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CHAPTER I

Introduction

Industrial and systems engineering and health services research can come together to

make important gains in health care by designing powerful capacity planning and scheduling

decision support systems. Targeting the longitudinal integration of clinical care and clinical

research studies under shared resources, this work’s goal is novel, effective methods to enable

better access to care resources, better health outcomes, and cost control. The focus is on

fundamental innovations in capacity planning, optimization of system performance metrics,

and model-based methods to achieve appointment scheduling for stochastic models of patient

flow in networks of clinical care and/or research services. Identifying how to utilize/allocate

resources to achieve a care institution’s goals is a difficult task due to the heterogeneity, and

urgency levels of the patients requiring service as well as the nature of the service processes.

1.1 Current challenges

Based on several collaborations developed with healthcare providers over the course of the

last five years, this work targets some key challenges that most large health care institutions

with significant research activities are faced with on a daily basis. To appreciate the need for

the methods and tools developed in this work, we consider this illustrative example. After

repeated visits to the primary care physician, and initial diagnostic tests, there is no clear

1
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diagnosis available to Chris. The doctor suspects that the condition might be serious. Chris

and the primary care doctor agree that it is wise to be referred to a specialty care provider

with the expertise and resources to obtain a diagnosis and treatment plan. Consider some

of the questions relevant to the medical center that Chris might be asking:

(Q1) How long will it take me to get an appointment? We will refer to this as the root

appointment. Medically, Chris will worry that irreversible damage may be sustained during

this wait. The first/root visit is especially important in our methodology. The wait from the

time of the visit request until the time of that appointment is referred to as access delay.

(Q2) Chris considers that it will take some random number of visits/consultations and tests

in different departments to get a clear diagnosis and treatment, and we refer to this as an

itinerary of care. Chris may wonder how long it will take to reach the end of that care

itinerary, which we call itinerary flow time. Reaching a diagnostic quickly is important

to start appropriate treatments as soon as possible if necessary, or relieve the patient’s mind

if not.

After the results of the diagnostic tests, a research coordinator may contact the specialty

physician and try to recruit Chris to be a participant in a clinical research trial. Research

trials are multi-visit protocols that are resource and time sensitive. Another question will

enter Chris’ mind:

(Q3) If I were to enroll in this clinical research trial, how long will it take? Clinical trials

have rigid protocol requirements that provide an accurate estimation of their durations (from

start to the end of the trial). Hence, Chris will be interested to know the Time to First

Available Visit (TFAV) in the clinical trial. Longer waits to start the trial will affect

Chris’ incentive to accept being part of it.

The medical center needs to be able to answer the above questions. Currently, experi-

enced guesses based on what happened in the past is the only way for medical centers to
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Figure 1.1: Patient flow through clinical care and research appointments under shared re-
sources

estimate Chris’ access to the many possible segments of his care/research itineraries. Lever-

aging forecasting methods to predict patients’ resource requirements, this research is able

to inform the institution of its predicted utilization levels, and how long patients like Chris

would likely have to wait.

Consider the questions that the health care institution might have:

(Q4) How can we achieve differentiated access delays to care and itinerary flow times based

on the patient’s urgency level or condition? For example, patients with severe spine pain

or an urgent problem will need fast diagnosis and access to surgery/treatment. The same

resources, however, are used to serve patients with less severe and non-urgent back pain

that do not require such fast access to all services. As another example, urology patients

that present with a suspicion of cancer need to go through diagnostic testing and surgeon

consultation. Those who need surgery are often urgent. These cancer patients will be much

more time sensitive compared to patients having non-malignant cysts.
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(Q5) When should the specialty physician schedule the follow-up visit? This follow-up visit

can only happen once all the diagnostic tests have been performed, in order to provide the

patient with a diagnosis. In common practice, it is difficult to predict at the time of the

initial/root appointment how long it will take Chris to go through all the required diagnostic

services. This length of time will be called the diagnostic flow time .

(Q6) How much capacity should we allocate to clinical care visits vs. clinical research tasks?

A tradeoff needs to be considered between the level of service provided to care for patients,

and the amount of resources allocated to add research value to the community.

(Q7) Given a commitment to the ongoing care needs of the patient panel/population, which

clinical research trials can/should be conducted within the limited resources of our services?

Having a larger portfolio of research trials than capacity can handle will create congestion

which will affect clinical care patients, and/or create very long access to clinical trial pro-

tocols. Hence, it is important to understand how much workload can be handled without

hurting clinical care and how this translates to service levels for the trial participants.

(Q8) How should we schedule our human resources performing research tasks to provide

efficient coordination between the logistical flows of the research participants and the time

and skills required on their visits. Clinical trials usually require specialized skills on each

appointment of a multi-visit protocol, and not all the resources have the skill set to perform

those visits. To maximize throughput and reduce wait, one does not want physicians/nurses

that possess many skills (for care and research) having to allocate their time on relatively

simple tasks that physician assistants or technicians could do. Resource coordination based

on matching a provider to an appropriate skill set to each participant’s visit can be a complex,

yet crucial element to delivering efficient clinical trials.

While the methods in this work can optimize which mix of clinical care offerings should be

offered, we have chosen to focus on treating patient care as obligate and optimizing the mix
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of clinical research that can be added to it. The proposed capacity planning and scheduling

methodology can serve a role as an integrating mechanism for accomplishing both the care

and research dimensions of treatment in a manner that maximizes the value to patients and

to research communities while managing costs and improving service by optimizing efficiency.

1.2 Capacity allocation and access management in other applica-
tion fields

Capacity allocation of resources has also been studied in other areas. Manufacturing is

one of them, but it is widely recognized that manufacturing models rarely transfer directly

to service operations problems. Airline transportation is an area with a rich literature and

history of industrial research focused on the operations of servicing transportation needs. As

we will see, the problems confronted by airlines are significantly more complex than those

in the healthcare operational problems we are targeting. To use differentiated terms for the

people served in each systems, let us reserve customers for the airlines and patients for the

healthcare application.

Airlines commonly structure the services/seats into differing levels of service (e.g., first

class with the most amenities, business class, and economy) with higher fees for the higher

levels of service. Contrary to the urgency classes we wish to treat in this dissertation, our

urgency classes are not tied to amenities and perks, but focus on how quickly a common

service (across patient classes) can be accessed. Of course, even in healthcare, there can be

some providers that seek to attract higher paying patients through the promise of boutique

services, but that is not the dominant practice.

This relates to the general observation that revenue management is a primary concern

in the airlines, which leads to elaborate and complex dynamically changing prices that seek

to extract the maximum profit from the customers and even to drive them away from one
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flight that may be highly utilized to one that may be harder to fill. While there is some

movement toward revenue management, attitudes and social values indicate that a revenue

management focus with dynamic pricing is inappropriate for the foreseeable future. It is the

case that many healthcare institutions struggle to provide sufficient access. New patients

tend to bring in significantly more revenue that existing/established ones. In this sense, by

creating specific patient classes for new patients, our work does incorporate a dimension of

revenue management.

The revenue management approach is motivated by and complicated by the fact that

airlines serve in batches, with strong incentives to fly full flights. Of course, utilization is still

important in healthcare, and our models include the metrics of utilization (or overutilization)

and staff overtime. Clearly, healthcare operations are highly provider-centric, in contrast to

major airline considerations such as geography, time zones, various classes of planes, and

critical maintenance tasks.

Seat reservations for each patient class (usually determined by the ticket fare, and

the patient status with the airline) are made for each aircraft in order to maximize rev-

enue/utilization. However, the concept of customer waiting time (from request to occurrence)

does not apply to airlines in the same way that it does for healthcare. Airline customers need

to get to their destination on a specific date (or a short time window around it): they either

travel for business (need to get someplace at a specific time), or during their vacation time.

But ultimately, most customers have a date set in mind, and will choose itineraries/airlines

based on pricing options. Hence, a customer usually won’t delay her flight date when a flight

is sold out; rather, they will pay extra for a higher fare class, choose a different airline/flight,

choose a different mode of transportation, or cancel the trip. In healthcare, patients usually

try to go through diagnosis and treatment as soon as possible. The demand is carried over

until a date with sufficient capacity is available to treat them (acknowledging that patient
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preference for date and time may play a role, especially for less serious issues).

Interestingly, a good fraction of healthcare practice has patients coming to see a particular

clinician/physician; however, in air transport customers seek only the particular geographical

itinerary and the date/time. The plane’s crew is irrelevant. This is a profound difference.

Similarly, many healthcare visits are viewed as an unwelcome and relatively brief intrusion

into one’s daily schedule. While the particulars of date and time matter, the more brief

the disruption of the office visit is, the less concerned the patient is with the date and time

of the appointment. This is in marked contrast to the complexities of scheduling airline

travel, which can be quite time consuming as a decision process. Most flights require a

major commitment of time, money, and effort. Frequently, there are multiple time and date

options available from various providers. In a sense, airlines create “booking reservation

plans” that they provide for viewing to prospective customers. Thus, customers can see

the seats in each class that are available and the pricing. Clearly, a visit to one’s primary

care provider implies a loyalty to a specific service provider. In some contexts, patients do

shop various providers to find the one they like the best (e.g., a knee replacement); however,

unlike air travel, healthcare provision attains greater value through the establishment of

a relationship with the provider and the development of deeper insights over time. Our

models can be employed at the level of an individual physician, or they can be applied to

an entire department/service. While few healthcare providers would see a need to post their

calendar online, certainly the availability of appointment dates is expected to be part of the

conversation as patients set up an appointment. The intended use of our planning models

is that the times available to a given type of patient will be limited so as to provide a better

experience for the entire set of patients served.

Moreover, in healthcare, patients need various resources in their “itinerary of care”, and

those needs are stochastic and uncontrollable (they will depend on their condition and its
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severity, which may be learned over time). In airlines, the “itinerary” of customers going from

point A to point B, then B to C, and so forth, usually with C = A is relatively deterministic

once the customer buys the ticket. Of course, the vast majority of control over which services

to pick lies with the customer (e.g. to get to Boston, I have a choice between a direct flight

at some price, or a layover in New York City for another price). Even if we control the

pricing to direct the customers to choose specific layovers, or build itineraries that would

maximize the effective profit to the airline, this form of control is usually not appropriate in

healthcare. Also, healthcare is often more stochastic, particularly in terms of the itinerary

of visits that will be generated based on the outcome of a root visit.

After searching the airline literature, we could not find any airline studies that consider

details at the passenger level for scheduling purposes. Our belief is that it is too difficult to

optimize the system as a whole while considering each passenger individually. In fact, airline

transportation problems have developed an elaborate system of decompositions and sub-

problems to allow solutions that avoid the intractability of treating everything in one model.

Note that the airline transportation problem must consider the time of day of each flight,

geography and network effects, the pilots, flight attendants, elaborate work rules, training

time, rigorous processes of test and maintenance, food services, limited gate capacity, etc.

Because health services rarely have tight restrictions on the time of day that particular

services are offered and because they do not require batches of people to be served at the

same time, we are able to take a planning approach that models each day in aggregate.

We leave time of day scheduling as a complementary piece that others have researched, and

we can revisit in the future to take advantage of the daily level planning models we are

developing.

It is worth noting the connections to queueing theory. Queueing methods can be used for

revenue management (and capacity reservations). Past work in this vein does not directly
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translate to our healthcare research focusing on access management. However, we have

taken the foundations of queueing and built them into MIPs that simultaneously optimize

the system while approximating the queueing dynamics.

1.3 Structure of the research

This research seeks to provide differentiated and controlled access to care/research ap-

pointments in healthcare networks under shared resources by optimizing capacity alloca-

tion/reservation schemes for different patient/appointment types (e.g., care vs. research,

urgent vs. less urgent). We are dealing with a large stochastic queueing network with

dependencies/precedence between patients and appointments, which makes it difficult to

answer the above eight questions in an integrated manner. Chapter II focuses on answering

(Q3), (Q7) and (Q8) assuming the set of resources available are devoted only to clinical re-

search visits. Such infrastructures are called “Clinical Research Units” (such as the Michigan

Clinical Research Unit (MCRU), where no clinical care visits are performed). Chapter III

focuses on (Q1) and (Q4), and Chapter IV will focus on (Q2), (Q4), and (Q5) in a hospital

setting where all resources are devoted to clinical care patients (all non-research medical

facilities). The conclusion chapter, Chapter V will address (Q6) and leverage the method-

ologies from the previous three chapters to summarize a high level procedure/algorithm that

would answer all questions in a multi-stage optimization approach.

Chapter II creates an operations engineering and management methodology to optimize

a complex operational planning and coordination challenge faced in healthcare. We moti-

vate and tailor the method to the needs of sites that perform clinical research trials. The

time-sensitive and resource-specific treatment sequences for each of the many trial proto-

cols conducted at a site make it very difficult to capture the dynamics of this unusually

complex system. Existing approaches for site planning and participant scheduling exhibit
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both excessively long and highly variable Time to First Available Visit (TFAV) metrics and

high staff overtime costs. We have created a new method, termed CApacity Planning Tool

And INformatics (CAPTAIN) that provides decision support to identify the most valuable

set of research trials to conduct within available resources and a plan for how to book their

participants while constraining (i) the staff overtime costs, and/or (ii) the TFAV by trial. To

estimate the site’s metrics via a Mixed Integer Program, CAPTAIN combines a participant

trajectory forecasting methodology with an efficient visit booking reservation plan to allocate

the date for the first visit of every participant’s treatment sequence. It also creates a daily

nursing staff schedule plan that is optimized together with the booking reservation plan to

optimize each nurse’s shift assignments efficiently to participants’ requirements/needs.

To better service patients, support providers, and obtain greater operational efficiency,

Chapter III develops operations models of direct impact to capacity planning and outpatient

appointment scheduling. With the increasing popularity of Accountable Care Organizations

(ACOs), destination medical programs, and other integrated care options, new challenges

have arisen in managing a larger suite of formerly independent/siloed services. In particular,

the capacity planning problem for medical services now becomes a coordinated network

problem rather than a department by department local optimization. Considering the suite

of services as a coordinated whole is critical because, in the integrated care model, patients

will often require a sequence of visits to satisfy their diagnosis and care needs for one itinerary

of care. Further, this sequence is often not known in advance, leading to decisions that are

made at one service having significant and complex impacts on other services in the network.

Within this framework, there are a number of different types of patients with different

urgency levels. At a destination hospital, for example, there are local patients versus regional

patients (who may travel up to 6 hours to the hospital), and even national/international

patients. We focus on managing the mix of patients to provide differentiated access to
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an initial/root appointment based on level of urgency. We manage this mix by reserving

appointment slots across the network for each level of patient urgency and patient specialty

type. For any given network capacity reservation scheme, we model the patient flow and

access metrics as a queueing network with patients arriving according to a non-homogeneous

Poisson process. After arrival, the patient seeks an appointment at the earliest possible

time slot. If capacity is available, the patient is scheduled into the slot and if not the patient

overflows and attempts to obtain an appointment on the next day. This process repeats until

the patient has been scheduled. From a modeling perspective we obtain distributions on the

amount of patients scheduled and amount overflowed through a set of recursive stochastic

equations. Various access delay metrics can then be calculated from the set of scheduled and

overflow random variables in combination with the arrival process.

Having developed results for the underlying stochastic network for a given capacity reser-

vation scheme, the next step is to optimize the scheme relative to the access delay metrics of

interest. To do so, we develop a suite of transformations to turn the stochastic metrics into

linear, deterministic ones as approximations capturing the essential stochastic and non-linear

properties of the system. This allows for the optimization to be solved as a Mixed Integer

Program with chance constraints. We parameterize this model with data from a partner

that operates a suite of outpatient services. We demonstrate through a case study that we

can improve access for urgent patients while still guaranteeing an appropriate service level

for other patients types.

In Chapter III, we construct new methodologies to control the access delay to the first ap-

pointment of an itinerary of care for each patient class. We are able to provide differentiated

access to a care episode based on patients’ urgency levels by allocating capacity across the

resources. We guarantee a certain service level (e.g., limiting the probability of the workload

exceeding capacity, performing limited workload in overtime) for downstream appointments
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of patient itineraries by assuming their resource needs followed historical patterns. There

are limitations to these modeling assumptions: (1) the historical resource requirement needs

of patients can be driven by historical blocking (e.g. a patient requires a downstream ap-

pointment tomorrow, but due to capacity, the patient had to wait three days historically),

(2) the itinerary flow times (from first visit to last visit of an itinerary) are assumed to be

fixed to the historical flow times, (3) the downstream demand that exceeds capacity on a

given day is assumed to be done in overtime; in practice, this demand may alternatively

be accommodated by delaying its service to a later day, and (4) itinerary flow times can

not be differentiated by patients’ urgency levels. In Chapter IV, we leverage the methods

developed in Chapter III to create a model capable of overcoming the limitations mentioned

above. Specifically, we will model and control how patients will flow (with delay) through

the resources of this capacitated stochastic queueing network. Our main contribution is to

provide expedited urgent patient types that flow through downstream itinerary resources by

reserving the right amount of capacity for urgent cases while assuring the less urgent patients

will not be delayed “too long”. By optimizing the tradeoffs between providing differentiated

access, itinerary flow times, and matching supply and demand, our Mixed Integer Program

provides a resource capacity allocation plan that meets the itinerary flow time targets of a

health care institution.

In Chapters II-IV, we assume that the set of resources for clinical care services have

no overlap with the set of resources for clinical research. Using clinical care resources to

perform clinical research trials can be quite challenging. The issue is really about running

two distinct businesses: a clinical care business and a clinical research business. Aside

from some operational differences (e.g., clinical research must follow a carefully prescribed

protocol and sometimes requires skills/experience and processes not available in clinical

care), the financial reality is complex and makes it undesirable to create a flexible operation.
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Because clinical care will always trump clinical research (by its very nature, clinical research

is a voluntary and elective intervention), dedicated clinical research chairs/beds, equipment,

and staff are created to maintain the quality of the research and the scale. Billing insurance

companies for clinical research is illegal and puts the business at risk for prosecution and

fines if there is a perception that research is being charged as care. If one is willing to take

the risk and mix the two businesses, then the back office administrative complexity increases

and effort must be expended (even at the provider/caregiver level in documenting their time

allocation) to sort out which specific activity can be billed to an insurance company and

which needs to be billed to the clinical research sponsor. Further, using care resources to

perform research is usually difficult due to the complexity of the research tasks: for example,

monitoring the impact of an infusion on the body or the collection, processing, and storage

of specimens. However, using clinical research resources for clinical care seems much more

feasible in practice, and the combination of methodologies developed in this dissertation

could be a first step towards that goal. In the conclusion chapter, Chapter V, we comment

on ideas for the integration of clinical care and clinical research under shared resources. We

present ideas for how to integrate the methodologies of the three previous chapters, and

directions for future research.



CHAPTER II

Access Planning and Resource Coordination for

Clinical Research Operations

2.1 Introduction

Clinical research trials are an essential part of discovering and testing new medical de-

vices, procedures and drugs. This paper develops a methodology for appointment visit

planning to improve clinical research trial delivery in dedicated performance sites is a gate-

way to better scientific knowledge, medical discoveries and effective new treatments for many

diseases. “These trials, research studies carried out with human volunteers to answer specific

questions concerning the effectiveness of a drug, device, treatment or diagnostic method, are

designed to advance scientific knowledge and promote discoveries to treat and cure illness

and disease, and increase longevity and the quality of life for countless people,” states [50].

While clinical trials are conducted in various settings, academic, medical, and industrial

institutions frequently choose to construct clinical research performance sites to provide a

shared infrastructure on which to perform them. We will use the term Clinical Research Unit

(CRU) to refer to such an organization/site. Operationally, a CRU has intuitive economies

of scale and scope by sharing resources across many trials. On the other hand, some clini-

cal trials have a complex operational structure that makes it difficult to plan and schedule

them at a shared CRU site. “The conduct of a clinical trial is a complex integration of many

14
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activities requiring the coordination of a large number of individuals each with specific exper-

tise,” states [25]. This research develops a strategic decision support system called CApacity

Planning Tool And INformatics (CAPTAIN) for better resource planning and coordination,

faster access to treatment, efficient booking, and trial portfolio selection decision support in

CRUs (such as our partnering site, the Michigan Clinical Research Unit or MCRU).

2.1.1 The complexity of CRU operations and insights into their characteristics

To gain an understanding of a typical CRU, it is useful to consider the perspectives of

some key stakeholders, beginning with that of a participant. Participants (who may or may

not be accurately called patients) can have many motives to participate in a trial, including

the potential to receive a new treatment that is better than existing ones (although this

would be speculative). For a participant who is screened and found to be appropriate to

proceed in a trial, there will be a protocol specifying the details of how the trial must be

conducted. “Clinical trials are detailed plans for medical treatments, for instance a clinical

trial protocol can describe at which point of time, in which quantum, and how medications

or therapies have to be executed,” states [25].

The main operational features of a single clinical trial include: (i) each participant en-

rolling in a trial has a multi-visit treatment path (often between 1 and 10) with nearly

deterministic service times that are specified by the trial’s protocol, (ii) participant enroll-

ments are stochastic over time, (iii) the visits of the treatment path are time-sensitive and

can range from a few days up to a year (for example, visit 3 of a trial has to happen between

29 and 31 days after the first visit), and (iv) each trial visit requires a number of specific

resources (chairs, beds, specific rooms/equipment, and specific skills of the nursing staff).

We note that the determinism of service times in feature (i) mentioned above is not a strong

modeling assumption because of the detailed protocol instructions. The research trial must

have a predetermined number of participants to achieve statistical validity. Either missing
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a visit or experiencing excessive delay may invalidate that participant, so it is important

to ensure that the CRU’s care providers and physical resources are available to service the

scheduled participants.

Second, individual research investigators and their trial coordinators can be viewed as

customers who own the trials and work closely with CRU staff to administer the trials.

Trial coordinators will follow a participant recruitment plan (based on judgment and past

recruitment efforts for similar trials), possibly with nonstationary enrollment rates, from the

initiation of the trial until either a designated number of participants has been reached or,

in some cases, until a trial end date has been reached.

Third, operational planners for the CRU try to balance the competing needs for service of

the trials/protocols. One difficulty is that the scheduling of all of a participant’s visits needs

to be done at the enrollment date. There should also be a check that the trial protocol’s time

and resource requirements will be met for all future visits. Let us elaborate on the complexity

introduced by having nurses with varying skills. The left part of Fig. 2.1 provides an example

of the specific requirements of a given clinical trial. This trial has 5 visits, and we see that

visit 3 lasts 3 hours, needs to happen exactly 1 day after visit 2 (i.e., with a very tight time

window), needs skills 5, 8 and 9 from the nursing staff, and uses the DEXA scan room.

Based on the skills that each nurse possesses (see an example in the right part of Fig. 2.1),

we can see that only nurses 3 and 6 would be able to perform that visit.

Information systems help to track the clinical and operational data needed. However,

the complex resource and time coordination needs of the many trials of a CRU cannot be

managed well under current planning and scheduling methods. Much manual entry into

homegrown spreadsheets is typically required. A few CRUs have developed state of the art

systems that identify the key human and physical resources required to fulfill the visits that

are on the schedule, and they check for a resource conflict before allowing a centralized CRU
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Figure 2.1: Example of the time and resource requirements of a 5 visit clinical trial (left)
and the CRU nursing staff’s skill sets (right)

scheduler to make an appointment. The methodology of this paper was developed to meet

an unfilled need (i) to forecast and control key CRU performance metrics (e.g., avoiding

high overutilization costs), (ii) to perform the cost/benefit tradeoffs of accepting/starting

a particular new trial, and (iii) to generate a plan for how to keep participant access/wait

times to an acceptable limit.

2.1.2 High level insights into CRU functioning

When a new trial is proposed to the CRU, the managerial staff has to make the decision of

whether or not the scientific/financial value they will gain from it will outweigh the resources

it requires (human as well as room), or whether or not there are even enough resources to

accept it. Perhaps more importantly, there is currently no way to accurately determine

the negative impact of a new trial imposed on existing trials (i.e., externalities) due to the

increased congestion in the system.

CRU performance is dominated by the methods used to schedule the first visit of the

treatment sequence required by the trial protocol, because subsequent visit times are dictated

in the protocol from the time of the first visit. Failure to meet the required time window and

resource requirements for any visit after the first results in a protocol violation that devalues

research data and wastes resources. Furthermore, excessive violations will compromise the
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scientific integrity of the clinical trial if the target enrollment cannot be met. If all visits are

properly booked at the time the participant enrolls, we avoid double booked appointments

and congestion which may result in protocol violations or overutilization. As a rule, the

managerial staff of a CRU would rather delay the start date of a participant’s sequence of

visits (or perform some visits in overtime) than risk a protocol violation. In current practice

and in our planning model, the violation rate metric is approximately 0.

In Fig. 2.2 we illustrate an example of the current practice booking methodology, which

we call “First Available Slot” (FAS) dynamic scheduling. We suppose that on day t a trial

coordinator contacts the CRU to enroll a participant in a given trial. Suppose that this trial

requires 3 visits: the second visit has to be scheduled between 10 and 12 days after the first

visit, and the third visit has to be scheduled exactly 16 days after the first visit. The trial

coordinator will communicate with the CRU to schedule this participant as soon as possible

for his/her first visit. But this can only be done if there will be a nurse available with the

required skills (this includes not only the nurses’ nominal daily capacities but also the extra

capacity that the CRU is willing to spend on overutilization) for all visits of the trial (the

same goes for room/equipment availability). In Fig. 2.2, there are no nurses with the right

skills available to schedule this participant for his/her first visit on day t+ 1. On day t+ 2,

there is a nurse available with the required skills for visit 1 of such a trial. However, no nurse

with the right skills for visit 2 is available from day t+ 11 to day t+ 13 (10 to 12 days after

the first visit). There is no choice but to try to reschedule the participant’s first visit to day

t + 3. The same procedure is repeated (as seen in Fig. 2.2) until this participant is finally

able to be scheduled on day t+ 5 with a TFAV of 5 days.

Conceptually, it adds insight to consider the idea that a relatively more “complex” pro-

tocol contributes more to the Time to First Available Visit (TFAV) than does a simpler one.

Loosely speaking, they cause more congestion to the system, and they also suffer more from
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Figure 2.2: Example of the current practice booking methodology, the first available slot

congestion, experiencing relatively poorer access. Our intuition suggests that the complex-

ity of a protocol increases (ceteris paribus) with (i) a larger number of visits in the trial,

(ii) smaller visit time windows, (iii) shorter times between visits (i.e., the rate of resource

consumption increases) and (iv) larger workloads placed on the CRU. Such “higher density”

protocols tend to have a long and more variable TFAV. This effect has been observed in

many healthcare settings and is elucidated as follows: if poor capacity planning either uti-

lizes too little capacity (i.e., is inefficient) or permits too many protocols to be conducted

then the system will experience significant congestion, thereby delaying the starting times

of participants in every trial (increasing TFAV).

The more congested the system, the more difficult it is to schedule multi-visit participants,

especially for high density protocols. We use simulation to show this behavior. In the left

of Fig. 2.3, we observe the TFAV population average and population standard deviation of

16 trials with protocol characteristics populated by one problem instance of the randomized

test suite described in Section 4.1 (see Table 2.1 in Section 4.1). The estimates are good

enough to avoid the need for error bars. If we look at the TFAVs of trials in a congested

system, we will see highly variable TFAVs (average TFAV for a simple trial vs. a dense trial)
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as well as high variability in TFAV for participants within the same trial (especially in high

density protocols).

Figure 2.3: Impact of a trial’s protocol density on it’s own TFAV as well as the rest of the
portfolio of trials; Left: Population average and standard deviation of the TFAV
under the FAS policy for a given instance of the randomized test suite in Table
2.1; Right: TFAV mean and standard deviation of trial 3 and the same portfolio
instance averaged across all 15 other protocols as the mean workload rate of trial
3 varies

In the right of Fig. 2.3, we illustrate the effects on the population average TFAV when the

average workload per visit of trial number 3 increases (i.e., the trial’s density increases). We

used the same problem instance as in the left of Fig. 2.3 while varying the workload per visit

of trial 3. Trial 3’s enrollment rate constitutes roughly 8% of the total portfolio enrollment

rate in the left graph, and the point with a workload rate of 3.0 hours per visit in the right

graph corresponds to its value in the base case. First, as expected, the population average

TFAV of trial 3 will increase nonlinearly in the average workload per visit. Also, we see

not only a nonlinear increase in the population average TFAV over all trials in the portfolio

excluding trial 3, but the standard deviation bars on the means are convex increasing in

the variability around this TFAV. This shows how the density of one trial not only affects

the TFAV for its own participants, but greatly affects the TFAV of participants of all other

trials (since this portfolio is conducted under shared resources). This shows how selecting

new trials needs to be done carefully while understanding/forecasting the impact that this
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will have on other trials and the CRU resources.

In clinical research practice, the longer the TFAV, the greater the fraction of participants

who choose not to start the trial, thus increasing overall trial duration due to a lower en-

rollment rate. For example, high TFAV is also a problem for participants that need to start

the trial as soon as possible due to their clinical condition (e.g., advanced cancer). Further,

“each day it takes to bring [drug] products to the market is revenue lost: therefore, planning

is critical to the entire drug development process, including clinical trial operations,” [49].

Trial duration is a major problem in current practice.

The above concepts motivate our planning approach to provide improved and controlled

access (relative to FAS) for participants overall and especially in high density trials. Under

the current booking methodology, the participants enrolled in low density trials will have

very good access to care at the expense of the participants enrolled in high density trials.

The reason is that under this booking policy, the first available slot is always given to the

current enrolling participant even if he/she is enrolled in a low density trial that is easy

to book with low access (e.g., a short one visit trial) thus taking critical resource capacity

away from the future participants in trial protocols that may be harder to schedule. This

motivates our decision to reserve time slots (capacity) for first visits of each participant of

each trial (see Section 3.2), while assuring that enough capacity is available for subsequent

visits (with our participant flow forecasting methods in Section 3.4).

2.1.3 CRU needs for capacity planning and scheduling tools: A structured
survey

To clearly identify the status of common sense approaches in CRUs, MCRU conducted a

survey across 80 NIH-sponsored Cancer Centers, with 34 responses. The most difficult chal-

lenge was identified as knowing how to “Schedule the number/variety of protocols requested,”

with more than 95% selecting Strongly Agree or Agree. More than 80% of respondents agreed
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that a scheduling tool for predicting capacity and overutilization could help improve metrics.

CRUs agreed or strongly agreed that “In an effective Clinical Research Unit Planning Tool,

I would value the ability to: “predict the impact of a new trial (> 90%), reduce overuti-

lization expenses (80%), and reduce time-to-first-visit (80%). A real time scheduling tool

which confirms that the required resources are available for all visits at time of booking was

considered very valuable or valuable by 92% of the centers.

2.2 Literature survey

“Many clinical trials fail to deliver because of the lack of a structured, practical, busi-

nesslike approach to trial management,” observes [11] (see also [33] for further insight).

Rigorous research as well as the software vendor community have left the topic of CRU op-

erations almost untouched. Vendors have targeted the support of individual trials without

providing support for managing the CRU as a system of shared resources. Systems like

EPICTM (see [3]) provide basic scheduling and information management, but our research

seeks to harness mathematical system modeling and optimization to provide functionality

for planning, scheduling, and achievable trial performance. Survey results (provided in Sec-

tion 1.3) from many leading CRUs indicate that they are experiencing major difficulties and

are eager for science-based engineering systems for planning and scheduling. Most of the

literature in clinical trial management focuses on how to design trials that are successful and

efficient throughout the different stages that lead to drug development/commercialization

(see [54, 12]). Some literature treats the recruiting process of participants (see [39]). At

the same time, “patient recruitment should not start until the clinics and data center have

demonstrated that they are properly staffed and equipped to support this activity,” states

[41].

The research models and algorithmic solutions in the literature do not provide a method-
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ology that simultaneously accounts for the following elements that we integrate: (i) timeta-

bles for multi-visit care pathways of different durations and resource requirements with spec-

ified tolerances for their timing, (ii) a multi-month transient planning horizon, (iii) various

room resources, (iv) staff with specific skills/capabilities, (v) variable and uncertain partici-

pant enrollments, (vi) forecasting and controlling patient access by type, (vii) trial portfolio

selection, (viii) forecasting and controlling overutilization costs, (ix) efficient and practical

booking methodologies, and (x) coordinating the nursing staff and the physical resources

with participants’ treatment needs. Despite a large literature on scheduling and planning

(e.g., see [21]), there is little extant work to suit the problem at hand.

[21] uses the term indirect waiting to describe the wait to get an appointment which we

have captured at the daily level as TFAV. A prior model by [18] determines the best start

times of trials (within a day) and the allocation of individual personnel to clinical tasks

using a Mixed Integer Programming model. But this paper does not consider items (ii), (iii)

and (vi)-(x). Moreover, the trial protocols they considered do not require more than one

day to complete, whereas the sequence of visits to complete a trial can span many weeks

in our model. By using historical data to construct a matrix that assigns probabilities for

patients’ ward locations over time, [28] presents a new method to predict and optimize the

daily census at every ward in a hospital. By rearranging the elective/surgical schedules, they

can control the offered load on each hospital ward in an equilibrium model that is cyclo-

stationary. Our model differs from theirs in items (i), (ii), (iv), (vi), (vii), (viii), and (x).

Relevant literature includes scheduling outpatients to reduce waiting times ([7]), and many

others such as [46, 47] and [4]). [45] used approximate dynamic programming (ADP) to

consider different patient types that require different levels of access to a single appointment

for a diagnostic resource. This ADP approach was extended by [15] who allowed an interval

to be specified (earliest date and latest date) for the appointment. Our system differs from
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the prior two in items (i)-(iv), (vii), and (x).

2.3 The CAPTAIN methodology

CAPTAIN solves three interrelated problems: (i) selection of the portfolio of candidate

clinical trials that can and should be added to maximize the scientific/financial value ex-

tracted, (ii) creation of the daily Booking Reservation Plan (BRPlan), which is a capacity

allocation plan that reserves slots for trial visits, and (iii) construction of a daily nurse

schedule (NSPlan) that accounts for every planning visit’s requirements for nurse skills.

A key objective of a CRU is to extract the most value from the resources available, so to

facilitate item (i), we will use a scalar metric of total value gained and incorporate it as one

component in the decision of which trials to conduct. Our goal is to construct an optimized

transient/non-homogeneous BRPlan and NSPlan that will estimate and control the critical

CRU metrics defined earlier. We use a transient model since the portfolio of active trials

in a CRU tend to vary with time: some new trials can be added, while some will end or

be interrupted. The length of this planning horizon will be D business days of participant

enrollments (e.g., 60 days).

To support implementation, it is important that we be realistic in modeling the way that

CRUs would transition from any prior method for scheduling patients to our methodology.

We allow for the current portfolio in the CRU (before the incorporation of the CAPTAIN

tool), P0, to have been actively populated with appointments for T days (e.g., 720 business

days). This initial condition induces a certain “committed” workload/capacity for each

resource (skills and rooms) on each day of our planning horizon. This is generated by the

FAS scheduling of patients that enrolled prior to CAPTAIN’s period of planning. Those

initial workload conditions will be taken as inputs to our math program. Our question is:

how should the resource capacity still available be allocated to schedule our new participant
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enrollments from P0 and an optimized set of candidate trials while forecasting and controlling

the concerned metrics? More information about the transient and implementation aspects

of CAPTAIN can be found in Appendix C in Section 2.7.3. Note that all mathematical

notations are also described in Appendix A in Section 2.7.1.

2.3.1 Scientific value and the objective function

To help evaluate potential trials to be added, the model accepts an input scientific value

rating Mk for every candidate clinical trial k ∈ Pcand. This is an obvious mechanism to

obtain the greatest good from the CRU resources. Of course, setting Mk = 1 for all trials

k is still a very useful model, provided constraints are placed on TFAV to provide equal

access to all despite logistical differences between trials. In current practice, they schedule

any new participant enrollment to the next available slot such that all future visits can

adhere to the protocol requirements while also respecting capacity constraints. As a side

effect, this results in a system which offers the best access (low TFAV) to the participants

in the low density trials. Complex trial protocols suffer with long TFAV metrics which is

a barrier to enrollment, may undermine the participant’s health care, and lengthens the

duration of the trial. The scientific value input allows the optimization to combine all the

relevant metrics in allocating capacity while satisfying constraints on metrics that include

TFAV and overutilization limits. Scientific value can have different meanings for different

CRUs. While scoring Mk is a challenge outside the scope of this paper, one view is to rate

the trials based on the scientific/research knowledge that can be gained from them (this is

already done in practice). Scientific value could also incorporate the financial value gained

from a trial, especially for industry funded trials. It is not difficult to set up the scoring

system to ensure that the scientific goals take priority over finances by weighting the various

categories appropriately.

One possible objective of the Mixed Integer Program can be summarized neatly by max-
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imizing the following, but the deep computations all happen in the constraints, which are

provided later: ∑
k∈P

Mkhk, (2.1)

where the binary decision variable hk is set to 1 if and only if trial k ∈ Pcand will be activated,

and P = Pcand ∪ P0. Note that hk will be a parameter equal to 1 for trials k ∈ P0 that are

still ongoing at the beginning of our planning horizon. The following sections will introduce

and justify the modeling of our system’s constraints, and a complete version of the Mixed

Integer Program used in the numerical case studies can be found in Appendix D.

2.3.2 The Booking Reservation Plan (BRPlan)

The BRPlan is essentially a patient admission control mechanism that packs the partic-

ipants’ first visit requests into the planning space of physical, human, and time resources

via planned appointment time blocks for each type of first visit planned and accounting for

all follow-up visits. Our decision variables will set a maximum limit on the number of type

k participants that can start their treatment sequence on day d of our planning horizon,

thereby controlling the participant flow of enrollments. For each active and candidate trial

k ∈ P , our BRPlan decision variables, Θk,d, will take values in Z+, and be defined over the

set of days {1, ...,D + TFAV
max

k }. The horizon extends TFAV
max

k days beyond the end of

the planning horizon, D, because CAPTAIN schedules the enrolling participants (up to day

D) within the population maximum TFAV, TFAV
max

k , which is set by the decision maker.

To compute the TFAV access metric and to optimize the BRPlan, a given type k partici-

pant enrolling will always be given the first available type k reserved capacity slot within

the BRPlan. After the first visit, we account for participant’s preference within the time

windows of subsequent visits. The first visit for type k is booked to the first available day

with sufficient reserved capacity by the BRPlan, so that we can emphasize the effectiveness
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of the capacity management method of a CRU to guarantee a level of access to the most

urgent patients and to do so without dependence on the participants’ personal preferences.

The BRPlan differs from the current first available slot methodology, because it selects the

first available slot reserved for type k participants (which was determined by an informed

decision of all protocols’ needs derived via optimization).

To quantify the stochastic booking process, we assume that a type k participant enrolling

on day t can be scheduled for her first visit no earlier than day t+1. We provide the following

key definition:

Definition II.1. Let αk,d,t denote the nonnegative integer valued random number of type

k first visit participants booked under the BRPlan on day d ∈ {1, ...,D + TFAV
max

k } and

enrolled on day t ∈ {0, ...,D}, where t < d.

One can compute αk,d,t recursively while considering the type k daily demand/enrollment

random variables denoted by Ak,t, t ∈ {0, ...,D} taking values in Z+, and the previously

defined BRPlan type k admission limit decision variables, Θk,d, as:

αk,d,t = min

{(
Θk,d −

t−1∑
l=0

αk,d,l

)
,

(
Ak,t −

d−1∑
l=t+1

αk,l,t

)}
, (2.2)

where (i) the left hand side of the minimum is the integer number of type k reservations/slots

remaining on day d for first visits after all participants who enrolled before day t have been

scheduled, and (ii) the right hand side of the minimum is the random number of type k

participants who enrolled on day t and who are not booked for their first visit appointment

before day d (or later).

Our goal is to translate this set of stochastic non-linear equations into a set of determin-

istic linear constraints subject to Θ that can capture the mean of the αk,d,t random variables.

This information is needed to accurately estimate (i) how demand will be fulfilled according

to a given BRPlan Θ, (ii) the delay to obtain a first visit, and (iii) how the CRU’s resources
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will be utilized. The dynamics of our system are conceptually similar to the idea of blocking

in queueing networks, which is difficult to compute except in special cases, and is non-linear

in our main decision variable Θ. To overcome this, we consider approximation techniques

that can tractably capture the key system dynamics linearly in order to forecast and control

our desired metrics in a deterministic Mixed Integer Programming (MIP) optimization.

Although keeping a full information state of prior enrollments allows us to estimate our

metrics exactly and linearly in our decision variables, an important mechanism to keep our

optimization tractable is to approximate the information state by aggregating the enrollment

information for the m or more days prior to current day t, with m ≥ 1. The random variables

Ak,t take values in the set I = {0, 1, ..., I}, with I being the maximum number of type k

enrollments on a given day.

Definition II.2. For all k ∈ P , t ∈ {1, ...,D}, d ∈ {t + 1, ...,D + TFAV
max

k }, m ≥ 1, and

j∗(t) = max{t −m + 1, 1} we define the set Ak,d,t(m) with elements α
at,at−1,...,aj∗(t),a

k,d,t ∈ R+,

a ∈ {0, 1, ..., j∗(t) · I}, and the vector (aj)j∈{j∗(t),...,t} ∈ I that represents the conditional

expectation of the number of patients that enrolled on day t and are scheduled on day d given

a partial history of prior enrollments (Ak,t, ...,Ak,j∗(t),
∑j∗(t)−1

i=0 Ak,i) = (at, at−1, ..., aj∗(t), a),

where the oldest history, days {0, 1, ..., j∗(t)− 1} are aggregated as a sum.

As a first example, let’s assume that t is day 15 and m = 5. Then we notice that

j∗(15) = 11 and that our set Ak,d,15(5) will contain the conditional expectations αa15,a14,...,a11,a
k,d,15

of the number of participants enrolled on day 15 and scheduled on day d > 15 given the

following partial history of enrollment: (a) the aggregated information of total enrollments

from days 0 to 10 (
∑10

i=0 Ak,i = a,∀a ∈ {0, ..., 11I}), and (b) the daily enrollment information

from days 11 to 15 (Ak,i = ai, ∀ai ∈ I,∀i ∈ {11, ..., 15}). Now, in the case when m > t (say

m = 20), we will have j∗(15) = 1, and we notice that our set Ak,d,15(20) will contain the

conditional expectations αa15,a14,...,a1,a
k,d,15 of the number of participants enrolled on day 15 and
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scheduled on day d > 15 given a full daily history of enrollment from days 0 to 15 (where

day 0’s enrollment realization will be characterized by a).

Remark II.3. In Definition II.2, we omitted the first day where t = 0 due to notational

complexity. To address this issue, we will assume j∗(0) = 0 and use the convention αa0k,d,0 :=

α
a0,aj∗(0),a

k,d,0 to define the elements of the set Ak,d,0(m) similarly to Definition II.2. Hence, in

the case t = 0, αa0k,d,0 will represent the conditional expectation of the number of patients

that enrolled on day 0 and are scheduled on day d given that there were Ak,0 = a0 type k

enrollments on day 0.

In Lemma II.4 and Theorem II.5, we show that a linear MIP can be formulated in our

decision variables when we keep a full information state of prior enrollments: m =∞.

Lemma II.4. For all k ∈ P , t ∈ {0, ...,D}, d ∈ {t + 1, ...,D + TFAV
max

k }, the elements

α
at,at−1,...,a0
k,d,t ∈ Ak,d,t(∞) can be expressed in a MIP as a set of linear constraints subject to

our decision variables Θ.

To prove Lemma II.4 and all the following lemmas and theorems, see Appendix B in

Section 2.7.2. We allow general (and time dependent) distributions for type k demand, so

the model can use historical/empirical distributions from the given (or from a similar) trial’s

enrollment processes or use expert opinion to account for different rates of enrollments with

time, which may be useful during periods of trial advertisement. With a finite I, we let

Pk,t(al), al ∈ I with I = {0, 1, ..., I} ⊂ Z+ be the probability that there are a enrollments of

type k on day t (which can be drawn from historical and protocol data). Finally, we make

the assumption that Ak,t1 is independent of Ak,t2 for all t1 6= t2 ∈ {0, ...,D} (which is a

good assumption in practice even when the arrival process is nonstationary over time due to

promotions).
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Theorem II.5. Given any BRPlan matrix Θ, and as I → +∞ in the case of unbounded

support for the enrollment distribution, αk,d,t, the expected value of αk,d,t, can be computed

linearly in our decision variables Θ as:

αk,d,t =
∑

α
at,at−1,...,a0
k,d,t ∈Ak,d,t(∞)

α
at,at−1,...,a0
k,d,t ·

t∏
l=0

Pk,l(al). (2.3)

For every k ∈ P , t ∈ {0, 1, ...,D}, and d such that t < d ≤ D + TFAV
max

k , the set

Ak,d,t(∞) will be composed of (Ī + 1)t+1 elements. In our setting, clinical trial daily enroll-

ment/demand rates are rather low (generally less than 1 enrollment per day), which allows

us to choose a small Ī while not losing much accuracy. We run into dimensionality issues as

the length of our planning horizon gets large (e.g., t is 60 for a 12 business week planning

horizon). For tractability, we approximate our booking methodology by reducing the cardi-

nality of the set Ak,d,t(∞). In all that follows, we use the set defined as Ak,d,t(m) in Definition

II.2, with a partial aggregation of the enrollment information from days 0 to j∗(t)− 1. The

goal is to express α
at,at−1,...,aj∗(t),a

k,d,t ∈ Ak,d,t(m) linearly in our decision variables, but Eq. 2.2

requires taking the conditional expectation of the minimum of two random variables. In the

case m = ∞ (see Lemma II.4), conditioning on the complete history of enrollments allows

the two elements of the minimum of Eq. 2.2 to be deterministic, so the expected value of

the minimum will be the minimum of the expected values of each term. In the case m < t,

this won’t hold, and we rely on the following approximation. We define α̂
at,at−1,...,aj∗(t),a

k,d,t as an

element of the set Âk,d,t(m) which approximates Ak,d,t(m), and so we define α̂
at,at−1,...,aj∗(t),a

k,d,t

to be:

min

{
E

Ak,t −
d−1∑
l=t+1

αk,l,t|(Ak,t,Ak,t−1, ...,Ak,j∗(t),

j∗(t)−1∑
i=0

Ak,i) = (at, at−1, ..., aj∗(t), a)

 ,

E

Θk,d −
t−1∑
l=0

αk,d,l|(Ak,t,Ak,t−1, ...,Ak,j∗(t),

j∗(t)−1∑
i=0

Ak,i) = (at, at−1, ..., aj∗(t), a)

}.

(2.4)
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We will assume that the elements α
at,at−1,...,aj∗(t),a

k,d,t of Ak,d,t(m) are close to α̂
at,at−1,...,aj∗(t),a

k,d,t ∈

Âk,d,t(m) for all k ∈ P ,∀t ∈ 0, ...,D,∀d ∈ t + 1, ...,D + TFAV
max

k . In other words, we

assume equality in the well known Jensen’s inequality (i.e. we assume E [min{X,Y }|Z] =

min{E [X|Z] ,E [Y |Z]} for the random variables X, Y and Z). The less variability there

is in the random variables E [X|Z] and E [Y |Z], the more accuracy we will have in our

approximation. Hence, the more enrollment information we condition αk,d,t on (i.e. the

larger m is), the closer α̂
at,at−1,...,aj∗(t),a

k,d,t will be to α
at,at−1,...,aj∗(t),a

k,d,t .

Proposition II.6. Given α̂
at,at−1,...,aj∗(t),a

k,d,t ∈ Âk,d,t(m) defined in Eq. 2.4, and any BRPlan

matrix Θ, as I → +∞, αk,d,t, the expected value of αk,d,t, can be approximated linearly in

our decision variables Θ as:

αk,d,t ≈
∑

α̂
at,at−1,...,aj∗(t),a
k,d,t ∈Âk,d,t(m)

α̂
at,at−1,...,aj∗(t),a

k,d,t ·

 t∏
l=j∗(t)

Pk,l(al)

 · P k,j∗(t)(a). (2.5)

where P k,j∗(t)(a) =
∑

a0+a1+...+aj∗(t)−1=a

∏j∗(t)−1
l=0 Pk,l(al) is the probability of having exactly a

type k enrollments in the first j∗(t) days (from day 0 to j∗(t)− 1) of our planning horizon.

Note that as m decreases, |Âk,d,t(m)| decreases while trading off some accuracy when

computing αk,d,t (since we aggregated information on past enrollment realizations). If we let

µk,d be the random variable designating the number of type k participants scheduled on day

d of our planning horizon under the BRPlan policy, we can compute its mean as:

µk,d = E [µk,d] =
d−1∑
t=0

αk,d,t. (2.6)

2.3.3 Formulation and control of the Time to First Available Visit

In this subsection, we want to control participants’ access to trials. We formulate three

TFAV metrics for a given trial k: (i) the average TFAV, denoted TFAV avg
k , which is the

mean TFAV averaged over all participants of type k that enrolled within our time horizon,
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(ii) the TFAV-exception rate, TFAV except
k,t (ω) is the expected value of the percentage of

type k participants that enrolled on day t and that had to wait strictly longer than ω days

before their initial visit, and (iii) the population maximum TFAV, denoted TFAV
max

k , which

captures the maximum expected number of days that a type k participant had to wait within

our time horizon. In (ii), the TFAV-exception rate will be defined for each day t ∈ {0, ...,D}

by a type k sequence
(
TFAV except

k,t (ω)
)
ω∈T , T ⊂ {0, 1, 2, ...,TFAV

max

k }, where each element

is the expected fraction of type k participants enrolling on day t which will exceed ω days of

waiting for their first visit (i.e., won’t be scheduled before t+ ω + 1). By allowing the CRU

administrator to control (i)-(iii), we will be able to reduce the access variability between

participants of a given trial and shape the access delays across trials. The elements and the

cardinality of the set T are to be custom selected to meet the relative trial priorities and

participant treatment needs.

Theorem II.7. The average type k TFAV can be expressed linearly in our BRPlan variables

Θ as follows:

TFAV avg
k =

D∑
t=0

D+TFAV
max
k∑

d=t+1

∑
α
at,at−1,...,a0
k,d,t ∈Ak,d,t(∞)

(d− t) · αat,at−1,...,a0
k,d,t

·
∑

(aD,aD−1,...,at+1)∈ID−t

∏D
l=0 Pk,l(al)∑D

i=0 ai
(2.7)

Next, the customer-average type k TFAV exception rate on day t for a chosen delay ω is
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computed linearly in Θ as follows:

TFAV except
k,t (ω) = E

D+TFAV
max
k∑

d=t+ω+1

αk,d,t

Ak,t

 (2.8)

=
∑

(at,...,a0)∈It+1

D+TFAV
max
k∑

d=t+ω+1

E
[
αk,d,t

Ak,t

|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)

]

·
t∏
l=0

Pk,l(al) (2.9)

=

D+TFAV
max
k∑

d=t+ω+1

∑
α
at,at−1,...,a0
k,d,t ∈Ak,d,t(∞)

α
at,at−1,...,a0
k,d,t

at
·

t∏
l=0

Pk,l(al). (2.10)

Eq. 2.9 can be derived by conditioning Eq. 2.8’s expectation with respect to (At, ...,A0) =

(at, ..., a0). Assuming a finite set I (which is a good assumption in practice), we can change

the order of summation, and by using the definition of set Ak,d,t(∞) and its elements

α
at,at−1,...,a0
k,d,t , we can derive Eq. 2.10. It will be linear in our decision variables thanks to

our result in Lemma 3.1.

Remark II.8. Note that when solving this problem for long planning horizons, we can approx-

imate the average TFAV (resp., TFAV exception rate) formulation in Theorem II.7 (resp. Eq.

2.10) by computing TFAV avg
k (resp., TFAV except

k,t ) as a linear combination of α̂
at,at−1,...,aj∗(t),a

k,d,t

terms (see Section 2.3.2 for more details), as follows:

TFAV avg
k ≈

D∑
t=0

D+TFAV
max
k∑

d=t+1

∑
α̂
at,at−1,aj∗(t),a
k,d,t ∈Âk,d,t(m)

(d− t) · α̂at,at−1,aj∗(t),a

k,d,t

·
∑

(aD,aD−1,...,at+1)∈ID−t

P k,j∗(t)(a) ·
∏D

l=j∗(t) Pk,l(al)

a+
∑D

i=j∗(t) ai
, (2.11)

TFAV except
k,t (ω) ≈

D+TFAV
max
k∑

d=t+ω+1

∑
α̂
at,at−1,aj∗(t),a
k,d,t ∈Âk,d,t(m)

α̂
at,at−1,aj∗(t),a

k,d,t

at
· P k,j∗(t)(a) ·

t∏
l=j∗(t)

Pk,l(al).

(2.12)

We can limit TFAV avg
k by constraining it by a specified upper bound on average access

wait, denoted TFAV
avg

k . Also, we let pk,t(ω), with ω ∈ T be the limit placed on the
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expected percentage of type k participants that enrolled on day t that are permitted to ω

days of waiting for their first visit. Note that setting pk,t(TFAV
max

k ) = 0 for all t ∈ {0, ...,D}

is equivalent to setting a population maximum TFAV limit of TFAV
max

k on trial k. This

assures that type k enrollments on any given day t will be booked for their first visit on a

day d ≤ t+ TFAV
max

k .

2.3.4 The stochastic Participant Resource Requirement Model

The Participant Resource Requirement Model (PRRM) is a stochastic location process

model (a particular random field) we developed to tractably capture randomness in partici-

pant resource needs over time, and it was inspired by [28]. Let the set of all possible physical

locations/resources be R and the set of all skills of the personnel be S. Then the entire set

of resources is indexed by r in R ∪ S. Note that specific skills are required on each visit of

a trial (as opposed to specific nurses). Each skill is mapped via the nurse skill sets to one

or more staff possessing that skill. This captures the unique skills of each individual staff

member. First, we focus on the workloads induced on skills, and we will later assign those

workloads to specific nurses.

The protocol information for any trial k includes (i) the number of visits Vk in the trial,

(ii) the time window requirements on each visit v, Ωk,v, which represents a finite set of

days that visit v can be scheduled after the first visit without provoking a deviation from

protocol (patient preference is exercised only within those time windows), (iii) the set of

clinical resources needed (for example it could be skill 1, skill 5, and the Procedure Room)

needed for each visit v, and (iv) the deterministic workload, w̄k,v,r, induced by a visit v on

resource r. As an example of item (ii), if Ωk,v = {10, 11, 12} then a type k participant will

require resources on a given day between 10 and 12 days after his/her first visit. There may

exist some protocols where visit v has no time window requirement, and in this case we let

Ωk,v = {1, 2, ...,Lmax}, where Lmax is the maximum length (in days) of the longest protocol



35

(for a single participant). For first visits, there are no time windows since the participant can

start on any day with available capacity, so by convention, we let Ωk,1 = {0},∀k ∈ P . We use

the protocol information in items (i)-(iv) to create a participant flow model that forecasts

the required workload of participants of type k, on and after their first visit. The vector

PRRMk,d1(d) determines, for a randomly sampled participant starting protocol k on day d1,

the number of hours he or she will need each resource r ∈ R∪S∪H on day d, where H is the

“home” resource (i.e., the participant has no appointment in the CRU). Letting er be the

unit vector with a 1 in the rth column, our goal is to compute P (PRRMk,d1(d) · er = w), the

probability that a participant starting protocol k on day d1 will require w hours of resource

r on day d. Because participants enrolling in an active trial k on day d1 have a uniform

distribution of preferred days within their visits’ time windows, this generates the following

probability distribution of the workload induced on resource r (skills and rooms) on day d:

P (PRRMk,d1(d) · er = w) =

Vk∑
v=1

11w=wk,v,r

11{(d−d1)∈Ωk,v}

|Ωk,v|
. (2.13)

Remark II.9. From Eq. 2.13, we can compute the expected value of the PRRM, denoted

PRRMk,d1,r(d), for all trials k:

PRRMk,d1,r(d) := E (PRRMk,d1(d) · er) =

Vk∑
v=1

11{(d−d1)∈Ωk,v}

|Ωk,v|
w̄k,v,r. (2.14)

In this paper, we assume a uniform distribution within the days of the visit time windows

to model patient preferences. Note that in practice, we can generalize this by using patient

preference estimated from historical distributions. Also, the required time window of visit

v of a protocol is only dictated by the timing of the first visit. A trivial extension of our

PRRM formulation would be to consider the time dependence between two subsequent visits

(e.g. visit 3 has to occur between 10 and 12 days after visit 1, but also exactly one day after

visit 2).
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2.3.5 Formulation of the offered daily workload

As is common in queueing problems, computing the workloads in the system is funda-

mental. The daily offered workload for our planning horizon will depend on (i) W init
r (d), the

existing workload on resource r and day d induced by participants that enrolled prior to the

start of our horizon, (ii) the portfolio of the selected candidate trials chosen at the beginning

of our planning horizon, (iii) the number of daily participant bookings for their first visit by

trial, to be optimized by the reserved resource capacity plan, BRPlan, and (iv) the PRRM

model of patient flow through subsequent visits. Since we are considering enrollments from

days 0 to D, and we limit the trial k population maximum TFAV level to TFAV max
k , we

need to predict the offered workloads up to day D+Lmax + maxk{TFAV
max

k } (where Lmax

is the duration in days from the first visit to the last visit of the longest protocol). The

following theorem shows how to compute the offered workload on any day d and resource

r ∈ R ∪ S.

Theorem II.10. Given µ̄k,d1, the mean offered workload for resource r (r ∈ R∪ S) on day

d of our planning horizon, with d = {1, 2, ...,D+Lmax + maxk TFAV
max
k }, can be expressed

linearly as follows:

W̄r(d) = W init
r (d) +

∑
k∈P

min{d,D+TFAV
max
k }∑

d1=1

µ̄k,d1 · PRRMk,d1,r(d). (2.15)

While Theorem II.10 applies to both the rooms and skills of the personnel, we now focus

on the human resources, which we refer to as nurse resources (as non-nursing staff can be

treated similarly). Below, index n denotes the nth nurse in set N of all nurses working in

the CRU. In order to achieve the desired targets on the overutilization and TFAV metrics,

CAPTAIN has the ability to provide a Nurse Schedule Plan (NSPlan) that (i) plans for each

day d, the number of hours Kn(d) each nurse n should work on day d given the clinic’s

constraints on shift assignments, and (ii) coordinates participants’ needs (skills required on



37

each visit) with nurses’ skill sets and availability. Feature (i) permits the model to generate

a nursing shift assignment plan that takes into account the possible shift lengths of a CRU

(for examples, see Case Studies A and B in Section 2.5.2) as well as the CRU’s rules on

shift assignments (an example is provided when the test suite is described in Section 2.4.1).

In the MIP formulation in Appendix D (Section 2.7.4), we omit the nurse staff workload

planning constraints, since these must be coded into the MIP in a manner unique to the

case study (i.e. rules on shift assignments and shift lengths). Conceptually, the idea is

to ensure that {(Kn(1), ...,Kn(D + Lmax + maxk TFAV
max
k ) : n ∈ N} ∈ ∆, with the set

∆ assuring that all staffing rules are obeyed. The modeling of skill sets allows for the

consideration of training/cross-training in addition to hiring/expansion. In (ii), we need to

compute decision variables xs,n(d) that determine the number of hours nurse n should be

assigned to participants that require skill s on day d of the planning horizon while respecting

the allowable shift lengths. Continuity of care is not a concern for the multiple visits of a

trial, hence we do not need to assign the same nurse to all the visits of a participant. Note

that Theorem II.10 determines the mean workload induced on the nursing skills, but not the

nurses themselves (because protocols do not specify which nurse needs to be present for a

visit, but rather the skills).

The decision variables xs,n(d) need to ensure that the offered workload on any skill on

any day d (expressed in Theorem II.10) has to be assigned only to a nurse n that can perform

that skill s, where N (s) denotes the set of nurses that possess skill s. Observe that such a

decision not only affects the workload induced on the skill required by this visit, but also on

all other skills that this nurse possesses due to shared capacity. Eq. 2.16 and 2.17 assure

that the set of nurses that possess skill s can serve the anticipated workload, and that no
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nurse n will be assigned workload not in his/her skill set. Let

W s(d) =
∑

n∈N (s)

xs,n(d),∀s ∈ S, ∀d ∈ {1, 2, ...,D + Lmax + max
k
TFAV

max

k }. (2.16)

From Eq. 2.16, we can now compute the mean daily workload induced on each nurse:

W (n, d) =
∑
s∈S

xs,n(d),∀n ∈ N ,∀d ∈ {1, 2, ...,D + Lmax + max
k
TFAV

max

k }. (2.17)

We allow the system administrator to impose a constraint on the maximum allowable,

planned mean overutilization for nurse n on day d, denoted Ōn(d):

W (n, d) ≤ Kn(d) +On(d),∀n ∈ N ,∀d ∈ {1, 2, ...,D + Lmax + max
k
TFAV

max

k }. (2.18)

For room resources (e.g., bed, chair, procedure room, exercise room, DEXA scan, etc.),

the model is a degenerate case of nurse resources, because there is no need for “room flex-

ibility” or a room “staffing plan.” We model a fixed daily available capacity (of 12 hours

in MCRU’s case). From Theorem II.10, the expression for the mean overutilization hours

induced each day on any room resource can simply be formulated in Eq. 2.59 (Appendix D

in Section 2.7.4).

2.4 Validation approach

Having defined our decision support optimization model, we now validate our computa-

tions and approximations. To validate the concept of the BRPlan and our main performance

metrics, we begin by assuming that there is no selection of additional trials and that the

NSPlan is not optimized (i.e., we continue booking the participants of P0 in our planning

horizon with the same nurse schedule as current practice, but now by following the BRPlan).

Section 2.5.1 will test the portfolio selection feature of our problem while Section 2.5.2 will

test the improvements made by the BRPlan and NSPlan (which will then be optimized)

methodologies over the FAS policy. The validation in this section aims to test the accu-

racy of our BRPlan approximation and how this affects the forecasting of our metrics: the
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portfolio selection and nurse daily capacity decisions are not correlated to accuracy, but we

do still validate our approach for many portfolio instances and nurse schedules of our ran-

domized test suite (each instance having a fixed portfolio and nurse schedule). Therefore, in

this section, our objective is to maximize the mean resource utilization/workload (which is

equivalent to minimizing the overall mean TFAV of participants) subject to constraints on

our other metrics. For all our following numerical results (validation and sensitivity/tradeoff

analyses), we conservatively employ the m = 1 approximation, which highlights a worst case

scenario for the approximation. Specifically, in the case where m = 1, we lose accuracy in

computing the mean number of enrolled participants that will be booked on a given day,

because we consider the number of enrollments on the current day, and aggregate all the

enrollment information of previous days.

2.4.1 Test Suite

Our objective is to perform a performance evaluation that is more scientific than a case

study of a specific CRU. Drawing from protocol characteristics from MCRU that are believed

to be representative of many sites, we constructed a randomized test suite of protocols, CRU

features, and CRU constraints on key metrics, that have characteristics spanning those in

practice. We randomized (with uniform distributions) the number of active trials modeled

as well as the protocol characteristics of all active and candidate trials. The ranges on the

uniformly distributed parameters of our randomized test suite are provided in Table 2.1. In

the following experimental studies, we also use a fixed number of rules on shift scheduling: it

is required that a given nurse (1) cannot have two 12 hour shifts (the longest possible shift)

two days in a row, (2) cannot be on call (a nonzero capacity) more than three days in a row,

and (3) is assigned a total planned capacity of 40 hours in a week. Each performance site

will have its own set of rules/preferences, and our methods are flexible enough to incorporate

such specific requirements (see e.g., [34]).



40

Parameter Range
Workload induced on a resource for a given visit (in hours) 1 - 6

Time between successive visits (in business days) 1 - 15
Visit time windows ( in ± days) 0 - 10

Number of visits 1 - 10
Enrollment rates (in participants/day) 0.1 - 1

Number of active trials 6 - 16
Number of candidate trials to consider accepting 0 - 8

Number of nurses 6
Number of nurse skill sets 10

Possible shift lengths (in hours/day) 0, 4, 8 or 12
Number of room types 6

Room capacity (in number of hours per day for each type) 12 - 48
Daily overutilization target over all resources (in hours) 0 - 6

Population Average TFAV target TFAV avg
k (in business days) 10 - 25

Mean percentage of participants exceeding a given TFAV target (in %) 0 - 50
Population Maximum TFAV target (in business days) TFAV avg

k - 40

Table 2.1: Test suite defined by trial protocol features (upper part of the table), CRU features
(middle part of the table), and targets/bounds set on the main metrics (lower part
of the table)

Note that in practice, candidate trials proposed to the CRU have a fully defined protocol,

so the protocol parameters needed for the model will be known prior to the activation of the

trial (including the desired number of participants). Estimating enrollments for candidate

trials is challenging, but our experience and that of MCRU staff indicates that it can help to

use historical enrollment data from trials with similar features. We randomized each nurse

skill set as follows. Referring to the table on the right of Fig. 2.1, we use a probability of 0.5

in placing a check mark in each cell to denote that nurse n has skill s, with cells being i.i.d.

2.4.2 Simulation of the BRPlan for validation purposes

For purposes of validation, we wrote a custom C++ simulation and employed the test

suite to see how an optimized BRPlan, Θk,d, would behave in practice. The enrollment rates

for all trials are modeled as Poisson processes for simplicity of exposition. The simulation

takes in two of the main outputs from CAPTAIN: the BRPlan and the NSPlan. Also, it
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considers the committed workload (i.e., already scheduled visits) at the beginning of the

planning horizon (based on a simulation of the prior history of the system to generate the

irrevocable workload from participants that enrolled prior to our planning horizon). After

an enrollment of a given type in our planning horizon, the simulation checks for capacity

availability to schedule the participant based on the optimized BRPlan, Θk,d, and the previ-

ous enrollments that already occupy some of the slots of the BRPlan. The simulation books

each new participant for a first visit on the earliest future day when there is enough resource

capacity reserved by the BRPlan for that type of trial. Once this day is identified, the

participant is scheduled for the first visit, and all the downstream visits of the protocol are

generated according to the PRRM (see Section 2.3.4) and the distributions associated with it

(e.g., uniform distributions on the participant preference within the required time windows).

The simulation then uses the optimized NSPlan to assign the visit (and workload) to a given

nurse with the required skill such that all nurse work rules of the prior subsection are obeyed.

This process is repeated on each day of our planning horizon. We run 1,000 sample path

realizations of our planning horizon in order to get accurate metric estimates. The presented

simulations are accurate to within 1% or better with a 95% confidence interval.

2.4.3 Validation of the BRPlan

Because we approximated the dynamic BRPlan scheduling methodology via a determin-

istic set of linear equations to be used as constraints in the optimization (see Section 2.3.2),

we want to estimate the accuracy of our forecast of the mean daily number of type k partic-

ipants scheduled under a given BRPlan (µk,d). This section validates our BRPlan approach

by comparing these approximations to the sample mean of the simulated model µ̄simk,d , (which

mimics exactly how the BRPlan could be implemented very simply in practice). We will use
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the Absolute Percentage Error (APE) metric defined as follows:

APEBRPlan
k,d = |

µk,d − µ̄simk,d

µ̄simk,d

| · 100%. (2.19)

By investigating many problem instances/realizations of the test suite described in Table

2.1, we confirmed the intuition that the accuracy of our approximated analytical BRPlan

approach varied from one trial to another within a single simulated CRU instance. The

BRPlan reserves capacity for each trial, hence the booking process of each trial is independent

of another trial’s booking once the Θk,d decision variables are all fixed. We found that the

APE was most sensitive to two characteristics: (i) the bound we set on the trial’s TFAV

(mean, max and/or TFAV exception), and (ii) the “density” - a concept hard to quantify

but increasing in higher enrollment rates, greater workload induced, shorter time windows,

shorter time between visits, and a greater number of visits per participant. In Fig. 2.4, we

investigated the sensitivity of the BRPlan APE to the enrollment rate of the trial (Fig. 2.4

left) and the maximum bound set on TFAV for the given trial (Fig. 2.4 right). Note that

all other parameters were fixed and were set to a given realization of the randomized test

suite of Table 2.1. We averaged our daily APEs over all days of our planning horizon to aid

presentation.

Figure 2.4: BRPlan APE of the number of patients scheduled (as defined in Eq. 2.19) for a
given trial as a function of (i) Left: its enrollment rate and (ii) Right: the bound
we set on maximum TFAV

While we do not have space to present examples for every conjectured component of
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trial “density” (see the discussion in Section 2.1.2) our results suggest that our approach

works best either for (i) high density trials or for (ii) trials that can tolerate longer waiting

times. These two factors are generally related, because higher density trials required longer

waits to first visit. Considering the practical desire for high throughput, our BRPlan will

usually reflect high utilization which by experimentation we found to correspond to close

gaps between the number of patients scheduled and the reserved capacity Θk,d. In cases

approaching heavy traffic, CRUs and/or specific trials will tend to have high enrollment

rates and long waits, and in these situations our approximations work very well. For (ii),

as the waiting time target gets larger for a trial, the number of days between two successive

non zero Θk,d values gets larger (ceteris paribus). Hence, the number of participants that

enrolled but still haven’t gone through their first visit will also grow larger. By accumulating

this unfulfilled demand for first visit (with a fixed arrival rate), the variability around the

number of patients that will be scheduled in the reserved capacity will be reduced. Note that

when the enrollment interarrival times are deterministic, the APEs are 0 and our analytical

approach is exact. In conclusion, our approximated BRPlan methodology tends to work best

in high utilization situations and low variability settings such as those with relatively longer

TFAV times and more predictable enrollment times.

2.4.4 Validation of the average TFAV

To illustrate the accuracy of the average TFAV estimation method, we will illustrate one

problem instance of our randomized test suite from Table 2.1 so we can describe the details

driving accuracy. We considered 16 trials that varied a lot based on their characteristics

including density. In Fig. 2.5, we compare the analytical average TFAV optimized via the

linearization in Eq. 2.45 to the average TFAV computed via the simulation (by computing

the TFAV APE value similarly to Eq. 2.19). The APE accuracy of our estimations for each

trial is shown in Table 2.2. Just as we suggested in Section 4.3, we see that the accuracy
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(APE) varies across trials with different characteristics. As we see later in a test case (see

Fig. 2.7 in Section 5.2), the bounds on population average TFAV reveal that the trials with

higher waiting time bounds achieved smaller APEs. This aligns with our statement that our

methods work best in a high utilization setting.

Figure 2.5: Validation of period 1 trials’ population average TFAV

Trial: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
APE 7.8 8.3 8.8 8.9 7.4 5.0 5.6 5.8 5.5 3.2 1.7 2.0 1.4 7.1 8.6 5.6

Table 2.2: Absolute Percentage Errors (APEs) in % of the population average TFAV by trial
over one instance/realization of the randomized test suite in Table 2.1

2.4.5 Validation of the mean offered workload

We provide validation of our analytical workloads by calculating the daily average APE

for each nurse skill (Si, i = 1, ..., 10) and each of the 30 instances of the randomized test

suite of Table 2.1 considered. In Table 3, we then provide an average and standard deviation

(STD) over those 30 instances of the daily APEs. We note that the forecasting of the total

aggregate workload induced on the entire CRU (denoted “Ag. Skills” in Table 2.3) is very

accurate with only a 1.5% error on average. Similarly, the error for room resources can be

found, but we omit them because rooms are not the capacity constraint and represent a

special case of human skills (since rooms have fixed daily capacities).
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Workload induced on: S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Ag. Skills
Average APE (%) 2.4 2.5 2.3 2.5 2.8 2.5 2.3 3.4 2.5 3.5 1.5
STD APE (%) 4.6 3.9 2.8 3.3 3.6 3.6 4.0 4.2 4.0 4.7 2.3

Table 2.3: Daily average Absolute Percentage Errors (APEs) (average and standard devia-
tion over 30 instances of the randomized test suite of Table 2.1) of the offered
workload forecasts by skill Si.

2.5 Optimization results

Having formulated our performance metrics linearly in our decision variables, we can

constrain them based on managerial inputs: (i) Ōr(d), the maximum allowable number of

overutilization hours for resource r (for nurses and/or rooms) and each day d, (ii) TFAV
avg

k ,

the upper limit of the population average TFAV for each trial, (iii) TFAV except
k,t (ω), the

TFAV exception limiting the percentage of type k participants enrolling on day t that will

exceed ω days TFAV, and (iv) TFAV
max

k , the population maximum TFAV for each trial

k. The optimization functionality of CAPTAIN was implemented using Visual Studio 2010

with an integrated IBM CPLEX solver. The computer used was a 2007 Intel Xeon CPU

with 8GB of RAM. For a 60 business day (12 weeks) planning horizon, this program was

solved up to a 1% optimality gap in 1 to 6 hours depending on the protocol complexities. As

the planning horizon gets larger, the computing time increases exponentially. However, 12

weeks is already considered as a very long planning horizon for our application, since CRUs

tend to update their portfolios more frequently.

2.5.1 Tradeoff Analysis and Portfolio Selection

We studied the optimal objective values and the associated portfolio selections under

various constraints set on daily overutilization and on average TFAV for the candidate trials.

We considered 8 candidate trials that could be added to the current portfolio in our planning

horizon. The candidate trials also have randomly generated parameters according to Table
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2.1. The goal of this section is (i) to provide high level validation that the optimization’s

objective behaves as expected when the constraints on TFAV and overutilization are altered,

and (ii) to show that the selection of a portfolio is not a simple, intuitive process (because of

the complex interactions between protocols). This motivates the critical need for a decision

support system to manage a CRU.

A rough, high level validation of our method is seen in the left part of Fig. 2.6. A CRU

can extract greater scientific value from an optimized portfolio when the bound set on the

population average TFAV for all candidate trials is increased by the CRU. By having the

ability to delay the access of less delay-sensitive participants, the method is able to integrate

more trials in our planning horizon’s updated portfolio. Moreover, as seen on the left for a

fixed population average TFAV for all candidate trials, the four experiments that increase the

overutilization bound show that the CRU can extract more scientific value from the portfolio

chosen. For example, by allowing more overutilization hours/expenses, high density trials

that were difficult to schedule because of the protocol requirements (e.g., those with very

long service times, short time windows for subsequent visits to happen, etc.) may become

feasible to offer.

In the right part of Fig. 2.6, we represent the optimal portfolio selections of the candidate

set of trials {C1, ...,C8} each having given bounds on daily overutilization and TFAV. We

see that this decision is neither trivial nor intuitive. By increasing the population average

TFAV bound for all candidate trials as indicated in the rows (respectively the overutilization

bounds per day, identified for each table), we see that the optimal portfolio selection is not

always just monotonically adding new trials to the optimal portfolio selection with lower

TFAV bounds (resp. overutilization bounds). For example, with an overutilization bound of

4 hours per day, we would only choose candidate trial C2 when the TFAV bound is 5 days.

But when the TFAV bound is increased to 15 days, trial C2 is replaced by C1, C3 and C4
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Figure 2.6: Left: Tradeoff Analyses of the Scientific Value Gained vs. the bound set on
population mean TFAV (in days) for all candidate trials and the overutilization
bound in hours per day over all nurses; Right: Optimal portfolio selection with
respect to population mean TFAV for all trials when the overutilization bound
is 2, 4 and 6 hours per day over all nurses

(and we see similar complex behavior when the constraint on overutilization varies). This

motivates the utility of the CAPTAIN methodology, since the managerial staff is not able

to accurately predict how a given portfolio would impact the site’s performance metrics.

2.5.2 Improvements

To assess the benefits of CAPTAIN, we again assumed that no trials would be added at

the beginning of our planning horizon, because this allows us to compare the difference be-

tween an optimized BRPlan and the current practice of FAS scheduling for a given portfolio

generated by the randomized test suite (Table 2.1). To illustrate how using CAPTAIN as a

booking/planning tool to schedule participants (ignoring the portfolio selection component)

is itself very helpful to control and improve the CRU metrics. This is done by maximizing ag-

gregated resource utilization/workloads over all days of our planning horizon, and letting the

solver find an optimized BRPlan that will satisfy the constraints set on mean overutilization,

population mean TFAV, TFAV-exception, and population maximum TFAV for each trial.

Note that the objective could also be to minimize on of our TFAV metrics (mean, maximum
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and/or, TFAV-exception) weighted across all active trials.

Fig. 2.7 presents a visual illustration of the capabilities and potential of CAPTAIN for one

representative problem instance (portfolio of trials) from our randomized test suite in Table

2.1. The upper left of Fig. 2.7 shows the population average TFAV, the population standard

deviation TFAV, and the population maximum TFAV for each trial in a CRU that operates

under the current FAS daily level booking policy with a total overutilization limit of 4 hours

per day (over all human resources). This was illustrated in the example of Fig. 2.3 - left,

but we added the population maximum TFAV for each trial on the graph. In this problem

instance, the FAS policy resulted in a total of 1.4 overutilization hours per day on average

over all resources (given an overutilization limit of 4 hours per day over all resources). The

capability of CAPTAIN allows the user to input any desired target on mean overutilization

(per resource and per day), but in order to show in a fair way the improvements made

by CAPTAIN, we kept the mean overutilization to the same level as the FAS policy in

Fig. 2.7. The upper right of Fig. 2.7 shows the population average TFAV, the population

standard deviation TFAV (from simulation after the BRPlan has been optimized), and the

population maximum TFAV for each trial in a CRU that operates under CAPTAIN’s daily

level BRPlan methodology and achieves on average the same overutilization than the FAS

policy while also meeting certain targets on population average TFAV for each trial. The

horizontal dashed lines show the population average TFAV targets we set on each trial in

our optimization. Although we are able to achieve such targets (which gives us the control

to prioritize needier participants and/or high-valued trials), we realize that the population

standard deviation TFAV for trials with “poor” access (e.g., trials 8-13) tends to be larger

than those under FAS policy. In contrast, trials with “good” access (e.g., trials 1-5) will

have lower TFAV variability than under the FAS policy. The explanation is that trials with

higher population average TFAV targets will have a larger number of successive days with
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no BRPlan reservations (since they are not prioritized) which significantly increases TFAV

variability between participants. Decision makers may want to avoid such scenarios. For

example, it is likely that guaranteeing 25 days access on average to their participants will

result in a high number of them waiting longer than that due to variability.

One will often want to reduce the TFAV-exception rate for each trial to guarantee

that no more than a certain percentage of type k participants will exceed a given target.

We added those constraints to the optimization (while keeping the previous overutiliza-

tion and population average TFAV constraints) by selecting a TFAV-exception target of⌈
TFAV

avg

k +
√
TFAV

avg

k

⌉
and a TFAV-exception rate of 10% for each trial k. The results

are illustrated in the lower left of Fig. 2.7. Although we see a slight increase in the population

standard deviation of trials with high access, we were able to decrease the access variability

for participants in trials that have a larger average TFAV target. However, the population

maximum TFAV of those trials has increased compared to the population maximum TFAV

of the upper right of Fig. 2.7, even though we have decreased the population standard devi-

ation of those trials. Notice that by definition, the TFAV-exception controls the percentage

(or number) of participants exceeding a TFAV target, but not the number of days that those

participants will exceed the target. Hence, in the lower left of Fig. 2.7, we may have a small

number of participants from trials 8-13 that exceed the

⌈
TFAV

avg

k +
√
TFAV

avg

k

⌉
target.

However the few that do are likely to exceed it by a lot, thereby increasing in the population

maximum TFAV. Again, decision makers may want to avoid such situations and also be able

to control the population maximum TFAV such that there isn’t even a single patient that is

predicted to wait extremely long for first visit.

In the lower right of Fig. 2.7, we see the portfolio TFAV results of a BRPlan that assures

(i) population average TFAV targets per trial, (ii) TFAV-exception targets for each trial,

and (iii) population maximum TFAV targets per trial (indicated by solid horizontal lines).
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Of course, reducing the population maximum TFAV while keeping the TFAV-exception %

the same will result in a decrease in the population standard deviation.

Figure 2.7: Simulation and optimization analysis of CAPTAIN’s improvements and controls
over TFAV variability compared to current practice under the same overutiliza-
tion level of 1.4 hours per day over all resources. Upper left - FAS scheduling;
Upper right - BRPlan with average TFAV constraints indicated by dashed lines;
Lower left - BRPlan with constraints of upper right graph and a TFAV-exception
of 10%; Lower right - BRPlan with constraints of lower left graph and a TFAV
maximum as indicated by solid lines

We observe significant benefits from using the BRPlan booking methodology rather than

the FAS policy. With a mean overutilization limit of 1.4 hours, the BRPlan was able to

reduce the population maximum TFAV (the longest time any participant will have to wait)

from over 55 days (using the FAS policy, upper left of Fig. 2.7) down to 40 days (lower

right of Fig. 2.7). Also, we see that we were able to limit the population average TFAV

for each trial to the desired limit, therefore significantly increasing access to care for more

urgent participants. By adding constraints on the TFAV-exception rate, we are able not

only to reduce TFAV variability between participants of the same trials, but we are also able

to give the managerial staff some valuable information: they will then be able to advertise
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that a given trial guarantees y % (e.g., 90 %) of its participants will have access within

x days (e.g., 15 business days) after enrollment. Having this information may increase

enrollment (by increasing the perceived value/service), increase participant satisfaction, and

decrease overall trial duration. We notice that under both scheduling methodologies (FAS

and BRPlan), we have the same amount of daily capacity at our disposition, but we are able

to limit average waiting times to significantly shorter amounts while also reducing access

variability for each trial. This happens because the BRPlan is able to reduce the workload

predictable and unpredictable variability by packing participant visits more efficiently while

the FAS rule generates big “holes” (and workload variability) in the schedule. The BRPlan

levels the daily workload (and reduces its variability) while also providing overall better

access, which results in an increase in resource utilization for a transient planning horizon

(see also the FAS and CAPTAIN-Base Case rows in Table 2.4).

Table 2.4. Calculations of (i) the mean total resource utilization (averaged over all days of
our planning horizon), (ii) the standard deviation of the total resource utilization (averaged

over all days of our planning horizon), (iii) the mean TFAV in days averaged over all 16
active trials, (iv) the standard deviation of the TFAV averaged over all 16 active trials, and
(v) the maximum TFAV averaged over all 16 active trials, for the following cases: (a) the
FAS policy, (b) CAPTAIN’s Base Case (BRPlan optimization with a fixed NSPlan), (c)

CAPTAIN’s Case Study A (BRPlan and NSPlan optimization with 0, 4, 8, 12 hours shift
options) and (d) CAPTAIN’s Case Study B (BRPlan and NSPlan optimization with 0, 4,
6, 8, 10, 12 hours shift options). Note that the constraints specified by the lower right part

of Fig. 2.7 were enforced for the CAPTAIN results.

Taking this one step further, we now allow the MIP to also optimize the NSPlan. The

number of hours that each nurse will work on each day will now be optimized (under the

same parameters and constraints in the lower right part of Fig. 2.7) while obeying a certain
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set of rules (defined generally as ∆ in Section 2.3.5). In the following case studies, we use

the same set of rules reported in the description of our test suite (Section 2.4.1). In case

study A, we consider three types of shifts (not including the 0-hour shift): 4, 8, or 12 hour

shifts. In case study B, we have more shift options/flexibility: 4, 6, 8, 10, 12 hour shifts.

Our FAS case study and CAPTAIN Base Case consider a fixed (suboptimal) NSPlan (the

same one used in our calculations in the upper left of Fig. 2.7 for FAS, and lower right of

Fig. 2.7 for the CAPTAIN Base Case). Note again that in all of our 4 cases (rows in Table

2.4), we are considering the same volume of arrivals and the same nurse total capacity over

all days of our transient planning horizon. We see that the largest marginal improvement

from the FAS policy (in terms of the average and standard deviation of the utilization and

TFAV metrics) is the optimization of a BRPlan while keeping the nurse schedules the same

(see the first two rows of Table 2.4).

But we can provide even more improvements by also creating an NSPlan (that obeys the

same set of nurse scheduling rules) that is more flexible and appropriate for the optimized

BRPlan. Our forecasting methodologies create the relation between fulfilled demand and

offered workloads on skills, and the NSPlan links the right amount of nurse capacity based on

the skill sets needed on each day. Although it creates only small improvements on our metrics,

it is worth noting that having more shift options (therefore flexibility in scheduling nurse

capacity with our NSPlan) provides an increase in utilization (and workload smoothing),

while increasing access for patients (see Case Study A and Case Study B in Table 2.4).

In equilibrium, higher utilization generates longer waiting times for a fixed throughput;

however, in our transient case, we are able to increase throughput (throughout our planning

horizon) by providing shorter waiting times which translates into higher utilization within

our transient planning horizon.

We have explained the use of CAPTAIN for CRUs which are faced with the decision
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of which portfolio mix of candidate trials should be performed (in addition to the current

portfolio), given a fixed infrastructure and set of nurses with specific skills. Because we

validated the ability of CAPTAIN to accurately optimize the transition from a prior set

of appointments on the books (i.e. under FAS), this also assures us that CAPTAIN can

handle transitions caused by future periods (see Appendix C in Section 2.7.3 for further

details). This decision support tool could also be used for physical capacity expansions and

hiring purposes. It can answer the question: to what level of capacity should we expand

our resources in order to meet our objectives for scientific value, service/access levels for

participants, and staff overutilization? In other words, given any portfolio of trials and

service level constraints, CAPTAIN could determine the minimum staff and room capacities

required to conduct this portfolio.

2.6 Conclusion

In contrast to current practice in CRUs, which is often based on common sense and

experience, this new planning model, CAPTAIN, increases operational efficiency (and thus

cost effectiveness), increases the ability to extract scientific value by thoughtfully selecting

the clinical trials performed, and provides a high level of access with limited waiting times

that are planned to match the participants’ needs. This planning system coordinates care

resources and participant visits via novel forecasting and optimization algorithms. This

paper provides a proof of concept for a general decision support tool that can enable a CRU

to gain control over key performance metrics. Based on a planning horizon, CAPTAIN (i)

determines the optimal mix of protocols to perform, (ii) forecasts and controls the workloads

that will be placed on resources (staff and rooms), (iii) forecasts and controls overutilization

in part by creating efficient nurse schedules and participant/staff coordination, (iv) provides

a “system optimal” daily level scheduling plan via the Booking Reservation Plan (BRPlan),
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(v) optimizes the allocation of resource capacity, (vi) forecasts and controls the participants’

waiting times to first visit, and (vii) answers “what if” questions. As a non-stationary

model, CAPTAIN can begin with a base case representing the current conditions and all

the existing appointments made to then select the potential clinical research trials that

should be conducted without generating excessively long access delays (to first visit) and

high overutilization costs. It generates a BRPlan to guide appointment scheduling. The

plan is time-varying, maintaining effective operations from one planning period to the next.

Whereas this preliminary work targets strategic planning, future research can focus on

appointment scheduling at the time of day level. Therefore, as future research, the method-

ology will benefit from another layer of modeling and resource allocation to bridge from the

planning level to the execution level to schedule time of day appointments.
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2.7 Appendix

2.7.1 Appendix A: Notations

Symbol Description

D Length (in days) of the CAPTAIN planning horizon

P Set of active trials in our planning horizon

Pcand Set of candidate trials that can be activated in our planning horizon

P0 Set of trials that have been active before our planning horizon

T Time horizon (in days) of current practice booking for the

current portfolio P0

Mk Research/scientific (or financial) value of conducting trial k

hk Binary variable equal to 1 if candidate trial k is activated,

and 0 otherwise

Θk,d Integer number of slots reserved for type k 1st visits on day d

TFAV
max

k bound set on the population maximum TFAV (in days) for type

k participants

αk,d,t Random number of type k participants enrolled on day t

and booked for 1st visit on day d (under the BRPlan)

Ak,t Random number of type k participants enrolling on day t

I Sample space of the daily number of enrollments random

variable of a given type

Ī Maximum number of daily enrollments for a given trial

Pk,t(a) Probability of having a enrollments of type k on day t

P k,t(a) Probability of having a total of a enrollments of type k on the days

in {0, 1, ..., t− 1}
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Symbol Description

αk,d,t Mean number of type k participants enrolled on day t and booked

for 1st visit on day d (under the BRPlan)

µk,d Random number of type k participants booked for 1st visit on day d

µk,d Mean number of type k participants booked for 1st visit on day d

TFAV avg
k Expected TFAV under the BRPlan averaged over all type

k participants

TFAV
avg

k Input bound set on the population average TFAV (in days)

for type k participants

TFAV except
k,t (ω) Input bound on the type k ratio of participants enrolling on day t

that exceed ω days TFAV

pexceptk,t (ω) Input bound set on the mean percentage of type k participants

exceeding ω days TFAV

R Set of all physical resources (rooms, beds, chairs,...)

S Set of all skills that the nursing staff can perform

N Set of all nurses

Vk Number of visits required for trial k

Ωk,v Time window set of days where a type k visit v can be scheduled

after type k visit v′ < v without provoking a protocol violation

wk,v,r Hours of workload induced on resource r by a type k participant

on visit v

Lmax Duration (in days) from the first visit to the last visit of the

longest trial
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Symbol Description

PRRMk,d1(d) Vector determining the number of hours a randomly sampled type k

participant starting visit 1 on day d1 will impose on a given

resource on day d

PRRMk,d1,r(d) Mean number of hours required on day d and resource r by a type k

participant starting visit 1 on day d1

W init
r (d) Initial workload on resource r and day d induced by participants

enrolled prior to the start of our planning horizon l

W r(d) Workload induced (in hours) on resource r (room, nurse or skill)

on day d

Kr(d) Capacity (in hours) of resource r (room or nurse) on day d

∆ Set specifying the clinic’s rules on nurse planning and scheduling

xs,n(d) Mean number of hours assigned to nurse n in order to perform

skill s on day d

N (s) Set of nurses that can perform skill s

O
l

r(d) Bound set on overutilization (in hours) of resource r

(room or nurse) on day d

TFAV l
k Time to First Available Visit for participants in trial k in

planning horizon l

µsimk,d Simulated mean number of type k participants booked for

1st visit on day d

2.7.2 Appendix B: Proof of selected results

Proof of Lemma II.4

We will show this result by induction over the 2 dimensional space {(d, t) : d ∈ {1, ...,D+
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TFAV
max

k }, t ∈ {0, ...,D}, t < d}. Assume that Lemma 3.1 holds for all (d1, t1) with t1 < d1,

t1 < t, and d1 < d.

To show it is true for (d, t) with t < d, we start by using the definition of the random vari-

able αk,d,t (see Eq. 2.2). Eq. 2.20 simply uses the definition of the elements in set Ak,d,t(∞).

In Eq. 2.21, we realize that the random variables (i) αk,d,l, with 0 ≤ l ≤ t−1, (ii) αk,d,l, with

t+1 ≤ l ≤ d−1, and (iii) Ak,t, are all deterministic when conditioned on (Ak,t,Ak,t−1, ...,Ak,0),

which allows us to take the expected value inside the minimum in Eq. 2.22. By noticing that

the random variables in item (i) are independent of (Ak,t,Ak,t−1, ...,Ak,l+1) and by using the

definition of the elements in set Ak,d,t(∞), we get Eq. 2.23.

α
at,at−1,...,a0
k,d,t = E [αk,d,t|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)] (2.20)

= E

[
min{Θk,d −

t−1∑
l=0

αk,d,l,Ak,t −
d−1∑
l=t+1

αk,l,t|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)

]
(2.21)

= min

{
Θk,d −

t−1∑
l=0

E [αk,d,l|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)] ,

E

[
Ak,t −

d−1∑
l=t+1

αk,l,t|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)

]}
(2.22)

= min

{
Θk,d −

t−1∑
l=0

α
al,al−1,...,a0
k,d,l , at −

d−1∑
l=t+1

α
at,at−1,...,a0
k,l,t

}
(2.23)

Eq. 2.23 implies that constraints 2.24 and 2.25 hold. However they are not equivalent

since we require at least one of those two constraints to be binding. The BRPlan has to

book every enrolling participant to the first available reserved slot, which would not be

true if both constraints on α
at,at−1,...,a0
k,d,t were unbinding. To assess this issue, we create a

binary helper variable, b
at,at−1,...,a0
k,d,t , with d > t, such that it is equal to 1 if there is enough

reserved capacity of type k remaining on day d to schedule the participants that enrolled

on day t and still haven’t been scheduled up to d; b
at,at−1,...,a0
k,d,t is equal to 0 otherwise (i.e.,
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11{Θk,d −
∑t−1

l=0 α
al,at−1,...,a0
k,d,l ≥ at −

∑d−1
l=t+1 α

at,at−1,...,a0
k,l,t }).

α
at,at−1,...,a0
k,d,t ≤ Θk,d −

t−1∑
l=0

α
al,al−1,...,a0
k,d,l (2.24)

α
at,at−1,...,a0
k,d,t ≤ at −

d−1∑
l=t+1

α
at,at−1,...,a0
k,l,t (2.25)

Θk,d −
t−1∑
l=0

α
al,al−1,...,a0
k,d,l −

(
at −

d−1∑
l=t+1

α
at,at−1,...,a0
k,l,t

)
≤ B · bat,at−1,...,a0

k,d,t , (2.26)

at −
d−1∑
l=t+1

α
at,at−1,...,a0
k,l,t −

(
Θk,d −

t−1∑
l=0

α
al,al−1,...,a0
k,d,l

)
≤ B ·

(
1− bat,at−1,...,a0

k,d,t

)
(2.27)

α
at,at−1,...,a0
k,d,t ≥ Θk,d −

t−1∑
l=0

α
al,al−1,...,a0
k,d,l −B · bat,at−1,...,a0

k,d,t (2.28)

α
at,at−1,...,a0
k,d,t ≥ at −

d−1∑
l=t+1

α
at,at−1,...,a0
k,l,t −B ·

(
1− bat,at−1,...,a0

k,d,t

)
(2.29)

Given a large enough B (e.g., 20), constraints 2.26 and 2.27 assure that b
at,at−1,...,a0
k,d,t takes the

values specified by the definition we just provided. Based on this definition, constraint 2.28

(resp. constraint 2.29) will now make sure that constraint 2.24 (resp. 2.25) will be binding

when b
at,at−1,...,a0
k,d,t = 0 (resp. b

at,at−1,...,a0
k,d,t = 1), hence when the available capacity remaining

is smaller than the demand still needed to be scheduled (resp. more available capacity than

remaining demand) defined in constraint 2.26 (resp. 2.27). Because of our induction hypoth-

esis on α
at,at−1,...,a0
k,d1,t1

for t1 < d1, t1 < t, and d1 < d being linear in our decision variables Θ, the

system of constraints 2.24-2.29 linearizes Eq. 2.23 which can be integrated in a deterministic

MIP. The basis of induction requires us to show that α
at,at−1,...,a0
k,1,0 = min{Θk,1, a0} can be

expressed by a set of linear constraints in Θk,1. By using the same methods used for (d, t)

above, the basis of induction follows immediately. By induction, we have showed that this

is true for all (d, t) with t < d, and proved Lemma II.4.

Proof of Theorem II.5
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Given any BRPlan schedule, we must estimate αk,d,t, the mean number of type k par-

ticipants that enrolled on day t and are booked for their first visit on day d. In Eq. 2.30,

we condition αk,d,t subject to al, l = 0, ..., t, the number of type k enrollments that occurred

on day l from the beginning of our planning horizon up to day t. In Eq. 2.31, we use the

assumption that the number of enrollments on a given day is independent of anything else

in our system model (specifically, the number of enrollments on other days), and we also

partition (Z+)t+1 into the sets I t+1 and (Z+ \ I)t+1 in our sum over all (at, ..., a0) ∈ (Z+)t+1.

αk,d,t =
∑

(at,at−1,...,a0)∈(Z+)t+1

E [αk,d,t|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)]

· P ((Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)) (2.30)

=
∑

(at,at−1,...,a0)∈It+1

E [αk,d,t|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)] ·
t∏
l=0

Pk,l(al)

+
∑

(at,at−1,...,a0)∈(Z+\I)t+1

E [αk,d,t|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)] ·
t∏
l=0

Pk,l(al)

(2.31)

The second sum in Eq. 2.31 will converge to 0 as I goes to infinity. Moreover, by using the

definition of the set Ak,d,t(∞) (see Definition 3.2), we can express the mean number of type

k participants that enrolled on day t and are booked for first visit on day d, as I →∞:

αk,d,t =
∑

α
at,at−1,...,a0
k,d,t ∈Ak,d,t(∞)

α
at,at−1,...,a0
k,d,t ·

t∏
l=0

Pk,l(al) (2.32)

Finally, by using the result from Lemma II.4, and noticing that Pk,l(al) is independent of Θ,

for all k ∈ P , al ∈ I, and l ∈ {0, ..., t}, we have shown that αk,d,t can be expressed linearly

in our decision variables Θ.

Proof of Proposition II.6

To compute αk,d,t, we condition αk,d,t in terms of (Ak,t,Ak,t−1, ...,Ak,j∗(t),
∑j∗(t)−1

i=0 Ak,i) in
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Eq. 2.33. As Ī →∞, and by the definition of Ak,d,t(m), Eq. 2.34 follows. That is, αk,d,t =

∑
(at,...,aj∗(t),a)∈Zt−j∗(t)+2

E

αk,d,t|(Ak,t,Ak,t−1, ...,Ak,j∗(t),

j∗(t)−1∑
i=0

Ak,i) = (at, at−1, ..., aj∗(t), a)


·

 t∏
l=j∗(t)

Pk,l(al)

 · P k,j∗(t)(a) (2.33)

=
∑

α
at,at−1,...,aj∗(t),a
k,d,t ∈Ak,d,t(m)

α
at,at−1,...,aj∗(t),a

k,d,t ·

 t∏
l=j∗(t)

Pk,l(al)

 · P k,j∗(t)(a) (2.34)

≈
∑

α̂
at,at−1,...,aj∗(t),a
k,d,t ∈Âk,d,t(m)

α̂
at,at−1,...,aj∗(t),a

k,d,t ·

 t∏
l=j∗(t)

Pk,l(al)

 · P k,j∗(t)(a). (2.35)

Finally, we can use our approximation α̂
at,at−1,...,aj∗(t),a

k,d,t ∈ Âk,d,t(m) for the elements

α
at,at−1,...,aj∗(t),a

k,d,t ∈ Ak,d,t(m) in Eq. 2.35. What remains to be shown is that α̂
at,at−1,...,aj∗(t),a

k,d,t

can be expressed in a MIP linearly in the decision variables Θ. Rewriting Eq. 2.4, we get:

α̂
at,at−1,...,aj∗(t),a

k,d,t = min

{ U
at,at−1,...,aj∗(t),a
k,d,t︷ ︸︸ ︷

at −
d−1∑
l=t+1

α̂
at,at−1,...,aj∗(t),a

k,l,t ,

Θk,d −
t−1∑
l=0

∑
(aj∗(t)−1,...,aj∗(l))∈Ij

∗(t)−j∗(l)

α̂
al,al−1,...,aj∗(l),a−

∑j∗(t)−1
i=j∗(l) ai

k,d,l

j∗(t)−1∏
n=j∗(l)

Pk,n(an)

P k,j∗(l)(a)

︸ ︷︷ ︸
V
at,at−1,...,aj∗(t),a
k,d,t

}
,

(2.36)

and α̂
at,at−1,...,aj∗(t),a

k,d,t can now be expressed linearly in Θ in constraints 2.37-2.42.

α̂
at,at−1,...,aj∗(t),a

k,d,t ≤ V
at,at−1,...,aj∗(t),a

k,d,t (2.37)

α̂
at,at−1,...,aj∗(t),a

k,d,t ≤ U
at,at−1,...,aj∗(t),a

k,d,t (2.38)

V
at,at−1,...,aj∗(t),a

k,d,t − Uat,at−1,...,aj∗(t),a

k,d,t ≤ B · bat,at−1,...,aj∗(t),a

k,d,t , (2.39)

U
at,at−1,...,aj∗(t),a

k,d,t − V at,at−1,...,aj∗(t),a

k,d,t ≤ B ·
(
1− bat,at−1,...,aj∗(t),a

k,d,t

)
(2.40)
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α̂
at,at−1,...,aj∗(t),a

k,d,t ≥ V
at,at−1,...,aj∗(t),a

k,d,t −B · bat,at−1,...,aj∗(t),a

k,d,t (2.41)

α̂
at,at−1,...,aj∗(t),a

k,d,t ≥ U
at,at−1,...,aj∗(t),a

k,d,t −B ·
(
1− bat,at−1,...,aj∗(t),a

k,d,t

)
(2.42)

Eq. 2.36 implies that constraints 2.37 and 2.38 hold, but they are not equivalent. We

require at least one of those two constraints to be binding, because the BRPlan has to book

every enrolling participant to the first available reserved slot. We created the parameter B

and the binary helper variable, b
at,at−1,...,aj∗(t),a

k,d,t = 11{Uat,at−1,...,aj∗(t),a

k,d,t ≤ V
at,at−1,...,aj∗(t),a

k,d,t }, with

d > t, such that it is equal to 1 if there is enough reserved type k capacity remaining on

day d to schedule the participants that enrolled on day t and still haven’t been scheduled

up to d; b
at,at−1,...,aj∗(t),a

k,d,t is equal to 0 otherwise. This is defined in constraint 2.39 and 2.40.

Given a large enough B (e.g., 20), constraints 2.39 and 2.40 assure that b
at,at−1,...,aj∗(t),a

k,d,t

takes the required values. Based on this definition, constraint 2.41 (resp. constraint 2.42)

ensures that constraint 2.37 (resp. 2.38) will be binding when b
at,at−1,...,aj∗(t),a

k,d,t = 0 (resp.

b
at,at−1,...,aj∗(t),a

k,d,t = 1). That is, constraint 2.37 (resp. 2.38) will be binding when the available

capacity remaining is smaller than the demand to be scheduled (resp., more available capacity

than remaining demand).

Proof of Theorem II.7

In this result, we want to show that the mean type k TFAV (averaged over all participants

of a given trial) can be expressed linearly in our BRPlan decision variables Θ. First, in

Eq. 2.43, we take the expectation of the ratio of the total number of days that type k

participants wait for their first visit during our planning horizon (numerator), and the total

number of enrollments that occurred from days 0 to D (denominator). Eq. 2.44 follows after
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conditioning this expression subject to the daily enrollments from days 0 to D.

TFAV avg
k = E

[∑D
t=0

∑D+TFAV
max
k

d=t+1 (d− t) · αk,d,t∑D
i=0Ak,i

]
(2.43)

=
D∑
t=0

D+TFAV
max
k∑

d=t+1

∑
(aD,aD−1,...,a0)∈ID+1

D∏
l=0

Pk,l(al)

· (d− t) · E

[
αk,d,t∑D
i=0Ak,i

|(Ak,D,Ak,D−1, ...,Ak,0) = (aD, aD−1, ..., a0)

]
(2.44)

=
D∑
t=0

D+TFAV
max
k∑

d=t+1

∑
(aD,aD−1,...,a0)∈ID+1

1∑D
i=0 ai

·
D∏
l=0

Pk,l(al)

· (d− t) · E [αk,d,t|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)] (2.45)

=
D∑
t=0

D+TFAV
max
k∑

d=t+1

∑
(at,at−1,...,a0)∈It+1

(d− t) · E [αk,d,t|(Ak,t,Ak,t−1, ...,Ak,0) = (at, at−1, ..., a0)]

·
∑

(aD,aD−1,...,at+1)∈ID−t

∏D
l=0 Pk,l(al)∑D

i=0 ai
(2.46)

=
D∑
t=0

D+TFAV
max
k∑

d=t+1

∑
α
at,at−1,...,a0
k,d,t ∈Ak,d,t(∞)

(d− t) · αat,at−1,...,a0
k,d,t ·

∑
(aD,aD−1,...,at+1)∈ID−t

∏D
l=0 Pk,l(al)∑D

i=0 ai
.

(2.47)

In Eq. 2.44, the denominator inside our conditional expectation becomes deterministic since

it is conditioned on all the daily enrollments in our planning horizon, hence we can express it

outside the expectation in Eq. 2.45. Note now that the conditional expectation of the random

variable αk,d,t is independent on future enrollment realizations (Ak,D,Ak,D−1, ...,Ak,t+1) =

(aD, aD−1, ..., at+1): we can now ignore those realizations in the conditional expectation,

which gives us Eq. 2.45. In Eq. 2.46, the sum over the set ID+1 is separated into two sums:

one over the set I t+1, and the other over the set ID−t. Finally by using the definition of the

set Ak,d,t(∞) (see Definition II.2) and our result derived from Lemma II.4, we have proved

Theorem II.7.

Proof of Theorem II.10
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We consider the workloads induced on resource r and day d of our planning horizon by

(i) participants enrolled prior to our horizon (the parameter W init
r (d)), and (ii) participants

that will eventually enroll in our planning horizon. To capture the workloads induced by

participants who haven’t enrolled yet, consider that scheduling under the BRPlan generates

a random integer number of type k participants booked for a first visit on each day d1

denoted µk,d1 . We must check if each participant i that will be booked for a first visit on

each day d1 prior to day d will induce a stochastic workload on resource r, d− d1 days after

their first visit, based on PRRM realizations. For example, if µk,d1 = 3, we will sum three

independent realizations of the type k PRRM to determine the number of hours of resource

r needed for future days (e.g., d− d1 days after the first visit). Hence, we can compute the

offered workload for each skill or room resource r, d days after the beginning of period l,

where d ∈ {1, 2, ...,D + Lmax + maxk TFAV
max

k } as:

Wr(d) = W init
r (d) +

∑
k∈P

min{d,D+TFAV
max
k }∑

d1=1

µk,d1∑
i=1

PRRM i
k,d1

(d) · er, (2.48)

where PRRM i
k,d1

(d) · er is the ith realization of the random variable PRRMk,d1(d) · er. By

linearity of the expectation we get:

W̄r(d) = W init
r (d) +

∑
k∈P

min{d,D+TFAV
max
k }∑

d1=1

E

[µk,d1∑
i=1

PRRM i
k,d1

(d) · er

]
(2.49)

since E [W init
r (d)] = W init

r (d). Those quantities are deterministic since all visits of a trial are

scheduled at the enrollment date (prior to our planning horizon). We note that (i) µ̄k,d1 =

E [µk,d1 ] <∞,∀k ∈ P ,∀d1 = 1, ...,D + TFAV
max

k since the number of enrolling participants

(and therefore, scheduled participants) on any day is finite; (ii){PRRM i
k,d1

(d) · er}i=1,2,...

all have the same expectation for a fixed patient type k ∈ P , d1 ∈ {1, ...,D + TFAV
max

k },

d ∈ {1, ...,D + Lmax + maxk TFAV
max

k } and r ∈ R ∪ S; and (iii) the PRRM random

variables that we defined are drawn from protocol data and do not depend on µk,d,∀k ∈
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P ,∀d = 1, ...,D + TFAV
max

k . Hence, by these three facts and Wald’s equation, we get Eq.

2.48 and prove Theorem II.10.

2.7.3 Appendix C: Practical implementation and transience

In this paper, we studied the effects of our planning tool over a finite planning horizon

by considering the initial transition from the current FAS scheduling policy to the BRPlan.

Thus, the portfolio selection and capacity planning decisions in our planning horizon are

dependent on an initial state of the system determined by the existing appointments (booked

via the FAS policy) of participants that enrolled prior to CAPTAIN’s period of planning.

Possible questions are: how is the transition between planning periods handled? How would

CAPTAIN deal with unplanned portfolio updates within a planning horizon?

We define period l as the interval of time between the lth and (l + 1)th trial portfolio

update (or equivalently, CAPTAIN run). A portfolio update should be performed when the

CRU wants to add a portfolio of candidate trials to their workload, or when at least one

current trial ends. CAPTAIN is able to construct an optimal transient/non-homogeneous

BRPlan and NSPlan that takes into account those portfolio updates. The maximum length

of any period will be D days. We define P l−1 as the current portfolio (or set) of active trials

in the CRU during period l − 1, P lcand as the portfolio of candidate trials that are to be

considered for addition at the beginning of period l, and P l−1
out as the portfolio of trials that

ended during period l − 1.

The inputs for the lth run (period 1) of CAPTAIN will be defined by the set Γl: (i)

P l−1, the portfolio of active trials in period l − 1 (possibly using an aggregate model of low

enrollment trials for computational simplicity); (ii) P0
out, the set of trials that ended before

the lth run but might still have participants receiving service in period l; (iii) P lcand, the

candidate portfolio of trials that the CRU wishes to consider at the beginning of period

l; (iv) W l,init
r (d), the committed resource r (nurses and rooms) workload on each day d of
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Figure 2.8: CAPTAIN’s functionality with information inputs on the left and CAPTAIN
forecasting and optimization on the right

the lth period/planning horizon (i.e., day T + d) induced by the participant bookings that

were made in the past (i.e., from previous periods); and (v) the CRU’s desired constraints

on resource overutilization and/or TFAV target (mean, maximum, and/or TFAV exception)

per trial. Conceptually, CAPTAIN combines optimization with an online metrics forecasting

capability to achieve the targets requested by the managerial staff. D days (or sooner) after

the start of period l, the CRU will update the inputs of CAPTAIN, restart planning for the

next D days, and construct the information set Γl+1.

As illustrated in Fig. 2.8, at the beginning of period l, we use the information set Γl as an

input to CAPTAIN. The modeled metrics are (i) the offered workload on each (physical or

human) resource for every day of period l, (ii) the resource utilization (and overutilization)

for every day of period l, and (iii) the population average, the mean percentage of patients

exceeding a TFAV limit and/or, the population maximum TFAV for each trial in period l.

The forecasting methods combine (i) the participant first visit bookings (see Section 2.3.2)

generated by reserving resource capacity with our Booking Reservation Plan methodology

(the BRPlan), (ii) the Participant Resource Requirements Model (the PRRM), which cap-

tures the participants’ trajectory for each trial in portfolio P l that will be conducted in
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period l (see Section 2.3.4), and (iii) the nursing staff’s daily staffing levels and planned

allocations (the NSPlan, see Section 2.3.5).

2.7.4 Appendix D: Mixed Integer Program

max
∑
k∈P

Mkhk, (2.50)

αk,d,t =
∑

α̂
at,a
k,d,t∈Âk,d,t(1)

α̂at,ak,d,t · Pk,t(at) · P k,t(a), (2.51)

∀t ∈ {0, ...,D}, ∀d ∈ {t+ 1, ...,D + TFAV
max

k },∀k ∈ P ,

α̂at,ak,d,t ≤ at −
d−1∑
l=t+1

α̂at,ak,l,t, (2.52)

α̂at,ak,d,t ≤ Θk,d −
t−1∑
l=0

∑
(at−1,at−2,...,al)∈I(t−l)

α̂
al,a−

∑t−1
i=l ai

k,d,l ·

(
t−1∏
n=l

Pk,n(an)

)
· P k,l(a), (2.53)

Θk,d −
t−1∑
l=0

∑
(at−1,at−2,...,al)∈I(t−l)

α̂
al,a−

∑t−1
i=l ai

k,d,l ·

(
t−1∏
n=l

Pk,n(an)

)
· P k,l(a)−

(
at −

d−1∑
l=t+1

α̂at,ak,l,t

)

≤ B · bat,ak,d,t, (2.54)

at −
d−1∑
l=t+1

α̂at,ak,l,t −

Θk,d −
t−1∑
l=0

∑
(at−1,at−2,...,al)∈I(t−l)

α̂
al,a−

∑t−1
i=l ai

k,d,l ·

(
t−1∏
n=l

Pk,n(an)

)
· P k,l(a)


≤ B ·

(
1− bat,ak,d,t

)
, (2.55)

α̂at,ak,d,t ≥ Θk,d −
t−1∑
l=0

∑
(at−1,at−2,...,al)∈I(t−l)

α̂
al,a−

∑t−1
i=l ai

k,d,l ·

(
t−1∏
n=l

Pk,n(an)

)
· P k,l(a)−B · bat,ak,d,t

(2.56)

α̂at,ak,d,t ≥ at −
d−1∑
l=t+1

α̂at,ak,l,t −B ·
(
1− bat,ak,d,t

)
(2.57)

∀t ∈ {0, ...,D},∀d ∈ {t+ 1, ...,D + TFAV
max

k }, at ∈ I, a ∈ {0, ..., tĪ},∀k ∈ P ,

µk,d =
d−1∑
t=0

αk,d,t,∀k ∈ P ,∀d ∈ {1, ...,D + TFAV
max

k }. (2.58)
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W̄r(d) = W init
r (d) +

∑
k∈P

min{d,D+TFAV
max
k }∑

d1=1

µ̄k,d1 ·
Vk∑
v=1

11{(d−d1)∈Ωk,v}

|Ωk,v|
w̄k,v,r, (2.59)

∀r ∈ S ∪R,∀d ∈ {1, 2, ...,D + Lmax + max
k
TFAV

max

k },

W̄r(d) ≤ Kr(d) + Ōr(d),∀r ∈ R,∀d ∈ {1, 2, ...,D + Lmax + max
k
TFAV

max

k }, (2.60)

W̄s(d) =
∑

n∈N (s)

xs,n(d),∀s ∈ S,∀d ∈ {1, 2, ...,D + Lmax + max
k
TFAV max

k }, (2.61)

W̄ (n, d) =
∑
s∈S

xs,n(d), W̄ (n, d) ≤ Kn(d) + Ōn(d), (2.62)

∀n ∈ N ,∀d ∈ {1, 2, ...,D + Lmax + max
k
TFAV

max

k },

D∑
t=0

D+TFAV
max
k∑

d=t+1

∑
α̂
at,a
k,d,t∈Âk,d,t(1)

(d− t) · α̂at,ak,d,t ·
∑

(aD,aD−1,...,at+1)∈ID−t

P k,t(a) ·
∏D

l=t Pk,l(al)

a+
∑D

i=t ai

≤ TFAV
avg

k ,∀k ∈ P (2.63)

D+TFAV
max
k∑

d=t+ω+1

∑
α̂
at,a
k,d,t∈Âk,d,t(1)

α̂at,ak,d,t

at
· Pk,t(at) · P k,t(a) ≤ pk,t(ω),∀k ∈ P , ∀t ∈ {0, ...,D},∀ω ∈ T

(2.64)

hk ∈ {0, 1}, ∀k ∈ P , (2.65)

Θk,d ∈ Z+,∀d ∈ {1, ...,D + TFAV
max

k },∀k ∈ P , (2.66)

{(Kn(1), ...,Kn(D + Lmax + max
k
TFAV max

k ) : n ∈ N} ∈ ∆ (2.67)



CHAPTER III

An Outpatient Planning Optimization Model for

Integrated Care and Access Management

3.1 Introduction

For scheduled healthcare delivery environments, the prevailing first come first served

approach to appointment scheduling does not support that relative urgency varies across

types or classes of patient visits. This research contributes a method toward a more ra-

tional and planned approach to healthcare delivery. Access delay, or the length of time

required to get an initial appointment, is a key performance metric that characterizes how

a care delivery system manages its resources and its workload. While emergency care has

developed elaborate methods to differentiate the access delay based on patient acuity (i.e.,

degree of urgency with which they need care, roughly speaking), only simple and relatively

crude methods have been developed for appointment-based service operations. For example,

primary care providers will reserve some appointment slots during the flu and cold season

for urgent sick visits, whereas annual physical exams are scheduled months in advance and

are sometimes steered into summertime visits. To account for the complexity of many out-

patient care networks, this intuition must be extended, deepened, and ultimately integrated

into a sophisticated decision support method to reduce waste and enhance patient access.

In particular, our work is applied to outpatient services with different patient classes, each

69
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of which may be offered different levels of access. We will refer to this methodology and a

research software instantiation as OPT for “Outpatient Planning Technology.”

To appreciate the need for a system such as OPT, consider this illustrative example.

Chris happens to live more than 100 miles away from a major medical center. After repeated

visits to his primary care physician, referral to several specialists, and many diagnostic tests,

there is still no clear diagnosis available to Chris. The doctors suspect that the condition

is serious. Chris and the primary care doctor agree that it is wise to travel to a medical

center with the expertise and resources to obtain a diagnosis and treatment plan. Chris

might be asking himself: how long will it take to get an appointment? Medically, Chris

will worry what irreversible damage he may sustain during this wait. The first visit is

important in our methodology, and the wait from request until the time of that appointment

is referred to as access delay. Chris also realizes that it will take some random number of

visits/consultations and tests to get a diagnosis and treatment, which we refer to this as

an itinerary of care. A complicating factor is that Chris’s full treatment needs (quantity,

timing, and services required) are not known at the time of the initial appointment request,

which may result in downstream appointment demand exceeding the capacity available at the

institution. This leads to a stochastic network patient flow problem complicated by the need

to exert admission control to optimize the patient flows (aggregated by patient type). A key

motivation to control access delay becomes clear by realizing that while some patient types

do not require short waits, urgent cases (e.g., an episode of care to follow up on an indication

of advanced breast cancer) will benefit medically from quick diagnosis and treatment. For

example, the Mayo Clinic, Rochester, serves a diverse patient population both in terms of

conditions treated but also geography and urgency. New patients that travel from across

the nation or around the world might require more resources at a higher level of urgency as

compared to local established patients. As is often the case in healthcare, the same set of
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resources serves patients with varying access delay sensitivities/requirements. Patients with

severe conditions will come to Rochester for fast diagnosis and access to surgery. The same

resources, however, will be used to serve patients with the same condition that can easily

travel back and forth to the clinic and do not require fast access to all services. On the other

hand, patients who present a suspicion of cancer will need to gain rapid access to diagnostic

testing, surgeon consultation and, if necessary, surgery.

Access delay is a key performance metric that characterizes how a care delivery system

manages its resources and its workload. The itinerary of care is from the time a patient

requests service to the last care visit that ends an itinerary (care pathway). Optimizing

this access delay metric with different targets for different patient types presents important

research challenges that have received little attention for outpatient care networks (e.g., see

for single-unit works [45], [44], [51], [15]). From the perspective of the healthcare organiza-

tion, additional critical metrics must be considered such as (1) medical service (or clinician)

utilization, (2) what case mix by patient type can/should be serviced, (3) the daily workload

hours that exceed resource capacity (i.e. either delayed to the next day, or performed in

overtime), and (4) the probability that the workload induced on medical services will exceed

the capacity of key resources. To the best of our knowledge, no methodology yet exists to

address these critical issues of access to patients such as Chris while considering the complex

and type-dependent tradeoffs among the metrics that the provider must manage.

3.2 Motivation

As the complexity and interconnectivity of systems increases, proper planning and flow

management to coordinate a network of resources is becoming increasingly important. This

endeavor is complicated by the fact that requests for appointments and patient itineraries

are stochastic in many such real-world networks. Additionally, entities that enter the system
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may have different completion deadlines and different priorities or service level targets for

meeting those deadlines. This type of system is particularly well-represented in healthcare,

where the paradigm of integrated care delivery is gaining importance.

Due to increasing cost pressure, there are considerable financial incentives to transition

to larger, more coordinated network care models such as those found at the Mayo Clinic, the

Cleveland Clinic, and Kaiser Permanente. With Accountable Care Organizations expected

to play an increasingly important role in health care, effective coordination across health

services will only grow in importance as providers try to improve their health outcomes (see

[52]). As health care moves toward consolidation, the resulting healthcare networks will

serve a diverse patient population both in terms of conditions treated but also geography

and urgency. This leads to the same set of resources serving patients with varying time

sensitivity to completing their treatment. An example of this is Mayo Clinic’s Spine Care

Midwest initiative. Patients with severe pain will come to Rochester for fast diagnosis and

access to surgery. The same resources, however, will be used to serve patients with chronic

back pain that can easily travel back and forth to the clinic and do not require fast access

to all services. Another example is surgical patients with cancer. These patients often have

higher priority over surgical patients that do not have cancer. In urology, patients may

present with a suspicion of cancer and they need to gain rapid access to diagnostic testing,

surgeon consultation and, if necessary, surgery.

3.2.1 Current approach and implications

A simple First-Come-First-Served (FCFS) approach to care dominates current practice,

causing patients with more urgent care needs to be treated the same as those who can wait

longer for an appointment without a negative health impact. However, in some medical

specialties at a partner healthcare provider, physicians will assign slots in their schedule to

reserve capacity for specific types of patients. This is done for a few of reasons: (1) some
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physicians specialize and need to reserve capacity for patients who might materialize and

require a given subspecialty; (2) our partnering hospital is a top research clinic, and doctors

want to see patients who fit the requirements of ongoing medical studies; (3) physicians

generally prefer seeing patients they already had contact with (established) rather than going

through the diagnosis of a new patient. When those patients don’t materialize, however, the

slots go unused, and the impact can be large in terms of utilization and capacity going to

waste. Patients may have their appointments delayed because they don’t meet the criteria

specified for a given slot. Having designated slots is a reflection of the desire of the practice

to manage patient mix, but this approach to the problem may not be efficient.

Based on roughly one year of data from our partnering hospital for a subset of the medical

departments, it was possible to observe a posteriori the performance of the current scheduling

approach. In Fig. 3.1, we observe the tail distribution of the access delay to a root appoint-

ment of an itinerary of care in three medical departments based on patient urgency. More

specifically the graph in Fig. 3.1 shows the probability of exceeding n weeks of access delay

(n = 1, .., 6) based on (1) the patient type (urgency level) and (2) the medical department

required for the first visit appointment in the itinerary. In Fig. 3.2, for each department

d ∈ {GIM ,GI,Neurology}, we observe (1) the daily resource capacity of the department

(in hours), (2) the daily average total workload (in hours) induced on the department based

on current practice scheduling, and (3) the daily mean and standard deviation of the internal

referral workload (i.e., workload induced by patients that started their itinerary in another

department d1 6= d but were referred to department d for a downstream appointment in their

itinerary).

Here, we can see that urgent vs. non-urgent access delays vary significantly by medical

department. This is not surprising since demand for specific services will vary across the

different patient classes considered here. Heterogeneous demand distributions will generate
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Figure 3.1: Access delay (in weeks) tail distribution to the first visit of an itinerary for
different patient types in GI and GIM based on historical data

uncontrolled and/or undesirable differences in access delay across the patient classes if ca-

pacity is not properly allocated and access delays are not properly forecasted. Based on

historical data, new patients tend to have many more resource requirements (e.g., number

of appointments, referrals to other departments, etc.) than non-urgent cases because physi-

cians will need to obtain more information for diagnosis and/or treatment. In the cases of

Neurology and GIM, we see that this heavier load on resources tends to have a negative

impact on access delay. This is undesirable because a delayed diagnosis for urgent patients

can be very harmful. Neurology as a medical service tends to admit patients with much

more serious conditions (compared to GIM) and we can see that the tail distribution on

access delay tends to be lighter than GIM, which shows that this service do take urgency

into account when scheduling (as opposed to just using a FCFS rule). For example, the GI

department has recently followed an initiative to prioritize urgent patients, which explains
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their significantly shorter access delays. However, the consequences weren’t properly fore-

casted, and resulted in much higher access delays for non-urgent patients (compared to GIM

and Neurology). This motivates the need for an integrated approach in capacity planning to

understand the tradeoffs between the competing access delay metrics by patient class and

medical specialty.

Figure 3.2: Current practice internal referral workload and total workload in 3 medical de-
partments

In GIM, we notice that roughly 40% of the total workload comes from internal referrals

from other departments (i.e., downstream appointments in a patient’s itinerary) and that
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the standard deviation of that referred workload is much larger than other departments.

This variability of internal referral demand/workload makes it difficult to predict how many

initial appointments (urgent/non-urgent visits) to schedule, and how many slots to reserve

for internally referred demand. Most of this referred demand is usually generated a day

before or the day of the appointment since referrals usually occur based on results from an

earlier visit or test, while first visit demand (new or established) occurs at least a week before

the appointment. Hence, it is important not to over commit to initial appointments early on

since a significant (and variable) amount of referred workload will be required in GIM shortly

thereafter: in current practice, that would result in excessive downstream appointments being

performed in overtime (since appointment commitments are non revocable). Moreover, it

highlights the fact that admission decisions in other departments can have drastic effects

on a department like GIM because, with a decentralized approach to scheduling, admission

decisions in GI or Neurology are made independently of the load it could impose on GIM. In

Fig. 3.2, we see that GI has very low utilization which is probably due to an improper use of

resources (e.g. physicians having inefficient slot reservation templates, or poor downstream

resource requirement forecasting). For the neurology department, we observe a roughly

constant workload throughout the week but with variable resource capacity: this creates

variable utilization, large amounts of overtime on Fridays, and poor patient access.

This high level historical analysis aligns with our intuition about the dynamics of this

large stochastic queueing network control problem: (1) each combination of patient class and

specialty/department has their own issues to improve upon because of different demand pat-

terns and scheduling policies, and (2) a single scheduling/capacity planning decision for each

specialty and patient class affects (a) other patient classes, (b) other departments/specialties,

and (c) multiple competing critical metrics/objectives in such a system.
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3.2.2 Controlling Access via the Template Process

The above motivates the need for a capacity plan that can provide improved access for a

heterogeneous group of patients, each with different levels of urgency and different resources

needs along their itinerary through the care network. One can describe the system as a multi-

class queueing network with blocking. Each group has a different sensitivity to the time to

initial appointment. Our approach is to create a plan for capacity allocation so that each

patient type must wait for an available appointment permitted for their type (maintaining

FCFS within type), enabling the organization to reliably achieve patient class-dependent

delay targets.
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Figure 3.3: One week of a scheduling template for a given medical department/specialty.

OPT’s main output to an outpatient practice is a template for planned capacity (see

example in Fig. 3.3) at the daily level that meets all of the requirements of the prac-

tices/services modeled (e.g. GI, GIM, and Neurology). The template can be thought of as a

booking plan for how many patients of each type should be scheduled at maximum based on

each day of a planning horizon. Fig. 3.3 illustrates one week of a template for the General

Internal Medicine (GIM) department at our partnering hospital. Our partnering outpatient
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institution uses them to capture care provider schedules. These templates can be used at the

individual provider level, however, they always exist at the department/medical service level

and that is our focus here. OPT will optimize schedule templates of outpatient practices by

service to control the tradeoff between achieving (1) a high utilization of clinicians’ time, (2)

short access delays to an initial appointment, (3) a low probability of downstream workload

exceeding capacity, and (4) a low number of downstream appointments being performed in

overtime.

The templates are populated by the main decision variables of our optimization formu-

lation, a multi-dimensional array Θ =
(

Θk,τ
t

)
, where τ ∈ C represents the patient class (e.g.

urgency level, geozone, etc.), k ∈ K represents the department/specialty (or even the sub-

specialty) required during the root appointment of an itinerary, and t ∈ T is the day in our

planning horizon. The template Θ contains the main decision variables of our optimization

formulation, which sets the capacity for initial/root appointments of a care itinerary. The

capacity not consumed by the root visits will be used to satisfy subsequent visits (2nd, 3rd,

etc.) of each patient’s itinerary This output template corresponds to existing templates often

used in practice by schedulers. For example, the scheduler may be given an upper bound in

the number of initial appointments of a given type (by department, subspecialty, urgency,

and geozone) to allow on any given day. This upper bound may not always be achieved

due to variability in demand, and our models account for this. It allows us to bridge the

gap between high level capacity planning, and actual day to day scheduling, while providing

accurate forecasts of the most important metrics for decision makers in outpatient practices.

EMR systems may implement more sophisticated decision support using the template.

3.2.3 Competing Key Performance Metrics

As mentioned in previous sections, scheduling according to a given template will affect

numerous critical performance metrics. Our model incorporates the following competing
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metrics for each medical department k ∈ K:

1. (M1) Access delay by patient class τ ∈ C; specifically, we will optimize/control the

percentage of type τ patients that exceed n weeks of waiting for a root appointment.

2. (M2-M3) Mean and variance, respectively, of the resource utilization.

3. (M4) Number of planned working hours that exceed resource capacity (or equivalently,

mean number of overtime hours).

4. (M5) Probability that the offered workload will exceed resource capacity.

Rather than solving a multi-objective optimization program (which has been shown to be

difficult to implement in practice), we will use one metric in our objective with constraints

on the others. Scheduling according to the template generated by a given objective (e.g.

minimize urgent patient access delay) and constraints (target value for utilization, non-

urgent access delay, overtime hours, etc...) will assure that the optimal objective will be

achieved while satisfying the targets set on the other metrics. For example, we may want

to minimize the access delay metric M1 with τ = Urgent and n = 2 weeks, in department

k = Neurology. At the same time, the access delay of non-urgent patients in Neurology

and any GI or GIM patient should not be negatively affected. Consider that the more root

appointments there are for any type of patient, the more workload that it will generate due

to downstream resource requirements (especially by increasing access for urgent patients).

This will affect M2 and M3 and could lead to the deterioration of metrics M4 and M5. In

other words, we are dealing with competing objectives and, in this example, we will make

sure to (1) provide an upper bound constraint M1 for all other patient types and medical

services, and (2) an upper bound constraint on M2-M5 to make sure we do not over commit

our resources to root appointments without proper forecasts of downstream requirements in

patients’ itineraries.
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3.2.4 Differentiation from past research and practice

To the best of our knowledge, the objectives of this research are beyond the capabilities of

published research or available commercial products. Our approach differs significantly from

the appointment-based scheduling literature (and other areas such as capacity planning, lead

time quoting, and revenue management) because it contains multiple technically difficult

characteristics such as (1) scope (network vs. single clinic), (2) planning horizon (many

day and permitting non-stationarity vs. single day), (3) wait in days for an appointment

(explicitly considering working hours by provider by date) rather than minutes of waiting in

continuous time after arriving for a visit, (4) incorporation of multiple complex metrics, and

(5) service itineraries vs. a single appointment.

This work departs from all commercial software with which we are familiar. Moreover,

it differs significantly from the classical outpatient scheduling literature in terms of scope

(network vs single clinic) and timing (multiple day planning horizon vs single day). Much

of the outpatient scheduling literature focuses on the scheduling of a single clinic, which is

often modeled as a queueing system (see the survey paper [7]), and scheduling patients to

time slots within a day considering no-shows, doctor availability etc. See these key survey

papers [7, 19, 32]). The concept of capacity reservation/allocation is present in some revenue

management research (e.g., [2]), but those models lack the features and complexity proposed

(see [53, 30, 42]). There has been work in this general area (e.g., [20, 31, 32]) including

integrated care in the context of a network of outpatient care services (e.g., [36]).

Recent works for single-unit (non-network) systems have considered priority scheduling

and dynamic capacity allocation problems solved via approximate dynamic programming,

[29]. Some papers consider multi-priority jobs arriving dynamically that must be scheduled

on some future date (or rejected) with holding costs for delays or overtime (see [45, 10,

14]). Other papers consider the fact that each patient (job) may initiate a time series of
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appointments over multiple days with deadlines/time windows for subsequent appointments

(see [15, 31, 51]).

In this research, we rather propose to examine the tactical perspective by allocating ca-

pacity for different priority patients on clinicians’ schedules in advance of observing requests

from individual patients. This is important in outpatient environments, because clinicians

typically work according to static calendars as that help them plan their patient care and

other activities such as research and administration. Finally, we consider multiple objectives

and the percent of patients that meet predetermined, class-specific deadlines for time to ini-

tial and subsequent diagnosis and treatment visits. This involves capturing the propagation

of workload overflowing from one day to the next as well as downstream visits. Linearizing

these processes is another contribution.

Integrated outpatient care also has commonalities with hospital inpatient scheduling

problems. Early stochastic models of hospital census includes simulation (see [24, 38, 17, 23]),

and probabilistic approaches (see [9]), but capacity optimization was heuristic or intractable.

Recent elective patient admission scheduling research has treated the optimization of elective

admission schedules for stochastic flows through a network of inpatient hospital resources

(e.g. wards) (see [8, 1, 5, 27]). These works, however, consider elective scheduling rather

than capacity reservation as is more appropriate for outpatient networks. In this research,

we consider how stochastic arrivals fill appointment slots reserved in advance. Further,

this research captures delays throughout care episodes, a feature not found in the elective

literature.

3.3 “Demand in Progress”

In practice, the provider organization first determines a capacity reservation plan (the

template in our terminology) and reserves capacity in each medical specialty for each patient
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class (which can include urgency level/priority) over a finite planning horizon. Then, patients

call in to schedule an initial/root appointment according to a random and time-dependent

arrival process. The distribution on the daily number of arrivals (i.e., demand for a root ap-

pointment) can be general and captured by an empirical distribution based on historical data.

Patients will be booked into the earliest reserved slot according to the current availability

of the template. Patient demand exceeding the available capacity on a certain day becomes

carryover demand that the model attempts to book into the following day and so forth until

available capacity is found. To capture these dynamics, let τ ∈ C represent the patient type,

where patient type determines both the resources needed to complete a patient’s stochastic

itinerary as well as the patient’s urgency/priority. For example, patient type includes the

status of the patient (urgent vs. non-urgent - important for urgency/priority and stochastic

itinerary), the geozone of the patient (national/international vs. local/regional - important

for urgency/priority and stochastic itinerary), and the specialty the patient requires in a

given service/department k ∈ K (important for stochastic itinerary). The decision variables

Θk,τ
t for planning horizon t ∈ {1, ...,T} are the clinic’s capacity allocation plan for patient

type τ in service k. Schedulers commonly tend to schedule the root appointment without

regard to downstream requirements that may be needed at the time. This is because (1)

the root appointment is usually a diagnosis, and access to this visit may be urgent, and

(2) very little (if any) information is known about the downstream requirements (referrals,

follow-ups) at the time the patient schedules her root/diagnostic appointment. Hence, in

this section, we do not consider the modeling of downstream appointments, but this will be

analyzed in Section 5.

In our system, demand is either met immediately (scheduled into the current day under

consideration if capacity is available) or carryovers to the following day. Each time that

a given patient type demand cannot be met on a given day (because previous bookings
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already filled up the reserved capacity), this demand will be “pushed back” to the next

day. We will call this carryover demand. To link this to an outpatient practice’s actual

process, a scheduler will receive a patient request to start a new itinerary and will consult

the scheduling template on each future day to check availability for that patient type based

on the capacity plan designed by our methods. We will model this process as the demand

will carryover from day to day until there is an availability in the template Θ. The patient

will finally be booked by the scheduler on the first day in the future where there is enough

available capacity according to the template, so we model this as having her demand carried

over from day to day until she is booked. This of course does not make the assumption

that the patient will have to wait to know about her appointment until the first day with

availability. Our model employing carryover demand simply recreates the booking process

of the scheduler in practice. A scheduler will know in real time by consulting the current

state of the scheduling template the first day that the patient can be scheduled (according

to the template).

On a given day t of our planning horizon, the type τ demand in service k can be split

into: (i) the exogenous demand represented by the patient requests for a root appointment

that were received on the current day t, and (ii) the carryover demand that represents all

previously made requests that were not scheduled up to day t due to capacity/template

restrictions. We refer to the combination of (i) and (ii) as the Demand In Progress (or DIP)

random variable, similar to the concept of the commonly known Work In Progress (WIP)

in queueing networks. To maintain realism, we also assume that a patient that requested

an appointment in service k earlier than another patient of the same type will have their

root appointment happen earlier, since the scheduler will book patients in a first come first

served manner based on the limits on available time set by the template. We can think of

this booking process as a FIFO queue for each patient class and medical service within the
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reserved capacity of our template.

Let DIP k,τ
t,w , t ∈ {1, ...,T} be the random variable which represents the amount of type

τ DIP demand seeking admission in service k on a given day t in planning horizon (e.g.

week) number w (see Eq. 3.1), βk,τ
t+1,w, t ∈ {1, ...,T − 1} as the type τ carryover demand

random variable in service k from day t to day t + 1 in planning horizon w (Eq. 3.3), and

βk,τ
1,w as the type τ carryover demand random variable in service k from day T of the prior

planning horizon, w − 1, to day 1 in the current planning horizon w (Eq. 3.2). In this

paper, the dynamics of our system will be analyzed over an equilibrium cyclo-stationarity

planning horizon of T days, so the template does not depend on w. These random variables

will satisfy the following set of equations for any patient type τ and planning horizon w:

DIP k,τ
t,w = Dk,τ

t + βk,τ
t,w ,∀t ∈ {1, ...,T}, (3.1)

βk,τ
1,w =

(
DIP k,τ

T ,w−1 −Θk,τ
T

)+

, (3.2)

βk,τ
t+1,w =

(
DIP k,τ

t,w −Θk,τ
t

)+

,∀t ∈ {1, ...,T − 1}, (3.3)

where Dk,τ
t represents the type τ exogenous demand random variable in service k on day

t of our planning horizon (that can be captured by historical data). The DIP on a given

week/day, DIP k,τ
t,w , is the sum of the exogenous demand, Dk,τ

t,w , and the carryover demand

from the previous day, βk,τ
t,w . To capture the carryover demand from day t to t + 1, we take

the positive difference of the day t DIP and the amount of carryover demand on that same

day.

Given we have a stable system, as w → +∞, our random variables DIP k,τ
t,w , βk,τ

t,w , and

will converge in distribution to the random variables DIP k,τ
t and βk,τ

t respectively. Hence,

in equilibrium, Eqs. 3.1-3.3 can be rewritten as:

DIP k,τ
t = Dk,τ

t + βk,τ
t ,∀t ∈ {1, ...,T} (3.4)

βk,τ
t⊕1 =

(
DIP k,τ

t −Θk,τ
t

)+

, ∀t ∈ {1, ...,T} (3.5)
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where the operator ⊕ is the modulo T operator defined for convenience to assure that all

our variables will have their subscripts in {1, ...,T} in our rolling planning horizon (e.g. if

t = T then t⊕ 1 = 1).

For ease of exposition, let us also define αk,τ
t to be the amount of DIP k,τ

t that is scheduled

on day t:

αk,τ
t = min{DIP k,τ

t , Θk,τ
t } = DIP k,τ

t − βk,τ
t⊕1. (3.6)

Then,

DIP k,τ
t = αk,τ

t + βk,τ
t⊕1. (3.7)

Our goal is to translate this set of stochastic non-linear equations (3.4-3.7) into a set of

deterministic linear constraints subject to Θ that can capture the probability distributions

of the DIP k,τ
t and βk,τ

t random variables. This information is needed to accurately estimate

(based on a given template, Θ) (1) the DIP levels in the planning horizon, (2) the delay to

obtain a first visit (which can be calculated by how many times demand carries over), (3) how

demand will be fulfilled and scheduled, (4) how capacity decisions will impact demand and

workload for downstream visits, and (5) how the institution’s resources will be utilized. The

dynamics of our system are conceptually similar to the idea of blocking in queueing networks,

which is difficult to compute except in special cases, and is non-linear in our main decision

variable Θ (i.e., allocated capacity). To overcome this, we propose to develop approximation

techniques (see Sections 6.1 and 6.2) that can capture the key system dynamics linearly in

order to forecast and control our desired metrics (see Sections 4 and 5) in a deterministic

Mixed Integer Programming optimization.

3.4 Access delay

Access delay is a crucial metric for healthcare organizations, as most recently and vividly

demonstrated by the public firestorm surrounding long wait lists at Veteran’s Administration
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(VA) hospitals. To quantify and reduce access delay, this section describes the mathematical

approach and challenges at the root of this problem.

Each specialty/service may have different targets/bounds on the waiting time for a first

visit appointment to respond appropriately to the urgency of each patient type. This problem

induces multi-dimensional tradeoffs, as increasing access for one type of patient necessarily

means reserving more capacity for that patient and thereby reduces access for other patient

types. Note that our methodology clarifies what is possible and what is not.

We constrain user-selected quantiles of the access delay distribution. This sets a service

level bound on the expected fraction of patients of type τ in service k to exceed a desired

target (set by the healthcare organization) on access delay. To do so, let pk,τ
n be the bound

we set on the percentage of type τ patients in service k that will exceed TFAV k,τ
n days of

waiting for an initial/root appointment, with TFAV standing for “time to first available

visit.” The subscript n allows us to set multiple bounds for each patient type. For example,

we may want (for n = 1) 20% (pk,τ
1 = 0.2) of type τ patients to get an appointment within

4 days in service k (TFAV k,τ
1 = 4), (for n = 2) 50% (pk,τ

2 = 0.5) of type τ patients to get

an appointment within 7 days in service k (TFAV k,τ
2 = 7), and similarly for other desired

performance constraints. Note that the number of those constraints, which corresponds to

the control we set on the access delay, can vary based on the case and the decision maker’s

needs. Note that if TFAV k,τ
n is increasing in n, we will want ps,d,z

n to be decreasing in n.

Otherwise, some constraints will have no effect.

To capture these service level metrics, we begin by defining δk,τ
t,n as the number of open

slots left in our template from day t up to day t+ TFAV k,τ
n after all demand prior to day t

has been scheduled:

δk,τ
t,n =

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τ
t

+

.

This is the positive difference of (a) the total number of type k, τ slots in an empty template
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from day t to day t+TFAV k,τ
n and (b) the number of type k, τ carryovers to day t. We will

consider the expected fraction of type τ patients requesting an appointment in service k on

day t that exceed TFAV k,τ
n days of waiting for a root appointment, denoted as Gk,τ

t,n :

Gk,τ
t,n = E


(
Dk,τ
t − δ

k,τ
t,n

)+

Dk,τ
t

 ,

which we will linearize in Section 3.7.2. This quantity could be used in multiple ways. For

example, we may want to minimize this quantity for urgent patient types. Alternatively, for

other patient types we may constrain Gk,τ
t,n to be smaller than a percent (service level pk,τ

n )

of the total demand on day t:

Gk,τ
t,n ≤ pk,τ

n . (3.8)

3.5 Workload

We develop a computationally efficient offered load approach to forecast downstream

demand during a patient’s itinerary based on a stochastic location process parameterized

with historical patient flows that are a good representation of the actual visit precedence

relationships for a patient’s care path (e.g. a general surgery consult must occur at least

one day after the CT scan visit to allow ample time to read the CT image). Based on our

experience working with data with our partnering hospital, this is a good assumption for some

specialties and patient types. On the other hand, it is less realistic for some other services

and patient types because the historical time series data is contaminated with endogenous

downstream delays inherent in the system that obscure the true itinerary. We propose to use

the stochastic location process in an offered load model with infinite capacity, yet historical

patient flow data are clearly capacitated. To eliminate this endogeneity, we take advantage

of the fact that demand for healthcare services typically follows a seasonal pattern, which is

confirmed by the data from the partnering hospital. Thus to approximate the true stochastic
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location process probabilities, we use data from low utilization months during which time

patients rarely have difficulty getting an appointment. This approximates uncapacitated

flow because we are trying to capture the itinerary, not the volume of flow.

We construct a model for workload (utilization) at each specialty within the care network

based on the capacity reservation plan, Θ. This quantity is needed to assure that we respect

daily capacity constraints while estimating/controlling two critical metrics: (1) the proba-

bility that the offered workload will exceed capacity, and (2) the expected daily workload

overflow, which can be seen as the daily number of overtime hours that have to be spent on

downstream appointments (see Section 6.4).

3.5.1 Downstream Demand distributions

Based on historical data, we construct a downstream resource requirement (or “location”)

probability function capturing the timing (precedence) and type of all subsequent appoint-

ments across the network of clinical specialties after a patient’s first visit; tailored to each

patient type.

We consider K to be the set of medical specialty services at the care provider institution.

Since a patient could have appointments at multiple medical specialties on a single day, we

need to consider a vector state space for the stochastic location process. Let this vector state

space be S0 = {[a1, a2, . . . , a1, . . . , a|K|] : ak ∈ Z+,∀k ∈ K}. We let the full state space be

S = S0
⋃
{∆}, where ∆ represents that the patient has no appointments (e.g. has returned

home, has not yet become a downstream patient, or has no visits on a given day within

his/her itinerary). We allow each ak to take values in Z+ since in the outpatient setting, a

patient can have more than one appointment in a medical specialty on a given day.

Let Lk1,τ
t1 (t) be the S-valued function that represents the unhindered (no delays) ap-

pointment(s) needed at time t during a care episode for a patient of type τ that started

her itinerary in service k1, where t1 is the day that the patient started her itinerary. For
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notational convenience we let

P(Lk1,τ
t1 (t) · ek = m) = rk1,τ ,k

t1 (m, t− t1), (3.9)

where rk1,τ ,k
t1 (·, ·) is calculated based on historical data, and ek is a column vector with all

0’s and a 1 in the kth row.

3.5.2 Offered workload formulation

Based on the formulations in this past section, we can now express the steady state mean

offered workload on day t of our planning horizon in each medical department. First, let Mk

be the maximum number of time slots a patient can require within a day in specialty k.

Theorem III.1. The steady state mean offered workload in service k on day t (under the

capacity reservation plan Θ) can be computed as:

W
k

t =
∑
τ∈C

∑
k1∈K

T∑
t1=1

E[αk1,τ
t1 ] ·

∞∑
j=0

Mk∑
m=1

m · rk1,τ ,k
t1 (m, t− t1 + jT ) · ek · Sk (3.10)

Proof. By combining Lk1,τ
t1+jT (t) with αk1,τ

t1,j , the number of type τ initial appointments in

specialty k1 on day t1 ∈ {1, ...,T} of planning horizon j, we can determine the demand stream

(and also workload by multiplying by the appointment length required) for downstream

appointments at each specialty t days later.

Therefore, for medical specialty k, the offered workload random variable (which includes

initial and subsequent appointments for each patient type) on day t of planning horizon (e.g.

week) w under the booking reservation scheme Θ can be expressed as:

W k
t,w =

∑
τ∈C

∑
k1∈K

w∑
j=0

T∑
t1=1

α
k1,τ
t1,j∑
i=1

Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · Sk, (3.11)

where Sk is the length of a slot in specialty k, and Lk1,τ
t1+jT ,i(t + wT − (t1 + jT )) is the ith

i.i.d instance of the Lk1,τ
t1+jT (t+ wT − (t1 + jT )) random variable. Notice that the first inner
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sum in Eq. 3.11 considers αk1,τ
t1,j , all type (k1, τ) patients that were scheduled for their root

appointment on day t1 of week j ≤ w. For each one of those patients, we will multiply a

given realization of Lk1,τ
t1+jT (t+wT −(t1 +jT )) with ek ·Sk, which will determine the workload

each one of those patients will impose in specialty k, t + wT − (t1 + jT ) days later (hence,

on day t of week w). For notational convenience, if t + wT − (t1 + jT ) is negative then

Lk1,τ
t1+jT (t+wT −(t1 +jT )) will be 0. The second and third inner sums are over all days weeks

w from 0 to w, and all days t1 in weeks j = 0, ...,w. Therefore, this captures all type (k1, τ)

patients that were scheduled for a root appointment earlier than day t of planning horizon

w, and the sum of their resource requirements in specialty k on day t of week w. The last

two outer sums consider all patient types τ ∈ C, k1 ∈ K.

As w → ∞, Eq. 3.11 the steady state mean workload on day t of our planning horizon

can be computed as follows:

W
k

t =
∑
τ∈C

∑
k1∈K

T∑
t1=1

∞∑
j=0

E
α
k1,τ
t1,j∑
i=1

Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · Sk (3.12)

=
∑
τ∈C

∑
k1∈K

T∑
t1=1

E[αk1,τ
t1 ] ·

∞∑
j=0

Mk∑
m=1

m · rk1,τ ,k
t1 (m, t− t1 + jT ) · ek · Sk (3.13)

Eq. 3.12 calculates the limit of Eq. 3.11 as w → ∞ and takes the expectation of this

expression. Then, using Wald’s equation, the expected value of a random sum, will be equal

to the expected value of αk1,τ
t1,j multiplied by the expected value of the Lk1,τ

t1+jT ,i(t+wT − (t1 +

jT )) · ek random variable. Using Eq. 3.9, and using the fact that our calculations are made

in equilibrium, Eq. 3.13 follows, and we proved Theorem III.1.

To calculate the variance in the number of appointment slots requested for service k on

day t of our planning horizon, we will need to compute the variance of the number of type

τ patients scheduled in service k on day t according to our template Θ.
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Theorem III.2. The steady state variance of the offered workload in specialty k on day t of

our steady state planning horizon is given by

W̃ k
t =

T∑
t1=1

∑
τ

∑
k1∈K

∞∑
j=0

[
Var

[
αk1,τ
t1

]( Mk∑
m=0

m · rk1,τ ,k
t1 (m, t− t1 + jT ) · ek · Sk

)2

+ E
[
αk1,τ
t1

]
·
Mk∑
m=0

(
m2 · S2

k · r
k1,τ ,k
t1 (m, t− t1 + jT ) · ek

(
1− rk1,τ ,k

t1 (m, t− t1 + jT ) · ek
)

−
∑

m<q≤Mk

2mq · S2
k · r

k1,τ ,k
t1 (m, t− t1 + jT ) · ek · rk1,τ ,k

t1 (q, t− t1 + jT ) · ek
)]

(3.14)

Proof. Following the general idea of the proof in Theorem III.1, we can formulate the steady

state variance of the specialty k workload random variable on day t of our planning horizon

as:

W̃ k
t =

∑
τ∈C

∑
k1∈K

T∑
t1=1

∞∑
j=0

V ar

[ αk1,τt1,j∑
i=1

Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · Sk

]
(3.15)

Notice that (Lk1,τ
t1+jT ,i(t+wT − (t1 + jT )) ·ek)i is a sequence of independent random variables

which are also independent of αk1,τ
t1,j , the number of patients scheduled. Moreover, the variance

of Lk1,τ
t1+jT ,i(t+wT − (t1 + jT )) · ek is the same for every i. Then, the variance of this random

sum can be expressed as follows:

V ar

[ αk1,τt1,j∑
i=1

Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · Sk

]

= E[αk1,τ
t1,j ] · V ar[Lk1,τ

t1+jT ,i(t+ wT − (t1 + jT )) · ek · Sk]

+ E[Lk1,τ
t1+jT ,i(t+ wT − (t1 + jT )) · ek · Sk]2 · V ar[αk1,τ

t1,j ] (3.16)

By using the same arguments as the proof of the previous theorem, Eq. 3.14 follows.
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3.6 DIP distribution adjustment combining optimization and sim-
ulation

3.6.1 Discrete Event Simulation

In order to validate the approximations used in our template optimization approach, we

constructed a high-fidelity discrete event simulation in Visual C++. The simulation inputs

include: (1) an optimized weekly template in equilibrium, (2) the daily resource capacity,

(3) the stochastic location functions for downstream appointments based on historical data,

(4) the empirical demand distribution for each patient type τ based on historical data, and

(5) the historical internal referral workload mean and variance from patients starting their

itineraries outside of the three departments we consider (GI, GIM and Neurology). We

will consider a 500 day warm-up period to reach equilibrium. The metrics considered in

this simulation will be: (1) the expected percentage of type τ patients exceeding ω days of

waiting, (2) the mean and variance of the number of type τ patients scheduled by day of

week (as well as the carryover patients), (3) the mean and variance of the offered workload

by day of week, (4) the expected number of overtime hours by day of week, and (5) the

probability of exceeding the daily resource capacity. The metrics we wish to validate will

be computed over an evaluation horizon/period that reached equilibrium by using the batch

mean method. In addition, the simulation considers a large number of replications (of the

warm-up and the evaluation period) for the evaluation of the mean and variance of our

metrics, which we shown to be enough to have our sample means and variances converge to

the true means and variances. The number of replications, the number of batches, and their

sizes in the evaluation period, have been selected to guarantee a 95% confidence interval on

our sample metrics (for their means and variances/standard deviations).

At the end of the day, we consider all arrivals of all types that occurred within the day, and

the template scheduling function determines the first available reserved slots in our schedule
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by keeping track of the number of remaining open reserved slots for each patient type. Once

all patients that requested their initial appointment on that day have been scheduled (on

a future day), we update our metrics. We will use realizations of the stochastic location

distributions to determine the workload they will impose on days following the first visit,

due to their downstream appointments. Note that if any of the appointments scheduled

(initial or downstream) generate a workload that makes the aggregate offered load go over

the daily capacity, then the appointment will be treated as “overtime” workload. Once

the simulation reaches the end of its horizon, and has gone through all its replications, we

can then compare our simulated metrics to the results we got from the optimization, and

compute the percentage errors.

3.6.2 Simulated DIP distributions

On any day t, we are adding a large number of random variables (each determining

the amount of carry over demand from previous days l to t with l < t) to the exogenous

demand on day t. But we should note that those random variables that we are summing are

not i.i.d, therefore using the Central Limit Theorem to assume the DIP random variables

follow a Normal distribution has its limitations. In some situations e.g., in heavy traffic,

the skew of the distribution tends to increase: this leads to an inexact characterization of

the DIP distributions if we assumed normality, therefore errors in our metrics’ forecasting

(especially for the second moment terms) and a suboptimal template. We conducted some

statistical analysis on DIP distributions given a wide range of templates Θ. We considered

historical demand patterns, and first simulated the booking process in a low traffic setting

(for a template that would generate low utilization/waiting times). Then, we simulated the

booking process assuming a historical template, which is a representation of a heavy traffic

scenario. We estimated the DIP distributions under those capacity planning scenarios and

compared it to Normal distributions (or log-normal) with same means and variances. In Fig.
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3.4 we represent the low traffic scenario while the heavy traffic case can be found in Fig. 3.5.

Figure 3.4: Simulated Monday DIP distribution with mean of 26.36 and standard deviation
of 9.16 approximated by a Normal distribution (26.36, 9.16) and its effects on
the Tuesday carryover demand relative to the truncation factor Θ

Θt,τ
1 = 15 DIP Simulated Dist. Normal Dist. APE AE

P(DIP t,τ
1 > Θt,τ

1 ) 0.86 0.86 0.06 0.00

E(βt,τ2 ) 11.68 11.83 1.27 0.15√
V ar(βt,τ2 ) 8.65 8.33 3.72 0.32

Table 3.1: Absolute Percentage Error (APE) and Absolute Error (AE) of the probability of
exceeding Θ = 15, the mean Tuesday carryover demand, and Tuesday carryover
demand standard deviation when we approximate the Monday DIP distribution
by a Normal

In Table 3.1 we compared three metrics that would be impacted by a Normal approxi-

mation to the DIP: the probability of exceeding the number of reservations Θt,τ
1 , the mean

carryover demand and the carryover demand standard deviation. The accuracy of those

metrics will vary based on Θ’s relative value to the distribution of the DIP. In the first

two cases (Θ = 15, 25), when our template is below the mean or equal to the mean of our



95

DIP distribution, we observe high accuracy in our metrics. When looking at the Absolute

Percentage Error (APE) and Absolute Error (AE) of those three metrics, we can see that

the Normal approximation to the DIP distribution behaves quite well. But if we now look

at the heavy traffic case (Fig. 3.5 and Tables 3.2 and 3.3), which is a much more realistic

representation of reality, we can see that the Normal approximation generates large APEs

for the three metrics we care about. This is mainly due to the increase in skewness of the

true DIP distribution, which now behaves closer to a log-normal distribution.

Figure 3.5: Simulated Monday DIP distribution with mean of 91.91 and standard deviation
of 73.91 approximated by a Normal distribution (91.91, 73.91) and a log-normal
distribution (91.91, 73.91) and its effects on the Tuesday carryover demand rel-
ative to the truncation factor Θ

Θt,τ
1 = 16 DIP Simulated Dist. Normal Dist. log-normal Dist.

P(DIP t,τ
1 > Θt,τ

1 ) 0.964 0.846 0.978

E(βt,τ2 ) 76.037 81.756 74.143√
V ar(βt,τ2 ) 73.771 67.454 64.443

Table 3.2: Probability of exceeding Θ = 16, the mean Tuesday carryover demand, and Tues-
day carryover demand standard deviation for the Monday DIP distribution when
(1) it has been simulated (i.e., the true distribution), (2) approximated by a
Normal, and (3) approximated by a log-normal distribution. (1) and (2) both
generated with mean and standard deviation equal to the simulated DIP
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Θt,τ
1 = 16 Normal APE log-normal APE

P(DIP t,τ
1 > Θt,τ

1 ) 12.261 1.427

E(βt,τ2 ) 7.522 2.490√
V ar(βt,τ2 ) 12.642 8.725

Table 3.3: Absolute Percentage Error (APE) of the probability of exceeding Θ = 16, the
mean Tuesday carryover demand, and Tuesday carryover demand standard de-
viation when we approximate the Monday DIP distribution by a Normal and
a log-normal distribution, both with mean and standard deviation equal to the
simulated DIP

Our model will adjust the DIP distributions in a recursive manner via simulation to

determine a truly optimal template with low metrics’ forecasting errors. The first step

of our methodology and algorithm will be to solve the optimization program assuming a

historical distribution on the DIP random variables (e.g. see the simulated bars in Fig.

3.5), and the following steps of the algorithm will use simulation to determine the correct

distribution associated with the optimized template (of a given algorithm iteration). In

most of our case studies occurring in clinical practice, an adjustment in the probability mass

function of the DIP random variables needs to occur for accurate forecasts of our metrics,

especially for the variance/standard deviation estimates (since it relates to the tail behavior

of the distribution).

3.6.3 Discretization of the DIP distributions

The type τ DIP random variable in service k on a given day t of the planning horizon,

DIP k,τ
t has mean DIP

k,τ

t and variance ˜DIP
k,τ

t satisfying the following: DIP
k,τ

t = D
k,τ

t +

B
k,τ

t , D̃k,τ
t = D̃k,τ

t + B̃k,τ
t , where D

k,τ

t = E
[
Dk,τ
t

]
, B

k,τ

t = E
[
βk,τ
t

]
, D̃k,τ

t = V ar
[
Dk,τ
t

]
, and

B̃k,τ
t = V ar

[
βk,τ
t

]
. First, by the linearity of the expected value function, the mean of the DIP

random variable will clearly be the sum of the mean exogenous and carryover demands (See

Eq. 3.4). Moreover, note that the exogenous demand Dk,τ
t is independent to the carryover

demand βk,τ
t on a given day t, since the number of patient requests for an appointment on
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day t is independent of anything else in our system (including the carryover demand). This

allows us to sum up the variance of those two random variables to get the variance of the

DIP. Hence, we only need to express the expected value (B
k,τ

t ) and variance (B̃k,τ
t ) of the

βk,τ
t random variables in order to get an estimate on the DIP distributions. However, the

expectation and variance of the carryover demand (as well as the probability of carrying

over) for a generally distributed DIP random variable is non-linear in the admission schedule

Θ for most distributions.

We propose an approximation based on Riemann integration. Let I = {1, 2, . . . , I} be

an index that creates a discrete grid with I sections. The grid need not (and in application

is not chosen to be) linear. Thus we have a one-to-one mapping function m(i) : I →M that

maps the integer values of I to the grid values M (see a grid example in Table 3.4).

i ∈ I 1 2 3 4 5 6 7 8 9 10 11 12 13
m(i) ∈M -3.1 -1.8 -1.2 -0.6 -0.2 -0.1 0.0 0.1 0.2 0.6 1.2 1.8 3.1

Table 3.4: Sample grid mapping from the set I to the grid M

Definition III.3. For a given grid m(i), i ∈ I, and any feasible template Θ, let Ψk,τ
t (i) be

a data input to the optimization determining the probability of having the random variable

DIP k,τ
t be in the interval

[
DIP

k,τ

t +m(i) ·
√

˜DIP
k,τ

t ,DIP
k,τ

t +m(i+ 1) ·
√

˜DIP
k,τ

t

]
.

Ψk,τ
t (i) will be calculated before an optimization run either by using historical data or

by using discrete event simulation (See Section 3.6.4 for more explanations). We justify

the assumption that Ψk,τ
t (i) does not vary regardless of which feasible template the Mixed

Integer Program converges to with:

1. the changes in DIP means and variances (when the template is optimized) are calcu-

lated linearly online (see Section 3.7.1) and are incorporated in the grid design (See

Definition 6.1). Hence, assuming invariance in Ψk,τ
t (i) does not mean we assume that
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our optimized template will have the same DIP distributions as historically, but rather,

it will belong to the same distribution family with different means and variances.

2. as we go through iterations of the DIP distribution adjustment algorithm (Section

3.6.4), our input Ψk,τ
t (i) to the MIP will get closer to the true DIP distribution associ-

ated with the optimized template. This is due mainly to the fact that as we go through

the iterations of our algorithm, the variations in the “optimal” template will decrease.

One grid design that has nice intuition and behaves well in practice is to make the grid

such that each interval contains an equal amount of probability density on a partition of the

interval [0, +∞) of our DIP distribution. An example of such a discretization is shown in Fig.

3.6 with the grid values of Table 3.4, where our decision variables are represented in bold.

Given a linear approximation of the square root function (since mean and variance can be

calculated linearly, see Section 3.7.1), those approximations allow us to estimate linearly the

discretized distributions of DIP k,τ
t (i). In the limit, as I →∞ and m(i+1)−m(i)→ 0, ∀i ∈ I,

this approximation will converge to the exact DIP distribution because it is equivalent to

Riemann integration.

We propose a linearizing approximation for the square root function. Let ˜DIP
k,τ

t be

the quantity that we want to take the square root of (e.g., type τ variance of the DIP

on day t). Let ˆDIP
k,τ

t be an initial guess of

√
˜DIP

k,τ

t (e.g., standard deviation). We

approximate the true

√
˜DIP

k,τ

t by applying one step of the Newton’s method:

√
˜DIP

k,τ

t ≈

0.5 · ( ˜DIP
τ

t / ˆDIP
τ

t + ˆDIP
τ

t )). In previous work, [27] showed that this approximation is

highly effective in modeling healthcare workloads when ˆDIP
k,τ

t is chosen to be the historical

workload standard deviation.

Now, we can define a separate variable, DIP k,τ
t (i) ≥ 0, for the realization of DIP k,τ

t at
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Figure 3.6: Applying the grid approximation to a DIP Normal distribution

each grid level i based on the grid discretization and Newton approximations made above:

DIP k,τ
t (i) := DIP

k,τ

t +
1

2
m(i) ·

(
˜DIP

k,τ

t

ˆDIP
k,τ

t

+ ˆDIP
k,τ

t

)
+ εk,τ

t (i), (3.17)

where

εk,τ
t (i) ≤ −

(
DIP

k,τ

t +
1

2
m(i) ·

(
˜DIP

k,τ

t

ˆDIP
k,τ

t

+ ˆDIP
k,τ

t

))
+M · bk,τ

t (i), (3.18)

εk,τ
t (i) ≤M · (1− bk,τ

t (i)), (3.19)

and

−M ·
(

1− bk,τ
t (i)

)
≤ DIP

k,τ

t +
1

2
m(i) ·

(
˜DIP

k,τ

t

ˆDIP
k,τ

t

+ ˆDIP
k,τ

t

)
(3.20)

DIP
k,τ

t +
1

2
m(i) ·

(
˜DIP

k,τ

t

ˆDIP
k,τ

t

+ ˆDIP
k,τ

t

)
≤M · bk,τ

t (i). (3.21)
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Notice that in Eq. 3.17, we also add a term εk,τ
t (i) ≥ 0 which will assure that DIP k,τ

t (i) ≥

0,∀i ∈ I since the DIP random variable cannot take negative values. We choose M to be

a large enough integer, and create a binary variable bk,τ
t (i) where constraints 3.20 and 3.21

assure that bk,τ
t (i) = 1 if DIP

k,τ

t + 1
2
m(i) ·

(
˜DIP

k,τ
t

ˆDIP
k,τ
t

+ ˆDIP
k,τ

t

)
≥ 0 and 0 otherwise. Hence

εk,τ
t (i) will either take the value 0 or −DIP k,τ

t − 1
2
m(i) ·

(
˜DIP

k,τ
t

ˆDIP
k,τ
t

+ ˆDIP
k,τ

t

)
≥ 0 thanks to

constraints 3.18 and 3.19 based on the binary variable bk,τ
t (i).

3.6.4 The DIP distribution adjustment algorithm

We will employ the following algorithm to capture the true discretized DIP distributions

of a given optimized BRPlan.

1. Input an objective and constraints on the other metrics into the Mixed Integer Program

(see Section 3.7).

2. Solve the optimization program described in Section 3.7 associating the historical den-

sities Ψk,τ (i)[0] to grid points DIP k,τ
t (i)[0] (see Section 3.6.3) and get the optimal

template Θ∗[0], and the resulting optimized/controlled metrics.

3. Set n = 1.

4. Input the iteration n−1 template Θ∗[n−1] into the discrete event simulation described

in Section 6.1 and compute the simulated density Ψk,τ
t (i)[n] at grid point DIP k,τ

t (i)[n−

1].

5. If
∑

i∈I |Ψ
k,τ
t (i)[n]−Ψk,τ

t (i)[n− 1]| ≤ κ,∀k,∀τ then go to step 9.

6. Input Ψk,τ
t (i)[n] into the Mixed Integer Program with the same objective and con-

straints.



101

7. Solve the optimization program now associating the iteration n simulated density

Ψk,τ
t (i)[n] to grid points DIP k,τ

t [n].

8. Set n = n+ 1 and go to Step 4.

9. Compute the statistics of our simulated performance metrics and validate our analytical

model by calculating (1) the Absolute Percentage Error (APE), and (2) the Absolute

Error (AE) on the desired performance metrics.

10. End Algorithm

At iteration n = 0, CPLEX determines the optimal template (given an objective and

constraints on other metrics) assuming a historical discretized distribution Ψk,τ (i)[0], i ∈ I

on the DIP random variables. Note that this optimized template is not truly optimal since the

densities in between grid points are likely to change if our new template varies significantly

from the historical one. At iteration n = 1, we first use discrete event simulation to observe

how patient demand will fill the template slots and record the simulated true density in

between the n = 0 optimized grid points (i.e. in between m(i + 1) and m(i) DIP standard

deviations above/below the n = 0 DIP mean). If our historical distribution assumption is

“good enough”, we stop the algorithm and validate the statistics on our modeled performance

metrics. Otherwise, we input into the optimization program the adjusted densities (simulated

at n = 1) in between two grid points from iteration n = 0. When optimizing again at n = 1,

the DIP grid points will not be the same as the n = 0 DIP grid points since the mean and

standard deviation of our DIP will change with an updated optimized template. So our

adjusted densities will not be assigned to the exact same DIP values but will still reflect the

amount of density within a certain standard deviation factor above/below the mean. This

information is valuable to capture the correct shape of the distribution while still being able

to update its mean and variance when the optimized template changes. We then repeat the
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same procedure until our optimized template stabilizes while now using the true distributions

of the DIP random variables.

3.7 Deterministic Linear Optimization

3.7.1 Linear parameterization the DIP distribution

Our goal is to compute the mean and variance of the DIP random variables for any day

t ≥ 0 (and, equivalently the mean and variance of the carryover random variables) linearly

in our decision variables Θ. We will show this by induction. If we can show that this is true

for all t ≥ 0, then this result will also apply to our equilibrium planning horizon with t ∈ T .

Initialization On day 1, we start with an empty system, meaning there is no carryover

demand. The DIP random variable will be equal to the exogenous demand on day 1 (see

Eq. 3.4) which can be expressed linearly in our decision variables Θ (since the exogenous

demand is independent of our template).

Induction hypothesis We assume that we can express the DIP mean and variance on

day t linearly in our decision variables Θ.

Induction step We would like to compute the distribution of the DIP random variable on

day t+ 1. To estimate the mean DIP
k,τ

t and variance ˜DIP
k,τ

t of the DIP random variables

linearly in Θ, it is sufficient to express linearly the mean B
k,τ

t+1 and variance B̃k,τ
t+1 of the

carryover random variables on day t+ 1 (see Eq. 3.4).

βk,τ
t+1 will be a truncation of the DIP demand on day t, a distribution with mean DIP

k,τ

t

and variance ˜DIP
k,τ

t , with a lower-bound truncation at Θk,τ
t , which is then translated by

Θk,τ
t : this means that βk,τ

t+1 will be a mixed random variable and have a mass point at 0

equal to the probability of the DIP demand on day t being below Θk,τ
t , and will have the
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same distribution as the tail distribution of the DIP when the DIP random variable is larger

than Θk,τ
t (i.e., for βk,τ

t+1 > 0). An example of such a distribution can be seen in Fig. 3.7

with a truncation at 15 (Fig. 3.7 left) and a truncation at 25 (Fig. 3.7 right) of an assumed

normally distributed DIP.

Figure 3.7: Probability mass function of the carryover demand to the next day when the cur-
rent day DIP has a Normal distribution with mean 26.36 and standard deviation
9.16 with (left) a template Θ = 15 and (right) a template Θ = 25

DIP k,τ
t (i) (see Eq. 3.17) is linear in our decision variables Θ by the induction hypothesis:

DIP
k,τ

t and ˜DIP
k,τ

t can be estimated linearly in Θ. We can now express the carryover

demand level at grid level/realization i of the DIP based on Eq. 3.5 by:

βk,τ
t+1(i) =

(
DIP k,τ

t (i)−Θk,τ
t

)+

. (3.22)

To linearize βk,τ
t+1(i), we start by defining a binary decision variable yk,τ

t (i, l) that equals 1

when DIP k,τ
t (i)−Θk,τ

t > l, and 0 otherwise. The following constraints on yk,τ
t (i, l) will assure
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that this definition is satisfied:

−M ·
(

1− yk,τ
t (i, l)

)
≤ DIP k,τ

t (i)−Θk,τ
t − l (3.23)

DIP k,τ
t (i)−Θk,τ

t − l ≤M · yk,τ
t (i, l). (3.24)

By noticing that yk,τ
t (i, 0) is expressed linearly in Θ in constraints 3.23 and 3.24, we can now

transform Eq. 3.22 into linear constraints with respect to our decision variables:

βk,τ
t+1(i) ≥ DIP k,τ

t (i)−Θk,τ
t (3.25)

βk,τ
t+1(i) ≤ DIP k,τ

t (i)−Θk,τ
t +M ·

(
1− yk,τ

t (i, 0)
)

(3.26)

As I → +∞ and m(i+1)−m(i)→ 0,∀i ∈ I, the following linear expression with respect

to our decision variables Θ, ∑
i∈I

βk,τ
t+1(i)Ψ(i), (3.27)

will converge to the daily mean carryover demand B̄k,τ
t+1. This uses the concept of Riemann

integration.

Theorem III.4. As I → +∞ and m(i+1)−m(i)→ 0,∀i ∈ I, the following linear expression

with respect to our decision variables Θ,

∞∑
l=0

[
2l ·
∑
i∈I

yk,τ
t (i, l) ·Ψ(i)

]
−

∑
(l1,l2)∈(Z+)2

∑
(i1,i2)∈I2

zk,τ
t (i1, i2, l1, l2) ·Ψ(i1) ·Ψ(i2),

will converge to the daily carryover demand variance B̃k,τ
t , where zk,τ

t (i1, i2, l1, l2) satisfies

the following constraints:

zk,τ
t (i1, i2, l1, l2) ≤ yk,τ

t (i1, l1), (3.28)

zk,τ
t (i1, i2, l1, l2) ≤ yk,τ

t (i2, l2), (3.29)

zk,τ
t (i1, i2, l1, l2) ≥ yk,τ

t (i1, l1) + yk,τ
t (i2, l2)− 1. (3.30)
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Proof. We want to express the variance, B̃k,τ
t , of our carryover random variables linearly in

our decision variables. First, note that we can show by recurrence that:

E[(βk,τ
t )2] =

∞∑
l=0

2l · P
(
βk,τ
t > l

)
. (3.31)

Moreover, by using our previously defined binary variables yk,τ
t (i, l) (see constraints 3.20 and

3.21), Eq. 3.31 can be rewritten as:

E[(βk,τ
t )2] =

∞∑
l=0

[
2l ·
∑
i∈I

yk,τ
t (i, l) ·Ψ(i)

]
(3.32)

Next, we can also compute the mean of our carryover demand random variable as a linear

combination of the CDF (see Eq. 3.27 for the standard way of computing the mean):

E[βk,τ
t ] =

∞∑
l=0

P
(
βk,τ
t > l

)
=
∞∑
l=0

∑
i∈I

yk,τ
t (i, l) ·Ψ(i) (3.33)

The variance of B̃k,τ
t , of our overflow random variables can now be expressed as:

B̃k,τ
t =

∞∑
l=0

[
2l ·
∑
i∈I

yk,τ
t (i, l) ·Ψ(i)

]
−

[
∞∑
l=0

∑
i∈I

yk,τ
t (i, l) ·Ψ(i)

]2

(3.34)

=
∞∑
l=0

[
2l ·
∑
i∈I

yk,τ
t (i, l) ·Ψ(i)

]
−

∑
(l1,l2)∈(Z+)2

∑
(i1,i2)∈I2

yk,τ
t (i1, l1) · yk,τ

t (i2, l2) ·Ψ(i1) ·Ψ(i2)

(3.35)

Finally, replacing the binary products yk,τ
t (i1, l1)·yk,τ

t (i2, l2) by a binary variable zk,τ
t (i1, i2, l1, l2)

satisfying Eqs. 3.28-3.30, we have expressed the variance of the carryover random variable

linearly in our decision variables (see Eqs. 3.23-3.26).

We have shown the ability to derive the mean B
k,τ

t+1 and variance B̃k,τ
t+1 of the carryover

random variables on day t + 1 linearly in Θ. By induction, the DIP mean and variance

will be linear in the template Θ for any t ≥ 0. This result holds for any day t ∈ T in our

equilibrium planning horizon.
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Discussion: Although, we were able to calculate the variance B
k,τ

t+1 of our carryover

random variables linearly in our decision variables Θ, tractability issues arise when solving

this model with commercial solvers such as CPLEX. This is mostly due to the number of

binary variables zk,τ
t (i1, i2, l1, l2) that need to be optimized. For example, considering only

10 grid points (which is already a small sample size of possible DIP realizations), and the

possibility to have at maximum 500 patients carryover (which in practice, could go up to the

1,000) would lead to 102 × 5002 = 30, 000, 000 binary variables each each patient specialty

k, urgency level τ , and day of the week t.

Therefore, we rely on an approximation of the variance in order to make our problem

tractable. To approximate the variance of carryover and admitted/fulfilled demand, we

condition on each realization DIP k,τ
t (i) of our DIP random variable at grid level i and

divide the total DIP variance proportionally between the carryover and admissions. By

using our binary variable yk,τ
t (i, 0) that equals 1 if-f DIP k,τ

t (i) ≥ Θk,τ
t , and defining Ãk,τ

t

as the variance of the number of type (k, τ) patients scheduled on day t, we can linearly

approximate our variances in a tractable way as follows:

B̃k,τ
t u

∑
i∈I

yk,τ
t (i, 0) ·Ψ(i) (3.36)

Ãk,τ
t u

∑
i∈I

(1− yk,τ
t (i, 0)) ·Ψ(i) (3.37)

We now leverage the dynamics developed in this section to measure the critical metrics

discussed in the introduction and previous sections, particularly (i) the access delay from

initial appointment request to the earliest time that appointment can be feasibly sched-

uled, (ii) the offered resource workload/utilization, and (iii) the downstream demand block-

ing/overtime.
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3.7.2 Access delay formulation

In this subsection, we linearly approximate Gk,τ
t,n with respect to our decision variables,

Θ. Recall that:

Gk,τ
t,n = E


(
Dk,τ
t − δ

k,τ
t,n

)+

Dk,τ
t


First observe that the numerator of inside this expression can be expressed as the positive

difference of two random variables: (i) the exogenous demand on day t, Dk,τ
t and (ii) the

number of remaining slots left in our template up to day t + TFAV k,τ
n after all demand

prior to day t has been scheduled, δk,τ
t,n . We can then divide this positive difference by

random variable (i) to get a ratio. Because the exogenous demand is independent of past

demand/decisions, these two random variables are independent. Hence, we are dealing with

two streams of random variables, that are independent. We can use our grid approximation

just as before, while making sure we capture the convolution of the two random variables.

We condition δk,τ
t,n on the event that the total demand is DIP k,τ

t	1(i) on day t− 1 (see Eq.

3.17), then we get:

δk,τ
t,n (i) =

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τ
t (i)

+

,∀i ∈ I,∀n ∈ N , (3.38)

and define γk,τ
t,n (i, j) as the percentage of type τ patients requesting an appointment in service

k on day t that exceed TFAV k,τ
n days of waiting for their appointment given that (a) there

are j type τ requests in service k on day t, and (b) there are δk,τ
t (i) remaining type τ slots

in the template for service k after all demand prior to day t has been scheduled. γk,τ
t,n (i, j)

can be expressed as follows:

γk,τ
t,n (i, j) =

(
j − δk,τ

t,n (i)
)+

j
· 100%,∀i ∈ I,∀j ∈ J ,∀n ∈ N (3.39)

=

(
1−

δk,τ
t,n (i)

j

)+

· 100%,∀i ∈ I,∀j ∈ J ,∀n ∈ N (3.40)
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where the set J ⊂ N represents the sample space of all the Dk,τ
t random variables (excluding

the outcome equal to 0) but with |J | < ∞: |J | will be chosen such that P(Dk,τ
t = |J |) < κ

where κ is very close to 0.

In order to have linear constraints, we need to alter equations 3.38 and 3.40. In the

optimization, there is an incentive to keep γk,τ
t,n (i, j) small to meet the access delay constraints

(or because we are minimizing it in our objective). This allows us to replace Eq. 3.40 by

constraints 3.41.

γk,τ
t,n (i, j) ≥

(
1−

δk,τ
t,n (i)

j

)
· 100%, γk,τ

t,n (i, j) ≥ 0,∀i ∈ I,∀j ∈ I,∀n ∈ N (3.41)

The same cannot be said for Eq. 3.38, since the optimization has the incentive to increase

δk,τ
t,n (i) in order to get a smaller γk,τ

t,n (i, j) that will meet the access delay constraints. There-

fore, we introduce a binary variable xk,τ
t,n (i) that equals 1 when

(∑TFAV k,τn

l=0 Θk,τ
t⊕l

)
−βk,τ

t (i) ≥ 0

and equals 0 otherwise. The following constraints will assure xk,τ
t,n (i) will take the correct

values:

−M · (1− xk,τ
t,n (i)) ≤

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τ
t (i),∀i ∈ I,∀n ∈ N (3.42)

M · xk,τ
t,n (i) ≥

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τ
t (i),∀i ∈ I,∀n ∈ N (3.43)

With the help of those binary variables, we can now have a set of linear inequalities equivalent

to Eq. 3.38:

δk,τ
t,n (i) ≥

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τ
t (i),∀i ∈ I, ∀n ∈ N (3.44)

δk,τ
t,n (i) ≤

TFAV k,τn∑
l=0

Θk,τ
t⊕l

− βk,τ
t (i) +M · (1− xk,τ

t,n (i)),∀i ∈ I, ∀n ∈ N (3.45)

δk,τ
t,n (i) ≤M · xk,τ

t,n (i),∀i ∈ I,∀n ∈ N (3.46)
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We can then employ our grid approximation, but this time capturing the joint distribution

between Dk,τ
t and δk,τ

t,n (which is simplified by their independence). Because the approxima-

tion still takes the form of Riemann integration, as above, the result will converge to Gk,τ
t,n in

the limit:

Gk,τ
t,n =

∑
i∈I

∑
j∈J

γk,τ
t,n (i, j) ·Ψk,τ

t (i) · F k,τ
t (j),∀n ∈ N (3.47)

where F k,τ
t (j) is the probability that there are j exogenous type τ requests for service k on

day t, based on historical data.

3.7.3 Workload excess and overtime

From Eqs. 3.4, 3.7, and 3.27, the linear expression (subject to Θ) of the mean number of

type τ patients scheduled for a first visit in service k, Āk,τ
t , follows immediately in Eq. 3.48.

Āk,τ
t = DIP

k,τ

t − B̄
k,τ
t⊕1 = D

k,τ

t + B̄k,τ
t − B̄

k,τ
t⊕1 (3.48)

This linear formulation of the daily mean number of patients scheduled can now be replaced

in Theorems III.1 and III.2, and our expression of the mean workload (Theorem III.1) is now

shown to be linear in our decision variables. Similarly, the linear expression of Ãk,τ
t (see Eq.

3.37) now incorporated into Theorem III.2 shows that the variance on the daily workload

can be expressed linearly in our decision variables Θ as well.

Next we use the offered load, W k
t , to approximate the number of patient hours that

will have to be performed in overtime due to insufficient capacity at specialty k on day t.

To calculate the offered workload random variable, we propose to adapt the discrete grid

approximation from Section 3.6.3 to estimate the workload distribution at each specialty in

the network under template Θ. We approximate the distribution of the offered workload W k
t

by a Normal distribution with means and variances expressed in Theorems III.1 and III.2.

This approximation has been commonly used in healthcare settings to describe workloads and

census distributions in a wards of a hospital. Based on the Normal distribution properties,
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the probability that our random variables will have realizations within one standard deviation

above the workload mean (i.e., in the interval [W
k

t ,W
k

t +
√
W̃ k
t ) is 34.1 %. For the previously

defined grid m(i), the probability of being in the interval [W
k

t ,W
k

t +m(i) ·
√
W̃ k
t ] is known

from the standard normal CDF as Φ (m(i+ 1))− Φ (m(i)).

Using this approximation, we are able to capture okt (i), the number of downstream work-

load hours that are overflowed (e.g. processed in overtime) at a given grid point i on day t

at service k:

okt (i) =

(
W

k

t +m(i) ·
√
W̃ k
t − Ck

t

)+

(3.49)

=

(
W

k

t +
1

2
m(i) ·

(
W̃ k
t

Ŵ k
t

+ Ŵ k
t

)
− Ck

t

)+

, (3.50)

where Ck
t is the total capacity of specialty k on day t, and Ŵ k

t is the standard deviation

historical estimate of the total workload on day t in specialty k. Eq. 3.50 follows from the

one step Newton approximation detailed in Section 3.6.3.

Moreover, as I →∞ and m(i+ 1)−m(i)→ 0,∀i ∈ I, O
k

t defined as:

O
k

t =
∑
i∈I

okt (i)

(
Φ (m(i+ 1))− Φ (m(i))

)
(3.51)

will converge the expected overflow/overtime hours of the offered workload. Note that we

can also limit the violation probability of exceeding service k’s capacity on a given day by

amount qkt . First, we select the smallest i∗ ∈ I such that 1−Φ(m(i∗+ 1)) ≤ qkt , then we can

constrain the workload level at this grid point i∗ to be less or equal than capacity:

W
k

t +
1

2
m(i∗) ·

(
W̃ k
t

Ŵ k
t

+ Ŵ k
t

)
≤ Ck

t . (3.52)

3.8 Numerical case study

The following case study illustrates the decision support that our methodology can pro-

vide. By optimizing the template, our model provides a managerially focused perspective of
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the operations and can support “what if” analysis. It can also be used to help implement

tactical level changes in scheduling, but that is not the intended focus of this paper. The

template process must be validated and show improvements over current scheduling policies.

In this section, we go through a possible exchange between our team and the care provider

in the implementation process. This tool and our template recommendations need to be

tuned to the managerial staff’s specific needs while also providing a wide range of information

that will help them in their own decision process of which template to use. In Section 3.8.1,

we use the information provided by the managerial staff to recommend one specific template.

3.8.1 Generating a template to fit specific needs

First, we consider the case where the managerial staff knows exactly what performance

level they wish to achieve, but are lacking the engineering tools to build such a template

that would assure that all their constraints are met. To provide them with the template that

would satisfy those constraints, our first step will be to ask them which objectives they want

to optimize and which constraints they want to satisfy. Consider the following scenario:

• We wish to minimize the mean access delay for our urgent cases, but it is important

that:

• The mean access delay for less urgent cases does not exceed 5 weeks, and

• Patient downstream visits in their itinerary are not performed in overtime too often:

– The offered workload generated from the template does not exceed capacity more

than with 10% probability, and

– The expected number of downstream visits performed in overtime are less than 5

per day across the medical specialty
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In addition to the above inputs, a second input to this model is the historical data

that will calibrate the parameters of the Mixed Integer Program. This includes: (1) the

cumulative distribution function of the various demand streams (for each patient class), (2)

the downstream demand distribution that will characterize patient flow (see Section 3.5.1),

(3) the total daily capacity for each medical specialty.

Figure 3.8: (Left) Optimal template for the two urgency classes considered and the down-
stream appointments of those patients’ itinerary, and (Left) violation probability
on access delay for the two urgency levels

With all the above inputs, we can run our model to determine a template that will

satisfy the targets of the medical specialty. Note that in this case study, we only consider

one department for a proof of concept. The results are provided in Fig. 3.8. After providing

this template, one natural question that will arise from the managerial staff’s side is: how

accurate is your template?

3.8.2 How accurate is your template?

Before actual implementation of a template, every health care institution will require

some analysis on how well this methodology predicts the critical metrics they are trying
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to optimize and/or control. Does the template really generate such performance if it was

implemented in practice? Rather than the option of implementing the template first and

monitoring the performance metrics to see if our forecasts match reality as it unfolds, it is

more common to first use simulation in order to reassure care providers that the methodology

is accurate enough that it deserves a pilot.

In Section 3.6.1, we detailed how we modeled the simulation used here for validation.

The goal was to capture most of the elements in the scheduling process to ensure that the

simulation would be a good representation of reality. After inputing the optimized template

from Section 3.8.1, we use the simulation to compute the performance of the metrics that

are critical to the institution.

Figure 3.9: Analytical model and simulation comparison for the access delay of (Left) Urgent
cases, and (Right) Non-urgent cases

n (in weeks) 1 2 3 4 5 6
Urgent Access Delay APE (%) 2.58 1.91 1.01 2.18 3.98 1.95

Non-Urgent Access Delay APE (%) 3.90 4.84 5.47 5.39 5.67 4.16

Table 3.5: Absolute Percentage error of the expected percentage of urgent and non-urgent
patients exceeding n weeks of access delay

In Fig. 3.9 we show the differences in the access delay metric between our analytical

estimations and the simulation. The absolute percentage errors of our estimations are also
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summarized in Table 3.5. We can see a slight raise in our APEs around 4 and 5 weeks access

delay (around the mode of the access delay distribution) since most of the density lies around

those points, and this results in increased errors if our density approximations are slightly

off.

Similarly, Fig. 3.10 and Table 3.6 show the validation results for the mean and standard

deviation of our workloads. Our estimations for mean and standard deviation of the work-

loads is very accurate mostly due to the predictability of those metrics. Based on historical

data, patients tend to wait more than a day for an appointment, therefore resulting in a high

probability of our variable αk,τ
t , the daily number of patients scheduled for each type, being

equal to our template Θk,τ
t . This also results in a low and predictable variance around αk,τ

t .

Our mean estimation of the workload is almost exact due to the predictability of patients

filling up the slots we reserved for them. Our estimations of the workload standard deviation

have more errors around them largely due to the approximation we had to make on variance

to make our problem tractable.

Day of Week Mo Tu We Th Fr
Mean Workload APE (%) 0.29 0.28 0.04 0.15 0.36

Workload St.Dev. APE (%) 3.13 2.4 4.01 3.57 1.49

Table 3.6: Absolute Percentage error of the expected percentage of urgent and non-urgent
patients exceeding n weeks of access delay

If the health institution is satisfied with the accuracy of our forecasting approximations,

the next question that might come up is: how would our template change if we were to

vary the targets we imposed on our metrics? Can we investigate the tradeoffs between our

metrics?

3.8.3 Can we investigate various control scenarios and their impact?

Effective sensitivity analysis is a critical part of meeting the advisory and managerial

decision support goals. Based on our interactions with physicians and the managerial staff,
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Figure 3.10: Analytical model and simulation comparison for the access delay of (Left) Ur-
gent cases, and (Right) Non-urgent cases

it seems that this sensitivity analysis feature is the most important component of this new

methodology. Rather than being blindly referred to one template, a health institution would

rather analyze many different template scenarios and see their impact on the metrics. This

allows their experience, and general knowledge of their department to be a valuable input to

our tradeoff analysis component, and give them the control and information needed to make

the “best” decision.

To give a very detailed example, we can identify how increasing the volume of new

patients in internal medicine impacts physicians in neurology due to the cross-flow between

them. It can deal with the sensitivity of how many more clinicians are needed to increase our

throughput for breast cancer patients by some percentage. In particular, what-if questions

for capacity management will, for the first time, be able to be addressed. For example: How

many urgent cases can be accommodated in a week? What will the downstream impacts be?
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First, we will show how we can achieve a higher level of control on patient access if

needed. Then, we will give an example on the impact of varying constraints on one metric,

and how it affects other metrics and the template.

Imposing constraints on the access distribution

After seeing the results of the first template we provided to the medical specialty (see

Fig. 3.8), they realize that even though their initial constraints were met (for the mean

access of the two patient urgency levels), it is unacceptable that more than 10% of their

urgent patients have to wait longer than three weeks to get a root appointment. But the

managerial staff realizes that achieving this new goal will negatively impact the non-urgent

access levels. Hence, they would like to add another constraint assuring that no more than

20% of their non-urgent cases will have to wait longer than 5 weeks.

Figure 3.11: Impact on the access delay violation probability curves when two constraints
(horizon lines in the left part of the figure) are imposed on the system. (Left)
Access delay curves under the constraints defined in Section 3.8.1, and (Right)
Access delay curves when we wish that (i) no more than 10% of the urgent
patients wait longer than three weeks to get a root appointment, (ii) no more
than 20% of the non-urgent patients wait longer than five weeks to get a root
appointment
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In Fig. 3.11, we investigate the impact on the access delay distribution of those two

urgency levels when those additional constraints are imposed on the system: in the left

part of the graph, we can see (1) the constraint that assures that no more than 10% of the

urgent cases will exceed three weeks access delay for a root appointment, represented by

the horizontal solid line, and (2) the constraint that assures that no more than 20% the

non-urgent cases will exceed three weeks access delay for a root appointment, represented

by the horizon dashed line. After running our optimization, the results are represented in

the right part of Fig. 3.11. We first see how the access delay curve drops for the urgent

cases that wait less than three weeks in order to meet those new targets. This significantly

increases the number of non urgent cases that will wait longer than three weeks for a root

appointment (from 40% to 54%). But we see a noticeable drop in the non-urgent access

delay curve after three weeks: this is because our constraint on urgent access has been met,

and the second constraint on non-urgent access delay starts to kick in.

This allows the health institution to have more control over their access delay metrics,

and influence the shape of those violation probability access curves.

Varying targets for our constrained metrics

Another scenario is to investigate the impact on mean access for urgent cases when the

constraint on the mean access for less urgent cases varies. The health institution may want

to see the tradeoffs between those two metrics, and how it affects the template, in order to

make the best control decision for their patients. As we discussed, the access delay metrics

across various urgency patient types are competing metrics, and increasing the access for

urgent patients will have negative impact on non-urgent access delays. In Fig. 3.12, we

show how the optimized template changes when the constraint on mean access delay for

non-urgent patients is increased from 5 weeks to 6 weeks.

The first thing to notice is that we see a slight overall decrease in slot reservations for
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Figure 3.12: (Left) Optimized template under the constraints defined in Section 3.8.1, and
(Right) Optimized template when the mean access delay constraint on non-
urgent patients is increased to 6 weeks

less-urgent patients since we are have more flexibility of when to schedule them. Reducing

the number of slots reserved for them will of course affect their access delay metric, and this is

why we are still constraining the mean to be less than 6 weeks. Since the objective of our MIP

is to maximize the mean access for urgent patients, we also see an increase in slot reservations

for urgent cases. By reserving more slots for them, we will be able to achieve higher access.

However, notice that we are also reserving more capacity for downstream appointments. This

is largely due to the fact that urgent patients tend to use up more downstream resources

than non-urgent cases (due to their condition and/or case complexity). We can see that the

increase in capacity reservation for urgent cases (and the reduction of capacity reservation for

non-urgent) towards the beginning of the week results in the need to reserve more capacity

for downstream appointments towards the middle and end of the week. Note that we are

using the same total capacity in this medical specialty under those two cases. Although the

graph shows an increase in slot reservations (on the right side), this is largely due to the fact

that downstream appointment slots tend to be much shorter than root appointments (for



119

urgent and non-urgent patients).

This analysis is very useful for a health institution since intuition and experience are

unable to understand the correlation between the number of urgent, non-urgent, and down-

stream reservations needed to satisfy a set of constraints on our metrics.

We can also investigate the impact on the access delay for urgent cases when the con-

straint on the probability of exceeding capacity varies or the constraint on overtime is

changed. We omit those results here, but the same procedure could be applied.

Therefore, by being able to test different scenarios, and vary the constraints they impose

on the system, the sensitivity analysis feature of this methodology could provide valuable

information that could be used to make the right template decision in order to achieve the

institution’s needs.

3.9 Conclusions

Today’s appointment based services such as healthcare have very limited research sup-

porting effective control of waits for an appointment. In contrast to common-sense ap-

proaches to capacity plans for how departments or individual clinicians create a template

plan for allocating their mix of services/procedure types by day of week, our research takes

a fundamental operations-based approach. We model service itineraries and control access

delays even with multi-visit itineraries of service. These problems naturally appear to be

complex queueing network admission control and scheduling problems, but we model and

optimize them using mixed integer programing, which solves relatively larger problems, uti-

lize commercial solvers, and offer modeling capabilities that are useful for these problems.

It will greatly increase the ability to manage complex tradeoffs involving (1) operational

efficiency and cost metrics, and (2) offer integrated outpatient care with increased value.

We emphasize the (2a) control of access delay times (the key being reduced access delays
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for urgent patients while accepting that some patient types may wait longer) and (2b) more

rapidly executed care itineraries/pathways that complete the episode of care sooner. These

objectives are not new to leading organizations; however, effective methods to accomplish

them are in their infancy. This research and those methodologies will be a useful step toward

gaining better managerial control over outpatient healthcare delivery and making it more

effective at limiting the amount of access delay for various types of services or patients.



CHAPTER IV

Patient flow modeling and control for differentiated

itinerary of care lengths

4.1 Introduction

Fast diagnosis and an early start to treatment is a critical aspect of care delivery that can

impact the fate of many patients. Due to the rapid progression of life threating diseases (e.g.,

many types of cancer), the longer it takes to establish the diagnosis and determine the appro-

priate treatment plan, the higher the probability this could have irreversible repercussions

on the patient’s health state (see [35]). Poor patient access significantly affects the main

stakeholders’ experience. “Patients are harmed in the process of delay, not only through

wasted time, but through unnecessary suffering, and through adverse medical outcomes.

Health care providers are harmed through the added cost and reduced efficiency resulting

from the complications of handling delayed patients” states [22]. Moreover, long waits for

care has been shown to have adverse effects on patient satisfaction (see [13]). Most health

care institutions are well aware of the need to improve patient access to their resources.

As [43] points out, “Delays and restricted access are properties of poorly designed, costly

systems. The same changes that reduce delays and increase access can also reduce costs.”

Health operations management has been shown to have the potential to significantly improve

patients and providers’ experience in health care systems while also reducing costs (e.g., see

121
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[55]). But this usually requires a system redesign that mitigates the issues/limitations of

common practices [48].

Within the scope of our research, the length of time it takes to get a diagnosis can be

broken up into two periods of time: (1) the time from a primary care physician referral to

a medical specialty root appointment, and (2) the length of time for a medical specialty to

provide a clear diagnosis for the patient. After the root appointment (item (1)) for cases

that are identified as “more urgent”, in Chapter III, we now focus on the length of time it

might take to establish a diagnosis (item 2).

In this chapter, we will forecast and control a metric that we call the “itinerary flow

time.” An itinerary refers to a set of diagnostic tests/visits and a follow-up visit the patient

has to go through before a diagnosis is established and a treatment plan is determined (if

needed). The time it takes from the conclusion of the patient’s initial specialty visit to a

diagnosis at the end of the follow-up appointment is the itinerary flow time. The itinerary can

vary significantly based on the medical specialty, the patient condition (e.g., urgency level),

and the information (or lack of information) we have on the patient. For example, a patient

seeking a diagnosis in the breast diagnostic clinic will likely require more tests/visits than a

patient in General Internal Medicine (GIM). Even within a medical specialty, a patient with a

medical record that hints that it could be urgent (e.g., family history) will likely need more

tests/visits than another. Moreover, patients with very little medical record information

(e.g., new patients to the institution) will tend to require more testing and information

building to get to a diagnosis.

The dependence of the itinerary flow time on the number of visits required by specific

patient characteristics (e.g., urgency, medical specialty, etc...) is something we cannot control

because this number of visits required is determined by medical need. Although we do

address/consider this dependence in our models, we are much more concerned about another
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factor that affects itinerary flow time: the resource capacity management of the health

institution’s services. We will use the term “access delay” to a specific service/visit to

capture the time it takes the patient to get an appointment in a downstream service. The

above operational outcomes are the result of the institution’s capacity management decisions.

Finally, we will also consider a metric that we call the “diagnostic flow time.” This

captures the time it takes for a patient to go through all the diagnostic tests/services required

in her itinerary, leaving out the amount of time it will take to get a follow-up visit with the

specialty physician to reveal a diagnosis and the next steps. A good estimate of this metric

can add significant value for the specialty physician and the patient. Currently, at the time of

the initial appointment, it is difficult for the specialty physician to determine when a follow-

up visit should occur, given that diagnostic test results need to be in hand prior to it. They

currently have to rely on experience and limited information. If the follow-up appointment

is scheduled to a time before the patient is able to go through all the diagnostic services

required then a reschedule needs to happen. This is undesirable for the specialty clinic

because its an inefficient use of their resources (which might result in under-utilization). If

the estimate for the follow-up visit is too early, this will result in further delay to reschedule

the follow-up (since in the meantime, other patients will have been scheduled to use those

same resources). But, being conservative and scheduling the follow-up visit too far into the

future will result in unnecessary delays for the patient to determine their diagnosis. Our

models will provide this valuable information which should improve service levels for the

patient, and help the institution make better/more efficient use of their resources.

By controlling these three critical access metrics (itinerary flow time, diagnostic flow time,

and access delay), our methodology is able to provide better service levels for the patients

by reducing their wait time to a diagnosis (and possibly, start of treatment). However, we

should note that we do not consider the following research question that might also have
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an impact on the level of service provided to patients: how can we limit the number of

patient trips to the hospital during an itinerary of care (e.g., coordinate resources such that

multiple diagnostic tests can be done on the same day)? Sometimes, it might be more

desirable to have a condensed itinerary of care (e.g., all downstream visits happen 11 days

from now) vs. visits that are spread out but lead to a shorter itinerary flow time (e.g.,

diagnostic visits happen on days 1, 4 and 7, and the follow-up visit on day 10). Considering

this additional layer of service level adds significant complexity to this problem, especially

since the preference between shorter itinerary flow times vs. condensed (few hospital visits)

itineraries will vary case by case. Another practical concern can be the desire to avoid

itineraries of care that extend over a weekend. Because many services shut down or reduce

their capacity on weekends, it can be desirable to have itineraries complete in the same week

in which they begin, an issue treated in [26].

In this research, we assume that getting to a follow-up visit (diagnosis) as soon as possible

is the most important metric. We do not provide methods to limit the probability of requiring

a weekend stay to complete the itinerary. The number of visits to the hospital, and the

interval between them is only a secondary issue to a patient: rapid diagnosis, which enables an

earlier start of treatment and better health outcomes is taken as paramount. To optimize the

other issues mentioned above, it is likely important to incorporate the explicit coordination

of visits between diagnostic services. Because our model is a planning model that provides

a decision input that could be used by real time schedulers, our methods do not prevent the

scheduler from taking such patient preferences in to account. Certainly, the scheduler may

defer an appointment until such as time as two or more visits can be provided on the same

day or even back to back during the day. The scheduler can delay the root appointment

to the next available Monday or Tuesday to increase the chances of itinerary completion

within a week. Note that our methods can control the access delay at each downstream
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service, which can serve as a proxy to limit how spread out the itinerary will actually be.

However, we acknowledge that in this research, we will limit our scope to the three metrics

defined in the previous paragraphs, and leave it to future research to analyze the complexities

involved in patients’ preferences of when each visit should happen in relation to others and

the undesirability of itineraries that cross one or more weekends.

In Section 4.2, we identify the scope of our research and describe the high level charac-

teristics of the system considered. Section 4.4 formulates the itinerary flow time, diagnostic

flow time, and access delay random variables when downstream resource capacity is not dif-

ferentiated by patient urgency levels. In other words, we consider the case (which is a close

representation of current practice) where the total capacity at each service is available to any

patient (as opposed to have reserved resource capacity for urgent cases). We then simulate

patient flows through their resource needs and provide motivation to provide “fast track”

access to urgent cases via optimization. In Section 4.5, we differentiate patient demand and

capacity by urgency level and optimize this capacity reservation scheme in a Mixed Integer

Program (MIP). We translate the nonlinear stochastic equations developed in Section 4.4

into a set of deterministic linear constraints subject to our decision variables. Finally, a

numerical case study is presented in Section 4.6 to show the benefits of our Mixed Integer

Program (Section 4.5) by comparing the results to those of the simulation in Section 4.4.

4.2 Problem description

The scope of this research is on a system optimization model for patients’ episodes of

care through the diagnostic process without regard to any particular disease. Our models

operate at the daily level and focus on a time period that starts when a patient is first referred

to a specialty service k ∈ K (e.g. Neurology, Medical Oncology, Internal Medicine, etc...)

and ends when a diagnosis is determined (during the a follow-up visit with the specialty
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physician in medical specialty k). An example of the patient flow structure considered here

can be seen in Fig. 4.1. Patients can either be referred internally to the specialty service

needed, or could be referred from another hospital that doesn’t have the necessary resources

and expertise to diagnose the patient. This referral visit to a specialty service k is what we

call a root appointment in a patient itinerary. The access delay from the referral request to

this root appointment has been studied in Chapter III. It is rare that diagnostic tests are

performed during this initial visit: the specialty physician usually meets the patient, reviews

the medical record, asks questions, and informs the patient about the next steps to be taken.

The physician will then refer the patient to a set of diagnostic services that will provide

more information on the patient’s condition. The set of all diagnostic services s in the

health care institution will be represented as S (e.g. blood draw, MRI, X-Ray, CT Scan,

etc...). Every visit/service required after the root appointment (i.e. diagnostic service or

follow-up specialty visit) will be referred to as downstream services/appointments and will

belong to the set S ∪ K. By using the model developed in Chapter III, we can estimate

the distribution of the number of patients requiring those downstream services (see the αk,τ
t

random variable for specialty k patients with urgency level τ on day t). The urgency level

τ belongs to a discrete set T (e.g. τ = 1 for urgent, τ = 2 for non-urgent). In principle, a

scalar τ is sufficient to include other dimensions of patient type such as new patients versus

established patients, or national vs. local patients. Since demand for diagnostic services

is generated after the patient’s specialty k root visit, it is defined by the random variable

αk,τ
t that represents the total number of specialty k, urgency level τ patients scheduled for

a root appointment on day t. It will be modeled using the empirical distribution defined

by our grid approximation of the set of outcomes {αk,τ
t (i) : i ∈ I} (see Chapter III). That

is, P(αk,τ
t = αk,τ

t (i)) = Ψk,τ
t (i),∀i ∈ I. If the Chapter III model is not used, one could use

historical data on the number of root appointments scheduled in each specialty k to capture
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the downstream demand.

Figure 4.1: Visit precedence structure example in a patient’s itinerary

The set of diagnostic services required can be captured probabilistically using historical

data. Generally speaking, we can create sets Sk ⊆ S,∀k ∈ K that represent the list of

diagnostic services that specialty k patients have a nonzero probability of needing at some

point in their itinerary. Based on our historical data analysis to identify the patients’ resource

requirements through the network, it is clear that not all patients of specialty k will require

every diagnostic service in the set Sk. We incorporate in our diagnostic flowtime formulation

the fact that diagnostic services can be “skipped” with a given probability. This probability

is calculated based on historical data as the random variable κτ ,k
s that follows a Bernoulli

r.v. with the probability of success determined by pτ ,k
s (see an example in Table 4.1). This
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random variable is assumed to be independent of everything else in our system, and also

does not depend on our decision variables since it is based on historical data.

Specialty k /Diagnostic Service s Blood Draw X-Ray CT Scan MRI ECG EEG
Neurology 0.29 0.62 0.26 0.39 0 0.88

Medical Oncology 0.44 0.71 0.24 0 0 0.19
Cardiology 0.66 0.33 0.72 0.32 0.96 0

General Internal Medicine 0.92 0.16 0.12 0.24 0.26 0.29

Table 4.1: Probability pτ ,k
s that a specialty patient of urgency level τ requires this set of

diagnostic services during their itinerary

The diagnostic services required are assumed to be performed in parallel without any

precedence constraints (see Fig. 4.1). This assumes that all diagnostic testing appointments

are independent of each other, and can be performed in any sequence. The parallel visit

precedence structure for diagnostic services is considered a reasonable assumption by our

partnering hospital. In future work, it may be possible to extend the methods developed

here to more complex visit precedence structures for the diagnostic appointments portion of

a patient’s itinerary; however, we caution that the data requirements to create general visit

precedence structures may be quite challenging.

Discussion: Note that in practice, it is possible that a diagnostic test is canceled

dynamically after the results from another diagnostic service become available. Although

we only consider static resource requirement distributions (e.g., Table 4.1), we are able

to capture the probability that a test might not be needed after all, or “skipped” (based

on historical data). Our methodology does already capture some of these dynamics but

future research could be more precise by incorporating dynamic updating of the resource

requirement distributions based on the outcomes of diagnostic tests. This is beyond our

scope however, and this work considers only static resource requirements based on historical

data.
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Finally, once all the diagnostic services have been performed on the patient, a follow-

up appointment will be necessary with the specialty physician to reassess the situation,

determine a diagnosis and possibly start treatment. Note that the follow-up location is

always consistent with the patient’s medical specialty: a specialty k patient will always

have a follow-up visit in medical specialty k. The scope of this research does not consider

the treatment portion of a patient’s itinerary of care, because it is often performed by

a different set of resources (e.g., chemotherapy, radiotherapy, infusion, etc...). Here, we

assume the patient will be scheduled for her follow-up visit as soon as all required diagnostic

appointments have been performed.

It is important to note that those diagnostic services are usually not performed by physi-

cians, but rather by nurses, technicians, and physician assistants. Therefore the capacity C
s

t

of a diagnostic service s ∈ S is modeled as separate from the capacity at a given medical

specialty. We define C
k

t , k ∈ K as the total capacity available in specialty service k ∈ K on

day t. We assume that, as explained in Chapter III, the capacity has been set aside for the

root visits of all specialty patients and each urgency type: this is what we called our template

Θk,τ
t . Then, for the downstream follow-up visits of their itinerary, we only need to consider

the remaining capacity available at each specialty service k ∈ K: Ck
t = C

k

t −
∑

τ Θk,τ
t . As

mentioned above, this does not apply to the capacity of diagnostic services s ∈ S.

4.3 Literature Review

Most of the literature in outpatient scheduling focuses on a single clinic, and does not

consider the visit precedence in patient flows through their itinerary of care (see the survey

paper [7]). Most research uses queueing theory approaches (e.g., [16]) or simulation (e.g., [6]).

Queueing models are simpler to use, and have well known waiting time formulas. However,

queueing theory has its limitations when we need to capture complex patient flows through
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a network of resources, or when we consider a system at a discrete daily level (as opposed to

continuous time). In those cases, discrete event simulation is the most appropriate modeling

tool.

In recent years, the allocation of outpatient resources has emerged as one of the most

critical/challenging research topics in outpatient scheduling (see [56]). They state: “most

researchers consider cost and revenue as their goals. However, from the customer perspective,

patients’ waiting time is the most important issue to consider in an outpatient scheduling

system.” [16] analyzes the correlations between access delays, resource workload/utilization

and the number of servers in classic M/M/s queueing systems (with some extensions). They

study how the number of servers affects waiting times, and how much capacity should be

available to meet access targets (and consider flexible/time varying capacity by hour of day

to meet demand patterns). Similarly to most of the published literature, waiting time is

defined as the time from the arrival to the healthcare practice to the time of treatment

(measured in minutes/hours). We consider the time from a request to the occurrence of the

appointment, at the daily level.

To consider access delays at the daily level, we need to also consider the concept of

blocking in queueing networks (e.g., ICU blocking [40]) and resource bottleneck analysis (see

[37]). As opposed to the common idea of blocking (where demand is lost), we consider the

“overflow” (demand in queue that exceeds the daily capacity) as carryover to the next day.

This concept was used in outpatient practices, where patients required a number of service

tasks (with various visit precedence structures) that had to be completed by the end of a

work week for urgent cases (see [26]). They use phase type distributions to capture the

length of an itinerary while approximating the blocking probability at each resource/visit.

Our model considers: (1) access delays measured in days (as opposed to minutes/hours

within a day), (2) multi-class patient demand varying by day of week, (3) patients’ proba-
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bilistically flowing through a network of resources, (4) a specific visit precedence structure

including visits in parallel and in series, (5) resource/capacity reservation by patient class

varying by day of week, (6) itinerary flow times through the stochastic queueing network,

and (7) resource bottleneck analysis. See the more detailed literature review of Chapter III

for additional background.

4.4 Itinerary flow time forecasting to approximate common prac-
tice

In this section, we will express the itinerary flow time random variable Ξτ ,k
t for a specialty

k ∈ K and urgency level τ ∈ T patient starting her itinerary on day t = 1, 2, .... Here,

we forecast the itinerary flow times assuming that the total capacity within a downstream

service s ∈ S∪K (i.e., diagnostic and specialty services) will be available to serve all patients,

regardless of the different urgency level τ . This means that all urgency levels are treated the

same, and requests for a diagnostic or specialty service will be processed in the order they

were received. This simple/intuitive policy is very close to common practice, and to analyze

its impact on itinerary flow times for various urgency level classes gives us the motivation

to provide “fast track” access to higher urgency patients by reserving a portion of the total

capacity exclusively for them at a given downstream service.

Based on the visit precedence structure described in the previous section, the itinerary

flow time can be expressed as:

Ξτ ,k
t = χ

τ ,Sk
t + χτ ,k

t+1+χ
τ ,Sk
t

(4.1)

where χτ ,k
t is the access delay of a patient in specialty service k ∈ K that requested an

appointment on day t and χ
τ ,Sk
t is the diagnostic flow time through the diagnostic services

in the set Sk of a type k patient having her root appointment on day t. Notice that the

itinerary flow time random variable of a specialty k, urgency level τ patient finishing her
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root appointment on day t will be the sum of (1) the diagnostic flow time of a specialty k,

urgency level τ patient that starts diagnostic testing on day t, and (2) the access delay to

specialty service k given this follow-up visit is requested on day t+ χ
τ ,Sk
t + 1 (i.e., after the

patient has go through all diagnostic services required). Here, we assume that a follow-up

visit to specialty service k has to happen at least one day after the patient finished the last

diagnostic service required. In practice, it is not common to have a follow-up visit with the

specialty physician on the same day of the last diagnostic service required, since most of

these services take some time to have the results processed and analyzed by the physician.

In the following subsections, we express the access delay and diagnostic flow time random

variables in order to get the itinerary flow time random variable.

4.4.1 Access delay random variable for a downstream service

In order to calculate the itinerary flow time of patients in this stochastic queueing net-

work, we first start by expressing the access delay that will occur at each diagnostic and

specialty service. Given that a patient requires a downstream service on day t, how many

days will she have to wait for an appointment? We extend the definition of the access delay

random variable χτ ,s
t to all services (diagnostic and follow-up specialty) with s ∈ S ∪ K.

The access delay in a downstream service s ∈ S ∪ K will be a function of the future

available capacity at the time of the request. For the policy considered in this section, a day

t request for a downstream service s will be scheduled on the first day in the future that has

enough available capacity. Hence, it is important to keep track of the current availability in

our schedule (for days t and later) by calculating the capacity remaining on each of those

days after all earlier patient requests have been scheduled. In our model, the capacity at each

downstream service can be measured in number of patients per day since appointments in

each service are the same predictable length (e.g., a blood draw will always be scheduled in

a 15 minute time slot, an MRI appointment will always be scheduled in a 45 min time slot).
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Hence, at the time of the request on day t, one can get a snapshot of the capacity available

on days t′ ≥ t by considering the number of patient requests that came on or prior to day

t and have been scheduled on or after day t. We call this random variable Lst , which can

be thought of our downstream demand in progress similar to the DIP in Chapter III. Since

all urgency levels τ are using the same capacity at service s and their appointment lengths

are the same, there is no need to differentiate Lst by urgency level τ . But this notation will

be updated to Lτ ,s
t in Section 4.5 when we allocate capacity at each downstream service s

based on the urgency level τ ∈ T . At the time of a patient request on day t, the amount of

the available capacity for downstream service s ∈ S ∪ K on day t′ ≥ t will then be:(
t′∑

m=0

Cs
t+m − Lst + 1

)+

(4.2)

Discussion: The above expression of Lst tries to capture the number of patient requests

that are “ahead” of a request that arrived on day t. But this variable only captures snapshots

at the daily level, which makes it unclear how many requests arrived earlier in the day than

the current request which we are forecasting the access delay. The random variable Lst

captures the number of patients “in queue” at service s at the beginning of day t after all

the day t demand has arrived. Hence, this model is conservative and places the patient

request considered as the last one of the day, which will have the longest access delay out of

all the day t arrivals. In practice, this seems like a reasonable way to forecast access delay

since the patient could be told a conservative estimate of how long she is likely to wait for

a service regardless of when the request is made at the hourly level on day t.

Now that we know the state of our available capacity for the following days, the access

delay random variable of the last request of day t follows directly by identifying the first day
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that has non-zero capacity.

χτ ,s
t = arg min

l≥0

{(
l∑

m=0

Cs
t+m − Lst + 1

)+

> 0

}
(4.3)

= arg min
l≥0

{
l∑

m=0

Cs
t+m ≥ Lst

}
(4.4)

Eq. 4.4 follows simply because Lst is an integer random variable. Note that the access

delay forecasting provided in this research can be used on its own to identify the main

bottlenecks in the system. With this information, each downstream service (diagnostic and

follow-up specialty) has the ability to make the proper capacity expansion adjustments to

mitigate the delays they are imposing on patient flow in the system as a whole.

Note that the access delay random variable for a given downstream service s ∈ S∪K does

not depend on the urgency level τ ∈ T in this policy since the capacity at each downstream

service is pooled to service all urgency levels in order of request. We still consider the

superscript τ here since this random variable will depend on the urgency level in the next

section. In subsection 4.4.4, we will express the random variable Lst , which we call the

downstream demand in progress, to fully characterize this access delay metric.

4.4.2 Diagnostic flow time random variable

We now focus on the diagnostic flowtime formulation χ
τ ,Sk
t , that captures for a specialty

k, urgency level τ patient, the time from the root appointment of an itinerary to the end

of the set of diagnostic services the patient has to perform. We incorporate the possibility

that a specialty k patient will require multiple diagnostic visits after her initial appointment

with the set Sk ⊂ S. Moreover, based on historical data, the need for a service s ∈ Sk

is not deterministic and depends on the urgency level τ of the patient (e.g., more urgent

patient usually require more diagnostic tests which leads to higher probabilities). We defined

κτ ,k
s , s ∈ Sk as a Bernoulli random variable that equals 1 if and only if a specialty k, urgency
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level τ patient requires diagnostic service s in her care itinerary. Note that κτ ,k
s = 0,∀s /∈ Sk

by definition of the set Sk. Hence, the diagnostic flow time for an urgency level τ and

specialty k patient finishing her root appointment on day t is expressed as:

χ
τ ,Sk
t = max

s∈Sk
κτ ,k
s · χst (4.5)

= max
s∈Sk

{
κτ ,k
s · arg min

l≥0

{
l∑

m=0

Cs
t+m ≥ Lst

}}
. (4.6)

In Equation 4.5, we characterize the diagnostic flow time as the maximum of the access

delays at each diagnostic service s that is required in the care itinerary of a type (τ , k)

patient on day t. We assume here that all diagnostic requests are made on the same day t

as the root appointment, which is common in practice since the specialty physician usually

internally refers the patient to diagnostic services at the end of this initial visit. Multiplying

the projected access delay at each diagnostic service s ∈ Sk by the Bernoulli random variable

(which is binary) assures that we do not consider the delays that might occur in diagnostic

services that are not required for this specific patient. Finally, 4.6 uses the access delay

formulation established in 4.4.

As mentioned earlier, proper forecasting of the diagnostic flow time is critical in practice.

By using the modeling tools developed here, the physician will then be able to schedule

a follow-up appointment with his/her patient using this diagnostic flow time forecast. In

current practice, the physician either (1) schedules the follow-up many weeks later with

extra lead time to make sure time is left for the patient to complete all required diagnostic

appointments, or (2) has to reschedule the follow-up appointment when the patient is delayed

longer than expected at some diagnostic services. Case (1) is not ideal for the patient,

especially for urgent ones. Typically, a patient will want to know the test results and get a

diagnosis as soon as possible without having to wait longer than needed for a follow-up visit.

Case (2) is very inefficient for the healthcare provider and usually wastes resources and time
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due to rescheduling mechanisms.

4.4.3 Itinerary flow time random variable

Although forecasting (and later, controlling) the access delay and diagnostic flow time

metrics can have practical value for a medical practice (as mentioned in the previous subsec-

tions), the main metric of concern is arguably the itinerary flow time. This metric of course

depends on the other two, but summarizes the true service level provided to a patient during

her entire itinerary of care.

Based on Eqs. 4.1, 4.4, and 4.6, we formulate the itinerary flow time random variable of

a specialty k ∈ Sk and urgency τ ∈ T patient starting her itinerary on day t:

Ξτ ,k
t = χ

Sk
t +

∞∑
n=0

11{χSkt = n} · χkt+n+1 (4.7)

= max
s∈Sk

{
κτ ,k
s · arg min

l≥0

{
l∑

m=0

Cs
t+m ≥ Lst

}}

+
∞∑
n=0

11

{
max
s∈Sk

{
κτ ,k
s · arg min

l≥0

{ l∑
m=0

Cs
t+m ≥ Lst

}}
= n

}
· χkt+n+1 (4.8)

In Eq. 4.7, we first use Eq. 4.1. To avoid having a random variable in a subscript, we consider

every possible realization of the diagnostic flow time random variable χ
Sk
t = n,n ≥ 0. Based

on the actual realization of χ
Sk
t , we use the indicator variable to determine which day the

follow-up visit in specialty k will be, and use our access delay formulation. Eq. 4.8 follows

by replacing our expressions by Eqs. 4.4 and 4.6. We now have expressed the three random

variables we wish to forecast/control as a function of the demand in progress Lst on day t at

each downstream service s ∈ S ∪ K. We will characterize the demand in progress random

variables in the next subsection.

4.4.4 Demand in progress random variable at each downstream service

The demand in progress random variable Lst defined in subsection 4.4.1 captures the

main dynamics of our system. It identifies the number of requests in downstream service
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s ∈ S ∪ K that have arrived before or on day t but haven’t been processed prior to day t.

This quantity solely depends on the daily capacity at downstream service s and on the daily

demand random variable for that service. If we let Dτ ,s
t,k be the day t number of requests in

downstream service s ∈ S ∪ K for type (τ , k) patients, we can formulate Lst recursively as:

Lst+1 = (Lst − Cs
t )

+ +
∑
k∈K

∑
τ∈T

Dτ ,s
t+1,k (4.9)

where we have the initial condition Ls0 = 0. In Eq. 4.9, the demand in progress on day t+ 1

is the sum of (1) the demand in progress from the previous day that could not be processed

on day t due to capacity restrictions Cs
t , and (2) the new requests (over all specialty patients

and all urgency levels) on day t+1 for a service k. (2) will depend on the number of patients

that either completed their root appointment on day t+ 1 which produces new requests for

diagnostic services s ∈ S, or that completed their set of required diagnostic services on day t

and will then request a follow-up appointment the next day in their specialty service s ∈ K.

First, let’s focus solely on this demand Dτ ,s
t,k in the diagnostic services s ∈ S. The type

(τ , k) demand random variable Dτ ,s
t,k in diagnostic service s ∈ S on day t can be expressed

as:

Dτ ,s
t,k =

ατ ,kt∑
j=1

11{s ∈ Sk} · κτ ,k
s (4.10)

where ατ ,k
t was defined in Section 4.2 as the number of urgency level τ patients scheduled

for their root appointment in specialty k on day t. Hence, each one of those patients will

require diagnostic service s based on our Bernoulli random variable κτ ,k
s .

Now, to determine Dτ ,s
t,k , s ∈ K, the number of urgency level τ , specialty k new requests

on day t for a follow-up appointment in specialty service s (note that in this case s is always

equal to k), we will need to use the diagnostic flow time random variable (see Eq. 4.6) as
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follows:

Dτ ,s
t,k =

t−1∑
l=0

ατ ,kt−l−1∑
j=1

11
{
χ
τ ,Sk
t−l−1 = l

}
(4.11)

=
t−1∑
l=0

ατ ,kt−l−1∑
j=1

11

{
max
s∈Sk

{
κτ ,k
s · arg min

l≥0

{ l∑
m=0

Cs
t+m ≥ Lst

}}
= l

}
(4.12)

In Eq. 4.11, we consider all the patients ατ ,k
t−l−1 that started their itinerary on day t−l−1 and

had a diagnostic flow time of l days. Hence, each of these patients considered will generate

a follow-up demand for their specialty service k on day t. If we do this for every possible

diagnostic flow time l = 0, ..., t − 1 and link it to patients that started their itineraries on

t − l − 1, then we will have considered all the demand for a follow-up appointment on day

t. In Eq. 4.12, we simply use Eq. 4.6 to replace the diagnostic flow time random variable.

In this section, we formulated (1) the demand in progress random variable at each down-

stream service s ∈ S ∪K. This allowed us to determine (2) the access delay random variable

at each downstream service, which in turn helped us to express (3) the diagnostic flow time

random variable for each specialty k, urgency level τ patient class. Finally, (2) and (3)

determined (4) the itinerary flow time random variables for each specialty k, urgency level

τ patient class. All metrics were expressed as a function of the demand in progress random

variables Lst of (1), which we determined recursively as a function of the exogenous demand

in the system.

4.4.5 Forecasting current metrics via simulation

Now that we have defined our three metrics and expressed them as a function of the

basic demand random variables, we will focus on calculating the “historical” itinerary flow

time. By historical, we mean that no differentiated access based on the urgency level τ is

provided at each downstream service, and the capacity is available to be used by all urgency

levels for each downstream service (as we assumed in the previous subsections). This will
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allow us to quantify common practice system performance, identify service bottlenecks, and

the impact that this current policy has on itinerary flow times for urgent cases. Specifically,

we are interested in observing the differences in itinerary flow times across patient urgency

levels.

We constructed a simulation that reproduces patient demand for diagnostic testing, and

mimics patients’ flows through the diagnostic services and specialty follow-up visits accord-

ing to the distributions described in this section. This simulation is at the daily level of

granularity. The main inputs to our simulation will be (1) the daily demand distribution

for downstream appointments, which is equivalent to the distribution of the daily number

of patients scheduled for a root appointment in each specialty k ∈ K, (2) the total daily

capacity (in number of patients per day) at each diagnostic service s ∈ S, (3) the remaining

daily capacity (in number of patients per day) available for follow-up appointments at each

specialty service k ∈ K: the total capacity available at specialty service k minus the amount

allocated to root appointments (see Chapter III)), and (4) each specialty k, urgency level

τ patient diagnostic service requirement distribution (i.e., the sets Sk and the probabilities

pτ ,k
s ).

With all this information, we can simulate probabilistic patient arrivals (i.e., the start of

diagnostic testing) for specialty k and urgency level τ , and determine upon arrival their prob-

abilistic diagnostic service needs according to their type (τ , k). The realization of patients’

specific resource needs will route them to the queue of their required diagnostic services

where a first come first served approach across all patient specialties and urgency levels will

be used. In other words, the simplifying approximation to our daily load model exploits

the unmodeled hours in each day by “cloning” the patients that require multiple diagnostic

services, and send each clone to one of these services. On every day t, and at each diag-

nostic service s ∈ S, the minimum of the demand in progress Lst and capacity Cs
t will be
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processed. For each patient, the simulation waits until every clone has been processed, and

then generates a request for a follow-up appointment in the specialty service k determined

by their type k (i.e. the specialty of their root appointment). Again, a first come first served

approach is used there, and finally, the patient leaves the system.

The outputs of the simulation in equilibrium will be the critical metrics discussed in

this section: (1) the itinerary flow time distribution and mean for each specialty k, urgency

level τ patient, (2) the diagnostic flow time distribution and mean for each specialty k,

urgency level τ patients, and (3) the access delay distribution and mean at each downstream

service s ∈ S ∪ K. We will also be interested in estimating the distributions, means, and

standard deviations of the daily demand in progress random variables for each urgency level

τ in the downstream services considered. This information will be used in Section 4.5.3

to feed iterations of our optimization model. Note that all our metrics are estimated in a

cyclo-stationary model at the weekly level in equilibrium.

We compute our desired metrics over an evaluation horizon that reached equilibrium (e.g.,

after a warm-up period of 500 days), and use a “batch means output analysis” method to get

the desired statistics. We also consider a number of independent replications (warm-up and

evaluation horizons) in order to get more accurate estimates of the metrics’ distributions.

We selected the number of replications, the number of batches, and their sizes in a way that

guarantees a 95% confidence interval on our sample metrics (means and variances) indicating

sufficient accuracy that we don’t need to put confidence intervals in our reports.

Based on preliminary analysis, we show the itinerary flow time distribution in Fig. 4.2

for a given patient specialty, and look at the distribution differences between non-urgent and

urgent cases. On the left side of Fig. 4.2 we represent the probability mass function of the

itinerary flow time: each point represents the probability (y-axis) that the patient’s itinerary

flow time will be a certain number of days (x-axis). On the right side of Fig. 4.2 we represent
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the cumulative distribution function of the itinerary flow time: by taking any point on the

x-axis (which represents a given number of days), one could determine the probability that

the patient has already completed her itinerary by that time. Note that the diagnostic flow

time distributions can be computed similarly, and such graphs could provide the necessary

information for the specialty physician on the cumulative probability that the patient has

finished all required diagnostic services by a given day. Further, the access delay distribution

at each downstream service (diagnostic or specialty) could also be represented with similar

graphs to determine the bottlenecks in the current system, and understand what specific

services are the major drivers of itinerary flow times.

Figure 4.2: Quantification of FCFS scheduling via simulation to represent (Left) the proba-
bility mass function, and (Right) cumulative distribution function of the itinerary
flow time random variable differentiated by patient urgency level

Based on these initial results, we see that urgent cases are usually more complex and

require more services which affects their diagnostic and itinerary flow times significantly. By

being treated the same as less urgent cases, we see slots being used by patients who could

wait a few days longer without affecting their health, while urgent cases’ flow times increase

nonlinearly as a result.

This motivates the critical need to allocate capacity at each of the downstream services

(diagnostic or specialty for follow-up) based on the urgency level of the patient. Exercising

the control resulting from an efficient capacity management methodology will allow health
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care institutions to provide the shortest itinerary flow time possible for their urgent cases

given a certain service level for other less urgent cases (e.g., the probability that itineraries

of less urgent cases exceed two weeks has to be less than 10%).

4.5 Linearization for the control of itinerary flow time in a Mixed
Integer Program

Similar to the template optimization in Chapter III, we now want to divide/allocate each

service’s capacity between the different patient urgency levels to provide differentiated access

delays for diagnostic and specialty services. As we discussed in Section 4.4, the access delay

at each service is going to be a major driver of the diagnostic flow time and itinerary flow time

metrics. In this section, we will identify ways to capture the distributions of these random

variables (see Section 4.4), their means, linearize them subject to our decision variables, and

optimize them in a Mixed Integer Program.

4.5.1 Decision variables

Let the set {1, ...,T} be a finite planning horizon (e.g. one week). The health care

institution will reserve capacity for each patient urgency level at each of the downstream

services (diagnostic and specialty for follow-up) over this planning horizon. The dynamics

of our system will be analyzed over an equilibrium cyclo-stationary planning horizon of T

days. This is a very convenient approach for purposes of this paper. On the other hand, in

practice one could update the cyclo-stationary model periodically or one could even employ

a time-varying planning model and a rolling planning horizon. Since demand patterns and

capacity are usually similar from week to week, this model assumes T = 5 to represent one

week.

We define the downstream admission plan decision variables Ω := (Ωs,τ
t , s ∈ S ∪

K), τ ∈ T , t ∈ {1, 2, ...,T} as the number of patient slots in downstream s allocated specif-
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ically to the urgency level τ during diagnostic testing and follow-up appointments. We do

not reserve capacity in each diagnostic service s ∈ S based on the patient’s specialty k ∈ K

to keep a fair access to all diagnostic resources. Rather, the focus here is to provide “fast

track” access to downstream resources for the more urgent patients (rather than basing this

on specialty/condition). But each specialty will have different downstream resource require-

ments so it is important to model their care paths/resource needs individually for an accurate

representation of patient flows.

The total capacity at each diagnostic service s ∈ S will be optimally divided across

urgency levels to meet the constraints and optimize the objective set by the health institution.

Therefore, Cs
t =

∑
τ∈T Ωs,τ

t , ∀s ∈ S. As explained earlier, we assume that capacity for

specialty services was already set aside for root appointments (in Chapter III). The remaining

capacity available for follow-up visits for specialty k ∈ K can also be divided across urgency

levels: Ck
t =

∑
τ∈T Ωk,τ

t .

4.5.2 High level description of the Mixed Integer Program

The goal of this methodology is to analyze tradeoffs between type τ patients based on

our scheduling template Ωs,τ
t for each one of the following metrics:

• (M1) The “violation” probability that the itinerary flow time exceeds l days for the

typical specialty k, urgency level τ patient that started her itinerary on day t.

• (M2) The mean itinerary flow time of a specialty k, urgency level τ patient given the

itinerary started on day t.

• (M3) The “violation” probability that the diagnostic flow time exceeds l days for the

typical specialty k urgency level τ patient that started her itinerary on day t.

• (M4) The mean diagnostic flow time of a specialty k, urgency level τ patient given the
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itinerary started on day t.

• (M5) The “violation” probability that the access delay exceeds l days in downstream

service s for an urgency level τ patient that started her itinerary on day t.

• (M6) The mean access delay in downstream service s for an urgency level τ patient

given the itinerary was started on day t.

Multi-objective optimization has been shown to be difficult to implement in practice.

For example, the weighted method could be used here, but determining the desired weights

while understanding the relationships between all metrics is difficult for a health institution.

Therefore, we will use one metric as an objective with constraints on the others. This

methodology has value for a health institution since it is flexible and can provide answers to

many “what if” scenarios based on various constraint and objective choices. For example,

we could minimize M1 for urgent patients with a constraint on M2, M4, and M6 for less

urgent cases. The main output from the optimization will be a weekly schedule Ωs,τ
t . If used

for a long period of time, this schedule will guarantee that the optimal objective is achieved

while satisfying the constraints on the other metrics.

Based on the previous section, we can formulate the itinerary flowtime distribution

differentiated by the urgency level τ as a function f τ ,k
t of our capacity reservation plan

Ω := (Ωs,τ
t , s ∈ S ∪ K), τ ∈ T , t ∈ {1, 2, ...,T}:

The formulations in Section 4.4 of the random variables that determine metrics M1-M6

were non-linear with respect to the capacity Cs
t , hence are non-linear subject to our capacity

reservation plan Ω. We will show how to express M1-M6 linearly in our decision variables

Ω to incorporate those metrics in a deterministic Mixed Integer Program as an objective or

constraint. Moreover, we will need to translate these stochastic system dynamics into a set

deterministic constraints that can be incorporated in our MIP.
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4.5.3 Deterministic and linear approximation of demand in progress

Our ultimate goal is to translate all the non-linear (subject to Ω) stochastic equations

expressed in Section 4.4 into a set of deterministic linear constraints. As was discussed in

Section 4.4, the randomness in our metrics is exclusively due to the stochasticity of the daily

demand in progress variables Lst , s ∈ S ∪ K at each downstream service s. Note that in

our controlled system where capacity is specifically allocated to urgency levels, the demand

in progress now has to be defined as a function of the urgency level τT : we update our

notation to Lτ ,s
t , s ∈ S ∪ K, τ ∈ T . Hence, the first step is to transform the stochastic

demand in progress dynamics into deterministic and linear constraints while still capturing

this randomness in the system dynamics.

First, using the same concepts as Eq. 4.9, we formulate the stochastic demand in progress

recursive equations for each downstream service s ∈ S ∪K under a controlled system where

capacity is differentiated by urgency level τ :

Lτ ,s
t+1 = (Lτ ,s

t − Ωτ ,s
t )+ +

∑
k∈K

Dτ ,k
t⊕1,s (4.13)

where the operator ⊕ is the modulo T operator to assure that all our variables will have their

subscripts in our cyclo-stationary planning horizon {1, ...,T} (e.g., if t = T then t⊕ 1 = 1).

Notice now that the capacity available to serve the urgency level τ demand in progress

Lτ ,s
t is limited to our decision variables Ωτ ,s

t . To translate these recursive equations into

a deterministic set of constraints, an estimate of the demand in progress distribution is

necessary.

Capturing the distribution of the demand in progress random variable analytically can be

quite challenging, and is non-linear in our decision variables Ωτ ,s
t . Based on the simulation

analysis in Section 4.4.5, we can get a good estimation of the equilibrium distribution of the

demand in progress for each urgency level in an uncontrolled system where capacity is not
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allocated based on urgency levels τ . However, by optimizing a capacity reservation plan Ω

based on urgency levels, the type τ demand in progress distribution will not be the same

as in an uncontrolled system. Therefore, we will rely on a heuristic developed in Chapter

III that allows us to use information provided via simulation on the demand in progress

distribution and adjust/scale it to the new schedule controlled by Ω.

First, we construct a discrete grid m(i), i ∈ I taking values in (−∞,∞) similarly to Table

3.4. In the simulation, we extract the probability φτ ,s
t (i) that the demand in progress (having

mean µk,τ
t and standard deviation σk,τ

t ) for patient specialty k, urgency level τ on day t of

our planning horizon takes values between µk,τ
t +m(i) ·σk,τ

t and µk,τ
t +m(i+1) ·σk,τ

t . We will

assume that this uncontrolled demand in progress distribution can now be adjusted/scaled

to characterize the demand in progress controlled by our decision variable Ω. Specifically,

after calculating L
τ ,s

t , the demand in progress mean under schedule Ω, and L̃τ ,s
t its variance

under schedule Ω, we can define Lτ ,s
t (i), the demand in progress at grid level i, as follows:

Lτ ,s
t (i) = L

τ ,s

t +m(i) ·
√
L̃τ ,s
t . (4.14)

Our assumption above implies that the random variable Lτ ,s
t under schedule Ω takes values

between Lτ ,s
t (i) and Lτ ,s

t (i + 1) with probability φτ ,s
t (i). We omit the linear formulations of

L
τ ,s

t and
√
L̃τ ,s
t subject to our decision variables Ω in this chapter since this was developed

and analyzed in Chapter III.

With this methodology, we can now capture the randomness in the demand in progress

variables as well as their distribution, by considering |I| realizations Lτ ,s
t (i) (based on the

discrete grid m(i)) and assigning a probability φτ ,s
t (i) to each one.

4.5.4 Access delay linearization

In this subsection, we focus on expressing the access delay distribution for a downstream

service s ∈ S ∪ K linearly in our decision variables Ω. The access delay distribution can be
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controlled in our MIP to assure that the probability of exceeding l days of delay for urgency

level τ patients at a service s will be lower than a set target (see metric M5). Although this

control is at the micro level (only one specific service in an itinerary), it could be a good

way to identify the service bottlenecks in the health system.

Moreover, this subsection’s main goal is to lay down some ground work that can then be

used in the following subsections to express the diagnostic and itinerary flow times linearly in

Ω. Since the access delays at the diagnostic and specialty services are the main drivers of flow

times in the system (see Section 4.4), we start by building our modeling formulations at this

micro level (diagnostic and specialty service) to leverage this foundation in the diagnostic

and itinerary flow time linear formulations.

The probability of having the access delay in service s ∈ S ∪ K exceeding l days for

urgency level τ patients requesting a (diagnostic or specialty) service on day t is calculated

as follows:

P (χτ ,s
t > l) = P

(
arg min
l′≥0

{
l′∑

m=0

Ωτ ,s
t⊕m ≥ Lτ ,s

t

}
> l

)
(4.15)

= P

(
Lτ ,s
t >

l∑
m=0

Ωτ ,s
t⊕m

)
(4.16)

=
∑
i∈I

P

(
Lτ ,s
t >

l∑
m=0

Ωτ ,s
t⊕m|L

τ ,s
t = Lτ ,s

t (i)

)
· P (Lτ ,s

t = Lτ ,s
t (i)) (4.17)

=
∑
i∈I

11

{
Lτ ,s
t (i) >

l∑
m=0

Ωτ ,s
t⊕m

}
· φτ ,s

t (i) (4.18)

=
∑
i∈I

xτ ,s
t,l (i) · φτ ,s

t (i) (4.19)

where xτ ,s
t,l (i) is a binary helper variable that satisfies the following linear equations in our
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decision variables Ω, for a large integer M :

M · xτ ,s
t,l (i) ≥ Lτ ,s

t (i)−
l∑

m=0

Ωτ ,s
t⊕m (4.20)

−M · (1− xτ ,s
t,l (i)) ≤ Lτ ,s

t (i)−
l∑

m=0

Ωτ ,s
t⊕m. (4.21)

In Eq. 4.15, we first use the definition of the access delay random variable provided in

Eq. 4.4. The probability that the access delay random variable is greater than l days is

equivalent to the probability that the type τ demand in progress at service s is greater than

the total capacity allocated for urgency level τ patients from days t to t+ l, as expressed in

Eq. 4.16. In Eq. 4.17, we condition this probability on the realizations of the type τ demand

in progress random variable which makes Lτ ,s
t deterministic. Therefore this probability is

now an indicator function equal to 1 if and only if the urgency level τ demand in progress

realization Lτ ,s
t (i) is greater than the total capacity allocated to urgency level τ patients from

day t to t + l (Eq. 4.18). Finally xτ ,s
t,l (i) can be interpreted as the conditional probability

of exceeding l days of access delay for an urgency level τ patient who requests service s on

day t given that the type τ demand in progress level is Lτ ,s
t (i) on day t. This conditional

probability is actually either equal to 0 or 1 since the access delay becomes deterministic.

Eq. 4.20 and Eq. 4.21 assure that xτ ,s
t,l (i) takes the appropriate binary value based on Lτ ,s

t (i).

The above equations allow us to express and control the access delay distribution in our MIP

since all constraints will be linear in our decision variables Ω.

Finally, we can also calculate the expected value for the access delay of an urgency level

τ patient requesting an appointment in service s ∈ S∪K on day t (see metric M6) as follows:

E [χτ ,s
t ] =

∞∑
l=0

P (χτ ,s
t > l) (4.22)

=
∞∑
l=0

∑
i∈I

xτ ,s
t,l (i) · φτ ,s

t (i) (4.23)
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where Eq. 4.22 follows from the definition of the expected value, and Eq. 4.23 replaces this

probability by Eq. 4.19.

4.5.5 Diagnostic flow time linearization

The diagnostic flow time distribution will be a function of the access delays at the di-

agnostic services s ∈ S. As can be seen in Eq. 4.5, we will have to take the maximum

of multiple access delay distributions at the required diagnostic services. This subsection

will focus on how to linearly compute this metric subject to our decision variables Ω while

keeping our problem tractable (such that common optimization solvers like CPLEX will be

able to solve our problem).

A specialty k, urgency level τ patient finishing her root appointment on day t of our

planning horizon will have to go through each element of the set Sk with a probability pτ ,k
s

of requiring diagnostic service s ∈ Sk. Our methodology wants to capture the probability

that the diagnostic flow time will exceed l days, which will give us the diagnostic flow time

distribution. To do this, we would need binary variables that inform us under any given

scenario (realizations of our random variables) if the diagnostic flow time exceeds the level

l or not. This “excess probability” will depend on (1) the demand in progress realizations

Lτ ,s
t (is), is ∈ I at each diagnostic service s ∈ Sk that might be required for a specialty k

patient, (2) the combination of diagnostic services s ∈ Sk that are required for the specific

patient (i.e., the realizations of the κτ ,k
s ∈ {0, 1},∀s ∈ Sk), and (3) the integer violation level

l = 1, 2, ..., l, where l is chosen such that the probability of the diagnostic flow time exceeding l

is close to 0. Hence, our model would need to consider T ·K·l·I |Sk|2 scenarios/binary variables

in order to get an estimate on the diagnostic flow time distribution of a specialty k, urgency

τ patient. In a mid-size health care institution, patients could have diagnostic flow times

that last up to a month (l = 30), since for example, MRIs have long waiting times. Being

very conservative, let’s say we only model 5 diagnostic services, two urgency levels and two
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specialty patient types. We need at least 10 grid levels i ∈ I for a reasonable representation

of the downstream demand in progress random variables Lτ ,s
t (i). Then, even with a very

small problem, we will require binary variables of size: 2× 2× 30× 15102 = 1.2× 1027. This

is obviously a too large number of binary variables for CPLEX to handle. Hence, we will

approximate the diagnostic flow time distribution in a tractable way.

We start by making the following assumption:

Assumption IV.1. The demand in progress random variables across all diagnostic services

s, {Lτ ,s
t : s ∈ S} are assumed to be mutually independent.

Discussion: This assumption is good under heavy traffic. In such settings, there will

be multi-day access delays to a root appointment in a medical specialty. Based on our

industry partners’ data and the results presented in Chapter III, the access delays for a root

appointment in a specialty k ∈ K are rarely one day or less, and tend to be on the order of

multiple weeks. This means that the demand in progress for a root appointment (see DIP τ ,k
t

in Chapter III) will be large, which leads to a near 0 probability of having the template Θτ ,k
t

(for root appointments) exceed the demand in progress level DIP τ ,k
t . In other words, ατ ,k

t ,

the number of specialty k, urgency level τ patients scheduled for a root appointment on

day t in our planning horizon will closely match the planned number of root appointment

admissions Θτ ,k
t (with probability close to 1), therefore its variance will be close to 0. ατ ,k

t

also is the demand for downstream appointments (since they are generated at the time of

the root appointment with the patient), and based on various practical/realistic scenarios

analyzed through simulation, the demand ατ ,k
t does indeed have very low variance. Hence,

most of the variability in Lτ ,s
t comes from the number and location of the clones generated

for subsequence diagnostic visits (i.e., the variability around our Bernoulli random variable

κτ ,k
s ). The random variables {κτ ,k

s : s ∈ S} being mutually independent, and having ατ ,k
t
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being close to deterministic allows us to make a good case for Assumption IV.1: {Lτ ,s
t : s ∈ S}

are mutually independent across all diagnostic services.

Based on this assumption, we now introduce Lemma IV.2, which allows us to capture the

diagnostic delay distribution linearly in our decision variables, Ω, for the simple case where

the number of diagnostic services in the health institution is limited to two. The proofs of

this lemma, and the following theorems and corollaries, can be found in 4.8.

Lemma IV.2. Under Assumption IV.1 and assuming Sk = {s1, s2}, the diagnostic flow

time distribution for an urgency level τ , specialty k patient in a system with two diagnostic

services is computed as:

P
(
χ
τ ,Sk
t > l

)
=
∑
i∈I

∑
j∈{0,1}

y
(2),τ ,k
t,l (i, j) · φτ ,s2

t (i) · P
(
κτ ,k
s2

= j
)

(4.24)

where y
(2),τ ,k
t,l (i, j) can be expressed as a set of linear constraints subject to our decision

variables Ω and is computed as follows:

y
(2),τ ,k
t,l (i, j) = max

{
pτ ,k
s1
·
∑
i′∈I

xτ ,s1
t,l (i′) · φτ ,s1

t (i′), j · xτ ,s2
t,l (i)

}
, (4.25)

and this distribution can be expressed as a set of linear constraints subject to our decision

variables Ω.

Now that we have shown how to calculate the diagnostic flow time distribution in the

simpler case where a health institution has only two possible diagnostic services, we generalize

our methodology to a set of diagnostic services Sk, k ∈ S that can be of any dimension for

each specialty k patient. We can leverage the ideas, methods, and equations of Lemma IV.2

to the general case without increasing the dimensionality of our problem.

Theorem IV.3. Under Assumption IV.1, the diagnostic flow time distribution for an ur-

gency level τ , specialty k patient starting the itinerary on day t (Metric M3) is computed
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as:

P
(
χ
τ ,Sk
t > l

)
=
∑
i∈I

∑
j∈{0,1}

y
(|Sk|),τ ,k
t,l (i, j) · φτ ,|Sk|

t (i) · P
(
κτ ,k
|Sk| = j

)
(4.26)

where y
(n),τ ,k
t,l (i, j) can be expressed as a set of linear constraints subject to our decision

variables Ω and is computed recursively as follows ∀n = 3, ..., |Sk|:

y
(n),τ ,k
t,l (i, j) = max

{∑
i′∈I

∑
j′∈{0,1}

y
(n−1),τ ,k
t,l (i′, j′) ·φτ ,sn−1

t (i′) ·P
(
κτ ,k
sn−1

= j′
)

, j ·xτ ,sn
t,l (i)

}
, (4.27)

with y
(2),τ ,k
t,l (i, j) satisfying Eq. 4.25 and where Sk = {s1, s2, ..., s|Sk|}.

From Theorem IV.3, we can formulate metric M4, the expected value for the diagnostic

flow time of an urgency level τ and specialty k patient given the itinerary started on day t

as follows:

E
[
χ
τ ,Sk
t

]
=
∞∑
l=0

P
(
χ
τ ,Sk
t > l

)
(4.28)

=
∞∑
l=0

∑
i∈I

∑
j∈{0,1}

y
(|Sk|),τ ,k
t,l (i, j) · φτ ,|Sk|

t (i) · P
(
κτ ,k
|Sk| = j

)
(4.29)

where Eq. 4.28 follows from the definition of the expected value, and Eq. 4.29 uses the result

from Theorem IV.3 (see Eq. 4.26).

4.5.6 Itinerary flow time linearization

Finally, we will now formulate the itinerary flow time distribution linearly in our decision

variables Ω. The methods developed in IV.5 will use results from Theorem IV.3, and the

definition provided in Eq. 4.19. The key difficulty here is to formulate linearly the access

delay for the follow-up visit in specialty service k given the realizations of the diagnostic flow

time of the patient, which affects when the patient starts waiting for a follow-up appointment.

We will start with the following assumption.
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Assumption IV.4. Given diagnostic testing ends on day t ⊕ l1, the access delay random

variable χτ ,k
t⊕l1⊕1 for a follow-up visit in specialty k ∈ K is independent of the diagnostic flow

time random variable χ
τ ,Sk
t .

Discussion The access delay for a follow-up visit will depend on the day of week the

request for a follow-up will occur (see Eq. 4.1) since the request for a follow-up is made after

all diagnostic tests have been made. We will consider this dependence. However, Assumption

IV.4 claims that given we have this information, there will be very little correlation between

the diagnostic flow time of a patient that ends diagnostic testing on t⊕l1 and the access delay

from her request for a follow-up visit on day t ⊕ l1 ⊕ 1 to the occurrence of that follow-up.

The use of diagnostic resources is spread around a very large number of patient types in a

clinical setting. Hence, the wait for say, an MRI diagnostic test, is unlikely to affect the wait

for a follow-up visit in the GI department once all diagnostic tests are done. In practice,

your wait in diagnostic resources is mostly due to other patient specialties who need the

MRI, as opposed to patients of your same specialty.

Corollary IV.5. Under Assumptions IV.1 and IV.4, the itinerary flow time distribution

for an urgency level τ , specialty k patient starting the itinerary on day t (Metric M1) is

computed as:

P
(

Ξτ ,k
t > l

)
= P

(
χ
τ ,Sk
t > l

)
+

l∑
l1=0

∑
i∈I

zτ ,k
t,l1,l(i) · φ

τ ,k
t⊕l1⊕1(i) (4.30)

where zτ ,k
t,l1,l(i, j) can be expressed as a set of linear constraints subject to our decision variables

Ω and is computed as follows:

zτ ,k
t,l1,l(i, j) = min

{∑
i′∈I

∑
j∈{0,1}

(
y

(|Sk|),τ ,k
t,l−1 (i′, j)− y(|Sk|),τ ,k

t,l (i′, j)
)
· φτ ,|Sk|

t (i′) · P
(
κτ ,k
|Sk| = j

)
,

xτ ,k
t⊕l1⊕1,l−l1(i)

}
. (4.31)
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From Corollary IV.5, we can formulate metric M2, the expected value for the itinerary

flow time of an urgency level τ and specialty k patient given the itinerary started on day t

as follows:

E
[
Ξτ ,Sk
t

]
=
∞∑
l=0

P
(

Ξτ ,k
t > l

)
(4.32)

=
∞∑
l=0

P
(
χ
τ ,Sk
t > l

)
+

l∑
l1=0

∑
i∈I

zτ ,k
t,l1,l(i) · φ

τ ,k
t⊕l1⊕1(i) (4.33)

= E
[
χ
τ ,Sk
t

]
+
∞∑
l=0

l∑
l1=0

∑
i∈I

zτ ,k
t,l1,l(i) · φ

τ ,k
t⊕l1⊕1(i) (4.34)

where Eq. 4.32 follows from the definition of the expected value, and Eq. 4.33 uses the result

from Theorem IV.5 (see Eq. 4.30). Finally, from Eq. 4.28, Eq. 4.34 follows.

4.6 Numerical case study

For validation and tradeoff analysis, we will calibrate/parameterize our model to a system

that is a good representation of common practices by using historical data. We focus on only

one medical specialty in our optimization for simplicity of exposition, but we still consider

the demand of other specialty patients (in aggregate) for diagnostic resources. We will not

optimize/control this aggregate demand and assume it will follow historical patterns. We

consider the downstream demand distribution that is generated from the scheduling of root

appointments (see the template methodology developed in Chapter III). The parameters of

this downstream demand are summarized later in this section in Table 4.2.

4.6.1 Tradeoff Analysis

Mean Itinerary flow time tradeoff analysis

First we will consider an optimization formulation that minimizes the mean itinerary

flow time of urgent patients with respect to some constraint on the mean itinerary flow time

of non-urgent cases. In Fig. 4.3, we first see that with a very tight constraint on the mean
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itinerary flow time for non-urgent cases (e.g., consider 3 days on the x axis), the access

delay for the follow-up visit, 7 days, is a big contribution to the large mean itinerary flow

time for urgent cases which is around 15 days. Clearly, the specialty follow-up service will

be the bottleneck resource. In this extreme scenario, most of the resource capacity at each

downstream service has to be allocated to the non-urgent cases, since the probability of

receiving service within a day at each downstream service has to be close to 1 (i.e., the non-

urgent demand in progress exceeds the capacity allocated to them with very low probability).

Urgent patients’ diagnostic flow time will of course be affected by this, but not as much as

their waiting time for the follow-up appointment. The reason is that urgent and non-urgent

patients always use the same specialty service for a follow-up appointment (with probability

1) but, during the diagnostic portion of the itinerary, the routing probabilities do not send

every patient to all diagnostic resources and, can send urgent cases to services not often

used by non-urgent cases, which mitigates the congestion seen at the specialty services. As

we move along the x axis of the graph, we see that the gap between diagnostic flow time

and itinerary flow time diminishes. When we allow poor access to non-urgent cases (e.g.,

mean itinerary flow times of 10 days), we see the gap between the diagnostic flow time

and itinerary flow time curves is very small, and most of patients’ delay will be during the

diagnostic testing portion of their itinerary since they usually require multiple visits in high

demand diagnostic services (since the condition might be serious).

Moreover, in Fig. 4.3, we compare the itinerary flow times of the FCFS policy to our

efficient frontier of solutions (when the constraint on mean itinerary flow time of non-urgent

patients varies), we realize that we can improve in both itinerary flow time metrics (for

urgent and non-urgent cases). The reason we are able to improve in both metrics is because

resource requirements between the two classes of patients are not the same. Note that more

value seems to be gained by allowing the mean itinerary flow time for non-urgent patients to
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Figure 4.3: Tradeoff Analysis: optimal mean itinerary flow time and mean diagnostic flow
time for urgent patients when varying the constraint on the non-urgent mean
itinerary flow time, and comparison with the itinerary flow times of the First
Come First Served (FCFS) policy (see Fig. 4.2)

be 6 days: this is only increasing it by 0.5 days on average from the FCFS policy, while the

mean itinerary flow time of urgent patients is being reduced by 28% (from 9.9 to 7.1 days).

Itinerary flow time distribution tradeoff analysis

Although we were able to provide the desired control on the mean itinerary flow times,

this may lead to some undesired behaviors in our system. For example, if we take a closer

look at the itinerary flow time distributions associated with the optimized solution (6, 7.1) in

Fig. 4.3, we may not get the patient prioritization behavior that we were hoping for. In Fig.
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4.4, we illustrate the itinerary flow time distributions (probability that patients complete

their itinerary within a certain number of days) of our “controlled-mean” policy that result

from optimizing a formulation that constrains only the means and not the tail probabilities

of the itinerary flow times (this lead to the (6, 7.1) solution in Fig. 4.3). What happens

here is that the optimization will choose to schedule “enough” non-urgent patients quickly

for short itinerary flow times (e.g., 2, 3, 4 days), and the rest of the non-urgent patient

population (speaking of the right tail of the itinerary flow time distribution) has relatively

large itinerary flow times (e.g., 15 or more days): specifically, close to 60% of non-urgent

cases have an itinerary flow time of 5 days or less, but only 9% will have an itinerary flow

time between 5 and 10 days. This increases the itinerary flow time variability, while still

meeting the constraints we imposed on the mean (here, 6 days). At the same time, we see

that most urgent cases obtain an itinerary flow time around the mean of 7.1 days: 66% of

urgent cases will have an itinerary flow time between 6 and 8 days. This behavior might be

undesirable if we wish to have more urgent patients with shorter itinerary flow times (e.g.,

a higher probability to complete an itinerary within 5 days), even if it means sacrificing a

portion of the urgent (or non-urgent) population. Note that the behavior observed here is

not guaranteed to happen in all cases, in fact, the exact opposite scenario (between urgent

and non-urgent patients) could occur as well. Ultimately, we have very little control on

our system if we consider only the mean of our metrics, i.e., the schedule generated by our

optimization is quite unpredictable. In Fig. 4.4, we also compare these itinerary flow time

distributions generated by the “controlled-mean” policy to the distributions rendered by the

FCFS policy.

Based on the results/insights provided in Fig. 4.4, we may want to improve on our

solutions by exercising a more specific control on our system. Most non-urgent patients

don’t necessarily need short itinerary flow times. Controlling the mean itinerary flow time
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Figure 4.4: “Controlled-mean” policy (which resulted to the solution (6, 7.1) in Fig. 4.3)
itinerary completion probability within n days, and comparison to the FCFS
policy benchmark (see Fig. 4.2)

of non-urgent cases, and minimizing the mean itinerary flow time for urgent cases might not

be the most efficient way to extract the desired performance of our system. To allow more

flexibility in our system so as to provide expedited service to a higher number of urgent cases,

and improve the overall performance, we can constrain our model in a way that non-urgent

itinerary flow times would be less than t days with x% probability while maximizing the

probability that urgent cases will complete their itinerary in t days or less. We will call such

optimization formulations “controlled-distribution” policies.

We now maximize the 5-day itinerary completion probability of urgent patients subject to

a given constraint on the 5-day itinerary completion probability of non-urgent cases. In Fig.

4.5 we study the tradeoffs between the probability of having an itinerary flow time of one

week (5 days) or less for our two patient classes. We provide an efficient frontier of solutions
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Figure 4.5: Tradeoff Analysis: optimal 5-day itinerary completion probability for urgent pa-
tients when varying the constraint on the non-urgent 5-day itinerary completion
probability under the controlled-distribution policy, and comparison to the FCFS
(Fig. 4.2) and controlled-mean (Fig. 4.4) policies

by varying the constraint set on the probability that non-urgent patients complete their

itinerary within 5 days (see the solid curve). The two additional data points compare that

efficient frontier with 5-day itinerary completion probability under (1) the FCFS policy, and

(2) the controlled-mean policy optimized above. Recall from Fig. 4.3 that the controlled-

mean policy renders a 28% decrease in the urgent mean itinerary flow time compared to

the FCFS policy while keeping the mean of the non-urgent itinerary flow time nearly the

same. However, we can see that in terms of the metrics analyzed in Fig. 4.5 (i.e., probability

of completing an itinerary within 5 days), the controlled-mean policy seems to be more
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desirable than the previously optimized policy (2).

We can see that improvements can be made to our two policies in relation to this cho-

sen metric by using a controlled-distribution policy. If we were to implement solution A,

(50, 34.2) on the efficient frontier, this would lead to a 45% increase in the urgent 5-day

itinerary completion probability compared to the FCFS policy while seeing only a 3% de-

crease in non-urgent itinerary completion within 5 days. If we were to consider solution B,

(60, 22.6) on the efficient frontier, we would be able to achieve: (1) 13% improvement in

our metric for urgent patients, and 16.5% improvement for non-urgent patients compared

the FCFS policy, and (2) 33.7% improvement in our metric for urgent patients, and 2.5%

improvement for non-urgent patients in comparison the controlled mean policy. However,

all these improvements on the 5-day itinerary completion probability comes at a cost on

the mean itinerary flow times: solution A renders a mean itinerary flow time of (8.4, 7.8),

Solution B has a mean itinerary flow time of (10.6, 6.9), while the FCFS and controlled mean

policies achieved (7.1, 6).

As we mentioned in Section 4.5.2, this tradeoff and sensitivity analysis illustrates a key

contribution of our method to practice. Rather than providing one capacity reservation plan,

it will be useful to let the managerial staff experiment with different objectives and con-

straints. This approach can provide a rich portfolio of various policies that inform decision-

making and tailor the solutions to the application. Our new methodologies will share an

efficient frontier of optimal solutions with the health institution, and can provide insights

about the dynamics/interactions between all metrics considered.

4.6.2 Validation

In this section, we will validate our methodology. Having used some approximations on

the demand in progress distribution (see Section 4.5.3), and having made two independence

assumptions (Assumptions IV.1 and IV.4), it is important to analyze the absolute percentage
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errors of our analytical metrics’ estimates. After optimizing our system, which resulted in

a capacity reservation plan Ω, we will simulate this new controlled system. This simulation

will be similar to the one described in Section 4.4.5, but we will now consider different formu-

lations to yield various control policy solutions for capacity reservations at each downstream

service. We compare our analytical estimations of the optimized performance metrics to

the simulated ones, to get a sense of how accurate our approximations and how valid our

assumptions were.

Having validated the access delay metric for root appointments in Chapter III (see Section

in 3.8.2), and therefore the approximations made on the demand in progress distributions at

a given service (see Sections 3.6.4 and 4.5.4), we do not to validate these metrics again (i.e.

M5 and M6).

Diagnostic flow time

The diagnostic flow time metric’s errors will be caused by Assumption IV.1 (independence

of the demand in progress across diagnostic services). As we discussed in the paragraph

following this assumption, we consider a healthcare scenario where the capacity reserved for

root appointments has a high probability of being filled up completely. As long as we are in a

setting where the waiting time for a root appointment is in the order of multiple days/weeks,

then the approximation we make with this assumption should perform well. In Table 4.2, we

show the mean and variance of the number of patients scheduled for a root visit according to

a template optimized in Chapter III’s case study. The mean number of patients scheduled

for a root appointment on day t in our planning horizon, is also the number of patients

requiring diagnostic appointments requested on day t for subsequent fulfillment.

As can be seen in Table 4.2, the variance of the number of patients requiring down-

stream services will be close to 0, due to the multi-week access delay for a root appoint-

ment, and the fact that the total reserved capacity is used with high probability. Therefore,
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Day of Week Mo Tu We Th Fr
Mean Urgent Downstream Demand 15.89 18.52 12.80 9.95 7.99

Mean Non-Urgent Downstream Demand 9.90 11.39 8.57 6.78 3.99
Urgent Downstream Demand Variance 0.64 3.67 0.99 0.16 0.04

Non-Urgent Downstream Demand Variance 0.32 2.97 1.36 0.61 0.01

Table 4.2: Mean and Variance of the number of patients requiring downstream (diagnostic)
appointments based on the template developed for root visits in Chapter III

the variability of the demand for a specific diagnostic resource will mostly depend on the

Bernoulli/multinomial random variables κτ ,k
s (i.e., relating to the routing probability for

downstream resources) and not on the flow of root visits. Since these random variables are

independent of each other, and everything else in the system, Assumption IV.1 does not

yield large errors in our metric estimations, as we can see in Fig. 4.6.

Figure 4.6: Validation of the accuracy of the n-day diagnostics completion probability esti-
mates for the controlled-probability policy solution B in Fig. 4.5
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Itinerary flow time

Finally, the validation of the itinerary flow time metric emphasizes the validity of As-

sumption IV.4 (independence of the demand in progress between diagnostic and follow-up

services). In Fig. 4.7, we validate our metric estimates computed in the tradeoff analysis of

Fig. 4.5 which led to an efficient frontier of solutions. We do not validate the entire itinerary

flow time distribution (similarly to what was done in Fig. 4.5 for the diagnostic flow time

distribution) but rather, validate across multiple formulations (i.e., different constraints on

non-urgent itinerary flow time) of our optimization program.

Figure 4.7: Validation of the accuracy of the 5-day itinerary completion probability estimates
under multiple controlled-probability policies generated in Fig. 4.5 when varying
the constraint on the 5-day itinerary completion probability for non-urgent cases

The larger errors (that go up to 9-10%) for the tightly constrained system (i.e., 5-day

itinerary completion probability of 60-70% for non-urgent patients) are partly due to the
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smaller values obtained for the 5-day itinerary completion probability of urgent patients in

those scenarios. But, having a tight constraint on our system also yields higher variability

in urgent itinerary flow times (since they will have longer and less predictable itinerary flow

times), which makes it more difficult for our model to accurately forecast tail probabilities.

4.7 Conclusion

Today’s appointment based services such as healthcare have very limited research sup-

porting effective control of waits for an appointment. This research generates fundamental

operations-based methodology to facilitate complex tradeoffs involving (1) cost-efficiency

and (2) differentiated levels of wait to serve urgent cases.

This research focused on patient flows through diagnostic and specialty resources/services

of a health institution. The motivation for this study was to provide differentiated access to

the resources based on the urgency level of the patient. Experiencing delays to a diagnosis,

and in many cases, to the start of treatment, can have drastic effects for some patients.

Allocating/reserving resource capacity between various urgency levels provides a control

that health care institutions can leverage to provide more efficient and effective service to

their patients.

We focused our analysis on three critical metrics to forecast and control: (i) the access

delay patients experience at each downstream service along their itinerary of care (diagnostic

testing and specialty follow-up services), (ii) the diagnostic flow time of patients which

captures the time from the root appointment to the end of diagnostic testing, and (iii)

the itinerary flow time of patients, which captures the total length of an itinerary of care.

Being able to estimate and control those metrics across various patient types can help heath

institutions manage their supply and demand in a more efficient way. An optimized capacity

reservation plan developed in this research will assure that the performance targets desired
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by the institution will be met. This capacity plan has a nice simple structure that can be

implemented in practice, but optimized methods to do that are beyond our scope. The

tradeoff analyses, and what if scenarios provided with this new methodology will also be a

valuable tool for decision making in health institutions.

Future research could involve more complex itinerary visit precedence structures. The

tools developed here could be extended to these more complex scenarios if the data require-

ments can be provided.
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4.8 Apppendix

4.8.1 Proof of Lemma IV.2

Our goal here is to show that P
(
χ
τ ,Sk
t > l

)
can be expressed in terms of linear constraints

subject to our decision variables Ω. We first start by using our definition of the diagnostic

flow time random variable (see Eq. 4.5) in Eq. 4.35. Based on our assumption that |Sk| = 2,

we will refer to the two elements of the set Sk as s1 and s2, and therefore Eq. 4.36 follows.

P
(
χ
τ ,Sk
t > l

)
= P

(
max
s∈Sk

κτ ,k
s · χst > l

)
(4.35)

= P
(
max{κτ ,k

s1
· χs1t ,κτ ,k

s2
· χs2t } > l

)
(4.36)

=
∑
i∈I

∑
j∈{0,1}

P
(
max{κτ ,k

s1
· χs1t ,κτ ,k

s2
· χs2t } > l|κτ ,k

s2
= j,Lτ ,s2

t = Lτ ,s2
t (i)

)
· P
(
κτ ,k
s2

= j,Lτ ,s2
t = Lτ ,s2

t (i)
)

(4.37)

=
∑
i∈I

∑
j∈{0,1}

max

{
P
(
κτ ,k
s1
· χs1t > l|Lτ ,s2

t = Lτ ,s2
t (i),κτ ,k

s2
= j
)

,

j · 11
{
Lτ ,s2
t (i) >

l∑
m=0

Ωτ ,s2
t⊕m

}}
· φτ ,s2

t (i) · P
(
κτ ,k
s2

= j
)

(4.38)

In Eq. 4.37, without loss of generality, we condition our probability on the realizations of

the demand in progress Lτ ,s2
t and the service/resource requirement κτ ,k

s2
random variables in

diagnostic service s2. Based on this conditioning, the requirement of service s2 along the

patient’s care path as well as the access delay in service s2 become deterministic. Specifically,

the access delay in service s2 will be greater than l with probability 1 if (1) s2 is a diagnostic

service required in the patient’s itinerary (i.e., j = 1), and (2) the demand in progress at

service s2 is greater than the total amount of capacity reserved for type τ patients from day t

to t+ l (i.e., Lτ ,s2
t (i) >

∑l
m=0 Ωτ ,s2

t⊕m). Otherwise, the probability of the access delay in service

s2 being greater than l will be 0. Therefore, the conditional probability of the diagnostic

delay exceeding l days (given the information on diagnostic service s2) will be the probability



167

that the access delay in diagnostic service s1 exceeds l days if the access delay in s2 does not

exceed l, and will be 1 otherwise. Moreover, since the resource need for service s2 random

variable κτ ,k
s2

is independent of the current state of the system (e.g., the current demand in

progress at s2), Eq. 4.38 follows. Using Eq. 4.19, and the independence assumption of the

demand in progress across diagnostic services, we can write P
(
χ
τ ,Sk
t > l

)
=

=
∑
i∈I

∑
j∈{0,1}

max

{
P
(
κτ ,k
s1
· χs1t > l

)
, j · xτ ,s2

t,l (i)

}
· φτ ,s2

t (i) · P
(
κτ ,k
s2

= j
)

(4.39)

=
∑
i∈I

∑
j∈{0,1}

max

{∑
i′∈I

∑
j′∈{0,1}

P
(
κτ ,k
s1
· χs1t > l|Lτ ,s1

t = Lτ ,s1
t (i′),κτ ,k

s1
= j′

)
· φτ ,s1

t (i′) · P
(
κτ ,k
s1

= j′
)

, j · xτ ,s2
t,l (i)

}
· φτ ,s2

t (i) · P
(
κτ ,k
s2

= j
)

(4.40)

=
∑
i∈I

∑
j∈{0,1}

max

{∑
i′∈I

11
{
Lτ ,s1
t (i′) >

l∑
m=0

Ωτ ,s1
t⊕m

}
· φτ ,s1

t (i′) · P
(
κτ ,k
s1

= 1
)

, j · xτ ,s2
t,l (i)

}

· φτ ,s2
t (i) · P

(
κτ ,k
s2

= j
)

(4.41)

=
∑
i∈I

∑
j∈{0,1}

max

{
pτ ,k
s1
·
∑
i′∈I

xτ ,s1
t,l (i′) · φτ ,s1

t (i′), j · xτ ,s2
t,l (i)

}
· φτ ,s2

t (i) · P
(
κτ ,k
s2

= j
)

(4.42)

=
∑
i∈I

∑
j∈{0,1}

y
(2),τ ,k
t,l (i, j) · φτ ,s2

t (i) · P
(
κτ ,k
s2

= j
)

(4.43)

In Eq. 4.40, we now condition on the demand in progress in diagnostic service s1 and the

resource need for service s1 random variables (while again using the independence property

of the demand in progress and κτ ,k
s1

). This conditional probability (given information on

diagnostic service s1) will be equal to 1 if and only if j′ = 1 and Lτ ,s1
t (i′) >

∑l
m=0 Ωτ ,s1

t⊕m

(similarly to the concept that gave us Eq. 4.38 above) which justifies Eq. 4.41. Again, using

Eq. 4.19, Eq. 4.42 follows directly. We now have proven 4.24 thanks to 4.25.

Since our goal is to minimize those probabilities of exceeding access/flow time targets, it
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is sufficient for y
(2),τ ,k
t,l (i, j) to satisfy the following linear equations in xτ ,s

t,l (i):

y
(2),τ ,k
t,l (i, j) ≥ j · xτ ,s2

t,l (i) (4.44)

y
(2),τ ,k
t,l (i, j) ≥ pτ ,k

s1
·
∑
i′∈I

xτ ,s1
t,l (i′) · φτ ,s1

t (i′). (4.45)

Eqs. 4.19, 4.20, and 4.21 have expressed xτ ,s
t,l (i) as a a linear set of constraints (subject to our

decision variable Ω), therefore we have shown that P
(
χ
τ ,Sk
t > l

)
can be expressed linearly

in our Mixed Integer Program.

4.8.2 Proof of Theorem IV.3

We start this proof by assuming that |Sk| = 3, with s1, s2, s3 ∈ Sk (see Eq. 4.46). We

then condition this probability in Eq. 4.47 on the realizations of the demand in progress

Lτ ,s3
t and the resource requirement κτ ,k

s3
random variables in diagnostic service s3.

P
(
χ
τ ,Sk
t > l

)
= P

(
max{κτ ,k

s1
· χs1t ,κτ ,k

s2
· χs2t ,κτ ,k

s3
· χs3t } > l

)
(4.46)

=
∑
i∈I

∑
j∈{0,1}

P
(
max{κτ ,k

s1
· χs1t ,κτ ,k

s2
· χs2t ,κτ ,k

s3
· χs3t } > l|κτ ,k

s3
= j,Lτ ,s3

t = Lτ ,s3
t (i)

)
· P
(
κτ ,k
s3

= j,Lτ ,s3
t = Lτ ,s3

t (i)
)

(4.47)

=
∑
i∈I

∑
j∈{0,1}

max

{
P
(
max{κτ ,k

s1
· χs1t ,κτ ,k

s2
· χs2t } > l|Lτ ,s3

t = Lτ ,s3
t (i),κτ ,k

s3
= j
)

,

j · 11
{
Lτ ,s3
t (i) >

l∑
m=0

Ωτ ,s3
t⊕m

}}
· φτ ,s3

t (i) · P
(
κτ ,k
s3

= j
)

(4.48)

=
∑
i∈I

∑
j∈{0,1}

max

{
P
(
max{κτ ,k

s1
· χs1t ,κτ ,k

s2
· χs2t } > l

)
, j · xτ ,s3

t,l (i)

}

· φτ ,s3
t (i) · P

(
κτ ,k
s3

= j
)

(4.49)

=
∑
i∈I

∑
j∈{0,1}

max

{∑
i′∈I

∑
j′∈{0,1}

y
(2),τ ,k
t,l (i′, j′) · φτ ,s2

t (i′) · P
(
κτ ,k
s2

= j′
)

, j · xτ ,s3
t,l (i)

}

· φτ ,s3
t (i) · P

(
κτ ,k
s3

= j
)

(4.50)

=
∑
i∈I

∑
j∈{0,1}

y
(3),τ ,k
t,l (i, j) · φτ ,s3

t (i) · P
(
κτ ,k
s3

= j
)

(4.51)
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The conditional probability in Eq. 4.47 (given the information on diagnostic service s3) will

be equal to 1 if and only if j = 1 and Lτ ,s3
t (i) >

∑l
m=0 Ωτ ,s3

t⊕m (similarly to the concept that

gave us Eq. 4.38 above). This allows us to transition to Eq. 4.48. In Eq. 4.49, we use the

independence assumption of the demand in progress across diagnostic services, and leverage

the result presented in Eq. 4.19. Finally, the result from Lemma IV.2 allows us to obtain

Eq. 4.50, and from the definition of y
(3),τ ,k
t,l (i, j) in Eq. 4.27, Eq. 4.51 follows. This proves

Theorem IV.3 for the case |Sk| = 3.

We can repeat this procedure up to the true dimension of the set Sk, while still being

able to express the diagnostic flow distribution similarly. Notice that P
(
χ
τ ,Sk
t > l

)
can be

expressed linearly in y
(|Sk|),τ ,k
t,l (i, j) and x

τ ,|Sk|
t,l (i) similarly to constraints 4.44 and 4.45. Hence,

P
(
χ
τ ,Sk
t > l

)
can be modeled as linear constraints subject to y

(2),τ ,k
t,l (i, j) (see Eq. 4.27),

therefore linearly subject to our decision variables Ω as well (from the result of Lemma

IV.2). This proves Theorem IV.3.
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4.8.3 Proof of Corollary IV.5

We use the definition of the itinerary flow time random variable (see Eq. 4.1) to express

the itinerary flow time distribution as follows:

P
(

Ξτ ,k
t > l

)
= P

(
χ
τ ,Sk
t + χτ ,k

1⊕t⊕χτ ,Skt

> l

)
(4.52)

=
∞∑
l1=0

P
(
χτ ,k
t⊕l1⊕1 > l − l1|χ

τ ,Sk
t = l1

)
· P
(
χ
τ ,Sk
t = l1

)
(4.53)

= P
(
χ
τ ,Sk
t > l

)
+

l∑
l1=0

P
(
χτ ,k
t⊕l1⊕1 > l − l1|χ

τ ,Sk
t = l1

)
· P
(
χ
τ ,Sk
t = l1

)
(4.54)

= P
(
χ
τ ,Sk
t > l

)
+

l∑
l1=0

∑
i∈I

P
(
χτ ,k
t⊕l1⊕1 > l − l1|Lτ ,k

t⊕l1⊕1 = Lτ ,k
t⊕l1⊕1(i)

)
· φτ ,k

t (i)

·
(
P
(
χ
τ ,Sk
t > l1 − 1

)
− P

(
χ
τ ,Sk
t > l1

))
(4.55)

= P
(
χ
τ ,Sk
t > l

)
+

l∑
l1=0

∑
i∈I

11
{
Lτ ,k
t (i) >

l−l1∑
m=0

Ωτ ,k
t⊕m

}
· φτ ,k

t (i)

·
∑
i′∈I

∑
j∈{0,1}

(
y

(|Sk|),τ ,k
t,l−1 (i′, j)− y(|Sk|),τ ,k

t,l (i′, j)
)
· φτ ,|Sk|

t (i′) · P
(
κτ ,k
|Sk| = j

)
(4.56)

= P
(
χ
τ ,Sk
t > l

)
+

l∑
l1=0

∑
i∈I

xτ ,k
t⊕l1⊕1,l−l1(i) · φ

τ ,k
t⊕l1⊕1(i)

·
∑
i′∈I

∑
j∈{0,1}

(
y

(|Sk|),τ ,k
t,l−1 (i′, j)− y(|Sk|),τ ,k

t,l (i′, j)
)
· φτ ,|Sk|

t (i′) · P
(
κτ ,k
|Sk| = j

)
(4.57)

In Eq. 4.53, we condition the itinerary flow time probability on realizations of the diagnostic

flow time. Given the diagnostic flow time is l1 days, we are now interested to see the

probability of the access delay in specialty k being greater than l − l1 (given the specialty

service request for a follow-up happened on day t ⊕ l1 ⊕ 1). For l1 > l, the first term in

Eq. 4.53 will always be 1. Therefore, in Eq. 4.54 we can make the sum go to l and add the

probability that the diagnostic flow time itself will be greater than l days. In Eq. 4.55, we

first use the independence assumption of the demand in progress random variables across

all services (see Assumption IV.1), and then condition our probability on the demand in
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progress in specialty service k on day t⊕ l1⊕ 1. This conditional probability will result in a

binary variable equal 1 if and only if Lτ ,k
t (i) >

∑l−l1
m=0 Ωτ ,k

t⊕m, and we use the result from IV.3

to express the diagnostic flow time probability in Eq. 4.56. Finally, using Eq. 4.19, Eq. 4.57

follows.

Since xτ ,k
t⊕l1⊕1,l−l1(i) is a binary variable, and it is multiplied by an expression between 0

and 1, we can convert Eq. 4.57 as follows, by using the definition of zτ ,k
t,l1,l(i, j) provided in

Eq. 4.31:

P
(

Ξτ ,k
t > l

)
= P

(
χ
τ ,Sk
t > l

)
+

l∑
l1=0

∑
i∈I

zτ ,k
t,l1,l(i) · φ

τ ,k
t⊕l1⊕1(i) (4.58)

where zτ ,k
t,l1,l(i) can be expressed as follows, for a large enough M > 0:

zτ ,k
t,l1,l(i) ≤ xτ ,k

t⊕l1⊕1,l−l1(i) (4.59)

zτ ,k
t,l1,l(i) ≥

∑
i′∈I

∑
j∈{0,1}

(
y

(|Sk|),τ ,k
t,l−1 (i′, j)− y(|Sk|),τ ,k

t,l (i′, j)
)
−M · (1− xτ ,k

t⊕l1⊕1,l−l1(i)) (4.60)

Eq. 4.59 assures that zτ ,k
t,l1,l(i) will be 0 when xτ ,k

t⊕l1⊕1,l−l1(i) = 0, and Eq. 4.60 constrains

zτ ,k
t,l1,l(i) to be at least

∑
i′∈I
∑

j∈{0,1}

(
y

(|Sk|),τ ,k
t,l−1 (i′, j)− y(|Sk|),τ ,k

t,l (i′, j)
)

when xτ ,k
t⊕l1⊕1,l−l1(i) = 1.

In this case, since our objective is to minimize itinerary flow time, this constraint will be

binding. Hence, from Eqs. 4.59 and 4.60 we are able to express Eq. 4.31 linearly in the

xτ ,k
t⊕l1⊕1,l−l1(i) and y

(|Sk|),τ ,k
t,l (i, j) variables. From Theorem IV.3, Eq. 4.20 and Eq. 4.21, we

have shown how to compute the the itinerary flow time distribution linearly in our decision

variables Ω.
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Conclusions

To conclude this dissertation, we discuss the integration of clinical care and clinical

research under shared resources. This dissertation has focused on providing differentiated

access to a set of resources based on patient characteristics and urgency levels. This was

done by using operations engineering tools to optimize a patient schedule so that it allocates

system capacity in a way that meets the health institution’s goals. We considered this general

idea in three different settings: (1) Access management in Clinical Research Units (CRUs)

where resources are entirely focused on clinical research visits and participants, (2) Access

delay control for a root appointment of an itinerary of care in a health institution with

resources devoted entirely to clinical care visits and patients, and (3) Itinerary/Diagnostic

flow time and access delay control for downstream visits of a care itinerary in a clinical

care setting. The access and patient flow management tools we provided in the above three

settings are useful independently, and address the entire scope provided in the introduction.

One question that remains is how to manage a system’s capacity so that it can provide

differentiated access to care patients and research participants, in a shared resource setting

where both for clinical care and clinical research visits occur. Specifically, the patient can

become a research participant to a clinical trial after waiting for access to an initial ap-

pointment in a medical specialty and either before or after going through all the necessary
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referrals and downstream visits (for disease diagnosis). Patients that have gone through

this process will, according to an i.i.d. Bernoulli process, enroll in the clinical trial with

probability that based on (1) the patient being eligible to participate in this trial, and (2)

the patient accepting to be part of it. The patient can be recruited for a clinical trial either

at the initial visit (if there is enough data on the patient to assure that she will meet the

trial inclusion criteria) or at the time of the follow up visit (when the diagnostic tests have

provided enough information about inclusion/exclusion criteria). If the patient becomes a

research participant of a given clinical trial, then she will follow a trial-specific protocol of

research visits as described in Chapter II. Note that portfolio selection and admission control

(BRPlan) decisions can be optimized to guarantee differentiated access by trial (see Chapter

II).

Given a commitment to the ongoing care needs of the patient panel/population, the

question regularly arises as to which clinical research studies/trials can be conducted within

the limited resources of the organization. With the operational dexterity provided by the

different methodologies of this dissertation and their integration with smart health IT, this

research can tackle the thorny problem of how to properly plan and manage the integration

of clinical care with clinical research when it occurs in the same clinic (such as the Michi-

gan Clinical Research Unit). Many patients benefit greatly from participating in a clinical

research program that is integrated into the patient’s regular clinical care visits. The ca-

pacity planning and multi-visit scheduling methodology can serve a role as an integrating

mechanism for accomplishing both the care and research dimensions of many diseases in a

manner that maximizes the value to patient and research communities while managing costs

by optimizing efficiency.

The goal is to determine which clinical trials should be performed in the site given (i)

clinical care patients’ access delays to a root appointment are limited to a given target
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(specified by the patient’s urgency level), (ii) clinical care patients’ diagnostic and itinerary

flow times (waiting times to a diagnosis) satisfy specific targets (e.g., urgent patients will

require much tighter constraints), and (iii) clinical research participants will be guaranteed

a certain access level (the Time to First Available Visit) based on their type (urgent vs. non

urgent) and trial they enroll in.

To develop methods to manage the joint delivery of clinical care and clinical research,

methods will need to be put into place to answer the following questions. (1) What is

the minimum capacity required for clinical care visits while assuring access delay to a root

appointment, diagnostic flow time, and itinerary flow time targets for each of our patient

types? (2) Given the remaining capacity available for clinical research visits, which portfo-

lio of clinical trials could/should be conducted in our infrastructure while assuring certain

access levels to the trials? Answering these two questions in an integrated way can be quite

computationally challenging, and results in non-linearity issues. This is why we built our

methodologies tackling each problem independently.

Given that a institution’s main priority is to guarantee proper access to resources for

clinical care patients, one could answer the above two questions in a multi-stage mixed-integer

optimization approach. In a first stage, one could use the methods developed in Chapter

III to minimize the capacity that needs to be allocated for clinical care root appointments

of an itinerary while still meeting the differentiated access levels desired for various patient

types. Then, in a second stage, one could use the methods from Chapter IV to once again

minimize the capacity required to perform downstream care visits such that itinerary and

diagnostic flow time constraints are met for each patient class. Both steps increase the

efficiency as much as possible while addressing the desired access and service/delay levels.

This would then result in the minimization of the clinical care capacity required to meet our

desired access constraints which is equivalent to maximizing the remaining capacity that can
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then be allocated for clinical research visits and participants (while still meeting the clinical

care standards we set on our system). Once we know the remaining available capacity

that can be used for clinical research and the resulting demand streams for clinical research

trials (that depend on when/how many patients of each type are scheduled for an initial

or follow up appointment, optimized in Stages 1 and 2), we can then determine in Stage 3

how much clinical research demand to accept (by answering the trial portfolio decision) and

how to create the BRPlan to provide differentiated access by type/trial. The methods from

Chapter II could be used for that last optimization stage.

Combining the ideas and methods developed in this dissertation will allow health insti-

tutions to conduct clinical care and clinical research efficiently under shared resources. The

new methods help provider organizations to understand (1) how to allocate system resources

between (1a) care appointments and research visits, (1b) urgent cases and less urgent ones;

(2) how much clinical research workload can be allowed, and (3) how each capacity decision

affects patient flow and access to care/research/diagnosis. These methods and insights are

fundamentally relevant to any health care institution that decides to tackle these complex

problems of access, efficiency, and cost control.
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