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Abstract 

Systemic lupus erythematosus (SLE) is an autoimmune syndrome that primarily affects 

women and leads to significant internal organ damage. Patients with SLE exhibit a high risk for 

premature atherosclerotic cardiovascular disease (CVD) which is not fully explained by traditional 

risk factors (e.g. smoking, age, and hyperlipidemia). As both SLE and CVD are chronic 

inflammatory diseases associated with abnormal lipoprotein and myeloid cell responses, certain 

overlapping, not yet elucidated mechanisms may explain SLE susceptibility to CVD. It is therefore 

necessary to establish specific biomarkers for CVD risk in SLE patients and further elucidate the 

interplay between the aberrant innate immune system and lipoprotein biology present in SLE 

atherosclerosis. Recent evidence implicates abnormal lipoprotein activity as an important factor of 

accelerated atherosclerosis in SLE, but the mechanisms leading to this alteration and the impact 

that it has on immune responses in the plaque remains to be determined. Oxidation of high-density 

lipoprotein (oxHDL) could explain this altered activity and act as a biomarker of SLE CVD as it 

is already associated with CVD in the general population and linked to deviant pro-atherogenic 

innate immune responses.  

 We hypothesized that the chronic oxidative environment characteristic of SLE promotes 

pro-atherogenic alterations to HDL. We further posited that neutrophil extracellular trap (NET) 

formation, which is enhanced in SLE, significantly contributes to HDL oxidation. Finally, we 

predicted that oxidized SLE HDL skews macrophages toward pro-inflammatory pathways, 

thereby promoting vascular damage.  
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 We demonstrated that lupus patients had high levels of oxHDL and impaired HDL-

associated vasoprotective activity. The pattern of oxidation was consistent with alterations 

previously reported to be pro-atherogenic in the general population and with dysfunctional HDL 

activity. Because SLE plasma was also highly oxidized, this indicated that the site of oxidation 

was in the circulation, rather than in tissue-resident atherosclerotic plaques as is typically reported 

in the literature. Indeed, we demonstrated that the oxidative machinery externalized in NETs 

induces a pattern of HDL oxidation associated with CVD. Furthermore, when we suppressed NET 

formation in lupus-prone mice in vivo, levels of HDL oxidation significantly decreased. We then 

assessed the pro-inflammatory effects of lupus HDL on macrophages. 

 Control macrophages exposed to SLE HDL displayed induction of nuclear factor kappa B 

(NFκB) activation and synthesis of pro-inflammatory cytokines. While healthy, control HDL 

blocked toll-like receptor (TLR)-induced inflammatory cytokine production, SLE HDL failed to 

abrogate this inflammation. This was linked to an impaired ability of SLE HDL to activate the 

anti-inflammatory, transcriptional repressor activating transcription factor 3 (ATF3), compared to 

healthy HDL. This effect was dependent upon SLE HDL binding the scavenger receptor lectin-

like oxidized low-density lipoprotein receptor (LOX1R). However, when macrophages were 

cultured with SLE HDL in the presence of the HDL mimetic ETC-642, the anti-inflammatory 

status of the macrophages was restored. Administration of ETC-642 to lupus-prone mice, in vivo, 

decreased their inflammatory cytokine profile and enhanced ATF3 mRNA levels.  

 This novel identification of a specific oxidation pattern in SLE HDL and plasma should be 

examined as a non-traditional, CVD risk factor in a larger lupus cohort to monitor its association 

with CVD risk. These studies have identified two innate immune response pathways that may 

contribute to cardiovascular risk and amplification of inflammation in SLE. Enhanced NET 
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formation generates the oxidative species required for HDL oxidation. The oxHDL, in turn, 

stimulates pro-inflammatory responses in macrophages and blocks anti-inflammatory pathways. 

As such, therapies that target the high NET formation in SLE or that block the interaction of 

oxHDL with macrophages should be explored.  
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Chapter 1 

Introduction 

Systemic lupus erythematosus: 

A. Definition, Demographics and Clinical Features: 

SLE is an autoimmune syndrome of unclear etiology. It affects approximately 5 million 

people worldwide, primarily women and people of African, Hispanic and Asian descent 1, 2. It is a 

multi-systemic condition that can cause significant tissue damage, primarily to the kidneys, skin, 

brain, vasculature and joints 3-5.  

One of the key features of SLE is the presence of auto-antibodies that recognize nuclear 

components. Indeed, anti-nuclear antibodies are observed in more than 95% of SLE patients 6. 

These include antibodies against double-stranded (ds)DNA, and against RNA-binding proteins 

such as Sm, Ro, La, and ribonucleoprotein (RNP) 6-12. Because these auto-antibodies target 

intracellular components, it is considered that aberrant cell death and/or defective clearance of 

debris promotes the modification and externalization of auto-antigens that, in a predisposed 

individual, leads to loss of tolerance and unregulated inflammation. Indeed, lupus patients exhibit 

a number of clinical and subclinical markers indicative of a chronic inflammatory environment 

including elevated levels of various key cytokines, particularly type I interferons (IFN-I) 4, 13-19.  

Patients with SLE have an increased risk of premature CVD. This is particularly striking 

in young SLE patients (35-44 years old), where the cardiovascular risk is approximately 50-fold 

20, 21. While new medications have improved the quality of life for SLE patients and increase 
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overall survival rates, cardiovascular disease (CVD) is still one of the major causes of death in 

SLE, and its incidence and prevalence have not decreased 22-24. Importantly, this enhanced CVD 

risk cannot be explained by traditional risk factors (e.g. dyslipidemia, smoking, obesity), 

suggesting that other factors characteristic of lupus play a prominent role in CVD and need to be 

elucidated 21, 25-27.  

 

B. Mouse Models of Lupus: 

Both spontaneous and genetically modified mouse strains exist which develop a lupus-like 

phenotype. However, these mice do not completely reflect lupus pathogenesis as mice in general 

show different antibody isotypes, low levels of peripheral blood neutrophils compared to humans, 

and a relative protection from CVD 28, 29. Nevertheless, mice are useful to explore several putative 

mechanisms associated with human lupus, with some of the most utilized strains summarized 

below: 

New Zealand Black/New Zealand White F1 [(NZB×NZW) F1] Hybrid  

The New Zealand Black and New Zealand White mice were one of the first strains to be 

studied as a spontaneous autoimmunity model 30. When these strains were back-crossed, the 

resulting (NZB×NZW) F1 progeny showed an even stronger lupus-like phenotype. (NZB×NZW) 

F1 mice develop nephritis, anti-dsDNA antibodies, IFN-I response, with a strong sex-bias 30. The 

disease progresses relatively slowly in these mice, with an average life span of 35 weeks for 

females and 58 weeks for males. 

NZM2328 (NZM) Mice: 

NZM2328 (NZM) mice, developed from numerous (NZB×NZW) F1 back-crosses, show 

a prominent lupus phenotype 31. NZM mice develop nephritis, anti-DNA antibodies, accelerated 
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NETosis, a strong sex-bias and IFN-I signature 16, 32-34. Proteinuria appears at 24 weeks and most 

mice die of renal disease by 30 weeks 32, 35.  

Other Models: 

First apoptosis signal (Fas) signaling is important for the negative selection of auto-reactive 

lymphocytes during their development. Mice deficient in Fas (MRL/lpr) or FasL (generalized 

lymphadenopathy [gld]) are also present in the lupus literature. Though they do possess auto-

reactive B and T cells, they are considered less physiologically relevant models 30, 36-39. These mice 

can demonstrate accelerated NETosis and an IFN-I signature, but do not show a strong sex-bias 40.  

Other mouse strains with reported lupus-like phenotypes are abundant in the literature, but the 

mice mentioned above are the most commonly used for SLE-related studies. 

 

C. Pathogenesis: 

I. Genetic and Gender Links 

Certain genetic factors appear to predispose people to SLE. Indeed, individuals are 

approximately 24 times more likely to have lupus if they possess a sibling with lupus 41. A number 

of genome-wide association studies (GWAS) have been performed on SLE patients of various 

ethnic backgrounds. Single nucleotide polymorphisms (SNPs) linked to SLE can be found in genes 

related to antigen presentation, B and T cell activation, pattern recognition receptor (PRR) 

signaling, DNA repair/digestion mechanisms, NFκB and IFN-I signaling and cell debris clearance 

42-78. This suggests that both aberrant adaptive and innate immune response pathways are important 

in SLE pathogenesis.  

As with many autoimmune disorders, gender also appears to play a significant role in SLE. 

While male lupus patients exhibit increased organ damage and mortality compared to lupus 
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females, women are particularly prone to SLE 79, 80. This may be due to aberrant immune cell 

responses downstream of estrogen signaling 81-88. Additionally, a number of SLE susceptibility 

genes are present on the X chromosome, which is more transcriptionally active in lupus females 

compared to lupus males and control females 89, 90.  

II. Adaptive Immune Responses in Systemic Lupus Erythematosus 

Because of the syndrome’s high association with auto-antibodies, lupus has classically 

been attributed to abnormal adaptive immune responses. The bone marrow, as a site of B cell 

genesis and maturation, appears to be significant to lupus pathogenesis. In lupus bone marrow, 

neutrophils generate high levels of IFN-I, B-cell activating factor (BAFF), and a proliferation-

inducing ligand (APRIL) 16, 91, 92. These cytokines promote the survival, activation and longevity 

of auto-reactive immature and memory B cells 93, 94. Despite enhanced B cell survival, lupus bone 

marrow nonetheless shows higher levels of apoptotic cells than healthy bone marrow 95, 96. This is 

due to impaired debris clearance pathways in lupus 97-101. As such, lupus B cells are reared in an 

environment which promotes their survival and exposes them, and other marrow-resident 

leukocytes, at an early stage to cell debris-derived self-antigens. Once outside the bone marrow, B 

cells are further exposed to self-antigens and induced, with the help of T cells, to differentiate into 

pathogenic auto-antibody-producing plasma cells.  In addition to B cells, there is ample evidence 

that T cell subsets are aberrant in SLE and important contributors to lupus pathogenesis 102, 103.  

Various cytokines enhance T cell survival and activation in SLE 104, 105. Estrogen signaling 

also appears to promote aberrant B and T cell survival in SLE 84-86. Lupus T cells demonstrate an 

altered T cell receptor physiology, leading to stronger T cell signaling 106-109. High plasma levels 

of soluble co-stimulatory factors may also strengthen T cell activity in SLE 110. These responses 

trend towards inflammatory rather than anti-inflammatory pathways due to the high ratio of 
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interleukin (IL)-17 producing T helper (Th) cells to regulatory Th cells in SLE 111-114. On the other 

hand, there is evidence that lupus pathogenesis is linked to T cell anergy and decreased IL-2 

production 115-118. More recent evidence implicates abnormalities in other T cell subsets, including 

T follicular helper cells 102, 103. Abnormal B and T cell responses seen in SLE not only contribute 

to idiopathic SLE pathogenesis, but may contribute to the generation of the inflammatory 

cytokines and auto-antibodies linked to lupus-related atherogenesis, as discussed below.  

III. Innate Immune Responses in Systemic Lupus Erythematosus 

 The contributions of the innate immune system to SLE pathogenesis were long 

underappreciated, but have surfaced as significant mediators of disease inflammation and 

promoters of autoimmunity. Most research on SLE innate immune signaling revolves around the 

aberrant processing and detection of self-nucleic acids within dead cell debris 42, 47-51, 119, 120. 

Numerous mechanisms exist in healthy individuals in order to stimulate the quick, anti-

inflammatory phagocytosis and digestion of cellular remnants 121-126. This keeps self-components 

from interacting with PRRs. In lupus patients, however, these pathways are defective. Lupus serum 

factors and aberrant phagocyte cell surface marker expression is linked to the impaired removal of 

dead cell debris 59, 76, 77, 100, 101, 127-130. Because of this, lupus plasma and serum show high levels of 

cell fragments 131-136. Not only do lupus patients have high levels of exposed self-antigens in the 

circulation, they also appear to have aberrant means of detecting this material. Immune complexes, 

for example, form when auto-reactive antibodies bind to complement proteins and undigested 

nucleic acids. These structures are recognized by highly expressed lupus activating Fc gamma 

receptors, are internalized, and, rather than being digested, are transported to endosomal, nucleic 

acid-sensing TLRs 137-144. This process initiates a series of highly inflammatory responses that 

results in tissue damage.  
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 The activation of nucleic acid-binding PRRs, in particular, will induce an anti-viral 

response typified by strong IFN-I signaling. Indeed, the risk for SLE is enhanced by SNPs in 

interferon response factor genes, and increased IFN-I signatures are associated with lupus flares 

and organ damage 15, 45, 52-54, 56, 145-150. When IFN-I is used as a therapy for cancer and chronic 

infections it can induce a lupus-like disease 151-155. Furthermore, NZM lupus-prone mice that lack 

IFN-I receptor are protected from many lupus characteristics including vascular pathologies, 

abnormal B cell populations, renal disease, and auto-antibody levels 16, 34, 35. Lupus innate immune 

cells appear to be the main producers of this IFN-I and significant to SLE pathogenesis 156.  

 Lupus monocytes demonstrate an inflammatory phenotype (CD14+, CD16+), are strong 

responders to immune complexes, and produce large amounts of oxidative species, IL-6, TNF, and 

IFN-I 157-166. This enhanced cytokine production may be due to the increased histone H4 

acetylation within these genes in lupus 162, 167. SLE monocytes appear to accelerate adaptive 

immune activity through the enhanced production of CD40 and BAFF 168, 169. Their capacity as 

antigen presenting cells, however, increases when cultured with IFN-I or SLE serum, pushing them 

towards dendritic cell differentiation 170-172.  

 Lupus dendritic cells produce high levels of IFN-I, TNF and IL-6 159, 170, 173-176. Non-

myeloid, plasmacytoid dendritic cells (pDCs) are particularly inflammatory, especially when 

stimulated with immune complexes and NETs (described below) 175-178. Exaggerated pDC activity 

has been linked to both lupus nephritis and skin lesions 179-181. Lupus dendritic cells may be potent 

lymphocyte activators as they express higher levels of MHC II, CD86, APRIL and BAFF 168, 171, 

174, 180, 182-185. Lupus monocytes which differentiate instead into macrophages also appear to have 

a pathogenic signature, though by which mechanisms is not clearly understood.  
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 Lupus macrophages have primarily been linked to kidney disease 186, 187. When the kidneys 

of MRL/lpr mice were injured via an ischemia/reperfusion model, the mice failed to promote the 

production of repair-associated macrophages (M2, described below) and instead an inflammatory, 

damaging macrophage phenotype (M1, discussed below) persisted 188. The pro-inflammatory 

nature of lupus macrophages may be linked to their increased inflammasome activity 189, 190. 

Additionally, mutations in the exonuclease TREX1 are associated with lupus and TREX1 deficient 

macrophages exhibit inflammatory cytokine production and enhanced antigen presentation 

activity 191, 192. Though not well characterized, many of these macrophage inflammatory pathways 

may also promote SLE atherogenesis 193-198. 

 While aberrant nucleic acid-sensing PRR signals are significant to lupus pathogenesis, not 

a lot of work has demonstrated how the SLE innate immune cells mentioned above respond to 

lipoproteins. What is known is that of the receptors that appear to interact with lipoproteins, SLE 

shows altered activity and expression of TLR-2 and TLR-4, and patients possess auto-antibodies 

against certain scavenger receptors 119, 199-209. This gap in SLE research is not insignificant given 

the high association of SLE with CVD.  

 Due to the apparent relationship between SLE pathogenesis and dead cell debris, extensive 

research has been conducted on cell death pathways in lupus. Leukocytes and non-immune cells 

do show a propensity for cell death in SLE, which was initially only attributed to apoptosis 210-214. 

However, as apoptosis is normally considered an anti-inflammatory response, and as not all lupus 

patients exhibit impaired clearance activity, it was necessary to identify additional mechanisms by 

which modified self-epitopes became readily exposed to the periphery. Within the last decade, 

neutrophil extracellular trap (NET) formation was identified as one of the putative mechanisms.   

 



8 

 

a. Neutrophil Extracellular Trap Formation  

NET formation was initially described as an innate immune response performed by 

granulocytes to kill or inactivate bacteria 215. The process is distinct from both apoptosis and 

necrosis, is caspase-independent, and is characterized by the decondensation of chromatin material 

and mixing of nuclear and cytoplasmic contents (particularly granular antimicrobial peptides 

[gAMPs]) prior to extrusion of this material from the cell as a meshwork of chromatin and gAMPs 

216.  These structures can then surround the pathogenic material, be it a protozoa, bacteria, virus or 

fungi, and mediate either its destruction, via cytotoxic gAMPs (myeloperoxidase [MPO], LL-37, 

neutrophil elastase [NE]), or mark the pathogen for phagocytosis 215-219. A number of intact 

pathogens and pathogen associated molecular patterns (lipopolysaccharide [LPS], zymosan) can 

induce NETosis 215, 216, 220, 221. Sterile stimuli include activators of calcium signaling (phorbol 

myristate acetate [PMA] and calcium ionophore [A23187]), certain cytokines (IL-1β, -8, TNF), 

integrin stimulation (Mac-1) and auto-antibodies or immune complexes 177, 178, 215, 216, 222-225. 

Though the precise mechanisms of NET formation have yet to be fully elucidated and may be 

stimuli-specific, a few pathways do appear to be necessary for NETosis. Stimuli activate the 

granulocyte’s oxidative machinery and ROS production. Nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase (NOX) and superoxide dismutase (SOD) produce hydrogen peroxide 

(H2O2) to release NE from an azurophilic gAMP complex, then MPO activates NE’s proteolytic 

activity and migration to the nucleus (Figure 1-1) 226.  In the nucleus, NE cleaves histone H4, 

promoting the decondensation of DNA 227. Another enzyme that appears important for DNA 

decondensation in NETosis is peptidylarginine deiminase (PAD)-4 228, 229. Nuclear PAD-4 

modifies histone arginine residues into citrulline residues, resulting in a change from a positive 

charge to a more neutral charge thereby decreasing the DNA:histone electrostatic interaction 228, 
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230.  Once NETs form and serve their function, they should be rapidly degraded as they contain 

many cytotoxic gAMPs and expose otherwise cryptic self-epitopes to the periphery. In healthy 

individuals, this is performed by phagocytic macrophages and an abundance of constitutively 

present serum nucleases. However, each of these mechanisms, from NET activation to clearance, 

appears to be dysregulated in lupus patients. 

 

 

  

 A significant amount of work has been performed over the last five years linking aberrant 

NET formation and lupus. Granulocytes from SLE patients show an increased capacity to form 

NETs 178, 214. In particular, lupus patients possess a unique granulocyte population of low-density 

granulocytes (LDGs), so named as they are identified and isolated from the peripheral blood 

mononuclear cell (PBMC) layer rather than the denser red blood cell layer after density gradient 

centrifugation 214, 231, 232. Compared to healthy and lupus normal density granulocytes (NDGs), 

lupus LDGs show an enhanced capacity to synthesize inflammatory cytokines, including IFN-I, 

an increased, spontaneous formation of NETs, decreased phagocytic activity and an enhanced 

Figure 1-1. Mechanisms leading to nuclear 

decondensation prior to Neutrophil 

Extracellular Trap (NET) formation. 

Hydrogen peroxide (H2O2) from NADPH 

oxidase and superoxide dismutase (SOD) 

promotes myeloperoxidase (MPO), within a 

granule complex, to activate neutrophil 

elastase (NE). Activated NE travels to the 

nucleus and, in addition to peptidylarginine 

deiminase (PAD), modifies histones to 

promote nuclear decondensation and NET 

formation. Modified from Metzler et al. 

(2014). 
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expression of primary gAMPs 214, 231. Importantly, NETs are potential sources of nuclear, modified 

auto-antigens and oxidative species 177, 233-236. Both factors are significant to SLE pathogenesis and 

possibly SLE-related CVD 59, 76, 77, 166, 201, 237-246. As NET degradation and anti-oxidant activity are 

impaired in SLE, this may promote extensive, chronic inflammation 98, 130, 247-250. Therapies for 

blocking NET formation, namely through PAD inhibition, result in decreased IFN-I signatures and 

tissue inflammation in lupus-prone mouse models 33, 40. 

 Given the association of atherosclerosis with chronic inflammation, oxidative stress, and 

aberrant NETosis, pDC, monocyte and macrophage immune responses (described later in this 

thesis), many of the pathways discussed here appear to contribute to SLE-related CVD.  

IV. Appearance of Clinical Features 

Work from various groups indicates that the appearance of pathogenic auto-antibodies can 

appear in individuals predisposed to lupus many years before the onset of clinical disease 251. The 

evolution from pre-clinical autoimmunity to clinically apparent disease is unclear, but it is likely 

that stochastic events and both genetic and environmental factors play crucial roles 251-254. In 

addition to auto-antibodies, the lupus milieu is characterized by increased levels of cell death, 

innate immune cell activation, inflammatory cytokine production (IL-6, TNF, IFN-I), and adaptive 

immune cell expansion 17-19, 211, 251, 255, 256. Acute manifestations of lupus are sometimes initiated 

after infection, ultra violet light exposure, or other types of environmental stresses 252-254, 257, 258.  

With the initiation of more effective therapies, patients are managing to live for decades 

with this disease. Yet, the smoldering clinical presentation as well as the periods of flare and 

remission exposes patients to prolonged oxidative stress that promotes the development of end-

stage chronic complications. Among them, atherosclerotic CVD is of particular concern given the 

clinical impact. It is believed that vascular damage starts to develop early on during the natural 



11 

 

history of lupus and is not identified in the majority of patients given the lack of established 

biomarkers 25, 251, 259.  

 

D. Treatment: 

Therapies for mild SLE typically include anti-malarials (e.g. hydroxychloroquine), non-

steroidal anti-inflammatory drugs, or low dose corticosteroids. With increased severity, higher 

doses of corticosteroids are needed 260. Yet, steroids have extensive metabolic effects that may 

contribute to CVD-risk 261-263. Additionally, broad immunosuppressants including mycophenolate 

mofetil, methotrexate, cyclophosphamide, and azathioprine are often prescribed. Unfortunately, 

these can cause SLE patients to become severely immunocompromised, leading to death by 

infections 22-24, 264. Targeted biologics are relatively new to SLE, with belimumab (anti-BAFF) as 

the only currently FDA-approved monoclonal antibody for the treatment of SLE 265. The efficacy 

of anti-T cell, anti-B cell and anti-IFN therapies are under current clinical trial investigations 266-

268. Statins are also frequently prescribed to SLE patients, but it is unclear that they significantly 

decrease CVD risk in this patient population 269. Indeed, while many of these therapies have 

improved the quality of life of SLE patients, to date no drug has been shown to decrease CVD risk 

in SLE. Furthermore, it remains unclear if the mechanisms implicated in premature CVD in lupus 

are similar to the ones observed in atherosclerosis within the general population (described below).   
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Atherosclerosis: 

A. Definition, Demographics and Clinical Features: 

Atherosclerosis is the build-up of plaque, composed of cholesterol and cellular infiltrates, 

in the sub-endothelial space of various major arterial trees. Atherosclerosis is a main contributor 

to the development of heart attacks and strokes. Specifically, coronary artery disease (CAD) is 

now considered the primary cause of mortality in men and women worldwide 270, 271. The 

Framingham heart study, initiated in 1948, was instrumental in identifying significant risk factors 

for heart disease 272, 273. “Classical” risk factors include sex (higher risk for males), age (higher 

risk after the age of 45), diabetes, smoking, raised body mass index (BMI), blood pressure, and an 

abnormal lipid profile (dyslipidemia): elevated total cholesterol, low-density lipoprotein 

cholesterol (LDL), triglycerides (TG), and low levels of high-density lipoprotein cholesterol 

(HDL) 274-276. However, as discussed elsewhere in the text, these factors are largely not applicable 

to lupus patients as cardiovascular events in this disease typically occur in women, relatively early 

in life (35-44 years), and as such cannot be predicted by the Framingham risk equation 21, 25, 277.  

Over the years, newer markers of altered lipoprotein composition or function have been 

linked to “typical” CVD: high apolipoprotein (apo) B:apoA-I ratios, modifications in the protein 

cargo of both HDL and LDL, and impairments in cholesterol efflux capacity (CEC). Additionally, 

atherosclerosis is known as a chronic inflammatory condition as inflammatory indicators are 

significant biomarkers for CVD in the general population: enhanced levels of high-sensitivity C-

reactive protein, pro-inflammatory monocytes, IL-6 levels, and low endothelial progenitor cell 

(EPC) numbers 278-285. As discussed later in the text, lupus patients also show an inflammatory 

signature, but mechanisms and markers of lupus-CVD still need to be established.  
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B. Mouse Models of Cardiovascular Disease 

 CVD is difficult to replicate in mouse models. One possible explanation for their protection 

from atherosclerosis is the high prevalence of HDL in mice compared to humans 286. Many other 

mechanisms attributed to atherogenesis in humans are not observed in mice. For example, unlike 

humans, mice seem to have a bias towards more nitric oxide synthase (NOS) and less MPO 

activity, which affects the types of oxidative species generated and possibly macrophage 

polarization 287-289. Additionally, most models require the mice to be on a special high fat, 

“Western” or “Paigen”, diet to see full disease effects 290, 291. Primary sites of atherogenesis also 

differ between humans and mice, with plaque development mainly in aortic regions in mice and 

in the coronary arteries in humans 286. There are, however, the LDLR-/- and apoE-/- mice which 

are often used in CVD studies. These mutations and altered diet, however, create models of murine 

CVD which show extreme dysregulation of lipoprotein activity and composition that are not 

entirely physiologically relevant to human atherogenesis.  

 

C. Pathogenesis 

I. Genetic and Gender Links 

  In addition to environmental or behavioral risk factors (smoking, diet, exercise), there is a 

genetic component to CVD risk. Individuals with at least one parent who exhibits premature CVD 

are 2.6 (for males) to 2.3 (for females) times more likely to develop CVD 292, 293. GWAS studies 

have identified SNPs in genes involved in cholesterol metabolism, vascular integrity, and 

inflammation as markers of CVD risk 293-318. There is a significant increased risk for CVD in men 

and post-menopausal women 272, 273, 319. This is different from SLE CVD where most 

cardiovascular events occur in younger, pre-menopausal, women 20, 21.  
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II. Lipoproteins 

 Several CVD risk factors relate to plasma lipoprotein composition and activity. The three 

general plasma lipoprotein classes are chylomicrons, LDL and HDL. Plasma lipoprotein particles 

are spherical or discoid phospholipid monolayer structures with the primary function of 

transporting insoluble cholesterols and TG through the body to where they are needed for energy, 

hormone, vitamin D, and bile salt synthesis 320, 321. Structurally, the phospholipid surface of 

lipoproteins is embedded with proteins (apo, complement, lipases) and non-esterified (free) 

cholesterol that surrounds an internal core of TG and cholesteryl esters (CE).  

Chylomicrons are the largest and least dense of the lipoproteins 320, 321. Their major function 

is to transport their high TG content to adipose tissue for storage or active tissue for energy 320, 321. 

In addition to LDL, two other subclasses of the “LDL family” exist and are differentiated based 

on their density and size: very low-, and intermediate-density lipoprotein (VLDL and IDL, 

respectively) 320, 321. The “LDL family” of lipoproteins are smaller and denser than chylomicrons. 

LDL, in particular, is  highly associated with CVD as it facilitates the removal of CE out of HDL 

and into cells 320, 321. This supplies cells with energy, but can also induce inflammatory reactions 

and plaque formation, detailed below.  

HDL is the smallest and densest lipoprotein, with the largest protein content. apoA-I, which 

makes up 70% of HDL’s protein weight, mediates the vasoprotective pathway known as reverse 

cholesterol transport (RCT) 322. In RCT, HDL’s apoA-I binds ATP Binding Cassette (ABC)A1, 

ABCG1, and scavenger receptor (SR)B-I on cells to promote the removal of free cholesterol out 

of these cells. The cholesterol is eventually transformed into CE and delivered to the liver where 

it is excreted as bile acid. This mechanism is important as it prevents plaque and inflammatory 

macrophage foam cell development. The quantifiable ability of HDL to promote RCT is called the 
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CEC, and is inversely associated with CVD risk 323. The interaction of apoA-I with ABCA1/G1 

and SRB-I is also key to promoting anti-inflammatory signals in the vasculature 324-326. 

Paraoxonase (PON) and sphingolipid sphingosine-1-phospate (S1P) carried within HDL stimulate 

additional anti-oxidative, vasoprotective mechanisms 320, 321, 327-331. What is typically referred to as 

“HDL” can actually be divided into subclasses differentiated by their density and size: HDL3 or 

HDL2 (nomenclature based on density), or small, medium and large HDL (nomenclature based on 

size) 329. While native, unmodified HDL possesses many vasoprotective functions, oxidative 

modifications to HDL can transform it into a pro-atherogenic lipoprotein, discussed below.  

III. Inflammation and Atherogenesis 

 In a healthy cardiovascular system, the vascular endothelial cells prevent platelet adhesion 

by expressing prostacyclin and endothelial nitric oxide synthase (eNOS), which releases 

constitutively low amounts of nitric oxide (NO) to regulate vascular tone 285, 332-335. In 

atherosclerosis, however, plaque formation begins with injury to the endothelium, leads to 

unresolved cell death and inflammation, and eventually thrombosis (Figure 1-2).  

a. Initial Injury 

Initial inflammatory vascular responses can increase adhesion molecule expression on 

endothelial cells 336, 337. Adherent platelets will release inflammatory cytokines (IL-1β, TNF), 

chemokines, coagulants, and adhesion factors 338, 339. Thinning of the endothelium exposes the 

intima layer’s collagen and fibrinogen meshwork, which binds and traps platelets and lipids to 

promote further inflammation and leukocyte recruitment 340-343.  
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b. Attempt at Repair and Resolution 

Endothelial progenitor cells (EPCs), found in the bone marrow and circulation, travel to 

sites of endothelium damage to differentiate and cover the exposed intima layer. EPCs also 

produce eNOS-derived NO, a process aided by HDL 285, 344-349. Monocytes are one of the primary 

leukocytes recruited in an attempt to remove excess LDL and dead cells stuck in the intima layer 

340-342. Various scavenger receptors (e.g. SRB-I, LDL receptor) on recruited “classical”, monocytes 

(CD14+, CD16-) will bind to and engulf LDL in an attempt to get rid of the excess lipoprotein 350, 

351. The monocytes then begin to transform into lipid-loaded foam cell macrophages.  

Macrophages develop into an M2 phenotype if raised in an anti-inflammatory, Th2 

cytokine environment (IL-4, -13, -10, transforming growth factor beta [TGF-β]) 352-355. HDL also 

appears to promote M2 polarization 356. The M2 macrophages then produce cytokines associated 

with vasorepair such as IL-10, TGF-β, platelet-derived growth factor (PDGF), vascular 

endothelium growth factor (VEGF) and arginase 357-359. In lupus-prone MRL-lpr mice, for 

example, an inability to generate M2 macrophages is linked to defective repair and enhanced 

disease after ischemia/reperfusion injury 188. Like monocytes, the macrophages attempt to remove 

the pathogenic LDL from the extracellular environment through scavenger receptors such as SRA, 

SRB-I, CD36, and lectin-like oxidized LDL receptor (LOX1R).  

HDL is important for vasorepair mechanisms as it blocks foam cell formation through 

RCT, abrogates inflammatory and apoptosis signals via apoA-I, PON and S1P activity, inhibits 

reactive oxygen species (ROS), T cell and caspase activation, and induces eNOS- and activating 

transcription factor 3 (ATF3)-induced anti-inflammatory and re-endothelialization mechanisms 

238, 324-326, 331, 348, 360-369. Whether these vasoprotective functions are active in lupus patient is 

unknown, however. 
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c. Unresolved Inflammation and Cell Death 

 One non-traditional CVD risk factor is the high presence of “inflammatory”/intermediate 

monocytes (CD14+, CD16+), rather than “classical” monocytes 356, 370-376. These non-classical 

monocytes produce higher levels of ROS, TNF, IL-12B, adhesion molecules, and antigen 

presentation factors 375, 377-381. When monocytes differentiate in an inflammatory, Th1 cytokine 

environment (lipopolysaccharide, TNF, IFN-ɣ), it gives rise to the “classical”, inflammatory M1 

macrophages phenotype 352-355. M1 macrophages produce high levels of ROS, reactive nitrogen 

species (RNS), IL-6, -1β, -12, and TNF 357-359. Indeed, M1 macrophages persist in lupus-prone 

MRL-lpr mice after ischemia/reperfusion injury and have been linked by some groups to increased 

lupus organ damage 188. This M1 macrophage persistence is also associated with unstable 

atherosclerotic plaques in CVD 353, 382.  

 Foam-cell macrophages are a potent source of oxidative enzymes that can modify apoB-

100 in LDL 194, 383-391. This modified LDL is very cytotoxic and inflammatory: it induces 

macrophage chemokine release, endothelial adhesion molecule expression and NFκB activation 

392-394. Similarly, certain modifications in HDL or apoA-I convert the lipoprotein into a pro-

inflammatory form (oxHDL) 395-400. Oxidized HDL is increased in CVD, promotes adhesion 

molecule expression, and impairs EPC function 401, 402. Of the possible modifications, 3-

chlorotyrosine (3-ClY) and 3-nitrotyrosine (3-NY) oxidized apoA-I is present in the plasma and 

atherosclerotic plaques of CVD patients 403-405. MPO is the only enzyme capable of catalyzing the 

formation of 3-ClY, which leads to abrogation of RCT and increased inflammatory pathways 289, 

391, 395, 403-410. Part of this effect is due to oxHDL’s decreased affinity for SRB-I and ABCA1 403-

405. This also results in loss of ABCA1/G1-mediated anti-inflammatory and anti-apoptotic effects 

326, 363, 411-413. MPO has largely been associated with pro-atherogenic 3-NY oxidation, though NOS 
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may also play an important role in its formation 289, 384, 391, 395, 398, 404, 405, 407-410, 414-418. While SLE 

patients exhibit many of these CVD-associated inflammatory pathways, it has been unclear if 

specific HDL post-translational modifications occur in SLE which modify the function of the 

lipoprotein and promote atherogenesis.  

d. Role of Neutrophils in Atherosclerosis 

 CVD patients show elevated neutrophil counts that positively correlate with lipid core size 

in human carotid arteries, suggesting that these cells are important for atherogenesis 419-422. 

Initially, neutrophils were rarely detected in plaques, but advancements in antibody specificity and 

two-photon excitation microscopy have increased our understanding of the role of these cells in 

CVD. Neutrophils have been detected in the shoulder, cap, and tunica adventitia layer of murine 

and human atheromas 421-424. Recent evidence has also shown that luminal neutrophils can be 

activated by inflammatory platelets to undergo NETosis, visualized in vivo, and may play an 

important role in coagulation, pDC and macrophage inflammation, endothelial damage, and 

atheroma lesion size 178, 214, 425-432. Additionally, mice deficient in PAD-4, an enzyme crucial in 

NET formation, or treated with PAD inhibitors are protected from thrombosis and show decreased 

atheroma lesion formation 425, 433, 434. Neutrophils may be a source of HDL modification, as 

phagosomal-MPO can mediate 3-ClY and 3-NY oxidation 414, 435-437. Whether NETosis is a 

significant contributor to HDL oxidation has yet to be explored as an important mechanism leading 

to SLE atherogenesis.  

e. Late Stage Atherogenesis and Thrombosis 

 There is evidence of enhanced cell death occurring in the arterial wall intima layer due, in 

part, to their prolonged exposure to an inflammatory milieu. Specifically, cholesterol crystal 

deposited in endothelial cells, neutrophils, monocytes and macrophages can promote 
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inflammasome activation, cell death, and damage to the endothelium 196, 430, 438, 439. This leads to 

the development of a necrotic lipid core in the intima layer (Figure 1-2). Other leukocytes 

eventually infiltrate into the atheroma, including T cells, dendritic cells, and mast cells. Dendritic 

cells exposed to oxidized LDL (oxLDL) become potent antigen presenting cells, leading to T and 

B cell auto-reactive responses against oxLDL and high anti-oxLDL auto-antibody levels in CAD 

patients 343, 440-443. However, the significance of this remains to be better characterized. It should 

be noted that some auto-antibodies, particular IgM natural antibodies, may have vasoprotective 

capabilities 444-446.  

With the build-up of inflammation and apoptotic debris in the atheroma, vascular smooth 

muscle cells (VSMCs) are recruited from the tunica media to the intima cap layer. These VSMCs 

produce a fibrous cap of collagen and elastin to “heal” the damaged endothelium and sequester the 

necrotic core from the vascular lumen 447, 448. The plaque will bulge towards the lumen, increasing 

shear stress, promoting further endothelial cell damage and atherogenesis. Inflammatory 

macrophages, mast cell and particularly neutrophils (including NETs) will release proteases which 

digest the fibrotic cap, leading to plaque instability 407, 449-453. Eventually the cap will rupture, 

leaking the necrotic core into the lumen 454. This will activate the platelet coagulation cascade 

creating a thrombi or blot clot. Either a complete or partial blockage of blood circulation will occur 

and can lead to stroke or myocardial infarction.  
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IV. Lupus-related Cardiovascular Disease 

The increase in cardiovascular risk in lupus is striking and cannot be predicted by the 

Framingham risk equation 20, 21, 25-27. It has been proposed that SLE may represent the extreme 

phenotype of what is seen in “typical” atherogenesis, with an exaggerated inflammatory, immune 

reaction to endogenous substances (dead cell debris and lipoproteins), leading to enhanced cell 

death, followed by impaired clearance and repair mechanisms. Recently, the role of immune 

dysregulation in lupus premature CVD has been linked to a number of putative pathways.  

 

Figure 1-2. Plaque structure and cellular processes leading to atherothrombosis. Damage 

to vascular endothelial cells and platelet aggregation promotes monocyte and low-density 

lipoprotein (LDL) invasion into the intima layer. Monocytes engulf oxidized LDL (oxLDL) 

and differentiate into lipid-loaded foam cell macrophages. The necrotic core will build as cells 

die, leading to cryptic epitope exposure and B and T cell activation. Vascular smooth muscle 

cells (VSMC) from the medial layer will attempt to heal over the damaged endothelium. 

Platelet activation can enhance NET formation in the lumen of the vasculature. This prompts 

more endothelial cell death, digests the fibrous cap and eventually leads to the expulsion of 

the necrotic core material into the lumen (thrombus), leading to coagulation and blood vessel 

blockage.  
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a. Cytokine and Cellular Mechanisms of Lupus Atherosclerosis 

Atherosclerosis is considered a chronic inflammatory disease, and both SLE and CVD in 

the general population share some common inflammatory pathways and abnormalities in innate 

and adaptive immune responses 6, 7, 15, 17-19, 214, 243, 455-460. IFN-I, for example, may be significant to 

the pathogenesis of both diseases. An imbalance of vascular damage and repair is triggered by 

IFN-I. These cytokines promote enhanced apoptosis of EPCs and a dysregulated capacity for these 

cells to differentiate into mature endothelial cells 34, 231, 461-469. Furthermore, IFN-I can promote the 

differentiation of macrophages into foam cells, as well as platelet activation leading to thrombosis 

enhancement 34, 470, 471. Indeed, in the NZM lupus model, attenuation of IFN-I signaling improves 

vasculopathy and thrombosis risk, while administration of IFN-I (mimicking lupus flares) worsens 

endothelial function and promotes thrombosis, implicating these cytokines as key drivers of 

vascular damage in this disease 34, 468. IFN-I signaling also enhances plaque formation in apoE-/- 

mice 34. Additionally, in a human lupus cohort, IFN-I were identified as key associates with 

endothelial dysfunction and subclinical atherosclerosis in univariate and multivariate analyses 472. 

Given the very high IFN-I levels in SLE, what may be potent pro-atherogenic mechanisms in CVD 

may be even more severe in SLE.  

Another putative mechanism implicated in premature lupus and “typical” atherogenesis is 

NETosis. Lupus NETs are potent mediators of platelet activation, coagulation, endothelial cell 

damage and atherosclerosis 214, 231, 425-427, 430, 432, 451, 463, 464, 473-477. NETs taken up by pDCs promote 

high IFN-I production, which may explain the critical role of pDCs in apoE-/- atherosclerosis 177, 

180, 181, 464, 478, 479. NETosis may also contribute to the high levels of oxidative markers in SLE,  but 

how this enhanced externalized oxidative machinery may modify lipoproteins in atherogenesis 

remains to be determined 238, 239, 247-250, 480, 481.  
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b. Dysfunctional HDL Activity 

 As mentioned, there is a lack of research concerning lipoprotein signaling in SLE and its 

implications in atherosclerosis. Most literature to date involves clinical reports on the presence of 

auto-antibodies against lipoprotein components in SLE (anti-oxLDL, apoA-I, cardiolipin, β2-

glycoprotein I, and HDL) but their role in mediating vascular disease remains to be determined 244, 

245, 248, 482-489. There is debate in the literature about whether IFN-I and the immune complexes 

which form with these auto-antibodies block LDL uptake, degradation and cell debris clearance 

470, 473, 490-497. What little work that has been done on the role of HDL in SLE inflammatory 

pathways is largely observational and does not identify specific pro-atherogenic signaling 

mechanisms 198, 498, 499.  

 The HDL of lupus patients is considered dysfunctional and “pro-inflammatory” 326, 367, 411, 

500. To date, lupus “pro-inflammatory” HDL has been quantified by the inability of HDL to block 

LDL oxidation 239, 501 This inability is higher in SLE than rheumatoid arthritis, in SLE patients 

with plaque, and correlates with inflammatory markers 239, 501. Monocytes treated with SLE “pro-

inflammatory” HDL show increased chemotaxis and TNF production 498. In both lupus-prone 

mouse models and human patients, “pro-inflammatory” HDL activity correlates with low levels 

of the anti-oxidant enzyme PON 247, 502. Decreased PON activity also correlates with high anti-

apoA-I antibody titers, which increase with disease flares 248, 487, 502. SLE HDL also demonstrates 

lower ABCA1/G1-mediated CEC than healthy controls or rheumatoid arthritis patients 503. 

Hydroxychloroquine use has been associated with improved lipid profiles and decreased plaque 

thickness, but it may impair RCT 193, 262, 504, 505. Interestingly, abrogation of IFN-I decreases levels 

of oxidized HDL in NZM lupus-prone mice 34. 
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D. Treatment: 

 Preventive measures are important in patients at risk for CVD or in patients that have 

experienced atherosclerotic events. These include smoking cessation, diet, exercise and control of 

blood pressure. In addition, many drugs are currently being used or explored as primary or 

secondary CVD prevention. Statins are frequently used in CVD 506-510. Medications that increase 

HDL levels are being tested and it remains unclear whether they will be safe and useful in primary 

and secondary CVD prevention 511. HDL mimetics are synthetic constructs made of 

apolipoproteins and lipids 423, 512. As in vitro and in vivo animal models have shown an ability of 

mimetics to promote anti-atherosclerotic mechanisms, various HDL mimetics are in current 

clinical trials or were previously tested 339, 513, 514. In an animal model of lupus atherosclerosis 

(apoE-/-, Fas-/- mice), treatment with an apoA-I mimetic showed lower auto-antibody production, 

indicating a potential therapeutic application in lupus CVD 499. While many of these therapies have 

improved the lifespan of CVD patients, to date no drug has been shown to decrease CVD risk in 

SLE. There is a great need to further characterize the main pathways promoting atherogenesis in 

lupus as well as the most effective modulators of vascular risk in this disease. 
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Chapter 2 

Mechanisms Leading to Enhanced HDL Oxidation in SLE 

A. Introduction: 

Lupus patients have an enhanced predisposition for early CVD, but neither clinical markers 

nor a well-defined innate immune pathway have truly been associated with this risk. As mentioned 

above, while others have indicated that HDL is dysfunctional in SLE and associated with 

subclinical atherosclerosis, it remains to be determined what specific modifications occur in lupus 

HDL to modify its function and what are the cellular sources of this modification.   

 We hypothesized that SLE patients possess increased levels of modified, dysfunctional 

HDL and that this modification would render the lipoprotein pro-atherogenic. To this effect, we 

quantified levels of 3-ClY and 3-NY in lupus HDL and plasma. We focused on these modifications 

as in previous studies they have been highly linked to the abrogation of HDL’s vasoprotective 

capabilities such as CEC, anti-oxidative activity, and abrogation of inflammatory pathways 395, 397, 

399, 401, 404. Furthermore, we posited that NET formation, which is enhanced in SLE, exposes the 

active oxidative machinery (NOS, MPO, NOX) required for 3-ClY and 3-NY oxidation in humans 

and mice (Figure 2-1) 414, 416, 515-520.  
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B. Materials and methods 

Subject Recruitment 

 Plasma samples were collected from SLE patients fulfilling the American College of 

Rheumatology diagnostic criteria for the disease 4. Healthy controls (Ctrls) were recruited by 

advertisement. Study was approved by the University of Michigan and NIH IRBs. Lupus disease 

activity was quantified by the SLE Disease Activity Index (SLEDAI) 5. Pregnant or lactating 

women and individuals with recent or current infections or liver dysfunction were excluded.   

Mice  

 NZM2328 (NZM) breeding pairs were a gift from Dr. Chaim Jacob 34. Balb/c mice were 

purchased from Jackson Laboratory (Bar Harbor, ME). Mice were bred and housed in a specific 

pathogen-free barrier facility at the University of Michigan. Female mice were euthanized at 26-

weeks of age, before overt development of renal disease. Protocol was approved by University of 

Michigan’s Committee on Use and Care of Animals.  

Figure 2-1. Enzymatic pathways leading to tyrosine oxidation. NADPH oxidase and superoxide dismutase 

generate the substrates used by myeloperoxidase and nitric oxide synthase. These enzymes then generate the 

reactive oxygen and nitrogen species (in red) capable of 3-chlorotyrosine and 3-nitrotyrosine modifications to 

apolipoprotein A-I, which are associated with cardiovascular disease.  
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Plasma HDL Isolation  

 HDL was isolated from human and murine plasma by buoyant-density sequential 

ultracentrifugation 521. Protein concentration was estimated with Coomassie (Thermo Scientific, 

Rockford, IL).  Samples were stored at -80 °C until analysis. 

Quantification of Oxidized Amino Acids in Plasma, HDL, and apoA-I Peptides  

 Plasma proteins were precipitated and delipidated 521; oxidized amino acids were quantified 

using isotopically labeled internal standards, 13C6 tyrosine, 13C6 3-chlorotyrosine and 13C6 3-

nitrotyrosine, by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-

ESI-MS/MS) with multiple reaction monitoring (MRM) MS/MS positive ion acquisition mode 522. 

MRM Analysis of Oxidized Tyrosine-Containing apoA-I Peptides with LC/ESI/MS/MS 

 Plasma HDL samples were delipidated, and reduced with dithiothreitol (5 μM, Sigma-

Aldrich, St. Louis, MO) before alkylation with iodoacetamide, (15 mM, Sigma-Aldrich) 521. 

Samples were trypsin-digested and purified using solid-phase extraction C18 Sep-Pak columns 

(Waters Corporation, Milford, MA).  Isotopically labeled oxidized (nitrated and chlorinated) 

peptides and native apoA-I peptides were spiked into samples following trypsin digestion. MRM 

analysis was performed with an Agilent 6490 Triple Quadrupole MS system equipped with an 

Agilent 1200 Infinity UPLC (Agilent Technologies, New Castle, DE) in positive ion mode 521.  

Cholesterol efflux capacity (CEC) and MPO Quantification 

 CEC assay and MPO quantification were performed as described 521. J774 cells were 

maintained in Dulbecco's modified Eagle's medium (DMEM)/10% fetal bovine serum (FBS, Life 

Technologies, Carlsbad, CA) 323. To radiolabel cellular free cholesterol pool, cells were incubated 

with 1 µCi/ml [3H] cholesterol (Perkin Elmer, Waltham, MA) in DMEM/ 1 mg/ml fatty acid-free 
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bovine serum albumin (FAFA, BSA) and 5 µg/ml ACAT inhibitor Sandoz 58-035 (Sigma-

Aldrich) overnight. Cells were incubated with 0.5 mM 8-Br-cAMP to induce ABCA1 expression 

for 20 hours, then incubated with DMEM/FAFA with or without 2.8% apoB-depleted plasma for 

4 hour at 37 oC and chilled on ice.   Medium was collected and filtered, [3H] cholesterol content 

of medium and cells was quantified, and fraction of total [3H] cholesterol released into the medium 

was calculated 521.  

HDL Proteomic Analysis 

Blood was obtained in heparinized tubes and plasma was collected from 10 Ctrl and 10 

SLE patients by Ficoll-Paque (GE Healthcare) density centrifugation. Plasma was separated by gel 

filtration chromatography using two Superose 6 (GE Healthcare) columns arranged in series on an 

AKTA fast protein liquid chromatography (FPLC) system (GE Healthcare) as described 

previously 523. Fractions within the HDL peak were combined to generate pools representing large 

and small HDL. Pooled fractions were applied to a phospholipid binding resin to isolate HDL from 

abundant co-migrating plasma proteins and, after washing twice with 50 mM ammonium 

bicarbonate, lipoprotein bound proteins were digested with sequencing grade trypsin (1.5 

µg/sample) overnight. Resulting peptides were reduced with dithiothreitol and 

carbamidomethylated with iodoacetamide prior to drying in a speedvac. Dried peptides were 

suspended in 0.1% trifluoroacetic acid and desalted using ZipTips (Millipore). Desalted peptides 

were dried and suspended in 20 µL of 0.1% formic acid. Samples were analyzed by ESI-MS/MS 

on an Orbitrap Elite mass spectrometer (Thermo Scientific) 523. Peak lists were searched against 

the UniProtKB/Swiss-Prot database using the Mascot search engine and Scaffold (version 

Scaffold_2_04_00, Proteome Software, Portland, OR) was used to validate protein identifications. 
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Statistical significance of group comparisons, by spectral counting, was determined in GraphPad 

Prism (GraphPad, La Jolla, CA). 

Induction and Purification of NETs and Co-culture Assays 

 Human Ctrl NDG and lupus LDGs were purified from peripheral blood, and murine 

neutrophils from bone marrow 33, 214.  Cells were plated at a density of 0.25 x 106 cells/cm2 on 

tissue-culture plates in RPMI-1640 without phenol red (Life Technologies) for 3-ClY 

quantification, or in Krebs Ringer’s Phosphate Glucose (KRPG) buffer (Sigma-Aldrich) for 3-NY 

quantification 214. NDG were cultured in the presence or absence of 20 nM PMA (Sigma-Aldrich) 

for 3 hours (human), or 100 nM PMA for 5 hours (mouse) to induce NET formation 216. As LDGs 

form NETs spontaneously, they were left unstimulated. To inhibit NET formation, 200 µM Cl-

Amidine was added for the full incubation 33. As NOX and MPO are required for NET formation 

but are also targets for the conditions where oxidation was inhibited, cells were allowed to form 

NETs for 1 hour before adding the following inhibitors: diphenylene iodonium (DPI, blocks NOX 

activity, 100 µM, Tocris, Bristol, UK), L-NG-monomethyl-L-arginine (L-NMMA, blocks NOS 

activity, 200 µM, Abcam, Cambridge, UK) and 3-amino-1,2,4-triazole (3-AT, blocks MPO 

activity, 10 mM, Sigma-Aldrich) 216, 225, 406, 524-526. Inhibitors were replenished hourly during NET 

formation. NETs were isolated as described, using 100 U/mL DNase I (Roche, Branchburg, New 

Jersey) 189. Supernatants resulting from the final spin contain NET-bound proteins and DNA. Ctrl, 

(negligibly oxidized) HDL (50 µg/mL) was incubated with these NETs in the presence or absence 

of L-NMMA, 3-AT and DPI for 30 minutes at 37° C. Relative abundance of HDL oxidation was 

calculated as fold change of each condition relative to HDL oxidation with NET formation.  
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Quantification of NOS and NOX in Human and Murine NETs  

 Immunoblot: To detect NOS and NOX externalization during NET formation, digested 

human and murine NETs and whole neutrophil pellets were harvested.  NET proteins were 

precipitated with acetone; 50 µg of NET or whole cell pellet proteins were separated on a 10% 

SDS-PAGE gel. Proteins were transferred onto a nitrocellulose membrane, incubated in 5% bovine 

serum albumin (BSA) / phosphate buffered saline (PBS) 0.1% Tween-20 for 1 hour, and stained 

with goat anti-mouse p47 or p22 (1:200, Santa Cruz Biotechnology, Santa Cruz, CA), rabbit anti-

eNOS or iNOS (1:100, Abcam) or anti-tubulin (negative control, 1:500, Sigma-Aldrich), followed 

by horseradish peroxidase-conjugated rabbit anti-goat (1:1000, Millipore, Temecula, CA) or goat 

anti-rabbit (1:5000, Jackson ImmunoResearch, West Grove, PA) secondary antibodies. 

Densitometry was performed with ImageJ (Bethesda, MD). 

 Fluorescence microscopy: Human NDG and lupus LDGs and mouse neutrophils were 

seeded onto poly-L-lysine (Sigma-Aldrich) coated coverslips, stimulated with PMA as above, or 

left unstimulated (for LDGs) before fixing in 4% paraformaldehyde and staining with goat anti-

p47 or p22 (both 1:50 dilution, Santa Cruz), or rabbit anti-iNOS or eNOS (both 1:20 dilution, 

Abcam) for 1 hour at 4 °C, followed by secondary fluorochrome-conjugated antibodies (Jackson 

ImmunoResearch) and Hoechst 33342 (Life Technologies) 33, 214. Coverslips were mounted with 

ProLong Gold Antifade (Life Technologies). Images were acquired on a Zeiss LSM510 META 

confocal laser-scanning microscope (Carl Zeiss Microimaging, Thornwood, NY) with a ×63 lens 

and quantified 33, 214.  

Effect of Chloroquine on Neutrophils 

 Ctrl or lupus whole blood was incubated with 250 ng/mL chloroquine (Sigma-Aldrich, CQ) 

for two hours before neutrophils were purified as above 527. Effect of CQ on NET formation was 
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quantified using SYTOX assay (Life Technologies), immunofluorescent staining and immunoblot 

189. To determine the effect of CQ on MPO, NOS and NOX activity, 1 x 106 neutrophils/mL, in 

either RPMI 1640 or KRPG with protease inhibitor cocktail (Roche), were homogenized at 35,000 

rpm (Omni International, Kennesaw, GA) for three 10 second intervals on ice before treatment 

with or without 20 nM PMA for 30 minutes, then in the absence or presence of 250 ng/mL CQ for 

30 minutes, and finally with or without 50 µg/mL HDL for 30 minutes.  This solution was frozen 

and analyzed for 3-ClY and 3-NY oxidation.  

In vivo Cl-Amidine Administration  

 PAD inhibitor Cl-amidine (Cl-Am) was synthesized 528. Twelve-week old NZM female 

mice were administered daily subcutaneous injections of Cl-Am (10 mg/kg/day) or PBS (Life 

Technologies) for 14 weeks 33.  Isolated plasma and HDL were analyzed for 3-ClY and 3-NY 

oxidation 34.   

Statistical Analysis 

 Pearson correlation coefficients were calculated between outcomes studied and patient 

characteristics. Multivariable linear models were used to explore significant predictors of the 

outcomes of interest. The method of best subsets with the R-squared selection criterion guided 

model selection process 521. These models were also used to estimate and test differences between 

Ctrl and SLE groups. Skewed variables were logarithm base 10 (log10) or natural log (ln) 

transformed to satisfy statistical assumptions. Normally distributed variables were not 

transformed. A p value <0.05 was considered significant. Analyses were conducted using SAS 

V.9.2 (SAS Institute Inc., Cary, North Carolina, USA) or GraphPad Prism (GraphPad). For Table 

2-2, variables indicated with an “*” were transformed (natural log-scale) prior to correlation 

calculation. Values indicated with “**” are adjusted as follows: CEC (%): Adjusted for HDL 
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(n=50, R2 =0.08); MPO (fmol/ml): Adjusted for Age, BMI, and LDL (n=49, r2 =0.33); HDL-3-

ClY: Adjusted for BMI (n=59, R2 =0.10); HDL-3-NY: Adjusted for cholesterol (n=54, R2 =0.34); 

Plasma-3-3-ClY: Adjusted for LDL (n=50, R2 =0.21); Plasma-3-NY: Adjusted for LDL (n=50, R2 

=0.07).  



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-1. Demographics of patients used for oxidation study. Statistically significant differences between 

groups noted with “*” (p<0.05). Normally distributed variables are displayed as mean ± standard deviation. 

Skewed variables are displayed as median (IQR). HDL= high-density lipoprotein; LDL= low-density lipoprotein; 

ESR= Erythrocyte Sedimentation Rate; SLEDAI= Systemic Lupus Erythematosus Disease Activity Index; ACE= 

Angiotensin-converting enzyme; MPO= myeloperoxidase. Duplicated from Smith et al. (2014). 
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C. Results 

Patients Characteristics 

 Ctrl and lupus patients did not differ in most demographic characteristics (Table 2-1). SLE 

patients also exhibited total cholesterol, BMI, TG, LDL, and HDL levels within the normal range 

for CVD risk factors mentioned previously 274-276. Levels of LDL were significantly lower in SLE 

compared to Ctrl, possibly associated with the prevalent use of statins (22.5%). SLE statin use 

correlated with elevated plasma 3-ClY levels, whereas antimalarial use was associated with higher 

plasma 3-NY content (Table 2-2). SLE patients displayed significantly higher levels of plasma 

MPO compared to Ctrls (Table 2-1). Elevated MPO levels significantly correlated with a higher 

ESR and low LDL levels (Table 2-2). Oxidation levels did not correlate with SLEDAI (Table 2-

2).  

CEC is Impaired in SLE 

 The ability of HDL to promote cholesterol efflux from macrophages (CEC) is a metric of 

HDL function and has a strong inverse association with CVD 408, 503, 527.  Plasma from patients 

with SLE displayed significantly diminished CEC when compared to Ctrl plasma (Table 2-1, 

Figure 2-2A).  These results persisted after adjustment (listed in the Statistical Analysis section) 

for significant predictors of CEC (Table 2-2) and support previous indications that dysfunctional 

HDL present in SLE leads to impaired CEC and may promote pro-atherogenic responses 503.   

Chlorinated and Nitrated HDL is Increased in SLE  

 Impaired CEC has been associated with HDL modifications such as 3-ClY and 3-NY 401, 

408.  We quantified levels of 3-ClY, a highly specific product of MPO, and 3-NY, a product of 

MPO and other RNS-producing enzymes, in SLE and Ctrl isolated HDL and in total plasma 522, 

529. SLE HDL displayed 2-fold higher median levels of 3-NY (Figure 2-2B) and 121-fold higher 
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median levels of 3-ClY (Figure 2-2C), compared to Ctrl HDL even after adjustment (listed in the 

Statistical Analysis section). As previous studies have identified that chlorination of tyrosine (Y) 

residue 192 (Y-192) within the apoA-I protein most directly associates with impaired CEC, with 

six other tyrosine residues in apoA-I (Y-18, -29, -100, -115, -166, and -236) as other potential sites 

of oxidation, we determined if regiospecific nitration and chlorination patterns occur in SLE 408, 

409, 529.  Levels of 3-NY HDL oxidation were highest at Y-192, 115, 100, 29 and 18 in SLE (Figure 

2-2D). The highest levels of MPO-dependent 3-ClY HDL oxidation in SLE samples were observed 

at Y-192, -115 and -18 (Figure 2-2E), when compared to Ctrl samples. Taken together, this data 

suggests that regiospecific modifications to HDL by MPO and RNS-producing enzymes, 

specifically at Y-18, -115, and -192, may be of particular interest in the context of SLE-associated 

CVD.    

 When we examined correlations between levels of 3-NY and 3-ClY in SLE HDL, they 

significantly positively correlated with each other (Figure 2-2F), suggesting that these oxidative 

modifications are generated at similar sites in the body. There was no significant correlation 

between 3-NY and MPO levels (Figure 2-2G), but the levels of 3-ClY significantly correlated with 

plasma MPO levels (Figure 2-2H). This suggests that the RNS leading to HDL nitration are not 

primarily derived from MPO, but from another oxidative source. While Y-115 and -18 displayed 

the highest levels of oxidation in lupus, 3-ClY Y-192 showed the most significant positive 

correlation with plasma MPO levels (Figure 2-2I). Overall, these results support the notion that 

SLE patients possess high levels of oxidative species leading to HDL oxidation and impairment 

of lipoprotein function. 
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Table 2-2. Correlations of lipoprotein characteristics and plasma oxidation with clinical features in all 

subjects and in patients with SLE only.  Shaded boxes reach statistical significance (p<0.05). HDL = high-

density lipoprotein; LDL= low-density lipoprotein; CRP= C-reactive protein; ESR = erythrocyte sedimentation 

rate; SLEDAI = SLE Disease Activity Index; ACE = angiotensin-converting enzyme; CEC= cholesterol efflux 

capacity; MPO = myeloperoxidase. Variables with “*” were transformed (natural log-scale) prior to correlation 

calculation. Values indicated with “**” are adjusted as stated in the Statistical Analysis section. Duplicated from 

Smith et al. (2014) 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2. Plasma and HDL of SLE patients exhibit high levels of dysfunction and oxidation.  (A) The 

cholesterol efflux capacity of plasma samples from Ctrl and lupus patients were examined in J774 cells. Levels of 

HDL (B) 3-NY and (C) 3-ClY were examined in control and lupus patients. The regiospecific tyrosine (Y) 

oxidation patterns of (D) 3-NY and (E) 3-ClY were determined for control and lupus HDL. Correlations between 

lupus and control (F) 3-NY and 3-ClY, (G) plasma MPO and 3-NY, (H) plasma MPO and 3-ClY, and (I) plasma 

MPO and Y192 3-ClY oxidation were determined. Modified from Smith et al. (2014). (N= 20 Ctrl and N=40 SLE 

donors, *p<0.05, **p<0.006, ***p<0.0001) 
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SLE HDL Exhibits an Altered Proteome  

 In addition to examining differences in oxidation levels, we quantified protein content 

variations by FPLC in HDL collected from the plasma of 10 Ctrl and 10 SLE donors. Compared 

to Ctrl HDL, SLE HDL showed significantly lower complement C4-B, apoA-II and higher levels 

of vasorin, plasma protease C1 inhibitor, protein Z-dependent protease inhibitor, immunoglobulin 

fragments, and complement factor I (Figure 2-3A). Vasorin is rarely reported on in the literature. 

It is largely expressed by VSMCs 530. When cleaved by ADAM17 protease, it binds to TGF-β to 

prevent its signaling 531. It appears to have a role in vascular remodeling, though whether it leads 

to repair or damaging fibrosis is not clear 530-532. 

 

 

   

 

 

NET-derived MPO, NOX and NOS Promote HDL Oxidation In Vitro 

 As levels of RNS- and MPO-derived oxidative modifications are markedly elevated in 

lupus and correlate with functional impairment of CEC, we attempted to identify the putative 

sources of enhanced RNS and MPO activity in SLE. MPO HDL oxidation is classically attributed 

to plaque macrophages and phagosome activity 414, 415, 435-437, 515, 533. Another possible source is 

peripheral blood MPO, reported enhanced in SLE and which we were able to confirm (Tables 2-1 

and 2-2) 534. As a subset of peripheral blood lupus granulocytes (LDGs) have a significantly 

enhanced capacity to form NETs, a source of externalized NOX and MPO, we examined if the 

Figure 2-3. SLE HDL demonstrates a different protein content than Ctrl HDL. Plasma HDL proteomics was 

determined by FPLC. (N=10 Ctrl and SLE donor samples, p<0.05) 
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NETs could induce HDL oxidation 214, 216, 525. Additionally, because we found that MPO levels did 

not correlate with 3-NY HDL levels (Figure 2-2G), we examined if an alternative producer of RNS 

(NOS and NOX formation of peroxynitrite, Figure 2-1) could be present in NETs and serve as a 

source of HDL nitration.  

 MPO (not shown), NOX (p22 and p47 subunits) and NOS (eNOS and iNOS) were all 

detected on both Ctrl NDG and LDG NETs by fluorescence microscopy and immunoblot (Figure 

2-4A). Next, we exposed healthy HDL to NETs isolated from PMA-stimulated Ctrl NDG or 

spontaneously by lupus LDGs, in the absence or presence of MPO, NOX and NOS inhibitors (3-

AT, DPI and L-NMMA, respectively), and examined HDL oxidation profile. As shown in Figures 

2-4B and 2-4C, NETs from both lupus LDGs and Ctrl NDG significantly enhanced HDL 

oxidation. Hypochlorous acid (HOCl), which is synthesized by MPO downstream of NOX activity, 

is the major source of HDL chlorination in humans. When NETting Ctrl NDGs and lupus LDGs 

were treated with 3-AT and DPI to block MPO and NOX activity, respectively, HDL 3-ClY 

oxidation was abrogated (Figure 2-4B). These results support the hypothesis that MPO and NOX 

externalized on NETs can induce 3-ClY HDL oxidation in circulation.  

 Because both NOS and MPO are capable of producing the RNS required for HDL nitration, 

we used a KRPG solution with no added nitrite to examine the role of NOS alone in 3-NY 

oxidation. Under these conditions, only NOS could generate the nitric oxide radical (NO•) required 

for peroxynitrite formation that could lead to HDL nitration (Figure 2-1). MPO, under these 

conditions, could not be the source of RNS. Indeed, the MPO inhibitor 3-AT was ineffective at 

blocking HDL nitration, while the NOS inhibitor L-NMMA significantly abrogated HDL 3-NY 

oxidation for both lupus LDGs and Ctrl NDG (Figure 2-4C). These results suggest that NET-bound 
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NOS is a source of the RNS causing HDL nitration, and may explain why the levels of MPO did 

not correlate with the levels of 3-NY oxidized HDL in SLE.   

Chloroquine (CQ) Blocks NET Formation In Vitro 

 As a majority (72.5%, Table 2-1) of the SLE patients studied were on anti-malarials, we 

determined the effect of physiologically relevant concentrations of CQ (250 ng/mL) on NET 

formation 527. CQ significantly inhibited NET formation in Ctrl NDGs and lupus LDGs (Figure 2-

5A-C). To assess if CQ modified MPO, NOS and NOX activity, neutrophils were homogenized, 

treated with CQ, and incubated with HDL. CQ did not significantly block 3-ClY or 3-NY oxidation 

in lupus LDGs or Ctrl NDGs (data not shown). This indicates that though CQ may block NET 

formation, this is not accomplished by inhibiting oxidative enzyme activity. 
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Figure 2-4. Human Ctrl NDGs and lupus LDGs contain the oxidative machinery and capacity to cause 3-

ClY and 3-NY oxidation. (A) NOX (p22 and p47) and NOS were detected in NETs by immunofluorescence. The 

ability of NETs from NDGs and LDGs to induce (B) 3-ClY and (C) 3-NY HDL oxidation was examined. The 

activity of NET formation, MPO, NOS or NOX was inhibited by Cl-Am or lack of PMA, by 3-AT, by NMMA, 

or by DPI, respectively. Duplicated from Smith et al. (2014). (Data are displayed as mean ± SEM, N= 6/group, 

*p<0.03, ** p < 0.009, *** p < 0.0009) 
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Figure 2-5. Chloroquine (CQ) impairs NET formation. Both blood NDGs and LDGs were incubated with CQ 

and examined for NET formation by (A) SYTOX fluorescent assay and (B) immunofluorescence.  (C) 

Representative images of NET formation with CQ treatment, staining for MPO, iNOS and NOX (p22) 

components. Duplicated from Smith et al. (2014). (N=4/group, Data are displayed as mean ± SEM, *p<0.03, *** 

p < 0.0009, **** p < 0.0001) 
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NET-derived NOS and NOX are Sources of HDL Oxidation in Murine Systems 

 While present in murine NETs, MPO is not associated with murine atherosclerosis 533, 535. 

Lupus-prone NZM mice display striking elevations of 3-NY HDL oxidation, but not 3-ClY, when 

compared to Ctrl mice, possibly because murine leukocytes contain less MPO, the sole known 

source of 3-ClY oxidation, than human leukocytes 34, 415, 533, 535. We therefore examined if NOX 

and NOS were present in murine NETs and could produce RNS to form 3-NY oxHDL 524, 525. We 

identified NOS and NOX (p22 and p47) machinery present in PMA-induced murine NETs (Figure 

2-6A). To verify that these NET-bound enzymes could cause HDL oxidation, we exposed native 

HDL (purified from Ctrl Balb/c mice) to NZM or Balb/c NETs in the absence or presence of MPO, 

NOX and NOS inhibitors (3-AT, DPI and L-NMMA, respectively) and examined HDL oxidation 

profiles 216, 225, 406, 524-526.  Consistent with our previous report, we found no significant 3-ClY 

oxHDL patterns after HDL incubation with murine NETs (Figure 2-6B) 34.  However, a significant 

oxidation pattern for 3-NY oxHDL was observed (Figure 2-6C). While experiments were 

performed in nitrite containing media (RPMI) so that either NOS or MPO could potentially 

promote HDL nitration, only DPI and L-NMMA significantly blocked NET-induced 3-NY HDL 

oxidation. These results support the idea that MPO is less active in mice and that NOX and NOS 

are the primary sources of the oxidative species required for HDL nitration in murine systems. 

 Finally, to verify that NETs are an important source of HDL oxidation in the periphery, we 

inhibited NET formation in NZM mice in vivo and examined their oxidative profile. NZM mice 

received the PAD inhibitor Cl-Am daily for 14 weeks, as PAD activity is necessary for NET 

formation 33, 536.  Cl-Am-treated mice displayed significantly decreased 3-NY content in HDL, but 

not total plasma, when compared to vehicle treated mice (Figure 2-6D). These results indicate that 

in vivo inhibition of NET formation in lupus-prone mice decreases HDL oxidation. 



43 

 

D. Summary 

We sought to determine if lupus HDL and plasma were oxidized and displayed impaired 

CEC, factors known to promote atherogenesis. We also pursued a putative innate immune 

mechanism that would explain the modified HDL in SLE. We found that compared to controls, 

SLE plasma demonstrated impaired CEC and SLE plasma proteins, including apoA-I, showed high 

3-ClY and 3-NY oxidation levels. Because 3-ClY and 3-NY oxHDL levels correlated with each 

other, but 3-NY did not correlate with MPO levels, this suggested that both modifications occur at 

similar sites in the vasculature, though not through the same enzymes. As the plasma oxidation 

levels were so high in SLE, the results also suggested that the site of oxidation was largely in the 

circulation. Most of the literature to date has focused on macrophages in the atherosclerotic plaque 

as sources of MPO-driven HDL oxidation, yet circulating neutrophils contain higher levels of 

MPO than tissue-resident macrophages, and both neutrophils and NETs are present around 

thrombotic and atheroma plaques 415, 476, 533, 537-539. Indeed, NOS, MPO and NOX externalized in 

human and murine NETs were capable of inducing a CVD risk pattern of HDL oxidation. Finally, 

we demonstrated that in vivo NET inhibition potently decreased levels of 3-NY oxHDL in lupus-

prone mice. Therefore, NETs may play a crucial role in the transformation of HDL into its pro-

atherosclerotic form.  

These results indicate a novel mechanism of HDL oxidation, through NET activity which 

may occur primarily in the circulation rather than in sub-endothelial plaques. Given the high rate 

of spontaneous NET activity exhibited by LDGs, our results also contribute to the supposition that 

these granulocytes may be particularly pathogenic to lupus patients. Indeed, it would be interesting 

to see if LDGs can be detected in lupus atherosclerotic plaques or if levels of blood LDGs correlate 

with HDL oxidation levels. The increased presence of these cells in the blood of SLE patients 
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combined with their extensive NET activity may explain why the circulating plasma in SLE 

showed higher levels of oxidation and impaired CEC than seen even in “typical” CVD, found in 

the general population 409.  

Given the high levels of circulating plasma oxidation, we focused more on HDL than LDL, 

which is a less mobile lipoprotein and is generally found stuck in plaques. However, as NET 

structures have also been detected in tissue, whether NETs in SLE also contribute to LDL oxidation 

should be explored in the future 33, 40, 214, 425, 540. This may prove a potential biomarker for SLE 

cardiovascular health along with 3-ClY and 3-NY HDL oxidation. However, a larger cohort of 

patients than was used in this study would be needed to determine if these biomarkers are sensitive 

and specific to SLE CVD. Such markers are needed given the lack of association between 

Framingham risk factors and lupus atherosclerosis.  

Pharmacological inhibition of NET formation, by Cl-Am e.g., has been proposed as a 

possible lupus therapy. Indeed, lupus-prone mice treated with such inhibitors show reduced tissue 

damage, levels of auto-reactive antibodies and inflammatory cytokines 33, 40, 425. Our murine results 

indicate that such therapies may also be beneficial for SLE CVD. However, our study was limited 

by the lack of well-defined lupus-prone mouse models which also develop atherosclerosis. As 

mentioned previously, mice in general do not develop CVD. NZM mice do show endothelial cell 

dysfunction and high levels of HDL 3-NY oxidation, but they fail to develop atherosclerotic 

plaques 34. As such, we did not measure the effect of Cl-Am on plaque formation in lupus mice. 

Additionally, as 3-NY oxidized HDL (predominant in mice) is not associated with impaired CEC, 

we did not measure the effect of Cl-Am treated on murine CEC 408. However, as the HDL from 

lupus patients and mice does possess the hallmarks of a dysfunctional, pro-atherosclerotic 

lipoprotein, we asked whether these modifications would, in turn, amplify inflammatory responses. 
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Figure 2-6. Murine granulocytes contain the oxidative machinery and capacity to cause 3-NY oxidation and 

abrogation of NET formation blocks 3-NY HDL levels. (A) NETs from mice were stained for NOX components 

(p22 and p47) and NOS. (B) The ability of NETs from Balb/c and NZM mice to induce 3-ClY HDL oxidation was 

examined (N=4/group). (C) The ability of NETs from Ctrl Balb/c and NZM mice to induce 3-NY HDL oxidation 

was quantified. The activity of NET formation, MPO, NOS or NOX was inhibited by lack of PMA, by DPI, or by 

NMMA, respectively (N=8/group). (D) Levels of plasma and HDL 3-NY in NZM mice that received daily s.c. 

injections of PBS (N= 10) or Cl-Am (N=10) for 14 weeks. Duplicated from Smith et al. (2014). (Data are displayed 

as mean ± SEM, ** p < 0.01, **** p < 0.0001)  
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Chapter 3 

Lupus HDL Promotes Pro-inflammatory Responses in Macrophages by 

Binding LOX1R and Failing to Promote ATF3 Activity 

A. Introduction: 

 “Healthy” HDL has a strong inverse correlation to CVD risk, and promotes numerous 

vasoprotective mechanisms: RCT, and inhibition of LDL oxidation, adhesion molecule 

expression, TLR-induced inflammatory responses and NFκB activation 319, 367, 368, 541, 542.  When 

HDL is oxidized, however, it loses many of these vasoprotective effects 239, 401, 408, 409, 501, 503, 543. 

As both SLE and CVD appear to share high levels of HDL oxidation and altered monocyte and 

macrophage immune responses, we hypothesized that these pathways work together to induce 

enhanced atherosclerosis in SLE 197, 333.   

 We predicted that SLE HDL would have an impaired ability to block TLR-induced 

inflammation, and may even promote inflammatory cytokine production in macrophages. We 

further examined the role of SLE HDL on macrophage polarization and induction of anti-

inflammatory activity through transcription factor regulation. As various scavenger receptors 

expressed on macrophages (LOX1R, CD36, SR-BI) interact with HDL to modify cholesterol and 

inflammation homeostasis, we analyzed the role of these receptors on SLE HDL-induced 

responses 197, 544. Finally, we hypothesized that a recently described HDL mimetic (ETC-642) 

could abrogate inflammatory responses induced by oxidized HDL both in vitro human 

macrophages and in vivo lupus-prone NZM mice 512, 545. These findings would enable us to 



47 
 

elucidate a novel pathway by which the highly oxidized HDL in SLE transforms healthy 

macrophages into pro-inflammatory, pro-atherogenic cells.  

 

B. Materials and methods 

Subject Recruitment 

 The same cohort of lupus patients were used as in chapter 2.    

HDL and ETC-642 Preparation 

 HDL was purified as described above 529. ETC-642 was prepared using ESP24218 

apolipoprotein A-I mimetic peptide, sphingomyelin (SM) and 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) at 1:1:1 weight/weight ratios 512, 546. All components were dissolved in 

organic solvent, lyophilized and hydrated with sterile PBS (Life Technologies) 546. The purity and 

size distribution of the resulting ETC-642 particles were examined by gel permeation 

chromatography and dynamic light scattering, respectively. ESP24218 was prepared by custom 

synthesis (GenScript Corp, Piscataway, NJ) and phospholipids were purchased (Avanti Polar 

Lipids, Alabaster, AL). Experimental controls for ETC-642 components, suspension of DPPC-SM 

mixture and ESP2418 solution, were prepared by sonication of lipid powders in PBS.  

Macrophage Culture 

 SLE and Ctrl PBMCs were isolated by Ficoll-Paque (GE Healthcare Life Sciences) density 

gradient. Cells were plated at a density of 0.5x106 cell/cm2 and allowed to adhere for 2 hours; non-

adherent cells were removed and attached cells cultured in fresh X-Vivo-15 media (Lonza, 

Basel, Switzerland) with 10% FBS (Gemini, Sacramento, CA). Monocytes were differentiated into 

macrophages over the course of 1 week, with media changes every 3 days, and purity was 

determined by FACS analysis.  
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Culture Conditions, RNA Isolation and RT-qPCR  

 When determining the effect of HDL alone on inflammatory cytokine production, Ctrl 

macrophages were cultured in the presence or absence of Ctrl or SLE HDL (50 µg/mL) for 4 hours 

before adding TriPure Isolation Reagent (Roche, Indianapolis, IN). When determining the effect 

of HDL on responses to TLR agonists, the macrophages were incubated in the presence or absence 

of ETC-642, Ctrl or SLE HDL, or S1P1-3 (50 µg/mL) for 4 hours before media was removed, then 

incubated with Pam3CSK4 (300 ng/mL, InvivoGen, San Diego, CA), R848 (1 µg/mL, InvivoGen), 

or LPS (100 ng/mL, Sigma-Aldrich) plus 2% lipoprotein deficient serum (LPDS, Millipore) in 

DMEM (Life Technologies) for 4 hours. For macrophage polarization assessment, Ctrl and SLE 

macrophages were cultured in the presence or absence of Ctrl or SLE HDL (50 µg/mL) with 2% 

LPDS for 3 days. For human ETC-642 studies, various SLE HDL: ETC-642 ratios (1:1, 1:2, 1:4, 

2:1, 4:1) were tested on Ctrl macrophages for 4 hours.  

 RNA was isolated using a Direct-zol RNA MiniPrep kit (Zymo Research, Irvine, CA) and 

purity determined by NanoDrop 1000 (Thermo Scientific). Total RNA (1 µg) was reverse 

transcribed using iScript Reverse Transcriptase (BioRad, Hercules, CA) and RT-qPCR was 

performed using SSoAdvanced Universal SYBR Green (BioRad). Primer sequences are included 

in Table 3-1 and 3-2. Samples were run in duplicate using a CFX96 C1000 Touch Real Touch 

Thermal Cycler (Bio-Rad). Data was analyzed using Bio-Rad CFX Manager software. 
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ELISA 

 Macrophages from 5 Ctrl donors were incubated with or without azide-free goat IgG 

isotype control (5 µg/mL, SouthernBiotech, Birmingham, AL) or goat IgG anti-LOX1R blocking 

antibody (5 µg/mL, R&D Systems, Minneapolis, MN) in DMEM for 30 minutes, before addition 

of HDL or Pam3CSK4 in DMEM with 2% LPDS for 18 hours.  Commercially available ELISAs 

were performed to quantify human IL-6 and TNF in supernatants following manufacturer’s 

instructions (ALPCO, Salem, NH). For murine in vivo studies, serum IL-6 was quantified by 

ELISA (eBioscience, San Diego, CA). 

Table 3-1. Primers used for human RT-qPCR. 
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Immunofluorescence Microscopy 

 For TLR studies, Ctrl macrophages were cultured with LPS (100 ng/mL, Sigma-Aldrich), 

Pam3CSK4 (300 ng/mL, InvivoGen), no, Ctrl or SLE HDL (50 µg/mL) for 2 hours.  For scavenger 

receptor studies, macrophages were cultured with isotype control, anti-LOX1R blocking antibody 

(see above), rabbit anti-CD36 blocking antibody (1:100, Abcam), or rat anti-SR-BI/II blocking 

antibody (1:100, Abcam) before incubation with HDL in DMEM/2% LPDS for 30 minutes (for 

ATF3 experiments), followed by fixation with 4% PFA (Santa Cruz). Fixed cells were 

permeabilized with 0.2% Triton X-100 (Sigma-Aldrich) for 10 minutes, washed, and then blocked 

with 0.2% gelatin for 30 minutes. Cells were incubated for 1.5 hours with rabbit anti-p65 (1:500, 

FIVEphoton Biochemicals, San Diego, CA), mouse anti-ATF3 (1:100, Abcam), mouse anti-TLR-

4 (1:250, Abcam), or mouse anti-TLR-2 (1:100, Abcam) followed by incubation for 1 hour with 

donkey anti-rabbit, or donkey anti-mouse Alexa Fluor 555 (1:500, Life Technologies), then with 

Hoechst 33342 (1:1000, Life Technologies) for 5 minutes.  Coverslips were mounted with 

ProLong Gold Antifade (Life Technologies). Images were acquired on a Zeiss LSM 510 META 

laser scanning confocal microscope (Carl Zeiss Microscopy) with a x63 lens and quantified using 

the Zeiss Zen 2012 SP1 software’s weighted co-localization coefficient analysis.  

Flow Cytometry 

 Ctrl or SLE PBMCs were isolated by Ficoll-Paque (GE Healthcare Life Sciences) density 

gradient. Cells were blocked in FACS solution (Biolegend) for 30 minutes. Surface markers were 

stained for 20 minutes at room temperature: Pacific Blue anti-human CD16, PE anti-human CD14, 

APC anti-human CD86 (Biolegend). Monocytes were classified as either non-classical (CD14+, 

CD16++), intermediate/“inflammatory” (CD14++,CD16+), and classical (CD14++, CD16-) as 

described 376. For M1/M2 studies, cultured SLE or Ctrl macrophages were cultured in the presence 
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or absence of Ctrl or SLE HDL (50 µg/mL) with 2% LPDS in DMEM for 3 days. Cells were 

harvested using StemPro Accutase Reagent (Life Technologies), blocked in FACS solution 

(Biolegend, San Diego, CA) for 30 minutes, and incubated with anti-human CD206 APC and anti-

human CD40 Pacific Blue for 20 minutes at room temperature. For ATF3 quantification, cells 

were incubated in permeabilization buffer (eBioscience) and stained according to manufacturer’s 

instructions with rabbit FITC anti-ATF3 (1:100, Bioss, Woburn, MA). For human ETC-642 

studies, monocytes were isolated by negative selection from Ctrl PBMCs using MACS Monocyte 

Isolation Kit II (Miltenyi, San Diego, CA). Monocytes were then incubated in DMEM (Life 

Technologies) with 2% LPDS for 18 hours with Ctrl or SLE HDL (50 µg/mL). Cells were stained 

for intracellular ATF3 as stated above.  

Immunoblot 

 For studies on HDL-induced total ATF3 production, Ctrl macrophages were incubated in 

the presence or absence of Ctrl or SLE HDL for 18 hours. In additional experiments, Ctrl 

macrophages were incubated with isotype control or anti-LOX1R blocking antibody (see above) 

prior to adding HDL for 30 minutes (for ATF3) or 2 hours (for p65). Nuclear fractions were then 

isolated using a Nuclear Extraction Kit (Active Motif, Carlsbad, CA). Protein concentrations were 

determined by BCA analysis (Thermo Scientific). Total cell lysate (10 µg) or nuclear fractions (5 

µg) were run on 4-12% NuPAGE Bis-Tris gels (Life Technologies). Blots were blocked (10% 

BSA) and incubated overnight with rabbit anti-p65 (1:500, FIVEphoton Biochemicals), mouse 

anti-ATF3 (1:250, Abcam) or rabbit anti-histone 3 (1:2000, Abcam), followed by 1:10,000 donkey 

anti-rabbit or anti-mouse IRDye 680RD or 800CW (Li-cor, Lincoln, NE) for 1 hour at room 

temperature. Blots were imaged on an Odyssey CLx (Li-cor).  
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In Vivo Administration of ETC-642 

 The protocol was approved by the University of Michigan's Committee on Use and Care 

of Animals. NZM breeding pairs were obtained from Dr. Chaim Jacob (University of Southern 

California) 543. Balb/c mice were purchased from the Jackson Laboratory. Mice were bred and 

housed in a specific pathogen–free barrier facility at the University of Michigan. Starting at 10 

weeks of age, NZM female mice were treated with ETC-642 (15 mg/kg, N=8) or equal volume 

PBS (N=8) for 13 weeks, three times/week via tail vein injection. Mice were euthanized at 23 

weeks of age, before clinical development of renal disease became apparent. At euthanasia, spleens 

were homogenized with an Omni TH Motor and probes (Omni International, Kennesaw, GA) and 

resulting splenocyte RNA used for RT-qPCR (see above). Serum was collected from terminal 

bleeds. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-2. Primers used for murine RT-qPCR. 
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Statistical Analysis 

 Significance was determined as stated in chapter 2.    

 

C. Results 

SLE HDL Induces Pro-inflammatory Responses in Macrophages and Fails to Abrogate 

Inflammatory Cytokine Synthesis Triggered by TLR Agonists. 

We showed that SLE HDL is enriched in 3-NY and 3-ClY HDL oxidation and displays 

impaired CEC when compared to Ctrl HDL, yet we wished to determine the inflammatory nature 

of this SLE HDL (Table 2-1, 2-2, and Figure 2-2) 259, 501, 503, 543.  Ctrl macrophages exposed to SLE 

HDL synthesized significantly higher levels of IL-6 and TNF than macrophages exposed to Ctrl 

HDL, both at the mRNA (Figure 3-1A) and protein levels (Figure 3-1B).   

Ctrl HDL has recently been reported to block TLR-induced inflammatory cytokine 

production in macrophages 367, 368. We confirmed that Ctrl HDL significantly decreased the 

synthesis of IL-6, TNF, IL-1β and IL-12B mRNA following TLR-4, -1/2, or -7/8 stimulation 

(Figure 3-1C). In contrast, SLE HDL was impaired in its ability to block TLR-induced 

inflammatory cytokine synthesis in macrophages. The differences in the inhibitory effects of Ctrl 

versus lupus HDL on TLR signaling could be due to TLR sequestration or activation, either 

resulting in TLR internalization. To address this, we treated Ctrl macrophages with either Ctrl or 

SLE HDL and examined TLR-2 and -4 surface expression. Neither Ctrl nor SLE HDL affected 

TLR-2 or -4 surface expression or internalization (Figure 3-1D).  Because of the inflammatory 

nature of SLE HDL, we quantified the effect of each HDL cohort on NFκB activation, as measured 

by p65 nuclear translocation. SLE HDL promoted p65 nuclear translocation in Ctrl macrophages, 

compared to Ctrl HDL (Figure 3-1E). Overall, these results indicate that SLE HDL promotes 
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inflammatory responses in macrophages and has an impaired ability to block TLR-induced 

inflammatory signals, without modifying TLR cellular trafficking.   
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SLE Patients Exhibit an Enhanced Inflammatory Monocyte and M1 Macrophage Bias, which is 

Increased by SLE HDL. 

 As inflammatory monocytes are linked to CVD risk, we wanted to quantify inflammatory 

monocyte presence in our cohort of SLE patients 372, 373, 375, 378, 379, 547. Based on two different gating 

strategies (Figure 3-2A), SLE patients exhibit a higher level of non-classical and intermediate 

(inflammatory) monocytes than Ctrl donors (Figure 3-2 B and C) 376, 547. It should be noted that 

the SLE LDGs (granulocyte population visible in the SLE SSC-A vs. FSC-A in Figure 3-2A) do 

not contribute to these monocyte percentages as LDGs are CD86-.  

 M1 macrophages are associated with atherosclerosis and pro-inflammatory cytokine 

production, similar to what was induced in vitro by lupus HDL (Figure 3-1A). We therefore 

quantified M1 and M2 markers in monocyte-derived SLE and Ctrl macrophages. At the protein 

level, Ctrl macrophages had significantly higher CD206 (an M2 marker) expression compared to 

SLE macrophages when both were cultured in media alone (Figure 3-2D). The addition of Ctrl 

HDL to the SLE and Ctrl macrophages increased CD206 expression, but Ctrl HDL-treated SLE 

macrophages still showed significantly lower CD206 expression than Ctrl macrophages. Addition 

of SLE HDL to SLE or Ctrl macrophages did not increase CD206 expression. Additionally, Ctrl 

macrophages cultured in media alone showed lower CD40 (an M1 marker) expression compared 

to SLE macrophages cultured in media alone (Figure 3-2D) 195. Ctrl macrophages did not 

Figure 3-1. SLE HDL promotes inflammatory cytokine production, fails to block TLR-induced 

inflammation, and activates NFκB. (A) Ctrl macrophages incubated with Ctrl or SLE HDL were examined for 

IL-6, TNF, IL-1β and IL-12B mRNA levels by RT-qPCR (N=7). (B) Ctrl macrophages treated with Pam3CSK4, 

no, Ctrl, or SLE HDL and examined for IL-6 and TNF production by ELISA (N=5). (C) Ctrl macrophages were 

treated with no, Ctrl or SLE HDL before TLR agonist treatment (LPS, Pam3CSK4, R848, N=7). (D) Ctrl 

macrophages were treated with LPS, Pam3CSK4, no, Ctrl or SLE HDL and stained for TLR-2 or -4 (N=3). (E) 

Ctrl macrophages were treated with no, Ctrl or SLE HDL and stained for p65 to examine NFκB activation (N=7). 

(Data are displayed as mean ± SEM, *p<0.03, ** p < 0.009, *** p<0.0005, **** p < 0.0001) 
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significantly modify CD40 expression with the addition of SLE or Ctrl HDL. SLE macrophages, 

however, showed decreased CD40 expression following exposure to Ctrl HDL (Figure 3-2D). At 

the mRNA level, Ctrl macrophages exposed to Ctrl HDL displayed enhancement of M2 markers 

(CCL22 and CD206), while SLE HDL up-regulated the M1 marker SOCS3 and down-regulated 

M2 markers (Figure 3-2E) 195, 548. These results indicate that SLE monocytes and macrophages are 

biased towards an inflammatory signature, which is exacerbated by SLE HDL and dampened by 

exposure to Ctrl HDL. 
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Figure 3-2. SLE patients show an enhanced inflammatory monocyte and M1 macrophage phenotype. (A) 

PBMCs from SLE and Ctrl donors were stained for CD86, CD14, and CD16 to quantify non-classical, intermediate 

(inflammatory), and classical monocyte populations, based on two gating strategies (B and C, N=14). (D) Ctrl and 

SLE macrophages were treated with SLE and Ctrl HDL and CD206 and CD40 surface expression quantified by 

flow cytometry (N=5). (E) Ctrl macrophages were treated with Ctrl or SLE HDL. M1 (SOCS3) and M2 (CCL22, 

CD206) genes were quantified by RT-qPCR (N=5). (Data are displayed as mean ± SEM, * p<0.05, ** p<0.01, 

*** p<0.0005, **** p<0.0001) 
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Lupus HDL is Impaired in its Capacity to Promote ATF3 Synthesis and Anti-inflammatory Activity. 

 ATF3 is ubiquitously expressed at low levels, and is up-regulated in response to 

inflammatory signals (IFN-ɣ, IL-1β, LPS), cell stress and calcium signaling 549, 550. The 3’ UTR of 

ATF3 mRNA contains many AUUUA sites, indicating that it is an immediate-early response gene 

551. Through an interaction with histone deacetylase 1 (HDAC1), ATF3 blocks IL-6, TNF, and IL-

12B production downstream of inflammatory signals 365, 552. Recent evidence indicates that HDL 

from healthy individuals modulates inflammatory responses in macrophages through induction of 

ATF3 365, 367. Given that lupus HDL promoted inflammatory cytokine production and showed an 

impaired capacity to down-regulate TLR-induced cytokines, we examined the effect of this 

lipoprotein on ATF3 nuclear translocation and synthesis.  

 When exposed to lupus HDL, Ctrl macrophages failed to up-regulate ATF3 mRNA by 2 

hours when compared to Ctrl HDL treatment (Figure 3-3A). Furthermore, after 6 hours of 

exposure, Ctrl macrophages exposed to lupus HDL expressed significantly lower ATF3 mRNA 

levels compared to macrophages exposed to Ctrl HDL. At the protein level, Ctrl monocytes or 

monocyte-derived macrophages exposed to lupus HDL for 18 hours showed significantly lower 

ATF3 protein levels compared to Ctrl HDL, as demonstrated by immunoblot (Figure 3-3B) and 

flow cytometry (Figure 3-3C). Additionally, monocyte-derived SLE macrophages expressed lower 

levels of ATF3 than Ctrl macrophages (Figure 3-3D). These results suggest that lupus HDL fails 

to induce the expression of the inflammatory repressor ATF3 and this abnormality may play a role 

in the induction of macrophage pro-inflammatory responses observed in this disease.  
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The Binding of Lupus HDL to LOX1R Prevents the Nuclear Translocation of ATF3 and Promotes 

Inflammatory Responses in Macrophages.  

 As ATF3 nuclear translocation is key to its activity, we examined the effect of lupus HDL 

on ATF3 intracellular mobilization. While Ctrl HDL-treated Ctrl macrophages demonstrated 

significant ATF3 nuclear translocation, SLE HDL treatment failed to promote ATF3 activation 

Figure 3-3. SLE HDL fails to induce ATF3 production. (A) Ctrl macrophages were treated with no, Ctrl or SLE 

HDL and examined for ATF3 mRNA levels by RT-qPCR. (B) Ctrl macrophages were treated with no, Ctrl or SLE 

HDL and lysates stained examined for ATF3 protein by immunoblot. Intracellular ATF3 was quantified by flow 

cytometry (C and D) in (C) Ctrl monocytes incubated with no, Ctrl or SLE HDL and (D) Ctrl and SLE 

macrophages. (N=7, Data are displayed as mean ± SEM, * p<0.05, ** p<0.01, *** p<0.0005, **** p<0.0001) 



60 

 

(Figure 3-4A). One possible explanation for how SLE HDL blocks ATF3 nuclear translocation is 

the degradation of ATF3 protein and mRNA. However, as differences in ATF3 protein nuclear 

translocation can be detected as early as 30 minutes after challenging with HDL, this explanation 

is less likely.  

 Previous work demonstrated that HDL oxidized by MPO or purified from patients with 

established CAD acquires the ability to bind LOX1R, and CuSO4-oxidized HDL increases NFκB 

activation, and both TNF and LOX1R production 553-555. While lectin-like oxidized LDL receptor 

1 (LOX1R) expression has primarily been reported on endothelial cells, we and others find that it 

is also expressed on monocytes and its levels increase during differentiation into macrophages 

(data not shown) 556-558. As lupus HDL contains enhanced levels of MPO-catalyzed 3-ClY and 3-

NY, we assessed if the pro-inflammatory effects of lupus HDL required its binding to LOX1R 529, 

543.  

 When we incubated healthy macrophages with blocking anti-LOX1R or isotype control 

antibodies prior to addition of SLE or Ctrl HDL and examined ATF3 nuclear translocation, we 

found that by preventing the binding of SLE oxHDL to LOX1R we restored ATF3 nuclear 

translocation (Figure 3-4A). Ctrl HDL-induced ATF3 activation was not affected by anti-LOX1R 

blocking antibody treatment. It is possible that SLE HDL binding to LOX1R activates an 

immediate signaling event which results in the inactivation of ATF3.  Little is known about which 

post-translational modifications occur to ATF3, but future work should focus on how these 

modifications may affect the protein’s activity.  

 When we tried blocking other scavenger receptors previously implicated in binding 

oxidized HDL (CD36 and SRB-I) we saw no significant change in SLE HDL’s effect on ATF3 

activity (Figure 3-4B).  It remains unclear which scavenger receptor binds healthy HDL to promote 
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ATF3 and block inflammation. Given that blocking CD36 decreased the induction of ATF3 by 

Ctrl HDL, however, it is possible that this scavenge receptor may play a role in the 

immunoregulatory roles of normal HDL function (Figure 3-4B). Overall, these results suggest that 

SLE HDL preferentially binds to LOX1R and initiates a pathway that leads to blockade of ATF3 

activity.   

 Finally, Ctrl macrophages were incubated with blocking anti-LOX1R or isotype control 

antibody followed by SLE or Ctrl HDL for 18 hours, and supernatant IL-6 and TNF levels were 

measured by ELISA. LOX1R blockade significantly decreased the amount of IL-6 and TNF 

released due to lupus HDL treatment (Figure 3-4C). Blocking LOX1R prior to addition of SLE 

also decreased NFκB activation (p65 nuclear translocation, Figure 3-4D). These results indicate 

that lupus HDL engagement with LOX1R blocks the activity of ATF3, enhances NFκB activation, 

and promotes inflammatory cytokine synthesis by macrophages.  
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The HDL Mimetic ETC-642 Abrogates the Inflammatory Effects Induced by Lupus HDL. 

 ETC-642 is a HDL mimetic compound composed of a 22 amino acid sequence (22A) 

derived from apoA-I, the most abundant protein in HDL, and the phospholipids 1,2-dipalmitoyl-

sn-glycero-3-phosphocholine (DPPC), and sphingomyelin (SM). This compound improves 

cardiovascular parameters in rabbit models and has been shown to mobilize cholesterol in plasma 

Figure 3-4. SLE HDL binding to LOX1R fails to promote ATF3 nuclear translocation and induces 

inflammatory cytokines and NFκB activation. (A) Ctrl macrophages were incubated in the absence or presence 

of isotype or anti-LOX1R blocking antibodies prior to no, Ctrl or SLE HDL incubation, and examined for ATF3 

nuclear localization (N=7). (B) Ctrl macrophages were incubated with isotype or anti-CD36 or anti-SRB-I 

blocking antibodies prior to Ctrl or SLE HDL incubation, and examined for ATF3 nuclear localization (N=3). (C) 

Ctrl macrophages were incubated in the absence or presence of isotype or anti-LOX1R blocking antibodies prior 

to Pam3CSK4, no, Ctrl or SLE HDL incubation, and examined for IL-6 and TNF production by ELISA (N=5). 

(D) Ctrl macrophages were incubated with isotype or anti-LOX1R blocking antibodies prior to no, Ctrl or SLE 

HDL incubation, and examined for p65 nuclear localization (NFκB activation, N=7). (Data are displayed as mean 

± SEM, * p<0.05, ** p<0.01, *** p<0.0005, **** p<0.0001) 



64 

 

compartments following infusion in dyslipidemic patients.512, 546, 559 Given that this compound 

mimics some of the anti-inflammatory effects of HDL, we assessed its role in down-regulating the 

deleterious effects of lupus HDL. 

 ETC-642 blocked TLR-induced inflammatory cytokine production in Ctrl macrophages 

(Figure 3-5A). In contrast, the individual protein or lipid components of ETC-642 did not block 

IL-6 or TNF mRNA induction by TLR agonists (Figure 3-5B).  Similarly, ATF3 nuclear 

translocation was induced by ETC-642, but not by its individual components (Figure 3-5C).To 

address if ETC-642 could reverse the pro-inflammatory effects of SLE HDL, Ctrl macrophages 

were exposed to various ratios of ETC-642 and SLE HDL, then ATF3 nuclear translocation was 

assessed.  The 1:4 SLE HDL:ETC-642 ratio significantly enhanced ATF3 nuclear translocation 

(Figure 3-5D) and blocked SLE HDL-induced IL-6 and TNF mRNA up-regulation (Figure 3-5E). 

Similarly, SLE HDL:ETC-642 1:4 increased ATF3 at the mRNA (Figure 3-5E) and protein levels 

(Figure 3-5F).  ETC-642 and the SLE HDL:ETC-642 1:4 mixture also blocked NFκB activation 

(Figure 3-5G). Overall, these results indicate that ETC-642 can hamper macrophage inflammation 

induced by lupus HDL by mimicking the effects of healthy HDL on ATF3 and NFκB. 
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Sphingosine-1-phosphate Abrogates TLR-1/2 Induced Inflammation. 

 The HDL3 subclass has been identified as one of the most vasoprotective versions of HDL 

560, 561. This may be attributed to its high concentration of the sphingolipid sphingosine-1-

phosphate (S1P) 324, 328, 330, 331, 541. This molecule has been linked to M2 macrophage polarization, 

endothelial NO production and its levels inversely correlated with ischemic heart disease risk and 

CAD 331, 562-566. We therefore examined the effect of increasing concentrations of S1P (S1P-1 0.05 

nmol/mg, S1P-2 0.5 nmol/mg, S1P-3 5 nmol/mg) mixed with DPPC and 22A on inflammatory 

cytokine production. Macrophages pre-incubated with the highest concentration of S1P (S1P-3) 

prior to Pam3CSK4 challenge showed significant abrogation of IL-6 (Figure 3-6A) and TNF 

(Figure 3-6B) mRNA levels. S1P-3 did not abrogate the inflammatory cytokine mRNA levels as 

extensively as ETC-642 however. This data indicates that S1P may be beneficial for regulating 

inflammatory cytokine production in SLE.  

 

 

Figure 3-5. ETC-642 blocks SLE HDL and TLR-induced inflammatory responses. Ctrl macrophages were 

treated with (A) ETC-642 prior to challenge with TLR agonists (LPS, Pam3CSK4 and R848) or (B) with the 

individual components of ETC-642 before Pam3CSK4 challenge and examined for inflammatory cytokine mRNA 

levels (N=5). Ctrl macrophages were treated with (C) individual components of ETC-642 or (D) various SLE 

HDL:ETC-642 ratios and examined for nuclear ATF3 (N=7). (E) Ctrl macrophages were treated with SLE HDL, 

ETC-642 or a 1:4 SLE:ETC ratio and examined for IL-6, TNF and ATF3 mRNA levels by RT-qPCR (N=5).  (F) 

Ctrl monocytes were incubated with SLE HDL or ETC-642 and examined for intracellular ATF3 by flow 

cytometry (N=5). (G) Ctrl macrophages were treated with SLE HDL, ETC-642 or a 1:4 SLE:ETC and examined 

for nuclear p65 (NFκB activation, N=5). (Data are displayed as mean ± SEM, * p<0.05, ** p<0.009, *** p<0.0008, 

****p<0.0001) 
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ETC-642 Dampens Inflammatory Cytokine Production in Lupus-prone NZM Mice. 

 Similar to human SLE, we previously showed that lupus-prone NZM mice display 

endothelial dysfunction and enhanced levels of oxidized HDL 34, 543. We then assessed if in vivo 

systemic administration of ETC-642 could dampen inflammatory responses in female lupus-prone 

NZM mice.  Compared to PBS-treated NZM mice, splenocytes from ETC-642-treated NZM mice 

displayed significant increases in ATF3 mRNA levels as well as significant decreases in mRNA 

levels of IL-6, TNF, IL-1β, IL-12B, and IFN stimulated genes (ISGs: MX1, ISG15, IRF-7) (Figure 

3-7A). ETC-642-treated mice also showed lower IL-6 serum levels (Figure 3-7B). In contrast, 

ETC-642 treatment did not modify auto-antibodies or proteinuria (data not shown). Overall, these 

results indicate that in vivo administration of the HDL mimetic ETC-642 can dampen 

inflammatory responses in lupus.  

 

 

Figure 3-6. Sphingosine-1-phosphate (S1P) blocks inflammatory cytokine production. Ctrl macrophages 

were treated with ETC-642, its individual components, or ETC-642 with increasing concentrations of S1P (S1P-

1 0.05 nmol/mg, S1P-2 0.5 nmol/mg, S1P-3 5 nmol/mg) before challenge with Pam3CSK4. Levels of (A) IL-6 

and (B) TNF were quantified by RT-qPCR. Statistical comparisons made against Pam3CSK4 condition. (N=5, 

Data are displayed as mean ± SEM, * p< 0.05, ***p<0.0003, ****p<0.0001)  
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D. Summary 

We sought to determine if the enhanced oxidation status of SLE HDL affects macrophage 

innate inflammatory responses related to CVD. We found that, in contrast to the anti-inflammatory 

effects of Ctrl HDL, Ctrl macrophage exposure to SLE HDL enhanced pro-inflammatory cytokine 

production (in the absence of TLR agonists) and failed to block TLR-induced cytokine production.  

As the SLE HDL proved to be pro-inflammatory in the absence of a TLR agonist, did not show 

any effect on TLR mobilization, but directly promoted NFκB activation, we explored TLR-

independent signaling pathways involved in the pro-inflammatory effects of lupus HDL. We 

examined LOX1R’s influence on SLE HDL-induced inflammation as it is one scavenger receptor 

linked to the pro-inflammatory properties of oxidized lipoproteins. Indeed, the SLE HDL-induced 

NFκB activation, cytokine production, and ATF3 repression was largely dependent on SLE HDL 

binding to LOX1R.  

 ETC-642 was able to overcome the inflammatory effects of SLE HDL in human 

macrophages. The individual components of ETC-642 (22A, DPPC and SM) had no significant 

effect on ATF3 or NFκB activation. In vivo treatment of lupus-prone mice with ETC-642 also 

Figure 3-7. ETC-642 blocks in vivo inflammatory cytokine production in lupus-prone NZM2328 (NZM) 

mice. Lupus-prone NZM mice were treated with PBS or ETC-642 (15 mg/kg, 3x per week, i.v.) by tail vein 

injection for 13 weeks. (A) Splenocytes were examined for ATF3, inflammatory cytokines and interferon 

stimulated genes by RT-qPCR. (B) Serum IL-6 levels were quantified by ELISA. (N=8 mice, Data are displayed 

as mean ± SEM, * p<0.05, ** p<0.009, *** p<0.0008) 
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decreased systemic inflammatory markers. In conclusion, modified lupus HDL binds to LOX1R 

in macrophages, leading to induction of NFκB activity and failure to induce ATF3 synthesis and 

activation, thereby promoting pro-inflammatory responses.   

 In these studies, we focused on how SLE versus Ctrl HDL affects macrophage polarization 

and inflammatory responses in the context of CVD. However, aberrant macrophage function in 

lupus may also be linked to skin flares, kidney damage and pulmonary problems 188, 567-569. Future 

studies could explore whether infusion of lupus-prone mice with ETC-642 or Ctrl murine HDL 

dampens inflammation in each of these organ systems through altered macrophage function or 

phenotype. Such studies may be hard to translate to human macrophage responses, however, given 

the differences in macrophage polarization markers and gene activity exhibited between humans 

and mice 195, 354, 544. Nonetheless, these studies may identify added benefits of ETC-642 or other 

apoA-I mimetics as therapies for SLE.  

 In our hands, ETC-642 can prevent the pro-inflammatory effects of lupus HDL using in 

vitro models and general inflammation via an in vivo model. Whether ETC-642 treatment also 

improves vascular health in lupus-prone mice has yet to be determined. Again, the lack of well-

defined lupus-prone mouse models which also develop atherosclerosis means that the effect of 

ETC-642 on atherogenesis could not be examined. It would be possible, however, to examine its 

effect on endothelial cell differentiation, angiogenesis, oxidative stress, or clotting following 

photochemical-induced thrombosis in lupus-prone mice 34, 468. What affect lupus oxidized HDL 

has on LOX1R signaling in mice is also not known.  

 LOX1R-/- mice, especially when crossed with apoE-/- or LDLR-/- mice, do show improved 

vasorelaxation, and reduced inflammatory cytokine levels, intima thickening, and plaque 

macrophage accumulation 570-573. Whether LOX1R has a higher affinity for 3-ClY or 3-NY 
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oxidized HDL has yet to be determined. This is worth establishing given that our lupus patients’ 

HDL showed more 3-ClY than 3-NY, yet lupus-prone NZM mice show more 3-NY oxidized HDL. 

This difference in HDL oxidation patterns and how LOX1R responds to each may demonstrate 

another atherogenic mechanism which varies between mice and humans. Yet, it would be 

interesting to see if lupus-prone mice treated with LOX1R neutralizing antibody demonstrate 

improved vascular health. Such therapies, then, could be explored for SLE patients.  
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Chapter 4 

Conclusions 

A. Summary 

The aims of our study were to characterize the oxidation status of SLE plasma and HDL, 

and examine aberrant lupus and CVD-related innate immune mechanisms up- and downstream of 

this lipoprotein. We found that lupus patients have dysfunctional and highly oxidized HDL and 

plasma, which fits patterns linked to CVD in the general population. These measurements, 

therefore, should be explored as biomarkers of CVD risk in SLE. Our data indicates that the high 

level of NETosis in SLE can contribute to these pro-atherosclerotic modifications, especially as 

abrogation of NET formation in lupus-prone mice led to decreased HDL oxidation. Finally, we 

showed that SLE oxHDL induces pro-inflammatory and defective anti-inflammatory 

characteristics in cultured control macrophages. Importantly, these inflammatory pathways can be 

blocked in mice by treatment with an HDL mimetic. These results highlight the significance of 

multiple aberrant innate immune mechanisms leading to lupus atherosclerosis, and could be 

applicable to other chronic inflammatory diseases.  

To date, most research on SLE CVD has focused on its subclinical nature and association 

with IFN-I, TNF, NETosis, defective anti-oxidant activity, lupus-associated medications, anti-

phospholipid antibodies, and endothelial cell death 574, 575. The CVD literature includes reports 

demonstrating that NETs can exert direct damage to the endothelium and contribute to coagulation 

cascades. Other groups have shown how oxidized lipoproteins can contribute to atherogenesis 214, 

391, 399, 401, 404, 408, 409, 538, 540. By demonstrating how lupus NET activity contributes to specific pro-
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inflammatory and pro-atherosclerotic modifications to HDL, our results not only fit in with these 

previously proposed atherosclerotic mechanisms but also combine heretofore separated pathways 

and build upon known mechanisms of SLE and CVD. Our results also have special clinical 

significance. By demonstrating the interplay between neutrophils, macrophages and lipoprotein 

innate signaling pathways, we confirmed that therapies which block NET activity, such as Cl-Am, 

or alter the activity of SLE HDL, such as ETC-642, may both be beneficial to lupus patients. The 

limitations that we faced in these studies, namely patient cohort size and available lupus-CVD 

mouse models, may be addressed by future studies and should elaborate on our findings. 

 

B. Future Directions 

I. SLE HDL’s Effect on Neutrophil Activity 

 Given the potent effects of lipoproteins on macrophage function and the putative important 

contribution of NETs and neutrophils to SLE and CVD, it will be important to determine if 

lipoproteins also modify neutrophil biology. Indeed, healthy HDL can affect cell death pathways, 

ROS generation, and gAMP activity 324, 348, 500, 512, 545, 553, 559, 576, 577. As these pathways are 

associated with NET formation, it is conceivable that HDL could alter the predisposition of a 

neutrophil to undergo NETosis. Whether these effects are lost upon oxidative modifications to 

HDL, such as seen in SLE, is also unclear. Additionally, the effect of ETC-642 or other mimetics 

on NETosis should be further characterized. The response of other neutrophil-related functions 

(degranulation, phagocytosis, ROS generation, etc.) to modified and unmodified lipoproteins 

could be further examined. As lipoproteins in general and HDL in particular are carriers not only 

of plasma proteins but also of miRNAs, these molecules may hold putative “messenger” 

capabilities. 
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II. SLE HDL Composition  

The initial proteomics analysis of lupus HDL revealed an enrichment of vasorin, a protein 

that still requires significant characterization. Whether SLE HDL has a dampening effect on TGF-

β signaling should be explored given that vasorin has been proposed to down-modulate this 

pathway 530-532. This may be relevant to anti-inflammatory signaling, repair mechanisms, 

macrophage polarization and VSMC activity relating to SLE atherogenesis. However, validation 

of these findings in a larger cohort of SLE patients should be studied to verify our results and 

identify other potential immunomodulatory proteins in HDL. For example, previous groups have 

stated that the circulation is not the site of HDL oxidation because of the high presence of anti-

oxidative compounds in the plasma 578. Yet, it appears that SLE patients possess less anti-oxidant 

activity, including low PON levels in HDL 238, 239, 247-250. Further proteomic analysis could 

demonstrate low anti-oxidative enzyme levels in SLE and, if performed in conjunction with 

NETosis activity assays, could strongly indicate the abnormally high circulating oxidative 

environment in SLE patients. In addition, lipidomic analysis of HDL should be explored in SLE 

to assess whether some of the differences in SLE versus control signaling pathways could be 

explained by altered lipoprotein lipid content. 

 For example, previous work indicates that S1P can block TLR-induced inflammation, and 

promote “classical”, anti-inflammatory monocyte activity 579-581. Whether S1P levels differ 

between SLE and Ctrl HDL should be validated. As lipids can also be oxidized, exploring 

differences in lipid oxidation levels between controls and SLE, which receptors they bind, and 

any downstream pro- or anti-inflammatory pathways may prove revealing. This could explain 

why, while blockade of LOX1R significantly abrogated the inflammatory cytokine production 

and NFκB activation induced by SLE HDL, it did not reduce levels down to that of Ctrl HDL 
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treatment (Figure 3-4C and D). This lipidomic analysis and comparisons could also reveal 

putative therapeutic targets. Additionally, as mentioned above, HDL’s effect on target cells may 

be affected not only by receptor binding and signaling, but through the delivery of miRNAs to 

target cells.  

HDL is a known carrier of miRNAs, with different miRNA “libraries” found in control 

versus CVD donors 582. If these HDL-associated miRNAs are delivered into target cells, this could 

direct cholesterol homeostasis, macrophage polarization, and SLE pathogenesis mechanisms 583-

587. It is possible that some of the differential inflammatory and anti-inflammatory effects seen 

between control and lupus HDL are due to the transfer of miRNAs from the HDL to the 

macrophages.  

Future studies in larger cohorts should therefore explore the association of the protein, 

lipid, and perhaps mRNA cargo of lipoproteins with anti-atherogenic effects and disease activity 

in lupus and other inflammatory diseases. Indeed, it remains to be determined whether our 

findings are applicable to most chronic inflammatory diseases, are distinct to SLE, or even distinct 

to humans. 

III. Of Mice Versus Men 

 Previous groups have demonstrated the importance of IFN-I signaling to SLE and CVD 

pathogenesis. Suzuki et al. demonstrated the ability of HDL to block IFN-I responses 368. 

Importantly, this study was performed in mouse models and with murine cell lines. In our hands, 

we did not see a consistent effect of healthy human HDL on the blockade of ISGs in human 

macrophages. As with De Nardo et al., we found that IL-6, TNF and IL-12B showed the largest 

effects with HDL treatment 367. Nevertheless, lupus-prone mice exposed to ETC-642 displayed 

down-regulation of ISGs (Figure 3-7). As such, the effect of HDL on IFN-I responses may be 
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species specific. It will be important to better understand the differences in lipoprotein modulation 

between human and murine systems to identify the best experimental design to test novel 

therapies that modulate and signaling abnormal lipoprotein phenotype and function in chronic 

inflammatory conditions. For example, it is possible that this is due to differences in scavenger 

receptor expression in mice versus humans, which leads to altered immune responses to HDL 

treatment. This would not be entirely surprising given the already known significant differences 

between mouse and human mechanisms of atherogenesis and macrophage polarization 287-289.  

 

C. Implications of Studies 

The results of the studies presented above highlight the important role of innate immune 

responses, namely aberrant interactions between neutrophils, macrophages, the oxidative 

machinery, and lipoproteins in the promotion of accelerated atherogenesis and increased CVD risk 

in chronic inflammatory diseases such as lupus (Figure 3-8). These results may also be relevant to 

individuals with “typical” atherosclerosis, where innate immune responses may trigger and 

amplify vascular damage and abnormal lipoprotein biology.  

Neutrophils, in particular, were largely ignored as mediators of atherogenic inflammation 

and oxidation until very recently. This was mostly due to an inability to detect neutrophils in 

plaques. With improved techniques, not only are neutrophil markers readily detectable in 

atheromas, but NETs too are visible in plaques, thrombi and in circulation 40, 215, 221, 425, 426, 429, 432, 

477, 540. NETs have already been linked to coagulation pathways and endothelial cell death, but our 

results demonstrate an additional mechanism by which they promote atherogenesis: oxidation of 

lipoproteins thereby affecting their CEC and anti-inflammatory function.  
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Lipoproteins too have been underappreciated as mediators of immune signaling. Previous 

groups have shown that unmodified HDL can block TLR-4 signaling and NFκB activation, while 

oxLDL and oxHDL increase NFκB signaling and adhesion molecule expression 392-395, 399, 401, 409. 

Our findings on the anti-inflammatory nature of healthy HDL, especially with S1P, in addition to 

the pro-inflammatory effect of SLE HDL support the theory of lipoprotein-mediated immune cell 

signaling. Furthermore, we show that lipoproteins not only affect cytokine production but also 

alter macrophage polarization, an idea supported by other groups 356.  

 A number of other diseases have been recently linked to altered neutrophil and lipoprotein 

activity in the context of enhanced CVD risk: rheumatoid arthritis, psoriasis, vasculitis, liver 

disease and renal dysfunction 529, 540, 588-593. The mechanisms elucidated here may be relevant to 

those disorders as well and should be explored in future experiments. Additionally, therapies 

which target NET activity and lipoprotein composition should be further examined with regards 

to their potential beneficial athero-protective and immunomodulatory role in SLE and CVD.  
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Figure 3-8. Proposed mechanism for NETosis-induced HDL oxidation and macrophage inflammation in SLE-related CVD. NET formation (which is 

enhanced in SLE) causes the exposure of the oxidative enzymes NOS, MPO and NOX to the periphery, where they cause 3-ClY and 3-NY HDL oxidation. 

This modified HDL then promotes an M1 macrophage phenotype with enhanced IL-6 and TNF production, matched with decreased ATF3 production and 

activation. This is largely dependent on oxidized HDL binding LOX1R. The toxic NETs, dysfunctional oxidized HDL and macrophage inflammatory cytokine 

production all contribute to SLE-related CVD.  
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