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ABSTRACT

Statistical Methods, Analyses and Applications

for Next-Generation Sequencing Studies

by
Yan Yancy Lo

Chair: Sebastian Zöllner

Current genetics studies rely heavily on next-generation sequencing (NGS) tech-

niques. This dissertation addresses methodological developments and statistical

strategies to efficiently and accurately analyze the large amounts of NGS data,

thereby to understand the genetic contributions to diseases.

In chapter 2, we evaluated the benefits of different variant calling strategies by per-

forming a comparative analysis of calling methods on large-scale exonic sequencing

datasets. We found that individual-based analyses identified the most high quality

singletons, but had lower genotype accuracy at common variants than population-

based and LD-aware analyses. Therefore, we recommend population-based anal-

yses for high quality variant calls with few missing genotypes, complemented by

individual-based analyses to obtain the most singleton variants.

In chapters 3 and 4, we addressed the issue of overlapping read pairs in NGS

studies arising from short fragments. In chapter 3, we proposed novel models to sep-

arately estimate machine and fragment errors of a NGS experiment from overlapping

ix



read pairs. Using a Markov chain Monte Carlo algorithm, our models suggested that

machine and fragment errors were largely predicted by the reported quality scores

of the overlapping bases and were uniform across individual samples from the same

experiment. In chapter 4, we proposed an algorithm, RESCORE, to resolve the

fragment dependence while retaining machine error estimates in overlapping reads.

When compared to soft-clipping the overlapping regions, RESCORE increased the

recalibrated base quality scores for the majority of overlapping bases, leading to a

decrease in estimated false positive rate of novel variant discovery.

In chapter 5, we presented an application of whole-genome sequencing for un-

derstanding the evolutionary history of uropathogenic Escherichia coli (UPEC). We

sequenced 14 UPEC and 5 commensals at >190x, and found a deep split between

UPEC and commensal E. coli. We observed high between-strain diversity, which

suggests multiple origins of pathogenicity. We detected no selective advantage of vir-

ulence genes over other genomic regions. These results suggest that UPEC acquired

uropathogenicity a long time ago and used it opportunistically to cause extraintesti-

nal infections. In summary, this dissertation presented practical strategies for NGS

studies that will contribute to further genetic advances.
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CHAPTER I

Introduction

Since the publication of the first finished-grade human genome sequence in 2004

[36], scientific resources and efforts have been heavily allocated to develop genome

analysis technologies [106]. In the past decade, particularly the past few years,

genome analysis has shifted from using first-generation capillary sequencing to next-

generation sequencing [5, 71]. Next-generation sequencing (NGS) is the massively

parallel, high-throughput technology that allows the generation of large amounts of

genetic data [72, 77]. In contrast to capillary sequencing technologies, which typically

produces 500-800 bases per reaction and required over three years and three million

dollars to sequence one human genome [36, 92], NGS platforms are able to generate

in a much shorter time and lower cost large numbers of short reads that can be

reconstructed into the full genome [7, 107]. The recent Illumina HiSeq X Ten is the

first platform to deliver full coverage human genomes for close to a thousand dollars,

with the yield of up to 6 terabases per day, which is approximately 2000 times of the

number of bases in a full human genome [34, 119].

Rapid advancement in sequencing technologies has prompted the success of nu-

merous genetics studies, with a common goal of cataloging variations among human

populations or populations of other species [41, 44, 93, 102, 113, 116]. An accu-

1
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rate and detailed database of genetic variations has extensive biological and medical

applications. For example, the 1000 Genomes Project sequenced the genomes of

> 2, 500 individuals from populations around the world and created a detailed cata-

log of human genetic variations, including variants with population allele frequency

as low as 1% [116, 117]. This catalog of variation complemented many sequencing

and genome-wide association studies in improving data quality and expanding sam-

ple sizes, thereby increasing the power to detect associations between genetic loci

and complex diseases [51, 110, 121].

As large-scale sequencing studies become more widespread, the analyses of indi-

vidual genomes have led to discoveries of novel rare polymorphisms (allele frequency

<1%), which were difficult to detect from small samples or from genotyping chips

which identify alleles from predetermined genomic positions [120]. Rare polymor-

phisms are of particular interest and importance, because they are more likely to

be functional [12, 69, 95]. In the recent study published by Nelson et al. [82] that

sequenced over 14,000 individuals at 202 drug targeted genes, they discovered rare

variants as frequent as one every 17 base pairs; over half are expected to be delete-

rious. Moreover, rare polymorphisms have shown to have larger effects on disease

phenotype than common polymorphisms [1, 15, 21]. Therefore, identifying such rare

variants can explain significant proportions of the missing heritability [48, 139]. From

the population genetics perspective, variants are rare because they arise from the re-

cent past. NGS analysis of over 6,500 exomes suggested that most protein-coding

variants are rare and have recent origin of 5000-10000 years [24]. The excess of rare

variants present in the current population indicate that the human population has

expanded faster than exponentially in the recent past [43, 99].

To efficiently and accurately analyze the large amounts of NGS data, advanced
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statistical methods are required to further the understanding of the contributions

of genetic variation to complex traits. Indeed, the studies mentioned above were

successful due to the development of a large range of statistical methods and analysis

pipelines designed for NGS studies [17, 40, 54, 61]. However, to date there is no single

pipeline that works uniformly the best in all NGS studies; the quality and quantity

of variant discovery depends heavily on the statistical methods and bioinformatics

tools used [90, 133]. While the curation of variants is very important to minimize

false discoveries, the optimal variant discovery strategy should also minimize false

negatives in order to make the best use of the data. Moreover, errors generated along

the multiple steps of a sequencing experiment can accumulate and be misinterpreted

as rare variants. In fact, NGS techniques are believed to have relatively higher error

rates than chip genotyping or capillary sequencing techniques [94, 98, 107]; therefore

the older technologies are still frequently used to validate selected variants from NGS

studies [65, 82, 136].

In this dissertation, we proposed novel statistical methods and analysis plans

to address the challenges in NGS data. We considered different variant calling al-

gorithms for obtaining the most complete set of variants in large-scale sequencing

datasets. We devised a strategy for estimating separate sources of sequencing errors

in an NGS experiment. We proposed and implemented a method to correct for the

dependence in overlapping pairs of sequence reads. Finally, we designed and carried

out a whole-genome deep-sequencing study to understand the evolutionary trajecto-

ries of virulence genes in pathogens. The dissertation concludes with a discussion of

the implications and significance of our methods for the development of NGS studies.

In the sections below, we provide a more detailed overview of each chapter.
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Variant calling in large-scale NGS studies

Variant discovery, or variant calling, plays a central role between raw NGS data

and applications. Capillary sequencing directly reads the alleles at each position,

and genotyping chips start with a set of known variant sites and type each individual

sample’s alleles at these sites; in contrast, NGS determines the alleles at each genomic

position statistically based on the combined evidence from the short reads spanning

the position [58, 59, 76, 86]. Therefore, variant calling typically improves with high

coverage, because of the increased information at each position.

Sequencing experiments targeted at exonic regions or specific genes are popular

because these regions potentially harbor most functional variants or variants of inter-

est [6]. At a fixed cost, sequencing only these genomic regions allows the expansion

of sample size. By examining a lot of individuals, these sequencing studies of exonic

regions aim to identify rare variants contributing to complex traits [6, 67, 115]. With

high coverage and large sample size, these studies tend to apply simple variant call-

ing algorithms, which typically call genotypes from the reads covering each position

per individual (individual-based caller) [58, 59]. However, coverage is often hetero-

geneous due to the uneven capturing of the targeting technology [68, 77]. Therefore,

sites with insufficient coverage may benefit from sophisticated calling algorithms used

in low-coverage sequencing studies, which call genotypes based on population allele

frequency (population-based caller) [17, 40, 49] or based on genotypes in linkage

disequilibrium (LD) in the sample (LD-aware caller) [61, 70].

In chapter 2, we evaluated the potential benefits of different calling strategies by

performing a comparative analysis of variant calling methods on exonic data from

multiple large-scale sequencing datasets [82, 136]. We call variants using individual-
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based, population-based and LD-aware methods with stringent quality control. We

measure genotype accuracy by the concordance with on-target GWAS genotypes and

between 80 pairs of sequencing replicates. We validate selected singleton variants

using capillary sequencing.

Using these strategies, we found that individual-based analyses identified the

most high quality singletons. However, individual-based analyses generated more

missing genotypes than population-based and LD-aware analyses. Individual-based

genotypes were the least concordant with array-based genotypes and replicates.

Population-based genotypes were less concordant than genotypes from LD-aware

analyses with extended haplotypes. Therefore, we recommend population-based

analyses for high quality variant calls with few missing genotypes. With extended

haplotypes, LD-aware methods generate the most accurate and complete genotypes.

Finally, individual-based analyses should complement the above methods to obtain

the most singleton variants.

Segregating sources of sequencing error in NGS reads

Variant calling in NGS studies are often complicated by sequencing artefacts and

errors; such artefacts and errors typically lead to low-quality variant calls [86, 91].

Rare variant discovery requires particular care because sequencing errors are often

mistaken as rare variants [12, 52, 55]. Methods have been developed to detect and

filter variant calls that are likely false positives [20, 40]. An additional set of methods

have been developed to remove the effect of sequencing artefacts from the reads

[40, 76, 91] and to adjust for known errors [53] prior to variant calling. Despite these

efforts, not all error sources in a sequencing experiment are known and accounted for

[100]. In particular, variant calling relies on the base quality score of each sequenced
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base, but the score reported by the sequencing machine typically reflects multiple

sources of errors, and requires recalibration to reflect the empirical error rates [76].

To properly adjust for these errors, we need to understand and disentangle error

sources in an NGS experiment.

In chapter 3, we proposed a statistical model for estimating two common sources of

error in an NGS experiment, namely machine error which arises from the sequencing

machine and fragment error which occurs in the DNA fragment prior to base-calling.

These two errors can be separately estimated from overlapping read pairs, arising

from short fragments. Overlapping read pairs replicate any errors in the underly-

ing fragment sequenced. However each read in the pair is an independently read

by the sequencing machine, hence generating two estimates of the machine errors.

We proposed models for machine errors and fragment errors based on concordance

and discordance of overlapping bases, using base quality scores and read cycles as

predictors. We designed a Markov chain Monte Carlo algorithm to sample from the

posterior distribution of the errors, and analyzed 10 samples with over half of the

reads overlapping.

We found that machine errors were mainly predicted by reported base quality

scores, while they were mostly constant across read cycles, with only a slight increase

in error rates at the last few cycles. These error rates were uniform across samples

from different plates and lanes, suggesting that machine errors are consistent within

a sequencing experiment. As for fragment errors, they were also uniform across

samples. However, we found that fragment errors were predicted by the base quality

scores of concordant overlapping bases, as opposed to the previous assumption that

fragment error rates are uniform across the genome [20]. Therefore, our models

demonstrated the utility of overlapping reads for better understanding the error
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sources in sequencing experiments.

Resolving overlapping reads in NGS data

Overlapping read pairs are common sequencing artefacts in many NGS studies.

Since these read pairs replicate fragment error at the overlapping regions, overlapping

reads need to be treated before variant calling; falsely assuming independence would

lead to overestimation of genotype calling accuracy, inflating the number of singleton

variants. To address this problem, some studies have soft-clipped (discarded) one

of the overlapping reads in each pair. This solves the dependence problem, but is

an overcorrection because each read still contain independent machine errors. In

chapter 4, we proposed an algorithm, RESCORE, to retain the combined machine

information from both reads while removing the fragment dependence. We repre-

sented the combined machine error estimate from a pair of overlapping bases as a

temporary quality score, and utilized base quality score recalibration to map the

temporary scores to reflect the empirical mismatch rate at each position.

We then applied RESCORE to analyze 40 samples from a whole-genome sequenc-

ing study with 8x coverage, where each sample had over half of its reads overlapping.

RESCORE increased the recalibrated base quality scores for the majority of overlap-

ping bases when compared to soft-clipping the overlapping regions. This increment

led to an almost 20-fold decrease in the estimated false positive rate of novel variants,

which would result in the discovery of 0.027% additional variants that were likely to

be genuine. Therefore we recommend incorporating RESCORE as a standard data

processing step in NGS analysis pipelines.
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Whole-genome sequencing of uropathogens

Genetic variation among pathogenic bacterial strains can be informative of the

evolution and diversity of infectious disease phenotypes [8, 66, 102]. In Chapter 5,

we presented an application of whole-genome sequencing for understanding the evo-

lutionary history of uropathogenic Escherichia coli (E. coli). Uropathogenic E. coli

(UPEC) are phenotypically and genotypically very diverse. This diversity makes it

challenging to understand the evolution of UPEC adaptations responsible for causing

urinary tract infections (UTI). To gain insight into the relationship between evolu-

tionary divergence and adaptive paths to uropathogenicity, we sequenced at deep

coverage (190x) the genomes of 19 E. coli strains from urinary tract infection pa-

tients from the same geographic area. Our sample consisted of 14 UPEC isolates

and 5 non-UTI-causing (commensal) rectal E. coli isolates.

We developed a novel pipeline for the phylogenetic analysis of the E. coli strains.

We identified strain variants using de novo assembly-based methods. Based on pair-

wise sequence differences across the whole genome, we clustered the strains using a

neighbor-joining algorithm. We examined evolutionary signals on the whole-genome

phylogeny and contrasted these signals with those found on gene trees constructed

based on specific uropathogenic virulence factors.

The whole-genome phylogeny showed the divergence between UPEC and com-

mensal E. coli strains without known UPEC virulence factors happened over 32

million generations ago, which is equivalent to 107,000- 320,000 years [88]. Pairwise

diversity between any two strains was also high, suggesting multiple genetic origins

of uropathogenic strains in a small geographic region. Contrasting the whole-genome

phylogeny with three gene trees constructed from common uropathogenic virulence
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factors, we detected no selective advantage of these virulence genes over other ge-

nomic regions. These results suggest that UPEC acquired uropathogenicity a long

time ago and used it opportunistically to cause extraintestinal infections.

Conclusion

Next-generation sequencing technologies are rapidly advancing, as are statistical

analysis and methodology developments, in order to efficiently and accurately pro-

cess the high-throughput data. This dissertation develops methods in the upstream

processing of NGS data and provides an application of NGS analysis for under-

standing the evolution of bacterial virulence. These studies together provide novel

directions and promising perspectives for analyzing NGS datasets, thereby improving

the confidence in the interpretation of NGS data.



CHAPTER II

Comparing Variant Calling Algorithms for Target-Exon
Sequencing in a Large Sample

2.1 Introduction

With rapid advances in sequencing technology, large-scale sequencing studies en-

able discovery of rare polymorphisms. Exome and targeted sequencing studies are

especially popular in the studies of complex traits. These designs focus on small

genome regions likely to be enriched for functional variants [6, 67, 115], achieving

higher coverage of an important subset of the genome and facilitating larger sample

sizes [41, 68]. While variant calling typically improves with increasing read coverage

[7], exome and targeted experiments tend to generate uneven coverage. For studies

averaging 40x to 120x, empirical coverage per targeted position per sample can range

from less than 5x to over 150x [11, 75, 84, 136]. At high coverage, genotypes can be

called with high precision using basic calling strategies [6]. However, at regions with

local low coverage, calling genotypes accurately is challenging, leading to more errors

and missing data [17]. In studies with low mean coverage, advanced variant calling

algorithms compensate by combining read information with linkage disequilibrium

(LD) information across large samples [61, 125]. However, it is unclear if such al-

gorithms substantially improve genotypes in datasets with heterogeneous coverage.

This chapter is published as Lo, Y. et al. 2015. BMC Bioinformatics, 16(1), 75.

10
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To address this question, we evaluated the performance of advanced variant calling

algorithms in targeted sequencing experiments. Our goal was to provide specific

guidelines for applying variant calling algorithms to these studies.

Variant calling algorithms fall into three major categories depending on how infor-

mation from shotgun sequencing data is aggregated across individuals and genomic

positions [86]. The first category involves individual-based single marker callers

(IBC), which assign genotypes based on aligned reads from a single individual at

a single position [28, 58, 59, 60, 76]. These callers are typically applied to high-depth

exome sequencing data [11, 84]. The second category of algorithms is population-

based single marker callers (PBC), where reads per position from all samples jointly

determine polymorphism and allele frequencies. Based on estimated allele frequen-

cies, these methods then call genotypes using per individual read data [17, 49]. PBC

is typically used in low-pass sequencing studies [61, 116, 117]. The third category

of calling algorithms utilizes linkage disequilibrium (LD) information across several

hundred kilobases flanking each variant base identified by an IBC or PBC [61, 70].

Similar to widely used imputation algorithms [9], these LD-aware calling methods

(LDC) phase existing variant calls into haplotypes, then update genotypes accord-

ing to the joint evidence across similar haplotypes. LDC, though computationally

demanding, have been used in combination with PBC to successfully interpret low-

coverage, genome-wide data such as that in the 1000 Genomes Project [116, 117].

To compare the performance of the three types of algorithms in large-scale se-

quencing datasets with high coverage, we analyzed 7,842 European individuals, each

sequenced at 202 targeted genes [82]. The average per targeted site per individual

coverage was 24x, but with a wide range from 0 to > 75x (Figure 2.2). Genotype

data from previous genome-wide association studies (GWAS) provided long haplo-
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types for LD-aware genotype calling. We generated four sets of variant calls from this

dataset, using (1) IBC, (2) PBC, (3) LDC based on only the sequencing data and (4)

LDC after combining the sequencing data with flanking GWAS data. We focused on

a fixed number of variants per call set after ranking the variants by quality control

metrics, and assessed the quality of each filtered call set by transition to transversion

ratio and the percentage of called variants confirmed in SNP databases. Moreover,

we evaluated genotype accuracy by collating 80 pairs of experimental replicates and

by comparing sequencing calls with on-target genotypes from previous GWASs. We

further validated a subset of caller-specific singletons at the heterozygous individuals

with an independent capillary sequencing experiment. Finally, to ensure applicabil-

ity of our comparison findings to other studies, we investigated our dataset using

alternative approaches of IBC and PBC. We also generated IBC variant calls from

an additional dataset with average coverage of 127.5x, sequenced at 57 genes from

3,142 individuals [136], and compared these calls with their existing PBC call set.

We found that at a fixed number of variant sites, IBC identified a larger propor-

tion of extremely rare variants of high quality, particularly singletons, while capturing

most of the common polymorphic sites that were identified by the other callers. We

replicated the result in the additional high-coverage dataset and by using different

variant caller implementations. However, IBC genotypes at common variants were

of the lowest quality by all measures. They were the least concordant with GWAS

genotypes and within sequencing replicate pairs. Moreover, the IBC call set con-

tained 4.72% missing genotypes, due to low coverage or low quality calls. In the

PBC set, the percentage of missing genotypes dropped to 0.47% by using a popu-

lation allele frequency prior. PBC also showed improved heterozygous concordance

with on-target GWAS genotypes as well as between replicates. Without flanking
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markers, LDC achieved similar genotype accuracy with PBC, while further reducing

the missing genotypes to 0.17%. With extended haplotypes from flanking GWAS

markers, LDC achieved the same level of missing genotypes (0.17%) and the highest

genotype concordance among all callers.

2.2 Methods

2.2.1 Data description

To understand the strengths and limitations of individual-based, population-based

and LD-aware variant calling methods, we analyzed sequence read data from 7,842

unrelated European individuals. The next-generation sequencing data was part of a

large-scale targeted sequencing experiment generated for the purpose of identifying

variants associated with 12 common diseases and cardiovascular and metabolic phe-

notypes, previously described in Nelson et al. [82]. This experiment targeted 2,218

exons of 202 genes of potential drug interest, covering 864kb (≈ 1%) of the coding

genome. Each exon was captured to include the coding sequence plus UTR and 50

bp flanking sequence on each end. Each sample had on average 0.6 million 100 bp

paired-end Illumina reads, with overall average depth of 24x, but depth averaged per

individual per targeted site ranged from 0x to over 75x (Figure 2.2a). In particular,

six genes had low mean coverage (< 10x) across all exons; the mean coverage across

gene regions and across individuals spanned a range of 7x to 35x (Figure 2.2b).

Among the 7,842 individuals considered, 80 were independently sequenced twice.

All 7,842 individuals had been previously typed on one of Illumina (300k, 550k, 610k)

or Affymetrix (500k, 6.0) chips for genome-wide association studies (GWASs). Prior

to variant calling, we aligned reads using BWA 0.5.9 (http://bio-bwa.sourceforge.

net) [56] with human genome build 36 as reference. We removed duplicate reads

using Picard (http://picard.sourceforge.net/). We recalibrated base quality
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scores using Genome Analysis Toolkit (1.0.5974) from the Broad Institute [76]. We

combined the GWAS genotype data from various chips using PLINK [97] (See Section

2.6).

2.2.2 Variant calling

We used likelihood-based models for genotype and SNP calling, as outlined in Li et

al. [61]. For each of the 10 possible genotypes (AA, AC, AT, AG, CC, CT, CG, TT,

TG, GG) at each locus, the model computes genotype likelihood Pr(reads|genotype).

These likelihoods are calculated per genomic position with aligned reads. Base qual-

ity scores of the reads are refined using the base alignment quality (BAQ) adjustment

to account for base calling error rates and mapping uncertainty [53]. Using Bayes’

rule, these likelihoods are combined with a model-specific prior on the genotype

π(genotype) to generate posterior probabilities Pr(genotype|reads). We considered

3 categories of calling algorithms that reflect how information is aggregated across

individuals and positions.

Individual-based single marker caller (IBC)

IBC applies an individual based prior which assumes each allele has a probabil-

ity θ = 0.001 of being different from the reference. For variant sites, we assigned

uniform prior probabilities for transitions and transversions to avoid bias in the

evaluation based on transition to transversion ratio (Ts/Tv). By computing the

genotype likelihoods using aligned reads per individual, the model assigns the most

likely genotype when the posterior probability reaches a threshold of 99%; geno-

types with lower posterior probability are marked as missing. We used glfSingle

(http://genome.sph.umich.edu/wiki/GlfSingle) to call genotypes. By calling

also the reference homozygous genotypes, we obtained the union set of all variant
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sites and genotypes across all individuals.

Population-based single marker caller (PBC)

PBC uses a two-step procedure to call variants [61]. First, upon observing at

least one read carrying a non-reference allele, the model applies a population genetic

prior that estimates the probability of the site being polymorphic as a function of

sample size, with per base pair heterozygosity of θ = 0.001 under the stationary

neutral model [126]. As with IBC, the model assumes a prior with uniform Ts/Tv.

Second, per polymorphic site, PBC estimates the population allele frequency f us-

ing aligned reads from all individuals, assuming a biallelic site in Hardy-Weinberg

equilibrium. These allele frequency priors combine with the likelihoods calculated

per individual to generate posterior genotype probabilities. We used the PBC im-

plemented as glfMultiples (http://genome.sph.umich.edu/wiki/GlfMultiples),

which also generated variant calls for NHLBI GO Exome Sequencing Project (ESP)

and contributed to 1000 Genomes Project analyses [114, 116, 117].

In this study, we used a posterior probability threshold of 99% for the most likely

genotype, which was the same threshold as for the ESP [114]. To maintain indepen-

dence between experimental replicates, we generated two call sets, each including

7,762 unique samples plus 80 samples, one from each sequence replicate pair.

LD-aware caller (LDC)

Starting from a set of variant calls, LDC updates the genotype of each individual

at each marker using a Hidden Markov Model derived from the haplotype-based

model used in the imputation software MACH [62]. The LDC algorithm starts

with randomly phased haplotypes for each individual. Per iteration, the algorithm

compares one sequenced sample with a randomly picked subset of haplotypes. It
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updates each genotype or imputes missing genotypes, based on the similarity of the

sample haplotype to the reference haplotypes. In addition to identifying the most

likely genotype, LDC calculates the expected number of reference alleles carried

by each individual (dosage). Per variant site, LDC also estimates the correlation

coefficient R2 between true allele counts and estimated allele counts, as a measure

of imputation quality. This caller, previously used in low-pass sequencing studies

[61, 116], has been implemented as ThunderVCF (http://genome.sph.umich.edu/

wiki/ThunderVCF).

We used LDC to refine each of the two PBC call sets described above. We applied

the standard setting of 30 iterations and 200 reference haplotypes per iteration. We

considered two scenarios with different haplotype information: First, we applied LDC

on short haplotypes, which consisted only of the PBC variant calls at the sequences

captured in the sequencing experiment. Second, we created long haplotypes by

combining PBC variant calls with GWAS-genotypes from flanking markers within

500 kb from both ends of each target gene. In both scenarios, we masked GWAS

genotypes within the target regions and used these markers as measures of genotype

quality.

2.2.3 Variant quality control

To remove potentially false variant calls caused by technical artifacts, we followed

the filtering and support vector machine (SVM) approach used in the ESP [114] and

Zhan et al. [136]. Initial filtering included quality metrics based on read alignments,

nearby indels and excess heterozygosity (See Section 2.6.2). For LD-aware calls, we

imposed an additional R2 quality control criterion, which filters sites with R2 < 0.7.

SVM generates a summary score for each site based on the initial quality metrics,

classifying good and bad calls with respect to training call sets (See Section 2.6.2).
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We ranked these scores and selected the 27,500 top-ranked variants per call set for

comparison. We set the cutoff to compare only variants with positive SVM scores.

After selecting 27,500 top-ranked variants per call set from SVM classification,

we filtered individual genotypes to discard those with more than 1% estimated error.

From IBC genotypes, we removed and marked as missing the genotypes with PHRED

quality score less than 20 or with genotype depth less than 7x. As the quality of

PBC genotypes is less affected by individual genotype depth, we only filtered with

PHRED quality < 20. Analogously, we filtered LD-aware genotypes with a posterior

probability ratio < 99 : 1 between the genotypes with the highest and the second

highest posterior probability. Comparing call sets

We compared 4 sets of 27,500 variants, generated using IBC, PBC, LDC with-

out flanking haplotypes and LDC with flanking haplotypes. First, we evaluated

the overall quality of each call set by calculating transition to transversion ratios

(Ts/Tv), stratified by variant type as annotated by ANNOVAR (hg19, gencodeV7,

http://www.openbioinformatics.org/annovar/) [123] and by minor allele count.

Second, we compared our call sets to the Single Nucleotide Polymorphism database

(dbSNP, release 135, http://www.ncbi.nlm.nih.gov/SNP/), a recent public archive

of confirmed variants.

We then characterized IBC-specific variants and PBC-specific variants by their

Ts/Tv and read coverage. Most of the IBC- and PBC-specific variants were sin-

gletons. We performed an independent capillary sequencing experiment on 32 IBC-

specific and 41 PBC-specific singleton variants, sampled from individuals from the

CoLaus study [82] carrying the singleton heterozygous genotypes (See Section 2.6.3).

Error rates from this validation provided estimates of false discovery rates of caller-

specific singletons. Finally, we extended the validation to 51 caller-specific singletons
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with SVM scores below the cutoff, to assess the quality of discarded sites from each

set.

We assessed genotype quality of each call set by four summary statistics: (1) The

percentage of missing genotypes from no calls and filtered genotypes (2) The pairwise

heterozygote mismatch rates (he) between our genotype calls from sequencing and

the genotypes from GWAS chips at the on-target markers. he is defined as the

number of genotypes called as heterozygous in one set but homozygous in the other,

divided by the total number of heterozygous genotypes in both sets. (3) he for the

80 sequence replicate pairs, at variant sites where at least one individual per pair is

heterozygous. (4) The shared variants between each pair of call sets and calculated

the he between every pair of callers.

To investigate the effect of sample size on the difference in performance between

IBC and PBC, we performed down-sampling analyses on our original dataset, eval-

uating the ability of the PBC caller to identify variants called as singletons by IBC.

For simplicity, we focused on variants that were called as singletons in the full dataset

of 7,842 individuals (IBC singletons). We generated random samples of 50, 100, 500,

1,000, 2,500 and 5,000 individuals from the original dataset by sequentially adding

individuals and used PBC to call variants in each of the samples. For each down-

sampled dataset, we calculated the proportion of IBC singletons identified by PBC

and recorded the genotype quality of these PBC singletons. We repeated the full

random sampling experiment 10 times and averaged the results.

To assess if our results were driven by the specific choice of calling algorithms, we

applied the individual- and population-based settings of GATK UnifiedGenotyper

(version 3.1.1-g07a4bf8) [17] to our original dataset. The UnifiedGenotyper follows

the same genotype likelihood framework described above for variant calling. In par-



19

ticular, it uses the same model for individual- and population-based calling, where

it estimates simultaneously the population allele frequency and most likely geno-

types. To generate individual-based calls, population size is set to 1. We generated

individual- and population-based variants for our targeted exon data with 7,842 sam-

ples. We compared the two resulting call sets, focusing on the singletons specific to

each analysis.

To replicate our results in a second dataset with higher sequencing coverage, we

considered an additional dataset obtained from the AMD Consortium, which se-

quenced 3,142 individuals at 57 genes from 10 age-related macular degeneration loci

[136]. The average coverage was 127.5x, but 10% of the genes suffered from low aver-

age coverage of around 10x (See Section 2.6.4, Figure 2.3). We generated IBC variant

calls and compared them with existing PBC variant calls of this dataset, obtained

from the project investigators. We evaluated the IBC-specific singletons, particularly

those at sites with local low coverage, and contrasted them with singletons identified

by IBC and PBC.

2.3 Results

2.3.1 Summary of variant call sets

In the complete call sets of 7,842 individuals, the individual-based single marker

caller (IBC) generated 31,970 variants while the population-based single marker caller

(PBC) generated 29,147 variants. The LD-aware caller (LDC) modified genotypes

from PBC, hence it generated the same number of variants. We filtered each call

set separately and ranked the variants using a support vector machine (SVM). We

observed 30,297 IBC, 27,690 PBC variants and 27,535 LDC variants with positive

SVM scores. To compare call sets for a fixed call rate, we focused on the top 27,500

variant sites from each set. In the IBC set, 59.4% of the calls were singletons (MAF
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All SNPs Singletons
Call set #SNPs %dbSNP Known

Ts/Tv
Novel
Ts/Tv

Overall
Ts/Tv

#SNPs Ts/Tv %Missing
genotypes

IBC 27500 25.72% 3.02 2.54 2.71 16325
(59.36%)

2.57 4.71

PBC 27500 26.87% 3.02 2.45 2.59 15877
(57.73%)

2.44 0.47

LDC 27500 26.85% 3.01 2.45 2.59 15857
(57.66%)

2.44 0.17

LDC+F 27500 26.81% 3.00 2.45 2.58 15869
(57.71%)

2.44 0.17

Table 2.1: Summary statistics of 27,500 top-ranked SNPs per call set and quality assessed by
transition-to-transversion ratio (Ts/Tv). Abbreviations: IBC = individual-based single marker
caller, PBC = population-based single marker caller, LDC = LD-aware caller without flanking
haplotypes, LDC + F = LD-aware caller with flanking haplotypes. Expanded table showing quality
of call sets broken down by variant class is included in Section 2.6 Table 2.4.

= 0.06%), while 57.7% of the PBC and LDC calls were singletons (Table 2.1). Over

81% of variants in each call set had minor allele counts ≤ 5. Most of these rare

variants were novel; only 26-27% of variants from each call set were recorded in the

dbSNP database (Table 2.1).

Combining our four filtered call sets each of 27,500 SNPs, our analyses generated

a total of 29,652 autosomal SNPs. We identified 1,035 variants not previously found

in the Nelson et al. analyses of the same dataset [82]. Among these, 509 (48.16%)

were IBC-specific, while 445 (42.10%) were in all call sets. The IBC call set had

the highest percentage of missing genotypes (4.72%), while the PBC call set had a

substantially lower percentage (0.47%) (Table 2.1). The LDC call set had the lowest

percentage of missing genotypes (0.17%). Typically LDC genotypes have no missing

data; in our analysis, missing genotypes in LDC were a result of filtering genotypes

with more than 1% uncertainty.

2.3.2 Overall quality of variant call sets

We assessed the quality of the variants included in the four call sets by calculating

the transition-to-transversion ratio (Ts/Tv). A Ts/Tv > 2 is expected for intergenic

sites; Ts/Tv is typically much higher in coding regions due to purifying selection
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[114]. In our data, Ts/Tv of the unfiltered IBC call set was 2.27, and Ts/Tv of the

unfiltered PBC and LDC call sets were both 2.46. Ts/Tv of all call sets increased

after SVM classification at the 27,500 variant cutoff (Table 2.1), indicating reasonable

quality control. We then focused on the quality of these SVM top-ranked call sets.

As Table 1 shows, the IBC call set attained the highest Ts/Tv of 2.71, while PBC

and LDC without flanking haplotypes had a Ts/Tv of 2.59. LDC with flanking

haplotypes had a Ts/Tv of 2.58.

Comparing Ts/Tv between known variants and novel variants, we observed that

known variants (in dbSNP) generally had higher Ts/Tv than novel variants (Table

2.1). Singletons had slightly lower Ts/Tv compared to the corresponding overall call

set, as singletons represent recent mutations that are less affected by purifying selec-

tion [105]. Analogously, known variants had a higher Ts/Tv because such variants

are typically older and have been subjected to purifying selection for longer.

At exonic variants, all call sets attained Ts/Tv greater than 3, with nonsyn-

onymous variants having lower Ts/Tv than synonymous variants (Table 2.4). The

coding variants had higher Ts/Tv than non-coding variants in all call sets, because

coding sequences contains higher proportion of CpG sites enriched for transitions

compared to non-coding regions, and because transitions are enriched at degenerate

sites within coding regions. Intergenic and flanking variants had Ts/Tv around 2 in

all call sets, consistent with expectations (Table 2.4).

2.3.3 Evaluating singleton variants

Most caller-specific variants were singletons. We found 4,203 caller-specific vari-

ants out of 29,652 in the union call set. Of these, 1,850 (44.02%) were IBC-specific,

1,787 (96.59%) being singletons with Ts/Tv 1.97. On the other hand, 1,731 (41.18%)

variants were shared between PBC and LDC sets, but not found by IBC. We consid-
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Figure 2.1: Distribution of coverage at the individual carrying the singleton alternative allele. We
compare the distribution of coverage at called singleton variants between individual-based caller
(black) and population-based caller (light gray). The overlap of the two distributions is in dark
gray. Here we show all singleton variants after SNP filtering and genotype filtering on quality < 20.
We keep individual-based single marker calls at low genotype coverage for this comparison, with
the vertical dash line indicating genotype coverage filter at 7x.

ered sites in this category as PBC-specific since LDC did not introduce new sites, but

only modified genotypes at sites called by PBC. Of these PBC-specific sites, 1,260

(72.79%) were singletons with Ts/Tv 1.08.

IBC identified more singletons at low coverage than PBC, even after an additional

filtering of all genotypes with less than 7x coverage (Figure 2.1). Independent capil-

lary sequencing experiment validated 30 out of 30 (100%) IBC-specific singletons, and

38 out of 41 (92.68%) PBC-specific singletons (Table 2.5). This difference in valida-

tion rates was not statistically significant (Fishers exact p-value = 0.258). Relaxing

the SVM threshold to 29,000 SNPs per call set, IBC-specific and PBC-specific sin-

gletons still had comparable validation rates, at 91.30% (42/46) and 92.45% (49/53)

respectively.

Notably, 99.13% of PBC-specific sites were in the IBC unfiltered (complete) call

set of 31,970, including all 471 sites with minor allele count > 1. On the other hand,
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only 177 (9.57%) IBC-specific sites were in the PBC complete call set of 29,147;

the majority was undiscoverable using PBC. Therefore, we extended the validation

experiment to IBC-specific singleton calls ranked below 29,000, where no singletons

from PBC could be sampled from the CoLaus subset. Capillary sequencing showed

that these IBC-specific singletons at the lowest ranks had a validation rate of 81.82%

(18/22; Table 2.5).

To compare the performance of singleton calling between IBC and PBC in a differ-

ent dataset with higher average coverage, we repeated these analyses on a targeted

sequencing dataset of 3,142 individuals sequenced at a mean coverage of 127.5x

[136]. We generated an IBC call set which contained 33,615 variants with Ts/Tv

2.12, while the existing PBC call set contained 31,527 variants with Ts/Tv 2.10.

Comparing these two call sets, IBC called 1,913 more singletons than PBC. These

additional singletons had Ts/Tv 1.63. Interestingly, the additional singletons with

high quality were located in regions with low coverage. At depth < 10x and with an

extra genotype quality filter of > 10, IBC identified 864 additional singletons with

Ts/Tv 2.18. At the same genotype depth and quality thresholds, IBC and PBC

shared 911 singleton variant calls with Ts/Tv 2.13 (Figure 2.4). When we relaxed

the genotype depth threshold to < 20x, IBC identified 1,360 additional singletons

with Ts/Tv 1.90, while IBC and PBC shared 2,745 singletons with Ts/Tv 2.07.

We evaluated the impact of sample size on the difference in performance between

IBC and PBC by down-sampling the data to sample sizes of 1, 50, 100, 500, 1,000,

2,500 and 5,000 and calling variants in these smaller datasets using PBC. We com-

pared the PBC singletons from each down-sampled set to high-quality IBC singletons

from the original dataset of sample size 7,842. We observed that for sample sizes > 1,

PBC failed to identify all IBC singletons. The proportion of IBC singletons called by
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Heterozygous mismatch rate
IBC PBC LDC LDC+F

(a) All samples at 378 GWAS markers 0.82% 0.38% 0.39% 0.32%
(b) 80 sequence replicate pairs at all called variants 1.01% 0.34% 0.36% 0.20%
(c) Pairwise comparison of callers

vs PBC 0.42% – – –
vs LDC 0.93% 0.35% – –
vs LDC+F 1.01% 0.41% 0.30% –

Table 2.2: Heterozygous mismatch (a) between sequence calls and GWAS genotypes at 378 on-target
GWAS markers, (b) between 80 sequence replicate pairs and (c) between pairs of algorithms.

PBC decreased as sample size increased. The quality score of the singletons called

by PBC also decreased with sample size. At sample size = 100, PBC called 89.6%

of the IBC singletons with average quality score of 73.7; at sample size = 5, 000, the

percentage dropped to 84.0% with average singleton quality score 69.5 (Figure 2.5).

2.3.4 Evaluating non-singleton variants

We assessed genotype quality of common variants by comparing genotypes at

378 on-target variants shared between all call sets and the GWAS data from the

same individuals (Table 2.2a). The IBC call set had the highest discordance with

GWAS genotypes, with heterozygous mismatch he = 0.82% discordant genotypes.

While heterozygous mismatch rates were comparable between PBC and LDC with

no flanking haplotypes, at he = 0.38% and 0.39% respectively, the rate was lower for

LDC with flanking haplotypes, at 0.32% (Table 2.2a).

Genotype concordance between sequencing replicate pairs provided a second met-

ric of robustness of each calling algorithm (Table 2.2b). he at replicate pairs followed

the same qualitative trend as the GWAS comparison (Table 2.2a), where IBC had

the highest he = 1.01% at replicate pairs. The heterozygous mismatch rates were

0.34% for PBC and 0.36% for LDC without flanking haplotypes. With flanking

haplotypes, he = 0.20% between experimental replicates of LDC. This mismatch

rate was lower than the he with GWAS genotypes, suggesting that the error rate of
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chip-based genotyping was higher than the error rate for LDC genotypes.

The non-missing genotypes between each pair of call sets had less than 1% het-

erozygote discordance (Table 2.2c). IBC and PBC call sets had low discordance,

with he = 0.42%. The PBC and LDC call sets also had similar discordance, with

he = 0.35% and 0.41% respectively. The two LDC call sets were the least discordant,

with he = 0.30%. IBC and LDC call sets had higher heterozygous discordance, with

he = 0.93% between IBC and LDC without flanking haplotypes, and he = 1.01% be-

tween IBC and LDC with flanking haplotypes. These mismatch rates were consistent

with the above comparisons with GWAS genotypes and between sequence replicates

(Table 2.2).

Complex calling algorithms called additional genotypes at sites that had missing

calls at less complex calling algorithms (Table 2.3a). To evaluate specifically the

quality of these additional sites, we calculated the heterozygous mismatch rates with

GWAS genotypes (Table 2.3b). Comparing each algorithm with progressively more

complex alternatives at the 378 on-target variant sites with GWAS information, we

observe that the PBC call set contained 15,727 (5.68%) more heterozygous genotypes

than the IBC call set, with he = 0.85%. Thus PBC generates high-quality genotypes

at most sites that cannot be called with IBC. LDC without flanking haplotypes

generated 3,113 (1.06%) while LDC with flanking markers generated 3,664 (1.25%)

more heterozygous genotypes than PBC. Mismatch rates in these extra genotypes

varied widely between the two settings; calls from LDC without flanking markers

had a mismatch rate of 2.41% while calls from LDC with flanking markers had an

error rate of 0.71% (Table 2.3b).
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All samples at 378 GWAS markers IBC PBC LDC LDC+F
(a) Number of heterozygous

genotypes (hets)
276,761 293,730 298,220 298,531

Heterozygous mismatch 0.82% 0.38% 0.39% 0.32%
(b) Number of additional

hets and heterozygous
mismatch

not in IBC 15,727 (0.85%) 17,937 (1.23%) 18,308 (0.47%)
not in PBC 3,113 (2.41%) 3,664 (0.71%)
not in LDC 1,145 (0.87%)

Table 2.3: Heterozygous mismatch (a) between each call set and GWAS genotypes at 378 on-target
markers, and (b) between additional heterozygous genotypes in more complex algorithms and the
GWAS markers.

2.3.5 Alternative implementations of variant callers

To evaluate the consistency of these observations across other implementations of

variant callers, we analyzed the same dataset using GATK UnifiedGenotyper. We

generated individual-based (G-IBC) and population-based (G-PBC) call sets. The

G-IBC call set contained 34,704 variants with Ts/Tv 2.21, while the G-PBC call

set contained 33,696 variants with Ts/Tv 2.23. Each call set contained about 32%

singletons: the G-IBC call set contained 11,001 singletons with Ts/Tv 2.13, and

the G-PBC call set contained 10,678 singletons with Ts/Tv 1.77. The proportion

of singletons was substantially higher in our IBC call set (59.36%) generated using

glfSingle and PBC call set (57.73%) generated using glfMultiples, as well as in pre-

vious analyses of the same dataset (60.32%) [82] using the SOAP caller [59]. Since

a high proportion of singletons identified by glfSingle and glfMultiples have been

experimentally replicated or validated (see above), GATK UnifiedGenotyper is con-

servative when calling singletons. Nevertheless, G-IBC identified about 3% more

singletons than G-PBC and these had significantly higher Ts/Tv, replicating the

pattern observed in our analyses using glfSingle and glfMultiples.

2.3.6 Multi-allelic variants

IBC identified 523 on-target SNPs with more than one non-reference allele. Of

these, 513 SNPs (1.87% of 27,500 IBC SNPs) had two non-reference alleles (triallelic)
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and 10 had three non-reference alleles. Following the population genetics calculations

used in Nelson et al. [82], we predicted that ∼ 0.9% of variants would be triallelic and

that a third allele would be called at 0.5% of biallelic sites due to sequencing error.

Under a model of homogeneous mutation rate, we would thus expect a proportion

of ∼ 1.4% observed triallelic SNPs. Similar to others [30, 82], we observed an excess

of triallelic SNPs.

Most of the triallelic variants were rare: 205 (38.53%) had two singleton non-

reference alleles, and 253 (47.56%) had one singleton non-reference allele and one

more common non-reference allele. For the 10 SNPs showing all four alleles, 8 had

at least one singleton non-reference allele. Nelson et al. [82] validated 10 out of

10 singleton triallelic variants from the same dataset. Among the 523 multi-allelic

variants called by IBC, PBC called 509 biallelic, identifying the non-reference allele

with more information (higher allele frequency or higher read depth). PBC identified

the remaining 14 multi-allelic SNPs as monomorphic.

2.3.7 Computational burden

The computational burden of variant calling increases when the algorithm ag-

gregates more information across individuals and sites. Hence IBC is the fastest

algorithm and LDC is the slowest. IBC used about 250 CPU-hours to generate all

variants for all 7,842 individuals, while PBC used 400 CPU-hours. For IBC, each

individual at a specific genomic region can be analyzed in parallel. For PBC, all

individuals have to be considered jointly, but genomic positions are independent and

can be analyzed in parallel. In terms of memory usage, IBC consumed negligible

memory since it only needed to read in the genotype likelihoods for one position per

individual. For PBC, memory consumption increased roughly linearly with sample

size. To analyze our dataset with 7,842 individuals, the maximum memory usage was
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7.9 Gb. In our down-sampling analyzes, sample sizes of 1,000 and 5,000 consumed

1.1 Gb and 5.3 Gb memory respectively.

The LDC model considers all haplotypes jointly, with run time increasing in

quadratic scale with the number of haplotypes included in the reference panel, which

is the state space of the underlying Hidden Markov Model. Other factors affecting

run time included length of each haplotype, number of iterations, and total sample

size. We performed LD-aware calling per gene for 15,684 haplotypes at 202 genes,

using a reference panel size of 200 for 30 iterations. After running PBC, LDC with

flanking haplotypes took about 3000 CPU-hours. Without flanking haplotypes, LDC

took about 2000 CPU-hours. To speed up the process while retaining sufficient LD

information, LDC can be run in parallel on larger genomic regions, such as a 1Mb re-

gion or a chromosome. Memory usage increased linearly with the number of variants

in the gene: each gene contained 300 to 2,000 variant sites after adding GWAS flank-

ing genotypes, with the memory required for running LD-aware algorithm ranging

from 45 Mb to 300 Mb.

We performed all analyses on a Dell C6100 blade server with four discrete dual

6-core Intel Xeon X5660 CPUs at 2.80 GHz. 128 GB RAM and 1 TB of local SATA

disk were available on this system.

2.4 Discussion

We performed an extensive comparison between calling algorithms of various com-

plexity on a large sequencing dataset capturing exons of 202 drug-targeted genes with

mean coverage of 24x. As a result of the capturing process necessary for targeted

sequencing, we observed a wide range of coverage per targeted position, echoing the

outcomes of other exome sequencing studies aiming at high coverage [83, 136]. Thus,



29

our work provides general guidelines for using variant calling algorithms on exome

and targeted sequencing datasets.

Existing calling algorithms aggregate different levels of information from sequence

reads. We considered three major groups of likelihood-based models: (1) Individual-

based single marker caller (IBC) uses aligned reads at each marker per individual,

(2) population-based single marker caller (PBC) uses aligned reads at each marker

for all samples to estimate population allele frequency, (3) LD-aware genotype re-

finement caller (LDC) uses linkage disequilibrium information from loci surrounding

each called variant. Many different approaches exist for each model; each uses a

variation of individual-based, population-based or haplotype-based priors. Previous

studies have shown comparable performance between glfSingle/glfMultiples and ear-

lier versions of the GATK UnifiedGenotyper [64]. By comparing sets of IBC and PBC

from the same developer, we observed excess high-quality singletons in individual-

over population-based algorithms.

Comparing filtered call sets of identical size (27,500) for each caller, IBC discov-

ered more rare variants than PBC. In particular, at lower coverage, IBC was able to

identify more high-quality singletons than PBC. We replicated this result twice, in

a second dataset with higher coverage and in the original dataset using a different

approach of the callers. We observed that the ability of PBC to detect singletons

depended on sample size: With increasing sample size, PBC identified fewer single-

tons, and the quality of the identified singletons decreased. This advantage of IBC

over PBC can be partly explained by the fact that in larger samples, singletons have

an allele frequency < 0.001. Hence the prior for a site being a singleton is stronger

in the individual-based caller and less evidence is required to call a singleton.

While we found significant differences between caller-specific sites, IBC and PBC



30

call sets had > 99% concordance at the high-quality, non-missing heterozygous geno-

types. Our validation experiment confirmed all selected IBC-specific singletons, with

very few unconfirmed singletons in the PBC call set. Moreover, most PBC-specific

singletons were in the IBC unfiltered (complete) call set. We observed the same

trend of IBC generating an augmented set of singletons in high coverage sequencing

data (> 120x), where IBC almost doubled the number of high-quality singletons at

sites with local low coverage (< 10x).

Furthermore, only IBC was capable of identifying polymorphisms with more than

one non-reference allele, which led to discovery of an additional 1.9% of rare alleles

in the sample. The excess of triallelic sites over the theoretical prediction of 1.4%

is likely the result of heterogeneity of mutation rate due to sequence context and

genomic environment. Existing associations between multiallelic variants and disease

phenotypes [16, 31] suggest that properly accounting for such variants can increase

the power of a sequencing study.

While IBC had strengths in identifying singletons, PBC generated better overall

genotype quality. At common variants, PBC genotypes overcame low coverage at

specific samples, achieving fewer missing genotypes and higher accuracy than IBC

calls. The discordance between IBC and GWAS genotypes was low (0.82%), but

more than two times higher than the GWAS discordant rates of the other call sets.

LDC achieves even higher genotype accuracy than IBC and PBC by using hap-

lotype information to impute missing genotypes from an existing single-marker call

set. Imputation is typically more effective with longer haplotypes. In our study,

we created long haplotypes by combining sequencing data with SNPs from previous

GWAS genotyping chips. LDC with such flanking haplotypes achieved the highest

accuracy and the least missing genotypes. As targeted sequencing studies might not
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have chip data to generate long haplotypes, we studied if LDC would still improve

genotype accuracy with haplotypes based only on the sequencing data. Without

flanking haplotypes, LDC had fewer missing data at the common variants over PBC,

yet with a slightly higher mismatch rate. In particular, the additional heterozygote

genotypes at common GWAS markers had a high mismatch rate of 2.43%, despite an

overall mismatch rate of 0.39%. This suggested that using LDC on short haplotypes

to impute missing genotypes created a relatively large number of imputation errors.

Comparison between sequence replicates further demonstrated that LDC without

flanking haplotypes had minimal benefit over PBC. As LDC imposes a considerable

computational burden, it seems questionable whether this caller should be used when

flanking haplotypes are not available.

2.5 Conclusions

In summary, while IBC generated high quality unique singletons, as well as mul-

tiallelic variants, its resulting call set contained more missing genotypes and geno-

typing errors at common variants. PBC calls showed a substantial decrease in the

number of missing genotypes and errors over IBC calls at these variants. Only when

flanking haplotypes were available, LDC calls showed noticeable refinement of PBC

genotypes, resulting in a call set with the highest concordance with GWAS geno-

types and between experimental replicates. Therefore, IBC had strengths in calling

extremely rare variants, while PBC combined with LDC had strengths in calling the

more common variants.

Based on these results, we recommend a two-fold calling strategy for targeted

sequencing studies with medium to high coverage in a large sample. We recommend

first to use a population-based single marker caller to generate accurate common
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variants and most of the rare variants. Second, we recommend using individual-

based single marker caller to enrich the call sets with additional singletons. If flanking

markers around targeted regions are available, despite the computation burden, we

recommend using LD-aware caller to refine and impute population-based calls at

high accuracy, resulting in a complete call set.
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2.6 Appendix

2.6.1 Pre-variant calling data processing

Sequence read data

We aligned reads using BWA 0.5.9 (http://bio-bwa.sourceforge.net) with

human genome build 36 as reference. Average mapping rate was 99.7%; 98.5% of

reads were properly paired. Using Picard (http://picard.sourceforge.net/) we

identified and removed 21% duplicate reads. We recalibrated the base quality scores

using GenomeAnalysisTK-1.0.5974 (http://www.broadinstitute.org/gsa/wiki/

index.php/Base_quality_score_recalibration)[17].

Genotype data

We combined genotype data from previous GWASs typed on Illumina 300k, 550k,

610k and Affymetrix 500k and 6.0 using PLINK [97]. We identified 378 GWAS

variants on the targeted regions. At these variants, we confirmed reference allele for

A/T and G/C variants using sequencing calls and respective allele frequencies, and

there were no strand flip issues. We discarded a small number of genotypes at the

flanking regions based on ambiguous strand information.

2.6.2 Variant quality control

Initial filtering

We applied to each call set initial filters, which were based on read alignments

at variant sites and summary statistics of each site. In particular, at each polymor-

phic site, we computed several Z-score test statistics of read alignments, including

strand bias, allele balance and alternative allele inflation, with the detailed statistical

tests described below. A SNP with extreme Z-scores indicate bias from mapping or

sequencing artefacts which likely lead to false positive calls. Cutoffs for each filter
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followed from the ones used in the NHLBI GO Exome Sequencing Project [114]. We

further imposed an indel filter, which filtered SNPs located within 5 base pairs of

known insertions or deletions from 1000 Genomes low-coverage CEU data (July 2010

release). We detected sites with excess heterozygosity than expected under Hardy-

Weinberg equilibrium, calculated using inbreeding coefficient, described below. For

LD-aware calls, we imposed an additional R2 quality control criterion by filtering the

sites with estimated squared correlation less than 0.7 between true allele counts and

estimated allele counts. Here we describe in detail the filters used:

1. Strand bias: Conditioned on the site being biallelic, strand bias refers to higher

than expected frequency of observing the alternate allele on the forward or the

reverse strand. Specifically, the strand bias filter counts the number of reference

and alternate alleles on each strand as a 2-by-2 contingency table. Under the null

hypothesis, a genuine polymorphism should have the alternate allele observed

equally often from forward and reverse strands. Therefore, the strand bias filter

discards sites with normalized Z-score greater than 10 or absolute correlation

greater than 0.15, which suggest strong association between strand and the allele

observed.

2. Allele balance: Allele balance measures the ratio between allele counts from

genotype calls and estimated allele counts calculated from individual sequence

depth and likelihoods (http://genome.sph.umich.edu/wiki/Genotype_Likel

ihood_Based_Allele_Balance). A small ratio indicates bias towards certain

alleles at a called polymorphic site, which is likely to be false positives. We im-

posed a lower bound of 67% on the allele balance ratio for good quality SNPs.

3. Alternate allele inflation: Alternate allele inflation is a composite measure of
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base quality inflation and alternate allele quality inflation. We count the number

of third and fourth alleles observed at a biallelic site and test it against the

expected value where third and fourth alleles only occur due to sequencing error.

Large normalized Z-score of this test indicates there are more non-reference,

non-alternate bases than expected by base quality, suggesting that base quality

is over-recalibrated due to alignment artefacts. Alternate allele quality inflation

measures the normalized deviation of the number of alternate allele calls from

the actual number of alternate bases observed from the reads. A small Z-score

provides stronger support of the site being polymorphic, as the alternate base is

observed much more frequently than the other two bases besides the reference.

The composite alternate allele inflation statistic is the sum of the two Z-scores

described above. We filtered out sites having absolute composite score greater

than 5, which means they are called polymorphic because of alignment artefacts

that lead to inflated quality scores.

4. Excess heterozygosity: We measured deviation from Hardy-Weinberg equilib-

rium (HWE), in particular the excess of heterozygotes, by calculating the in-

breeding coefficient F for each marker, where

F = 1− Observed number of heterozygous genotypes

Expected number of heterozygous genotypes

The expected number of heterozygotes comes from assuming HWE, such that

E(het) = 2p(1− p)N

Here N denotes the sample size. F ranges from (−∞, 1], with positive values

representing markers with fewer heterozygotes than expected. F = 0 means the

marker is in perfect HWE. Negative F denotes an excess heterozygotes at that



36

marker. We set the cut-off at −0.1, meaning that we discard markers with more

than 10% heterozygotes observed than expected under HWE.

Support Vector Machine (SVM) filtering

Second, based on the initial set of variant quality metrics, we used a support vector

machine (SVM) approach to generate a summary quality score for each variant site

[40]. This approach was also applied in filtering and generating consensus calls in ESP

and 1000 Genomes Project [114, 117]. The SVM identifies a hyperplane separating

a training set of good calls and bad calls and scores each variant site to reflect the

distance of the SNP from this hyperplane. Good calls and bad calls are classified

by contrasting the initial quality statistics between the SNP calls and the SNPs in

positive and negative training sets respectively. We used HAPMAP3 and OMNI

variant sites as positive training sets, and the calls that did not pass more than two

initial quality metrics as the negative training set.

Genotype filtering

Third, after selecting a fixed call rate of 27,500 top-ranked variants per call set

from SVM classification, we applied filters to individual genotypes to ensure quality of

all genotypes under comparison, given each top-ranked variant site. From genotypes

called by individual-based single marker caller (IBC), we removed and marked as

missing the genotypes with PHRED quality score less than 20; we also removed

genotypes with genotype depth less than 7x. The quality of genotypes called by

population-based single marker caller (PBC) is less affected by genotype depth, hence

we only filtered based on PHRED genotype quality < 20. Analogously, we filtered

LD-aware genotype calls with a posterior probability ratio < 99 : 1 between the

genotype with the highest posterior probability and the genotype with the second
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highest posterior probability.

2.6.3 Validation experiment

We performed an independent Sanger capillary sequencing to validate singleton

variants identified by IBC and PBC. We considered the singletons carried by in-

dividuals from the CoLaus study.6 Within this subset of individuals, we sampled

from the top-ranked 27,500 variants 32 singletons called by only IBC and 41 sin-

gletons called by only PBC. We further extended the experiment to sequence some

caller-specific singletons beyond our defined SVM ranking cutoff. For variants ranked

between 27,501 and 29,000 in each call set, we sampled 16 IBC-specific singletons

and 12 PBC-specific singletons from the CoLaus individuals. Since IBC called more

variants than PBC, we sampled an additional 23 IBC-specific singletons at the tail

of the SVM rankings (> 29, 000). We performed capillary sequencing on these 124

singletons on the individuals carrying the heterozygous genotype.

After PCR amplification of sequences of the 124 singletons using designed primers,

we performed Sanger sequencing on the PCR products. We performed both steps

at the University of Michigan facilities. We designed PCR primers using NCBI

Primer-BLAST program. In case the program was not able to pick the primers,

we manually designed primers sequences and ran them through BLAST search for

specificity. We amplified PCR amplicons using OneTaq hot start 2X mixes (NEB,

USA) with standard or GC buffer depending on the GC contents of the sequences.

For samples that did not amplify in the first round, we assigned them new primers

before repeating amplification. We set up PCRs using GeneAmp PCR System 9700

(Applied Biosystems, USA). We ran aliquots of the amplicons on 1% TBE agarose

gel with Sybr Safe DNA Gel Stain and viewed them in UVP or Typhoon 9000 to

visualize the amplicons and to check the quality and the quantity of the amplified
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bands. We ran other PCR amplicons on the Agilent Bioanalyzer 2200 TapeStation

(Agilent, USA) using the D1K screen tapes. We diluted amplicons before performing

Sanger sequencing with the selected primers. We verified sequencing chromatogram

data using Sequencher 5.1 demo (CGC, USA). We reported alleles by inspecting

peaks on each chromatogram.

Among the 124 reactions performed, 3 failed. Among the 121 successful reactions,

71 were expected heterozygotes that passed our SVM quality control threshold. In

this category, 3 out of 41 (7.32%) PBC-specific singletons were found to be homozy-

gous reference, while all 30 IBC-specific singletons were confirmed. This difference

in error rates between IBC and PBC was not statistically significant (Fisher’s exact

p-value = 0.258). Beyond our defined quality control threshold, at variants ranked

between 27,501 and 29,000 in each call set, 4 out of 16 IBC-specific and 1 out of 12

PBC-specific singletons were not confirmed. At the tail of the SVM-ranked IBC call

set, 4 out of 22 IBC-specific singletons were found to be homozygous reference, cor-

responding to a calling accuracy of about 82% for IBC at the sites of lowest quality

(Table 2.5).

2.6.4 Evaluation of singletons on additional dataset

We applied individual-based variant calling (IBC) on 3,142 individuals from the

AMD Consortium targeted sequencing dataset [136]. This sample was sequenced at

57 genes at 10 AMD loci, at 127.5x. Despite high average coverage, we observed

highly heterogeneous coverage across targeted genes (Figure 2.3). Several genes are

covered at less than or close to 10x. The population-based variant calling (PBC) of

the same sample were previously performed and published by Zhan et al.[136]. After

filtering the IBC call set using the same initial filters as in the PBC analyses, we

compared the singleton calls identified by IBC and PBC.
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Across the dataset, IBC called 1,913 additional singletons with genotype quality

> 10 compared to PBC. These additional singletons had a Ts/Tv ratio of 1.63.

Interestingly, the additional singletons with high quality were located in regions

with low coverage. We found that at coverage < 10, and with an additional genotype

quality filter of > 10, IBC identified 864 additional singletons not found in the PBC

call set, with Ts/Tv = 2.18 (Figure 2.4 top). At the same genotype depth and

quality thresholds, IBC and PBC shared 911 singleton variant calls with Ts/Tv =

2.13 (Figure 2.4 bottom). When we relaxed the genotype depth threshold to <

20x, IBC identified 1,360 additional singletons with Ts/Tv = 1.90. At the same

thresholds, IBC and PBC shared 2,745 singletons with Ts/Tv = 2.07.
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2.6.5 Supplementary figures and tables

Figure 2.2: Distribution of average coverage of sequence read data from 7,842 unrelated European
individuals. The next-generation sequencing data was part of a large-scale targeted sequencing
experiment generated for the purpose of identifying variants associated with 12 common diseases
and cardiovascular and metabolic phenotypes, previously described in Nelson et al [82]. This
experiment targeted 2,218 exons of 202 genes of potential drug interest, covering 864kb (1%) of the
coding genome (a) per individual per targeted genomic position, (b) per individual per targeted
gene. The overall mean coverage is 24x.
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Figure 2.3: Average coverage at the 57 targeted genes in the AMD sequencing study [136], ranked
by average coverage per individual per gene position. Overall average coverage across the whole
targeted region was 127.5x. Horizontal line denote 10x coverage.

Figure 2.4: Distribution of AMD [136] singleton site coverage at the singleton-carrier at coverage
< 10. All singletons shown in the figure have genotype quality >10. Top (gray): singletons
identified by IBC only, Ts/Tv = 2.18. Bottom (white): singletons identified by both IBC and
PBC, Ts/Tv=2.13.
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Figure 2.5: Proportion of IBC singletons identified by PBC at different sample sizes (top) and
average quality score of IBC singletons identified by PBC at different sample sizes (bottom).
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All SNPs Singletons
Caller Class #SNPs %dbSNP Known

Ts/Tv
Novel
Ts/Tv

Overall
Ts/Tv

#SNPs Ts/Tv

IBC

Total 27500 25.72% 3.02 2.54 2.71 16325 2.57
Nonsynonymous 6522 26.37% 2.92 2.30 2.50 4264 2.34
Synonymous 4363 37.06% 14.90 5.31 5.60 2461 5.34
Splice 130 16.15% 1.10 1.53 1.45 86 1.46
Stop 163 0.25% 1.54 1.89 1.88 126 1.74
UTR 10261 22.06% 2.50 2.30 2.39 5915 2.24
Intronic 5610 23.46% 2.58 2.41 2.50 3213 2.49
Flank* 341 24.93% 2.04 2.05 2.08 189 2.10
Intergenic 110 14.55% 1.29 2.03 2.00 71 1.73

PBC

Total 27500 26.87% 3.02 2.45 2.59 15877 2.44
Nonsynonymous 6547 27.19% 2.81 2.24 2.38 4222 2.25
Synonymous 4377 38.15% 14.80 5.11 5.33 2415 5.16
Splice 117 17.95% 1.33 1.74 1.66 76 1.81
Stop 157 21.02% 2.30 1.88 1.96 119 1.77
UTR 10285 23.11% 2.47 2.22 2.28 5759 2.12
Intronic 5558 24.88% 2.65 2.29 2.37 3057 2.30
Flank* 349 31.52% 2.33 1.91 2.03 160 1.86
Intergenic 110 14.55% 1.67 2.03 1.97 69 1.76

LDC

Total 27500 26.85% 3.01 2.45 2.59 15857 2.44
Nonsynonymous 6574 27.17% 2.78 2.24 2.37 4235 2.24
Synonymous 4375 38.08% 15.05 5.13 5.37 2419 5.19
Splice 119 17.65% 1.33 1.65 1.59 77 1.75
Stop 157 21.02% 2.30 1.88 1.96 119 1.77
UTR 10273 23.10% 2.46 2.22 2.28 5741 2.13
Intronic 5549 24.82% 2.60 2.30 2.37 3044 2.31
Flank* 342 32.75% 2.29 1.91 2.03 152 1.81
Intergenic 111 14.41% 1.67 1.97 1.92 70 1.69

LDC+F

Total 27500 26.81% 3.00 2.45 2.58 15869 2.44
Nonsynonymous 6570 27.12% 2.78 2.25 2.38 4235 2.25
Synonymous 4378 38.05% 15.00 5.14 5.36 2419 5.20
Splice 120 17.50% 1.33 1.61 1.55 78 1.69
Stop 157 21.02% 2.30 1.88 1.96 119 1.77
UTR 10265 23.08% 2.47 2.21 2.27 5742 2.11
Intronic 5558 24.79% 2.60 2.29 2.36 3053 2.29
Flank* 341 31.67% 2.38 1.88 2.02 153 1.73
Intergenic 111 14.41% 1.67 1.97 1.92 70 1.69

Table 2.4: Quality of call sets assessed by transition-to-transversion ratio (Ts/Tv), broken down by
variant class and frequency. Ts/Tv of each set at the top-ranked 27,500 SNPs via SVM classification
were higher than the respective unfiltered call sets. Under a uniform Ts/Tv prior for all algorithms,
IBC call set attained a higher Ts/Tv than the other call sets. Ts/Tv was higher at exonic variants
and at known variants than at intronic variants and novel variants. Variants were classified using
the ANNOVAR nomenclature (http://www.openbioinformatics.org/annovar/annovar_gene.
html), with Splice including the splicing only sites, while the splice sites that lead to a stop codon
were in the Stop class. *Flank refers to the upstream/ downstream variants within 50bp of the
transcription site, as designed in the capture experiment described in Nelson et al. [82].
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SVM ranking Caller Total reactions Failed reactions Confirmed Not confirmed
≤ 27, 500 IBC-specific 32 2 30 0

PBC-specific 41 0 38 3
27,501-29,000 IBC-specific 16 0 12 4

PBC-specific 12 0 11 1
> 29, 000 IBC-specific 23 1 18 4

Table 2.5: Validation experiment results.



CHAPTER III

Markov Chain Monte Carlo Estimation of Sequencing
Errors Using Overlapping Reads

3.1 Introduction

Next-generation sequencing (NGS) is a high-throughput, massively parallel pro-

cess that generates thousands to millions of sequences of DNA simultaneously [72,

107]. NGS methods involve fragmenting genomic regions and sequencing each frag-

ment [5, 77]. Typically, each fragment is read from both ends, generating paired-end

short reads. These short reads are then reconstructed into longer sequences using

alignment or assembly methods [57, 78]. Compared to traditional capillary sequenc-

ing approaches, which examines one base pair at a time, NGS methods makes the

sequencing of full genomes highly feasible in terms of time and cost [63, 104, 107].

However, each sequencing step in a NGS experiment introduces a certain chance of

error, as each short read is an imperfect realization of the underlying genome segment

[100]. Thus, data generated using NGS methods tend to have lower accuracy than

those generated using capillary sequencing, which can achieve per-base accuracy as

high as 99.9999% [94, 98, 107].

In this chapter, we focus on single-base substitution errors occurring in NGS

experiments. These errors can be broadly categorized into two types: First, for

each position along a read, the sequencing machine calls a base and generates an

45
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estimated base-calling error (machine error), which represents the uncertainty in the

fluorescent detection of the bases [80, 112]. Second, prior to base-calling, fragmented

DNA may contain errors from signal amplification via PCR or upstream preparation

steps (fragment error) [3, 100].

While machine and fragment errors arise from completely different mechanisms

and different steps of the sequencing process, they both show up as erroneous bases

in the read, most commonly in the form of substitution errors. From the base calls

and base quality scores generated by the sequencing machine, machine and fragment

errors are indistinguishable. To account for both error sources in downstream variant

calling, Flannick et al. [20] modeled fragment errors as a constant and machine

errors from base quality scores. However, it is not clear whether fragment errors are

constant within and between sequencing experiments. Multiple methods have been

developed to use aligned read information to estimate the combined sequencing errors

[32, 103, 124, 130]; however, due to the indistinguishability of the error types, to the

best of our knowledge, there are no existing methods to separately estimate machine

and fragment errors from the sequence reads. Knowing how much each source of

error contribute to the observed mismatches can help identify areas of improvement

in sequencing technologies. Understanding error sources can also provide insight into

future sequencing experimental designs, particularly library designs that can isolate

these errors from sequenced reads.

While normal single-end and paired-end reads cannot distinguish these errors,

overlapping paired-end reads from short fragments provide an opportunity for sep-

arating fragment error from machine error. Overlapping read pairs occur when the

pair of reads sequences the same part of the fragment twice. A normal read pair

has the sum of read lengths greater than the length of the fragment sequenced. The
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distance in terms of the physical genomic position spanned by the pair of reads is

called the insert size [5, 63]. At an overlapping read pair, insert size is smaller than

the sum of read lengths. Per overlap position, the pair of bases replicates the frag-

ment error. However, an overlapping pair contains more than completely redundant

information. The sequencing step is independent of fragment origin, meaning that

each overlapping base gives two independent observations of base calls and quality

scores. Therefore, in the simplest case, if two bases at a position of an overlapping

read pair disagree, one of them must be due to machine error, because a fragment

error would have shown up in both bases. On the other hand, if two bases at a

position of an overlapping read pair agree, but they are different from the reference

genome and they are not a known variant, it is very likely that there is an error in

the underlying fragment.

In this chapter, we designed a statistical method to separately estimate machine

and fragment errors from overlapping read pairs. We modeled machine and fragment

errors using the counts of discordant and concordant pairs of bases from overlapping

read pairs, with read cycle and base quality score as predictors. We used a Markov

chain Monte Carlo (MCMC) algorithm to estimate the posterior distribution of ma-

chine errors from discordant pairs of overlapping reads. We then applied the posterior

mean estimates of machine errors to estimate fragment errors from concordant pairs

of overlapping reads, given the reference genome and a list of known variants, with

base quality score as a predictor.

We evaluated our MCMC algorithm using simulated error rates, then applied the

algorithm to analyze chromosome 20 of 10 samples from a whole-genome sequencing

study with average 8x coverage; each sample had over half of its reads overlapping.

We showed that machine error was largely predicted by base quality scores of the
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discordant overlapping read pairs, while being slightly increasing with read cycle.

Fragment errors were also predicted by the base quality scores of concordant over-

lapping bases, as opposed to the previous assumption that fragment error rates are

uniform across the genome [20]. Both machine and fragment errors were consistent

across the 10 samples, regardless of the sequencing lane and plate of preparation,

suggesting that these errors are consistent within the same sequencing experiment.

3.2 Methods

Here we present our statistical models for estimating machine and fragment errors

using overlapping reads. Our approach focuses on substitution errors, which are the

most common type of errors found in sequencing studies. Overlapping read pairs are

defined as the paired-end reads with insert size smaller than the sum of read lengths.

Assuming perfect alignment, at each position of the overlapping region of such read

pairs, the overlapping bases b1, b2 have quality scores q1, q2, and come from read

cycles c1, c2 respectively. The subscripts 1 and 2 per pair of bases denote the first

and second read from the overlapping read pair (which can be in arbitrary order).

3.2.1 Model for estimating machine errors

If b1 6= b2, the pair of overlapping bases is discordant. A discordant pair of over-

lapping bases must reflect at least one error from the sequencing machine, regardless

of the reference base at this position and the underlying true base, because the two

base calls are read from the same fragment. A discordant pair of overlapping bases

occurs for one of the following three reasons: (1) b1 is a machine error, (2) b2 is a

machine error, (3) both b1 and b2 are machine errors that result in different bases.

Therefore, the probability (θ) of observing a discordant pair of bases among all over-

lapping pairs of bases can be expressed as a function of machine errors from b1 and
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b2:

(3.1) θ = θ1(1− θ2) + θ2(1− θ1) +
2

3
θ1θ2,

where θ1, θ2 are the machine errors from a pair of overlapping bases. We assume that

there is an equal probability of the machine error calling the underlying nucleotide as

one of the other three bases; thus, two-thirds of the time two machine errors at the

same base will result in a discordant pair, as reflected in the last term of Equation

3.1.

We model the machine error as a joint function of read cycle c and quality score

q, therefore we can write θk = eM(ck, qk), k = 1, 2. Given a dataset X of pairs

of overlapping bases, we stratify them by the read cycles and quality scores of the

two bases, represented by the tuples (c1, q1, c2, q2). Denote the total number of over-

lapping bases per stratum by T (c1, q1, c2, q2), then each pair of overlapping bases is

either concordant or discordant. Let D(c1, q1, c2, q2) denote the pairs of discordant

bases, then the log-likelihood of the data x can be expressed as a binomial function

in terms of the discordance probability θ:

(3.2)

l(X = (D,T)|θ) ∝
∑

(c1,q1,c2,q2)

D(c1, q1, c2, q2) log(θ)

+ [T (c1, q1, c2, q2)−D(c1, q1, c2, q2)] log(1− θ)

Here we consider an additive model for machine errors with respect to read cycles

and quality scores, where eM(c, q) = ec(c) + eq(q) for all c, q. In this construction we

assume the effects of read cycle and quality score on machine error are independent.

Let C denote the range of possible read cycles and Q denote the possible quality

scores. Current sequencing technology typically generates 100bp reads with quality

scores from 2 to 40, i.e. C = {1, 2, . . . , 100} and Q = {2, 3, . . . , 40}. To estimate

eM(c, q) for all c ∈ C, q ∈ Q, given the high-dimensionality (|C|+ |Q|) of the param-
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eter space, and that the probability θ in the binomial likelihood is a function of two

machine errors, we apply a Markov chain Monte Carlo (MCMC) approach to sample

from the posterior distribution of the parameters.

3.2.2 Markov chain Monte Carlo algorithm for machine errors

The posterior distribution of θ is given by

(3.3) p(θ|X = (D,T)) ∝ l(X = (D,T)|θ)p(θ).

Assuming an uninformative prior for the machine error rates, the likelihood is propor-

tional to the desired (posterior) distribution of the machine error rates. Therefore,

we apply a MCMC Metropolis-Hastings algorithm to explore the likelihood space.

By definition, the Metropolis-Hastings algorithm utilizes a Markov process, which

guarantees that the accepted sampled likelihoods will reach a unique stationary dis-

tribution that equals the posterior distribution of the machine errors. By proposing

new parameter values in each iteration, the algorithm generates posterior probabili-

ties of all parameters upon converging to the stationary distribution.

In the Metropolis-Hastings algorithm, we first provide initial conditions e0c(c),

e0q(q) for all c, q. Then, to propose an update, we randomly select a pair of cu, qu

from the ranges of possible cycles and scores and propose e∗c(cu), e∗q(qu) by drawing

from a proposal function g(e∗|e). We design g(e∗|e) so that it allows mostly small-

range jumps and occasionally long-range jumps, because we expect the error rates to

be small, and small-range jumps can generate more precise estimates. Specifically,

we write g(e∗|e) as follows:

(3.4) g(e∗|e) ∼ 0.7× Unif(|e− j1|, e+ j1) + 0.3× Unif(|e− j2|, e+ j2),

where e = ec(cu), eq(qu) and j1 < j2. Note that we impose absolute values at the lower

bounds of the uniform distributions to ensure that the proposed error probabilities
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stay greater than zero. We can then express the Metropolis-Hastings acceptance

probability as

(3.5) A(e→ e∗) = min

(
1,
l(X|e∗)g(e|e∗)
l(X|e)g(e∗|e)

)
.

We assess the convergence of the chains using the potential scale reduction factor

(PSRF) of each parameter [25], which estimates the variance of each parameter as

the weighted sum of the within-chain and between-chain variance, normalized by the

between-chain variance. When multiple chains of the same sample converge to the

maximum likelihood, the PSRFs for all parameters will be close to 1. We run the

algorithm until the likelihood converges and the posterior estimates of the machine

errors are stable, i.e. have reached their stationary distributions.

3.2.3 Model for estimating fragment errors

If b1 = b2, the pair of overlapping bases is concordant. If the concordant pair of

bases are different from the reference base, assuming perfect mapping, one of the

four cases has to hold:

1. The pair of bases reflect a fragment error (with no machine errors);

2. Both bases are machine errors that result in the same base (with no fragment

error);

3. Both bases are machine errors that result in the same base, with underlying

fragment error;

4. The pair of bases reflect a true variant.

We model fragment errors based on these scenarios and the machine error esti-

mates from the MCMC algorithm described above. We assume each fragment error

is predicted by the quality scores of the two concordant bases and is independent of



52

read cycles. Therefore, let S(q1, q2) denote the number of pairs of concordant bases

with quality scores q1, q2 respectively, that are different from the reference allele and

the position is not a known variant. Let N(q1, q2) denote the total number of pairs

of overlapping reads with quality q1, q2. Then, fragment error eF (q1, q2) is evaluated

by the following equation:

(3.6)

S(q1, q2)

N(q1, q2)
=eF (q1, q2)[1− êM(·, q1)][1− êM(·, q2)]

+
1

3
êM(·, q1)êM(·, q2)

+
1

3
eF (q1, q2)êM(·, q1)êM(·, q2)

+ Pr(TV ).

Here êM(·, q) denotes the posterior mean of the machine error at q, averaged across

the read cycles. Pr(TV ) denote the probability of the position being a true variant,

which can be estimated from existing datasets and known variant databases. There-

fore, fragment error is the only unknown in the equation above and hence can be

evaluated analytically.

3.2.4 Simulation

To assess the properties of the MCMC for estimating machine error, we simulated

sets of overlapping base pairs. We specified machine error for each combination

of base quality scores and read cycles, eM(c, q). Then, given the total number of

overlapping read pairs T (c1, q1, c2, q2) per cycle and quality combinations, obtained

from empirical data, the probability of observing D(c1, q1, c2, q2) discordant pairs of

overlapping bases is given by p(c1, q1, c2, q2), where

(3.7)

p(c1, q1, c2, q2) =eM(c1, q1)(1− eM(c2, q2))

+ eM(c2, q2)(1− eM(c1, q1))

+
2

3
eM(c1, q1)eM(c2, q2).
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Then the simulation of discordant pairs of bases followed from a binomial draw,

where

(3.8) D(c1, q1, c2, q2) ∼ Binomial(T (c1, q1, c2, q2), p(c1, q1, c2)).

We simulated discordant pairs of overlapping bases from the empirical total number

of overlapping bases from chromosome 20 from one individual in the BRIDGES

Consortium, a whole-genome sequencing dataset with average coverage 8x. The

sequenced genome had 2.3 million reads (61.2%) overlapping on chromosome 20.

Using the total number of overlapping bases stratified by read cycle and quality

score from this individual, we generated discordant pairs based on two different sets

of underlying machine error rates. Figure 3.1 shows the two sets of simulated ec

and eq expressed in PHRED (logarithmic) scale [18]. The first set of simulated error

rates came from the intermediate parameter estimates of the real data of the same

individual sample, where the ec estimates were roughly uniform across all c ∈ C, and

the eq estimates were inversely proportional to q ∈ Q. We generated a second set

of error rates based on a smoothed form of theoretical expectations, with the read

cycle and quality score components parameterized as follows:

(3.9)
ec(c) =0.0007− 0.0005c+ 10−5c2

eq(q) =10−q/10

For each underlying error rate, we simulated three replicate datasets. For each re-

sulting dataset, we performed our MCMC to estimate each error parameter, starting

from six different sets of initial conditions, to assess the chain behavior starting from

various locations of the likelihood space. We examined the convergence of likelihoods

and parameter trace plots to determine burn-in and thinning parameters for the real

sequencing datasets.
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Figure 3.1: Two sets of machine error rates used in simulations, represented in PHRED scale. In
our model, each machine error rate is the sum of the error probability contributed by read cycle
(left) and the error probability contributed by quality score (right).

3.2.5 Sequencing data analysis

We estimated machine and fragment error from chromosome 20 of 10 individuals

from the BRIDGES Consortium. We selected these 10 samples such that they all

came from different sequence lanes (Table 1). These individual samples came from

three plates of the sequencing experiment that had high proportions of overlapping

reads on chromosome 20, ranging from 41.25% to 66.53%, with a median of 61.1%,

which corresponds to an average of over 1.8 million pairs of overlapping reads per

sample (Table 3.1). The average length of the overlapping region was 44 bp out of

the 100 bp reads; therefore, the number of overlapping pairs of bases on chromosome

20 per sample was about 75 million. The base quality scores of these samples ranged

from 2 to 41; as quality control, we discarded all overlapping bases with quality

scores < 5 in our analyses. We performed MCMC for estimating machine errors on

the overlapping reads data from chromosome 20 of each of the 10 samples, starting at

10 different randomized initial conditions. Each independent chain ran for 1,000,000
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Sample ID Sequence Plate Sequence Lane Percentage of
Overlapping
Reads on Chr 20

Number of
Overlapping
Reads on Chr 20

001 1 1 61.19% 2,328,750
013 1 2 57.25% 1,545,153
026 1 3 41.25% 1,621,221
038 1 4 54.64% 1,768,333
097 2 1 66.53% 2,100,776
113 2 2 64.63% 1,827,837
124 2 3 64.86% 1,853,273
181 3 1 61.05% 1,602,989
193 3 2 61.41% 1,703,547
205 3 3 60.87% 1,779,878

Table 3.1: Samples analyzed by the proposed error rates model. The samples come from three
sequencing plates, all sequenced at different lanes.

iterations. We applied a burn-in of 20,000 iterations and a thinning parameter of 200

when calculating the posterior distribution of error rates. We used PSRF to assess

convergence among the independent chains for each sample.

We then obtain the posterior mean estimates of each parameter êc(c), êq(q),∀c, q

by averaging across the converged chains of the same sample; estimates of machine

errors êM(c, q) follow from the sum of the respective êc(c) + êq(q). We marginalize

the machine error estimates by cycle and quality to assess the effect of each predictor

on the errors.

To estimate the fragment error eF (q1, q2) as a function of the quality scores de-

scribed in Equation 3.2, we apply the marginal quality error estimates êM(·, q). To

obtain the fraction of concordant overlapping pairs that are different from the ref-

erence allele, we consider only the positions that are not present in dbSNP release

144, which removes the pairs different from the reference as they are known variants.

Conditional on the position not being a known variant, we estimate its probability

of being a true novel variant using the proportion of non-dbSNP variants in the

BRIDGES Consortium final data freeze call set (Adam Locke, personal communica-

tion). Finally, we assess the correlation and variance of machine and fragment errors
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across samples.

3.3 Results

3.3.1 Simulation results

We simulated overlapping reads from two sets of error rates, generating three

replicate simulated datasets from each set. For each replicate we start the chains at

six different initial conditions; therefore, we have a total of 18 independent chains per

set. For both sets of underlying error rates, each MCMC chain converged to the close

neighborhood of its simulated true likelihood, regardless of the initial condition; the

chain that started furthest from the truth took about 20,000 iterations to converge

(Figure 3.7). We assessed the convergence of each parameter estimate using the

proportional scale reduction factor (PSRF, [25]) which measures the ratio of within-

chain variance to between-chain variance; therefore, PSRF ≈ 1 denotes convergence.

Across all replicates and all initial conditions of the first set of error rates, the mean

PSRF was 1.016, with variance 2.73 × 10−5. Similarly, across all replicates and

all initial conditions of the second set, the mean PSRF was 1.014, with variance

2.38 × 10−5. Trace plots of representative parameters across a broad range of the

parameter space showed good mixing of the chains around the true values, with

a minor degree of autocorrelation between subsequent iterations, suggesting that

thinning is needed for obtaining independent estimates (Figure 3.8).

Figure 3.2 shows the posterior mean estimates and 95% credible intervals for error

sets 1 and 2. The posterior mean of each parameter and the 95% credible intervals

are based on the parameter estimates across all 18 chains, with 4,000 observations

per chain after burn-in and thinning. All estimates converged to the true values,

with narrow credible intervals, on the order of 10−5, while all parameter values were

less than 10−4 ( <40 in PHRED scale).



57

0 20 40 60 80 100

5
10

15
20

25
30

35
40

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●
●●

●
●●●●

●

●

●
●●●

●

●●
●●

●
●

●

●
●●

●●
●●

●●
●

●

●
●

●

●

●

●

●●●●

●

●●

●

●
●

●

●
●

●

●

●

●
●●●●

●
●

Cycle

P
H

R
E

D
−

sc
al

e 
er

ro
r 

ra
te

●

Simulation Result
Truth

5 10 15 20 25 30 35 40

5
10

15
20

25
30

35
40

● ●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●
●

●

● ●
●

●

●

● ●

Quality

P
H

R
E

D
−

sc
al

e 
er

ro
r 

ra
te

●

Simulation Result
Truth

(a)

0 20 40 60 80 100

5
10

15
20

25
30

35
40

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●●●●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Cycle

P
H

R
E

D
−

sc
al

e 
er

ro
r 

ra
te

●

Simulation Result
Truth

5 10 15 20 25 30 35 40

5
10

15
20

25
30

35
40

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Quality

P
H

R
E

D
−

sc
al

e 
er

ro
r 

ra
te

●

Simulation Result
Truth

(b)

Figure 3.2: (a) Posterior mean error estimates of the cycle component, ec (left) and quality compo-
nent, eq (right) of the machine errors simulated from error set 1. (b) Posterior mean error estimates
of the cycle component, ec (left) and quality component, eq (right) of the machine errors simulated
from error set 2. Vertical bars indicate 95% credible intervals of the parameter estimates.

3.3.2 Sequencing data results

We analyzed 10 samples with a median of 61% of overlapping reads on chro-

mosome 20 (Table 3.1) using our MCMC algorithm for estimating machine errors.

Considering the 10 independent chains per sample, the average PSRF across all ma-

chine error parameters was between 1.002 and 1.005, with variance on the order of

10−5 (Figure 3.9). This indicates that for each sample, all chains converged to the

same posterior distribution for all parameters. We computed the posterior mean and

credible intervals based on 4,900 observations per parameter, after burn-in of 20,000
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Figure 3.3: Marginal distribution of estimated machine errors (a) by read cycle and (b) by quality
score. Each color represents a sample, with the bold red line representing the mean across all
samples. Histogram shows the distribution of overlapping bases in each covariate bin.

iterations and thinning of every 200 iterations.

We evaluated the marginal distributions eM(c, ·) and eM(·, q) (Figure 3.3), for

c ∈ [1, 100] and q ∈ [5, 41]. Here we present the parameter estimates in PHRED

scale, where PHRED = −10 log10(e). Therefore, the higher the PHRED score, the

lower the error rate. For each sample, the marginal machine error with respect to

cycle showed minimal deviation from their mean marginal distribution. The marginal

machine error was less than 0.001 (PHRED scale > 30) in the first 40 cycles (Figure

3.3a, Figure 3.10a). The marginal machine error increased with cycle, reaching an

error rate close to 0.004 (PHRED scale 24) at the last cycles. When the reported

quality score was less than 30, the estimated marginal error was lower than the

reported error rate, as indicated by the quality score covariate. When the reported

quality score was higher than 30, the estimated marginal error was higher than the

reported error rate; the maximum PHRED-scale marginal error was 35, while the
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Figure 3.4: (a) Read cycle and (b) quality score components of machine errors estimated from the
MCMC algorithm. Each color represents a sample, with corresponding vertical bars representing
the 95% credible intervals of the error estimates. The mean across all samples is denoted by the
bold red line. Histogram shows the distribution of overlapping bases in each covariate bin.

reported quality score was 41.

We assessed the contribution of quality score and cycle components of machine

errors. Figure 3.4 shows the posterior mean estimates and 95% credible intervals

for all parameters of machine error, namely the read cycle components ec(c) and

the quality score components eq(q), for c ∈ [1, 100] and q ∈ [5, 41]. We found

that in all samples, ec in PHRED scale showed a slight decrease with c, and the

decrease was more significant in the last 10 cycles, indicating that the machine error

contributed by read cycle is higher towards the end of a read. In the early cycles, the

95% credible intervals were wide for some samples with relatively few observations

of overlapping bases (Figure 3.4a). Nonetheless, the 95% credible intervals of all

samples overlapped. In the later cycles, the number of overlapping bases increased,

reaching a maximum of 3.8 million at cycle 98 averaged across the 10 samples, thereby

resulting in significantly narrower credible intervals.
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Figure 3.5: Machine error (eM ) estimates averaged across 10 samples.

The posterior mean estimates of eq in PHRED scale increased with q, the reported

quality scores of the overlapping bases (Figure 3.4b). The PHRED-scale eq was

consistently higher than the corresponding reported quality score. The 95% credible

intervals for all quality score parameters were narrow because there were over 1

million observations per quality score bin.

Overall, the 10 samples showed highly consistent parameter estimates, with an

average pairwise correlation of over 93% for the cycle parameters and 98% for the

quality score parameters. We computed the average parameter estimates across 10

samples to obtain the average machine error eM(c, q) as an additive function of ec(c)

and eq(q). We observed that quality score was the dominant predictor of machine

error (Figure 3.5). The estimated machine error was the lowest (highest in PHRED

scale) at the earliest cycles and when base quality scores were high (> 30).

Finally, we evaluated fragment error as a function of the reported quality scores

of concordant overlapping bases different from the reference allele. Figure 3.6 shows

the estimated fragment errors averaged across 10 samples. The variance of fragment
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Figure 3.6: Fragment error (eF ) with respect to quality scores of pairs of overlapping bases, averaged
across 10 samples.

errors across samples was in the order of 10−5, suggesting that the fragment error

estimates were stable across samples, regardless of their sequence lanes and plates.

Low quality scores in both overlapping bases predicted high estimated fragment error

(< 40 in PHRED scale). When one overlapping base had higher quality score (> 20),

the estimated fragment error was low, mainly between 40 and 50 in PHRED scale.

When both overlapping bases had high quality, fragment error was the lowest, at

over 50 in PHRED scale, corresponding to an error rate of less than 10−5.

3.4 Discussion

We designed error models for machine and fragment errors by utilizing the de-

pendence property of overlapping reads pairs. Since an overlapping region sequenced

the same part of a fragment, any discordance in a pair of overlapping bases would be

due to machine error. Conversely, any concordant pair of overlapping bases different

from the reference allele would likely be due to fragment error. To the best of our



62

knowledge, this is the first attempt to separately estimate fragment and machine

errors from read data. We applied our models to a dataset with high proportion of

overlapping reads; on chromosome 20 alone there were over seventy million overlap-

ping bases, allowing enough observations for the high dimensional parameters in our

error models.

We estimated that machine errors was largely predicted by the reported base

quality scores. In particular, when the reported quality scores were less than 30,

the estimated marginal machine error was lower than the reported error rate as

indicated by the quality score. Conversely, when the reported quality scores > 30,

the estimated marginal machine error was higher than the reported error indicated

by the quality score. This could be explained by the fact that the reported quality

scores were not recalibrated to reflect empirical mismatch rates. In fact, due to

the fragment dependence, overlapping reads cannot be recalibrated the same way

as normal reads; any mismatches to the reference at the overlapping regions should

not be double counted. We will discuss in the next chapter a method to properly

recalibrate overlapping reads. Nonetheless, these reported scores served as good

predictors of machine errors although they did not directly represent machine errors.

Our results showed that fragment errors were predicted by the pair of quality

scores in overlapping bases. While the majority of overlapping bases had quality

scores > 20, which predicted fragment errors between 10−4 and 10−5, the estimated

fragment errors were at least one order of magnitude higher when both overlapping

bases had low quality scores. Therefore, fragment errors spanned a wide range. While

further experiments are required to assess the robustness of these findings to model

specification, our results suggested the possibility that variant calling algorithms

based on a fixed fragment error rate, typically 10−4 [20], might lead to inaccurate
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estimation of genotype quality. In addition, we also observed that machine and

fragment errors were consistent across samples in different sequence lanes and plates

for the same experiment. It would therefore be useful to compare the machine

and fragment error rates across sequencing experiments and platforms to assess the

variability of these error rates.

Our error models relied on several assumptions that could potentially be relaxed or

modified. First, we assumed the simplistic addictive contribution by read cycle and

reported base quality score to machine error. While this model allows straightforward

interpretation of the covariates contribution to machine error, the true interactions

between cycle and quality score covariates is unknown. To potentially improve the

fit of our model to the data, we propose modeling the interactions between covariates

in different ways, for example by applying a multiplicative model for read cycle and

quality score, or by incorporating higher order interactions in form of polynomials.

Furthermore, previous studies suggested that errors in sequencing experiments could

depend on sequencing context [2, 80]. Therefore, a logical extension of our error

models would be to include sequencing context (dinucleotide or longer motifs) as a

covariate. However, the number of parameters would increase when adding covariates

and interactions. In this case we expect that overlapping reads data from the whole

genome or from across samples would be needed to obtain stable estimates for all

parameters.

Second, in our error estimation algorithm, we assumed independence of all param-

eters. Our results showed considerable correlation between neighboring estimates for

both cycle and quality score parameters. Thus, we could potentially improve the es-

timation of error parameters with relatively few observations by taking into account

the correlation of neighboring estimates. To improve the efficiency of the MCMC
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algorithm, we could also incorporate the expected correlation between parameter

estimates as a prior.

In summary, overlapping reads in a sequencing experiment have typically been

discarded. In this chapter we have presented a utilization of overlapping read pairs

for better understanding error sources in sequencing experiments. In the following

chapter, we will continue addressing the problem of overlapping reads and provide a

solution to resolve fragment dependence.
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3.5 Appendix
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Figure 3.7: Likelihood convergence plot for simulated error rate set 1. The true likelihood is
indicated by black horizontal line. Chains starting at different initial conditions converged to the
true likelihood. The chain starting at the true likelihood (orange) stays around the true likelihood.
We observe the same pattern for all replicate datasets for both sets of underlying error rates.
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Figure 3.8: Trace plots of representative parameters over the range of parameter space. Red line
on each plot indicates true error rate. Top panels show trace plots for the cycle parameters ec(23),
ec(48) and ec(95). Bottom panel shows trace plots for quality score parameters eq(14), eq(25) and
eq(30). The number of iterations on x-axis denote the iterations after 20,000 iterations of burn-in.
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Figure 3.10: Marginal machine errors by (a) read cycle and (b) quality score. Each color represents
one sample. Bold red line indicates mean marginal machine error across the 10 samples. Gray
dotted line on (b) denotes the error rates as calculated from the reported quality scores.



CHAPTER IV

RESCORE: Resolving Overlapping Reads Dependence in
Next-Generation Sequencing Data

4.1 Introduction

In Chapter 3 we introduced overlapping read pairs from short fragments in next-

generation sequencing (NGS) experiments. When performing paired-end sequencing,

each fragment is read by the sequencing machine from both ends [73]. An overlapping

read pair occurs when the pair of reads sequences the same part of the fragment twice,

resulting in the sum of read lengths longer than the insert size between the reads. At

the overlapping region, any fragment errors, defined as the substitution errors on the

DNA fragment, are replicated in both reads. As discussed in chapter 3, estimated

fragment and machine errors are represented as base quality scores. These base

quality scores and base calls generated by the sequencing machine are collectively

used to determine the genotype at each genomic position sequenced. Genotype

calling algorithms assume that reads covering a position come from independent

fragments [76, 86], and then use cumulative base calls from reads and a base-calling

error model [17, 53] to make genotype calls. Thus, falsely assuming independence

of such error probabilities in genotype calling causes overestimation of genotype

accuracy.

Overlapping reads are common in many studies, and may frequently occur for

68
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specific experimental protocols. For example, in the 1000 Genomes Exome Phase

1 release, we observed an average of 28.8% overlapping reads across 185 European

samples, with an average 28bp overlapping region from the 100bp reads [117]. In a

recent study sequencing the whole genome of bipolar patients at an average coverage

of 8x (BRIDGES Consortium), 806 samples contained an average of 40% overlap-

ping reads (Figure 4.2). Sequencing studies of ancient DNA also tend to generate

overlapping reads due to the short fragments of available DNA [45, 96]. In addition,

new sequencing technologies are generating longer reads while insert sizes are about

the same [63], which also leads to overlapping reads.

To avoid false positive calls from overlapping reads, existing solutions include

”soft-clipping”(ignoring) one read at the overlapping region (clipOverlap) [26]. At

the overlapping region, clipOverlap ignores the read segment with lower average base

quality. This method is straightforward to implement, but the clipped read contains

sequencing information independent of fragment origin, specifically replicates of the

underlying estimates of machine errors, represented by base quality scores, at the

clipped bases. Therefore, ignoring one read of an overlapping pair leads to loss of

data and overcorrects the dependence problem. In the case of low-coverage sequenc-

ing of overlapping reads, with already limited information per genomic position,

ignoring one overlap compromises the sequencing information from the clipped read

and thereby undermines resulting genotype quality.

An alternative approach of correcting for overlapping reads is to use fragment-

based likelihood calling implemented in the GATK variant calling pipelines [20].

Fragment-based calling calculates likelihood at each fragment instead of each read,

by assuming a fixed fragment error rate and treating the base quality scores as

machine error rates. While this method has been shown to reduce the number of
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false positive singleton calls [20], we discussed in Chapter 3 that fragment error is not

fixed across all bases. Fragment error can also be variable across different sequencing

experiments. Moreover, this fragment aware method is not a stand-alone step and

must be used as part of the GATK variant calling pipelines, making it less flexible

when a different variant caller is desired for specific experiments.

In this chapter, we present our algorithm, RESCORE, for resolving the depen-

dence in overlapping reads while retaining the information from the sequenced bases

and machine errors at each overlap position. RESCORE identifies overlapping re-

gions from aligned paired-end reads. Per overlapping position, RESCORE assigns a

consensus base call, and a quality score reflecting the combined evidence for machine

errors from both reads.

We applied RESCORE to 40 individuals from the BRIDGES Consortium with

an average of 48.8% overlapping read pairs per individual. Overall, compared to

soft-clipping one overlapping read at random or soft-clipping the read with lower

average quality, RESCORE improved the recalibrated quality scores at the overlap-

ping regions. RESCORE showed the most substantial gain over soft-clipping when

both overlapping bases have high quality scores (> 25), because soft-clipping dis-

cards one high-quality base. The benefit of applying RESCORE was also reflected

in the increased number of high-quality novel variants, with a ten-fold lower false

positive rate, resulting in about 70 more novel variants on chromosome 20, which

is a 0.027% increase in total number of variant calls over soft-clipping methods. In

summary, RESCORE resolves the fragment error dependence and efficiently utilizes

data at the overlapping reads by retaining sequencing information from both reads,

which results in an accurate and high-quality call set.
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4.2 Methods

4.2.1 The RESCORE algorithm

We consider a paired-end sequencing experiment with reads aligned to a reference

and stored as a SAM/BAM file. Focusing only on properly paired reads, we identify

overlapping read pairs in the data file using the physical positions of the alignments.

In general, an overlap occurs when the sum of the read lengths in a pair is greater

than the absolute value of the insert size. Since the alignment procedure introduces

uncertainty and not all reads are matched exactly to the reference genome, we do

not apply treatment to the overlapping region if the region is poorly aligned to the

reference, as indicated by the non-match operations in the cigar string of the read.

Since most fragment and machine errors are substitution errors, we do not apply

treatment to reads with insertions or deletions in overlapping regions.

The overall idea of RESCORE is to assign a consensus base and new base quality

score at each overlapping position, then recalibrate these scores to reflect the under-

lying error rates based on empirical mismatch. RESCORE consists of three steps for

combining the base calls and base quality scores for each pair of overlapping bases.

The first step involves creating consensus base call and an intermediate score

per pair of overlapping bases. Consider a pair of overlapping bases b1 and b2, with

respective quality scores q1 and q2. Base quality scores are expressed in PHRED scale

[18] which represents in logarithmic scale the estimated error at the sequenced base.

We assign a combined base bc, and an intermediate score s based on concordance

of the base calls. If b1 = b2, bc = b1 = b2 and s = q1 + q2 + 100 (For example, the

first pair of overlapping bases C and C in Figure 4.1a). If b1 6= b2, bc is assigned to

the base with higher quality score, and s = |q1 − q2| + 200 (For example, the third

pair of overlapping bases G and T in Figure 4.1a). In the case where the overlapping
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Figure 4.1: Cartoon description of the RESCORE algorithm: a) Original pair of overlapping reads.
Red characters denote overlapping bases and respective base quality scores. b) The first step of
RESCORE generates a consensus base and an intermediate score per pair of overlapping bases. c)
The second step of RESCORE maps intermediate scores from previous step onto empty PHRED-
scaled quality score bins. d) The third step of RESCORE concatenates the overlapping region to
the read of higher average base quality, then applies base quality score recalibration such that the
recalibrated scores reflect base calling error.

bases are discordant but the quality scores are equal, we assign bc by flipping a

fair coin. Note that these intermediate scores are not representative of the actual

error probabilities at the bases, but are considered a summary of q1, q2. Adding

constants to the summary of q1, q2 ensures that the resulting scores are outside of

the range of quality scores generated by sequencers and generates disjoint intervals

for concordant and discordant bases. In this construction, we assumed that two pairs

of concordant bases with the same summed quality scores are the same, regardless of

the original two scores. Typical NGS reads generated from Illumina machines have
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base quality scores 0 to 40, hence s will ranges from 100 to 240. In practice, the

exact mathematical operation on a pair of scores is flexible, as long as it results in

disjoint ranges of intermediate scores for concordant and discordant bases.

The second step of RESCORE involves distributing the intermediate scores into a

range of bins recognizable by base quality recalibration tools (Figure 4.1b). We iden-

tify the maximum base quality score (bqmax) in the data set, then assign the interme-

diate scores into score bins > bqmax to avoid mixing the base qualities of overlapping

and normal reads. To ensure optimal performance of recalibration, each bin must

have a large number of observations and the number per bin is approximately equal.

On the other hand, we need to avoid having a wide range of intermediate scores being

grouped together, because this would obscure the evidence from the combined base

quality scores from the overlaps. Therefore, we distribute the intermediate scores s

into bins sequentially, such that:

1. Bases with the same s must be in the same bin;

2. The total number of consecutive s per bin is no more than 10;

3. If condition 2 is satisfied, each bin has a maximum of 100 million data points.

If condition 2 is not satisfied, the bin contains all counts from 10 consecutive

scores, and the following score starts a new bin.

Note that typically there are very few discordant bases; hence RESCORE assigns all

corresponding intermediate scores, ranging from 200 to 239, to the last bin.

After assigning score bins to all overlapping bases, we reconstruct pairs of reads

by concatenating the overlapping region with consensus bases and temporary quality

scores to the read with higher average base quality at the overlapping region (Figure

4.1c). The overlapping region on the read with lower quality is soft-clipped, in order
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to replicate the construction of reads in clipOverlap. All overlapping reads are then

printed into a new BAM file together with the other reads originally in the file. This

procedure allows subsequent recalibration to work on overlapping reads at the same

time as normal reads, and a flexible choice of base quality score recalibrator.

The third step recalibrates the base quality scores such that they represent em-

pirical mismatch probability (Figure 4.1c). Given each reported quality score, the

recalibration algorithm counts the number of empirical mismatches in the bases with

this score, adjusting for read group effect, sequencing context (dinucleotide), and

the position of the base within a read (cycle). Mismatch is defined as difference

compared to the reference genome, excluding known sites of variation. The number

of mismatches over the total number of bases in a category represents the actual

base calling error rate in that category [27, 76]. In the case of low count in a bin,

recalibration will add in a pseudo count to adjust for the empirical mismatch rate,

which may lead to slight overestimate of error rate in that bin but will not affect the

recalibration of other bins.

4.2.2 Evaluating RESCORE

We applied RESCORE to 40 samples from the BRIDGES Consortium, a whole-

genome sequencing data set with average coverage 8x. This study has 806 samples

with over 40% overlapping reads; our 40 samples came from one plate, with an aver-

age 49.7% overlapping reads per sample (Figure 4.2). The yield per sample ranged

from 92 to 203 million reads, with a mean of 155 million reads. The mean number of

overlapping reads per sample was 77 million. The mean length of the overlapping re-

gion in each 100bp reads was 44bp. Therefore, on average each sample had 3.4 billion

pairs of overlapping bases. We applied RESCORE on each chromosome separately

with the same bins for all chromosome. We then performed recalibration collectively
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Figure 4.2: Insert size distribution of 40 samples from the BRIDGES Consortium. This sequencing
experiment generated 100bp reads, hence all insert sizes < 200 (gray vertical dashed line) are
overlapping.

on the whole genome using dedup/recab [27] that simultaneously removes duplicate

reads and recalibrates scores.

We evaluated RESCORE by comparing it against the existing method of treating

overlapping read pairs (clipOverlap) which applies soft-clipping to the read with

lower average quality score in the overlapping segment [26]. To develop a baseline

for our comparisons, we also applied to our samples the strategy of soft-clipping one

of the overlapping reads at random. Following each of these three strategies, we

performed the same recalibration step and then compared the recalibrated quality

scores at the overlapping bases generated from these treatments. To assess the

potential improvement of RESCORE over the other strategies, we compared the

recalibrated scores from the resulting bases in overlapping pairs to the averages

and to the differences between two original base quality scores. We also noted the

difference in computation times among the strategies.

To determine the effect of resolving overlapping reads on variant calling, we next

applied individual-based single-marker calling to the 40 samples, using reads with
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overlapping regions (1) treated by RESCORE, (2) treated by clipOverlap, and (3)

treated by soft-clipping one overlap at random. For all variant positions covered by

overlapping reads, we compared the quantity and quality of novel variants identified

in each set. Novel variants were defined as the ones not found in the most recent

release of dbSNP 144. We curated the quality of the novel variants by applying a

genotype quality filter at Q20, which was the PHRED-scale ratio of the posterior

probabilities of the most likely and the second most likely genotypes. We then in-

vestigated how many of these passed variants were shared between datasets and how

many were specific to one dataset. The quality of the filtered sets of novel variants

was measured by transition-to-transversion ratio (Ts/Tv). We estimated false posi-

tive rates in these call sets using the observed and expected Ts/Tv. Assuming that

random sites had Ts/Tv = 0.5, the false positive rate (efp) can be estimated by the

equation

(4.1) efp =
expected Ts/Tv− observed Ts/Tv

expected Ts/Tv− 0.5

Finally, we assessed our RESCORE algorithm across various bin sizes applied

in the pre-recalibration score allocation process (Step 2). Specifically, we applied

RESCORE with maximum bin sizes between 1 million to 1 billion on one individual

sample. The binning rules 1 to 3 stayed the same for all bin sizes. We compared the

resulting the difference in recalibrated scores with respect to various bin sizes.

4.3 Results

4.3.1 Recalibrated scores comparison

Our proposed RESCORE algorithm utilizes combined base call and base quality

information from an overlapping pair of bases, then assigns a consensus base and

quality score that reflects the underlying mismatch rate. Figure 4.3 shows increased
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recalibrated base quality scores in RESCORE over the soft-clipping methods, for the

majority of the data. The maximum per-sample average recalibrated quality score

attained by RESCORE was 37, while that attained by clipOverlap and clipping one

read at random were both 34. Over 99% of the overlapping pairs of bases had average

quality above 25, where RESCORE resulted in an overall increase of 2.46 in the

recalibrated score compared to clipOverlap, and an overall increase of 2.65 compared

to clipping one read at random (Figure 4.3a). The majority of overlapping bases

had an average original quality over 35; here, clipOverlap performed no better than

clipping one read at random, while RESCORE had significantly higher recalibrated

scores of 2.60 (Figure 4.3a). In comparing the differences of scores, when original

scores differed by less than 6, which was true for over 79% of the data, RESCORE

had on average 2.63 higher recalibrated scores than clipOverlap and 2.69 higher than

clipping at random (Figure 4.3b). Only in the rare case of a score difference of 30

or higher (2.3% of the data), meaning that one of the overlapping bases had a much

higher original quality than the other, RESCORE was slightly more conservative than

clipOverlap in the resulting recalibrated scores. Here RESCORE had an average of

1.80 lower recalibrated score than clipOverlap. However, RESCORE still showed a

significantly higher recalibrated score of 10.26 than the null strategy of clipping at

random.

Since most pairs of overlapping bases had small differences in the quality scores,

we focused on the pairs of overlapping bases with the same original base quality

scores. In this category, clipOverlap and clipping at random showed an almost

identical trend of recalibrated scores, with respect to all original scores. RESCORE

showed substantial improvement in recalibrated quality scores over both soft-clipping

methods, particularly when the original scores were moderate (between 10 and 20),
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Figure 4.3: Recalibrated quality scores from overlapping read pairs processed by RESCORE (blue),
soft-clipping the lower quality read (clipOverlap, yellow) and soft-clipping one read at random
(pink), plotted against: (a) average original base quality scores of the overlapping bases, and (b)
difference between original base quality scores of the overlapping bases. Vertical bars on each
colored line denote the range of the recalibrated scores across 40 samples. The histogram in the
plots represent the number of overlapping pairs of bases in each original quality score bin. Vertical
dashed lines (gray) denote the partitions of the majority of data, with the respective cutoff and
proportions of data labeled next to the dashed lines.

where RESCORE had on average 6.90 higher recalibrated scores than the soft-

clipping methods (Figure 4.4). The maximum difference in recalibrated score be-

tween RESCORE and the soft-clipping methods was 10.57, when the original quality

was 16.

4.3.2 Effect of bin size in RESCORE

We studied the effect of using different maximum bin sizes in step 2 of the

RESCORE algorithm, where intermediate scores were grouped into PHRED-scale

score bins (that were otherwise empty) for recalibration. When bin size was between

1 million and 10 million, at average original score < 25, the recalibrated scores from

RESCORE were lower than those from clipOverlap (Figure 4.5). When bin size was
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Figure 4.4: Recalibrated quality scores from overlapping read pairs processed by RESCORE (blue),
soft-clipping the lower quality read (clipOverlap, yellow) and soft-clipping one read at random
(pink), plotted against original base quality scores of the overlapping bases, when the two original
scores were equal.

between 25 million and 100 million, the step-like recalibration scores in the origi-

nal score range of 10 − 25 indicated that most of those scores with relatively few

counts were recalibrated together due to the increase in bin size. At average original

quality > 25, which was the majority of the data, some original scores contained

as many as 200 million observations (Figure 4.3a). Therefore, when bin size ranged

from 1 million to 100 million, each original average score beyond 32 formed its own

bin; as a result, the recalibrated scores were the same for these bin sizes. When

bin sizes further increased to 200 million, 500 million and 1 billion, multiple original

average scores grouped into a bin even at the highest original scores. The resulting

recalibrated quality leveled off when original scores were greater than 35; these re-

calibrated scores from large bin sizes were lower than the ones from smaller bin sizes.
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Figure 4.5: Recalibrated quality scores from overlapping read pairs of one sample processed by
RESCORE plotted against original base quality scores of the overlapping bases. The different solid
color lines represent a range of RESCORE bin sizes used in step 2 of the algorithm. Black line
denotes the bin size of 100 million that resulted in the highest overall recalibrated scores. Gray
lines represent the scores of the same sample processed by clipOverlap (dashed) and clipping and
random (dotted).

Overall, the bin size of 100 million showed the highest resulting recalibrated scores.

4.3.3 Variant calling comparison

We evaluated chromosome 20 variant calls of all 40 samples generated by individual-

based single-marker caller. A total of 247,666 variants (union set) on chromosome 20

were identified by the individual-based single marker caller performed on the dataset

processed by RESCORE, clipOverlap and clipping at random. The majority of vari-

ants (219,591, i.e. 88.7%) was spanned by at least one overlapping read pair. Of

these variants, 205,821 (93.7%) were found in the most recent database of known

variants (dbSNP v144), and over 99% of these variants were concordant among the

three datasets. The remaining 13,770 (6.3%) variants were not found in dbSNP and
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Figure 4.6: Venn diagram showing the number and Ts/Tv of >Q20 novel variants from each dataset.

hence were considered novel. After applying the genotype quality filter of Q20, 7,097

(51.5%) novel variants remained.

Of these >Q20 variants, 6,685 were shared by the three datasets generated by

RESCORE, clipOverlap and clipping at random, with a transition-to-transversion

ratio (Ts/Tv) of 2.15 (Figure 4.6). The remaining variants were either shared by

two datasets or were specific to one dataset. RESCORE identified 146 variants not

found in the other datasets, with a Ts/Tv of 2.12. RESCORE and clipOverlap shared

100 variants, with a Ts/Tv of 1.94; RESCORE and clipping at random shared 38

variants, with a Ts/Tv of 1.92. In total, RESCORE generated 6,969 >Q20 novel

variants, the largest number among the three datasets.

In contrast, variants specific to clipOverlap and clipping at random had Ts/Tv

lower than 2. clipOverlap generated 6,852 total variants, 30 of which were specific
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to this set with a Ts/Tv of 1.50. Clipping at random generated 6,821 total variants,

61 of which were specific to this set with a Ts/Tv of 1.44. clipOverlap and clipping

at random shared 37 variants that were not in the RESCORE set, with a Ts/Tv of

1.47 (Figure 4.6). Note that all 128 variants that were specific to the soft-clipping

methods were identified by the RESCORE full call set, but were subsequently filtered

out due to low quality.

Assuming that the novel variants shared among all three datasets were true, their

Ts/Tv = 2.15 served as the expected value for calculating the false positive rates.

Among the novel variants specific to RESCORE, which had a Ts/Tv of 2.12, we es-

timated the false positive rate to be 2.6%, meaning that 4 out of the 146 RESCORE-

specific variants were likely false positives. Among the variants specific to clipOverlap

and/or clipping at random, the combined Ts/Tv was 1.46. The false positive rate

was 41.7%, meaning that 53 out of the 128 soft-clipping-specific variants were likely

false positives.

4.4 Discussion

Overlapping reads from short genomic fragments is an on-going issue in many

next-generation sequencing experiments. Many studies treat overlapping reads as

normal read pairs, which leads to overestimation of genotype accuracy. On the other

hand, soft-clipping one of the overlapping reads neglects base calling information

independently available from the two reads. Our RESCORE algorithm solves both

problems by keeping only one read from the overlapping regions while retaining the

combined information from both reads in the base quality scores.

Overall, RESCORE generated higher base quality scores than soft-clipping meth-

ods, particularly when the two overlapping bases had comparable moderate to high



83

base quality scores. This can be explained by the fact that soft-clipping methods

discarded one useful piece of sequencing information, while RESCORE combined the

two scores into a higher recalibrated score than the recalibrated score from one read

in the soft-clipping methods. In our dataset, the majority of overlapping base pairs

fell into this category. In fact, we envision that many current sequencing studies will

have overlapping base pairs where both overlapping bases have comparable quality,

because the improved sequencing technologies are able to generate longer reads with

stable base quality along the read. However, the fragment lengths are not propor-

tionately longer, making overlapping reads an increasing problem. Therefore, our

RESCORE algorithm will be effective in these new datasets.

In the rare scenario when the pair of overlapping bases consisted of one high

quality base and one low quality base, RESCORE was slightly conservative when

compared to clipOverlap [26]. This occurred because RESCORE incorporated infor-

mation from the low-quality base into the consensus base and base quality, leading

to somewhat lower recalibrated scores. Nonetheless, RESCORE showed substantial

improvement over the baseline strategy of soft-clipping one overlap at random at all

combinations of quality scores between the two overlapping bases.

We also studied how varying the bin size in the RESCORE mapping step affected

the resulting recalibration quality. Base quality score recalibration was a crucial

step in RESCORE. To allow recalibration to work effectively, RESCORE mapped

the intermediate scores containing combined information from the overlapping pairs

of bases to a set of bins at the PHRED-score range. The number of observations

present in each bin for recalibration must be large, because recalibration further

stratifies the observations by read cycle, sequencing context, and possibly other co-

variates. While more observations per bin gives more stable base error estimates, we
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observed that for the bases with high original quality scores, the recalibrated quality

was lower at large bin sizes than at small bin sizes. This can be explained by the

fact that we artificially grouped together observations that represented a wide range

of underlying mismatch rates, thereby lowering the recalibrated quality of the other-

wise highest quality bases by incorporating the lower quality bases in the mismatch

calculation. Our analyses were performed using the bin size of 100 million that re-

sulted in the highest recalibrated scores among all the bin sizes we tested. While

the empirical distributions of quality scores differ between datasets, with improved

sequencing technology, we expect recent sequencing datasets have most overlapping

bases falling in the higher quality score range, similar to the dataset we studied.

Further experiments could be performed to assess if there is an optimal bin size

and binning rules that maximize the improvement of RESCORE over soft-clipping

strategies.

The increment of base quality scores in overlapping reads processed by RESCORE

was reflected by the discovery of more high quality novel variants. While the majority

of novel variants were concordant between the RESCORE and soft-clipping datasets,

the variants that were only identified in the soft-clipping datasets had an estimated

false positive rate of over 41%, while the variants that were RESCORE-specific had

an estimated false positive rate of 2.6%. This suggested that RESCORE was able to

identify 0.027% more variants on chromosome 20 that were likely to be true positives.

This is equivalent to expanding the novel variant set on chromosome 20 by 1.00%.

RESCORE incurs a higher computational burden than soft-clipping methods, be-

cause RESCORE needs to store intermediate scores from overlapping reads, and

parse the overlapping reads once more to assign temporary quality scores for recali-

bration. The run time of RESCORE scales linearly with the number of overlapping
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reads in the dataset. In our dataset, RESCORE took on average 6 to 45 minutes

to analyze the shortest chromosome to the longest chromosome, while clipOverlap

took 4 to 24 minutes. Clipping at random used about the same amount of time

as clipOverlap, because the comparison of read qualities in the overlapping pair re-

quires negligible time. The additional computational burden could be alleviated if

RESCORE is integrated with the recalibration algorithm, where we minimize the

time spent on reading the input files by directly tabulating the intermediate scores

from RESCORE into the recalibration table, thereby achieving higher efficiency and

improving the usability of RESCORE.

We were not able to compare RESCORE directly to the fragment-aware calling

method [20], because the fragment-aware method must be used as part of the GATK

variant calling pipeline, which included base quality score recalibration and variant

calling. Therefore, if we compared our existing results against results from the GATK

pipeline, all algorithms leading to the results were different in the two sets, which

would make us unable to isolate the difference between RESCORE and the fragment-

aware step. In contrast to this limitation of fragment-aware calling, RESCORE can

be flexibly incorporated into any sequencing processing pipeline since it utilizes stan-

dard BAM format as input and output, and the choice of subsequent recalibration

software is also flexible. In fact, treating fragment as a unit for likelihoods is concep-

tually similar to RESCORE in adjusting for quality scores per fragment; thus, we

expect comparable results from fragment-aware calling and RESCORE.

The performance of RESCORE may be limited by the compression of base quality

scores in some recent NGS datasets. In order to reduce the burden of computer

storage and data transfer, methods have been proposed to compress base quality

scores [35, 46, 122, 134], because the full-range PHRED scale quality scores from 0
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to 40 require almost three times as much storage space as base calls. Compression

reduces the number of possible quality scores in the dataset, where each compressed

score only represents a crude probability of machine error at the base. It requires

further investigation how RESCORE and recalibration could be applied to these

compressed scores without recreating the full-range scores and hence imposing the

storage burden again.

While the proposed compression methods seem to have preserved the sensitivity

and specificity of genotype calling [35, 134], in the published assessments of these

data compression methods, none investigated the impact of score compression on

downstream analyses that utilize genotype quality that are based on quality scores.

We expect that score compression will lead to imprecise estimates of genotype qual-

ity because the compressed scores only represent a coarse probability of base error.

Since scores are in logarithmic scale, a 5-point score difference corresponds to more

than 3-fold difference in the underlying error probability. Therefore, regardless of

the details of the compression algorithm, having a coarse range of base qualities

means encapsulating a wide range of underlying base error rates into one single rate,

which intuitively would undermine the precision of the resulting genotype qualities.

Therefore, before further evaluation of the impact of data compression on down-

stream analyses, we still recommend keeping the full-range quality scores and apply

RESCORE and recalibration to datasets.

In summary, RESCORE resolves the dependence in overlapping read pairs by

combining base calling information from two reads into a consensus base and a sum-

marized quality score, which reflects empirical mismatch after recalibration. Com-

pared to soft-clipping methods for treating overlapping reads, RESCORE generates

higher recalibrated quality scores, and as a result higher quality novel variants. We
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recommend applying RESCORE as a standard read processing step, particularly

low-coverage sequencing experiments with large number of overlapping reads.



CHAPTER V

Whole-genome sequencing of uropathogenic Escherichia coli
reveals long evolutionary history of diversity and virulence

5.1 Introduction

Extraintestinal Escherichia coli (E. coli) are capable of causing various infections,

including urinary tract infection (UTI) and meningitis [22]. Approximately 90% of

all UTI cases are caused by E. coli capable of colonizing the urinary tract, collectively

known as uropathogenic E. coli (UPEC) [138]. From an evolutionary perspective,

UPEC together with other extraintestinal pathogenic E. coli (ExPEC) belong to the

E. coli phylogroups B2 and D, characterizing their specific adaptations to colonize

and cause infections outside of the gut [10]. Since the urinary tract presents a

significantly different environment than the gut, UPEC carry virulence factors very

different from diarrheagenic E. coli [42]. For example, UPEC possess adhesins to

attach to epithelial cells of the urinary tract to overcome the frequent flow of fluids

[89] and specific toxins for invading and replicating in the urinary tract [79]. These

known uropathogenic virulence factors presumably have multiple functions, as there

is no direct correlation between these factors and UTI symptoms [74]. UPEC display

a high diversity of genotypes and phenotypes [47, 137], suggesting that UPEC have

multiple origins [23, 128].

This chapter is published as Lo, Y. et al. 2015. Infection, Genetics and Evolution, 34, 244-250.
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However, previous insights into the origins and spread of uropathogenecity were

limited by their focuses on small regions of the bacterial genome that are well-

conserved, such as genes used in multilocus sequence typing (MLST)[29, 74]. These

regions provide limited insight in the evolution of pathogenicity as they do not con-

tain any of the virulence factors. Marrs et al. [74] classified UPEC by grouping

them into pathotypes based on virulence factors, analogous to the pathotypes for

diarrheagenic E. coli [81]. However, they did not find direct correlation between

pathotype and clinical presentation. Other attempts of grouping UPEC by virulence

factors also failed to identify a correlation between virulence factors and UTI symp-

toms [111, 135]. These classification attempts suggest that UPEC virulence and

genetic diversity cannot be captured by studying only a restricted set of genomic

regions.

To allow a more complete understanding of the virulence and genetic diversity

of bacterial strains, we examined full bacterial genomes in high resolution. To un-

derstand the evolution of uropathogenicity, we sequenced at over 190x coverage the

genome of 19 E. coli strains isolated from UTI patients, 14 pathogenic strains from

urine samples and 5 non-UTI-causing (commensal at the time of infection) rectal

strains. We applied a de novo assembly-based algorithm to identify variants among

the 19 strains, and constructed a whole-genome phylogeny based on these variants

via a neighbor-joining algorithm.

In the whole-genome phylogeny, two commensal E. coli without typical combina-

tions of pathogenicity genes formed the outgroup. This suggested that pathogenicity

genes were present in infectious UPEC strains for a long time, with an estimated split

from non-pathogenic E. coli over 32 million generations in the past. Even though

our strains were collected in a small geographic area within a short period of time,
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we found high pairwise genomic diversity between any two strains of E. coli in our

sample, which was incompatible with recent epidemics of a subset of strains.

To contrast the evolutionary signature of the strains with the evolution of indi-

vidual uropathogenic virulence factors, we constructed gene trees of the three most

common virulence factors in our sample. Comparing the whole-genome phylogeny

to gene trees of uropathogenic factors, we observed that the virulence gene trees dis-

played a topology distinct from the whole-genome tree, suggesting that the whole-

genome phylogeny could not capture the specific evolutionary history of virulence

factors. We identified no excess horizontal gene transfer at these virulence factors, as

indicated by the observation that the topology of the virulence gene trees were not

more different from the whole-genome tree than the topology of random region gene

trees were from the whole-genome tree. Hence the uropathogenicity in our strains

was not the result of a recent adaptation. Instead, uropathogencity appeared to be

a maintained ability in a subset of E. coli. These UPEC carried uropathogenicity

genes for a long time, and they used such virulence opportunistically.

5.2 Methods

5.2.1 Study design

We selected 19 E. coli isolates from 14 subjects with UTI, including 14 UPEC

isolates from urine samples and 5 non-UTI-causing (commensal at the time of infec-

tion) rectal E. coli. The 5 commensal strains were isolated from the same individuals

and at the same time point as 5 of the UPEC isolates The samples were selected

from a large collection of previously isolated strains from female patients attending

the same clinic for UTI between 1996 and 2007. Sampling from the collection was

based on pathotypes as defined by Marrs et al. [74] based on common groupings of

known uropathogenic factors (Table 5.1), in order to ensure a diversity of virulence
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Pathotype Virulence factors
Pathotype 1 cnf1, hly, prsGJ96

Pathotype 2 cnf1, hly, sfa
Pathotype 3 aer, hly, papGADIA2

Pathotype 4 aer, kpsMT, ompT, drb
Pathotype 5 kpsMT, ompT
Pathotype 0 all remaining strains

Table 5.1: Summary table of pathotype classification scheme, adapted from Marrs et al. [74].
Pathotypes are assigned hierarchically to over 800 UPEC strains by examining pairwise association
of 10 known virulence factors.

factors in our sample. The 19 strains belonged to pathotypes 1 to 4 and pathotype

0, which is comprised of strains with no major groupings of uropathogenic factors.

We employed a paired design, where each of the 5 commensal E. coli was isolated

from an individual that also hosted one of the selected UPEC strains. We chose

these pairs so that the commensal strain belonged to a different pathotype than the

UPEC strain within each pair (Table 5.2).

We regrew the 19 E. coli isolates from −80◦C stocks. We sequenced their genome

using a single flow cell on Illumina HiSeq that produced 120 bp paired-end reads.

The sequencing yield per sample ranged from 756 Mb to 1,328 Mb, totaling 19,535

Mb across all samples.

5.2.2 Variant calling

We employed a two-step, de novo assembly-based method (Cortex) to simulta-

neously reconstruct contigs and identify variants across multiple samples [37, 38].

This method is known to be conservative with high specificity [132]. Using a graph-

building algorithm, Cortex constructs a colored de Bruijn graph from the sequence

reads, where each color represents a sample. The resulting graph is error-cleaned

by dynamically selecting a cleaning threshold from the coverage distribution. Diver-

gence between samples exists as bubbles on the cleaned graph representation.

We employed the bubble calling algorithm in Cortex to detect variations between
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Patient ID Source MLST Type Pathotype Code
1 Urine ST 127 1 01U1
1 Fecal ST 12 2 01F2
2 Urine ST 12 1 02U1
2 Fecal ST 131 4 02F4
3 Urine ST 73 2 03U2
3 Fecal ST 73 1 03F1
4 Urine ST 144 3 04U3
4 Fecal ST 2731 0 04F0
5 Urine ST 404 4 05U4
5 Fecal ST 10 0 05F0
6 Urine ST 73 1 06U1
7 Urine ST 127 1 07U1
8 Urine ST 544 1 08U1
9 Urine ST 127 1 09U1
10 Urine ST 95 1 10U1
11 Urine ST 73 2 11U2
12 Urine ST 12 3 12U3
13 Urine ST 131 4 13U4
14 Urine ST 131 4 14U4

Table 5.2: Samples description of the pilot study. 19 E. coli isolates were selected from 14 female
patients attending the same clinic for UTI. 14 isolates were UPEC from urine sample and 5 were
commensal E. coli from rectal swab sample, paired with one of the 14 UPEC from the same
individual. We listed the MLST type and pathotype [74] of each strain. We labeled each strain by
a four-digit code: first two digits represent individual host ID (01-14), the third digit represents
UPEC from urine (U) sample or commensal E. coli from fecal (F) sample. The last digit represents
the pathotype of the strain.



93

samples. We used a low k-mer (k = 31) and a high k-mer (k = 61) to build assembly

graphs because low k-mers allow discovery of variants at relatively lower coverage,

and large structural variations and genome complexity are more accessible at high k-

mers [37]. We combined variants called using the two k-mers into a joint call set. To

get relative positions and to filter duplicate calls and overlapping sites, we aligned the

assembled contigs, including each varying site and its flanking regions, with respect

to each other. For the purpose of this study, we disregarded the complex variations

including long segments of insertions, deletions or repeats and used only the single

nucleotide polymorphisms (SNPs) for the following phylogenetic analyses.

We annotated all SNPs based on the genbank annotation of a uropathogenic E.

coli reference strain (UTI89), using the coordinate-only method in Cortex [38]. We

identified the phylogroup of each strain based on the presence and absence of three

loci described in [14]. In addition, we used this annotation to tabulate the presence

and absence of 23 virulence factors [108, 109, 135] in each strain.

5.2.3 Phylogenetic analyses

Using the SNPs identified from Cortex, we computed the pairwise sequence differ-

ence between samples and clustered them using a neighbor-joining algorithm [101].

We used Escherichia fergusonii (E. fergusonii) to root the phylogeny, since it is the

closest species to E. coli [118]. To do so, we oriented the variants to E. fergusonii

using the coordinate-only method in Cortex [38]. In this way, variant discovery was

independent of the choice of rooting or reference genome. To measure the confidence

of the whole-genome phylogeny, we employed a bootstrap algorithm to resample the

sequences of variants from the samples 10,000 times and obtain bootstrap values of

the branches. We applied Phylip [19] as neighbor-joining and bootstrapping algo-

rithms. We studied clustering patterns on the phylogeny based on pathotype, host
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individual, and sequence type (ST) defined by the University College Cork E. coli

scheme [129]. To test the significance of specific clustering patterns, we calculated

the probability of a cluster given the tree topology, under the null hypothesis that

the labeling of the tree is completely random; a small probability indicates that the

cluster is unlikely to occur by chance.

To understand strain divergence times, we scaled the tree branches using a cali-

brated substitution rate of E. coli from Wielgoss et al. [127]. The rate was inferred

directly from tracking the accumulation of synonymous substitutions via whole-

genome sequencing of 19 E. coli strains in a 40,000-generation evolution experiment.

We compared this calibration with alternative substitution rates presented in the

earlier literature that were based on comparing sequences with known divergence

times [50, 88]. We categorized variants into synonymous and non-synonymous sub-

stitutions, and counted the number of synonymous and non-synonymous sites on the

coding region, to estimate non-synonymous/synonymous rate ratio using a maximum

likelihood method [131].

To contrast the evolution of the organism with the evolution of UTI virulence,

we selected three UTI virulence factors: hly, aer, kpsMT [74]. Each was carried

by over half of our sampled strains. We derived gene trees from the annotated

variants called at each virulence factor and evaluated clustering by pathotype on

these gene trees. The hly virulence factor consists of 4 genes: hlyA, hlyB, hlyC and

hlyD, and the combined length is 7,281 bp. aer and kpsMT are 1,521 bp and 777

bp long, respectively. When constructing the respective gene tree, we considered

only samples carrying the complete virulence factor. While kpsMT is the definitive

virulence factor for pathotype 4, we discarded one pathotype 4 strain (14U4) in this

construction due to low sequencing coverage at the region. The first 200 bp of the



95

777-bp region were sequenced at less than 10-fold for this particular strain.

To compare a virulence factors gene tree with the whole-genome tree, we re-

constructed the whole-genome phylogeny based only on the samples carrying the

virulence factor. We scaled branch lengths by the total number of variants on a

tree. We then measured the similarity of the gene tree and the whole-genome tree

using a topological score, generated by a branch-matching algorithm that searches

for the optimal one-to-one transformation between two trees [87]. We contrasted the

similarity score of each gene tree with an empirical distribution of similarity scores

of trees containing the same number of leaves and same number of variants as the

virulence gene tree. We generated this empirical distribution by randomly drawing

sets of the same number of consecutive variants as each gene tree and generating

trees based on these sets of variants. We then calculated the topological similarity

score of each random tree to the whole-genome tree, which gave us an empirical dis-

tribution of similarity scores. A score at the extremes of the empirical distribution

indicates that the gene tree is significantly more different from or more similar to

the whole-genome tree than random regions of the genome.

5.3 Results

5.3.1 Whole-genome phylogeny

Using de novo assembly-based variant calling methods, we identified 68,396 SNPs

with a transition-to-transversion ratio of 2.73. All our 19 strains belonged to the

phylogroup B2. We oriented 24,568 of the variant set to the E. fergusonii outgroup

sequence coordinates and constructed a rooted phylogeny (Figure 5.1). Most splits

on this whole-genome phylogeny had bootstrap values of 100%, while two splits had

95-100% bootstrap values, and three had 65-95% bootstrap values.

Applying the E. fergusonii gene annotation to our variant set, we identified 11,216
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synonymous mutations (45.7% of the variants), and counted 963,414 synonymous

sites on the oriented genome. The maximum likelihood estimate of the ratio of

the number of non-synonymous substitutions per non-synonymous site (Ka) to the

number of synonymous substitutions per synonymous site (Ks) was 0.54, indicating

purifying selection consistent with previous findings [39]. Using an estimated sub-

stitution rate of 8.9 × 10−11 per base pair per generation, based on the laboratory

evolution of E. coli [127], the evolutionary time elapsed on the entire phylogeny was

over 130 million generations. Based on this calibration, we expected 1 synonymous

mutation per 11,600 generations. Alternative substitution rate estimates based on

sequences with known divergence times were 5.2×10−11 per base pair per generation

in Lecointre et al. [50], and 3× 10−11 per base pair per generation in Ochman et al.

[88], which led to 1.5- to 3-fold shorter evolutionary time.

Two non-UTI-causing (commensal) strains, both belonging to pathotype 0, formed

the outgroup on the rooted phylogeny (Figure 5.1) (p = 0.0058). The split between

this outgroup and the remaining phylogeny represents the time of divergence of

UPEC strains from commensal strains occurred; we estimated a split time of 32

million generations ago.

We observed that the clustering of strains on our whole-genome phylogeny did not

correspond to pathotype classification. Strains of pathotypes 1, 2 and 3 showed no

distinct subclades and together formed a single large cluster, regardless of whether the

strain was a commensal or uropathogenic E. coli (Figure 5.1). Similarly, applying the

grouping methods of UPEC based on presence of several virulence genes described

in Tarchouna et al. [111] (Grouping 1) and Yun et al. [135] (Grouping 2), we

observed that none of the groups fell completely and distinctively into subclades

(Figure 5.1, Figure 5.3). In pathotype and Grouping 2 classifications, each had one
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500

Figure 5.1: Phylogeny constructed from whole-genome assembly-based variants. The phylogeny is
rooted by E. fergusonii (long branch not shown). Nodes are labeled by the sample codes as listed
in Table 5.2. All strains are of phylogroup B2. Branches with circles represent 60-95% bootstrap
values, and branches with triangles represent 95-100% bootstrap values. All unmarked branches
have 100% bootstrap value. Scale shows length on branches representing 500 pairwise sequence
differences.

type with four strains where three strains formed a significant subclade (p = 0.0041),

but the remaining strain of the same type was far away from the subclade on the

phylogeny. In the pathotype classification, three pathotype 4 strains of ST 131

clustered, but the remaining pathotype 4 strain (05U4) in our sample had a pairwise

sequence difference of over 4,700 with the other pathotype 4 strains. The split of

05U4 with the other pathotype 4 subclade happened over 10 million generations ago.

Among the three strains that clustered, the shortest external branch leading to 02F4

still represented over 320,000 generations, indicating long divergence times between

pathotype 4 strains (Figure 5.1). Similarly, based on Grouping 2 classification, three

type 6 strains of ST 127 clustered, with a mean pairwise sequence difference of over

500. However, the remaining group 6 strain (02U1) had a pairwise sequence difference
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of over 3,800 with the other group 6 strains (Figure 5.3). The split of 02U1 with

the other type 6 subclade happened over 7 million generations ago. Moreover, when

tabulating the virulence genes present in each strain, we found that strains from the

same ST did not necessarily carry the same set of virulence genes (Table 5.5).

To investigate if multilocus sequence typing (MLST) based on seven housekeeping

E. coli loci was consistent with our whole-genome phylogeny, we identified the ST

of each strain in our sample (Table 5.3). While most strains in our sample were

singletons in the ST classification, four STs had three or more strains in our sample,

namely, ST 12, ST 73, ST 127 and ST 131 (Table 5.3). We observed that organisms

with the same ST mostly formed consistent subclades on the phylogeny (Figure

5.1), with the exception of the ST 12 cluster, which also contained one ST 544

strain. However, all splits defining this cluster had less than 100% bootstrap value.

Nonetheless, strains within each ST still had remarkable diversity (Table 5.3): For ST

73, ST 127 and ST 131, each pair of strains within its respective ST had on average

over 500 differences, reflecting a divergence of > 360, 000 generations. ST 127 strains

displayed the highest overall similarity with an average of 501.3 pairwise differences.

The second most similar type was ST 73 with an average of 554.5 pairwise differences.

ST 131 strains had an average of 597.3 pairwise differences. ST 12 strains were more

diverse, with an average of 907 pairwise differences.

Finally, when evaluating the matched pairs of one commensal and one UPEC

strain sampled from the same individual, we observed that only one pair clustered

with a pairwise difference of 237 variants. The other four pairs were located very far

apart on the tree (Figure 5.1); they did not cluster in the same subclade, indicating

no significant excess of clustering (p = 0.19).
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5.3.2 Phylogeny of virulence factors

We constructed 3 gene trees from known uropathogenic virulence factors [74] that

are present in multiple strains in our sample: aer, hly and kpsMT (Figure 5.2). Each

gene tree consisted of a different number of tree leaves, because not all virulence

factors were found in all strains: All 19 strains carried aer, 13 strains carried the

complete segment of hly, while 16 strains carried kpsMT (Table 5.4). After scaling

branch lengths by the number of mutations on a tree, we compared each gene tree to

a subtree of the whole-genome phylogeny consisting of the corresponding subset of

strains. For this comparison, we applied a topological score [87] which summarizes

the percentage of topological similarity between branches of two trees.

The aer gene tree, containing all 19 strains, possessed similar structural features as

the whole-genome tree (Figure 5.2a) with a topological score of 0.635 (Table 5.4). The

difference between the two trees was best illustrated by the two strains 04U3, 05U4

that segregated differently in this gene tree than on the whole-genome phylogeny.

Some strains carried identical copies of the virulence gene. For example, pathotype 1

UPEC strains (01U1, 07U1, 09U1) displayed no pairwise sequence difference at this

gene. The two fecal strains with virulence factors (03F1, 01F2) were also identical

at this gene, so were three other UPEC (02U1, 03U2, 06U1). When we assessed

similarity by comparing the topology score against to the empirical distribution of

scores, we saw no signal that the similarity between the aer gene tree and whole-

genome tree was higher or lower than other trees containing the same number of

variants (p = 0.318, Table 5.4).

The hly gene tree showed more differences from the whole-genome tree with a

topological score of 0.565 (Table 5.4). Only the 13 strains of pathotypes 1,2 and

3 carried the complete segment of hly (Figure 5.2b). On the hly gene tree (Figure
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Virulence gene Gene length Number of carriers Topological Similarity Score p-value
aer 1,521 bp 19 0.635 0.318
hly 7,281 bp 13 0.565 0.185

kpsMT 777 bp 16 0.516 0.209

Table 5.4: Virulence gene trees: gene length, number of carriers (out of 19 samples) , topological
similarity scores compared to whole-genome tree and p-values of these scores generated from the
empirical distribution of scores from random trees.

5.2b), we observed that four pathotype 1 UPEC strains (01U1, 02U1, 07U1, 10U1)

carried the identical copy of hly as the UTI89 reference strain. Two other pathotype

1 strains (08U1, 09U1) had a hly copy with only one base different from the UTI89

hly. The hly regions of the remaining two pathotype 1 strains were significantly

different from the other pathotype 1 hly regions. 03F1 and 06U1 each displayed over

100 pairwise sequence differences at hly when compared to the UTI89 hly. These

two hly were more similar to the pathotype 2 hly, as a result formed a cluster on

the hly tree. The hly region of the pathotype 2 fecal strain were very similar to

those of pathotype 3 strains, with 1 and 3 pairwise differences respectively. While

the similarity score of the hly gene tree to whole-genome tree (0.565) was lower than

that of the aer gene tree (0.635), there was no strong signal that the hly tree was less

similar to the whole-genome tree than random genomic regions (p = 0.185, Table

5.4).

The kpsMT gene tree consisted of 16 strains and was the least similar to the whole-

genome phylogeny among the three virulence factors studied, with a topological

score of 0.516 (Figure 5.2c, Table 5.4). This factor was completely absent in a

commensal pathotype 0 strain (04F0) and one pathotype 1 UPEC strain (08U1).

The resulting gene tree showed that four UPEC and two commensal strains were

identical at this gene The remaining strains displayed considerable diversity at this

gene, as indicated by the longer branches. The longest branch leading to the 10U1

and 04U3 subclade contained 28 mutations. Notably, strains that clustered closely
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5

(a) aer

5

(b) hly

5

(c) kpsMT

Figure 5.2: Unrooted trees derived from three selected virulence factors: (a) aer, (b) hly, and (c)
kpsMT for uropathogenic and commensal E. coli. Each gene tree consists of a different number
of tree leaves, as not all virulence factors occurred on all strains. Scale shows length on branches
representing 5 pairwise sequence differences.
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together in the previous two gene trees appeared to be further apart on this gene tree.

However, the kpsMT gene tree was not significantly less similar to the whole-genome

tree than random genomic regions (p = 0.209, Table 5.4).

5.4 Discussion

We studied the evolution of pathogenicity in uropathogenic E. coli (UPEC) with

the goal of understanding the origin and spread of UPEC in the context of urinary

tract infections. We sampled strains from a large collection of E. coli isolates with

well-characterized virulence factors [74], in order to expand the diversity of virulence

factors in our sample. This approach is different from most existing studies where

sampling is based on clinical visits [111, 135]. This study design allowed us to

study a broader spectrum of virulence factors in order to understand the evolution

of uropathogenicity.

Using whole-genome deep-sequencing, we explored whole bacterial genomes at

high resolution, allowing more detailed analyses than pathotype or MLST schemes

that study only small regions of the genome. We employed a multi-sample de novo

assembly algorithm Cortex that simultaneously assembles genomes and calls variants

[37]. This method calls variants independently of a reference genome. Hence, the

variant calls are unaffected by the choice of reference sequence, making this approach

well-suited to a sample with high diversity such as ours. The variant calls generated

from Cortex are known to be conservative with high specificity [132]. These high

quality whole-genome variants allowed a more accurate investigation of the evolu-

tionary pathways of uropathogenicity and the degree of diversity among strains.

Our phylogenetic analyses contrasting UPEC with non-pathogenic E. coli showed

that their divergence happened over 32 million generations ago, which is equivalent to
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107,000 to 320,000 years, assuming the E. coli had 100-300 generation per year [88].

Alternative estimates of substitution rates gave qualitatively consistent results, with

an estimated 10.6-18.7 million generations on the whole-genome phylogeny. Between

pathogenic strains, the whole-genome pairwise diversity was high, corresponding to

a long divergence history of over 130 million generations, or 0.4-1.3 million years.

Both of these estimates from the whole-genome phylogeny showed that within the

small geographic region of our sample collection, UTI were caused by strains of

multiple origins. In addition, commensal and UPEC strains from the same individual

were as different from each other as from other strains in the sample, suggesting

that the infection was unlikely caused by gut E. coli strains that recently acquired

uropathogenicity factor within the human host.

Our phylogenetic analysis of the entire E. coli genome allowed us to evaluate

more basic methods of E. coli classification such as the MLST scheme and patho-

type groupings based on virulence factors. The pathotype classification we used for

sampling did not capture the overall relationship of strains. In particular, pathotypes

1, 2 and 3 did not form distinctive clusters on the whole-genome phylogeny. When

we applied to our sample alternative groupings of UPEC strains based on other dis-

tinct sets of virulence factors [111, 135], we also observed that most groups did not

cluster well on the whole-genome phylogeny. For the pathotype and group that had

three out of four strains forming a significant subclade, we observed high diversity

among the three strains that clustered, and a deep split between the subclade and

the remaining strain of the same type. Therefore, classification based on presence

and absence of virulence factors did not appear to be meaningful for understanding

the evolutionary history of UPEC strains.

On the other hand, classification based on the traditional MLST scheme did gen-
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erally capture the evolutionary relationship of strains. However, our whole-genome

phylogeny identified high diversity among strains that were classified into the same

sequence type, something that was previously not well-studied. The divergence time

of particular clusters, for example the pathotype 4 ST 131 cluster, was longer than

suggested by previous studies [13, 85]. Long branch lengths of the ST 131 cluster

reflected ancient origins and high diversity within the ST. Consistent with our find-

ings, a recent study using a phenotypic microarray showed that ST 131 was not a

distinct lineage of ExPEC [4]. We observed a similar level of diversity in other se-

quence types, with substantial variation among strains of the same ST of over 100

pairwise differences. Long divergence times among strains of the same ST suggests

that they are not clonal, as they evolve to accumulate large number of genomic

differences over time. Moreover, by tabulating the presence and absence of 23 po-

tential uropathogenic virulence factors in our strains, we observed that strains of

the same ST carried different sets of virulence factors. Therefore, classifying UPEC

by sequence type is not sufficient for drawing inferences on the presence of UPEC

virulence factors.

We further explored the evolutionary pathways of individual uropathogenic viru-

lence factors by constructing gene trees of three virulence factors that were the most

common in our sample. We aimed to identify evidence for horizontal gene transfer

as horizontal gene transfer is the major mechanism for non-pathogenic E. coli to

acquire uropathogenicity. If uropathogenic E. coli strains acquired pathogenicity

via elevated rates of horizontal gene transfer, or preferential selection of horizontally

transferred virulence genes, the corresponding gene tree would display a significantly

different topology from the whole genome tree. Therefore, we contrasted the topology

of the gene trees and the whole-genome phylogeny to see if virulence genes displayed
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distinct evolutionary pathways. We found that each virulence gene tree had an evolu-

tionary pathway distinct from the whole-genome phylogeny, indicated by the 50-65%

topological similarity scores. Based on the empirical distribution of similarity scores

of random gene regions, the virulence gene trees did not have extreme similarity

scores, meaning these uropathogenic genes were not significantly more similar to the

whole-genome phylogeny than other genomic regions. This suggests no signal of ex-

cess horizontal gene transfer and no selective advantage at the uropathogenic genes

than elsewhere in the genome.

In summary, by quantifying the diversity of UPEC strains using whole-genome

deep-sequencing and contrasting with commensal E. coli, we showed that UPEC had

a long evolutionary history since their divergence from non-UTI-causing commensal

E. coli. Our study illuminated the development of UTI and showed that UPEC are

opportunistic, conserving uropathogenic virulence factors without signals of prefer-

ential selection or increased rates of horizontal gene transfer. Our results indicated

that the phylogenetic relationship of UPEC provided only limited information about

the presence of virulence factors and thus suggested that closely related UPEC may

have dissimilar uropathogenic phenotypes. Further extensive sequencing of UPEC

and commensal E. coli will allow deeper understanding of the genetic signals and

mechanisms driving the epidemiology of uropathogenicity.
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Figure 5.3: Classifications based on presence and absence of several virulence factors, described
in Marrs et al. [74], Tarchouna et al. [111] and Yun et al. [135], and multilocus sequence typing
(MLST) based on presence and absence of seven housekeeping genes. For Groupings 1 and 2, type
”0” refers to the combinations of virulence factors in our sampled strains that were not found
in the original studies. MLST types correspond well to the whole-genome phylogeny, while none
of the groupings based on uropathogenic virulence factors were consistent with the whole-genome
clustering. Three pathotype 4 strains formed a significant subclade, but the remaining pathotype
4 strain had a split with this subclade over 10 million generations ago. Similarly, using Grouping
2, three type 6 strains formed a significant subclade, while the remaining group 6 strain showed a
deep split with this subclade over 7 million generations ago.
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CHAPTER VI

Discussion

In this dissertation, we have demonstrated extensive methodological develop-

ments, statistical analyses and applications of next-generation sequencing (NGS),

which is the state-of-the-art technology for genetic studies. We have shown that we

can generate high quality rare variants by applying individual-based variant calling

to heterogeneous coverage targeted data, and by resolving the dependence in overlap-

ping read pairs. We have also provided a statistical model for separately estimating

machine and fragment errors in a sequencing experiment. We have applied NGS

techniques to sequence uropathogenic bacteria and to make inferences on the evolu-

tion of virulence. In this chapter, we discuss the significance of this dissertation and

address future challenges of the continuous development of sequencing technologies.

In Chapter 2, we evaluated existing likelihood-based variant calling algorithms on

targeted sequencing data and recommended the combined use of individual-based

and population-based single marker callers. These two callers together generated

the most complete call set with the highest quality, because the individual-based

caller identified a larger number of high-quality rare variants, particularly singletons,

while the population-based caller produced higher quality common variants than

the individual-based caller. In practice, however, applying two callers on the same

109



110

dataset is computationally inefficient. Moreover, for large-scale sequencing datasets,

storing and merging multiple call sets impose heavy burden in computer hardware

requirements. Therefore, to optimize our recommended variant calling strategy for

broader and more practical uses, we suggest a flexible calling approach, where we use

the individual-based caller to obtain a union set of variable sites across all individuals

in the sample. Then the population-based caller follows to generate genotypes per

variant site in the union set. In this way, we are still able to identify the same number

of singleton variants, while generating high-quality genotypes across all variant sites.

Each genotype is only called once, thereby achieving computation efficiency and

removing the need of merging across call sets.

After the development of our recommended variant calling strategy, the flexi-

ble approach was recently implemented as glfFlex (https://github.com/statgen/

glfFlex). The BRIDGES Consortium applied glfFlex to analyze >2,500 bipolar

cases and controls in their whole-genome sequencing study. Preliminary results

showed that the flexible approach led to the discovery of about 20% more SNPs

than using population-based calling. Most of these additional SNPs were singletons.

While more detailed quality control and analyses are needed to evaluate the actual

gain of high-quality SNPs, these results showed that our method of combined calling

algorithms is effective not only in targeted-sequencing datasets, but also in whole-

genome sequencing datasets, particularly those with homogeneously low coverage; in

the case of the BRIDGES study the average coverage was 8x. As the individual-based

caller showed the most improvement in identifying singletons over the population-

based caller at low coverage, it is not surprising that our method can be directly

extended to analyze large-scale whole-genome sequencing data.

Statistical methods involved in NGS analysis pipelines often need extra attention
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to avoid false discoveries due to sequencing artefacts. Chapters 3 and 4 addressed the

issue of overlapping read pairs. Overlapping reads are a common sequencing artefact,

which has often been overlooked, but which leads to overestimation of genotype

accuracy. At the same time, simply discarding overlapping reads can lead to data

loss for downstream analyses. In these two chapters we presented novel methods

of utilizing overlapping reads. In Chapter 3, we took advantage of the fragment

dependence property in overlapping read pairs to separately estimate fragment and

machine errors. We provided a Markov Chain Monte Carlo algorithm to estimate

machine errors from discordant overlapping bases and modeled fragment errors based

on concordant overlapping bases that are different from the reference. In Chapter

4, we designed the RESCORE algorithm to resolve the fragment dependence in

overlapping read pairs, while retaining the machine error estimates independently

provided by the two overlapping reads. Using the RESCORE algorithm increased

the number of high-quality novel variant calls. Thus, we illustrated the utility of

overlapping reads data that would otherwise have been discarded and furthered the

understanding of error sources in a sequencing experiment. More importantly, our

methods processed overlapping reads efficiently and showed promising improvement

in novel variant calls.

We anticipate these methods can be applied to analyze more reads affected by

other sequencing artefacts. One straightforward extension is to incorporate opti-

cal duplicate reads, i.e. overlapping read pairs that completely overlap each other.

Duplicate reads are very common in sequencing studies [82, 114, 116]; even with

the newest PCR-free sequencing approach that removes amplicon duplicate reads

and has a 2-fold reduction in duplicate reads [33], we still observe a mean of 9.7%

duplicate reads in recent large-scale sequencing datasets of over 5,700 individuals
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(TopMed study, personal communication with Hyun Min Kang). These duplicates

are routinely discarded before variant calling because they replicate the same frag-

ment error , creating the same dependence problem as overlapping reads. Since

methods for detecting and flagging or removing duplicate reads have been widely

used in sequencing pipelines [40, 76], RESCORE can easily be modified to assign a

new quality score to each duplicated base that reflects combined sequencing infor-

mation from the flagged duplicates. We expect that by recovering the data lost by

discarding duplicate reads, variant calls can achieve even higher accuracy. Moreover,

by including duplicate reads in the error estimation models, we can generate more

precise estimates for the machine and fragment errors.

As sequencing technologies improve, reads generated are longer. From our es-

timation of the marginal distribution of machine errors contributed by read cycle,

which is consistent with previous knowledge, the quality of sequenced bases decreases

along the length of a read. Therefore, given the success of RESCORE in resolving

the overlapping bases, it poses an interesting question of whether we should inten-

tionally create overlapping reads with the goal of improving the quality at the ends

of the read pairs. While further assessment is required to quantify the impact of

RESCORE on high-coverage datasets, we foresee a modest gain of novel variants

from applying RESCORE. After RESCORE combines the overlapping reads and

improves the quality at the read ends, the genotype likelihoods of all variants will be

more accurate.

Chapters 2 to 4 of the dissertation collectively presented novel statistical methods

for NGS studies to promote genetic discoveries, particularly the discovery of rare

variants, which have extensive implications in the understanding of diseases and

complex traits. Indeed, NGS is powerful for exploring any genome. However, with
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most methods and tools designed mainly for analyzing the human genome, challenges

are involved in applying these methods to bacterial sequencing data due to their

genomic difference. For example, due to the frequent occurrence of repeated segments

and multiple copies of the same genes in the bacterial genome, alignment of NGS

reads is challenging. The diversity among bacterial strains also makes the choice of

reference genome a non-trivial question. Genes that are laterally transferred to a

specific bacterial strain may not be present in the chosen reference genome; hence

the alignment procedure is inaccurate at reconstructing the genome of the sequenced

strain. Furthermore, variant calling algorithms typically assume a diploid genome

where there are three possible genotypes at a biallelic locus, while for a haploid

genome there are only two possible genotypes.

In Chapter 5, we presented one application of NGS methods and analyses to un-

derstand the evolutionary pathways of virulence genes in uropathogenic E. coli. We

carefully designed the analysis pipeline which uses tools that are robust to bacterial

sequencing data, which enables the use of this pipeline on large number of sequences

across different bacterial species. Our analyses showed that for three common vir-

ulence genes associated with uropathogenecity, the evolutionary pathways differed

from that of the whole-genome phylogeny. However, these genes did not have elevated

rates of horizontal gene transfer, suggesting that there was no selective advantage

of these virulence genes over other genomic regions. We project that our analyses

can be directly extended to study the evolutionary pathways of all annotated genes

along the bacterial genome. By comparing each gene tree to the whole-genome phy-

logeny, we can identify genes that have significantly different evolutionary histories

from the rest of the genome; these genes are likely important in the development of

pathogenicity.
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NGS studies have, and will continue to unravel numerous genetic discoveries.

This dissertation presents our efforts in developing new methods and applications,

and providing practical guidelines and strategies for analyzing a wide range of NGS

datasets. We project that this work can be extended to accommodate new features

in the continuously evolving technology, thereby contributing to further advances in

the field of genetics and to our understanding of the genetic basis of diseases.
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