
UO; and 4.3% MOX fuel.

The results are generally inconsistent. When the 56-group library (collapsed to two
groups) is used, each asymptotic diffusion coefficient set is outperformed by the standard

diffusion coefficient set. However, for the C5G7 problems, there is no clear trend.

8.1 56-Group Library

The 56-group library was generated using the MPACT code [31] with a homogeneous
mixture of UO, fuel and light water (borated) moderator, as described in Chapter 6. Num-

ber densities for the fine group library were obtained from the VERA benchmark [32] for
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3.1% enriched fuel, 0.743 g/cc light water moderator, and 1300 ppm boron, then volume
weighted to obtain the number densities shown in Table 6.1.

Each of the “continuous energy” (56-group) and multigroup (2-group) lattice func-
tions and cross sections were calculated with a fine-mesh, 1-D S3; code, and input into
Egs. (7.34) and (7.35) to calculate Bz,g. The 56-group library was used in the fine-mesh,

1-D Sz, code to generate reference solutions.

8.1.1 Results

Similar to the results presented in Chapter 6, we obtained two-group cross sections and dif-
fusion coefficients from an infinite homogeneous medium calculation. These values were
then used in a series of homogeneous medium simulations for finite systems of varying
widths L. Each simulation was performed with a 1-D, SP, and diffusion code with vacuum
boundary conditions. The 56-group Sy results were used as the reference solution, with the

eigenvalue error is reported in percent mille (pcm):

Akerr = (kef £,56G — Ke f £ Few Group) x 10°(pem) . (8.1)

Table 8.1 compares the eigenvalue error for standard multigroup diffusion and SP; to
the asymptotically defined multigroup diffusion and SP, equations. The two sets of asymp-
totic SP; results correspond to the definitions of Bz,g shown in Egs. (7.34) and (7.35),
respectively. It is disheartening to see that, aside from L = 12 cm case, the standard defi-
nitions of Dy, and D; , are more accurate than the asymptotic definitions. The L =12 cm
case, as seen in previous chapters, is an outlier. For most problem lengths L, 5(22,2, appears
to be the best of the asymptotic methods. However, it results in “inconsistent” errors, that
do not change in a predictable manner as the problem size increases (unlike the asymptotic

o —
diffusion and D(z,; cases).
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Table 8.1 Multigroup Eigenvalue Results

Length 56 Group Standard Standard Asymptotic Asymptotic Asymptotic

(cm) Sy Reference Diffusion SP, Diffusion SP;, (1) SP, (2)
k-eff Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm)

12 0.426928 -622.6 -2574.4 -536.6 -294.1 -4257.3
24 0.746386 901.9 272 958.1 1223 18.7
36 0.87009 582 3554 615.8 756.6 327.1
48 0.926879 335.7 237.6 357.5 435.1 249.6
72 0.974806 130.4 103.5 141.3 171.2 119.5
96 0.993722 63.8 54.2 70.3 85.3 65.1
120 1.003005 37.3 34.1 41.6 51 41.4

For the 56-group cases presented here, the performance of the asymptotic multigroup
SP; equation is mixed at best. We will see similar behavior the C5G6 results presented in

section 8.2.

8.2 C5G7 Library

For the C5G7 cases, seven-group cross sections were taken directly from the benchmark
document [30]. In the C5G7 benchmark specification, the cladding and fuel are spatially
homogenized. The fuel and moderator for each pin were then spatially homogenized using
volume weighting. This was performed with the idea that if the method proved unsuccess-
ful at modeling a simple homogeneous medium, then it would require additional modifica-
tion before application to more realistic problems. Only two fuel pin types were used, the
UO; pin and 4.3% MOX pin.

For both cases, two sets of cross sections were obtained, a seven-group set and a two-

group set. For each cross section set, diffusion coefficients were calculated in both the
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standard way and using the asymptotic definitions from Chapter 7 (including both 52,g

formulations).

8.2.1 UO;

Reference solutions were generated using a 1-D multigroup Sy code with the seven-group
C5GT7 cross sections. Eigenvalue errors for the seven-group cross sections, with problem
lengths ranging from 5 to 40 cm, are presented (in pcm) in Table 8.2. Eigenvalue errors for

the two-group cross sections are presented in Table 8.3.

Table 8.2 Seven-Group UO;

Length 56 Group Standard Standard Asymptotic Asymptotic Asymptotic
(cm) Sy Reference Diffusion SP, Diffusion SP;, (1) SP, (2)

k-eff Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm)

Standard Asymptotic
10 0.336736 3513.5 257.4 3513.5 -36.1 -8584.1
20 0.758444 2218 39.4 2218 1321.9 -2445.9
40 1.10299 588.4 -11.1 588.4 632.5 -217.9
80 1.259431 90.5 -2.1 90.5 132.4 15.3

For seven energy groups, standard SP, is clearly the most accurate. The standard and
asymptotic diffusion results are identical, because the asymptotic diffusion coefficient re-
duces to the standard diffusion definition for a homogeneous medium. For larger sys-
tems (L =40 or L = 80), 5(22,; yields better results than both 5(21,; and diffusion. How-
ever, for smaller problems (L = 10 or L = 20), 5;1,2, is superior. Neither of the asymptotic
SP, definitions result in “consistent” error behavior, i.e. one that behaves semi-predictably

as the system width increases.
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Table 8.3 Two-Group UO,

Length 56 Group Standard Asymptotic Asymptotic Asymptotic

(cm) S~ Reference Diffusion SP, Diffusion SP;, (1) SP, (2)
k-eff Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm)

Asymptotic

10 0.336736 -5709.1 -3380.6 -6217.3 -8030.5

20 0.758444 -1517.6 -345.6 -1774.2 -2001.5

40 1.10299 125.1 364.8 68.3 124.7

80 1.259431 85.4 108.4 78.3 98.2

. —2 —
For two energy groups, the results are even less consistent. D(2NZ, outperforms D(z,; for all

problem sizes considered, while asymptotic diffusion proves superior to asymptotic SP; for

smaller systems. This behavior is the opposite of what we would expect. Asymptotic

diffusion is generally more accurate than standard diffusion, but not always, and standard

SP; varies in accuracy.

8.2.2 4.3% MOX

For the MOX homogeneous medium case, reference solutions were once again generated

using a 1-D multigroup Sy code with the seven group cross sections. Eigenvalue errors for

the seven-group cross sections, with a problem sizes ranging from 5 to 40 cm, are presented

(in pcm) in Table 8.4, while eigenvalue errors for the two-group cross sections are presented

in Table 8.5.
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Table 8.4 Seven-Group MOX 4.3%

Length 56 Group Standard Standard Asymptotic Asymptotic Asymptotic
(cm) Sy Reference Diffusion SP, Diffusion SP;, (1) SP, (2)
k-eff Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm)
Standard Asymptotic
10 0.322132 3188.7 246.5 3188.7 -99.4 -5912.2
20 0.67115 1888.2 50.8 1888.2 890.4 -1582.6
40 0.947516 490.6 -3 490.6 417 -132.8
80 1.072275 75.1 -0.5 75.1 87.3 12.2

For this case, standard SP; is clearly more accurate than the other methods. The two

.. - . . . —(1) .
definitions of D, , once more wavered in their accuracy, though it appears that D(z’ ; is more

g =2 .
accurate for smaller problems, while D(Zi, is more accurate for larger problems.

Table 8.5 Two-Group MOX 4.3%

Length 56 Group Standard Standard Asymptotic Asymptotic Asymptotic

(cm) S~ Reference Diffusion SP, Diffusion SP;, (1) SP, (2)
k-eff Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm) Ak (pcm)

Standard Asymptotic

10 0.322132 -2891.4  -5410.3 -2854.5 - -5906.3

20 0.67115 91.1 -1295.6 -143.1 - -1282.4

40 0.947516 408.5 152.7 346.6 - 162.8

80 1.072275 124.1 0 96.8 - 84.9

— . . :
For the two-group case, use of the Dé’; formulation caused the simulation to become

—1 : .
unstable (D(Z,i was negative). Once more, standard SP, was the most consistently accu-

rate method; both standard and asymptotic diffusion were more accurate than multigroup

SP, with 5;2’; for small problems and less accurate for larger problems.
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8.3 Discussion

In this chapter, the asymptotic, multigroup SP; coefficients defined in Chapter 7 were nu-
merically tested for a set of homogeneous medium problems. The multigroup SP; equa-
tion with asymptotically-defined coefficients proved inconsistent in its accuracy, and was
frequently outperformed by both standard SP, and even diffusion. [The most likely expla-
nation for these inconsistencies is our definition of l_)z,g. Eq. (7.31) does not lend itself to
an unambiguous definition of Bz,g.] Furthermore, we used the definition of Bo,g chosen by
Trahan. While this proved accurate for asymptotic diffusion test cases, it may not be the
best choice for a multigroup SP; equation. Future work is suggested to try an obtain a less
ambiguous, more accurate definition for Bz,g.

Because the method performed poorly for homogeneous medium problems, we were
not able to investigate discontinuity factors or flux reconstruction, two important factors in

any future asymptotic, multigroup SP, method.
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CHAPTER 9

Conclusions and Future Work

In this chapter, we summarize our theoretical derivations and numerical results and discuss

potential future work.

9.1 Summary of the Asymptotic, Homogenized, Monoen-
ergetic SP, Equation

In Chapter 3, we considered a continuous energy, spatially periodic, 1-D system that is opti-
cally thick. By applying an asymptotic analysis to the system, we obtained a 1-D, monoen-
ergetic, homogenized SP, equation. In the analysis, the lattice-geometry continuous energy
neutron transport equation was subjected to an asymptotic expansion. The expansion in-
volved a small parameter €, which is inversely proportional to the thickness of the system.
Our analysis was comparable to that performed by Trahan [25], but carried to higher order.
While Trahan’s result (a monoenergetic, homogenized diffusion equation) had O(€?) error,
our work extended the analysis to O(e*) error. Additionally, we obtained a higher order
flux reconstruction formula (for ¢ (x,u, E)), with two more terms than Trahan’s formula
and three more terms than standard flux reconstruction. In a monoenergetic, homogeneous
medium, these results reduce to the standard SP, equation and the SP; prescription for the

angular flux.

In Chapter 4, we numerically evaluated the 1-D, monoenergetic, homogenized SP, equation
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derived in Chapter 3. Reference solutions for a set of 1-D, monoenergetic transport prob-
lems were generated using a 1-D, discrete ordinates code with diamond difference spatial
discretization. They were then solved with the homogenized SP, equation developed in
Chapter 3, as well as with the asymptotic homogenized diffusion equation developed by
Trahan [25], standard SP», and standard diffusion. The asymptotic, homogenized SP, equation
showed a clear improvement in accuracy over the other three methods, particularly for
small problems. This suggests that the asymptotic, homogenized SP, equation may im-
prove the solution’s accuracy in calculations for SMRs and other reactors with steep flux
gradients. Furthermore, the additional flux reconstruction terms considerably improve the
reconstructed flux in the fuel pins.

While the asymptotic derivation in Chapter 3 required the assumption that e = 1/N < 1,
where N is the number of spatial cells, our numerical results showed that the asymptotic,
homogenized SP, equations are still valid for larger values of €. For problems with € very
small, we found standard homogenized diffusion theory to be accurate, asymptotic homog-
enized diffusion to be more accurate, and asymptotic homogenized SP; to be even more
accurate. As € increased (i.e. the optical width of the system decreased), all three methods
degraded in accuracy; however, asymptotic homogenized SP, remained the most accurate
of the three. Thus, there are “larger” values of € in which standard diffusion theory pro-

duced unacceptable results, but asymptotic SP, results remained acceptable.

9.2 Summary of the Asymptotic Scaling Factor

In Chapter 5, we considered the problem of accurately defining cross sections for multi-
group transport problems. The standard multigroup cross section generation procedure in-
volved flux-weighting the cross sections over each energy group to preserve the multigroup
infinite medium eigenfunction and eigenvalue. By performing an asymptotic analysis on

both a continuous-energy and multigroup 1-D transport problem, we were able to apply a
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simple modification to the standard multigroup cross sections to improve their accuracy.
This modification involved multiplying the cross sections by a constant p that was chosen
to preserve the asymptotic limit of the continuous-energy transport equation. Two different
definitions of pg were chosen - one that preserved the asymptotic diffusion limit of the
continuous-energy transport equation, and one that preserved the asymptotic SP, limit of
the continuous-energy transport equation.

In Chapter 6, we numerically evaluated the modified cross sections for several 1-D
test problems. A fine-group structure was used for reference solutions (in the absence of
a continuous energy cross section library), and group-collapsed cross section sets were
calculated both with and without the scaling factor. We showed that for each case the
scaling factor improved the accuracy of the few-group calculation. The difference between

the diffusion- and SP,- based scaling factors was small, particularly with large problems.

9.3 Summary of the Asymptotic, Homogenized, Multigroup
SP, Equation

In Chapter 7, we applied an asymptotic analysis to a hypothesized, spatially homogenized,
multigroup 1-D SP; equation. The hypothesized equation used standard homogenized
cross section definitions while leaving the diffusion coefficients unspecified. An asymp-
totic analysis, similar to the one shown in Chapter 3, was performed, and the diffusion
coefficients were chosen such that the hypothesized multigroup SP, equation has the same
asymptotic limit as the continuous-energy lattice transport equation. The analysis was sim-
ilar to the one performed by Trahan [25], and the same multigroup diffusion coefficient
was chosen. While there were a number of ways to define the second multigroup diffusion
coefficient (52,8), two definitions were chosen for testing in Chapter 8.

In Chapter 8, the SP, equation hypothesized in Chapter 7 was tested for a series of ho-

mogeneous medium problem. The multigroup SP, equations with asymptotically-defined
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coefficients proved inconsistent in their accuracy, and were frequently outperformed by
both standard SP, and diffusion. The most likely explanation for these inconsistencies was
the definition of Ez,g. Eq. (7.31) does not lend itself to an unambiguous definition of Ez,g.
Furthermore, with multigroup cross sections, one is faced with the problem of a range of
optical thicknesses. Even if the asymptotic analysis is valid for the thermal energy groups,
it is possible that the large mean free paths seen in fast energy ranges violates the assump-

tions of the asymptotic analysis.

9.4 Future Work

To conclude this thesis, we discuss potential future work related to the three topics of this
thesis.

In order to improve their applicability to real-life problems, all three methods can (and
should) be extended to multiple spatial dimensions. While the 1-D results are an important
stepping-stone, most practical applications (i.e. real reactors) require 3-D results. The one
exception is the 2-D/1-D method, in which transport calculations are performed on dis-
crete two-dimensional “slices” of the core, while lower-order one-dimensional calculations
(typically diffusion) are performed in the axial direction. The two calculations are then
linked via the transverse leakage terms. The 2-D/1-D method provides a computationally
inexpensive alternative to full 3-D transport calculations, and has been used successfully in
many modern transport codes [31].

Asymptotic SP, could potentially replace diffusion in the 2-D/1-D method. Asymp-
totic diffusion coefficients (Dy and D,) could be pre-calculated for every pin or assembly
for use in the axial calculation. Because one is only interested in 1-D diffusion (in the
axial direction), it would not be necessary to calculate more complicated diffusion tensors.
Furthermore, the reconstructed flux formulas could be used to provide a shape function for

adding the axial leakage source to the 2-D problem.
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The scaling factors described in Chapters 5 and 6 have considerable potential in im-
proving multigroup transport problems. If these are limited to asymptotic diffusion-based
scaling factors, extension to multiple dimensions will be relatively simple. Furthermore,
we focused on preserving the continuous-energy homogenized transport equation. Preserv-
ing the continuous-energy lattice transport equation would be comparable and simple to
implement. Due to the lack of improvement from asymptotic diffusion-based to asymp-
totic SP,-based scaling factors, we suggest using asymptotic diffusion scaling factors until
a clear need for higher-order scaling arrives.

Considerable work will be required to make the hypothesized homogenized, multigroup
SP; equation defined in Chapter 7 viable. More accurate definitions for the diffusion co-
efficients are required. Once these have been established, discontinuity factors and flux
reconstruction must also be investigated.

Finally, we note that much of this work may be considered a higher-order extension
of Trahan’s work [25]. This implies (correctly) that our work may also be extended to
even higher-order, resulting in a simplified Py equation (with N> 2). However, due to the
increasing number of lattice functions, this may be inadvisable, particularly when consider-
ing two or three spatial dimensions. Many of the lattice functions are space-dependent, and
increase in number with spatial dimensions. As the number of lattice functions increases,
any increase in accuracy may no longer be worth the corresponding increases in calculation

time.
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APPENDIX A

FREDHOLM ALTERNATIVE THEOREM
(FAT)

A.1 Properties of the FAT

The Fredholm Alternative Theorem (FAT) [29] is useful for determining the existence of a
solution to an inhomogeneous equation.

Assume we have an operator M and an adjoint operator M*, with

Mh(x,u,E)=0, (A.la)
M*h* (x,u, E)=0, (A.1b)
and inner product defined by
h ool
(f.8) = f f f [, E)g(x,u, E)dudEdx . (A.2)
0 Jo -1

where £ is the width of a cell. The FAT says that if non-trivial solutions to Egs. (A.la) and

(A.1b) exist, then the following is true.
1. Mh=0and M*h* =0 have the same number of linearly independent solutions.

2. Mh = g has a particular solution if and only if g is orthogonal to all the solutions of
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M*h* =0,1i.e. (g,h*)=0.
3. The general solution to Mh = g is given by:

N
h= hparticular + Z anhhomogeneous,n s (A3)

n=1

where N is the number of non-trivial linearly independent solutions to the homoge-

neous equation Mh = 0 and a; are arbitrary constants.

In this work, M = L and M™* = L* are the infinite-lattice and adjoint infinite-lattice opera-
tors, respectively, and the homogeneous solutions to Mh = 0 and M*h* = 0 are
h = fo(x,mu,E) and h* = f7 (x,mu,E). The second item from the FAT list provides the
solvability condition used in Chapters 3, 5, and 7. The third item provides the form of the

solutions to Egs. (3.9), (5.18) and (7.7).

A.2 Proof that 1, =0

In Chapter 3 and 35, the result from [25] was used to claim that 4 = 0. A proof for this
claim for the continuous-energy, lattice system described in Chapter 3 is presented here.

If we hypothesize that 4; # 0, then Eq. (3.7b) is
A= d+el +€, (A4)
and Eq. (3.9b) becomes

0
LY (y,z,u, E) = _”a_z% 0, z.u1,E)

9E 0 /4 1 7 ’ 4 ’
2 Y82 [Cr008) [ oG EYaaE. (A3
0 -1
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Substituting Eq. (3.19) into Eq. (A.5), we have

d
LY (y,z.u, E) = _“a_z(fo O, E)Ap (2))

JE) [ 1
X(yz )fo vZr (v, E) f (o0 E) Ao @)du'dE”

0
=—ufo(y. i, E) a—ZAo (2) (A.6)

7E « ’ 4 /
K2 [ 5 0B o E) Ao

+ A4

+ 4

where Fy is described by Eq. (3.37). By the FAT, LY, (y,z,u, E) = g(y,z,u, E) has a partic-

ular solution if and only if g is orthogonal to f (y, 4, ), or

0
(/5 0ot B8 0218, B9 ) =( fg 0ot B =1 00 Ao

x(,E)
2

0
== (/5 OB tfo 0ot E) | =A0 0 (A7)

’E © /7 ’ 4
X(yz ) fo V(0. E') Fo(y. E') Ao (2) dE

+ 4

fo 5,00 E) Fo . E) Ao (D dE

+ A

Because fo(y,u, E) and f (y,u, E) are symmetric in y and g,
(/5 0t ) ottfo 0ott B9 ) =0 (A8)
(see Appendix B), leaving us with

A1

JE) , ’ ,
X@z )fo VI (3 E")Fo(y.E") Ao R)dE' =0. (A.9)

The inner product (fé“ o, E), )@ fooo vIir(y,E") Fo(y, E’)) # 0 (again, see Appendix B).
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For Eq. (A.9) to be true, 4; must equal zero, or

A1 =0. (A.10)
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APPENDIX B

PROPERTIES OF L AND f,

B.1 Properties of L

The following analysis is performed for a monoenergetic medium. The same analysis can
be done for a energy-dependent system, with similar results.

The infinite-lattice operator L from Chapter 3 is defined by:

0
LY (y,z, 1) =ua—y‘1’ 0, +Z MY (y,z,1)

1 1
-3 =0+ 0) [ Fozd B.1)

and has the following properties:

1. L is independent of z. Proof: If ¥ (y,z,u) is a separable function of z, i.e.

YO,zm) = fO.uAz), (B.2)
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then Eq. (B.1) is

LY (y,z,1) =L(f (y,;) A (2))

=/~t(%(f(y,/~t)A(z))+2t(y)(f(y,u)A(Z))
1
_%(Es () +A0vEf () f_ U O.u)A @)y’
=(ua%f(y,u>)A<z>+(z,<y>f<y,m)A<z>
1
—(%(Zs(y)ﬁovﬁf(y)) [ S (y,u’)du’)A(z) (B.3)
J 2 a0+ 20 F )
y
1 1
-3 B0+ 0z0) [ SO A
“Lrom|ac.

It is clear that L acts only on y, i, and E, and is independent of z.

2. L is symmetry-preserving. Proof: If we have a symmetric function f, such that

f.u) = f(=y,—u), then

0 0
a_yf(_y’ _ﬂ) = _a_yf(y’ﬂ) > (B4)
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and

P
Lf(=y,—u) Zﬂa—yf =y, =) +Z:(y) f (=y,—1)
1 1
- E(ES )+ 0vEr () I A —u)dy’
0
——i( - a—yf(y,m)m ) F )
1 1
-5 =0+ ) [ Foua B.5)
P
:a_f(y’:u) + Z:l (Y)f(y’:u)
y
1 |
-3 =0+ ) [ Founa

=Lf(y,p) .
Likewise, if we have an antisymmetric function g, i.e. g(y,u) = —g(—y,—u), then

| |
6—yg(—y, —p) = a—yg(y,u) , (B.6)

and

|
Lg(=y,—u) =/x5g =y, =) +Z: () g (=y, —)
1 1
— S (E 0+ 0vZr») | g (- —u)dy’
2 -1
0
=HZ-8 =2 gl,w
y

1 1
+§(Es(y)+ﬁov2f(y)) f 1g(y,u')du’ (B.7)

0
= —(a—g(y,u)+2z Mgy,
y

1

1 ’ /
—E(ZS(y)MovZf(y))f_lg(y,u )dy )

=—-Lg(y,p) .
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Egs. (B.5) and (B.7) show that L is symmetry-preserving.

3. The solution to L fo = 0 is the infinite-medium lattice solution, and it is both a periodic

function of y and a symmetric function of y and u. Proof: If we rewrite

0
Lfo(y, 1) :“a_yfo 0+ 2 () fo (.0

1 1
3=+ 050) [ poudr=0. @

as

0
“a_yfo ) +Z: (v) fo (o 0)

1 1
= 5 (2002 0) [ o) (B.9)

then it is clear that Eq. (B.9) is the infinite-medium lattice equation with infinite-

lattice eigenvalue Ag.

If we take Eq. (B.8) and perform the substitution y =y + &, we have

0
Lfo(y+h,u) =,Ua—yf0 +hw+ZG+h) foy+hu) (B.10)

1 1
_E(Zs(y+h)+/l()1/2f(y+/’l))f]fo(y+h,ﬂ')d;1/ =0.

In Section 3.1, the cross sections in Eq. (B.8) were stated to be periodic,

2,0 =E@+h). (B.11)
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Substituting Eq. (B.11) into Eq. (B.10)), we have

0
Lfo(y+h,u) =ﬂa—yf0 O +h,w)+Z ) foy+h,u)

1 1
=5 (Es0)+ 0vEr ) f JoO+hp)d =0, (B.12)

which implies that fy is periodic, i.e. fo(y+h,w) = fo (y, ).

To see that fj is symmetric, we consider Lfo(—y,—u):

0
Lfo(=y,—p) =u a—yfo (=y, =) + 2 (y) fo (=y, =)

- %(Zs )+ AvEf () ﬁ 1 Jo(=y,—1)dy’ =0. (B.13)
Also in Section 3.1, the cross sections were declared to be symmetric, or
2 () =2 (). (B.14)
Substituting Eq. (B.14) into Eq. (B.13), we have

o
Lfo(=y,—u) :”a_yfo =y, =) +Z; (=) fo (=y,—1)

1 1
- 5(25 (=) + AovEs (=) f Jo (=y.—u")du" = 0. (B.15)

Performing the change of variable

y =-y, (B.16a)
0 0
—_— =, B.16b
oy o ( )
and
' =—u, (B.16¢)
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Eq. (B.15) becomes

9
Lfo(=y,—p) = —u’( - 0—y,fo O .u) ) +Z,07) o0 .1)

1 1

- E(zs 0) +AvEr () f_ o O ) dp”
d

=u’a—y,fo O ) +Z () fo ) (B.17)

1 1

-3 (200 02,07) [ 0wV

=Lfo(y'.1t'),

implying that fy is symmetric, such that fo(—=y, —w) = fo (v, 1).

. L has an adjoint, L*, with a solution to L* f* = 0 that is also a periodic and symmetric

function. Furthermore, f; (v,1) = fo (v, —0)-

Proof: The adjoint operator L* is

% a % £
LY (y,z,,u)=—u5‘1’ 0z +Z WY (v, 2, 1)

1 1
- 5 (Zs (y) + /lOVZf (y)> fl \P* (y’ Z’/J/)d:ul ’ (B18)

and

% (9 % %
Lfy ,p) = —M@fo 0, ) + 2 (¥) fy 00

1 1
—E(ZS(y)Movif(y))flfS Ou")dy’ =0. (B.19)

Periodicity and symmetry can be proven the same way they were proven for fy. To

prove that fo(y,u) = fy (v,—w), we begin with Eq. (B.8) and make the change of
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’

variable, u = —u’:

d
LfoG.p) =—u 5f0 O, =) +Z: ) fo (. —1)

-3 (E0+ vE-(y))flf( ) dyt
5 \&s 0V&f . oy, —H )au
=L"fo(y,—#') =0

=L fy 0v,10)

implying that fo (v, 1) = fi (v, —40).

(B.20)

5. The inner product has the property (Lg,h) = (g, L*h). Proof: If the inner product of

two functions g (y,u) and h(y,u) is defined as

h 1
(g,h)=f0 Ilg(y,ﬂ)h(y,ﬂ)dﬂdy,

then

h 1
(g,Lh) = fo f 1g(y,#)Lh(y,u)a’udy

h 1
=ffg(y,u)
0 -1
1 1

—E(Zs(y)MovZf(y)) I lh(y,ﬂ’)d//]dudy-

0
ﬂa—h(y,/ut)+2t W h(y,p)
y

By the chain rule,we have

h 1 0
f f Hg (v, 1) a—h(y,u) dudy
0 J-1 y

h 1 g 3
:fo [1ﬂ[a_y(g(y’“)h(y’ﬂ))—h(y,u)58&#)]@@
1
=fl'u(g(h’”)h(hn“)—g(O,,u)h(O,ﬂ))—
e a
f f /‘h(y,ﬂ)a—g(y,,u)d,udy,
0 -1 'y
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or, assuming g (0,u) = g(h,u) and h(0,u) = h(h,pu) ,

h 1 h 1
d o
f f pg (v, ) 7=h(y,p)dudy = - f f ph (y,p) =8 (v, p) dudy .
0 J-1 Oy 0 J-1 Ay

Eq. (B.22) can be rewritten as

h 1
(g,Lh) = f f gy,
0 -1
1

1
—E(Zs(Y)"'/lOVZf(Y)) f_ lh(y,ﬂ’)dﬂ’]dﬂdy

h 1
=ffh(y,u)
0 -1
1

1
—E(Zs(y)"'/lOsz(Y)) f_ lg(y,ﬂ’)dﬂ’]dﬂdy

0
ua—h(y,u)+2z WMh(y,w)
y

0
—ua—g(y,u) +Z (Mg, u
'y

h 1
- fo f lh(y,u)L”‘g(y,u)dudy

=(L"g,h).

B.2 Symmetry of f,

(B.24)

(B.25)

We have proven that L is symmetry-preserving, and that fj is symmetric. Now we examine

the symmetry of the higher order f; functions. Before doing this, we must several identities.

First, if L is symmetry-preserving, then the symmetry of f,, the solution to Lf, (y,u) =

g (y,u), must have the same as the symmetry of g.

Second, operating on any function by (I — P) also preserves symmetry. The result of

the operator P,

fO (y’,u)
foh f_ll O 1) fo o 1) du' dy’

h 1
Xj; fl Jo O ey, p)du'ay',

Pg(y,p) =
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is a constant times fo, and must be symmetric. The identity operator / is by definition
symmetry-preserving. An antisymmetric function plus or minus a symmetric function
yields a antisymmetric function, while a symmetric function plus or minus a symmetric
function equals a symmetric function. Hence, (I — P) is symmetry-preserving.

Third, integrating over all angles preserves symmetry. If g(y,u) is an antisymmetric

function, then

1
60)= [ gtrds
1
=Il(—g(—y,—u))dﬂ
.
= fl (-g(=yu))(=du)

—1
fl g(=y.u")ady’ (B.27)

1
—fl g(=y,p")dy’

-G(-y),

is an antisymmetric function. Similarly, if g is a symmetric function, then its integral

1
G(y)=f]g(w)dﬂ

=f_1g(—y,—ﬂ)dﬂ

= f] _lg(—y,u’)(—du’)

:—lfqgcwwﬁaf (B.28)
=f_1g(—y,ﬂ’)du’

=G(-y),

is a symmetric function. Integrating a function over angle is therefore symmetry-preserving.
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Next, we look at the multiplicative properties of symmetric and antisymmetric func-
tions.

If A(y,p) is the product of two symmetric functions f (y,u) and g (y,u), then

h(=y,—p) = f(=y,—u) g (=y,—u)
=fO.uwgly,u) (B.29)

=h(Q,u,

is also symmetric. Likewise, if & (y, ) is the product of two antisymmetric functions f (y, 1)

and g (y,u), then

h(=y, =) = f(=y,—) g (=y,—p)
=(-fO.w)(-gb.w) (B.30)
=hQ,W ,

is also symmetric. Finally, if 4 (y,u) is the product of an antisymmetric function f (y,u) and

a symmetric function g (y,u), then

h(=y,—p) = f(=y,—u) g (=y,—p)
=(=f.m)g (. 1) (B.31)

=-h (y’:u) ’

is antisymmetric.

We will now consider f] — fg:
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. f1: antisymmetric

Lfi(y,p0) = pfo (v, ) (B.32)
fo 1s symmetric, and y is antisymmetric. Therefore pfy and fi are antisymmetric.
. f>: symmetric

vZr(y)
2

Lf>(y.,)=(I-P) Fo(y) (B.33)

Jo is symmetric, and so its integral over angle Fy is also symmetric. vZy, like all
cross sections, is symmetric. Finally, because (I — P) is symmetry-preserving, f> is

symmetric.

. f3: symmetric

Lfs(y,p) == P)ufi (y,p) (B.34)

f1 is antisymmetric, so the product wf] is symmetric. Again, (I — P) preserves sym-
metry, and f3 is symmetric.

. fa: antisymmetric

VZf (y)
2

Lfa(y.p) = Fi(y) (B.35)
The angular integral of the antisymmetric f; is an antisymmetric function (if it is not

zero). vXy is symmetric, so 4 fz(y)F 1 (y) is antisymmetric. Hence, fi is antisymmetric.

. f5: antisymmetric

Lf3 (i) = (I = P)ufa(y.p) (B.36)

/> is symmetric, so the product wuf> is antisymmetric. Therefore, (I — P)uf; and fs

are antisymmetric.

. fe:antisymmetric

Lfs () == Pufs(y,p) (B.37)
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f3 is symmetric, so the product uf3 is antisymmetric. Therefore, (I — P)uf; and fq

are antisymmetric.
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