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ABSTRACT

Discrete Ordinates Methods for Transport Problems with Curved Spatial Grids

by

Changyuan Liu

Chair: Edward Larsen

The method of characteristics (MOC) has been favored for many recent whole core

transport codes; some current research codes are: the nTRACER code (Hyun et al.,

2014) from Seoul National University, the MPACT code (MPACT Team, 2013) from

the University of Michigan, and the Dragon code (Marleau et al., 2013) from École

Polytechnique de Montréal. However, it is well-known that whole core transport

with MOC is both computational expensive and requires significant storage. On the

other hand, discrete ordinates (SN) methods have been successfully applied to large

systems, as has been demonstrated by the computer code Attila (Lucas, 2005).

However, all previous discrete-ordinates methods implemented in available pro-

duction computer codes were formulated only for problems containing spatial cells

with planar boundaries. This creates geometric approximations and inefficiencies for

modeling any physical system with curved boundaries– the curved boundaries must

be approximated using a greatly many very fine spatial cells, each fine cell having a

planar boundary.

In this thesis, we derive, implement, and test 2-D discrete ordinates methods,

which are applicable for systems having curved interfaces between material regions,

xxii



and which treat these curved surfaces analytically. The key benefits of “these” dis-

crete ordinates methods on curved spatial grids over the MOC method include: (i) the

ability to use standard highly-optimized quadrature sets, (ii) a single user-specified

spatial grid, (iii) a simple extension to 3-D transport, and (iv) a small memory foot-

print for the computer.
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CHAPTER I

Introduction

Discrete ordinates methods are widely used for nuclear reactor simulations. This

chapter introduces the background of the discrete-ordinates problems considered in

this thesis and reviews the historical developments of relevant numerical methods.

The end of the chapter provides an overview of the remaining chapters of the thesis.

1.1 Background for Reactor Simulations

Neutron physics is a discipline of the study of interactions between neutrons and

atoms. When interacting with nuclei, neutrons can scatter, be captured, or cause the

nuclei to fission, producing several fast neutrons. (See Figure 1.1 for a depiction of

these possibilities.) Such interactions are described with mathematical equations, in

which the neutron distribution is expressed as a function of space, angle and energy.

We define the neutron density as N(~x, Ω̂, E), where N(~x, Ω̂, E)d~xdΩ̂dE is the number

of neutrons at location ~x within d~x, traveling in the direction Ω̂ within dΩ̂, with

energy E within dE. Nuclear engineers traditionally define another quantity for the

description of the neutron distribution. It is the “angular flux”, defined as:

ψ(~x, Ω̂, E) = vN(~x, Ω̂, E), (1.1)
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where v is the neutron speed. Since for reactor simulations, the kinetic energy of

neutrons is low enough that relativistic kinetics is not necessary, the relationship

between velocity and energy follows from Newtonian kinetics:

E =
1

2
mnv

2, (1.2)

where mn is the neutron mass.

n Nucleus

nscattering

capture

photons or 
other particles

fission

n

n n
Neutron colliding with a nucleus

⌦̂

⌦̂0

E

E0

Figure 1.1: An illustration of neutron interaction with a nucleus.

In reactor physics, the neutron angular flux ψ(~x, Ω̂, E) (at location ~x in direction

Ω̂ for energy E) is obtained by solving the neutron transport equation:

Ω̂ · ~∇ψ(~x, Ω̂, E) + Σt(~x,E)ψ(~x, Ω̂, E)

=

Emax∫
0

∫
4π

Σs(~x, Ω̂ · Ω̂′, E ′ → E)ψ(~x, Ω̂′, E ′)dΩ̂′dE ′ +
χ(~x,E)

4πk

Emax∫
0

νΣf (~x,E
′)φ(~x,E ′) dE ′,

~x ∈ R3, |Ω̂| = 1, 0 ≤ E ≤ Emax,

where φ(~x,E) is the scalar flux at location ~x for energy E. Σt(~x,E) is the macroscopic
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total cross section at location ~x for energy E; Σs(~x, Ω̂ · Ω̂′, E ′ → E) is the macroscopic

differential scattering cross section at location ~x for scattering from energy E ′ and

angle Ω̂′ to energy E and angle Ω̂; χ(E) is the fission energy spectrum; νΣf (~x,E)

is the macroscopic fission yield cross section at location ~x for energy E; Emax is the

maximum energy. The scalar flux and the angular flux are related by:

φ(~x,E) =
∫
4π

ψ(~x, Ω̂, E) dΩ̂, (1.3)

where the integral (
∫
4π · dΩ̂) is the surface integral over the unit sphere |Ω̂| = 1.

Solutions of the neutron transport equation are essential to nuclear reactor sim-

ulations. Nuclear engineers use the calculated power distributions and k-eigenvalues

to help design and ensure the safety of nuclear reactors.

There are many types of nuclear reactors. In this thesis, example problems are

taken from light water reactors (LWRs), which include pressurized water reactors

(PWRs) and boiling water reactors (BWRs). Figure 1.2 depicts a horizontal cut

through a typical PWR reactor core, which contains a collection of fuel assemblies.

Each assembly contains a rectangular array of square pin-cells, and each pin-cell

contains concentric circles in the center. Typically, a fuel pin-cell contains an inner

ring of fuel, outside of which is a ring of clad. There is a gap between the fuel and clad

regions. The clad is then surrounded by moderator, which is light water for LWRs.

Reactor simulations involve many mutually connected problems. The experimen-

talists prepare cross sections, which are then processed to data libraries for nuclear

engineers to use. One of the widely-used cross section libraries is the ENDF library

prepared by Brookhaven National Laboratory (McLane, 2001). With the cross sec-

tions defined, nuclear engineers perform reactor calculations for fuel management,

reactor design, or operation simulations. “Lattice calculations” are at the center

of reactor calculations. A “lattice” in a reactor is typically an assembly, as shown
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Reactor Core

Assembly

Pin-cell Moderator

Clad

Gap

Fuel

Figure 1.2: An example PWR reactor layout.

in Figure 1.2. The scope of problems for reactor simulations is depicted in Figure

1.3. Considering its geometry complexity, accurate lattice calculations are a serious

challenge. In this thesis, we discuss new numerical methods for lattice calculations.

1.2 Historical Review of Numerical Methods

Historically, two distinct categories of computational methods were independently

developed for lattice calculations: Monte Carlo and deterministic methods. Here we

briefly introduce both methods.

1.2.1 Monte Carlo Method

Monte Carlo methods date back to the Manhattan Project in World War II

(Metropolis and Ulam, 1949). The Monte Carlo solution process involves a simu-

lation of neutron physics using a large number of “Monte Carlo neutrons”, each of
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Figure 1.3: Reactor simulations scheme. Adapted from Figure 1.1 from Hebert (2009).
The focus of this thesis is lattice calculations.

which possesses a location ~x, a direction Ω̂, and an energy E. While a neutron is

traveling in space, it can reach an outer boundary and leak out, reach an inner bound-

ary and continue traveling, or collide with a nucleus and trigger an event. When a

collision event occurs, a neutron can scatter, be captured, or fission into one or more

fast neutrons. Figure 1.4 illustrates the change of a neutron’s state. Because ran-

dom numbers are used to probabilistically sample the occurrence of each event, this

method was named the “Monte Carlo” method. The textbooks Lewis and Miller

Jr. (1984); Spanier and Gelbard (1969) and Lux and Koblinger (1991) discuss Monte

Carlo methods in detail. One of the most well-known and widely-used Monte Carlo

computer codes is MCNP, developed by Los Alamos National Library (Briesmeister ,

1997).

The major advantage of the Monte Carlo method is that there are no approxima-

tions in energy, space, and traveling direction. The major disadvantage of the Monte

Carlo method is its requirement of significant computational resources to minimize

the statistical errors. This is because statistical errors are inversely proportional to
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the square root of the number of neutrons simulated. Therefore to reduce the statis-

tical errors by a factor of 10, it is necessary to use 100 times more neutrons, so the

computational cost increases by a factor of 100. Because Monte Carlo is expensive in

computational cost, a fundamentally different kind of method called “deterministic”

has been developed.

SCATTERING

INFLY

LEAKED

EVENT

CAPTURE FISSIONED
Figure 1.4: The state machine of Monte Carlo neutrons.

1.2.2 Deterministic Methods

Deterministic methods, unlike Monte Carlo methods, have no uncertainties due

to statistical errors. However, they instead all have truncation errors. There are

many deterministic methods, such as: diffusion, spherical harmonics (PN), discrete

ordinates (SN), simplified PN (SPN), collision probability, and recent method of char-

acteristics (MOC) methods. (Hebert, 2009) We provide a historical review of MOC

and SN methods only, because of their accuracy and capabilities for a wide range of

problems, while the other methods are either less accurate or applicable only for prob-

lems with limited type of geometries. Also, MOC and SN are the methods relevant

to the work in this thesis.

In a deterministic method, the spatial, angular, and energy variables are all dis-

cretized. (For reactor kinetics problems, the time variable is discretized as well.) En-
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ergy is divided into a grid of intervals, and each interval is called an energy “group”.

We assume that there are G energy groups, and each group has the interval [Eg, Eg−1].

The multigroup neutron transport equation is obtained by integrating equation 1.3

over the group:

Ω̂ · ~∇ψg(~x, Ω̂) + Σt,g(~x)ψg(~x, Ω̂)

=
G∑

g=1

∫
4π

Σs,g′→,g(~x, Ω̂ · Ω̂′)ψg′(~x, Ω̂
′)dΩ̂′ +

χg(~x)

4πk

G∑
g=1

νΣf,g′(~x)φg(~x),

~x ∈ R3, |Ω̂| = 1, 1 ≤ g ≤ G,

where the multigroup fluxes and cross sections are defined using:

ψg(~x, Ω̂) =

Eg−1∫
Eg

ψ(~x, Ω̂, E) dE, (1.4)

φg(~x) =

Eg−1∫
Eg

φ(~x,E) dE, (1.5)

Σt,g(~x) ≈
∫ Eg−1

Eg
Σt(~x,E)ψ(~x, Ω̂, E) dE

ψg(~x, Ω̂)
, (1.6)

Σs,g′→g(~x, Ω̂ · Ω̂′) ≈
∫ Eg−1

Eg
Σs(~x, Ω̂ · Ω̂′, E ′)ψ(~x, Ω̂′, E ′) dE ′

ψg(~x, Ω̂)
, (1.7)

χg(~x) =

Eg−1∫
Eg

χ(~x,E) dE, (1.8)

νΣf,g(~x) ≈
∫ Eg−1

Eg
νΣf (~x,E)φ(~x,E) dE

φg(~x)
. (1.9)

A detailed discussion of the multigroup approximation can be found in textbooks

such as Hebert (2009).
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1.2.2.1 Discrete Ordinates (SN) Methods

One class of deterministic methods is the SN method, which was originally de-

veloped in the field of cosmic radiation. (Chandrasekhar , 1960) The adoption of SN

methods for neutron transport was done by Carlson. (Carlson and Bell, 1958)

In SN methods, the angular variable Ω̂ in the multigroup transport equation (1.4)

is discretized by a finite set of unit vectors Ω̂n:

Ω̂n · ~∇ψn,g(~x) + Σt,g(~x)ψg,n(~x)

=
G∑

g=1

N∑
m=1

ωmΣs,g′→,g(~x, Ω̂n · Ω̂m)ψn,g′(~x) +
χg(~x)

4πk

G∑
g=1

νΣf,g′(~x)φg(~x),

~x ∈ R3, 1 ≤ n ≤ N, 1 ≤ g ≤ G,

where

ψn,g(~x) = ψg(~x, Ω̂n). (1.10)

Each angle Ω̂n is associated with a weight ωn, so that the angular integral can be

replaced by a weighted sum. If we have N angles, the relationship between the scalar

and angular fluxes is:

φg(~x) =
N∑

n=1

ωnψn,g(~x). (1.11)

The discrete ordinates equations are then integrated over spatial cells, and equa-

tions for the unknown average cell and edge fluxes are derived. Detailed discussions of

the spatial differencing schemes in the discrete ordinates method can found in Chapter

II of this thesis for 1-D problems, and in Chapter III and V for 2-D problems.

A paper by K.D. Lathrop in 1969 discussed spatial differencing schemes for 2-D

Cartesian geometries. (Lathrop, 1969) In 1973, W.H. Reed and T.R. Hill general-
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ized SN methods to triangular meshes, to enable the treatment of problems more

geometrically complex than Cartesian geometry. (Reed and Hill, 1973) Since then,

many SN computer codes have been developed. TRIDENT, for example, is a trian-

gular mesh SN code developed in 1978. (Seed and Miller Jr., 1978) More recently, in

2003, the Oak Ridge National Library released the NEWT computer code (DeHart,

2003), which is based on polygonal geometries. The geometry in all these discrete

ordinates codes is based on spatial grids formed by cells with linear boundaries. For

problems containing circular or curved spatial grids, approximations of a curve by

piecewise-continuous linear segments are required, as illustrated in Figure 1.5. One

of the reasons why SN codes in the past dealt only with linear boundaries is to avoid

the “re-entrant” boundaries that occur in curved spatial grids. Chapter V in this

thesis introduces our approach to handle these “re-entrant” boundaries.

Figure 1.5: An illustration of the approximations of curved boundaries by piecewise-
continuous linear segments in previous SN methods. In this thesis, we
develop new methods to treat curved boundaries analytically.
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1.2.2.2 Method of Characteristics (MOC)

Because previous SN methods approximated curved spatial grids with triangles or

rectangles, the MOC method was developed by Askew in 1972 (Askew, 1972), in which

the treatment of geometries is in done more accurately. Since it was first implemented

in the WIMS-E code, the MOC method has been favored for many recent whole-core

transport computer codes; some current research codes are: the MPact code from the

University of Michigan, the nTRACER code from Seoul National University, and the

Dragon code from École Polytechnique de Montréal.

⌦̂

 in

 
out

l
⌃t

Q

s

d (s)

ds
+ ⌃t (s) = Q

 
out

=
Q

⌃
t

(1� e�⌃tl) +  
in

e�⌃tl

projected to the 2-D plane

Figure 1.6: An illustration of the MOC method.

The MOC method assumes each spatial cell to have a constant source of neutrons

Q and a constant total cross section Σt. The neutron transport inside this cell is

calculated by solving 1-D transport equations on a bundle of equally-spaced rays that

pass through the cell. For each ray, the incoming flux is known, and the outgoing

flux is calculated. Detailed discussions of the MOC method can be found in Hebert

(2009).

Two key approximations of MOC are that:
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• The source is “flat” (constant) inside a spatial cell;

• The spatial cells are approximated with “rasterized” fine rectangles surrounding

the fine rays segments to accurately approximate curved boundaries.

See Figure 1.6 for an illustration of the MOC method. We note that, although

both MOC and SN involve the discretization of the angular variable, MOC is not

considered to be an SN method in this thesis because of its use of two fine spatial

grids: the geometrical “flat source” regions on which the scattering and fission sources

are represented as spatially constant, and the fine rectangles surrounding the “ray

segments” (see Figure 1.6).

1.2.2.3 New in the Thesis

We consider two categories of deterministic methods: SN and MOC. SN methods

have been applicable to geometries with spatial grids having linear boundaries, while

the MOC method is applicable to spatial grids having curved boundaries. In this

thesis, we generalize SN methods also to curved spatial grids. The new SN meth-

ods treat curved boundaries analytically, and the flat source approximation is not

required in the “multiple balance” discrete-ordinates method. Detailed discussions of

SN methods are introduced later in Chapter III and V of this thesis.

1.3 Comparison of SN and MOC Methods

The reason for generalizing SN methods to geometries with curved spatial grids,

is not only to provide an alternative method to MOC, but also that SN methods have

some advantages over MOC. Table 1.1 compares the SN and MOC methods.

The key benefits of discrete ordinates methods include: (i) the use of a stan-

dard, highly-optimized quadrature sets, (ii) a single user-specified spatial grid, (iii)
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Arbitrary Geometries

Work in this thesis

Figure 1.7: The scope of problems for MOC and SN methods.

a straightforward extension to 3-D transport, and (iv) a small memory footprint for

the computer.

Disadvantages of the MOC method include: (i) the necessity of using non-standard,

non-optimized “modular” quadrature sets, (ii) two fine spatial grids, (iii) a very costly

extension to 3-D, and (iv) a large computer memory footprint.

A feature that makes the SN methods more complicated is the required special

approach to handle “re-entrant” curved boundaries, which is discussed in detail in

Chapter V in this thesis.

1.4 Thesis Outline

Here, we provide brief summaries of the remaining chapters in this thesis.

Chapter II

This chapter reviews three known discrete-ordinates methods for 1-D problems:

the step method (STEP), the step characteristic method (SC), and the multiple

balance method (MB). Among these, the multiple balance method is re-derived

here in a new way, which enables the generalization of this method to 2-D

12



Table 1.1: Comparison between SN and MOC methods

Aspect of 
Comparison SN Methods MOC Method

Quadrature Sets Standard quadrature sets. Unoptimized 
“modular”quadrature sets.

Spatial Grids

SN methods need only 
one “flat source” spatial 
grid.

MOC method needs both a 
“flat source” grid and a fine 
spatial grid of spacing rays.

Storage (Computer 
Memory Footprint)

Only cell dependent 
geometry information is 
stored, which does not 
depend on direction of 
flight.

Ray segment information for 
all directions of flight is 
stored.

3-D Transport

When extended from 2-D 
to 3-D, the computational 
cost increases only 
linearly proportional to the 
number of “layers” in z-
direction. Extension to 3-D 
is straightforward.

When extended from 2-D to 
3-D, the computational cost 
increases dramatically, 
which is not only linearly 
proportional to the number 
of “layers” in z-direction, but 
also inversely proportional 
to ray spacing. Extension to 
3-D is difficult.

Curved Edges

SN methods need to split 
“re-entrant” curved 
edges. (see Chapter V.)

MOC methods need no split 
of the curved edges. 

problems. Numerical results for two simple problems are also discussed, for

which the MB method is found to be more accurate than the step and SC

methods.

Chapter III
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This chapter discusses three discrete-ordinates methods for 2-D Cartesian grid

problems: the step method (STEP), the simplified step characteristic method

(SSC), and the multiple balance method (MB). The 2-D MB and SSC methods

are new, and are introduced here for the first time. The implementations of the

new MB and SSC methods are no more complicated than for existing discrete

ordinates methods.

Chapter IV

This chapter studies numerical implementations of the methods described in

Chpater III for two small LWR 2D Cartesian-grid problems. One problem

contains a burnable absorber pin-cell. The SN methods described in Chapter

III are found to be comparable in accuracy to the MOC method on a very

coarse spatial grid. On a finer spatial grid, the SSC and MB methods are more

accurate than the MOC method.

Chapter V

This chapter generalizes the three Cartesian-grid discrete-ordinates methods

derived in Chapter III to 2-D spatial grids having curved boundaries. New ter-

minology is introduced to describe linear and circular boundaries in an analytic

form. A special “splitting” approach to deal with “re-entrant” boundaries is

introduced. The problem of finding the “sweep order” is also solved.

Chapter VI

This chapter studies the performance of the discrete-ordinates methods derived

in Chapter V for three problems with one-group cross sections: two pin-cell

problems and one mini-assembly problem. The MB method is found to be

competitive with the MOC method, and for problems with substantial spatial

variations in the neutron flux, the MB method is seen to be significantly more

accurate than MOC.
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Chapter VII

This chapter studies the accuracy of discrete-ordinates methods derived in

Chapter V with multigroup cross sections generated from the 172-group WIMS-

D cross section library. The problems studied include the CASL VERA bench-

mark problem 1A, 1E, 2A, and a mini-assembly problem. The MB method

is found to be comparable to MOC in both accuracy and computational cost.

For difficult problems having large spatial flux gradients, the MB method is

significantly more accurate. Our results suggest that MB can be an alternative

method to MOC for reactor simulations.

Chapter VIII

This final chapter summarizes the accomplishments in this thesis, and discusses

future work. The benefits of MB methods are summarized, including: the use

of standard optimized quadrature sets, a single spatial grid, a small memory

usage, and a straightforward extension to 3-D problems.
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CHAPTER II

One-Dimensional Problems

The discrete ordinates method is a traditional method for solving the neutron

transport equation. This chapter treats one-dimensional discrete ordinates problems,

which the readers may be familiar with. So this chapter serves as a review. Another

purpose of this chapter is to familiarize the reader with the notation used in this

thesis.

2.1 The Scope of the Geometry

The one-dimensional space is divided into I “segments”, where the segment num-

bered i has the left end point x = xi−1 and right end point x = xi. The one-

dimensional grid is visualized in Figure 2.1.

x0 = 0 x1 x2 xI = X

xI�1xI�2Segment

xi

i

xi�1

Figure 2.1: The one-dimensional spatial grid divides the space into I “segments”.
The boundaries for the segment i are x = xi−1 and x = xi. i is an integer
ranging from 1 to I.

16



2.2 One-Dimensional Multigroup Discrete Ordinates Neu-

tron Transport Equation

For one-dimensional problems, the neutron angular flux depends on one location

variable x, one angular variable µ, and the the energy group number g. The angular

variable µ is the cosine of the angle between between the positive x-axis, the unit

vector of which is î, and the direction of flight is Ω̂. These are illustrated in Figure

2.2.

⌦̂

✓
x axis

µ = cos ✓ =

ˆ

⌦ ·ˆi

î

Figure 2.2: The angular variable µ is the cosine of the angle between the direction
flight Ω̂ and the positive x-axis, which has a unit vector of î.

The 1-D multigroup transport equation for an eigenvalue problem is:

µ
∂ψg(x, µ)

∂x
+ Σt,g(x)ψg(x, µ) =

1

2

G∑
g′=1

Σs,g′→g(x)φg′(x) +
χg(x)

2k

G∑
g′=1

νΣf,g′(x)φg′(x),

0 ≤ x ≤ X, −1 ≤ µ ≤ 1, 1 ≤ g ≤ G. (2.1)

The definitions of the quantities in the equation (2.1) are listed in Table 2.1.

The relationship between the scalar flux and the angular flux is:

φg(x) =

1∫
−1

ψg(x, µ) dµ. (2.2)

The angular cosine µ is continuous in the interval [−1, 1], which can be discretized
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Table 2.1:
List of definitions of terms in the one-dimensional neutron transport equa-
tion

Term Type Explanation
x scalar the spatial variable
µ scalar the cosine of the angle between the direction of

flight and the positive x-axis. See Figure 2.2.
G integer the total number of energy groups
g integer the energy group index, 1 ≤ g ≤ G
ψg(x, µ) scalar the angular flux of group g, at location x, trav-

eling with angular cosine µ
φg(x) scalar the scalar flux of group g, at location x
Σt,g(x) scalar the macroscopic total cross section of group g,

at x
Σs,g′→g(x) scalar the macroscopic isotropic scattering cross sec-

tion from group g′ to g, at location x
νΣf,g(x) scalar the macroscopic neutron yield fission cross sec-

tion of group g, at location x
χg(x) scalar the probability of neutron fissioned into energy

group g, at location x (the fission spectrum)
k scalar the effective reactivity coefficient, the eigenvalue

of the equation.

with a set of finite angles µn, 1 ≤ n ≤ M . The angular cosine µn is associated with

a weight ωn. These weights are chosen to approximate the integral of any function

f(µ) as a weighted sum:

1∫
−1

f(µ)dµ ≈
M∑
n=1

f(µn)ωn, (2.3)

2 =
M∑
n=1

ωn. (2.4)

The angular cosines µn and weights ωn are defined so that the approximation in

equation (2.3) is exact for low order polynomials:

1∫
−1

p(µ)dµ =
M∑
n=1

p(µn)ωn, for p = low order polynomial, (2.5)

18



where a polynomial of µ of order m has the form:

pm(µ) =
m∑
i=0

aiµ
i. (2.6)

The set {(µn, ωn)} is called a “quadrature set”:

“quadrature set” = {(µn, ωn), 1 ≤ n ≤MN}, (2.7)

where N is an even integer indicating the level of quadrature set, and MN is the total

number of angular cosines. The larger N is, the more angles there are.

It is a work of art to find good quadrature sets, where many researches have

been involved (Hebert, 2009). A basic requirement of these 1-D quadrature sets is

symmetry in the sense that:

If (µn, ωn) ∈ SN quadrature set : (−µn, ωn) ∈ SN quadrature set. (2.8)

The first few of the quadrature sets used in this thesis are listed in Table 2.2, which

are standard Gaussian quadrature sets dated back to early researches in the field of

cosmic radiation transfer (Anderson and Hord, 1977).

Next, we study the discrete ordinates equation for the angular cosine µn:

µn
∂ψn,g(x)

∂x
+ Σt,g(x)ψn,g(x) =

1

2

G∑
g′=1

Σs,g′→g(x)φg′(x) +
χg(x)

2k

G∑
g′=1

νΣf,g′(x)φg′(x),

0 ≤ x ≤ X, 1 ≤ n ≤M, 1 ≤ g ≤ G. (2.9)

The definitions of additional terms can be found in Table 2.3. The angular flux and
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Table 2.2: List of selected 1-D quadrature sets, with µn > 0

N MN Direction µn Weight ωn

1 2 1.0 .577350269189626
2 4 .861136311594053 .347854845137454

.339981043584856 .652145154862546
4 8 .960289856497536 .101228536290376

.796666477413627 .222381034453374

.525532409916329 .313706645877887

.183434642495650 .362683783378363
8 16 .989400934991650 .027152459411754

.944575023073233 .062253523938648

.865631202387832 .095158511682493

.755404408355003 .124628971255534

.617876244402644 .149595988816577

.458016777657227 .169156519395003

.281603550779259 .182603415044924

.095012509837637 .189450610455067
16 32 .997263861849482 .007018610009470

.985611511545268 .016274394730906

.964762255587506 .025392065309262

.934906075937740 .034273862913021

.896321155766052 .042835898022227

.849367613732570 .050998059262376

.794483795967942 .058684093478536

.732182118740290 .065822222776362

.663044266930215 .072345794108849

.587715757240762 .078193895787070

.506899908932229 .083311924226947

.421351276130635 .087652093004404

.331868602282128 .091173878695764

.239287362252137 .093844399080805

.144471961582796 .095638720079275

.048307665687738 .096540088514726

the scalar flux now have the relationship:

φg(x) =
M∑
n=1

ωnψn,g(x), (2.10)

ψn,g(x) = ψg(x, µn). (2.11)

Next, we integrate the discrete ordinates equation (2.9) over the segment i bounded
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Table 2.3:
List of definitions of terms in the one-dimensional discrete ordinates equa-
tion
Term Type Explanation
µn scalar the angular cosine at index n. See Figure 2.2.
ωn scalar the weight of µn
ψn,g(x) scalar the angular flux of group g, at location x, trav-

eling with angular cosine µn

by the interval [xi−1, xi]. (See Figure 2.1.) We obtain:

Leakage:
xi∫

xi−1

µn
∂ψn,g(x)

∂x
dx

Collision: +

xi∫
xi−1

Σt,g(x)ψn,g(x) dx

Scattering: =
1

2

G∑
g′=1

xi∫
xi−1

Σs,g′→g(x)φg′(x) dx

Fission: +
1

2k

G∑
g′=1

xi∫
xi−1

χg(x)νΣf,g′(x)φg′(x) dx,

1 ≤ i ≤ I, 1 ≤ n ≤M, 1 ≤ g ≤ G. (2.12)

We assume that the material is homogeneous inside a segment i, and that the cross

sections are:

Σt,g(x) = Σt,g,i, (2.13)

Σs,g′→g(x) = Σs,g′→g,i, (2.14)

νΣf,g(x) = νΣf,g,i, (2.15)

χg(x) = χg,i, (2.16)

for xi−1 ≤ x ≤ xi, 1 ≤ i ≤ I.
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The integral of the “leakage” term in equation (2.12) is:

xi∫
xi−1

µn
∂ψn,g(x)

∂x
dx = µn (ψn,g(xi)− ψn,g(xi−1)) . (2.17)

To simplify equation (2.12), some averaged quantities are defined:

ψn,g,i = ψn,g(xi), (2.18)

ψ̄n,g,i =
1

hi

xi∫
xi−1

ψn,g(x) dx, (2.19)

φ̄g,i =
1

hi

xi∫
xi−1

φg(x) dx, (2.20)

φg,i = φg(xi),

1 ≤ i ≤ I, 1 ≤ n ≤M, 1 ≤ g ≤ G, (2.21)

where the length of the segment hi is:

hi = xi − xi−1, (2.22)

and the relationship between the averaged scalar flux and the angular fluxes now

becomes:

φ̄g,i =
M∑
n=1

ψ̄n,g,iωn, (2.23)

φg,i =
M∑
n=1

ψn,g,iωn. (2.24)

An illustration of the averaged angular flux of segment i and its end points is shown

in Figure 2.3.
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Figure 2.3: The illustration of the averaged angular flux of segment i and its end
points

The spatially-integrated discrete ordinates equation (2.12) then becomes:

µn(ψn,g,i − ψn,g,i−1) + Σt,g,ihiψ̄n,g,i =
1

2

G∑
g′=1

Σs,g′→g,ihiφ̄g′,i +
χg,i

4πk

G∑
g′=1

νΣf,g′,ihiφ̄g′,i,

1 ≤ i ≤ I, 1 ≤ n ≤M, 1 ≤ g ≤ G, (2.25)

where the definitions of additional term are shown in Table 2.4.

To proceed, we divide the equation (2.25) by the segment length hi, to obtain:

µn
ψn,g,i − ψn,g,i−1

hi
+ Σt,g,iψ̄n,g,i =

1

2

G∑
g′=1

Σs,g′→g,iφ̄g′,i +
χg,i

4πk

G∑
g′=1

νΣf,g′,iφ̄g′,i,

1 ≤ i ≤ I, 1 ≤ n ≤M, 1 ≤ g ≤ G. (2.26)

Equation (2.26) describes the “balance” of the neutrons inside the segment i, so it

is called the “neutron balance equation”. Furthermore, we define the following

segment-averaged source terms:

Q̄s,g,i =
1

2

G∑
g′=1

Σs,g′→g,iφ̄g′,i, (2.27)

Q̄f,g,i =
χg,i

2

G∑
g′=1

Σf,g′,iφ̄g′,i, (2.28)
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Table 2.4:
List of definitions of terms in the one-dimensional neutron balance equation
Term Type Explanation
hi scalar the length of segment i, i.e. xi − xi−1

Σt,g,i scalar the macroscopic total cross section at segment
i, for neutrons with group g

Σs,g′→g,i scalar the isotropic macroscopic scattering cross sec-
tion at segment i, scattering from group g′ to
group g

χg,i scalar the neutron fission probability into group g for
segment i (the “fission spectrum”)

νΣf,g,i scalar the macroscopic neutron yield cross section for
segment i, for energy group g

ψn,g,i scalar the angular flux at x = xi, for neutrons traveling
with angular cosine µn, for group g

ψ̄n,g,i scalar the averaged angular flux for segment i, for neu-
trons traveling with angular cosine µn, for group
g

φ̄g,i scalar the averaged scalar flux for segment i, for group
g

φg,i scalar the scalar flux at x = xi, for group g
Q̄s,g,i scalar the averaged scattering source in group g, for

segment i, see equation (2.27)
Q̄f,g,i scalar the averaged fission source in group g, for seg-

ment i, see equation (2.28)
Q−

f,g,i scalar the averaged fission source in group g, at x = xi,
for the segment i, see equation (2.31)

Q+
f,g,i scalar the averaged fission source in group g, at x = xi,

for the segment i+ 1, see equation (2.32)
Q−

s,g,i scalar the averaged fission source in group g, at x = xi,
for the segment i, see equation (2.29)

Q+
s,g,i scalar the averaged fission source in group g, at x = xi,

for the segment i+ 1, see equation (2.30)
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and the following endpoint source terms:

Q−
s,g,i =

1

2

G∑
g′=1

Σs,g′→g,iφg′,i, (2.29)

Q+
s,g,i =

1

2

G∑
g′=1

Σs,g′→g,i+1φg′,i, (2.30)

Q−
f,g,i =

χg,i

2

G∑
g′=1

Σf,g′,iφg′,i, (2.31)

Q+
f,g,i =

χg,i

2

G∑
g′=1

Σf,g′,i+1φg′,i, (2.32)

(2.33)

with which the neutron balance equation (2.26) is simplified as:

µn
ψn,g,i − ψn,g,i−1

hi
+ Σt,g,iψ̄n,g,i = Q̄s,g,i +

1

k
Q̄f,g,i,

1 ≤ i ≤ I, 1 ≤ n ≤M, 1 ≤ g ≤ G. (2.34)

2.3 Auxiliary Equations

For segment i, there are 3 unknowns for neutrons traveling in angular cosine µn,

for group g:

ψ̄n,g,i, ψn,g,i−1, ψn,g,i. (2.35)

(See Figure 2.3.) Based on the sign of the angular cosine µn, the endpoint flux is

either “incoming” or “outgoing”. Figure 2.4 visualizes the two cases that µn > 0

and µn < 0. The flux at the incoming end point is called the incoming flux, and the

flux at the outgoing end point is called the outgoing flux.

With a process called “sweeping” discussed later, the incoming fluxes can be

considered as known quantities. So the unknowns are ψ̄n,g,i and the outgoing flux.
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Segment i
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 n,g,i�1  n,g,i ̄n,g,i
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xixi�1

 n,g,i�1  n,g,i ̄n,g,i

out in

µn < 0

Figure 2.4: Categorization of the endpoints of a segment to be “incoming” or “out-
going”, based on whether the angular cosine µn is positive or negative.

Hence, for segment i, the knowns and unknowns are:

µn > 0 :

Knowns : ψn,g,i−1, (2.36)

Unknowns : ψ̄n,g,i, ψn,g,i, (2.37)

µn < 0 :

Knowns : ψn,g,i, (2.38)

Unknowns : ψ̄n,g,i, ψn,g,i−1. (2.39)

For segment i, because we have two unknowns in total, two equations are required.

The neutron balance equation (2.34) provides one equation, so one more equation is

required. The additional equations are called “auxiliary equations”, which have

the form:

µn > 0 :

g(ψ̄n,g,i, ψn,g,i) = 0,

µn < 0 :

g(ψ̄n,g,i, ψn,g,i−1) = 0. (2.40)

In the following subsections, three different methods are introduced, each having a
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different auxiliary equation. The first method is the “step method”, which is a

traditional discrete ordinates method to solve one-dimensional problems. The second

method is the “step characteristic method”, which can be generalized to solve

two-dimensional problems as a method called the “simplified step characteristic

method”. The third method is the “multiple balance method”, which was first

invented for 1-D problems by Morel & Larsen in 1990 (Morel and Larsen, 1990).

2.3.1 The Step Method (STEP)

The “step method” is the simplest traditional discrete ordinates method. In this

method, the auxiliary equation assumes that the outgoing flux equals the segment-

averaged flux. So the auxiliary equation in the form of equation (2.40) is:

µn > 0 :

ψ̄n,g,i = ψn,g,i,

µn < 0 :

ψ̄n,g,i = ψn,g,i−1. (2.41)

2.3.2 The Step Characteristic Method (SC)

We assume the scattering and fission source terms in the discrete ordinates equa-

tion (2.9) to be constant:

1

2

G∑
g′=1

Σs,g′→g(x)φg′(x) ≈ Q̄s,g,i, (2.42)

χg(x)

2

G∑
g′=1

νΣf,g′(x)φg′(x) ≈ Q̄f,g,i. (2.43)
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The material in segment i is also assumed to be homogeneous. We obtain the first-

order differential equation:

µn

∂ψsc
n,g(x)

∂x
+ Σt,g,iψ

sc
n,g(x) = Q̄s,g,i +

1

k
Q̄f,g,i,

xi−1 ≤ x ≤ xi, 1 ≤ n ≤M, 1 ≤ g ≤ G, (2.44)

which is solved for ψsc
n,g(x). The quantities are defined in Table 2.4. The solution to

equation (2.44) is:

ψsc
n,g(x) = ψsc

n,g(xi−1) exp(−Σt,g,i(x− xi−1))/µn)

+
Q̄s,g,i +

1
k
Q̄f,g,i

Σt,g,i

(1− exp(−Σt,g,i(x− xi−1)/µn)) . (2.45)

The angular flux at xi is:

ψsc
n,g(xi) = ψsc

n,g(xi−1) exp(−Σt,g,ihi/µn)

+
Q̄s,g,i +

1
k
Q̄f,g,i

Σt,g,i

(1− exp(−Σt,g,ihi/µn)) . (2.46)

Moreover, the averaged flux is:

ψ̄sc
n,g,i =

1

hi

xi∫
xi−1

ψn,g(x) dx (2.47)

=
Q̄s,g,i +

1
k
Q̄f,g,i

Σt,g,i

(
1− 1− exp(−Σt,g,ihi/µn)

Σt,g,ihi/µn

)

+ ψsc
n,g(xi−1)

1− exp(−Σt,g,ihi/µn)

Σt,g,ihi/µn

. (2.48)
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Eliminating ψsc
n,g(xi−1) in equations (2.46) and (2.47), we get:

ψsc
n,g(xi) =

Q̄s,g,i +
1
k
Q̄f,g,i

Σt,g,i

(
1− (Σt,g,ihi/µn) exp(−Σt,g,ihi/µn)

1− exp(−Σt,g,ihi/µn)

)

+ ψ̄sc
n,g,i

(Σt,g,ihi/µn) exp(−Σt,g,ihi/µn)

1− exp(−Σt,g,ihi/µn)
. (2.49)

The auxiliary equations are obtained by setting the angular fluxes ψ to the solution

ψsc:

ψn,g,i−1 = ψsc
n,g(xi−1), (2.50)

ψn,g,i = ψsc
n,g(xi), (2.51)

ψ̄n,g,i = ψ̄sc
n,g,i. (2.52)

with which the method is called the “step characteristic method”. We introduce

equations (2.50), (2.51), (2.52) into equation (2.49) to get the step characteristic

auxiliary equation for the case µn > 0:

µn > 0 :

ψn,g,i =
Q̄s,g,i +

1
k
Q̄f,g,i

Σt,g,i

(
1− (Σt,g,ihi/µn) exp(−Σt,g,ihi/µn)

1− exp(−Σt,g,ihi/µn)

)

+ ψ̄n,g,i
(Σt,g,ihi/µn) exp(−Σt,g,ihi/µn)

1− exp(−Σt,g,ihi/µn)
. (2.53)

Similarly, for the case µn < 0, the auxiliary equation is:

µn < 0 :

ψn,g,i−1 =
Q̄s,g,i +

1
k
Q̄f,g,i

Σt,g,i

(
1− (−Σt,g,ihi/µn) exp(Σt,g,ihi/µn)

1− exp(Σt,g,ihi/µn)

)

+ ψ̄n,g,i
(−Σt,g,ihi/µn) exp(Σt,g,ihi/µn)

1− exp(Σt,g,ihi/µn)
. (2.54)
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The equations (2.53) and (2.54) provide the “step characteristic” auxiliary equations.

2.3.3 The Multiple Balance Method (MB)

The auxiliary equations in the step method and the simplified characteristic

method contain no neutron physics. So it is more favorable if the auxiliary equa-

tions have forms similar to the neutron balance equation. Morel and Larsen in 1990

(Morel and Larsen, 1990) invented such a method, called the “multiple balance”

method, which is described in this section. Besides the MB method described here,

Yee and Larsen (2015) recently proposed other 1-D MB methods, but they are not

introduced here because of the difficulty to be generated to 2-D geometries.

For segment i, we define two linear weight functions for the two endpoints. The

weight function evaluates to 1 at one end point, and 0 at the other end point. Figure

2.5 illustrates these weight functions:

f+
i (x) =

x− xi−1

hi
, (2.55)

f−
i (x) =

xi − x

hi
. (2.56)

Segment i

xixi�1

in out

µn > 0
xixi�1

out in

µn < 0

f

+
i (xi�1) = 0

f

+
i (xi) = 1 f

�
i (xi�1) = 1

f

�
i (xi) = 0

Figure 2.5: The definitions of two linear weight functions f+
i (x) and f−

i (x), which are
1 at one end point, and 0 at the other end point.

The weight function f+
i (x) is used with positive angular cosines µn > 0, and the

the weight function f−
i (x) is used with negative angular cosines µn < 0. Without loss

of generality, we assume µn > 0. The auxiliary equations are obtained by integrating

the discrete ordinates equation (2.9) with the weight function f+
i (x), as shown in
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Figure 2.5. This integration resembles the finite element method. But in the multiple

balance method, the flux is not assumed to have a predefined shape. After the

integration, we get:

Leakage:
xi∫

xi−1

f+
i (x)µn

∂ψn,g(x)

∂x
dx

Collision: +

xi∫
xi−1

f+
i (x)Σt,g(x)ψn,g(x) dx

Scattering: =
1

2

G∑
g′=1

xi∫
xi−1

f+
i (x)Σs,g′→g(x)φg′(x) dx

Fission: +
1

2k

G∑
g′=1

xi∫
xi−1

f+
i (x)χg(x)νΣf,g′(x)φg′(x) dx ,

0 ≤ x ≤ X, 1 ≤ n ≤M, 1 ≤ g ≤ G. (2.57)

To get the auxiliary equation, all integrals in equation (2.57) are approximated by the

averaged flux and endpoint flux. The approximation sets the fluxes in the “collision”,

“scattering” and “fission” terms to be the outgoing flux:

ψn,g(x) ≈ ψn,g,i, xi−1 ≤ x ≤ xi, (2.58)

φg(x) ≈ φg,i, xi−1 ≤ x ≤ xi. (2.59)

The leakage term in equation (2.57) becomes exactly:

Leakage:
xi∫

xi−1

f+
i (x)µn

∂ψn,g(x)

∂x

= µn(f
+
i (xi)ψn,g,i − f+

i (xi−1)ψn,g,i−1)− µn

xi∫
xi−1

1

hi
ψn,g(x) dx

= µn

(
ψn,g,i − ψ̄n,g,i

)
. (2.60)

For the collision term, we assume that the angular flux equals the angular flux at the
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outgoing endpoint, as in equation (2.58). The collision term becomes:

Collision:
xi∫

xi−1

f+
i (x)Σtr,g(x)ψn,g(x) dx

≈
xi∫

xi−1

f+
i (x)Σtr,g,iψn,g,i dx

=
hi
2
Σtr,g,iψn,g,i. (2.61)

For the scattering & fission terms, we also assume that the flux equal the flux at the

outgoing endpoint, as in equation (2.59). The scattering term becomes:

Scattering: 1

2

G∑
g′=1

xi∫
xi−1

f+
i (x)Σs,g′→g(x)φg′(x) dx

≈ 1

2

G∑
g′=1

xi∫
xi−1

f+
i (x)Σs,g′→g(x)φg′,i dx

=
1

2

hi
2

G∑
g′=1

Σs,g′→g,iφg′,i

=
hi
2
Q−

s,g,i, (2.62)

and the fission term becomes:

Fission: 1

2k

G∑
g′=1

xi∫
xi−1

f+
i (x)χg(x)νΣf,g′(x)φg′(x) dx

≈ χg,i

2k

G∑
g′=1

xi∫
xi−1

f+
i (x)νΣf,g′(x)φg′,i dx

=
1

2

hi
2

χg,i

2k

G∑
g′=1

νΣf,g′,iφg′,i

=
hi
2
Q−

f,g,i. (2.63)

See Table 2.27 for definitions of the quantities. Introducing the four approximations
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(2.60), (2.61), (2.62) and (2.63) into equation (2.57), we get:

µn

(
ψn,g,i − ψ̄n,g,i

)
+
hi
2
Σtr,g,iψn,g,i =

hi
2
Q−

s,g,i +
1

k

hi
2
Q−

f,g,i (2.64)

We divide equation (2.64) by the term 1
2
hi to get the multiple balance auxiliary

equation for µn > 0:

µn > 0 :

µn
ψn,g,i − ψ̄n,g,i

hi/2
+ Σtr,g,iψn,g,i = Q−

s,g,i +
1

k
Q−

f,g,i. (2.65)

When the angular cosines are negative µn < 0, the auxiliary equations are obtained

by integrating equation (2.9) with the weight function f−
i (x). Following a similar

process, we obtain the multiple balance auxiliary equation for µn < 0:

µn < 0 :

|µn|
ψ̄n,g,i − ψn,g,i−1

hi/2
+ Σtr,g,iψn,g,i−1 = Q+

s,g,i−1 +
1

k
Q+

f,g,i−1. (2.66)

The auxiliary equations (2.65) and (2.66) can be viewed as the neutron balance equa-

tion centered at the outgoing endpoint. So the method is named as the “multiple

balance method”. Now for each cell and direction of flight, the number of un-

knowns (which is 3) equals the number of available equations (balance equation plus

2 auxiliary equations).

2.4 Sweep

The previous sections introduce how to solve for the unknown segment-averaged

and endpoint fluxes. Recall Figure 2.1 that the geometry is a one-dimensional spatial

grid of segments. Each segment is visited once, where segment-averaged and endpoint
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fluxes are updated. The process of visiting all segments exactly once is called a

“sweep”. And the order of visit is called a “sweeping order”. The sweep order

must satisfy the condition that the incoming flux of a segment is calculated before

the segment is visited.

When the angular cosine is positive µn > 0, the segments are visited in the

increasing order from segment 1 to segment I. When the angular cosine is negative

µn < 0, the segments are visited in the decreasing order from segment I to segment

1. The sweep orders are illustrated in Figure 2.6.

x0 = 0 x1 x2 xI = X

xI�1xI�2

µn > 0
1 2 I � 1 I

x0 = 0 x1 x2 xI = X

xI�1xI�2

1 2 I � 1 I
µn < 0

Figure 2.6: The sweep order of the one-dimensional spatial grid. For µn > 0, the
segments are visited in the increasing order from segment 1 to segment I.
For µn < 0, the segments are visited in the decreasing order from segment
I to segment 1.

2.5 Numerical Results

The one-dimensional methods are compared for simple problems, to give the reader

a brief idea about how these methods behave. For simplicity, the names of the

methods are abbreviated in Table 2.5. Since the MC solutions have no truncation

errors in space and angle, it serves as the reference to measure how accurate SN

methods are. We use a very large number of particles to minimize the statistical
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errors.

Table 2.5: List of numerical methods’ abbreviations and their definitions
Method Description
“MC” Monte Carlo
“string Sn” SN method with the level of angles equals n,

with method string. “STEP” stands for the
step method. “SC” stands for the step charac-
teristic method. “MB” stands for the multiple
balance method.

2.5.1 Pin-cell Problem

The first problem is designed to simulate a nuclear reactor fuel pin-cell (Figure 1.2)

with a pitch of 1.26 cm. The radius of the fuel region is 0.4096 cm, the outer radius

of the gap is 0.418 cm, and the outer radius of the clad is 0.475 cm. The geometry

is shown in Figure 2.7. The boundary conditions on both ends are reflecting. Two

types of grids are defined: one is the coarse grid with 4 segments, and the other is

the fine grid with 8 segments.

The fuel region is denoted as “F”, the gap is denoted as “G”, the clad is denoted as

“C”, and the moderator region is denoted as “M”. For simplicity, a set of one-group

cross sections are provided in Table 2.6, which is adapted from a 3.1wt% enriched

UO2 fuel pin-cell of the AP1000 reactor.

Table 2.6: List of one-group cross section
Material Absorption

Σa (cm−1)
Nufission
νΣf (cm−1)

Fission Σf

(cm−1)
Scattering
Σs (cm−1)

Fuel (F) 0.121437 0.19427 0.0788062 0.377744
Gap (G) 0 0 0 3.08906E-05
Clad (C) 0.00313575 0 0 0.280904
Moderator (M) 0.0116829 0 0 1.06112

Table 2.7 summarizes the k-eigenvalue comparison and the time cost, and Ta-

ble 2.8 summarizes the solutions and the error analysis. For reference, 100 million
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G C MF

0.4096 cm
0.418 cm

0.475 cm
0.63 cm

Coarse Grid

Fine Grid

0.1024 cm

0.2048 cm

0.3072 cm
0.5525 cm

Reflecting
Boundary

Reflecting
Boundary

Figure 2.7: A one-dimensional pin-cell geometry. The boundary conditions on both
ends are reflecting. The coarse grid contains 4 segments, and the fine
grid contains 8 segments.

Monte Carlo particles were simulated, resulting in a reference k-eigenvalue with an

uncertainty of 2 pcm, and a reference flux with an uncertainty of 0.005%.

In the error analysis, errors in the effective k-eigenvalue are measured by the

difference from the Monte Carlo reference, which is measured in a unit called pcm,

where:

1 pcm = 10−5. (2.67)

Given a scalar flux solution φ̄i and a reference solution φ̄ref
i , the difference between

the two is measured with the relative 2-norm, defined as:

|| φ̄− φ̄ref

φ̄ref
||2 =

√√√√√ 1

N

N∑
i=1

(
φ̄i − φ̄ref

i

φ̄ref
i

)2

. (2.68)

Figure 2.8 plots the errors in k-eigenvalues and fluxes versus the time cost per

iteration. Each curve contains data points generated by a variety of angular quadra-
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Table 2.7: List of k-effective and time cost of the pin-cell problem
Method Keff Keff

Error.
(pcm)

Time per It-
eration (ms)

MC 1.538453 2.0 Reference
Coarse Grid

STEP S2 1.538449 -0.4 0.024
STEP S4 1.538529 7.6 0.024
STEP S8 1.538600 14.7 0.032
STEP S16 1.538641 18.8 0.032
STEP S32 1.538656 20.3 0.035
SC S2 1.538277 -17.6 0.023
SC S4 1.538320 -13.3 0.025
SC S8 1.538385 -6.8 0.025
SC S16 1.538435 -1.8 0.030
SC S32 1.538448 -0.5 0.040
MB S2 1.538297 -15.6 0.023
MB S4 1.538358 -9.5 0.023
MB S8 1.538437 -1.6 0.025
MB S16 1.538488 3.5 0.031
MB S32 1.538501 4.8 0.037

Fine Grid
STEP S2 1.538342 -11.1 0.025
STEP S4 1.538401 -5.2 0.030
STEP S8 1.538469 1.6 0.030
STEP S16 1.538515 6.2 0.035
STEP S32 1.538528 7.5 0.053
SC S2 1.538277 -17.6 0.026
SC S4 1.538321 -13.2 0.029
SC S8 1.538388 -6.5 0.033
SC S16 1.538439 -1.4 0.044
SC S32 1.538452 -0.1 0.056
MB S2 1.538280 -17.3 0.026
MB S4 1.538327 -12.6 0.029
MB S8 1.538396 -5.7 0.029
MB S16 1.538447 -0.6 0.039
MB S32 1.538459 0.6 0.056

ture sets: S2, S4, S8, S16, S32. Because the problem is so simple, the measured

time contains a significant part other than the pure computation, which includes for

example the memory accessing time. The values are rounded to 0.001 ms, so when

two data points have time value differed less than 0.001 ms, they can be plotted with

37



Table 2.8: List of solutions of the pin-cell problem
Method Fuel

Flux
Gap
Flux

Clad
Flux

Mod-
erator
Flux

Flux
Error
(%)

MC 1.00000 0.99807 0.99775 0.99611 0.005
Coarse Grid

STEP S2 1.00000 0.99802 0.99782 0.99618 0.005
STEP S4 1.00000 0.99732 0.99702 0.99477 0.086
STEP S8 1.00000 0.99670 0.99630 0.99352 0.164
STEP S16 1.00000 0.99637 0.99585 0.99280 0.210
STEP S32 1.00000 0.99626 0.99565 0.99255 0.226
SC S2 1.00000 0.99960 0.99954 0.99920 0.195
SC S4 1.00000 0.99921 0.99912 0.99844 0.147
SC S8 1.00000 0.99863 0.99847 0.99729 0.075
SC S16 1.00000 0.99821 0.99797 0.99641 0.020
SC S32 1.00000 0.99813 0.99783 0.99620 0.007
MB S2 1.00000 0.99939 0.99934 0.99884 0.172
MB S4 1.00000 0.99883 0.99873 0.99778 0.104
MB S8 1.00000 0.99811 0.99794 0.99638 0.016
MB S16 1.00000 0.99766 0.99742 0.99549 0.041
MB S32 1.00000 0.99755 0.99725 0.99527 0.056

Fine Grid
STEP S2 1.00000 0.99919 0.99898 0.99805 0.128
STEP S4 1.00000 0.99870 0.99841 0.99701 0.064
STEP S8 1.00000 0.99812 0.99771 0.99581 0.015
STEP S16 1.00000 0.99772 0.99720 0.99502 0.064
STEP S32 1.00000 0.99760 0.99701 0.99478 0.080
SC S2 1.00000 0.99959 0.99955 0.99920 0.195
SC S4 1.00000 0.99920 0.99910 0.99842 0.146
SC S8 1.00000 0.99860 0.99844 0.99725 0.072
SC S16 1.00000 0.99815 0.99791 0.99634 0.015
SC S32 1.00000 0.99806 0.99777 0.99613 0.001
MB S2 1.00000 0.99958 0.99953 0.99915 0.192
MB S4 1.00000 0.99917 0.99908 0.99833 0.141
MB S8 1.00000 0.99857 0.99840 0.99711 0.064
MB S16 1.00000 0.99813 0.99788 0.99621 0.009
MB S32 1.00000 0.99803 0.99773 0.99600 0.006

the same time value.

This problem has a quite flat flux, which means the change of flux in space is

small. Despite the flat solution, we can still see that the fine grid has more accurate

solutions. Moreover, the SC method and the MB method are more accurate than the
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Figure 2.8: The error comparisons for the one-dimensional pin-cell problem. The SN
solutions are simulated with a variety of angular quadrature sets: S2, S4,
S8, S16, S32. The dashed line is the Monte Carlo uncertainties within
two standard deviations.

STEP method.

In conclusion, the first problem suggests that the SC and the MB methods are

more accurate. In the next subsection, we examine a larger problem with a less-flat

flux.
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2.5.2 Mini-assembly Problem

The next problem is a mini-assembly, which consists of 3 fuel pin-cells and 1 water

pin-cell. The boundary condition on the side of the fuel pin-cell is reflecting, and on

the side of the water pin-cell is vacuum. The pitch of the fuel pin-cell is 1.26 cm.

Figure 2.9 describes the geometry in detail. There are two types of spatial grids:

the coarse grid and the fine grid. The cross sections can be found in Table 2.6.

G C MF

0.4096 cm
0.418 cm

0.475 cm
0.63 cm

Coarse Grid

Fine Grid
0.1024 cm

0.2048 cm

0.3072 cm
0.5525 cm

Reflecting
Boundary

Vacuum
Boundary

FGCM

0.315 cm

0.63 cm

0.945 cm

1.26 cm

M M M M

Fuel H2O

Fuel Fuel Fuel H2O

Symmetric about center

1 2 3 4

Figure 2.9: A one-dimensional mini-assembly problem. The boundary is reflecting
on the left, and is vacuum on the right. The mini-assembly consists of 3
fuel pin-cells and one water pin-cell. The pin-cell pitch is 1.26 cm. For the
coarse grid, each fuel pin-cell contains 8 segments. For the fine grid, each
fuel pin-cell contains 16 segments. For the both coarse and fine grids, the
water pin-cell contains 4 segments.

Table 2.9 summarizes the k-eigenvalue comparison and the time cost, and Table

2.10 summarizes the solutions and the error analysis. The fluxes are averaged over

a pin-cell. For reference, 300 million Monte Carlo particles were simulated, resulting

in a reference k-eigenvalue with an uncertainty of 7.3 pcm, and a reference flux has

with uncertainty 0f 0.002%.

Figure 2.8 plots the errors in k-eigenvalues and fluxes versus the time cost per

iteration. In comparison, the MB method is more accurate than the SC method,
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Table 2.9: List of k-effective and time cost of the mini-assembly problem
Method Keff Keff

Error.
(pcm)

Time per It-
eration (ms)

MC 1.127767 7.3 Reference
Coarse Grid

STEP S2 1.055969 -7179.8 0.028
STEP S4 1.085370 -4239.7 0.030
STEP S8 1.090129 -3763.8 0.034
STEP S16 1.091719 -3604.8 0.048
STEP S32 1.092194 -3557.3 0.070
SC S2 1.095436 -3233.1 0.025
SC S4 1.118654 -911.3 0.032
SC S8 1.121026 -674.1 0.044
SC S16 1.122197 -557.0 0.071
SC S32 1.122549 -521.8 0.104
MB S2 1.101207 -2656.0 0.028
MB S4 1.125118 -264.9 0.032
MB S8 1.127776 0.9 0.042
MB S16 1.128895 112.8 0.062
MB S32 1.129177 141.0 0.091

Fine Grid
STEP S2 1.060484 -6728.3 0.034
STEP S4 1.088716 -3905.1 0.042
STEP S8 1.092952 -3481.5 0.055
STEP S16 1.094482 -3328.5 0.081
STEP S32 1.094900 -3286.7 0.123
SC S2 1.096241 -3152.6 0.039
SC S4 1.119509 -825.8 0.048
SC S8 1.121909 -585.8 0.075
SC S16 1.123100 -466.7 0.105
SC S32 1.123434 -433.3 0.157
MB S2 1.100357 -2741.0 0.039
MB S4 1.124082 -368.5 0.046
MB S8 1.126554 -121.3 0.061
MB S16 1.127654 -11.3 0.093
MB S32 1.127917 15.0 0.143

which is more accurate than the STEP method. The flux for this problem has a

significant tilt - it is much less “flat” than in the first problem. (See Table 2.10.) A

possible reason why the MB method is the most accurate is because the derivation

of the MB method does not assume the flux is flat in a segment, while the other
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Table 2.10: List of solutions of the mini-assembly problem
Method Pin-

cell 1
Flux

Pin-
cell 2
Flux

Pin-
cell 3
Flux

Pin-
cell 4
Flux

Flux
Error
(%)

MC 1.00000 0.90813 0.73070 0.38933 0.002
Coarse Grid

STEP S2 1.00000 0.90338 0.71948 0.39666 1.243
STEP S4 1.00000 0.90483 0.72043 0.39003 0.732
STEP S8 1.00000 0.90599 0.72381 0.39211 0.604
STEP S16 1.00000 0.90611 0.72452 0.39267 0.613
STEP S32 1.00000 0.90615 0.72466 0.39282 0.619
SC S2 1.00000 0.90430 0.72206 0.39011 0.636
SC S4 1.00000 0.90634 0.72474 0.38577 0.620
SC S8 1.00000 0.90707 0.72728 0.38826 0.278
SC S16 1.00000 0.90715 0.72776 0.38875 0.221
SC S32 1.00000 0.90718 0.72788 0.38894 0.206
MB S2 1.00000 0.90486 0.72362 0.38892 0.519
MB S4 1.00000 0.90716 0.72738 0.38510 0.592
MB S8 1.00000 0.90788 0.73006 0.38785 0.195
MB S16 1.00000 0.90794 0.73042 0.38847 0.113
MB S32 1.00000 0.90797 0.73048 0.38866 0.087

Fine Grid
STEP S2 1.00000 0.89741 0.70276 0.38528 2.067
STEP S4 1.00000 0.89930 0.70378 0.37898 2.323
STEP S8 1.00000 0.90072 0.70818 0.38192 1.857
STEP S16 1.00000 0.90086 0.70906 0.38269 1.755
STEP S32 1.00000 0.90091 0.70922 0.38291 1.731
SC S2 1.00000 0.90379 0.72063 0.38883 0.732
SC S4 1.00000 0.90577 0.72296 0.38421 0.854
SC S8 1.00000 0.90654 0.72557 0.38669 0.496
SC S16 1.00000 0.90662 0.72610 0.38719 0.426
SC S32 1.00000 0.90666 0.72624 0.38741 0.401
MB S2 1.00000 0.90491 0.72377 0.38960 0.507
MB S4 1.00000 0.90721 0.72744 0.38585 0.501
MB S8 1.00000 0.90793 0.73015 0.38869 0.091
MB S16 1.00000 0.90799 0.73051 0.38933 0.015
MB S32 1.00000 0.90801 0.73055 0.38954 0.030

methods, i.e. STEP and SC methods both assume the flux in a segment to be flat.

In conclusion, although the two one-dimensional problems are simple, the MB

method is more advantageous than the STEP and SC methods. In later chapters,

the MB method is generalized to two-dimensional problems, and we compare the
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Figure 2.10: The error comparisons for the one-dimensional mini-assembly problem.
The SN solutions are simulated with a variety of angular quadrature sets:
S2, S4, S8, S16, S32. The dashed line is the Monte Carlo uncertainties
within two standard deviations.

generalized MB method with other SN methods. Moreover, the widely used MOC

method can be viewed as a generalization of the SC method in two-dimensional space.

So comparisons between the MB and the MOC methods are also studied.
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2.6 Road-map to Two-dimensional Geometry

In this chapter, several deterministic methods are studied: the STEP method,

the SC method, and the MB method. In two-dimension space, these methods have

been generalized to the 2-D method of characteristic (MOC), the 2-D step method

(STEP), the 2-D simplified step characteristic method (SSC), and the 2-D multiple

balance method (MB). The origins of the 2-D methods are shown in Figure 2.11.

Among all these, the MOC is widely used, which originates from the SC method. In

this thesis, we categorize the 2-D STEP, SSC, MB methods as SN methods, but we

do not categorize MOC as an SN method.

STEP

SC

MB

1-D 2-D

STEP

SSC

MOC

MB

Figure 2.11: The origins of the two-dimensional deterministic methods.
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CHAPTER III

Two-Dimensional Problems with Cartesian Spatial

Grids

After a review of the discrete ordinates method in one-dimensional problems, two-

dimensional problems are now introduced. In this chapter, we consider problems with

Cartesian grids, where all spatial cells are rectangular. In later chapters, more general

two-dimensional problems with curved spatial grids are studied.

3.1 The Scope of Geometry

The Cartesian grid consists of rectangular spatial cells. We assume that the system

is divided into I×J rectangles. See Figure 3.1. The rectangle at the coordinate (i, j)

has four boundaries x = xi−1, x = xi, y = yj−1 and y = yj. This rectangle and its

boundaries are illustrated in Figure 3.2.

Rectangle (i, j) : 1 ≤ i ≤ I, 1 ≤ j ≤ J, (3.1)

Left boundary xi−1 : 1 ≤ i ≤ I, (3.2)

Right boundary xi : 1 ≤ i ≤ I, (3.3)

Bottom boundary yj−1 : 1 ≤ j ≤ J, (3.4)

Top boundary yj : 1 ≤ j ≤ J. (3.5)
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The rectangle (i, j) is named as S(i, j):

S(i, j) = {(x, y)|xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj}. (3.6)

(1,J) (2,J) (I-1,J) (I,J)

(1,J-1) (2,J-1) (I-1,J-1) (I,J-1)

(1,2) (2,2) (I-1,2) (I,2)

(1,1) (2,1) (I-1,1) (I,1)

x0 x1 x2 xIxI-1xI-2
y0

y1

y2

yJ-2

yJ-1

yJ

Figure 3.1: The Cartesian grid, which is composed of I×J rectangles. There are I+1
boundaries in the x direction, and J + 1 boundaries in the y direction.

x = xi�1 x = xi

y = yj�1

y = yj

(i, j)

Figure 3.2: The rectangle (i, j) is bounded with four lines with equations x = xi−1,
x = xi, y = yj−1 and y = yj.
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3.2 Two-Dimensional Multigroup Discrete Ordinates Neu-

tron Transport Equation

In two-dimensional space, the neutron angular flux depends on two location vari-

ables x, y, two angular variables η, ξ, and the energy group number g. These variables

are defined in Table 3.1. The multigroup transport equation for an eigenvalue problem

is:

η
∂ψg(x, y, η, ξ)

∂x
+ ξ

∂ψg(x, y, η, ξ)

∂y
+ Σt,g(x, y)ψg(x, y, η, ξ)

=
1

4π

G∑
g′=1

Σs,g′→g(x, y)φg′(x, y) +
χg(x, y)

4πk

G∑
g′=1

νΣf,g′(x, y)φg′(x, y),

x0 ≤ x ≤ xI , y0 ≤ y ≤ yJ , 0 ≤ η2 + ξ2 ≤ 1, 1 ≤ g ≤ G.

(See Figure 3.1.) The definitions of the quantities appearing in equation (3.7) are

also listed in Table 3.1. The direction of flight is Ω̂ = (η, ξ, µ). An illustration of the

angular variables are explained in Figure 3.3, with the following definitions:

ξ(θ, ϕ) = sin θ cosϕ =
√
1− µ2 cosϕ, (3.7)

η(θ, ϕ) = sin θ sinϕ =
√
1− µ2 sinϕ, (3.8)

µ(θ, ϕ) = cos θ, (3.9)

ξ2 + η2 + µ2 = 1. (3.10)

The relationship between the scalar flux and the angular flux is:

φg(x, y) =

1∫
−1

2π∫
0

ψg(x, y, ξ, η)dϕdµ. (3.11)
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Table 3.1:
List of definitions of terms in the two-dimensional neutron transport equa-
tion

Term Type Explanation
x scalar the x-coordinate
y scalar the y-coordinate
η scalar the x-component of the unit direction of flight

vector
ξ scalar the y-component of the unit direction of flight

vector
µ scalar the z-component of the unit direction of flight

vector
g integer the energy group
G integer the total number of energy groups
ψg(x, y, η, ξ) scalar the angular flux for group g, at location (x, y),

in direction (η, ξ, µ), where µ =
√
1− η2 − ξ2.

φg(x, y) scalar the scalar flux for group g, at location (x, y).
See equation (3.11) for definition.

Σt,g(x, y) scalar the macroscopic total cross section at location
(x, y), energy group g

k scalar the effective reactivity coefficient, the eigenvalue
of the equation

Σs,g′→g(x, y) scalar the isotropic macroscopic scattering cross sec-
tion at location (x, y), for scattering from energy
group g′ to energy group g

χg(x, y) scalar the neutron fission probability into group g at
location (x, y)) (the “fission spectrum”)

νΣf,g(x, y) scalar the macroscopic neutron yield cross section at
location (x, y), for energy group g
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x̂

ŷ

ẑ

'
✓ ⌦̂� (⌦̂ · ẑ)ẑ

⌦̂ = (⌘, ⇠, µ)

Figure 3.3: An illustration of a unit vector Ω̂ and definitions of its components. ϕ is
the azimuthal angle, which is defined as the angle counting from x-axis
counterclockwise to the projection of Ω̂ onto the x − y plane. θ is the
polar angle, which is the angle needed to rotate z-axis to Ω̂. The range
of θ is 0 ≤ θ ≤ π, and the range of ϕ is 0 ≤ θ ≤ 2π.

The angular variable Ω̂ is continuous on the surface of the unit sphere:

Ω̂ ∈ “4π” = {v̂ ∈ R3 : |v̂| = 1}, (3.12)

which can be discretized with a set of finite angles Ω̂n, 1 ≤ n ≤ M . The angle Ω̂n

is associated with a weight ωn. These weights are chosen so as to approximate the
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integral of any function f(Ω̂) with a weighted sum:

∫
4π

f(Ω̂)dΩ̂ ≈
M∑
n=1

f(Ω̂n)ωn, for f = any function, (3.13)

4π =
M∑
n=1

ωn. (3.14)

Ω̂n and ωn are defined so that the approximation (3.13) is exact for low order poly-

nomials:

∫
4π

p(Ω̂)dΩ̂ =
M∑
n=1

p(Ω̂n)ωn, for p = low order polynomial (3.15)

where a polynomial of Ω̂ of order m has the form:

pm(Ω̂) =
∑

i+j+k=m, i≥0,j≥0,k≥0

ai,j,k η
i ξj µk. (3.16)

The set {(Ω̂n, ωn))} is called a “quadrature set”:

“quadrature set” = {(Ω̂n, ωn), 1 ≤ n ≤MN}, (3.17)

where N is an even integer, indicating the level of quadrature set, and MN is the total

number of angles in the quadrature set. The larger N is, the more angles there are.

These angles preserve some symmetry conditions, the first of which is that the an-

gles and weights are symmetric for all 8 octants, the second of which is that the angles

and weights are symmetric across the x-axis, y-axis and z-axis. Mathematically, these
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conditions can be expressed as:

If (η, ξ, µ) ∈ SN quadrature set : (±η,±ξ,±µ) ∈ SN quadrature set, (3.18)

: (η, µ, ξ) ∈ SN quadrature set, (3.19)

: (ξ, η, µ) ∈ SN quadrature set, (3.20)

: (ξ, µ, η) ∈ SN quadrature set, (3.21)

: (µ, ξ, η) ∈ SN quadrature set, (3.22)

: (µ, η, ξ) ∈ SN quadrature set. (3.23)

If the conditions in equations (3.18), (3.19), (3.20), (3.21), (3.22), (3.23) are satisfied,

the quadrature set is said to be “level symmetric”. The level symmetric quadrature

sets up to S20 are used in this thesis (Hebert, 2009). The low order quadratures sets

are listed in Table 3.2.

Table 3.2: List of selected first few quadrature sets, within in the first octant
N MN Direction Ω̂n Weight ωn/4π

2 8 {5.773503e-01, 5.773503e-01, 5.773503e-01} 1/8
4 24 {3.500212e-01, 3.500212e-01, 8.688903e-01} 1/24

{3.500212e-01, 8.688903e-01, 3.500212e-01} 1/24
{8.688903e-01, 3.500212e-01, 3.500212e-01} 1/24

6 48 {2.666354e-01, 2.666354e-01, 9.261809e-01} 2.201577e-02
{6.815077e-01, 2.666354e-01, 6.815077e-01} 1.965089e-02
{2.666354e-01, 6.815077e-01, 6.815077e-01} 1.965089e-02
{9.261809e-01, 2.666354e-01, 2.666354e-01} 2.201577e-02
{6.815077e-01, 6.815077e-01, 2.666354e-01} 1.965089e-02
{2.666354e-01, 9.261809e-01, 2.666354e-01} 2.201577e-02

8 80 {2.182178e-01, 2.182178e-01, 9.511898e-01} 1.512345e-02
{5.773503e-01, 2.182178e-01, 7.867958e-01} 1.134260e-02
{2.182178e-01, 5.773503e-01, 7.867958e-01} 1.134260e-02
{7.867958e-01, 2.182178e-01, 5.773503e-01} 1.134260e-02
{5.773503e-01, 5.773503e-01, 5.773503e-01} 1.157406e-02
{2.182178e-01, 7.867958e-01, 5.773503e-01} 1.134260e-02
{9.511898e-01, 2.182178e-01, 2.182178e-01} 1.512345e-02
{7.867958e-01, 5.773503e-01, 2.182178e-01} 1.134260e-02
{5.773503e-01, 7.867958e-01, 2.182178e-01} 1.134260e-02
{2.182178e-01, 9.511898e-01, 2.182178e-01} 1.512345e-02
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The level symmetric S2 and S4 quadrature sets in the first octant are illustrated

in Figure 3.4.

S2 Angles S4 Angles

x̂

ŷ

ẑ

x̂

ŷ

ẑ

Figure 3.4: The illustration of the angles of the “level symmetric” S2 and S4
quadrature sets in the first octant. These angles preserve some sym-
metry conditions, the first of which is that the angles are symmetric for
all 8 octants, the second of which is that the angles are symmetric for
x-axis, y-axis and z-axis.

Then, the discrete ordinates equation for angle Ω̂n is:

ηn
∂ψn,g(x, y)

∂x
+ ξn

∂ψn,g(x, y)

∂y
+ Σt,g(x, y)ψn,g(x, y)

=
1

4π

G∑
g′=1

Σs,g′→g(x, y)φg′(x, y) +
χg(x, y)

4πk

G∑
g′=1

νΣf,g′(x, y)φg′(x, y),

x0 ≤ x ≤ xI , y0 ≤ y ≤ yJ , 1 ≤ n ≤M, 1 ≤ g ≤ G.

The definitions of additional terms can be found in Table 3.3. The angular flux and

the scalar flux have the relationship:

φg(x, y) =
M∑
n=1

ωnψn,g(x, y), (3.24)

ψn,g(x, y) = ψg(x, y, ηn, ξn). (3.25)
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Table 3.3:
List of definitions of terms in the two-dimensional neutron transport equa-
tion

Term Type Explanation
Ω̂n unit vector the direction of flight, Ω̂n = (ηn, ξn, µn)

ηn scalar the x-component of Ω̂n

ξn scalar the y-component of Ω̂n

µn scalar the z-component of Ω̂n

ωn scalar the weight of the angle at index n, i.e. Ω̂n

ψn,g(x, y) scalar the angular flux of group g, at location (x, y), in
direction Ω̂n

Next, we integrate the discrete ordinates equation (3.24) over the rectangle S(i, j)

(see equation (3.6)), which is the rectangle (i, j), bounded by lines x = xi−1, x = xi,

y = yj−1 and y = yj. We obtain:

xi∫
xi−1

yj∫
yj−1

(
ηn
∂ψn,g(x, y)

∂x
+ ξn

∂ψn,g(x, y)

∂y

)
dydx

+

xi∫
xi−1

yj∫
yj−1

Σt,g(x, y)ψn,g(x, y)dydx

=
1

4π

G∑
g′=1

xi∫
xi−1

yj∫
yj−1

Σs,g′→g(x, y)φg′(x, y)dydx

+
χg(x, y)

4πk

G∑
g′=1

xi∫
xi−1

yj∫
yj−1

νΣf,g′(x, y)φg′(x, y)dydx,

1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ n ≤M, 1 ≤ g ≤ G.

The integrals of the differential terms are:

xi∫
xi−1

yj∫
yj−1

(
ηn
∂ψn,g(x, y)

∂x
+ ξn

∂ψn,g(x, y)

∂y

)
dydx

=

yj∫
yj−1

ηn (ψn,g(xi, y)− ψn,g(xi−1, y)) dy

+

xi∫
xi−1

ξn (ψn,g(x, yj)− ψn,g(x, yj−1)) dx.
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To simplify equation (3.26), some averaged quantities are defined:

ψx
n,g,i,j =

1

hj

yj∫
yj−1

ψn,g(xi, y)dy, (3.26)

ψy
n,g,i,j =

1

wi

xi∫
xi−1

ψn,g(x, yj)dx, (3.27)

ψ̄n,g,i,j =
1

Ai,j

xi∫
xi−1

yj∫
yj−1

ψn,g(x, y)dxdy, (3.28)

φ̄g,i,j =
1

Ai,j

xi∫
xi−1

yj∫
yj−1

φg(x, y)dxdy, (3.29)

φx
g,i,j =

1

hj

yj∫
yj−1

φg(xi, y)dy, (3.30)

φy
g,i,j =

1

wi

xi∫
xi−1

φg(x, yj)dx, (3.31)

1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ n ≤M, 1 ≤ g ≤ G,

where wi, hj and Ai,j are defined as:

wi = xi − xi−1, (3.32)

hj = yj − yj−1, (3.33)

Ai,j = wi hj, (3.34)

and the relationships between the scalar flux and the angular fluxes are:

φ̄g,i,j =
M∑
n=1

ψ̄n,g,i,j wn, (3.35)

φx
g,i,j =

M∑
n=1

ψx
n,g,i,j wn, (3.36)

φy
g,i,j =

M∑
n=1

ψy
n,g,i,j wn. (3.37)
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An illustration of the averaged flux of the rectangle (i, j) and its boundaries is given

in Figure 3.5.

x = xi�1 x = xi

y = yj�1

y = yj

 ̄n,g,i,j  x

n,g,i,j

 x

n,g,i�1,j

 y
n,g,i,j�1

 y
n,g,i,j

Figure 3.5: The averaged neutron fluxes of the rectangle (i, j) and its four boundaries.

Next, we assume the material inside the rectangle (i, j) to be homogeneous. The

spatially-integrated discrete ordinates equation (3.26) then becomes:

ηnhj(ψ
x
n,g,i,j − ψx

n,g,i−1,j) + ξnwi(ψ
y
n,g,i,j − ψy

n,g,i,j−1) + Σt,g,i,jAi,jψ̄n,g,i,j

=
1

4π

G∑
g′=1

Σs,g′→g,i,jAi,jφ̄g′,i,j +
χg,i,j

4πk

G∑
g′=1

νΣf,g′,i,jAi,jφ̄g′,i,j,

1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ n ≤M, 1 ≤ g ≤ G,

where the definitions of additional terms are shown in Table 3.4.

To proceed, we divide equation (3.38) by the area Ai,j, and recall Ai,j = wi hj, to
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Table 3.4:
List of definitions of terms in the two-dimensional Cartesian neutron bal-
ance equation

Term Type Explanation
wi scalar the width of the rectangle (i, j), i.e. xi − xi−1

hj scalar the height of the rectangle (i, j), i.e. yj − yj−1

Ai,j scalar the area of the rectangle (i, j)
Σt,g,i,j scalar the macroscopic total cross section, of the rect-

angle (i, j), for group g
Σs,g′→g,i,j scalar the isotropic macroscopic scattering cross sec-

tion, of the rectangle (i, j), scattering from
group g′ to group g

χg,i,j scalar the neutron fission probability into group g, for
the rectangle (i, j) (the“fission spectrum”)

νΣf,g,i,j scalar the macroscopic neutron yield cross section of
the rectangle (i, j), for group g

ψx
n,g,i,j scalar the averaged angular flux for the boundary at

x = xi with yj−1 ≤ y ≤ yj , traveling in direction
Ω̂n, in group g

ψy
n,g,i,j scalar the averaged angular flux for the boundary at

y = yj with xi−1 ≤ x ≤ xi, traveling in direction
Ω̂n, in group g

ψ̄n,g,i,j scalar the averaged angular flux for the rectangle (i, j),
traveling in direction Ω̂n, in group g

φ̄g,i,j scalar the averaged scalar flux for the rectangle (i, j),
for group g

φxg,i,j scalar the averaged scalar flux for the boundary at x =
xi with yj−1 ≤ y ≤ yj , for group g

φyg,i,j scalar the averaged scalar flux for the boundary at y =
yj with xi−1 ≤ x ≤ xi, for group g

Q̄s,g,i,j scalar the averaged scattering source of group g in the
rectangle (i, j), see equation (3.38)

Q̄f,g,i,j scalar the averaged fission source of group g in the rect-
angle (i, j), see equation (3.39)

Qx,−
s,g,i,j scalar the averaged scattering source of group g for the

boundary at x = xi with yj−1 ≤ y ≤ yj , for the
rectangle (i, j), see equation (3.40)

Qx,+
s,g,i,j scalar the averaged scattering source of group g for the

boundary at x = xi with yj−1 ≤ y ≤ yj , for the
rectangle (i+ 1, j), see equation (3.41)

Qy,−
s,g,i,j scalar the averaged scattering source of group g for the

boundary at y = yj with xi−1 ≤ x ≤ xi, for the
rectangle (i, j), see equation (3.42)

Qy,+
s,g,i,j scalar the averaged scattering source of group g for the

boundary at y = yj with xi−1 ≤ x ≤ xi, for the
rectangle (i, j + 1), see equation (3.43)
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Term Type Explanation
Qx,−

f,g,i,j scalar the averaged fission source of group g for the
boundary at x = xi with yj−1 ≤ y ≤ yj , for the
rectangle (i, j), see equation (3.44)

Qx,+
f,g,i,j scalar the averaged fission source of group g for the

boundary at x = xi with yj−1 ≤ y ≤ yj , for the
rectangle (i+ 1, j), see equation (3.45)

Qy,−
f,g,i,j scalar the averaged fission source of group g for the

boundary at y = yj with xi−1 ≤ x ≤ xi, for the
rectangle (i, j), see equation (3.46)

Qy,+
f,g,i,j scalar the averaged fission source of group g for the

boundary at y = yj with xi−1 ≤ x ≤ xi, for the
rectangle (i, j + 1), see equation (3.47)

obtain:

ηn
ψx
n,g,i,j − ψx

n,g,i−1,j

wi

+ ξn
ψy
n,g,i,j − ψy

n,g,i,j−1

hj
+ Σt,g,i,jψ̄n,g,i,j

=
1

4π

G∑
g′=1

Σs,g′→g,i,jφ̄g′,i,j +
χg,i,j

4πk

G∑
g′=1

νΣf,g′,i,jφ̄g′,i,j,

1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ n ≤M, 1 ≤ g ≤ G.

Equation (3.38) describes the “balance” of neutrons inside the rectangle (i, j), so it

is called the “neutron balance equation”. Furthermore, we define the following

cell-averaged source terms:

Q̄s,g,i,j =
1

4π

G∑
g′=1

Σs,g′→g,i,jφ̄g′,i,j, (3.38)

Q̄f,g,i,j =
χg,i,j

4π

G∑
g′=1

νΣf,g′,i,jφ̄g′,i,j, (3.39)
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and the following boundary-averaged source terms:

Qx,−
s,g,i,j =

1

4π

G∑
g′=1

Σs,g′→g,i,jφ
x
g′,i,j, (3.40)

Qx,+
s,g,i,j =

1

4π

G∑
g′=1

Σs,g′→g,i+1,jφ
x
g′,i,j, (3.41)

Qy,−
s,g,i,j =

1

4π

G∑
g′=1

Σs,g′→g,i,jφ
y
g′,i,j, (3.42)

Qy,+
s,g,i,j =

1

4π

G∑
g′=1

Σs,g′→g,i,j+1φ
y
g′,i,j, (3.43)

Qx,−
f,g,i,j =

χg,i,j

4π

G∑
g′=1

νΣf,g′,i,jφ
x
g′,i,j, (3.44)

Qx,+
f,g,i,j =

χg,i,j

4π

G∑
g′=1

νΣf,g′,i+1,jφ
x
g′,i,j, (3.45)

Qy,−
f,g,i,j =

χg,i,j

4π

G∑
g′=1

νΣf,g′,i,jφ
y
g′,i,j, (3.46)

Qy,+
f,g,i,j =

χg,i,j

4π

G∑
g′=1

νΣf,g′,i,j+1φ
y
g′,i,j, (3.47)

with which the neutron balance equation (3.38) is simplified as:

ηn
ψx
n,g,i,j − ψx

n,g,i−1,j

wi

+ ξn
ψy
n,g,i,j − ψy

n,g,i,j−1

hj
+ Σt,g,i,jψ̄n,g,i,j = Q̄s,g,i,j +

1

k
Q̄f,g,i,j

1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ n ≤M, 1 ≤ g ≤ G. (3.48)

3.3 Categorization of Boundaries

Let us consider the rectangle (i, j) and the direction Ω̂n. Figure 3.5 illustrates the

rectangle and its boundaries. The four boundaries of the rectangle can be categorized

as either “incoming” or “outgoing”. A boundary is incoming if the neutron trav-

eling at Ω̂n enters the rectangle through the boundary. A boundary is outgoing if the

neutron traveling at Ω̂n exits the rectangle through the boundary. For a boundary,
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the outer normal vector points away from the rectangle. Then the categorization of

a boundary depends on the sign of the vector product of its outer normal vector n̂

and the direction Ω̂:

“Incoming” : Ω̂ · n̂ < 0, (3.49)

“Outgoing” : Ω̂ · n̂ > 0. (3.50)

See Figure 3.6 for an illustration.

(⌘n < 0, ⇠n > 0)

⌦̂n = (⌘n, ⇠n, µn)

(⌘n < 0, ⇠n < 0)

⌦̂n = (⌘n, ⇠n, µn)

(⌘n > 0, ⇠n < 0)

⌦̂n = (⌘n, ⇠n, µn)

⌦̂n = (⌘n, ⇠n, µn)

(⌘n > 0, ⇠n > 0)

in

in

in

in

in

in in

in

outout

outout

out out

outout

Figure 3.6: For direction Ω̂n, the averaged boundary flux is incoming if the neutron
enters the rectangle through the boundary. It is outgoing if the neu-
tron exits the rectangle through the boundary. The categorization of a
boundary as incoming or outgoing depends on the sign of the x and y
components of Ω̂n. The incoming boundaries are marked as “in”, and
the outgoing boundaries are marked as “out”.
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Table 3.5: List of the categorization of the boundaries of the rectangle (i, j)

Sign of ηn Sign of ξn Cate-
gory of
ψx
n,g,i−1,j

Category
of ψx

n,g,i,j

Cate-
gory of
ψy
n,g,i,j−1

Category
of ψy

n,g,i,j

positive(+) positive(+) incoming outgoing incoming outgoing

negative(-) positive(+) outgoing incoming incoming outgoing

negative(-) negative(-) outgoing incoming outgoing incoming

positive(+) negative(-) incoming outgoing outgoing incoming
See Figure 3.6 for an illustration.

From Figure 3.6, the categorization of the boundaries as incoming or outgoing

depends on the direction Ω̂n. There are four possibilities in which the projection of

Ω̂n onto the x − y plane is in either the first, the second, the third or the fourth

quadrant. Detailed categorizations are shown in Table 3.5.

3.4 Auxiliary Equations

For the rectangle (i, j), there are 5 unknowns in direction Ω̂n and group g:

ψ̄n,g,i,j, ψ
x
n,g,i−1,j, ψ

x
n,g,i,j, ψ

y
n,g,i,j−1, ψ

y
n,g,i,j. (3.51)

(See Figure 3.5 for definitions.) From our discussion in the previous subsection 3.3,

two of the boundaries in (3.51) are incoming, and the other two are outgoing. With a

process called “sweeping” discussed later, the fluxes on the incoming boundaries can

be considered as known. So the unknowns are ψ̄n,g,i,j and the fluxes on the two outgo-

ing boundaries. The neutron balance equation (3.48) provides one equation relating

these unknowns. Because we have three unknowns in total, two more equations, one

for each outgoing boundary, are required. These additional equations are called the

“auxiliary equations”.

In the following subsections, three different methods are introduced, each hav-

ing different auxiliary equations. The first one is the “step method”, which is a
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traditional discrete ordinates method to solve the neutron transport equation with

Cartesian spatial cells. The other two methods are the “simplified step character-

istic method” and the “multiple balance method”, which are newly introduced

in this thesis.

Without loss of generality, we assume that the direction of flight Ω̂ = (η, ξ, µ) has

positive x and y components:

Ω̂n = (ηn, ξn, µn), ηn > 0, ξn > 0, (3.52)

with which and as given by Table 3.5, the fluxes on the outgoing boundaries are

ψx
n,g,i,j, ψy

n,g,i,j. Therefore the unknowns are:

Unknowns : ψ̄n,g,i,j , ψ
x
n,g,i,j, ψy

n,g,i,j, (3.53)

and the knowns are:

Knowns : ψx
n,g,i−1,j, ψy

n,g,i,j−1. (3.54)

In addition to the balance equation (3.48), two more “auxiliary equations” in the

form of:

g(ψ̄n,g,i,j , ψ
x
n,g,i,j, ψy

n,g,i,j) = 0 (3.55)

are required.

3.4.1 The Step Method (STEP)

The “step method” is the probably simplest traditional discrete ordinates method

(Lathrop, 1969). In this method, the auxiliary equations assume that the outgoing

fluxes equal the area-averaged flux. So the two auxiliary equations in the form of
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equation (3.55) are:

ηn > 0 & ξn > 0 :

ψx
n,g,i,j = ψ̄n,g,i,j, (3.56)

ψy
n,g,i,j = ψ̄n,g,i,j. (3.57)

Figure 3.7 visualizes these equation.

 x

n,g,i,j

 x

n,g,i�1,j

 y
n,g,i,j�1

 y
n,g,i,j

 ̄n,g,i,j

Knowns

Unknowns

 x

n,g,i,j

 ̄n,g,i,j

 y
n,g,i,j

=

 ̄n,g,i,j=
Auxiliary Eqs.

⌦̂n = (⇠n, ⌘n, µn)

Figure 3.7: Visualization of the auxiliary equations for the step method. The direc-
tion of flight is assumed with positive x and y components. Quantities
that are equal are marked with the same colors. Quantities that are
different are marked with the different colors.

As is shown in the figure, the direction of flight assumes that Ω̂ = (η, ξ, µ) has
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positive x and y components. The auxiliary equation for other cases are:

ηn < 0 & ξn > 0 :

ψx
n,g,i−1,j = ψ̄n,g,i,j, (3.58)

ψy
n,g,i,j = ψ̄n,g,i,j, (3.59)

and

ηn < 0 & ξn < 0 :

ψx
n,g,i−1,j = ψ̄n,g,i,j, (3.60)

ψy
n,g,i,j−1 = ψ̄n,g,i,j, (3.61)

and

ηn > 0 & ξn < 0 :

ψx
n,g,i,j = ψ̄n,g,i,j, (3.62)

ψy
n,g,i,j−1 = ψ̄n,g,i,j. (3.63)

3.4.2 The Simplified Step Characteristic Method (SSC)

Even though neutron transport is in two dimensions, it can be approximated as

transporting on characteristic lines (projected in 2-D plane) along 1-D directions of

flight. The length of the characteristic line can be approximated as s, which is defined

as:

d = hj|ηn|+ wi|ξn|, (3.64)

s =
wihj
d

, (3.65)
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where

wi = xi − xi−1, (3.66)

hj = yj − yj−1. (3.67)

In these formula, a box with length s and width d has been placed with the side of

the length parallel to the direction of flight. See Figure 3.8 for an illustration of this

box, as marked as the green area.

The height d as defined in equation (3.64) is the shadow of the rectangle (i, j)

onto a line that is perpendicular to the direction of flight. The length s is chosen so

that the area of the box, i.e. s d, equals the area of the rectangle (i, j):

s d = wi hj. (3.68)

The approximate one-dimensional transport equation is:

µn
dψ1d(t)

dt
+ Σtψ1d(t) = Q̄, 0 ≤ t ≤ s, (3.69)

where the transport cross section and the source terms are defined as:

Σt = Σt,g,i,j, (3.70)

Q̄ = Q̄s,g,i,j +
1

k
Q̄f,g,i,j. (3.71)

The solution of this one-dimensional transport equation (3.69) is:

ψ1d(t) =
Q̄

Σt

(1− e−Σtt/µn) + ψ1d(0), 0 ≤ t ≤ s, (3.72)
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d

⌦̂n = (⇠n, ⌘n, µn)

t = 0

t = s

s

w

h

Figure 3.8: In the simplified step characteristic method, the two-dimensional trans-
port is approximated by a one-dimensional transport process along the t
axis from t = 0 to t = s. s and d are the length and the width of the
box marked in green. One side of the box is parallel to the direction of
flight. The width d is the shallow of the rectangle (i, j) projected to a line
perpendicular to the direction of flight. The green box and the rectangle
(i, j) have the same area. These requirements determine the width and
length of the green box.

and the evaluation of the flux at the end t = s is:

ψ1d(s) =
Q̄

Σt

(1− e−Σts/µn) + ψ1d(0), (3.73)

where ψ1d(0) is chosen to be an average of the incoming flux:

ψ1d(0) =
hj|ηn|ψx

n,g,i−1,j + wi|ξn|ψy
n,g,i,j−1

hj|ηn|+ wi|ξn|
, (3.74)
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which is defined even though it is not used in derivation of auxiliary equations. The

averaged flux on this one-dimensional line is:

ψ̄1d =
1

s

s∫
0

ψ1d(t)dt (3.75)

=
Q̄

Σt

(
1− 1− e−Σts/µn

Σts/µn

)
+ ψ1d(0)

1− e−Σts/µn

Σts/µn

. (3.76)

Eliminating ψ1d(0) in equations (3.73) and (3.76), we get:

ψ1d(s) =
Q̄

Σt

(
1− (Σts/µn)e

−Σts/µn

1− e−Σts/µn

)
+ ψ̄1d

(Σts/µn)e
−Σts/µn

1− e−Σts/µn
. (3.77)

We assume that the outgoing fluxes equal the one-dimensional flux at the end point,

and that the area-averaged flux ψ̄n,g,i,j equals the averaged flux of the one-dimensional

transport:

ψx
n,g,i,j = ψy

n,g,i,j = ψ1d(s), (3.78)

ψ̄n,g,i,j = ψ̄1d. (3.79)

Figure 3.9 illustrates the auxiliary equations derived from the one-dimensional trans-

port. Next, we define the distance l to simplify the equations:

l = s/µn. (3.80)

We introduce equations (3.78) and (3.79) into equation (3.77) to get:

ψx
n,g,i,j = ψy

n,g,i,j =
Q̄

Σt

(
1− (Σtl)e

−Σtl

1− e−Σtl

)
+ ψ̄n,g,i,j

(Σtl)e
−Σtl

1− e−Σtl
. (3.81)

The auxiliary equations (3.81) above apply for the case that the x and y com-

ponents of the direction of flight Ω̂n are positive. The auxiliary equations for other
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⌦̂n = (⇠n, ⌘n, µn)
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Auxiliary Equations
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 ̄1d =
1

s

Z s

0
 1d(t)dt

Figure 3.9: Visualization of the auxiliary equations for the simplified step character-
istic method. The direction of flight is assumed with positive x and y
components.

cases are:

ηn < 0 & ξn > 0 :

ψx
n,g,i−1,j = ψy

n,g,i,j =
Q̄

Σt

(
1− (Σtl)e

−Σtl

1− e−Σtl

)
+ ψ̄n,g,i,j

(Σtl)e
−Σtl

1− e−Σtl
, (3.82)

ηn < 0 & ξn < 0 :

ψx
n,g,i−1,j = ψy

n,g,i,j−1 =
Q̄

Σt

(
1− (Σtl)e

−Σtl

1− e−Σtl

)
+ ψ̄n,g,i,j

(Σtl)e
−Σtl

1− e−Σtl
, (3.83)

ηn > 0 & ξn < 0 :

ψx
n,g,i,j = ψy

n,g,i,j−1 =
Q̄

Σt

(
1− (Σtl)e

−Σtl

1− e−Σtl

)
+ ψ̄n,g,i,j

(Σtl)e
−Σtl

1− e−Σtl
. (3.84)
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Our simulations show that the simplified step characteristic (SSC) method is more

accurate than the step method. Moreover, the SSC method has the advantage that

solutions from auxiliary equations are always positive.

3.4.3 The Multiple Balance Method (MB)

The auxiliary equations in the step, and the simplified characteristic methods

contain no neutron physics. So it is more favorable if the auxiliary equations are

similar to the neutron balance equation. Here we generalize the 1-D multiple balance

method, introduced in section 2.3.3, to two-dimensional problems a Cartesian grid.
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Figure 3.10: The weight functions of the four boundaries of the rectangle (i, j). The
weight function of a boundary is 1 on the boundary.
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Consider the rectangle (i, j). To derive the auxiliary equations, a weight function

is defined for each boundary. The weight functions are linear and equal to 1 on a

certain boundary and equal to 0 on the opposite boundary:

fx
i,j(x, y) =

x− xi−1

wi

, (3.85)

f y
i,j(x, y) =

y − yj−1

hj
, (3.86)

fx
i−1,j(x, y) =

xi − x

wi

, (3.87)

f y
i,j−1(x, y) =

yj − y

hj
. (3.88)

The auxiliary equations are obtained by integrating the discrete ordinates equation

(3.24) with the weight function for the outgoing boundaries. (For any angle Ω̂n, see

Table 3.5 to see which boundary is outgoing.) This integration resembles the finite

element method. But in the multiple balance method, the flux in each rectangular

cell is not assumed to have a predefined shape.

The neutron balance equation can be thought of as: the leakage term plus the

collision term equals the scattering source plus the fission source:

Leakage + Collision = Scattering + Fission

Ω̂ ·
∫
f

~∇ψg(~x) d~x +
∫
f

Σtψg(~x) d~x = 1
4π

∑
g′

∫
f

Σsφg′(~x) d~x +
χg

4πk

∑
g′

∫
f

νΣfφg′(~x) d~x.

For the auxiliary equation of the multiple balance method, the discrete ordinates

equation is multiplied by the weight function fd(~x) for an outgoing boundary d, and

integrating over the cell:

Leakage + Collision = Scattering + Fission

Ω̂ ·
∫
f

fd(~x)~∇ψg(~x) d~x +
∫
f

fd(~x)Σtψg(~x) d~x = 1
4π

∑
g′

∫
f

fd(~x)Σsφg′(~x) d~x +
χg

4πk

∑
g′

∫
f

fd(~x)νΣfφg′(~x) d~x.
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By the divergence theorem, we have exactly:

∫
f

fd(~x)~∇ψg(~x) d~x =
∑
c∈∂f

∮
c

fd(~x)ψ(~x) n̂(~x) ds−
∫
f

[
~∇fd(~x)

]
ψ(~x) d~x, (3.89)

where the flux in boundary integral terms are approximated by the boundary-averaged

value, and the flux in the volume integral terms is approximated by the cell-averaged

value:

∮
c

fd(~x)ψ(~x) n̂(~x) ds ≈
∮
c

fd(~x)ψc n̂(~x) ds, (3.90)

∫
f

[
~∇fd(~x)

]
ψ(~x)d~x ≈

∫
f

[
~∇fd(~x)

]
ψ̄d~x. (3.91)

The multiple balance approximation sets the fluxes in the “collision”, “scattering”

and “fission” terms to be the outgoing flux:

Approximations for Auxiliary Equation for the Boundary d:

Leakage Collision Scattering Fission∫
f
fd~∇ψ(~x)d~x ≈ ∑

c∈∂f

∮
c
fdψcn̂ds−

∫
f

[
~∇fd

]
ψ̄d~x ψ(~x) ≈ ψd φ(~x) ≈ φd φ(~x) ≈ φd

Without loss of generality, we derive the auxiliary equations for the case with positive

ηn and positive ξn. The weight functions corresponding to the outgoing boundaries

are fx
i,j(x, y) and f y

i,j(x, y). We multiply the differential discrete ordinates equation
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(3.24) with fx
i,j(x, y), and integrate over the rectangular cell, obtaining:

Leakage:
xi∫

xi−1

yj∫
yj−1

x− xi−1

wi

(
ηn
∂ψn,g(x, y)

∂x
+ ξn

∂ψn,g(x, y)

∂y

)
dydx

Collision: +

xi∫
xi−1

yj∫
yj−1

x− xi−1

wi

Σt,g(x, y)ψn,g(x, y)dydx

Scattering: =
1

4π

G∑
g′=1

xi∫
xi−1

yj∫
yj−1

x− xi−1

wi

Σs,g′→g(x, y)φg′(x, y)dydx

Fission: +
χg(x, y)

4πk

G∑
g′=1

xi∫
xi−1

yj∫
yj−1

x− xi−1

wi

νΣf,g′(x, y)φg′(x, y)dydx,

1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ n ≤M, 1 ≤ g ≤ G. (3.92)

To obtain an equation depending only on ψ̄n,g,i,j , ψx
n,g,i,j, ψy

n,g,i,j (see equation

(3.55) for the form of the auxiliary equations), careful approximations are applied to

equation (3.92) according to the discussions above. The first approximation is applied

to the leakage term, where the flux on each cell boundary is assumed to be constant:

Leakage:
xi∫

xi−1

yj∫
yj−1

x− xi−1

wi

(
ηn
∂ψn,g(x, y)

∂x
+ ξn

∂ψn,g(x, y)

∂y

)
dydx

= ηn

yj∫
yj−1

ψn,g(xi, y)dy −
1

wi

ηn

xi∫
xi−1

yj∫
yj−1

ψn,g(x, y)dydx

+ ξn

xi∫
xi−1

x− xi−1

wi

(ψn,g(x, yj)− ψn,g(x, yj−1)) dx

≈ ηn hj ψ
x
n,g,i,j − ηn hj ψ̄n,g,i,j + ξn

xi∫
xi−1

x− xi−1

wi

(
ψy
n,g,i,j − ψy

n,g,i,j−1

)
dx

= ηn hj ψ
x
n,g,i,j − ηn hj ψ̄n,g,i,j +

1

2
ξnwi ψ

y
n,g,i,j −

1

2
ξnwi ψ

y
n,g,i,j−1. (3.93)

(see equation (3.29) for definitions of averaged scalar flux terms.) The second ap-
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proximation is applied to the collision term, where the flux inside the cell is assumed

to be a constant and equal to the outgoing flux:

Collision:
xi∫

xi−1

yj∫
yj−1

x− xi−1

wi

Σt,g(x, y)ψn,g(x, y)dydx

≈
xi∫

xi−1

yj∫
yj−1

x− xi−1

wi

Σt,g,i,jψ
x
n,g,i,jdydx

=
1

2
wi hj Σt,g,i,jψ

x
n,g,i,j. (3.94)

The approximation in equation (3.94) might seem strange, since when integrating over

a cell, it is more natural to assume the flux to be a constant and equal to the cell-

averaged flux. However in the multiple balance equation, each term in the auxiliary

equation is meant to resemble the balance equation, “centered” on the boundary of

a cell. Therefore, the approximation in equation (3.94) assumes that the flux inside

the cell is taken to be equal to the outgoing flux. This approximation is applied to

the scattering and fission term as well.

Scattering:
xi∫

xi−1

yj∫
yj−1

x− xi−1

wi

Σs,g′→g(x, y)φg′(x, y)dydx

≈
xi∫

xi−1

yj∫
yj−1

x− xi−1

wi

Σs,g′→g,i,jφ
x
g′,i,jdydx

=
1

2
wi hj Σs,g′→g,i,jφ

x
g′,i,j, (3.95)

Fission:
xi∫

xi−1

yj∫
yj−1

x− xi−1

wi

νΣf,g′(x, y)φg′(x, y)dydx

≈
xi∫

xi−1

yj∫
yj−1

x− xi−1

wi

νΣf,g′,i,jφ
x
g′,i,jdydx

=
1

2
wi hj νΣf,g′,i,jφ

x
g′,i,j. (3.96)
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(see equation (3.29) for definitions of averaged scalar flux terms.) Introducing the

four approximations (3.93), (3.94), (3.95) and (3.96) into equation (3.92), we get:

ηn hj ψ
x
n,g,i,j − ηn hj ψ̄n,g,i,j +

1

2
ξnwi ψ

y
n,g,i,j −

1

2
ξnwi ψ

y
n,g,i,j−1 +

1

2
wi hj Σt,g,i,jψ

x
n,g,i,j

=
1

4π

G∑
g′=1

1

2
wi hj Σs,g′→g,i,jφ

x
g′,i,j +

χg,i,j

4πk

G∑
g′=1

1

2
wi hj νΣf,g′,i,jφ

x
g′,i,j.

We recall the definition of the source terms from equations (3.40) and (3.39). The

equation (3.97) then reduces to:

ηn hj ψ
x
n,g,i,j − ηn hj ψ̄n,g,i,j +

1

2
ξnwi ψ

y
n,g,i,j −

1

2
ξnwi ψ

y
n,g,i,j−1 +

1

2
wi hj Σt,g,i,jψ

x
n,g,i,j

=
1

2
wi hj Q

x,−
s,g,i,j +

1

2
wi hj Q

x,−
f,g,i,j.

We divide equation (3.97) by the term 1
2
wi hj to obtain the desired auxiliary equation

for the right boundary x = xi:

ηn
ψx
n,g,i,j − ψ̄n,g,i,j

wi/2
+ ξn

ψy
n,g,i,j − ψy

n,g,i,j−1

hj
+ Σt,g,i,jψ

x
n,g,i,j = Qx,−

s,g,i,j +
1

k
Qx,−

f,g,i,j.(3.97)

If we integrate the differential discrete ordinates equation (3.24) with f y
i,j(x, y), and

follow the process as described above, the resultant equation is the desired auxiliary

equation for the top boundary y = yj:

ξn
ψy
n,g,i,j − ψ̄n,g,i,j

hj/2
+ ηn

ψx
n,g,i,j − ψx

n,g,i−1,j

wi

+ Σt,g,i,jψ
y
n,g,i,j = Qy,−

s,g,i,j +
1

k
Qy,−

f,g,i,j,

(3.98)

where we refer to equation (3.42) and equation (3.39) for the definition of the source

terms. We recall the neutron balance equation (3.48):

ηn
ψx
n,g,i,j − ψx

n,g,i−1,j

wi

+ ξn
ψy
n,g,i,j − ψy

n,g,i,j−1

hj
+ Σt,g,i,jψ̄n,g,i,j = Q̄s,g,i,j +

1

k
Q̄f,g,i,j,
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which is similar to the auxiliary equations (3.97) and (3.98). So the method is named

as the “multiple balance method”. These auxiliary equations are visualized in

Figure 3.11. Now for each cell and direction of flight, the number of unknowns, which

is 3, equals the number of available equations, which consists of the balance equation

and 2 auxiliary equations.

 x
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k
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Figure 3.11: Visualization of the balance equation and auxiliary equations for the
multiple balance method. The direction of flight is assumed with positive
x and y components. Quantities that are the same are marked with the
same colors. Quantities that are different are marked with the different
colors.

The auxiliary equations (3.97) and (3.98) above are valid for the case that the x
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and y components are positive. The auxiliary equations for other cases are:

ηn < 0 & ξn > 0 :

ηn
ψx
n,g,i−1,j − ψ̄n,g,i,j

wi/2
+ ξn

ψy
n,g,i,j − ψy

n,g,i,j−1

hj
+ Σt,g,i,jψ

x
n,g,i−1,j = Qx,+

s,g,i−1,j +
1

k
Qx,+

f,g,i−1,j,

(3.99)

ξn
ψy
n,g,i,j − ψ̄n,g,i,j

hj/2
+ ηn

ψx
n,g,i,j − ψx

n,g,i−1,j

wi

+ Σt,g,i,jψ
y
n,g,i,j = Qy,−

s,g,i,j +
1

k
Qy,−

f,g,i,j,

(3.100)

and

ηn < 0 & ξn < 0 :

ηn
ψx
n,g,i−1,j − ψ̄n,g,i,j

wi/2
+ ξn

ψy
n,g,i,j − ψy

n,g,i,j−1

hj
+ Σt,g,i,jψ

x
n,g,i−1,j = Qx,+

s,g,i−1,j +
1

k
Qx,+

f,g,i−1,j,

(3.101)

ξn
ψy
n,g,i,j−1 − ψ̄n,g,i,j

hj/2
+ ηn

ψx
n,g,i,j − ψx

n,g,i−1,j

wi

+ Σt,g,i,jψ
y
n,g,i,j−1 = Qy,+

s,g,i,j−1 +
1

k
Qy,+

f,g,i,j−1,

(3.102)

and

ηn > 0 & ξn < 0 :

ηn
ψx
n,g,i,j − ψ̄n,g,i,j

wi/2
+ ξn

ψy
n,g,i,j − ψy

n,g,i,j−1

hj
+ Σt,g,i,jψ

x
n,g,i,j = Qx,−

s,g,i,j +
1

k
Qx,−

f,g,i,j,

(3.103)

ξn
ψy
n,g,i,j−1 − ψ̄n,g,i,j

hj/2
+ ηn

ψx
n,g,i,j − ψx

n,g,i−1,j

wi

+ Σt,g,i,jψ
y
n,g,i,j−1 = Qy,+

s,g,i,j−1 +
1

k
Qy,+

f,g,i,j−1.

(3.104)

3.5 Sweep

The previous sections introduce how to solve for the unknown cell-averaged and

boundary fluxes for a single rectangle. We recall Figure 3.2 that the geometry is
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a Cartesian grid. Each rectangular cell is visited once, where the cell-averaged and

boundary fluxes are updated with the equations introduced in the sections 3.2 and

3.4. The process of visiting all rectangular cells exactly once is called a “sweep”.

And the order of visit is called a “sweep order”. The sweep order must satisfy the

condition that the incoming fluxes of a rectangle are calculated before the rectangular

cell is visited. Figure 3.12, 3.13, 3.14 and 3.15 illustrate possible sweep orders for cases

determined by whether the x and y components of the direction Ω̂n are positive or

negative.

(1,J) (2,J) (I-1,J) (I,J)

(1,J-1) (2,J-1) (I-1,J-1) (I,J-1)

(1,2) (2,2) (I-1,2) (I,2)

(1,1) (2,1) (I-1,1) (I,1)

⌦̂n = (⇠n, ⌘n, µn)

Figure 3.12: The sweep order of the Cartesian spatial grid for the direction with
positive x and y components. The order begins with the rectangle with
coordinate (1, 1), and then sweeps row by row to the rectangle with
coordinate (I, J).
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(1,J) (2,J) (I-1,J) (I,J)

(1,J-1) (2,J-1) (I-1,J-1) (I,J-1)

(1,2) (2,2) (I-1,2) (I,2)

(1,1) (2,1) (I-1,1) (I,1)

⌦̂n = (⇠n, ⌘n, µn)

Figure 3.13: The sweep order of the Cartesian spatial grid for the direction with
negative x component and positive y component . The order begins
with the rectangle with coordinate (I, 1), and then sweeps row by row
to the rectangle with coordinate (1, J).

(1,J) (2,J) (I-1,J) (I,J)

(1,J-1) (2,J-1) (I-1,J-1) (I,J-1)

(1,2) (2,2) (I-1,2) (I,2)

(1,1) (2,1) (I-1,1) (I,1)

⌦̂n = (⇠n, ⌘n, µn)

Figure 3.14: The sweep order of the Cartesian spatial grid for the direction with
negative x component and negative y component . The order begins
with the rectangle with coordinate (I, J), and then sweeps row by row
to the rectangle with coordinate (1, 1).
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(1,J) (2,J) (I-1,J) (I,J)

(1,J-1) (2,J-1) (I-1,J-1) (I,J-1)

(1,2) (2,2) (I-1,2) (I,2)

(1,1) (2,1) (I-1,1) (I,1)

⌦̂n = (⇠n, ⌘n, µn)

Figure 3.15: The sweep order of the Cartesian spatial grid for the direction with
positive x component and negative y component . The order begins
with the rectangle with coordinate (1, J), and then sweeps row by row
to the rectangle with coordinate (I, 1).
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CHAPTER IV

Numerical Results for Two-Dimensional Problems

with Cartesian Spatial Grids

The performance of the discrete ordinates (SN) methods on 2-D Cartesian spatial

grids are studied in this chapter. For simplicity, the names of methods are abbreviated

in Table 4.1. Since MC solutions have no truncation errors in space and angle, these

solutions serve as the reference. We simulate a very large number of particles to

minimize the statistical errors. The two problems discussed were published in 1982.

They were good benchmarks for 2-D Cartesian grid computer codes developed at that

time (Li et al., 2013).

Table 4.1: List of numerical methods’ abbreviations and their definitions
Method Description
“MC” Monte Carlo
“MOC AmPn Dd” Method of characteristics with m azimuthal an-

gles in a quadrant, n polar angles in an octant,
and a ray spacing of d cm.

“string Sn” SN method with the level of angles equals n,
with method string. “STEP” stands for the
step method. “SSC” stands for the simplified
step characteristic method. “MB” stands for
the multiple balance method.
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4.1 BWR Assembly Problem

First we consider a boiling water reactor (BWR) assembly problem, which contains

4x4 fuel pins in the center, enclosed by light water. The materials have two energy

groups, where the fission spectrum is 1.0 in the first group and 0.0 in the second

group. The four outer boundaries are reflecting. Figure 4.1 illustrates the geometry.

Table 4.2 lists the two-group cross sections.
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Figure 4.1: The geometry of the BWR cell problem.

To study the truncation errors in the deterministic methods, we investigate a

coarse grid of 6x6 rectangular cells and a fine grid of 21x21 rectangular cells. Figure

4.2 illustrates the coarse grid and the fine grid.

Table 4.3 summarizes the k-eigenvalue comparison and the time cost, and the

maximum to minimum(max-min) pin power ratio. For the reference Monte Carlo
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Figure 4.2: The grids of BWR assembly problem. The coarse grid has 6x6 rectangular
cells, and the fine grid has 21x21 rectangular cells.

Table 4.2: List of two-group cross sections for the BWR assembly problem
Material Group

i
Absorp-
tion Σa

(cm−1)

Nufission
νΣf (cm−1)

Trans-
port Σt

(cm−1)

Scattering Σs,i→j

(cm−1), Group j

1 2
1 1 8.62700E-3 6.20300E-3 1.96647E-1 1.78000E-1 1.00200E-2

2 6.95700E-2 1.10100E-1 5.96159E-1 1.08900E-3 5.25500E-1
2 1 6.84000E-4 0. 2.22064E-1 1.99500E-1 2.18800E-2

2 8.01600E-3 0. 8.87874E-1 1.55800E-3 8.78300E-1

calculation, 50 million Monte Carlo particles were simulated, so that the reference

k-eigenvalue has an uncertainty of 12.5 pcm, and the reference max-min pin power

ratio has an uncertainty of 0.0005.

The Monte Carlo pin-cell power distribution is shown in Figure 4.3, in which the

pin-cell power is normalized so that the maximum is 1.0. The problem is symmetric

about the diagonal from top-left to bottom-right, as are the pin-cell powers. The

Monte Carlo uncertainties are about 0.0005.

Next, we study the difference in k-eigenvalues and the maximum to minimum
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Figure 4.3: The pin-cell power of the Monte Carlo reference for the BWR assembly
problem.

ratio of the pin-cell power.
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Table 4.3:
List of k-effectives, time costs, and max-min pin power ratios of the BWR
assembly problem

Method Keff Keff
Error.
(pcm)

Time per It-
eration (ms)

Max-min Pin
Power Ratio

MC 1.212352 12.5 Reference 1.2271 ±
0.0005

Coarse Grid
MOC D0.5 A4P2 1.217459 510.8 0.421 1.1911
MOC D0.5 A4P4 1.217392 504.1 0.569 1.1915
MOC D0.5 A8P4 1.217124 477.3 0.911 1.1971
MOC D0.2 A4P2 1.217778 542.7 0.768 1.1930
MOC D0.2 A4P4 1.217710 535.9 1.122 1.1934
MOC D0.2 A8P4 1.217072 472.0 2.122 1.1940
MOC D0.1 A4P2 1.217471 511.9 1.392 1.1925
MOC D0.1 A4P4 1.217402 505.1 2.102 1.1929
MOC D0.1 A8P4 1.217130 477.9 4.275 1.1935
STEP S4 1.215507 315.5 0.359 1.1304
STEP S8 1.213787 143.5 0.989 1.1289
STEP S16 1.213106 75.4 2.659 1.1280
SSC S4 1.219611 725.9 0.398 1.168
SSC S8 1.218131 578.0 1.195 1.168
SSC S16 1.217545 519.4 3.052 1.168
MB S4 1.206832 -552.0 0.978 1.215
MB S8 1.205432 -691.9 2.406 1.207
MB S16 1.204961 -739.1 9.537 1.206

Fine Grid
MOC D0.5 A4P2 1.130444 -8190.8 0.914 1.1965
MOC D0.5 A4P4 1.130416 -8193.5 1.482 1.1968
MOC D0.5 A8P4 0.826982 -38536.9 2.794 1.2337
MOC D0.2 A4P2 1.213789 143.7 2.123 1.2258
MOC D0.2 A4P4 1.213738 138.6 3.430 1.2262
MOC D0.2 A8P4 1.213275 92.4 6.882 1.2254
MOC D0.1 A4P2 1.213523 117.1 4.121 1.2249
MOC D0.1 A4P4 1.213471 111.9 6.645 1.2253
MOC D0.1 A8P4 1.213275 92.4 13.090 1.2254
STEP S4 1.215466 311.4 3.583 1.1998
STEP S8 1.214062 171.0 12.466 1.1944
STEP S16 1.213551 120.0 63.514 1.1931
SSC S4 1.215768 341.6 3.936 1.2181
SSC S8 1.214500 214.8 14.928 1.2130
SSC S16 1.214036 168.4 68.183 1.2122
MB S4 1.213016 66.5 11.592 1.2336
MB S8 1.211896 -45.5 40.161 1.2256
MB S16 1.211502 -84.9 210.452 1.2246
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Figures 4.4 and 4.5 plot the k-eigenvalues errors and max-min pin power ratio as

a function of computation time. Not surprisingly, the fine grid solutions are seen to

be more accurate than the coarse grid solution.
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Figure 4.4: The error in k and max-min pin power ratio for the BWR assembly prob-
lem on the coarse grid. The MOC solutions are simulated with a variety
of angular quadrature sets: A4P2, A4P4, and A8P4. The SN solutions
are simulated with a variety of angular quadrature sets: S4, S8, S12, S16,
and S20. The dashed line is the Monte Carlo reference.

On the coarse grid, the errors in k are similar, but the STEP method is surprisingly

the best. For the max-min pin power ratio, the MB method is the most accurate,

then is MOC, SSC, and STEP is order of decreasing accuracy.
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BWR Cell Fine Grid
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Figure 4.5: The error in k and max-min pin power ratio for the BWR assembly prob-
lem on the fine grid. The MOC solutions are simulated with a variety
of angular quadrature sets: A4P2, A4P4, and A8P4. The SN solutions
are simulated with a variety of angular quadrature sets: S4, S8, S12, S16,
and S20. The dashed line is the Monte Carlo reference.

On the fine grid, the MB method has most accurate k. For the max-min pin

power ratio, the MB and MOC methods are equally accurate. But SSC method is

surprisingly the best. The MOC solution with 0.5 cm ray spacing is very inaccurate,

because the ray spacing is wider than the size of the fine cells. In the next subsection,

a problem with a strong absorber is studied.
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4.2 LWR Assembly Problem with Burnable Absorber

The second problem is an light water reactor (LWR) assembly problem, which

contains 4x4 pin-cells in the center, enclosed by light water. One of the pin-cells is

filled with a burnable absorber, which has a strong absorption. The materials have

two energy groups, where the fission spectrum is 1.0 in the first energy and 0.0 in the

second energy group. The four outer boundaries are reflecting. Figure 4.6 illustrates

the geometry. Table 4.4 lists the two-group cross sections.
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Figure 4.6: The geometry of the LWR assembly problem with burnable absorber.

Similar to the first problem, we investigate two grids. Figure 4.7 illustrates the

coarse grid and fine grid.

Table 4.5 compares the k-eigenvalues, the time costs, and max-min pin power

ratios. For the Monte Carlo reference calculation, 100 million Monte Carlo particles
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Figure 4.7: The grids of LWR assembly problem. The coarse grid has 6x6 rectangular
cells, and the fine grid has 21x21 rectangular cells.

Table 4.4:
List of two-group cross sections for the LWR assembly problem with burn-
able absorber

Material Group
i

Absorp-
tion Σa

(cm−1)

Nufission
νΣf (cm−1)

Totale Σt

(cm−1)
Scattering Σs,i→j

(cm−1), Group j

1 2
1 1 9.00000E-3 6.20000E-3 1.99000E-1 1.80000E-1 1.00000E-2

2 7.00000E-2 1.10000E-1 6.01000E-1 1.00000E-3 5.30000E-1
2 1 9.00000E-3 6.20000E-3 1.99000E-1 1.80000E-1 1.00000E-2

2 3.00000E+0 1.10000E-1 3.53100E+0 1.00000E-3 5.30000E-1
3 1 7.00000E-4 0. 2.22700E-1 2.00000E-1 2.20000E-2

2 8.00000E-3 0. 8.90000E-1 2.00000E-3 8.80000E-1

were simulated, so that the reference k-eigenvalue has an uncertainty of 1.8 pcm, and

the max-min pin power ratio has an uncertainty of 0.0010%.

The Monte Carlo pin-cell power is shown in Figure 4.8, in which the pin-cell

power is normalized so that the maximum is 1.0. The problem is symmetric about

the diagonal from top-left to bottom-right, so as the pin-cell powers. The Monte

Carlo uncertainties in the value are about 0.0010.
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Figure 4.8: The pin-cell power of the Monte Carlo reference for the LWR assembly
problem.

Next, we study the difference in k-eigenvalues and the maximum to minimum

ratio of the pin-cell power.
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Table 4.5:
List of k-effectives, time costs and max-min pin power ratios of the LWR
cell problem

Method Keff Keff
Error.
(pcm)

Time per It-
eration (ms)

Max-min Pin
Power Ratio

MC 1.212352 12.5 Reference 3.6063 ±
0.0010

Coarse Grid
MOC D0.5 A4P2 0.856899 -2391.4 0.428 3.3343
MOC D0.5 A4P4 0.857103 -2371.0 0.561 3.3376
MOC D0.5 A8P4 0.857085 -2372.8 0.922 3.3315
MOC D0.2 A4P2 0.863002 -1781.1 0.787 3.3663
MOC D0.2 A4P4 0.863210 -1760.2 1.123 3.3697
MOC D0.2 A8P4 0.865128 -1568.5 2.123 3.3875
MOC D0.1 A4P2 0.863676 -1713.7 1.400 3.3721
MOC D0.1 A4P4 0.863883 -1692.9 2.142 3.3755
MOC D0.1 A8P4 0.864604 -1620.8 4.253 3.3857
STEP S4 0.865328 -1548.5 0.373 3.3353
STEP S8 0.869974 -1083.8 0.995 3.3774
STEP S16 0.871599 -921.4 2.761 3.3912
SSC S4 0.846108 -3470.5 0.392 3.2439
SSC S8 0.851100 -2971.2 1.202 3.2812
SSC S16 0.852849 -2796.4 3.089 3.2954
MB S4 0.898525 1771.3 1.000 3.8393
MB S8 0.900787 1997.4 2.388 3.8431
MB S16 0.901629 2081.6 10.560 3.8482

Fine Grid
MOC D0.5 A4P2 0.819722 -6109.0 0.893 3.5392
MOC D0.5 A4P4 0.819860 -6095.3 1.421 3.5421
MOC D0.5 A8P4 0.622445 -25836.8 2.742 3.1689
MOC D0.2 A4P2 0.876254 -455.8 2.098 3.5556
MOC D0.2 A4P4 0.876399 -441.4 3.434 3.5586
MOC D0.2 A8P4 0.877735 -307.8 6.704 3.5709
MOC D0.1 A4P2 0.876638 -417.4 4.062 3.5597
MOC D0.1 A4P4 0.876783 -402.9 6.840 3.5628
MOC D0.1 A8P4 0.877283 -352.9 13.933 3.5706
STEP S4 0.865271 -1554.2 3.876 3.4382
STEP S8 0.868390 -1242.3 13.231 3.4534
STEP S16 0.869472 -1134.1 61.240 3.4593
SSC S4 0.862534 -1827.8 4.297 3.4531
SSC S8 0.866061 -1475.1 15.796 3.4684
SSC S16 0.867315 -1349.7 68.754 3.4765
MB S4 0.880738 -7.4 12.459 3.6344
MB S8 0.882675 186.3 41.535 3.6222
MB S16 0.883457 264.5 224.036 3.6272
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Figures 4.9 and 4.10 plot the errors in the k-eigenvalues and fluxes as a function

of computation time. Again, the fine grid solutions are more accurate than the coarse

grid solution.
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Figure 4.9: The error in k and the max-min pin power ratio for the LWR cell problem
with burnable absorber on the coarse grid. The MOC solutions are simu-
lated with a variety of angular quadrature sets: A4P2, A4P4, and A8P4.
The SN solutions are simulated with a variety of angular quadrature sets:
S4, S8, S12, S16, and S20. The dashed line is the Monte Carlo reference.

The accuracies of different methods on the coarse grid are comparable. For the

max-min pin power ratio, the MB method over-estimates the ratio, but other methods

underestimate it.
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LWR Cell Fine Grid
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Figure 4.10: The error in k and max-min pin power ratio for the LWR cell prob-
lem with burnable absorber on the fine grid. The MOC solutions are
simulated with a variety of angular quadrature sets: A4P2, A4P4, and
A8P4. The SN solutions are simulated with a variety of angular quadra-
ture sets: S4, S8, S12, S16, and S20. The dashed line is the Monte Carlo
reference.

On the find grid, the MB method has the best accuracy, and is slightly more

accurate than the MOC method. SSC and STEP method has the worst accuracies.

In conclusion, depending on the problems, the MB methods are comparable to or

slightly better than MOC method. It is clear than MB method is significantly more

accurate than the SSC and STEP method. In the next chapter, two-dimensional

problems on curved spatial grid are studied.
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CHAPTER V

Two-Dimensional Problems with Curved Spatial

Grids

In the past, multidimensional discrete ordinates methods treated only Cartesian

and triangular mesh geometries, except for the simple cases in which the problem

could be transformed to cylindrical or spherical coordinates. This chapter presents

several working discrete ordinates methods for problems with spatial grids having

curved boundaries. The focus of this chapter is two-dimensional (x − y geometry)

problems, in which the solution is independent of the axial variable z.

5.1 The Scope of Geometry

We consider spatial grids that consist of any planar shapes bounded by lines

and circles or any other curve that can be parametrized. Although our method is

not restricted to lines and circular arcs, we discuss only lines and circular arcs as

examples. The reader may underestimate the complexity of geometries formed by

lines and circular arcs. So in Figure 5.1, a geometry containing a triangle (three

lines) and three circles is provided. In this figure, there are 13 spacial cells, each of

which is bounded by lines and circular arcs. Since most of the readers of this thesis will

have a nuclear engineering background, most of the examples provided in this thesis
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assume a special case shown in Figure 5.2. This is a simplified fuel assembly from

a pressurized water reactor (PWR), which is composed of a coarse grid of squares.

Inside each square, concentric circles centered at the center of the square could be

present. Such a square with potential concentric circles inside is called a “pin-cell”.

Inside each pin-cell, there are fine spatial cells bounded by lines and circles. One

example of the pin-cell is the green square in Figure 5.2. Next, some terminologies

are introduced to facilitate later discussions.

Figure 5.1: Example of planar geometry formed by lines and circular arcs. There are
13 spatial cells, and the spatial cell numbered “0” is green. The black
lines are the boundaries inside, and the red lines are the boundaries of
the outline.
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Figure 5.2: A simplified PWR assembly, which is composed of a grid of squares.
Each square may contain concentric circles, which is called a “pin-cell”.
One example is marked in green, which is a guide tube. Most problems
considered in this thesis are of this type. There is a “coarse” grid of square
pin-cells, and each coarse cell has “fine” spatial cells bounded by lines and
circular arcs.
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5.1.1 Topology

The curves in Figure 5.1 divide the plane into 13 different finite areas. Each area is

called a “cell”, and the curves bounding it in the counter-clockwise direction are called

“boundaries”. Figure 5.3 describes two cells and their boundaries. All boundaries

are oriented in the counter-clockwise direction. The direction of a boundary is relative

to a cell. For cell f , all boundaries are denoted as C(f):

C(f) = {c|c is a boundary of cell f}. (5.1)

f1

f2
c2

c1

Figure 5.3: Two cells and their boundaries. Two boundaries c1 and c2 have opposite
directions when belonging two neighboring cells f1 and f2

Figure 5.3 shows that though boundaries c1 and c2 are coincident, they have differ-

ent directions and belong to two neighboring cells f1 and f2. Table 5.1 summarizes

important terms.

It is important to keep in mind that boundaries of a cell have directions as if

one walks on the boundaries in the counter-clockwise direction. The outer normal

vector of a boundary is a unit vector perpendicular to the tangential direction of

the boundary, and pointing to the “right” as one walks on the boundary counter-
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Table 5.1: List of topology terms
Term Explanation
Cell A two-dimension bounded area
Boundary The curves bound a cell, in counter-

clockwise direction

clockwise. See Figure 5.4 for clarification.

c

n̂(t)

Figure 5.4: Normal vector n̂(t) of boundary c pointing to the “right”.

5.1.2 Parametrization

A boundary is parametrized by associating all points on it with real numbers.

Here is an example:

~x = ~p(t), a ≤ t ≤ b, (5.2)

where the parameter t increases in the direction of the boundary. A linear boundary

can be parametrized by:

~x = ~o+ t d̂, a ≤ t ≤ b, (5.3)

|d̂| = 1, (5.4)
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where ~o is one point that the line pass passes through, and d̂ is a unit vector pointing

along the line. A visualization of the parametrization of a linear boundary is shown

in Figure 5.5.

~O

d̂

t = a

t = b

Figure 5.5: The parametrization of a linear boundary. The location ~O is a point on
the line and d̂ is a unit vector in the direction of the line. The points with
parameter of t = a and t = b are the end points of the linear boundary.

A portion of a circular arc boundary can be parametrized by:

~x = ~c+ r

 cos t

sin t

 , a ≤ t ≤ b, (5.5)

where ~c is the center and r is the radius. A visualization of the parametrization of a

circular arc boundary is shown in Figure 5.6.

The linear and circular arc boundaries are very powerful in the construction of

complex geometries. For example, the outline of any cell in Figure 5.1 can be formed

by the shapes described in Figure 5.5 and 5.6.
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~O

t = at = b

rr

Figure 5.6: The parametrization of a circular arc boundary. The location ~O is the
center of the circle, and r is the radius of the circle. The points with
parameter of t = a and t = b are the end points of the circular arc
boundary.

5.1.3 Cell and Boundary Integrals

We consider a boundary c with parametrization:

~x = ~p(t), a ≤ t ≤ b, (5.6)

with normal vector n̂(t) as defined in Figure 5.4. We consider the x and y components

of the position and normal vectors:

~x(t) =

 x(t)

y(t)

 , (5.7)

n̂(t) =

 nx(t)

ny(t)

 , (5.8)
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where x(t), y(t), n̂x(t), and n̂y(t) are scalar functions of t. Several one-dimensional

integrals are defined as:

A0(c) =
∮
c

ds =

b∫
a

dt, (5.9)

A1x(c) =
∮
c

nx(s)ds =

b∫
a

nx(t)dt, (5.10)

A1y(c) =
∮
c

ny(s)ds =

b∫
a

ny(t)dt, (5.11)

A2xx(c) =
∮
c

nx(s)x(s)ds =

b∫
a

nx(t)x(t)dt, (5.12)

A2xy(c) =
∮
c

nx(s) y(s)ds =

b∫
a

nx(t) y(t)dt, (5.13)

A2yx(c) =
∮
c

ny(s)x(s)ds =

b∫
a

ny(t)x(t)dt, (5.14)

A2yy(c) =
∮
c

ny(s) y(s)ds =

b∫
a

ny(t) y(t)dt, (5.15)

and

~A1(c) =
∮
c

n̂(s)ds =

b∫
a

 nx(t)

ny(t)

 dt =

 A1x(c)

A1y(c)

 . (5.16)

Next for a cell f , we define some two-dimensional integrals:

M0(f) =
∫
f

d~x, (5.17)

M1x(f) =
∫
f

xd~x, (5.18)

M1y(f) =
∫
f

yd~x, (5.19)

where d~x = dxdy. Specifically, M0(f) is the area of the cell f , and the point
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(
M1x(f)
M0(f)

, M1y(f)

M0(f)

)
is the center of mass of cell f .

5.2 The Multigroup Discrete Ordinates Neutron Transport

Equation

We again consider the multigroup neutron transport equations with isotropic scat-

tering. These equations are the topic of this thesis; our goal is to discretize them for

problems defined on the spatial grids defined in the earlier section.

Ω̂ · ~∇ψg(~x, Ω̂) + Σt,g(~x)ψg(~x, Ω̂) =
1

4π

G∑
g′=1

Σs,g′→g(~x)φg′(~x)

+
χg(~x)

4πk

G∑
g′=1

νΣf,g′φg′(~x), (5.20)

φg(~x) =
∫
4π

ψg(~x, Ω̂′)dΩ̂′. (5.21)

Definitions of each quantity in this equation can be found in Table 5.2. For simplicity,

we have again assumed isotropic scattering in equation (5.20). Equation (5.21) is the

relationship between scalar flux and angular flux.

The discrete ordinates method approximates the neutron transport equation by

replacing the continuous angular variable Ω̂ by a finite set of discrete angles Ω̂n. These

approximations reduce the neutron transport equation to the discrete ordinates equa-

tion given next. Definitions of additional terms can be found in Table 5.3. Equation

(5.23) gives the relationship between the angular flux and the scalar flux.
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Table 5.2: List of definitions of terms in neutron transport equation
Term Type Explanation
~x vector location
Ω̂ unit vector direction
g integer the index of an energy group
G positive integer the number of energy groups
ψg(~x, Ω̂) scalar the angular flux at location ~x, traveling at angle

Ω̂, in group g
~∇ operator the vector gradient operator for a scalar function
Σt,g(~x) scalar the macroscopic total cross section at ~x, for

group g
Σs,g′→g(~x) scalar the isotropic macroscopic scattering cross sec-

tion at ~x, scattering from energy group g′ to
group g

φg(~x) scalar the scalar flux at ~x, for group g
χg(~x) scalar the neutron fission probability into group g, at

~x (the “fission spectrum”)
νΣf,g(~x) scalar the macroscopic neutron yield cross section at

location ~x, for group g
k scalar the effective reactivity coefficient, the eigenvalue

of the problem

Ω̂n · ~∇ψn,g(~x) + Σt,g(~x)ψn,g(~x) =
1

4π

G∑
g′=1

Σs,g′→g(~x)φg′(~x)

+
χg(~x)

4πk

G∑
g′=1

νΣf,g′φg′(~x), (5.22)

φg(~x) =
M∑
n=1

ωnψn,g(~x), (5.23)

M∑
n=1

ωn = 4π. (5.24)

The discrete ordinates equations describe the angular discretized neutron physics

at the point ~x. Integration over a cell is necessary to obtain cell-averaged neutron

physics. We integrate the discrete ordinates equation over a cell f , with the assump-

tion that the material inside f is homogeneous. The newly-appearing quantities in

the cell-integrated discrete ordinates equation are defined in Table 5.4. An example

101



Table 5.3: List of definitions of additional terms in discrete ordinate equation
Term Type Explanation
n integer the index of discrete angle
M integer the total number of discrete angles
Ω̂n unit vector the direction of flight
ωn scalar the weight of the discrete angle at index n, i.e.

the weight of Ω̂n

ψn,g(~x) scalar the neutron angular flux at ~x, traveling in direc-
tion Ω̂n, in group g

of a cell f and its boundaries C(f) is illustrated in Figure 5.7.

Ω̂n ·
∫
f

~∇ψn,g(~x)d~x+ Σt,g,f

∫
f

ψn,g(~x)d~x

=
1

4π

G∑
g′=1

Σs,g′→g,f

∫
f

φg′(~x)d~x+
1

4πk
χg,f

G∑
g′=1

νΣf,g′,f

∫
f

φg′(~x)d~x.

Region f

Boundaries of 
C(f) = {c1, c2, c3, c4}

f

c1

c2

c3

c4

Figure 5.7: An example of a cell f and its boundaries C(f). This example has four
boundaries c1, c2, c3 and c4.

The integration of the first term with the gradient operator can be expressed as
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Table 5.4:
List of definitions of additional terms in cell-integrated discrete ordinate
equation

Term Type Explanation
Σt,g,f scalar the macroscopic total cross section in cell f , for group

g
Σs,g′→g,f scalar the macroscopic scattering cross section in cell f , scat-

tering from group g′ to group g
χg,f scalar the neutron fission probability into group g, in cell f
νΣf,g,f scalar the macroscopic neutron yield cross section in cell f ,

for group g
ψn,g,c scalar the averaged angular flux on boundary c for group g,

in direction Ω̂n

ψ̄n,g,f scalar the averaged angular flux in cell f , for group g, in
direction Ω̂n

φ̄g,f scalar the averaged scalar flux in cell f , for group g
φg,c scalar the averaged scalar flux on the boundary c, for group

g
M0(f) scalar the volume of cell f
~A1(c) vector an integration quantity for boundary c in the direction

of boundary normal, see equation (5.16)
C(f) set the set of all boundaries of cell f , see equation (5.1)
n̂(~x) unit vector the normal vector at location ~x on a boundary, see

Figure 5.4 for definition
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a sum of boundary integrals by the Divergence Theorem:

∫
f

~∇ψn,g(~x)d~x =
∑

c∈C(f)

∮
c

n̂(s)ψn,g(~x(s))ds. (5.25)

We further define some cell-averaged fluxes and some boundary-averaged fluxes:

ψn,g,c =
Ω̂n ·

∮
c n̂(s)ψn,g(~x(s))ds

Ω̂n ·
∮
c n̂(s)ds

=
Ω̂n ·

∮
c n̂(s)ψn,g(~x(s))ds

Ω̂n · ~A1(c)
, (5.26)

φg,c =
Ω̂n ·

∮
c n̂(s)φg(~x(s))ds

Ω̂n ·
∮
c n̂(s)ds

=
Ω̂n ·

∮
c n̂(s)φg(~x(s))ds

Ω̂n · ~A1(c)
, (5.27)

ψ̄n,g,f =

∫
f ψn,g(~x)d~x∫

f d~x
=

∫
f ψn,g(~x)d~x

M0(f)
, (5.28)

φ̄g,f =

∫
f φg(~x)d~x∫

f d~x
=

∫
f φg(~x)d~x

M0(f)
. (5.29)

The cell-averaged angular flux and boundary-averaged angular fluxes are illus-

trated in Figure 5.8.

Then the cell-averaged discrete-ordinates multigroup transport equation is con-

cisely expressed as equation (5.30). This equation describes the conservation of neu-

trons inside the cell f with energy group g and traveling at direction index n. It is

also called the “neutron balance equation”.

∑
c∈C(f)

Ω̂n · ~A1(c)ψn,g,c + Σt,g,fM0(f)ψ̄n,g,f

=
1

4π

G∑
g′=1

Σs,g′→g,fM0(f)φ̄g′,f +
1

4πk
χg,f

G∑
g′=1

νΣf,g′,fM0(f)φ̄g′,f . (5.30)

The terms on the right hand side of equation (5.30) are the source terms. Addi-
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 ̄n,g,f

 n,g,c1

 n,g,c2

 n,g,c3

 n,g,c4

Figure 5.8: An illustration of the averaged angular fluxes in direction Ω̂n and group
g of cell f and its four boundaries c1, c2, c3 and c4.

tional quantities are defined in Table 5.5 to the simplify the notation.

Q̄s,g,f =
1

4π

G∑
g′=1

Σs,g′→g,f φ̄g′,f , (5.31)

Q̄f,g,f =
1

4π
χg,f

G∑
g′=1

νΣf,g′,f φ̄g′,f , (5.32)

Qs,g,f,c =
1

4π

G∑
g′=1

Σs,g′→g,fφg′,c, (5.33)

Qf,g,f,c =
1

4π
χg,f

G∑
g′=1

νΣf,g′,fφg′,c. (5.34)

With these definitions, the neutron balance equation (5.30) can be rewritten more

concisely as:

∑
c∈C(f)

Ω̂n · ~A1(c)ψn,g,c + Σt,g,fM0(f)ψ̄n,g,f = M0(f)
[
Q̄s,g,f +

1

k
Q̄f,g,f

]
. (5.35)
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Table 5.5: List of definitions of source terms in neutron balance equation
Term Type Explanation
Q̄s,g,f scalar the averaged scattering source of energy group

g in the cell f , see equation (5.31)
Q̄f,g,f scalar the averaged fission source of energy group g in

the cell f , see equation (5.32)
Qs,g,f,c scalar the averaged scattering source of energy group g

on the boundary c of cell f , see equation (5.33)
Qf,g,f,c scalar the averaged fission source of energy group g on

the boundary c of cell f , see equation (5.34)

5.3 Re-entrant Boundaries

Consider a cell f . If its set of boundaries C(f) contains a part of circular arc c,

a neutron traveling at an arbitrary direction Ω̂n and entering the boundary c, may

also exit the boundary c. If this happens, the boundary c is called a “re-entrant

boundary”. Figure 5.9 shows an example of a re-entrant boundary.

Re-entrant boundaries occur for spatial grids with curved boundaries; they do not

occur for spatial grids with planar boundaries. Special measures are necessary to deal

with the re-entrant boundaries, so as to make the sweep process stable. The sweep

process may be unstable when sweeping “against” the direction of neutron flight.

Let us consider a boundary c with parametrization: ~x = ~p(t), a ≤ t ≤ b. The

boundary c is defined as:

“Incoming” : Ω̂n · n̂(t) < 0, for all a ≤ t ≤ b, (5.36)

“Outgoing” : Ω̂n · n̂(t) > 0, for all a ≤ t ≤ b. (5.37)

A re-entrant boundary is neither “incoming” or “outgoing”, because not all points

on the boundary have the same sign of Ω̂n · n̂(t). To remove this ambiguity, we split

the cell f according to the following rule:

“Splitting Rule”
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c1

c2c3

c4
1�

2�
3�

4�

⌦̂n

Figure 5.9: An illustration of four rays 1©, 2©, 3©, 4© in the direction Ω̂n. Ray 1© enters
boundary c2 and exits c2; ray 2© enters boundary c2 and exits c3; ray 3©
enters boundary c1 and exits c3; ray 4© enters boundary c1 and exits c4.
c2 is a “re-entrant boundary” of the direction Ω̂n.

Consider direction Ω̂. For each re-entrant circular arc boundary c of cell f , split f

with a line which is perpendicular to Ω̂, and which passes through the center of the

circle of which the re-entrant boundary is a part. This divides the cell into several

cells, all the boundaries of which are now unambiguously “incoming” or “outgo-

ing”.

For the example in Figure 5.9, there is one re-entrant boundary. So this cell is

split into two cells following the rule above. After it is split, there are no re-entrant

boundaries. See Figure 5.10 for a visualization of applying the splitting rule.

Another example is a pin-cell geometry, which is shown in Figure 5.11. (See Figure

5.2 for the definition of a pin-cell.) The square pin-cell in this figure has one circle
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c1

c2c3

c4
1�

2�
3�

4�

⌦̂n

c5

~O

Figure 5.10: Example of the applying of the “rule of a fixed”. The re-entrant
boundary is c2. There are four rays 1©, 2©, 3©, 4© in the direction Ω̂n. The
cell is then split with a line which is perpendicular to Ω̂n, and which
passes ~O, which is the center of the boundary c2. After, ray 1© enters
boundary c2 and exits c5; ray 2© enters boundary c2 and exits c5; ray 3©
enters boundary c1 and exits c5; Ray 4© enters boundary c1 and exits
c5. A re-entrant boundary no longer exists. The line added is marked
as dashed to indicate the “split” is temporary only for the angle Ω̂n.

centered at the center of the square, which is divided into 8 angular sectors. The cells

numbered “[0]”, “[4]”,“[9]” and “[10]” in the left figure have re-entrant boundaries

for the direction of Ω̂. These cells are split with the line passing through the circle’s

center and perpendicular to direction of Ω̂. The result is shown in the figure on the

right, which has no re-entrant boundaries.

So the spatial grids depend somewhat on the direction of flight. With different

direction of flight, the splitting creates different spatial grids. This somewhat increases

the complexity for implementation of the method. However as indicated by the dashed
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projected to the 2-D plane projected to the 2-D plane

Figure 5.11: The cells numbered “[0]”, “[4]”,“[9]” and “[10]” of the left figure has re-
entrant boundaries for the direction of Ω̂. The cells after split with a
line passing through the center of the circle, which is perpendicular to
Ω̂. It results cells numbered “[0]”, “[1]”,“[3]”, “[4]”,“[6]”, “[17]”,“[10]”
and “[11]” in the right figure. There are no re-entrant boundaries after.
The line added is marked as dashed to indicate the “split” is temporary
only for the angle Ω̂.

line in Figure 5.11, the “split” of cells is temporary. It is done only during a sweep

in the specified direction, and it is not done for other directions of flight. In principle,

each direction of flight in the quadrature set could have fine spatial cells within a

pin-cell that are temporary “split” during the sweeping process.

5.4 Categorization of Boundaries

A discussion of the categorization of boundaries of a cell deserves a single section

because its understanding is required for later sections about the auxiliary equations.

Consider a cell f . For a specified direction Ω̂, all its boundaries C(f) should be

categorized as “incoming”, “outgoing” and “parallel”.
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Intuitively, for a specific direction of flight, a boundary is “incoming” if the

neutrons enter the cell through the boundary. It is “outgoing” if the neutrons exit

the cell through the boundary. It is parallel if the neutron flight is parallel to the

boundary. Figure 5.12 shows the categorization of the boundaries of the cells in the

first example of the previous section 5.3. See Figure 5.10. In that example, there was

a re-entrant boundary, which was split by the procedure discussed in the previous

section 5.3. (See the “splitting rule”.)

⌦̂n

in

in

out

out

in
out

out
out

Figure 5.12: The categorization of boundaries as “incoming”, “outgoing” and
“parallel”. A parallel boundary does not appear in this example.

Instead of the intuitive categorization of whether a boundary is incoming, out-

going or parallel, there is an analytic criteria that enables a computer code to be

implemented for an automatic categorization. Recall the definition of the ~A1(c) vec-

tor of a boundary c, which is parametrized with ~p(t), a ≤ t ≤ b (see equation (5.6)),

and which has a normal vector n̂(t) = (nx(t), ny(t)) (see equation (5.8)). We repeat
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the definition of equation (5.16):

~A1(c) =

b∫
a

 nx(t)

ny(t)

 dt. (5.38)

Then a criteria for categorization of the boundaries C(f) of a cell f at direction Ω̂ is:

Cin(f, Ω̂) = {c ∈ C(f)| ~A1(c) · Ω̂ < 0}, (5.39)

Cout(f, Ω̂) = {c ∈ C(f)| ~A1(c) · Ω̂ > 0}, (5.40)

Cpara(f, Ω̂) = {c ∈ C(f)| ~A1(c) · Ω̂ = 0}. (5.41)

See Figure 5.13 for an example of how the ~A1 vector can be used to categorize the

boundaries. Table 5.6 summarizes the criteria of categorization.

Because every re-entrant boundary is “split” with the process described in the

section 5.3, there are no re-entrant boundaries. Therefore, Ω̂ · n̂(t) has the same sign

for all points on each boundary of the cell. So, the inner product Ω̂· ~A1 for a boundary

has the same sign with Ω̂ · n̂(t) for all points on the boundary. As a result, Ω̂ · ~A1 can

be used to determine correctly whether the boundary is “incoming”, “outgoing”

or “parallel”.

Table 5.6:
The criteria for categorization of the boundaries of a cell at a specific
direction

c is an “incoming” boundary of f in direction Ω̂ : if ~A1(c) · Ω̂ < 0

c is an “outgoing” boundary of f in direction Ω̂ : if ~A1(c) · Ω̂ > 0

c is an “parallel” boundary of f in direction Ω̂ : if ~A1(c) · Ω̂ = 0

Now for any angle Ω̂, all boundaries C(f) can be categorized into three mutually
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~A1
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Figure 5.13: An analytic criteria, which is based on the sign of the dot product be-
tween the A1 vector and the direction of traveling Ω̂n, for categorization
of a boundary as “incoming”, “outgoing” and “parallel”.

exclusive sets Cin(f, Ω̂), Cout(f, Ω̂) and Cpara(f, Ω̂):

∀ Ω̂, |Ω̂| = 1 :

C(f) = Cin(f, Ω̂) ∪ Cout(f, Ω̂) ∪ Cpara(f, Ω̂), (5.42)

Cin(f, Ω̂) ∩ Cout(f, Ω̂) = ∅, (5.43)

Cin(f, Ω̂) ∩ Cpara(f, Ω̂) = ∅, (5.44)

Cout(f, Ω̂) ∩ Cpara(f, Ω̂) = ∅. (5.45)
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5.5 Auxiliary Equations

For any cell f , the unknowns in the neutron balance equation (5.35) for the di-

rection Ω̂n and group g are:

ψ̄n,g,f for all cells f, (5.46)

ψn,g,c for any boundary c ∈ Cout(f, Ω̂n), for any f. (5.47)

We illustrate, in Figure 5.14, the averaged cell and boundary fluxes for common curved

spatial cells that one encounters in a pin-cell. (See Figure 5.2 for the definition of

a pin-cell) Figure 5.14 denotes the results of whether a boundary is incoming or

outgoing. See section 5.4 for a discussion of the categorization of the boundaries. If

a re-entrant boundary is encountered, the approach discussed in the section 5.3 will

be applied.

⌦̂n = (⇠n, ⌘n, µn)

in

in
out in

in
out

in
 ̄n,g,f

 ̄n,g,f

 n,g,c1

 n,g,c2

 n,g,c3

 n,g,c1

 n,g,c4

 n,g,c2

 n,g,c3projected into 2-D plane

Figure 5.14: Examples of curved spatial cells that one usually encounter in a pin-cell
geometry. The cell-averaged and boundary averaged fluxes are labeled.
For the direction of flight Ω̂, all boundaries are categorized as “incom-
ing”, which is marked as “in”, or is categorized as “outgoing”, which is
marked as “out”.
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For every specific direction, the number of unknowns equals the number of outgo-

ing boundaries plus one. The neutron balance equation (5.35) gives us one equation

already. So more equations, the number of which equals the number of outgoing

boundaries, are necessary to solve for all unknowns in equation (5.46) and (5.47).

These equations are called “auxiliary equations”. In the following subsections,

three methods of providing auxiliary equations are given. The first two methods are

the “step method” and the “simplified step characteristic method”. They are

not very accurate, but they are provided here first for their simplicity, second for the

reader to become accustomed to the notation, and third for their desired property

that the solutions are always positive. The third method provided is a new “multiple

balance method”, which is more accurate than the others.

5.5.1 The Step Method (STEP)

The step method is one of the traditional methods (Lathrop, 1969), which is here

generalized to spatial grids with curved boundaries. The assumption made is that

the outgoing boundary-averaged fluxes equal the cell-averaged flux. So the auxiliary

equations are:

ψn,g,c = ψ̄n,g,f , c ∈ Cout(f, Ω̂n). (5.48)

The definition of the outgoing boundaries can be found in equation (5.40). The

STEP auxiliary equations for two example spatial cells that one usually encounters

in a pin-cell geometry are illustrated in Figure 5.15.

5.5.2 The Simplified Step Characteristic Method (SSC)

Even though neutron transport is in two dimensions, it can be approximated as

transporting on 1-D characteristic lines along the direction of flight. The length of
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 n,g,c2 =  ̄n,g,f

STEP Auxiliary Equations

⌦̂n = (⇠n, ⌘n, µn)

Figure 5.15: The STEP auxiliary equations for two example spatial cells that one
usually encounters in a pin-cell geometry.

the characteristic line can be approximated as l, which is defined as:

d = −
∑

c∈Cin(f,Ω̂n)

Ω̂n · ~A1(c), (5.49)

s =
M0(f)

d
, (5.50)

where we recall from equation 5.17:

M0(f) = the volume (area in 2D) of the cell f, (5.51)

and where the definition ~A1(c) can be found in equation (5.16), which is repeated

here:

~A1(c) =

b∫
a

(n̂(t)) dt,
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and we recall that the parametrization of a boundary c is:

~x = ~p(t) , a ≤ t ≤ b.

The terms d and l in these formula are the side lengths of a box, with one side parallel

to the direction of flight. Two example spatial cells that one usually encounters in a

pin-cell geometry are given in Figure 5.16. These boxes with side lengths d and l are

marked in green.

⌦̂n = (⇠n, ⌘n, µn)

in

in
out

in

in
out

in

 ̄n,g,f

 ̄n,g,f

 n,g,c1

 n,g,c2

 n,g,c3

 n,g,c1

 n,g,c4

 n,g,c2

 n,g,c3

d d~A1(c1)

~A1(c3)

~A1(c2)

~A1(c1)

~A1(c2)

~A1(c3)

~A1(c4)

d = �
h
~A1(c1) + ~A1(c3)

i
· ⌦̂n d = �

h
~A1(c1) + ~A1(c3) + ~A1(c4)

i
· ⌦̂n

t = 0 t = 0

t = s t = s

s s

Figure 5.16: In the simplified step characteristic method, the two-dimensional trans-
port is approximated by a one-dimensional transport process along the t
axis from t = 0 to t = s. s and d are the length and the width of the box
marked in green. One side of the box is parallel to the direction of flight.
The width d is the shallow of the cell projected to a line perpendicular
to the direction of flight. The green box has the same area as the that
of the cell. These requirements determine the width and length of the
green box. Two example spatial cells that one usually encounters in a
pin-cell geometry are depicted in the figure.

The height d as defined in equation (5.49) is the shadow of the cell onto a line
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that is perpendicular to the direction of flight. The length s is chosen so that the

area of the cell, i.e. M0(f), equals the area of the box, i.e. s d:

s d = M0(f). (5.52)

The approximate one-dimensional transport equation is:

µn
dψ1d(t)

dt
+ Σtψ1d(t) = Q̄, 0 ≤ t ≤ s, (5.53)

where the transport cross section and the source terms are defined as:

Σt = Σt,g,f , (5.54)

Q̄ = Q̄s,g,f +
1

k
Q̄f,g,f . (5.55)

See Table 5.5 for definitions of Q̄s,g,f and Q̄f,g,f above. The solution to this one-

dimensional transport equation (5.53) is:

ψ1d(t) =
Q̄

Σt

(1− e−Σtt/µn) + ψ1d(0), 0 ≤ t ≤ s, (5.56)

and the evaluation of the flux at the end t = s is:

ψ1d(s) =
Q̄

Σt

(1− e−Σts/µn) + ψ1d(0), (5.57)

where ψ1d(0) is chosen to be an averaged of the incoming flux:

ψ1d(0) =

∑
c∈Cin(f,Ω̂n)

Ω̂n · ~A1(c)ψ̄n,g,c∑
c∈Cin(f,Ω̂n)

Ω̂n · ~A1(c)
, (5.58)

which is defined despite that it is not used in the derivation of an auxiliary equation.
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The averaged flux on this one-dimensional line is:

ψ̄1d =
1

s

s∫
0

ψ1d(t)dt (5.59)

=
Q̄

Σt

(
1− 1− e−Σts/µn

Σts/µn

)
+ ψ1d(0)

1− e−Σts/µn

Σts/µn

. (5.60)

Eliminating ψ1d(0) in equations (5.57) and (5.60), we get:

ψ1d(s) =
Q̄

Σt

(
1− (Σts/µn)e

−Σts/µn

1− e−Σts/µn

)
+ ψ̄1d

(Σts/µn)e
−Σts/µn

1− e−Σts/µn
. (5.61)

The auxiliary equations are obtained by first setting the fluxes on the outgoing bound-

aries equal to φ(s), and second setting the average cell flux to ψ̄:

ψn,g,c = ψ1d(s), c ∈ Cout(f, Ω̂n), (5.62)

ψ̄n,g,f = ψ̄1d. (5.63)

Next, we define l to simplify equations:

l = s/µn. (5.64)

Introducing equations (5.62), (5.63) into equation (5.61), we get:

ψn,g,c =
Q̄

Σt

(
1− (Σtl)e

−Σtl

1− e−Σtl

)
+ ψ̄n,g,f

(Σtl)e
−Σtl

1− e−Σtl
, c ∈ Cout(f, Ω̂n). (5.65)

See equations above for definitions of the quantities in the auxiliary equation (5.65).

The SSC auxiliary equations for two example spatial cells that one usually encounters

in a pin-cell geometry are illustrated in Figure 5.17.
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Figure 5.17: The SSC auxiliary equations for two example spatial cells that one usu-
ally encounters in a pin-cell geometry.

5.5.3 The Multiple Balance Method (MB)

The auxiliary equations in the step method and the simplified characteristic

method contain no neutron physics. So it is more favorable if the auxiliary equa-

tions have forms similar to the neutron balance equation. Here we generalize the

method to two-dimensional curved spatial grid problems.

Consider a cell f , a weight function wc(~x) is defined for each boundary c in C(f).

This weight function is linear and non-negative inside cell f , which has the maximum

value of 1 on a point on the outgoing boundary, and has a minimum value of 0. There
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are many possibilities, one example is:

wc(~x) = ac ~A1(c) · ~x+ bc, (5.66)

∀ ~x ∈ cell f : 0 ≤ wc(~x) ≤ 1, (5.67)

∃ ~x0 ∈ cell f : wc(~x0) = 0, (5.68)

∃ ~x0 ∈ boundary c : wc(~x0) = 1 (5.69)

These conditions will determine the unknowns ac and bc, which depends on the bound-

ary c. See equation (5.16) for the definition of the vector ~A1(c).

We recall that the neutron balance equation can be thought as if the leakage term

plus the collision term equals the scattering source plus the fission source:

Leakage + Collision = Scattering + Fission

Ω̂ ·
∫
f

~∇ψg(~x) d~x +
∫
f

Σtψg(~x) d~x = 1
4π

∑
g′

∫
f

Σsφg′(~x) d~x +
χg

4πk

∑
g′

∫
f

νΣfφg′(~x) d~x.

For the auxiliary equation of the multiple balance method, the discrete ordinates

equation is multiplied by the weight function fd(~x) for outgoing boundary d, and is

integrated over the cell:

Leakage + Collision = Scattering + Fission

Ω̂ ·
∫
f

wd(~x)~∇ψg(~x) d~x +
∫
f

wd(~x)Σtψg(~x) d~x = 1
4π

∑
g′

∫
f

wd(~x)Σsφg′(~x) d~x +
χg

4πk

∑
g′

∫
f

wd(~x)νΣfφg′(~x) d~x.

By the divergence theorem, we have exactly:

∫
f

wd(~x)~∇ψg(~x) d~x =
∑

c∈C(f)

∮
c

wd(~x)ψg(~x) n̂(~x) ds−
∫
f

[
~∇wd(~x)

]
ψ(~x)d ~x,(5.70)

where the flux in boundary integral terms are approximated by the boundary-averaged

value, and the flux in the volume integral terms is approximated by the cell-averaged
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value:

∮
c

wd(~x)ψ(~x) n̂(~x) ds ≈
∮
c

wd(~x)ψc n̂(~x) ds, (5.71)

∫
f

[
~∇wd(~x)

]
ψ(~x)d~x ≈

∫
f

[
~∇wd(~x)

]
ψ̄d~x. (5.72)

The multiple balance approximation sets the fluxes in the “collision”, “scattering”

and “fission” terms to be the outgoing flux. The leakage term, by the divergence

theorem, is expressed as sum of boundary-averaged fluxes and a cell-averaged flux

term:

Approximations for Auxiliary Equation for the Boundary d:

Leakage Collision Scattering Fission∫
f
wd
~∇ψ(~x)d~x ≈ ∑

c∈C(f)

∮
c
wdψcn̂ds−

∫
f

(
~∇wd

)
ψ̄d~x ψ(~x) ≈ ψd φ(~x) ≈ φd φ(~x) ≈ φd

Without loss of generosity, we derive the auxiliary equations for the outgoing bound-

ary labeled c as an example. The weight function corresponding is wc(~x). The

auxiliary equation is obtained by integrating the discrete ordinates equation (5.22)

with the weight function wc(~x). This integration resembles the finite element method.

But in the multiple balance method, the flux in each cell is not assumed to have any

predefined shape.

Ω̂n ·
∫
f

wc(~x)~∇ψn,g(~x)d~x+ Σt,g,f

∫
f

wc(~x)ψn,g(~x)d~x

=
1

4π

G∑
g′=1

Σs,g′→g,f

∫
f

wc(~x)φg′(~x)d~x+
1

4πk
χg,f

G∑
g′=1

νΣf,g′,f

∫
f

wc(~x)φg′(~x)d~x,
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where d~x = dxdy. By integration by parts:

∫
f

wc(~x)~∇ψn,g(~x)d~x = Ω̂n ·
∑

d∈C(f)

∮
d

wc(~x) ψn,g(~x) n̂(s) ds

−Ω̂n ·
∫
f

~∇wc(~x) ψn,g(~x) d~x. (5.73)

To obtain an equation depending only on ψ̄n,g,f , ψn,g,c for each outgoing boundary c ∈

Cout(f, Ω̂n) (see equations (5.46) and (5.47) for the form of the auxiliary equations),

careful approximations are applied to equation (5.73) according to the discussions

above. The first approximation is applied to the boundary integral in the leakage

term, where the flux on the cell boundaries are assumed to be constant:

Leakage boundary term:

Ω̂n ·
∑

d∈C(f)

∮
d

wc(~x) ψn,g(~x) n̂(s) ds ≈ Ω̂n ·
∑

d∈C(f)

∮
d

wc(~x) n̂(s) ds

 ψn,g,d.

(5.74)

The second approximation is applied to the cell integral in the leakage term, where

the flux in the cell is assumed to be the cell-averaged value:

Leakage cell term:

Ω̂n ·
∫
f

~∇wc(~x) ψn,g(~x) d~x,

≈ Ω̂n ·

∫
f

~∇wc(~x) d~x

 ψ̄n,g,f ,

= Ω̂n ·

 ∑
d∈C(f)

∮
d

wc(~x) n̂(s) ds

 ψ̄n,g,f . (5.75)

The third approximation is applied to the collision term, where the flux inside the
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cell is assumed to be a constant and equal to the outgoing flux:

Collision: Σt,g,f

∫
f

wc(~x)ψn,g(~x)d~x ≈ Σt,g,f

∫
f

wc(~x)d~x

 ψn,g,c. (5.76)

As we already noted in chapter III, this approximation in the above equation (5.76)

might seem strange, since when integrating over a cell, it is more natural to assume

the flux to be a constant and equal to the cell-averaged flux. However in the multiple

balance equation, each term in the auxiliary equation is meant to resemble the balance

equation, “centered” on the boundary of a cell. So the approximation in the above

equation (5.76) assumes that the flux inside the cell is taken to be equal to the

outgoing flux. This approximation is applied to the scattering and fission term as

well, so the fourth approximation is:

Scattering:

1

4π

G∑
g′=1

Σs,g′→g,f

∫
f

wc(~x)φg′(~x)d~x ≈ 1

4π

G∑
g′=1

Σs,g′→g,f

∫
f

wc(~x)d~x

φg′,c.(5.77)

The fifth approximation is applied to the fission term, where the flux is again assumed

to be equal to the outgoing boundary-averaged flux:

Fission: 1

4πk
χg,f

G∑
g′=1

νΣf,g′,f

∫
f

wc(~x)φg′(~x)d~x

≈ 1

4πk
χg,f

G∑
g′=1

νΣf,g′,f

∫
f

wc(~x)d~x

φg′,c. (5.78)

We recall the definitions of source terms from Table 5.5, the fourth and fifth approx-
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imations (5.77) and (5.78) are rewritten as:

1

4π

G∑
g′=1

Σs,g′→g,f

∫
f

wc(~x)φg′(~x)d~x ≈

∫
f

wc(~x)d~x

Qs,g,f,c , (5.79)

1

4πk
χg,f

G∑
g′=1

νΣf,g′,f

∫
f

wc(~x)φg′(~x)d~x ≈

∫
f

wc(~x)d~x

 1

k
Qf,g,f,c . (5.80)

We introduce the approximate equations (5.74), (5.75), (5.76), (5.79) and (5.80) into

equation (5.73), and choose it at each outgoing boundary to be an auxiliary equation:

Ω̂n ·
∑

d∈C(f)

∮
d

wc(~x) n̂(s) ds

 (
ψn,g,d − ψ̄n,g,f

)
+

∫
f

wc(~x)d~x

 Σt,g,f ψn,g,c

=

∫
f

wc(~x)d~x

[Qs,g,f,c +
1

k
Qf,g,f,c

]
, c ∈ Cout(f, Ω̂n). (5.81)

Equation (5.81) is the auxiliary equation. If we compare equation (5.81) with the

neutron balance equation (5.35), we see that the two have a very similar form. So

we call this method as the “multiple balance method”. From the definition of

the weight function wc(~x) from conditions in equation (5.66) and the notation from

equation (5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.17), (5.18) and (5.19):

∮
d

wc(~x) n̂(s) ds =

 ac(A1x(c)A2xx(d) + A1y(c)A2xy(d)) + bcA1x(d)

ac(A1x(c)A2yx(d) + A1y(c)A2yy(d)) + bcA1y(d)

 ,(5.82)

∫
f

wc(~x)d~x = ac (A1x(c)M1x(f) + A1y(c)M1y(f)) + bcM0(f). (5.83)
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The multiple balance equation reduces to:

Ω̂n ·
∑

d∈C(f)

 ac(A1x(c)A2xx(d) + A1y(c)A2xy(d)) + bcA1x(d)

ac(A1x(c)A2yx(d) + A1y(c)A2yy(d)) + bcA1y(d)

 (
ψn,g,d − ψ̄n,g,f

)

+ [ac (A1x(c)M1x(f) + A1y(c)M1y(f)) + bcM0(f)] Σt,g,f ψn,g,c

= [ac (A1x(c)M1x(f) + A1y(c)M1y(f)) + bcM0(f)]
[
Qs,g,f,c +

1

k
Qf,g,f,c

]
,

c ∈ Cout(f, Ω̂n). (5.84)

Though equation (5.84) is a little tedious, every term is now defined. Moreover, both

the neutron balance equation (5.35) and auxiliary equations (5.84) are equations for

the cell-averaged flux and boundary-averaged fluxes, as defined in equations (5.46)

and (5.47). The MB auxiliary equations for two example spatial cells that one usually

encounters in a pin-cell geometry are illustrated in Figure 5.18.

5.6 Sweep

The previous sections introduce the unknowns in a single spatial cell:

∀ n = 1..M, g = 1..G :

ψ̄n,g,f for all cells f, (5.85)

ψn,g,c for any boundary c ∈ C(f), all cells f. (5.86)

The neutron balance equation and the auxiliary equation discussed in the section

5.5 provide enough equations to solve for these unknowns. A 2D curve spatial grid

contains many spatial cells with curved boundary. Each cell is visited once. The

sweep order must satisfy the condition that the incoming fluxes are calculated before

a cell is visited. Figure 5.19 shows one example of the sweeping a geometry formed
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⌦̂n = (⇠n, ⌘n, µn)
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X

c2C(f)

⌦̂n · ~A1(c) n,g,c + ⌃t,g,fM0(f) ̄n,g,f = M0(f)


Q̄s,g,f +

1

k
Q̄f,g,f

�
.

C(f) = {c1, c2, c3} C(f) = {c1, c2, c3, c4}

projected into 2-D plane

X
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⌦̂n · ~↵c2,d( n,g,d �  ̄n,g,f ) + �c2⌃t,g,f n,g,c2 = �c2


Qs,g,f,c2 +

1

k
Qf,g,f,c2

�
.

Figure 5.18: The MB auxiliary equations for two example spatial cells that one usu-
ally encounters in a pin-cell geometry. The definitions of the terms ~αc,d

and βc are defined in equation (5.84). In these examples, only the bound-
ary c2 is outgoing, so only one auxiliary equation is needed.

with four triangles with neutrons traveling at the direction of the black arrows. Such

an order of solving plays an important role in a sweep process.

Next, we determine a procedure to generate the the sweeping order. We consider

two neighboring cells f1 and f2 with a common boundary c, where for the direction

Ω̂, c is the outgoing boundary of f1, and c is the incoming boundary of f2. Then, we

draw two nodes f1 and f2 and a directed edge from f1 to f2. Figure 5.20 illustrates

this procedure. For the geometry as shown in Figure 5.19, a graph is created in Figure

5.21, which is helpful to get the sweep order. In a sweep, the cell at the starting node

of a directed edge needs to be visited before the cell at the end node of a directed edge.
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0 1

2

3

⌦̂n = (⇠n, ⌘n, µn)

Figure 5.19: The sweep process of four triangles for the direction of the Ω̂. The order
is cell 0, 3, 2 and 1. The solving of each cell uses the fluxes of incoming
boundaries obtained either from boundary conditions or from the fluxes
of outgoing boundaries of cells solved earlier.

After the creation of the graph as shown in Figure 5.21, finding the sweeping order

is equivalent to a well studied problem in computer science: “finding the topological

order of a directed acyclic graph,” whose algorithm is called the “topological sorting

algorithm”. A description of the algorithm can be found in Kahn (1962), which is

written in the early ways of describing computer algorithm. In mordern way, the

algorithm is described as:

function DFS ( node )

v i s i t e d [ node ] = yes

for ne ighbor o f node
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i f ( not v i s i t e d [ ne ighbor ] ) then

DFS ( ne ighbor )

end i f

end for

push node i n t o l i s t f r o n t

end function

function s o r t ( )

for a l l nodes

i f not v i s i t e d [ node ] then

DFS( node )

end i f

end for

end function

Cell f1 Cell 

inout

f2f1

f2

Boundary c

⌦̂n = (⇠n, ⌘n, µn)

Figure 5.20: Boundary c is the an outgoing boundary of cell f1, and is an incoming
boundary of cell f2. Then two nodes f1 and f2 and a directed edge from
f1 to f2 are drawn in a graph.
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Figure 5.21: A graph showing the sweep orders between two neighboring cells for the
four-triangle geometry. In a sweeping, the cell at the starting node of
a directed edge needs to be visited before the cell at the end node of a
directed edge.

Another example is shown in Figure 5.22, which is a frequently encountered pin-

cell geometry. In this example, the re-entrant cells have been split according to the

procedure discussed in section 5.3. A graph showing the relative order of sweeping

between two neighboring cells is also shown in Figure 5.22. By the “topological sorting

algorithm”, a valid sweep order is shown in Figure 5.23.

Next we consider a problem, which contains a coarse Cartesian grid of pin-cells,

and each coarse cell is a pin-cell, which contains a fine spatial grid of cells with curved

boundaries, as the one shown in Figure 5.24. Then a valid sweeping order determines

two stages: first, we sweep over the coarse grid with a procedure discussed in section

3.5, and second, we sweep each pin-cell fine grid based on the procedure discussed in

this section.
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Figure 5.22: A graph showing the sweep orders between two neighboring cells for
the pin-cell geometry. In a sweeping, the cell at the starting node of a
directed edge needs to be visited before the cell at the end node of a
directed edge.
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Figure 5.23: A valid sweeping order of a pin-cell at direction Ω̂ is 13, 18, 14, 15, 12,
11, 4, 2, 6, 17, 16, 10, 9, 0, 1, 5, 3, 7, 8. The order is visualized in the
graph.

(1,J) (2,J) (I-1,J) (I,J)

(1,J-1) (2,J-1) (I-1,J-1) (I,J-1)
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(1,1) (2,1) (I-1,1) (I,1)

⌦̂n

Figure 5.24: A valid sweeping order of a coarse Cartesian grid of pin-cells at direction
Ω̂ is determined in two stages. First, we sweep over the coarse grid with
a procedure discussed in section 3.5, and second, we sweep each pin-cell
fine grid based on the procedure discussed in this section.
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CHAPTER VI

Numerical Results for Two-Dimensional

One-group Problems with Curved Spatial Grids

The performance of the discrete ordinates (SN) methods on curved spatial grids is

studied in this chapter and the next chapter. The problems considered in this chapter

have only one energy group. The one-group approximation is crude, but the purpose

is to provide reasonably simple problems to understand how the new methods behave

compared to existing methods. The discussion begins with a list of one-group cross

sections that are used. This is followed by two single pin-cell problems, and then a

mini-assembly with an array of pin-cells. More realistic multigroup problems will be

considered in the next chapter.

A main goal of the thesis is to compare the new methods to MOC. This section

is provided to simplify the comparisons between the SN and the MOC methods. We

study the accuracies as a function of time cost for different methods. Each method

will have a separate curve, whose data points are calculated for a variety of angular

quadrature sets, which are defined in Table 6.1.
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Table 6.1: List of number of angles in selected quadrature sets
Quadrature Set Number of Angles

MOC Quadrature Set
A4P2 64
A4P4 128
A8P4 256

SN Quadrature Set
S4 24
S8 80
S12 168
S16 288
S20 440

See Table 4.1 for definitions of the quadrature sets abbreviations

6.1 One-group Cross Sections

In a pressurized water reactor, a unit of construction is called a pin-cell, see Figure

6.1. A pin-cell contains the fuel region, the gap, the clad and the moderator. In this

section, simple problems with one-group cross sections are described. A reasonably

approximate set of one-group cross sections is listed in Table 6.2. For the Westing-

house AP1000 reactor, a special material called the integral fuel burnable absorber

(IFBA) exists in some types of pin-cells. The IFBA material is ZrB2, which has a

very large absorption cross section. A reasonable one-group cross section for IFBA is

also provided in Table 6.2.

Table 6.2: List of one-group cross section
Material Absorption

Σa (cm−1)
Nufission
νΣf (cm−1)

Fission Σf

(cm−1)
Scattering
Σs (cm−1)

Fuel 0.121437 0.19427 0.0788062 0.377744
Gap 0 0 0 3.08906E-05
Clad 0.00313575 0 0 0.280904
Moderator 0.0116829 0 0 1.06112
IFBA 16.5538 0 0 0.26015

These cross sections are generated from the CASL VERA benchmark problem 1.

The fuel is 3.1wt% enriched UO2. The gap is Helium gas. The Clad is the Zircaloy-4
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Moderator

Clad
Gap

IFBA

FuelPin-cell no IFBA Pin-cell with IFBA

Figure 6.1: Material types in a fuel pin-cell of a pressurized water reactor. Dimensions
are exaggerated to show the clad, gap and IFBA, which are much thinner
than depicted here.

zirconium alloy. The moderator is water, and as stated earlier, the IFBA is ZrB2.

6.2 Single Pin-cell Problems

The discussion of numerical results begins with two single pin-cell problems. One

has no IFBA region, and the other has IFBA. See Figure 6.1 for a distinction between

the two. The dimensions shown in Table 6.3 are adapted from the CASL VERA Core

Physics Benchmark Problem 1 (Godfrey, 2014).

6.2.1 Non-IFBA Pin-cell Problem

The pin-cell is divided into a coarse grid of 32 spatial cells and a fine grid of 304

spatial cells. See Figure 6.2.

The problem was solved with different numerical methods. The Monte Carlo
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Table 6.3: Pin-cell Dimension Information
Dimension Value for Non-

IFBA Pin-cell (cm)
Value for IFBA Pin-
cell (cm)

Pitch (Size of the Square) 1.26
Outer radius of fuel 0.4096
Outer radius of IFBA 0.4106 N/A
Outer radius of gap 0.418
Outer radius of clad 0.475

solution is used as the benchmark. The benchmark solution is the result of 25 million

Monte Carlo particles, with a small uncertainty of 0.03% in flux, and 20 pcm in

k-eigenvalue. Table 6.4 summarizes the k-eigenvalue comparison, and time-storage

costs for each simulation. Table 6.5 summarizes the solution and error analysis. For

convenience, the names of the numerical methods are abbreviated as defined in Table

4.1. The fluxes are normalized such that the area-averaged flux in the fuel region is

1.0.

Coarse Mesh Fine Mesh
0: Fuel 3: Moderator1: Gap 2: Clad

Figure 6.2: The coarse grid and fine grid of the pin-cell without the IFBA coating
outside the fuel cylinder. There are 32 spatial cells in the coarse grid and
304 spatial cells in the fine grid.
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Table 6.4: List of k-effective, time & storage cost of non-IFBA pin-cell problem
Method Keff Keff

Error.
(pcm)

Time per It-
eration (ms)

Storage
(MB)

Coarse Grid
MOC A8P4 D0.05 1.37113 3 0.7 0.128
MOC A8P4 D0.005 1.37105 -5 6.8 1.261
MOC A8P4 D0.0005 1.37106 -3 70.6 12.538
STEP S4 1.37133 24 0.2 0.032
STEP S8 1.37149 40 0.4 0.033
STEP S16 1.37155 45 1.0 0.034
SSC S4 1.37062 -47 0.2 0.032
SSC S8 1.37078 -31 0.4 0.033
SSC S16 1.37085 -25 1.2 0.034
MB S4 1.37084 -25 0.5 0.032
MB S8 1.37103 -6 1.3 0.033
MB S16 1.37111 2 5.5 0.034

Fine Grid
MOC A8P4 D0.05 1.31480 -5629 1.6 0.288
MOC A8P4 D0.005 1.37108 -1 15.3 2.712
MOC A8P4 D0.0005 1.37106 -3 146.6 26.853
STEP S4 1.37081 -28 0.9 0.259
STEP S8 1.37108 -1 3.3 0.255
STEP S16 1.37122 13 16.8 0.255
SSC S4 1.37058 -51 1.1 0.259
SSC S8 1.37085 -24 3.9 0.255
SSC S16 1.37099 -10 15.9 0.255
MB S4 1.37049 -60 3.7 0.259
MB S8 1.37079 -30 12.7 0.255
MB S16 1.37103 -6 69.1 0.255

In this problem, solutions obtained on the coarse grid and the fine grid are com-

pared. From the results in Table 6.5, the fine grid solutions are, not surprisingly, more

accurate than the coarse grid solution. The deterministic methods all have spatial

truncation errors. So the finer the spatial cells are, the more accurate the solution is.

The two figures 6.3 and 6.4 describe the error comparisons of the pin-cell problem

without the IFBA layer: one for the coarse grid, and the other for the fine grid. (See

subsection 6.2.1.) Equation (2.68) for the definition of the relative errors. The MOC

method achieves smaller errors in the flux than the STEP, SSC and MB methods for
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Table 6.5: List of solution of non-IFBA pin-cell problem
Method Fuel

Flux
Gap
Flux

Clad
Flux

Mod-
erator
Flux

Flux
Error
(%)

MC 1.00000 0.99605 0.99486 0.99115 N/A
Coarse Grid

MOC A8P4 D0.05 1.00000 0.99613 0.99458 0.99105 0.015
MOC A8P4 D0.005 1.00000 0.99616 0.99493 0.99146 0.017
MOC A8P4 D0.0005 1.00000 0.99614 0.99487 0.99136 0.012
STEP S4 1.00000 0.99579 0.99417 0.98995 0.071
STEP S8 1.00000 0.99547 0.99374 0.98912 0.120
STEP S16 1.00000 0.99534 0.99358 0.98881 0.139
SSC S4 1.00000 0.99803 0.99655 0.99358 0.179
SSC S8 1.00000 0.99772 0.99613 0.99275 0.133
SSC S16 1.00000 0.99757 0.99594 0.99242 0.113
MB S4 1.00000 0.99773 0.99625 0.99245 0.128
MB S8 1.00000 0.99719 0.99567 0.99144 0.072
MB S16 1.00000 0.99696 0.99541 0.99103 0.054

Fine Grid
MOC A8P4 D0.05 1.00000 0.85017 1.00480 0.99981 7.353
MOC A8P4 D0.005 1.00000 0.99612 0.99490 0.99128 0.008
MOC A8P4 D0.0005 1.00000 0.99608 0.99483 0.99118 0.002
STEP S4 1.00000 0.99678 0.99505 0.99263 0.084
STEP S8 1.00000 0.99627 0.99440 0.99125 0.026
STEP S16 1.00000 0.99534 0.99405 0.99051 0.063
SSC S4 1.00000 0.99750 0.99589 0.99385 0.163
SSC S8 1.00000 0.99699 0.99523 0.99245 0.083
SSC S16 1.00000 0.99671 0.99488 0.99172 0.044
MB S4 1.00000 0.99702 0.99597 0.99432 0.176
MB S8 1.00000 0.99656 0.99547 0.99275 0.090
MB S16 1.00000 0.99636 0.99505 0.99149 0.025

the same time costs. The MOC solution is accurate because the flux is spatially very

flat, as shown from Table 6.5, and a fundamental assumption of MOC is that in each

spatial cell, the scalar flux is flat. Among all the SN methods, the multiple balance

method is more accurate than the simplified step characteristic method, which is more

accurate than the step method.

For the coarse grid, the multiple balance method has an error in flux about 4

times that of MOC, no matter whether the MOC ray spacing is 0.05 cm, 0.005 cm or

0.0005 cm. The time cost of the multiple balance method is 30 times, 3 times, and
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Figure 6.3: The error comparisons for the pin-cell problem without the IFBA layer
on the coarse grid. The MOC solutions data points are simulated with a
variety of angular quadrature sets: A4P2, A4P4, A8P4. The SN solutions
data points are simulated with a variety of angular quadrature sets: S4,
S8, S12, S16, S20. The dashed line is the Monte Carlo uncertainties
within two standard deviations.

1/3 that of MOC with ray spacing 0.05 cm, 0.005 cm and 0.0005 cm respectively.

The storage cost of the multiple balance method is 1/4, 1/40 and 1/400 that of MOC

with ray spacing 0.05 cm, 0.005 cm and 0.0005 cm respectively.

For the fine grid, the multiple balance method has a flux error about 3 times that

of MOC with ray spacing 0.005 cm. The time cost of the multiple balance method

is 4 times that of MOC with ray spacing 0.005 cm. The storage cost of the multiple

balance method is 1/10 that of MOC with ray spacing 0.005 cm.

It worth noting that for the fine grid, the MOC solution with a ray spacing of

0.05 cm has a larger error. The average size of spatial cells in the fine grid is on the

order of 0.05 cm. With a 0.05 cm ray spacing, the MOC rays do not pass through all

the spatial cells. This points out a fundamental character of MOC: the ray spacing
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Figure 6.4: The error comparisons for the pin-cell problem without the IFBA layer on
the fine grid. The MOC solutions data points are simulated with a variety
of angular quadrature sets: A4P2, A4P4, A8P4. The SN solutions data
points are simulated with a variety of angular quadrature sets: S4, S8,
S12, S16, S20. The dashed line is the Monte Carlo uncertainties within
two standard deviations.

needs to be much smaller than the average spatial cell size.

In summary, for the first pin-cell problem, the error of the multiple balance SN

solution is about one order of magnitude larger than that of MOC with a time cost

about one order of magnitude larger. However, when the spatial cell size becomes

smaller, the multiple balance SN method becomes less disadvantageous.

We also note that this is a fairly simple problem, in which the scalar flux solutions

is quite “flat”. We will see that for more realistic problems in which the scalar flux

has significant spatial gradient, the methods compare quite differently. The next test

problem with IFBA layer is more difficult.
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6.2.2 IFBA Pin-cell Problem

In the Westinghouse AP1000 reactor, some pin-cells have a thin layer of IFBA

material painted outside the fuel cylinders, see Figure 6.1 for an illustration. The

IFBA material has a very large absorption cross section, see Table 6.2. The thickness

of this layer is very small, on the order of 0.001 cm, about 1/1000 the size of a pin-cell.

However IFBA can greatly influence the k-eigenvalue of the problem. Because of its

large effect, a study of the IFBA pin-cell is important. As seen from later numerical

results, IFBA requires very small ray spacings for MOC.

0: Fuel

3: Clad

1: IFBA 2: Gap

4: Moderator

Fine Mesh
Structures Near IFBA, 50x Zoom

Figure 6.5: The fine grid of spatial cells of a pin-cell with IFBA coating outside the
fuel cylinder. There are 464 spatial cells. A zoom-in subplot is shown for
the very fine spatial cells inside and near the IFBA layer.

The solutions with different methods are compared in Table 6.6 and Table 6.7. See

Table 4.1 for definitions of the methods’ name abbreviations. The methods compared

include a variety of ray spacings for MOC, which has 8 azimuthal angles per quadrant

and 4 polar angles per octant. The comparison also includes the multiple balance SN
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method with a variety of angular quadrature sets. There are 12, 40, 144 angles

projected into x− y plane for the S4, S8 and S16 angle set respectively.

Table 6.6: List of k-effective, time & storage cost of IFBA pin-cell problem
Method Keff Keff

Error.
(pcm)

Time per It-
eration (ms)

Storage
(MB)

MC 0.89024 20 N/A N/A
MOC A8P4 D0.005 0.90167 1142 21.3 3.352
MOC A8P4 D0.004 0.88847 -177 24.2 4.175
MOC A8P4 D0.002 0.88887 -138 52.6 8.324
MOC A8P4 D0.001 0.88944 -80 101.7 16.597
MOC A8P4 D0.0005 0.89024 -1 206.6 33.163
STEP S4 0.88678 -347 1.4 0.400
STEP S8 0.88821 -203 4.8 0.393
STEP S16 0.88884 -140 26.2 0.393
SSC S4 0.88255 -769 1.7 0.400
SSC S8 0.88388 -637 6.2 0.393
SSC S16 0.88448 -576 24.4 0.393
MB S4 0.88689 -335 5.7 0.400
MB S8 0.88804 -220 19.8 0.393
MB S16 0.88841 -184 100.6 0.393

See Table 4.1 for definitions of the methods’ name abbreviations

Figure 6.6 describes the error comparisons for the pin-cell problem with the IFBA

layer on the fine grid. (See subsection 6.2.2.) Again, the MOC solution is accu-

rate because the flux is still quite flat, as shown from Table 6.7, and a fundamental

assumption of MOC is that in each spatial cell, the scalar flux is flat.

The MOC solutions with the ray spacing of 0.05 cm becomes worse when simulated

with more angles. This is explained by the fact that the ray spacing is not fine enough,

so that a cell could have no tracks for some directions. This is explained by Figure

6.8.

The next comparison is the flux in the IFBA region. Figure 6.7 compares the

scalar flux of the Monte Carlo and MOC methods with 0.0005 cm and 0.005 cm ray

spacing, and also the S16 multiple balance method. There is a slight dip of the scalar

flux in the IFBA region because of the strong absorption. MOC with 0.0005 cm ray
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Table 6.7: List of solution of IFBA pin-cell problem
Method Fuel

Flux
IFBA
Flux

Gap
Flux

Clad
Flux

Mod-
erator
Flux

Flux
Error
(%)

MC 1.00000 0.94923 0.96498 0.97472 0.97736 N/A
MOC A8P4 D0.005 1.00000 0.91281 0.97083 0.97799 0.97943 1.75
MOC A8P4 D0.004 1.00000 0.95419 0.96586 0.97502 0.97757 0.24
MOC A8P4 D0.002 1.00000 0.95338 0.96535 0.97498 0.97748 0.20
MOC A8P4 D0.001 1.00000 0.95165 0.96530 0.97503 0.97747 0.12
MOC A8P4 D0.0005 1.00000 0.94921 0.96611 0.97521 0.97757 0.06
STEP S4 1.00000 0.95867 0.97293 0.97911 0.98172 0.64
STEP S8 1.00000 0.95510 0.97140 0.97736 0.97846 0.43
STEP S16 1.00000 0.95360 0.97038 0.97634 0.97676 0.33
SSC S4 1.00000 0.97067 0.97590 0.98242 0.98553 1.24
SSC S8 1.00000 0.96742 0.97430 0.98062 0.98219 1.02
SSC S16 1.00000 0.96600 0.97323 0.97955 0.98046 0.92
MB S4 1.00000 0.95771 0.97094 0.97868 0.98425 0.61
MB S8 1.00000 0.95502 0.96956 0.97786 0.98090 0.41
MB S16 1.00000 0.95449 0.96909 0.97661 0.97857 0.33

See Table 4.1 for definitions of the methods’ name abbreviations

spacing and the S16 multiple balance method have solutions close to the Monte Carlo

reference.

But the MOC solution with 0.005 cm ray spacing has a significantly lower IFBA

flux than Monte Carlo reference. This may be explained by the illustration in Figure

6.8. This figure illustrates that when the ray spacing is wide enough, there are

directions in which the rays might not pass through the cell. So the angular flux for

that cell in that direction may be zero. Since the scalar flux in the cell is obtained by

summing the angular fluxes from all directions, the scalar flux will be artificially low

when the angular flux in some direction is zero. This may be an important reason

why the MOC solution with a ray spacing of 0.005 cm in Figure 6.7 is incorrectly

low. The new multiple balance method is advantageous because such an unphysical

low scalar flux in the IFBA region does not occur.

We emphasize that for all the SN methods, only one spatial grid is needed. The

second spatial grid of fine rays is not required. So the new multiple balance method
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Figure 6.6: The error comparisons for he pin-cell problem with a thin IFBA layer on
the fine grid. The MOC solutions data points are simulated with a variety
of angular quadrature sets: A4P2, A4P4, A8P4. The SN solutions data
points are simulated with a variety of angular quadrature sets: S4, S8,
S12, S16, S20. The dashed line is the Monte Carlo uncertainties within
two standard deviations.

has the advantage of easier implementation.

In the first two problems, the STEP method has surprisingly small errors. This

can perhaps be explained by the fundamental STEP assumption: the outgoing fluxes

equal the cell averaged flux. The fluxes in the first two problems are quite flat. So

not surprisingly, the STEP method is also accurate.
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Figure 6.7: Detailed scalar flux inside and near the IFBA region. A dip in flux is
observed because of large absorption cross section. MOC with wide ray
spacing may result an unphysical low flux. See Figure 6.8 for an expla-
nation.
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Not All Directions have
 Rays Passing the Cell 

All Directions have
 Rays Passing the Cell 

Figure 6.8: A simplified depiction of MOC rays passing through a cell. When ray
spacing is wide, there may be no tracks in the cell.
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6.3 Mini-assembly Problem

The third problem is a mini-assembly containing a 3x3 grid of pin-cells. There is

a 2x2 grid of UO2 pin-cells in the center, with reflecting boundary conditions. The

moderator is water surrounding the UO2 pin-cells, with vacuum boundary conditions.

See Figure 6.9 for an illustration. These pin-cells are identified by the coordinates

(i, j), 0 ≤ i ≤ 2, 0 ≤ j ≤ 2.

The fuel pin-cells are discretized into 48 spatial cells for the coarse grid, and 96

spatial cells for the fine grid. The moderator pin-cells are discretized into 16 spatial

cells. The spatial cells and the materials are illustrated in Figure 6.10.

H2O
(0,2)

H2O
(1,2)

H2O
(2,2)

UO2 
(0,1)

UO2
(1,1)

H2O
(2,1)

UO2
(0,0)

UO2
(1,0)

H2O
(2,0)

Reflected

Reflected

Vacuum

Vacuum

Figure 6.9: An illustration of the mini-assembly pin-cell layout. Four fuel pin-cells
are in the center with reflected boundaries, which is surrounded by five
moderator pin-cells with vacuum boundaries.

The keff , time and storage costs are compared in Table 6.8, and the pin-cell power

of the fuel pin-cells are shown in Table 6.9. The pin-cell averaged fluxes for selected

methods are compared in Figure 6.11. The pin-cell power and pin-cell averaged fluxes

are normalized to be 1.0 for the pin-cell at coordinate (0, 0).

The two figures 6.12 and 6.13 describe the comparisons of k and max-min pin
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0: Fuel

3: Moderator

1: Gap

2: Clad

Vacuum

Reflected

Vacuum

Reflected

Figure 6.10: The coarse grid and fine grid. For each fuel pin-cell, there are 48 spatial
cells in the coarse grid, and 96 spatial cells in the fine grid. For both
cases, the moderator pin-cells have 16 spatial cells.

power for the mini-assembly problem: one for the coarse grid, and the other for the

fine grid. (See section 6.3.)

For the same time costs, the MB solution has smaller errors than the MOC, STEP

and SSC solutions. MOC is also more accurate than SSC, which is more accurate

than STEP. In this problem, the fluxes drop about 80% from the highest pin-cell to

the lowest pin-cell, which can be seen from Figure 6.11. Therefore, the neutron flux

for this problem has a significant tilt - it is much less “flat” than in the first two

problems. A possible reason why the MB method is the most accurate is because the

derivation of the MB method does not assume that the flux is flat in a cell, while the

other methods, i.e. STEP, SSC and MOC methods all assume the flux in a cell to be

flat.

This indicates a character of the multiple balance method: the finer grid is neces-

sary to allow the multiple balance method to show its advantages. The reader may

argue that a fine grid may not be practical in reactor lattice calculation. However
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Figure 6.11: The pin-cell averaged fluxes, which are normalized to 1.0 for the pin-
cell at coordinate (0, 0). The percentage in red marks the relative error
from the Monte Carlo reference, calculated with the formula defined in
equation (2.68).

the “fine” grid as shown in the section 6.3 only costs twice of that the “coarse grid”.

Also, the ray spacing required for accurate MOC solution constitutes a much finer

grid than the one used by the SN methods in these figures. See Figure 6.14 for an

illustration.

Since the mini-assembly problem more closely resembles realistic problems, we ex-

pect the MB method to be more favorable than MOC for whole core simulations. This

hypothesis will be tested further in our multigroup simulations with cross sections of

higher fidelity.

In summary, the one-group problems treated here suggest that the MB method is
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Table 6.8: List of k-effective, time & storage cost of the mini-assembly problem
Method Keff Keff

Error.
(pcm)

Time per It-
eration (ms)

Storage
(MB)

MC 0.45717 3 N/A N/A
Coarse Grid

MOC A8P4 D0.05 0.45148 -569 4.9 0.823
MOC A8P4 D0.01 0.45143 -574 25.4 4.051
MOC A8P4 D0.005 0.45147 -571 51.0 8.093
STEP S4 0.42326 -3391 1.2 0.325
STEP S8 0.42683 -3034 4.0 0.346
STEP S16 0.42827 -2890 17.5 0.357
SSC S4 0.43253 -2464 1.4 0.325
SSC S8 0.43684 -2033 5.1 0.346
SSC S16 0.43853 -1864 21.0 0.357
MB S4 0.45017 -700 4.9 0.325
MB S8 0.45423 -294 17.0 0.346
MB S16 0.45534 -183 86.4 0.357

Fine Grid
MOC A8P4 D0.05 0.45212 -505 5.5 0.944
MOC A8P4 D0.01 0.45200 -517 27.3 4.612
MOC A8P4 D0.005 0.45203 -514 55.2 9.205
STEP S4 0.42279 -3438 1.8 0.482
STEP S8 0.42662 -3055 6.8 0.501
STEP S16 0.42854 -2863 32.4 0.511
SSC S4 0.43404 -2313 2.2 0.482
SSC S8 0.43864 -1853 8.8 0.501
SSC S16 0.44059 -1658 43.1 0.511
MB S4 0.45108 -609 7.2 0.482
MB S8 0.45528 -190 36.1 0.501
MB S16 0.45717 -1 132.9 0.511

See Table 4.1 for definitions of the methods’ name abbreviations

competitive with the MOC method, and that for problems with substantial spatial

variations in the neutron flux, the MB method may be significant more accurate than

MOC. This conjecture will be tested further in more realistic multigroup simulations

considered in the next chapter.
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Table 6.9: List of pin-cell power of the mini-assembly problem
Method Pin

Power
(0,0)

Pin
Power
(0,1)

Pin
Power
(1,0)

Pin
Power
(1,1)

Pin
Power
Error
(%)

Max-
min Pin
Power
Ratio

MC 1.0000 0.7953 0.7955 0.6323 0.03 1.5816 ±
0.0005

Coarse Grid
MOC A8P4 D0.05 1.0000 0.7934 0.7934 0.6300 0.25 1.5874
MOC A8P4 D0.01 1.0000 0.7938 0.7938 0.6300 0.23 1.5873
MOC A8P4 D0.005 1.0000 0.7939 0.7939 0.6301 0.22 1.5871
STEP S4 1.0000 0.7840 0.7840 0.6118 1.91 1.6344
STEP S8 1.0000 0.7867 0.7867 0.6176 1.40 1.6192
STEP S16 1.0000 0.7873 0.7873 0.6183 1.32 1.6173
SSC S4 1.0000 0.7874 0.7874 0.6166 1.43 1.6217
SSC S8 1.0000 0.7902 0.7902 0.6226 0.89 1.6061
SSC S16 1.0000 0.7909 0.7909 0.6236 0.80 1.6037
MB S4 1.0000 0.7983 0.7984 0.6359 0.39 1.5695
MB S8 1.0000 0.7995 0.7994 0.6377 0.56 1.5683
MB S16 1.0000 0.7992 0.7992 0.6376 0.54 1.5679

Fine Grid
MOC A8P4 D0.05 1.0000 0.7923 0.7923 0.6282 0.43 1.5918
MOC A8P4 D0.01 1.0000 0.7927 0.7927 0.6284 0.39 1.5913
MOC A8P4 D0.005 1.0000 0.7928 0.7928 0.6285 0.38 1.5912
STEP S4 1.0000 0.7779 0.7779 0.6036 2.75 1.6566
STEP S8 1.0000 0.7812 0.7812 0.6096 2.20 1.6405
STEP S16 1.0000 0.7822 0.7822 0.6112 2.04 1.6361
SSC S4 1.0000 0.7824 0.7824 0.6100 2.11 1.6394
SSC S8 1.0000 0.7859 0.7859 0.6164 1.52 1.6224
SSC S16 1.0000 0.7870 0.7870 0.6181 1.35 1.6178
MB S4 1.0000 0.7936 0.7936 0.6275 0.41 1.5928
MB S8 1.0000 0.7949 0.7949 0.6311 0.10 1.5837
MB S16 1.0000 0.7959 0.7959 0.6326 0.05 1.5799

See Table 4.1 for definitions of the methods’ name abbreviations
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Figure 6.12: The comparisons of k and max-min pin power ratio for the mini-assembly
problem on the coarse grid. The MOC solutions data points are sim-
ulated with a variety of angular quadrature sets: A4P2, A4P4, A8P4.
The SN solutions data points are simulated with a variety of angular
quadrature sets: S4, S8, S12, S16, S20. The dashed line is the Monte
Carlo reference.
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Figure 6.13: The comparisons of k and max-min pin power ratio for the mini-assembly
problem on the fine grid. The MOC solutions data points are simulated
with a variety of angular quadrature sets: A4P2, A4P4, A8P4. The SN
solutions data points are simulated with a variety of angular quadrature
sets: S4, S8, S12, S16, S20. The dashed line is the Monte Carlo reference.

Four fine cells for MOC Only one cell for SN

Figure 6.14: MOC rays passing through a cell will divide it into one or more fine cells.
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CHAPTER VII

Numerical Results for Two-Dimensional

Multigroup Problems with Curved Spatial Grids

In this chapter, we study the performance of discrete ordinates (SN) methods

for 2-D multigroup problems with curved spatial grids. To make the problems more

realistic, we use the Winfrith Improved Multigroup Scheme-D (WIMS-D) library to

generate cross sections. WIMS-D is one of the most widely-used reactor lattice codes

that is available in the public domain. (Askew et al., 1966) The data library of this

code is called the WIMS-D library. (Halsall, 1991) The problems in this chapter are

some of the CASL VERA benchmark problems (Godfrey, 2014) plus a mini-assembly

problem. These contain realistic model problems for simulations ranging from a single

pin-cell to a full assembly.

7.1 WIMS-D Cross Section

The WIMS-D library contains microscopic cross sections for many nuclides that

are important for reactor simulations. The data library used in this thesis was pub-

lished by IAEA in 2014 (Aldama, 2014), and was generated from the ENDF/B-VII.1

evaluated nuclear data library (Chadwick and et al., 2011).

The data library contains 185 materials in either 69 or 172 groups. We used the
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172 group cross sections, in which groups 1-92 are “fast” groups, 46-92 are “resonance”

groups, and 93-172 are “thermal” groups. The fission spectrum is shown in Figure

7.1.
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Figure 7.1: The fission spectrum in WIMS-D cross section library.

The microscopic cross sections included are: transport-corrected total, absorption,

fission, nu-fission, and the scattering matrix. Each cross section is temperature-

dependent within the resonance range, i.e. groups 46-92. Resonance phenomena are

important for neutron slowing down, the accurate treatment of which is necessary

to make the multigroup cross sections valid. (Williams, 1966) The WIMS-D library

contains the following information for each resonant nuclide:

σp : potential scattering cross section,

Ia(σb, T ) : absorption resonance integral,

If (σb, T ) : fission resonance integral,

λ : the Golstein-Cohen parameter,
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where T is the temperature, and σb is the “background” cross section as defined below.

Consider a material containing M nuclides. We designate the integer 1 ≤ i ≤ M as

an index of the nuclide. For light water composed of 1H and 16O as an example,

we have M = 2, and we can designate the index i = 1 for 1H, and i = 2 for 16O.

Then the background cross section seen by nuclide r is defined in the WIMS-D library

document (Leszczynski et al., 2007) as:

σb,r = σp,r +
M∑
i=1

Ni

Nr

λiσp,i, (7.1)

where σb,r is the background cross section for nuclide r, σp,i is the microscopic potential

scattering of the nuclide at index i, Ni is the atomic density of the nulide at index i,

and λi is the Goldstein-Cohen parameter of the nuclide at index i.

The Goldstein-Cohen parameter is a value between 0 and 1, and is used in the

“intermediate resonance” (IR) approximation. This parameter was first invented by

Goldstein and Cohen (Goldstein and Cohen, 1962). Later, their work became a clas-

sical method for resonance treatment (Williams, 1966; Stammler and Abbate, 1983).

Careful work was done to generate the parameters in their method (Leszczynski, 1997,

1999).

The resonance self-shielded cross section, given by the WIMS-D library document

(Leszczynski et al., 2007), is:

σa(σb, T ) =
Ia(σb, T )

1− Ia(σb, T )/σb
, (7.2)

νσf (σb, T ) =
If (σb, T )

1− Ia(σb, T )/σb
, (7.3)

where σa is absorption cross section, and νσf is the fission yield cross section.

Our treatment of resonance is a simplified approach in the sense that the self-

shielding effects due to material heterogeneity are ignored. Modern approaches to
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resonance treatments are reviewed in Liu (2015). Because the purpose in this chapter

is to demonstrate the application of SN methods for realistic multigroup problems,

high precision in the multigroup cross sections is not the goal here.

7.2 Material Compositions

For the problems considered in this thesis, we only need five materials, whose

nuclide compositions are provided in Table 7.1. The “WIMS ID” is the identifier of

the material in the WIMS-D data library. The atomic density is in units of “# per

barn-cm”, where we define:

1 barn-cm = 10−24 cm3. (7.4)

Table 7.1: List of material compositions (Godfrey, 2014)

Material WIMS ID Atomic Density #/
barn-cm Material WIMS ID Atomic Density 

#/barn-cm
Fuel (3.1wt% UO2) Gap

U-234 234 6.11864E-06 He 4 2.68714E-05
U-235 2235 7.18132E-04 Clad (Zircaloy-4)
U-236 236 3.29861E-06 Zr 91 6.4439E+00
U-238 8238 2.21546E-02 Sn 118 9.5120E-02
O-16 6016 4.57642E-02 Fe 2056 1.3776E-02

IFBA Cr 52 6.5600E-03
B-10 10 2.16410E-02 Hf-176 2176 3.4014E-05
B-11 11 1.96824E-02 Hf-177 2177 1.2096E-04
Zr 91 2.06616E-02 Hf-178 2178 1.7841E-04

Moderator Hf-179 2179 8.9580E-05
O-16 6016 2.48112E-02 Hf-180 2180 2.3201E-04
H-1 3001 4.96224E-02
B-10 10 1.07070E-05
B-11 11 4.30971E-05
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7.3 Geometry of Pin-cells

We define three types of pin-cells. The first type is the “fuel” pin-cell, which

contains an inner ring of fuel, coated by a thin layer of the IFBA material; outside

the IFBA layer is the gap; outside the gap is the clad, surrounded by moderator. (The

IFBA layer may not be present for a pin-cell.) The second type is the “guide tube”

pin-cell, which contains a ring of clad. The third type is the “instruction tube” pin-

cell, which is a type of “guide tube” inserted in the middle of an LWR fuel assembly.

Figure 7.2 describes the geometry of pin-cells.

Moderator

Clad

Gap
IFBA

Fuel

Fuel Pin-cell Guide Tube/Instruction Tube

Figure 7.2: The geometry of pin-cells. Different materials are marked in different
colors. The IFBA layer may not be present in a fuel pin-cell. The “in-
struction tubes” are “guide tube” pin-cells inserted in the middle of an
LWR assembly. (Godfrey, 2014)

The dimensions of the fuel pin-cell (F), the guide tube pin-cell (GT), and the

instruction tube pin-cell (IT) are given in Table 7.2. These pin-cells are the building

blocks of the problems discussed in this chapter. We note that both the guide tube
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and the instruction tube have similar geometries, but the inner and outer radii of the

clad are slightly different. An instruction tube typically appears in the center of an

assembly. This is clarified in the final problem that we study. (See Figure 7.7.)

Table 7.2: Pin-cell Dimension Information (Godfrey, 2014)
Dimension Value (cm)
Pitch (Size of the Square) 1.26

Fuel Pin-cell (F)
Outer radius of fuel 0.4096
Outer radius of IFBA 0.4106
Outer radius of gap 0.418
Outer radius of clad 0.475

Guide Tube Pin-cell (GT)
Inner radius of clad 0.559
Outer radius of clad 0.605

Instruction Tube Pin-cell (IT)
Inner radius of clad 0.561
Outer radius of clad 0.602

7.4 VERA Benchmark Problems

In this section we study three problems from the VERA benckmark problems

(Godfrey, 2014), i.e. problems 1A, 1E, and 2A.

7.4.1 Problem 1A: Fuel Pin-cell without IFBA

7.4.1.1 Problem Description

The first problem considered here is the VERA benchmark problem 1A (Godfrey,

2014), which is a single fuel pin-cell without an IFBA layer. The pin-cell is divided

into 32 angular sectors; the spatial grid is depicted in Figure 7.3.

7.4.1.2 Verification

The scalar fluxes are averaged over the fuel, gap, clad, and the moderator regions,

and are normalized such that the “collision rate” in the fuel region is 1.0. The collision
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Fuel Pin-cell
without IFBA

Fuel

Moderator

Gap

Clad

Radial Meshes at Radii: 0.1024 cm, 0.2048 cm, 0.3096 cm, 0.4096 cm, 
0.4180 cm, 0.4750 cm,0.5535 cm, 0.6300 cm, 0.7200 cm

Figure 7.3: The spatial grid for Problem 1A: the fuel pin-cell without IFBA. All outer
boundaries are reflecting.

rate is defined as the sum of the products between groupwise scalar flux and total

cross section:

CR =
G∑

g=1

Σt,g φ̄g, (7.5)

where G = 172 for the 172-group cross sections.

Figure 7.4 compares the methods’ accuracy in k-eigenvalues and collision rates

versus time costs, where the numerical values are listed in Table 7.3 and Table 7.4.

The STEP and SSC methods are seen to be more accurate than MOC for the

same computational cost. Among all SN methods, the step and SSC methods are

more accurate than the MB method. This confirms our conjecture from Chapter VI

that the MB method is less advantageous when the scalar flux is “flat”. For the MOC

method with 0.05 cm and 0.02 cm ray spacings, the solutions become significantly

less accurate when the ray spacing is not significantly smaller than the fine spatial
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Table 7.3: List of k-effective versus time cost for Problem 1A
Method Keff Keff

Error.
(pcm)

Time per It-
eration (ms)

Storage
(MB)

MC 1.257067 10.0 N/A N/A
MOC D0.05 A8P4 1.172837 -8423.0 512 0.288
MOC D0.02 A8P4 1.254141 -292.6 1,250 0.693
MOC D0.01 A8P4 1.256535 -53.2 2,505 1.369
STEP S4 1.256893 -17.4 559 0.241
STEP S8 1.256154 -91.3 1,374 0.233
STEP S16 1.256151 -91.6 4,886 0.230
SSC S4 1.257674 60.7 590 0.241
SSC S8 1.257088 2.1 1,488 0.233
SSC S16 1.257172 10.5 5,290 0.230
MB S4 1.257711 64.4 1,530 0.241
MB S8 1.256200 -86.7 4,548 0.233
MB S16 1.256041 -102.6 16,774 0.230

See Table 4.1 for definitions of the methods’ name abbreviations

Table 7.4: List of collision rates (CR) for Problem 1A
Method Fuel

CR
per
Area

Gap
CR
per
Area

Clad
CR
per
Area

Modera-
tor CR
per Area

CR Er-
ror (%)

MC 1.00000 0.00012 0.67728 1.80659 0.030
MOC D0.05 A8P4 1.00000 0.00011 0.68740 1.81682 6.470
MOC D0.02 A8P4 1.00000 0.00012 0.67880 1.80986 2.230
MOC D0.01 A8P4 1.00000 0.00012 0.67863 1.81048 0.147
STEP S4 1.00000 0.00012 0.67723 1.80453 0.233
STEP S8 1.00000 0.00012 0.67820 1.81259 0.195
STEP S16 1.00000 0.00012 0.67838 1.81399 0.222
SSC S4 1.00000 0.00012 0.67656 1.79807 0.379
SSC S8 1.00000 0.00012 0.67756 1.80619 0.143
SSC S16 1.00000 0.00012 0.67773 1.80739 0.056
MB S4 1.00000 0.00012 0.67188 1.79439 1.263
MB S8 1.00000 0.00012 0.67556 1.80930 0.770
MB S16 1.00000 0.00012 0.67755 1.81449 0.389

See Table 4.1 for definitions of the methods’ name abbreviations

grid size.
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Figure 7.4: Error comparisons for problem 1A. The MOC solution data points are
simulated with a variety of angular quadrature sets: A4P2, A4P4, A8P4.
The SN solution data points are also simulated with a variety of angular
quadrature sets: S4, S8, S12, S16, S20. The dashed lines are the Monte
Carlo uncertainties within two standard deviations. The uncertainties
in the Monte Carlo results are so small that the dashed lines cannot be
distinguished from each other.

7.4.1.3 Validation

Another question is the quality of the multigroup cross sections. The reference k-

eigenvalue is 1.183262±0.000106 (Godfrey, 2014), while with the WIMS-D multigroup

cross sections, we obtain 1.257067± 0.000100. There is a clear difference between the

two. We conclude that a more accurate resonance treatment is necessary to improve

the solutions.

Table 7.5: Validation of WIMS-D cross section for problem 1A
Data Keff Keff Uncertainty.
WIMS Cross Section 1.257067 0.000100
CE KENO-VI. 1.183262 0.000106
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7.4.2 VERA Benchmark Problem 1E: Fuel Pin-cell with IFBA

7.4.2.1 Problem Description

The second problem considered here is the VERA benchmark problem 1E (God-

frey, 2014), which is a single fuel pin-cell with an IFBA layer. The pin-cell is divided

into 32 angular sectors; the spatial grid is depicted in Figure 7.5.

Fuel Pin-cell
with IFBA

Fuel

Clad

IFBA

Gap

Moderator

Radial Meshes at Radii: 0.1024 cm, 0.2048 cm, 0.3096 cm, 0.4096 cm, 
0.4101 cm, 0.4106 cm, 0.4180 cm, 0.4750 cm, 
0.5535 cm, 0.6300 cm, 0.7200 cm

Figure 7.5: The spatial grid for Problem 1E: the fuel pin-cell with an IFBA layer. All
outer boundaries are reflecting.

7.4.2.2 Verification

Table 7.6 compares the methods’ accuracy in k-eigenvalues versus time costs, while

Table 7.7 compares the methods’ accuracy in collision rates versus time costs.

Table 7.6 shows that the step method has the most accurate eigenvalue. For

the collision rate, the discrete ordinates methods are more accurate than the MOC

method, and the step method is slightly more accurate than the SSC and MB meth-

ods. We note that for wide ray spacings of 0.05 cm and 0.005 cm, the MOC method
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Table 7.6: List of k-effective versus time cost for Problem 1E
Method Keff Keff

Error.
(pcm)

Time per It-
eration (ms)

Storage
(MB)

MC 0.808911 7.8 N/A N/A
MOC D0.05 A8P4 0.806746 -216.5 329 0.316
MOC D0.005 A8P4 0.815416 650.5 2,975 3.352
MOC D0.0005 A8P4 0.808156 -75.5 29,367 33.163
STEP S4 0.810348 143.7 425 0.400
STEP S8 0.809427 51.6 1,011 0.393
STEP S16 0.809387 47.6 3,888 0.393
SSC S4 0.804893 -401.8 446 0.400
SSC S8 0.803891 -502.0 1,228 0.393
SSC S16 0.803858 -505.3 4,556 0.393
MB S4 0.809932 102.1 1,050 0.400
MB S8 0.807264 -164.7 4,073 0.393
MB S16 0.8065944 -231.7 15,630 0.393

See Table 4.1 for definitions of the methods’ name abbreviations

Table 7.7: List of collision rates (CR) for Problem 1E
Method Fuel

CR
per
Area

IFBA
CR
per
Area

Gap
CR
per
Area

Clad
CR
per
Area

Modera-
tor CR
per Area

CR Er-
ror (%)

MC 1.00000 11.80899 0.00013 0.69990 1.73811 0.030
MOC D0.05 A8P4 1.00000 9.98188 0.00011 0.70870 1.76455 9.268
MOC D0.005 A8P4 1.00000 11.56318 0.00013 0.70148 1.74578 0.959
MOC D0.0005 A8P4 1.00000 11.83350 0.00013 0.70154 1.74324 0.193
STEP S4 1.00000 11.77599 0.00013 0.70046 1.73790 0.218
STEP S8 1.00000 11.77628 0.00013 0.70147 1.74586 0.259
STEP S16 1.00000 11.77020 0.00013 0.70160 1.74698 0.297
SSC S4 1.00000 11.93305 0.00013 0.70056 1.73232 0.526
SSC S8 1.00000 11.94121 0.00013 0.70162 1.74036 0.517
SSC S16 1.00000 11.93673 0.00013 0.70174 1.74130 0.507
MB S4 1.00000 11.78824 0.00013 0.69409 1.72691 1.177
MB S8 1.00000 11.83790 0.00013 0.69833 1.74212 0.711
MB S16 1.00000 11.85466 0.00013 0.70051 1.74752 0.403

See Table 4.1 for definitions of the methods’ name abbreviations

is highly inaccurate. This is probably because of the thin IFBA layer. (See section

6.2.2 for a detailed discussion.)

Our conjecture from Chapter VI is again confirmed that the MB method is less
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Figure 7.6: Error comparisons for problem 1E. The MOC solution data points are
simulated with a variety of angular quadrature sets: A4P2, A4P4, A8P4.
The SN solution data points are also simulated with a variety of angular
quadrature sets: S4, S8, S12, S16, S20. The dashed lines are the Monte
Carlo uncertainties within two standard deviations. The uncertainties
in the Monte Carlo results are so small that the dashed lines cannot be
distinguished from each other.

advantageous over MOC when the scalar flux is “flat”.

Also, because the storage requirements of SN methods have only a weak depen-

dence on the angular quadrature sets, the storage costs are significantly lower than

that of MOC.

7.4.2.3 Validation

The reference k-eigenvalue is 0.772366 ± 0.000078 (Godfrey, 2014), while with

the WIMS-D multigroup cross sections, we obtain 0.808911 ± 0.000078. There is a

clear difference between the two. We again conclude that a more accurate resonance

treatment is necessary to improve the solutions.
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Table 7.8: Validation of WIMS-D cross section for problem 1E
Data Keff Keff Uncertainty.
WIMS Cross Section 0.808911 0.000078
CE KENO-VI. 0.772366 0.000078

7.4.3 VERA Benchmark Problem 2A: Zero Power Fuel Assembly

7.4.3.1 Problem Description

GT GT GT

GT GT

GT GT GT GT GT

GT GT IT GT GT

GT GT GT GT GT

GT GT

GT GT GT

F Fuel 
no IFBA

GT
Guide  
Tube

IT Instruction  
Tube

Figure 7.7: The geometry of VERA benchmark problem 2A, which is a fuel assembly.
There are 25 empty guide tubes and one centered instruction tube . All
outer boundaries are reflecting.

The third problem considered here is a fuel assembly, which contains 25 guide

tubes, and one instruction tube in the center (Godfrey, 2014). All outer boundaries

are reflecting. Figure 7.7 illustrates the assembly geometry. Each pin-cell is divided

into 16 angular sectors. The spatial grid is shown in Figure 7.8. Because of symmetry,

it is sufficient to consider only a quarter of the assembly with all reflecting outer

boundaries.
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Fuel ModeratorGap Clad

Figure 7.8: The spatial grid for Problem 2A. All outer boundaries are reflecting.

7.4.3.2 Verification

Table 7.9 compares the accuracies of k-eigenvalue and the maximum and mini-

mum pin-cell powers. The pin-cell powers are normalized so that the average is 1.0,

and the power distributions are compared in Figure 7.10, whileas the error in power
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Table 7.9: List of k-effective versus time & pin-cell power for Problem 2A
Method Keff Keff

Er-
ror.
(pcm)

Time
per
Iter-
ation
(ms)

Max
Pin
Power

Min
Pin
Power

Max-
min Pin
Power
Ratio

Error
in Pin
Power
Ratio
(%)

Storage
(MB)

MC (100 Million) 1.24552 4 N/A 1.0594 0.9160 1.1566 0.16 N/A
MOC A4P2 D0.05 1.24144 -407 3,913 1.0593 0.9201 1.1513 -0.46 5.467
MOC A4P4 D0.05 1.24138 -413 5,613 1.0594 0.9202 1.1513 -0.46 5.467
MOC A4P2 D0.02 1.24509 -43 8,478 1.0540 0.9185 1.1475 -0.79 13.097
MOC A4P4 D0.02 1.24503 -49 12,494 1.0599 0.9170 1.1558 -0.07 13.097
STEP S4 1.24507 -45 12,486 1.0564 0.9193 1.1490 -0.66 5.133
STEP S8 1.24403 -149 32,421 1.0556 0.9199 1.1474 -0.79 4.954
SSC S4 1.24746 194 12,837 1.0599 0.9167 1.1561 -0.04 5.133
SSC S8 1.24659 107 30,751 1.0589 0.9172 1.1545 -0.18 4.954
MB S4 1.24478 -74 23,421 1.0608 0.9161 1.1580 0.12 5.133
MB S8 1.24314 -238 58,598 1.0597 0.9168 1.1558 -0.07 4.954

See Table 4.1 for definitions of the methods’ name abbreviations

distribution is compared in Figure 7.11. Figure 7.9 compares the k-eigenvalue and

maximum to minimum pin-cell power ratios.

In this problem, the MB and SSC methods are more accurate than the MOC

methods, while the STEP method is the least accurate. The quarter assembly problem

is reasonably complex for practical reactor simulations, and we can see that the MB

method is quite accurate. This again suggests that SSC and MB are alternative

methods to MOC for reactor simulations.

With all reflecting outer boundaries, the problem simulates an assembly in the

center of the reactor. So the flux is more flat than an assembly near the outer rim of

the reactor. We see again that, when the solution is more flat, the advantage of MB

over the MOC method is less significant.

From the pin-power distributions, the SSC and MB methods have comparable

error with MOC for comparable excution cost (within 2 to 3 times).
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Figure 7.9: Error comparisons for the problem 2A. The MOC solution data points
are simulated with two angular quadrature sets: A4P2, A4P4. The SN
solution data points are also simulated with two angular quadrature sets:
S4, S8. The dashed line shows the Monte Carlo uncertainties within two
standard deviations. The uncertainties in the Monte Carlo k-eigenvalues
are so small that the dashed lines cannot be distinguished from each other.
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0.0000 1.0303 1.0320 0.0000 1.0428 1.0220 0.9730 0.9421 0.9290
1.0383 1.0091 1.0127 1.0525 1.0594 0.0000 1.0220 0.9612 0.9396
1.0419 1.0126 1.0160 1.0521 1.0391 1.0594 1.0428 0.9809 0.9479
0.0000 1.0432 1.0452 0.0000 1.0521 1.0525 0.0000 1.0104 0.9596
1.0437 1.0141 1.0147 1.0452 1.0160 1.0127 1.0320 0.9857 0.9569
1.0444 1.0134 1.0141 1.0432 1.0126 1.0091 1.0303 0.9849 0.9571
0.0000 1.0444 1.0437 0.0000 1.0419 1.0383 0.0000 1.0090 0.9611
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Figure 7.10: Comparison of pin-cell power distributions for Problem 2A.
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Figure 7.11: Comparison of pin-cell power error distributions for Problem 2A.
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7.4.3.3 Validation

Table 7.10 and Figure 7.12 compare the k-eigenvalue and pin-cell power distri-

butions with the reference KENO-VI results (Godfrey, 2014). With the WIMS-D

multigroup cross section, we over-estimate the k-eigenvalue, and we under-estimate

the pin-cell power for pin-cells away from the center of the assembly. Nonetheless, in

general the WIMS-D library produces a quite faithful shape of the power distribution.

Table 7.10: Validation of WIMS-D cross section for problem 2A k-eigenvalue
Data Keff Keff Er-

ror. (pcm)
Max Pin
Power

Min Pin
Power

Max-min Pin
Power Ratio

WIMS Cross Section 1.24552 4 1.0594 0.9160 1.1566
CE KENO-VI. 1.18273 2 1.0513 0.9394 1.1191
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0.9611 0.9571 0.9569 0.9596 0.9479 0.9396 0.9290 0.9202 0.9160
1.0090 0.9849 0.9857 1.0104 0.9809 0.9612 0.9421 0.9283 0.9202
0.0000 1.0303 1.0320 0.0000 1.0428 1.0220 0.9730 0.9421 0.9290
1.0383 1.0091 1.0127 1.0525 1.0594 0.0000 1.0220 0.9612 0.9396
1.0419 1.0126 1.0160 1.0521 1.0391 1.0594 1.0428 0.9809 0.9479
0.0000 1.0432 1.0452 0.0000 1.0521 1.0525 0.0000 1.0104 0.9596
1.0437 1.0141 1.0147 1.0452 1.0160 1.0127 1.0320 0.9857 0.9569
1.0444 1.0134 1.0141 1.0432 1.0126 1.0091 1.0303 0.9849 0.9571
0.0000 1.0444 1.0437 0.0000 1.0419 1.0383 0.0000 1.0090 0.9611

MC Pin-cell Power for Problem 2A
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Avg. 1.0000

WIMS-D 172 Multigroup 
Monte Carlo 

x (cm)
0 2 4 6 8 10

y 
(c

m
)

0

5

10

0.9762 0.9719 0.9719 0.9737 0.9647 0.9549 0.9462 0.9462 0.9488
1.0116 0.9878 0.9888 1.0116 0.9834 0.9650 0.9488 0.9394 0.9462
0.0000 1.0257 1.0278 0.0000 1.0361 1.0170 0.9740 0.9488 0.9462
1.0318 1.0058 1.0094 1.0448 1.0513 0.0000 1.0170 0.9650 0.9549
1.0354 1.0080 1.0109 1.0455 1.0325 1.0513 1.0361 0.9834 0.9647
0.0000 1.0376 1.0390 0.0000 1.0455 1.0448 0.0000 1.0116 0.9737
1.0365 1.0094 1.0094 1.0390 1.0109 1.0094 1.0278 0.9888 0.9719
1.0358 1.0094 1.0094 1.0376 1.0080 1.0058 1.0257 0.9878 0.9719
0.0000 1.0358 1.0365 0.0000 1.0354 1.0318 0.0000 1.0116 0.9762
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0.95
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KENO-VI Continous 
Monte Carlo 

Figure 7.12: Validation of WIMS-D cross sections for problem 2A pin-cell power

171



7.5 Problems with a Large Flux Gradient

In the previous section 7.4, we studied the VERA benchmark problems, which have

“flat” fluxes. In this section, we study two modified VERA becnckmark problems to

test the behavior of the SN methods under more “difficult” conditions, i.e. there are

large gradients in the solutions.

7.5.1 Mini-assembly Problem

7.5.1.1 Problem Description

The first problem considered here is the mini-assembly problem, which we first

saw earlier in section 6.3, when we studied the one-group problems. The geometry

is shown in Figure 6.9. The fuel pin-cells in this problem have no IFBA layers. The

materials use multigroup cross sections as described in Table 7.1.

Each fuel pin-cell is divided into 16 angular sectors, and each moderator pin-cell

is divided into a 4x4 sub-grid of squares. The spatial grid is illustrated in Figure 7.13.

7.5.1.2 Verification

The solutions are normalized so that the maximum power in the fuel pin-cells is

1.0. Table 7.11 compares the errors in k-effective versus the the time cost. Table 7.12

compares the pin-cell powers. Figure 7.14 compares the k-eigenvalue and maximum

to minimum pin-cell power ratios. Figure 7.15 compares pin-power distribution in

different methods. In this problem, the pin-cell power drops 30% from the “hottest”

pin-cell to the “coldest” pin-cell.

In this problem, the MB solution is significantly more accurate than the MOC

solution, which is more accurate than the SSC and STEP solutions. This confirms

our conjecture from Chapter VI that the MB method is more accurate than MOC

when the scalar flux is less-flat.

172



 Fuel

 Moderator

 Gap

 Clad
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Reflecting
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Figure 7.13: The spatial grid for the mini-assembly problem, which consists of a 3x3
grid of pin-cells. The top and right boundaries next to the moderator
pin-cells are vacuum, and the bottom and left boundaries next to the
fuel pin-cells are reflecting.

Again, we see that the storage requirements of discrete ordinates methods have

only a weak dependence on the angular quadrature sets.

7.5.2 VERA Benchmark Problem 2A with Vaccum Boundaries

7.5.2.1 Problem Description

The second problem considered here is the same one as the VERA benchmark

problem 2A discussed in section 7.4.3, except that the assembly has vaccum boundary

conditions.
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Table 7.11: List of k-effective versus time cost for mini-assembly problem
Method Keff Keff

Error.
(pcm)

Time per It-
eration (ms)

Storage
(MB)

MC 0.064116 3.5 N/A N/A
MOC D0.05 A8P4 0.062722 -139.4 1,042 0.944
MOC D0.02 A8P4 0.062660 -145.5 2,511 2.324
MOC D0.01 A8P4 0.062751 -136.5 4,966 4.611
STEP S4 0.054602 -951.3 559 0.357
STEP S8 0.056187 -792.9 1,233 0.344
STEP S16 0.056794 -732.2 4,740 0.340
SSC S4 0.056486 -762.9 568 0.357
SSC S8 0.058221 -589.5 1,414 0.344
SSC S16 0.058886 -522.9 5,333 0.340
MB S4 0.061722 -239.3 1,209 0.357
MB S8 0.062832 -128.4 3,693 0.344
MB S16 0.063734 -38.2 16,928 0.340

See Table 4.1 for definitions of the methods’ name abbreviations

Table 7.12: List of pin-cell power of the mini-assembly problem
Method Pin

Power
(0,0)

Pin
Power
(0,1)

Pin
Power
(1,0)

Pin
Power
(1,1)

Pin
Power
Error
(%)

Max-
min Pin
Power
Ratio

MC 1.0000 0.8771 0.8770 0.7633 0.044 1.3102 ±
0.0008

MOC A8P4 D0.05 1.0000 0.8721 0.8721 0.7539 0.731 1.3264
MOC A8P4 D0.02 1.0000 0.8724 0.8724 0.7544 0.691 1.3255
MOC A8P4 D0.01 1.0000 0.8727 0.8727 0.7547 0.662 1.3250
STEP S4 1.0000 0.8488 0.8488 0.7216 3.555 1.3858
STEP S8 1.0000 0.8555 0.8555 0.7303 2.769 1.3692
STEP S16 1.0000 0.8583 0.8583 0.7343 2.425 1.3618
SSC S4 1.0000 0.8551 0.8551 0.7306 2.780 1.3687
SSC S8 1.0000 0.8618 0.8618 0.7394 1.992 1.3524
SSC S16 1.0000 0.8646 0.8646 0.7436 1.635 1.3449
MB S4 1.0000 0.8731 0.8731 0.7581 0.468 1.3191
MB S8 1.0000 0.8741 0.8741 0.7586 0.389 1.3182
MB S16 1.0000 0.8737 0.8737 0.7587 0.407 1.3181

See Table 4.1 for definitions of the methods’ name abbreviations

7.5.2.2 Verification

Table 7.13 compares the accuracies of the k-eigenvalue and the maximum and

minimum pin-cell powers. The pin-cell powers are normalized so that the average is
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Figure 7.14: Error comparisons for the mini-assembly problem. The MOC solution
data points are simulated with a variety of angular quadrature sets:
A4P2, A4P4, A8P4. The SN solution data points are also simulated with
a variety of angular quadrature sets: S4, S8, S12, S16, S20. The dashed
lines are the Monte Carlo uncertainties within two standard deviations.
The uncertainties in the Monte Carlo k-eigenvalues are so small that the
dashed lines cannot be distinguished from each other.

1.0, and the power distributions are compared in Figure 7.17, while the error in power

distribution is compared in Figure 7.18. Figure 7.16 compares the k-eigenvalue and

maximum to minimum pin-cell power ratios.

In this problem, the MB method has the smallest error in k-eigenvalue, and the

SSC method has the smallest error in the pin-power. We notice that the SSC and

MB method are much more accurate than the STEP method, and are comparable

to the MOC method. However, the MB method is slightly more inaccurate at the

corner pin-cell with minimum pin power. This also suggests that SSC and MB are

alternative methods to MOC for reactor simulations.

With all vacuum outer boundaries, the problem simulates a single assembly. So
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0.8770 0.7633

1.0000 0.8771
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STEP S4 3.56%

No power in moderator

Figure 7.15: Pin-power distribution from the MC, MOC, STEP, SSC and MB
method. The uncertainty in the pin-power and the error between other
methods othan than MC and the MC method is provided as well.

the flux has a decending gradient from the center to the outer rim of the reactor.

We see again that, when the solution is less flat than the problem with all reflecting

boundaries, we see that SSC method achieves smaller pin-power than MOC. The

MB solution is as accurate as MOC in most of the pin-cells besides those near the

vaccum boundaries. A possible reaseon is that the flux is very small near the vaccum

boundaries, and 4 digits after the decimal numbers are kept in numerical values, so

this could cause an error upto 1%. Another possible reason is the yet unknowns

potential deficiency of MB method in dealing with vacuum boundary conditions.

Despite the big errors of MB solutions near the vaccum boundaries, the numerical

results confirm the conclusion from the previous problem: if the problem has a large
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Table 7.13:
List of k-effective versus time & pin-cell power for Problem 2A Vaccum

Method Keff Keff
Er-
ror.
(pcm)

Time
per
Iter-
ation
(ms)

Max
Pin
Power

Min
Pin
Power

Max-
min Pin
Power
Ratio

Error
in Pin
Power
Ratio
(%)

Storage
(MB)

MC (100 Million) 0.48501 7 N/A 2.0387 0.0935 21.8119 0.03 N/A
MOC A4P2 D0.05 0.48085 -416 4,204 2.0248 0.0931 21.7487 -0.29 5.467
MOC A4P4 D0.05 0.48085 -416 6,849 2.0358 0.0938 21.7036 -0.50 5.467
MOC A4P2 D0.02 0.48306 -195 15,426 2.0382 0.0933 21.8457 0.15 13.097
MOC A4P4 D0.02 0.48306 -195 24,733 2.0489 0.0939 21.8200 0.04 13.097
STEP S4 0.46546 -1,955 12,808 2.0319 0.0961 21.1436 -3.06 2.567
STEP S8 0.46636 -1,865 33,160 2.0258 0.0977 20.7349 -4.94 2.477
SSC S4 0.47717 -784 12,341 2.0758 0.0934 22.2248 1.89 2.567
SSC S8 0.47813 -688 36,361 2.0308 0.0934 21.7430 -0.32 2.477
MB S4 0.48273 -228 41,555 2.0506 0.0885 23.1706 6.23 2.567
MB S8 0.48303 -198 99,074 2.0438 0.0910 22.4593 2.97 2.477

See Table 4.1 for definitions of the methods’ name abbreviations

gradient in the pin-power, the SSC and MB methods become more advantageous.
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Problem 2A with Vacuum Boundaries
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Figure 7.16: Error comparisons for the problem 2A with vacuum boundaries. The
MOC solution data points are simulated with two angular quadrature
sets: A4P2, A4P4. The SN solution data points are also simulated with
two angular quadrature sets: S4, S8. The dashed line shows the Monte
Carlo uncertainties within two standard deviations. The uncertainties in
the Monte Carlo k-eigenvalues are so small that the dashed lines cannot
be distinguished from each other.
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0.4166 0.4082 0.3920 0.3687 0.3293 0.2809 0.2241 0.1622 0.0934
0.7951 0.7657 0.7365 0.7058 0.6188 0.5232 0.4120 0.2922 0.1622
0.0000 1.1052 1.0648 0.0000 0.9077 0.7695 0.5929 0.4120 0.2241
1.3985 1.3442 1.2935 1.2533 1.1373 0.0000 0.7695 0.5232 0.2809
1.6372 1.5722 1.5112 1.4582 1.2954 1.1373 0.9077 0.6188 0.3293
0.0000 1.7975 1.7268 0.0000 1.4582 1.2533 0.0000 0.7058 0.3687
1.9541 1.8760 1.8012 1.7268 1.5112 1.2935 1.0648 0.7365 0.3920
2.0387 1.9553 1.8760 1.7975 1.5722 1.3442 1.1052 0.7657 0.4082
0.0000 2.0387 1.9541 0.0000 1.6372 1.3985 0.0000 0.7951 0.4166
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0.7972 0.7667 0.7361 0.7069 0.6191 0.5223 0.4124 0.2928 0.1611
0.0000 1.1026 1.0618 0.0000 0.9069 0.7689 0.5945 0.4124 0.2243
1.3983 1.3456 1.2953 1.2508 1.1379 0.0000 0.7689 0.5223 0.2815
1.6340 1.5716 1.5127 1.4573 1.2966 1.1379 0.9069 0.6191 0.3296
0.0000 1.7972 1.7253 0.0000 1.4573 1.2508 0.0000 0.7069 0.3685
1.9535 1.8792 1.8041 1.7253 1.5127 1.2953 1.0618 0.7361 0.3937
2.0377 1.9585 1.8792 1.7972 1.5716 1.3456 1.1026 0.7667 0.4088
0.0000 2.0377 1.9535 0.0000 1.6340 1.3983 0.0000 0.7972 0.4153

MOC D0.02 A4P4 Pin-cell Power for Problem 2A Vacuum
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0.4275 0.4188 0.4024 0.3788 0.3380 0.2883 0.2313 0.1678 0.0977
0.7993 0.7708 0.7413 0.7095 0.6238 0.5278 0.4181 0.2977 0.1678
0.0000 1.1021 1.0606 0.0000 0.9060 0.7693 0.5964 0.4181 0.2313
1.3923 1.3424 1.2923 1.2456 1.1317 0.0000 0.7693 0.5278 0.2883
1.6273 1.5683 1.5088 1.4497 1.2920 1.1317 0.9060 0.6238 0.3380
0.0000 1.7870 1.7169 0.0000 1.4497 1.2456 0.0000 0.7095 0.3788
1.9429 1.8717 1.7966 1.7169 1.5088 1.2923 1.0606 0.7413 0.4024
2.0258 1.9507 1.8717 1.7870 1.5683 1.3424 1.1021 0.7708 0.4188
0.0000 2.0258 1.9429 0.0000 1.6273 1.3923 0.0000 0.7993 0.4275

STEP S8 Pin-cell Power for Problem 2A Vacuum

0.5

1

1.5

2

x (cm)
0 2 4 6 8 10

y 
(c

m
)

0

5

10
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0.7965 0.7662 0.7368 0.7068 0.6196 0.5230 0.4129 0.2923 0.1624
0.0000 1.1033 1.0615 0.0000 0.9072 0.7690 0.5931 0.4129 0.2250
1.3968 1.3439 1.2936 1.2498 1.1354 0.0000 0.7690 0.5230 0.2813
1.6352 1.5722 1.5123 1.4564 1.2956 1.1354 0.9072 0.6196 0.3303
0.0000 1.7966 1.7257 0.0000 1.4564 1.2498 0.0000 0.7068 0.3707
1.9540 1.8782 1.8024 1.7257 1.5123 1.2936 1.0615 0.7368 0.3936
2.0380 1.9579 1.8782 1.7966 1.5722 1.3439 1.1033 0.7662 0.4097
0.0000 2.0380 1.9540 0.0000 1.6352 1.3968 0.0000 0.7965 0.4186
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1.4009 1.3437 1.2935 1.2544 1.1372 0.0000 0.7694 0.5220 0.2777
1.6386 1.5715 1.5119 1.4598 1.2951 1.1372 0.9075 0.6170 0.3269
0.0000 1.8014 1.7308 0.0000 1.4598 1.2544 0.0000 0.7054 0.3679
1.9600 1.8783 1.8023 1.7308 1.5119 1.2935 1.0632 0.7349 0.3890
2.0438 1.9578 1.8783 1.8014 1.5715 1.3437 1.1049 0.7638 0.4056
0.0000 2.0438 1.9600 0.0000 1.6386 1.4009 0.0000 0.7953 0.4154
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Figure 7.17: Comparison of pin-cell power distributions for Problem 2A with vacuum
boundaries.
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0.3120 0.1470 0.4337 0.0542 0.0911 0.2136 0.0892 0.6782 0.0000
0.2641 0.1306 0.0543 0.1559 0.0485 0.1720 0.0971 0.2053 0.6782
NaN 0.2353 0.2817 NaN 0.0881 0.0780 0.2699 0.0971 0.0892
0.0143 0.1042 0.1392 0.1995 0.0528 NaN 0.0780 0.1720 0.2136
0.1955 0.0382 0.0993 0.0617 0.0926 0.0528 0.0881 0.0485 0.0911
NaN 0.0167 0.0869 NaN 0.0617 0.1995 NaN 0.1559 0.0542
0.0307 0.1706 0.1610 0.0869 0.0993 0.1392 0.2817 0.0543 0.4337
0.0491 0.1637 0.1706 0.0167 0.0382 0.1042 0.2353 0.1306 0.1470
NaN 0.0491 0.0307 NaN 0.1955 0.0143 NaN 0.2641 0.3120
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0.6328 0.2353 0.2292 0.5841 0.2481 0.1339 0.2805 0.6661 2.5968
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Figure 7.18: Comparison of pin-cell power error distributions for Problem 2A with
vacuum boundaries.
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7.6 Summary

In this chapter, we have studied realistic problems from a simple pin-cell to an

assembly, using an industrial standard multigroup cross section library. We demon-

strate that the discrete ordinates that the SSC and MB method can be alternative

methods to MOC for reactor simulations.

Overall, we find that the SSC and MB method are comparable to MOC in both

accuracy and computational cost.
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CHAPTER VIII

Conclusions & Future Work

8.1 Conclusions

The accomplishments in the thesis can be summarized as follows:

1. The principal accomplishment encompasses the derivation, implementation, and

testing of two new 2D “Simplified STEP Characteristics” (SSC) “Multiple Bal-

ance” (MB) discrete-ordinates methods, which are applicable for systems having

curved interfaces between material regions, and which treats these curved sur-

faces analytically.

2. All previous discrete-ordinates methods, implemented in available 2D produc-

tion computer codes, were formulated only for problems containing spatial cells

with planar boundaries. This creates geometric approximations and inefficien-

cies for modeling any physical system with curved boundaries – the curved

boundaries must be approximated using a great many very fine spatial cells,

each fine cell having a planar boundary. (This is one reason why Monte Carlo is

considered to have a fundamental advantage over deterministic methods: Monte

Carlo does not require material interfaces to be planar.) In this thesis, we have

considered spatial grids that, for certain types of LWR problems, have no geo-

metrical approximation.
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3. Historically, a fundamental reason for not trying to develop discrete ordinates

methods for problems with spatial cells having curved boundaries has been

the issue of re-entrant boundaries. If spatial cells have curved boundaries, then

there will be directions of flight for which a curved boundary is neither incoming

nor outgoing; it is re-entrant. (Re-entrant boundaries cannot occur when the

boundaries of all spatial cells are planar.) Re-entrant boundaries create a major

obstacle in sweeping, due to issues of stability that occur if one tries to sweep

through a system in a direction that is not consistent with the direction of

flight. In this thesis, we have dealt with the re-entrant boundary issue by (i)

temporarily “splitting” a cell with a re-entrant boundary into two cells, each of

which has no re-entrant boundaries, (ii) sweeping through the split cells, and

(iii) combining the results of sweeping through the split cells to obtain estimates

of the cell-averaged flux for the original spatial cell. For problems having pin-cell

geometries, this “splitting” process is conceptually straightforward.

4. The MOC method, which is currently the method-of-choice for multidimensional

reactor core transport calculations, uses:

(a) Unoptimized “modular” quadrature sets, with directions of flight that are

efficient for applying MOC on systems with square coarse spatial cells,

but have angular weights that are not optimized and do not preserve

the integral-preserving properties of standard discrete-ordinates quadra-

ture sets.

(b) Two fine spatial grids: the geometrical “flat source” regions on which the

scattering and fission sources are represented as spatially constant, and

the “ray-spacing” (the distance between different characteristic rays). To

achieve high accuracy, the “fine grid” flat source regions must be small

to minimize the error created by assuming the source in these regions to
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be “flat”. In addition, the ray spacings should be small compared to the

“fine grid” size, in order that there are several rays in each direction of

flight crossing each fine cell. Therefore, to achieve high accuracy, an MOC

calculation must be run with a very fine “fine” grid, and an even finer ray

spacing.

In contrast, the SSC and MB methods developed in this thesis are conven-

tional discrete ordinates methods in the sense that (i) they use standard, highly-

optimized discrete ordinates quadrature sets, and (ii) they have a single user-

specified spatial grid.

5. We have implemented and tested the SSC and MB methods for problems with

realistic 2D pin cell geometries, and have compared the accuracy of the SSC,

MB and MOC solutions against the computer run times. Our results are mixed.

Generally, for “easy” problems in which the neutron flux is spatially flat, the

MOC method is more efficient than SSC and MB. (We believe the reason for

this to be that the MOC method is designed by assuming the scattering and

fission sources within a fine cell to be flat. If in fact these sources are flat, then

MOC should be optimal.) However, for more difficult problems in which the

spatial gradients of the flux are not small, we generally find the SSC and MB

methods to be more accurate.

6. In general, we find for difficult problems that for the SSC and MB methods to

generate a highly accurate solution, a somewhat finer “fine” spatial grid must be

used than the “flat-source” grids commonly employed for MOC today. However,

this “somewhat finer” fine grid is much coarser than the “ultra-fine” ray spacing

that is required for MOC to give accurate results. In other words: although

SSC and MB do require a finer fine grid than MOC does today, it does not

require this grid to be anywhere near as fine as the required MOC ray spacing.
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7. We also generally find that the SSC and MB methods require significantly less

storage than MOC.

8. Overall, we find the SSC and MB methods to be at least competitive to MOC

for 2D problems. Although we have tried to seriously test the SSC and MB

methods, it is clear that our experience is limited. Nonetheless, we believe that

the method has basic advantages that are not shared by MOC.

8.2 Future Work

Possible future work includes the following:

1. The SSC and MB methods should be tested on a wider range of realistic 2D

problems.

2. The SSC and MB methodology should be generalized to account for anisotropic

scattering. This generalization should be straightforward. No actual change

in the SSC and MB spatial discretization methods itself is required; the only

modification is that the scattering source term will become direction-dependent.

3. This thesis has focused on 2D LWR problems, in which the basic geometrical

unit of the system is a “pin cell” – a square region having annular subregions

with boundaries consisting of concentric circles with centers at the center of the

pin cell. Other types of reactors, in particular BWRs, have more complicated

geometries. The SSC and MB methods should be considered for these problems

also.

4. The SSC and MB methods were developed in this thesis for 2D problems. It

should be straightforward to generalize the SSC and MB methods to 3D prob-

lems having geometries that are similar to the LWR 2D geometry considered

here – in particular, having curved surfaces that are basically 2-D in nature.
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Clearly, the more complicated the 3D geometry, the more complicated – and

expensive to implement – will be the SSC and MB methods. Nonetheless, there

is no apparent reason why the SSC and MB methods should not be adaptable to

3D. Moreover, given the widely-acknowledged inability of MOC to realistically

treat 3D geometries, it seems highly likely that for 3D problems, methods such

as SSC and MB will be considerably more efficient than MOC.

5. This thesis extends the SSC and MB discrete ordinates methods on Cartesian

and triangular grids to neutron transport on curved spatial grids. It should also

be straightforward to develop similar numerical methods for fluid mechanics and

electro-magnetics on curved spatial grids. A benefit of this apporach is that the

triangularization is no longer required, and the curved boundaries will be treated

exactly.
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