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ABSTRACT 

 

NEAR-SURFACE DAMAGE OF ALLOY 617 WITH AND WITHOUT BARRIER 
LAYERS DURING STATIC AND CYCLIC CREEP DEFORMATION AT 800°C 

 
by 

 
Alfred Ogola Okello 

 
 

Chair: J. Wayne Jones 
 

 

Alloy 617 – a Cr2O3-former – is the leading candidate material for heat 

exchangers of the Next Generation Nuclear Plants with high outlet temperatures (750-

850°C). The first objective of this work was to understand the effect of oxidizing (He-

≤0.1ppm O2) and carburizing/oxidizing (He-CO/CO2=1320) environments on creep 

deformation under static and cyclic stresses (σmax=50MPa and 75MPa), and specifically 

on damage in surface and near-surface regions of Alloy 617 at 800°C. Secondly, the work 

investigated the mitigation of environmental attack on Alloy 617 by using combinations 

of Al2O3-forming coatings, NiAl and FeCrAlY. Interrupted creep studies in the two 

environments were conducted on uncoated 617, aluminized 617 (NiAl/617), clad-

aluminized 617 (FeCrAlY/NiAl/617), aluminized 617 with FIB micro-notches, and clad-

aluminized 617 having undergone extra heat treatment (>24h). In these test conditions, 

the environmental attack was limited to the surface of the uncoated alloy without 

affecting the bulk creep behavior, with cyclic stress accelerating the surface damage. 

Uncoated 617 suffered surface and internal oxidation in both environments, with thin/less 
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porous Cr2O3 scales, and porous/extensive grain boundary Cr2O3 intrusions 

characterizing surface damage in He-≤0.1ppm O2 and He-CO/CO2=1320, respectively. 

The existence in unstressed specimens of different Cr2O3 growth rates due to Cr 

interstitials or Cr vacancies primary mobile species as a result of low or high oxygen 

partial pressures, respectively, was confirmed during the application of stress in this 

work. Also, the carburizing nature of the environment caused embrittlement of the near-

surface regions of the alloy, hence exposing fresher alloy surfaces for inward oxidation to 

take place. In contrast, slow growing alumina scale on NiAl and FeCrAlY coating layers 

protected underlying 617 from environmental attack. Surface undulation, characteristic of 

NiAl layers under cyclic stresses, was absent on NiAl and hence no surface cracking was 

observed, nor were cracks initiated or propagated from FIB-notches planted to simulate 

defects in the layer.  The NiAl layer was, however, vulnerable to cracking when a 

FeCrAlY cladding overlay was employed.  In general, these coatings prevented 

environmentally-induced damage on the substrate. However, further investigations are 

needed to study the long-term implications of creep damage accumulation in both the 

underlying substrate and coating layers in non-accelerated tests. 
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CHAPTER 1 

INTRODUCTION 

 
For quite some time now, nuclear power has been considered as an alternative 

non-greenhouse-gas-emitting energy source to meet growing electricity consumption. 

With the current fleet of reactors expected to be retired in the near future, there is a 

growing need to replace them with new nuclear reactor concepts. To this end, 

considerable efforts have been made to further the research and development of more 

efficient, more sustainable, more cost effective, and safer reactor designs referred to as 

Generation IV nuclear energy systems [1].  

The Very High Temperature Gas-cooled Reactor (VHTR) is one of the advanced 

reactor concepts with near future commercial viability that has been considered. Its 

appeal is derived from the fact that the heat from the reactor can be used for the co-

generation of steam for power and process heat for hydrogen production [2]. In this 

reactor design, helium gas is used as a coolant because of its chemical inertness and high 

heat transfer coefficient [1]. A critical component in the VHTR system is the 

Intermediate Heat Exchanger (IHX) [3], which is expected to play an important role in 

transferring heat from the primary coolant in the nuclear reactor core to the electricity 

generation and hydrogen production units. The IHX is characterized by service 

conditions of high outlet temperatures (>950°C), a helium cooling gas containing low 

levels of residual impurities, and high lifetime expectancy (>60 years) [3, 4]. These 

stringent conditions require that the alloy used for the IHX have excellent oxidation 

resistance, microstructural stability, and accompanied with good creep strength within the 

service temperature range. 

Of the potential candidate alloys considered for the IHX application, Alloy 617 

has received more attention. It is an austenitic alloy based on Ni-Cr with solid solution 

strengthening offered by cobalt and molybdenum, while chromium and aluminum 

provide oxidation resistance. The presence of intergranular and intragranular M23C6 and 
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M6C (where M is mainly Cr and Mo respectively) carbides provides creep strength and 

microstructure stability by inhibiting grain boundary sliding and grain growth at elevated 

temperatures. 

At elevated temperatures the IHX alloys may experience steady loading, cyclic 

loading (due to startup, shutdown and power changes), or even a combination of both [5]. 

Creep and cyclic creep deformation are, therefore, expected to be the primary damage 

modes for the IHX occurring under steady loading and cyclic loading respectively. Alloy 

617 has demonstrated competitive creep and cyclic creep properties compared to other 

Ni-based superalloys at these high temperatures [6, 7] . Unfortunately, its application in 

the IHX is affected by its poor compatibility with the CO, CO2, H2, and H2O impurities in 

helium. Low oxygen and carbon potentials arise from the low concentration levels of 

impurities, which actively corrode the metallic surfaces. Depending on the temperature, 

impurity levels, and composition of alloys, attack by the reactor environment in the form 

of surface or internal oxidation, carburization, and decarburization of the alloy are 

expected to occur with deleterious effects on the creep strength [8-12]. The creep strength 

is expected to be affected as a result of the grain boundaries being exposed to 

environmental attack under static and cyclic loading. Even though a chromia scale is 

formed upon exposure to the helium environments, these environmental attacks show that 

this scale is not protective enough and is permeable to molecular oxidants [13]. 

Environmental attack is expected to be more severe in the presence of static and cyclic 

stress during creep, and hence the need to explore methods to reduce the ingress of 

corrosive molecular (which dissociate and diffuse inward) oxidants. A less permeable 

surface scale that is more protective than chromia and offers a barrier against oxidation 

and corrosion in nickel and iron alloys is alpha alumina [14]. Since Alloy 617 is a 

chromia former, coatings that allow the preferential formation of more stable alpha 

alumina have been reported widely in the past [14-17] and more recently [18]. 

There are two objectives in this research work. First, the studies here seek to 

understand the effect of oxidizing and carburizing/oxidizing environments on creep 

deformation under static and cyclic stresses, and specifically on surface and near-surface 

regions of Cr2O3-forming 617 at 800°C. Second, investigations will be conducted on the 

mitigation of environmental attack on Alloy 617 by using combinations of Al2O3-forming 
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barrier layers - NiAl and FeCrAlY – developed at the University of California Santa 

Barbara [18]. 

 Chapter 2 provides a review of the literature that is relevant to the present work, 

including previous studies of the effects of impure He environments on alloy 617 at elevated 

temperatures, and known differences in behavior in these environments under creep 

conditions. A review of the work by Clark on  the efficacy of barrier layers on alloy 617 will 

also be highlighted. In Chapter 3, the experimental approach taken in terms of the procedure 

and the apparatus used in this research is described. A detailed description of near-surface 

environmental damage during creep deformation of uncoated 617 at 800°C with respect to 

the mechanisms responsible for this behavior is presented in Chapter 4. The role of NiAl 

barrier coatings and the special role of FeCrAlY clad overlayers on environmental damage, 

along with results on the mechanical integrity of these coatings at significant creep strains are 

presented in Chapter 5. Finally, conclusions and recommendations for future work are 

detailed in Chapter 6.  
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, a review of the literature relevant to understanding the objectives, 

the approach, and the results of the study in this dissertation is provided. Section 2.1 

describes the microstructure of Alloy 617 used in this dissertation. The nuclear reactor 

environments expected during service, and which are simulated in this dissertation, will 

be described in section 2.2. Section 2.3 outlines the types of environmental attack on 

nickel alloys, in general, and Alloy 617, in particular. The presentations in sections 2.2 

and 2.3 are a summary of prior research in Professor Gary Was’s group at the University 

of Michigan [19, 20]. Section 2.4 reviews the synergy that exists between this attack and 

the mechanical behavior of the alloy. Section 2.5 provides a summary of the development 

of barrier layers used to mitigate environmental attack in Ni alloys as described in Clark’s 

work [18, 21]. The final section states the objectives and the approach taken to meet 

them.  

2.1 Microstructure and thermal stability of Alloy 617 

Alloy 617 was introduced by Hosier and Tilack [22] and developed initially as a 

material for high-temperature applications above 800°C for use in aircraft and land-based 

gas turbines, chemical manufacturing components, and power generation structures. 

Since the early 1980s, this alloy has been considered for use in high temperature gas-

cooled reactors [23]. It is a face centered cubic wrought alloy – nominal composition is 

shown in Table 2-1 – with a favorable combination of high temperature creep strength 

(Co, Cr and Mo) and oxidation resistance (Al and Cr) [24]. The Ni-Cr alloy, with solid 

solution strengthening offered by Co and Mo, is predominantly used in the solution 

annealed condition consisting of annealing at a minimum of 1175°C followed by water 

quenching or rapid cooling by other means. Aluminum can also form the intermetallic 

compound γ’ over a range of temperatures, which results in precipitation strengthening. 

The accepted grain size for the alloy is ASTM No. 6 (45μm) or coarser for high creep-
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rupture strength but finer when fatigue resistance is preferred [23]. Depending on the 

level and success of the solid solution, intergranular and intragranular precipitates can 

occur along the rolling direction, as shown in Figure 2-1.  

Mankins et al performed ageing studies to determine the effects of long exposure 

(up to 10,000h) on the thermal stability of alloy 617 in the temperature range of 649°C-

1093°C [25]. The major phase present in the alloy after exposure was Mo and Cr rich 

M23C6, which was present along the grain boundaries and interior of the grains as discrete 

precipitate, and remained stable at all temperatures. X-ray diffraction (XRD) studies did 

not conclusively identify M(C,N) and M6C carbides in any sample, neither were 

topological close-packed phases such as sigma identified. Approximately 0.6 wt% of γ’ 

was precipitated in this alloy in the temperature range of 649-760°C thanks to the 

presence of Al. The findings in this study were similar to that of Takahashi et al [26] who 

determined the exact compositions of the carbides as Cr21Mo2C6 and Mo3Cr2(Ni,Co)1C 

and confirmed that both precipitates formed at grain boundaries when aged at 1000°C. 

Kihara et al observed the difference between the two types of carbides: bright and massive 

Mo-rich M6C and small, dark Cr-rich M23C6 particles [27].  

Figure 2-2 shows time-temperature-precipitation (TTP) diagrams recently 

constructed by Ren et al [23] to summarize the data on long term stability of precipitates 

(M23C6 and M6C) in alloy 617. According to Figure 2-3, THERMOCALC® predicts the 

equilibrium precipitates in alloy 617 to be M(C,N), M23C6, M6C, and Ni3Al (γ’) in the 

temperature range of 600-1400°C. 

In summary, Cr-rich M23C6 (discrete particles), Mo-rich M6C, and γ’ (Ni3Al) are 

the main precipitates in alloy 617 in order of decreasing abundance. γ’ is a low 

temperature phase which is stable only at temperatures below 800°C. Strengthening is 

derived from precipitates (M23C6, M6C, Ti(C,N)) and solid solution strengthening by Co 

and Mo. 

2.2 Environments used during high temperature mechanical testing 

In the VHTRs, helium is the coolant gas of choice because of its chemical 

inertness and attractive thermal properties. The helium coolant in an operating VHTR 

makes a complete circuit from the graphite core to the heat exchangers and back to the 

core. The sources of the impurities are air (from fuel element charge/discharge 
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operations), H2O (from degassing of the graphite and the thermal insulation), carbon 

dioxide (from degreasing or from direct leakage), and H2 (from proton diffusion through 

heat exchangers) [28, 29]. The reactions to produce the impurities are as follows. First, 

the hot graphite core removes virtually all free oxygen to form CO. Partial reactions of 

water vapor with the core produces H2 and CO. Some of this H2 reacts with the graphite 

core to produce CH4. The main impurities in the helium circuit are, therefore, CO, CO2, 

H2O, H2, and CH4 [30]. A purification unit plays a significant role in reducing the level of 

these impurities, but the remaining low levels of impurities are transported to the heat 

exchangers where they can lead to environmental degradation of the high temperature 

alloys. The concentration levels of impurities in heat exchangers reported in the helium 

coolant during steady-state operation of some experimental reactors are shown in Table 

2-2 [31, 32]. As observed in the table, helium contains impurities in the parts-per-million 

range. Although these concentrations are low, it is expected that the environment will 

bear a low oxidizing potential (low oxygen concentration) while the carbon activity, set 

by carbon bearing species CO and CH4, could be significant. The typical oxidation 

behavior observed are surface or internal oxidation, surface or bulk carburization, and 

bulk decarburization.  

Several researchers have described the gas/metal reactions and the corrosion behavior 

of Ni-Cr alloys in VHTR environments [11, 29, 33-37]. The following is a summary of the 

proposed reactions that describe the oxidation behavior of Ni-Cr alloys in VHTR 

environments:  

 

Oxidation by H2O, CO, and CO2: 

 2𝐶𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 3𝐻2𝑂 → 𝐶𝑟2𝑂3 + 3𝐻2 (2.1) 
 

 2𝐶𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 3𝐶𝑂2 → 𝐶𝑟2𝑂3 + 3𝐶𝑂 (2.2) 

 9𝐶𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 3𝐶𝑂 → 𝐶𝑟2𝑂3 + 𝐶𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (2.3) 

Decarburization by H2O and CO2: 

 3𝐶𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝐻2𝑂 → 𝐶𝑂(𝑔) + 𝐻2 (2.4) 
Carburization by CH4: 

 7𝐶𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 3𝐶𝐻4 → 𝐶𝑟7𝐶3 + 6𝐻2 (2.5) 
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First, the oxidation of Cr by water vapor and carbon dioxide is possible under 

favorable thermodynamic and kinetic conditions to form Cr2O3 layers that help prevent 

further carburization and decarburization. The progress of Equation (2.3) depends on 

whether the temperature is above or below the critical value (Tcr) as described by Brenner 

[37], Quaddakers [33], and Christ [38]. The forward direction of the equation is favored 

below the critical temperature and oxidation and carburization occur. Above the critical 

temperature, the reverse direction of the equation is favored resulting in the formation of 

Cr metal and CO gas. Second, decarburization of the alloy takes place by oxidation of the 

carbon in solution to CO, which in turn leads to the dissociation of internal carbides 

(necessary for creep strength). There is also release of two gases from the metal surface. 

Lastly, carburization of the alloy is made possible by CO and CH4. Methane thermally 

cracks at high temperature, forming carbides within the alloy. 

Based on the reactions shown by Equations (2.1) - (2.5), the impurities in helium 

can be grouped into two categories: carburizing/decarburizing gases (CO and CH4), 

which establish carbon potential at the metal surface, and oxidizing gases (CO2 and H2O), 

which establish an oxygen potential at the metal surface. Quaddakers et al. proposed a 

theoretical model for determining the combined effect of the oxidizing and 

carburizing/decarburizing gases in a Ni-Cr alloy system [11, 33, 39]. By superimposing 

the kinetics of Equations (2.1) - (2.5) on a Cr-stability diagram, stability regimes of 

metal, oxide, and carbide are delineated. Figure 2-4 [19] shows a modified Ellingham 

diagram to display results of the Ni-Cr alloy’s stability calculations. The boundaries and 

triple point shown on the stability diagram are governed by the following reactions: 

 

Boundary QA: 4𝐶𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 3𝑂2 → 2𝐶𝑟2𝑂3 (2.6) 

Boundary QB: 23𝐶𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 6𝐶𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 → 𝐶𝑟23𝐶6 (2.7) 

Boundary QC: 𝐶𝑟23𝐶6 + 69𝑂2 → 46𝐶𝑟2𝑂3 + 24𝐶𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  (2.8) 

Triple Point Q: 2𝐶𝑟2𝑂3 + 𝐶𝑟23𝐶6 → 27𝐶𝑟𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 6𝐶𝑂 (2.9) 

 

The oxidation behavior of a Ni-Cr alloy can be predicted by comparing the 

oxygen and carbon potentials at the metal surface [11, 33] established by the impurities 

with the critical parameters 𝑃𝑂2
∗ ,𝑎𝐶∗ , and 𝑃𝐶𝑂∗ . A simplistic breakdown of the different 
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environmental responses at different carbon and oxygen potentials at the metal surface 

are identified in the stability diagram. The four environments, labeled 1, 2, 3, and 4, have 

the following characteristics: Cr metal is stable and no corrosion takes place (Zone 1); 

decarburization of the alloy is expected (Zone 2); oxidation and slow carburization of Cr-

rich alloy is expected (Zone 3); and carburization is expected in Zone 4. During the 

steady-state operation of the VHTR, the materials are expected to be in the area of 

highest stability, Zone 3 (oxidizing and slightly carburizing environment). In the current 

research, therefore, the environment of interest will be oxidizing and slowly carburizing. 

Cabet et al. [40] suggested that there is a critical temperature (900-1000°C), above 

which chromium oxide is reduced by carbon from the alloy and the surface oxide layer is 

unstable, hence Equation (2.3) proceeds to the left. The deleterious reaction of chromia 

and carbon thus fixes the operating temperature of the reactor, which determines the 

temperature at which the experiments in this research are conducted. The critical 

temperature is also a function of the partial pressure of carbon monoxide. Figure 2-4 

shows that the relationship between the critical temperature and the level of CO. It is 

observed that the temperature increases with the increase in CO level.  

The presence of CH4, H2, CO, CO2, and H2O in the VHTR helium makes for 

complex gas-metal interactions. For this reason, the experiments conducted in this 

research use a simplified binary gas mixture (helium gas containing only CO and CO2 as 

impurities) as proposed by Kumar [10]. In the He + CO + CO2 gas mixture, the oxygen 

potential and carbon potential are given by the reactions: 

 

 2𝐶𝑂 + 𝑂2 → 2𝐶𝑂2 (2.10) 

 
𝑃𝑂2 =

(𝑃𝐶𝑂2)2

𝐾(2.10)(𝑃𝐶𝑂)2
 

(2.11) 

 𝐶 + 𝐶𝑂2 → 2𝐶𝑂 (2.12) 

 
𝑎𝐶 =

(𝑃𝐶𝑂)2

𝐾(2.12)(𝑃𝐶𝑂2)
 

(2.13) 

 

As shown, the oxygen potential in the environment depends only on the CO/CO2 

ratio, whereas the carbon potential depends on both the CO/CO2 ratio and the CO 



 

9 
 

concentration in the gas. This means that a low CO/CO2 ratio has high oxygen and low 

carbon potentials, whereas a high CO/CO2 ratio has low oxygen and high carbon 

potentials. 

2.3 Environmental attack of nickel alloys at high temperature 

The types of environmental attack outlined in the previous section are manifested 

in the form of oxidation, carburization and decarburization. The behavior that takes place 

will depend on the alloy composition, temperature, and helium composition. These 

processes can degrade the mechanical strength of the material. Cracks can nucleate from 

internal oxides [41]; low temperature embrittlement [9] and loss of creep ductility can 

take place as a result of bulk carburization and [42]; decarburization can reduce creep 

rupture strength [12, 43, 44].  

Since the alloys used in the VHTR, as stated previously, are expected to operate 

in Zone 3 of the stability diagram, this research will focus on the oxidation and 

carburization degradation modes of Alloy 617. Decarburization is not expected to occur 

at 800°C [40] and so will not be considered here. Several studies have been conducted to 

evaluate the corrosion performance of Ni-Cr alloys [10, 28, 33, 40, 45-49]. 

2.3.1 Oxidation  

Chromium is the only major alloying element which would be expected to oxidize 

in the environment together with other elements present at much lower levels such as 

aluminum, silicon, manganese, and titanium [28].  

The main microstructural observation made is formation of a slow-growing Cr2O3 

surface scale. This scale can be enriched with Mn on the outer surface and grain 

boundary oxides rich in Al, Ti and Si [33, 50] as observed for temperatures 800-1000°C 

for Alloy 617. Elements with a higher oxygen affinity than Cr can form oxides below the 

chromia scale (Si and Al). Spinel formations can also form at the outer region of the 

chromia scale. An example is MnxCryO4 [40, 47] as seen for W-containing Alloy 230. It 

is important to note also that Cr depletion, caused by preferential oxidation of Cr, can be 

observed beneath the scale. Figure 2-5 shows the microstructure of Alloy 230 after 

oxidation [47]. 
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2.3.2 Carburization  

Carburization is a high temperature corrosion phenomenon caused by the ingress 

of carbon from the environment into the alloy, leading to internal carbide precipitation 

and changes to mechanical properties of the alloy [45]. It has been proved that the 

solubility and diffusivity of carbon in Fe-Ni-Cr alloys are relatively high so that inward 

diffusion of carbon prevails and the outward diffusion of carbide-forming elements is 

much slower. This criterion [51] leads to the well-known appearance of carbide-

containing materials in the matrix of the alloy.  

Depending on the oxygen partial pressure, two cases of carburization can be 

considered [8]. On the one hand, if the oxygen partial pressure is lower than the 

equilibrium partial pressure for the formation of Cr2O3, protective chromia scales cannot 

be formed and carbon can penetrate into the alloy with no inhibition. In this case, the 

ingress of carbon is diffusion-controlled (rate of carburization depends on the carbon 

diffusion and solubility into the material). Two zones of carbides are formed: an outer 

zone with M7C3 and an inner zone with M23C6, where M is Cr and/or Mo, as seen in 

Figure 2-6. At this lower oxygen level, an increase in the content of aluminum in the alloy 

could be used to form a protective scale. On the other hand, if the oxygen partial pressure is 

higher than the equilibrium partial pressure for chromium oxide formation, a protective 

chromia scale is formed. Carburization of chromia-forming alloys should not take place 

under these conditions since there is virtually no solid solubility of carbon in oxides as shown 

by Wolf and Grabke [49]. However, carburization may occur if there is permeation of carbon 

through oxide layers by transport of carbon-bearing molecules along the grain boundary 

cracks and voids of the oxide scale into the material [46] or if spallation of the oxide scale 

occurs [48]. Here the ingress of carbon is said to be phase boundary-controlled. This second 

case is a slow carburization process and is what is expected in the VHTR environments and 

so will be considered in this research. 

Was et al [20] presented the results of experiments in two He + x ppm CO + 1.5 

ppm CO2 (where x = 13.5 and 1980) environments for durations up to 500 h at 850°C on 

Alloy 617. The corresponding CO/CO2 ratios are 9 and 1320 respectively. As has been 

mentioned previously, the low CO/CO2 ratio of 9 has high oxygen and low carbon 

potentials, whereas the high CO/CO2 ratio of 1320 has low oxygen and high carbon 

potentials. Figure 2-7 and Figure 2-8 show cross-sections revealing the surface 
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microstructure of the samples exposed to these environments. The exposed specimens 

were characterized by SEM where the key microstructural features were identified as 

surface Cr2O3, carbide-free zone confined to the grain boundary regions, and Al2O3 scales 

[20]. The dimensions of these features were summarized [20] as shown in Table 2-3, 

Table 2-4, and Table 2-5. The average dimensions of the features increased with the 

increase in the carbon potential from environments 9 to 1320 and with the increase in 

exposure time. A salient observation was that the surface scale Cr2O3 was thicker over the 

grain boundaries where they intersected the surface. It is believed that this could be 

attributed to higher diffusivity of Cr along the grain boundaries. Also, particles believed 

to be carbides (Cr7C3) were observed on the surface of the chromia scale but only after 

500 h of exposure to the environment. Bulk carburization, where there is an increased 

area fraction of the carbides along the twin boundaries and grain interiors, is shown to 

have occurred by Kumar et al [10]. Figure 2-9 and Figure 2-10 show the bulk 

microstructure of Alloy 617 in these environments [10]. 

2.4 Interaction between mechanical deformation and environmental attack by 

impure helium environments 

Under VHTR high temperature service conditions, the metallic components are 

subjected to steady loading, cyclic loadings, or even a combination of both while at the 

same time exposed to the helium environments. The following section describes creep 

deformation on Alloy 617. 

2.4.1 Creep Phenomenon 

According to Hooke’s law, the instantaneous relationship between the load 

applied and the deformation of materials at room temperature is linear in the elastic 

regime. However, at elevated temperatures these materials deform slowly and 

continuously in a time-dependent manner even when subjected to stresses well below 

yield stress. This phenomenon is called creep and is defined as the time-dependent 

deformation of a material under a constant applied load. Since this process is thermally 

activated, the creep deformation or creep strain can be expressed in very general terms 

for creeping solid as: 
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 𝜀 = 𝑓(𝜎,𝑇, 𝑡) (2.14) 

 

Additionally, since creep is a thermally activated process, the steady state creep 

rate can be written in terms of an Arrhenius-type equation and is usually expressed as: 

 𝜀̇ = 𝐾𝑒−
𝑄𝑐
𝑅𝑇 (2.15) 

 

where 𝜀̇  is the creep rate, 𝑄𝐶  is the activation energy for creep, and 𝐾  is the creep 

constant. The creep constant is a combined factor that depends on stress, the elastic 

modulus, and the grain size. For high temperature creep (generally above 0.4 Tm where 

Tm is the absolute melting temperature of the materials), this activation energy, 𝑄𝐶, has 

been shown to be equivalent to the activation energy for self-diffusion, 𝑄𝑆𝐷. This means, 

therefore, that high temperature creep is controlled by diffusion [52]. High temperature 

creep can also occur at stresses substantially below the yield stress of the material. The 

shape of the resultant curve is thus stress and temperature dependent. A model creep 

curve is shown in Figure 2-11. 

This model curve depicts the tensile deformation of a material in the high 

temperature creep regime and is plotted as axial strain versus temperature. The typical 

tensile creep curve can be discussed in terms of the initial elastic strain and the 

subsequent three creep stages. The instantaneous elastic strain is a result of the stress 

being applied to the specimen suddenly. Thereafter, the first part of the creep curve is a 

region of increasing strain but at a decreasing rate. This is known as the primary creep of 

the logarithmic region. The second stage of the creep curve is known as the steady-state 

or secondary creep and is linear with time. This stage represents a balance between work 

hardening and recovery processes. This steady-state creep rate (𝜀𝑠̇𝑠) has a power-law 

dependence on stress and varies exponentially with the temperature. The relationship is 

typically expressed as: 

 

 𝜀𝑠̇𝑠 = 𝐾𝜎𝑛𝑒−
𝑄𝑐
𝑅𝑇 (2.16) 
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where the creep stress exponent,  𝑛, varies from 3 to 8. The final region or the tertiary 

creep region is the result of internal cavities linking up to form cracks, which ultimately 

lead to creep rupture. In this region, the creep rate increases at an increasing rate due to a 

reduction in the net effective specimen section; hence, as the crack grows and the net 

effective section is reduced, the stress is elevated. 

The deformation mode for high temperature creep can be presented in the form of 

deformation mechanism maps [53]. These maps provide information on the creep 

mechanisms of materials and make it possible to infer the mechanism that will determine 

the creep rate under the given conditions. No such maps are available yet for Alloy 617, 

but an example is shown in Figure 2-12 for pure nickel. From this map, it can be 

determined that the dislocation creep begins above 0.2 Tm and above 10-4σ/E depending 

on the strain rate. 

If the material is loaded for sufficiently long times at high temperature, creep 

deformation will terminate in rupture. Creep rupture can be defined as the end result of 

the accumulation of creep damage. The first indication of eventual rupture is usually the 

acceleration in creep rate marking the onset of the tertiary stage as seen in Figure 2-11. 

According to Ashby and Dyson [54], creep rupture is the result of two or more of the four 

broad mechanisms. The mechanisms are categorized as: (a) damage by loss of external 

section (necking), (b) damage by loss of internal section (formation of cavities at lower 

stresses and grain boundary cracks at higher stresses), (c) damage by microstructural 

degradation (overageing of second phase particles needed for strengthening), and (d) 

damage by gaseous-environmental attack (internal and external oxidation). Although, 

several processes can cause or contribute to the acceleration of creep rate during the 

tertiary stage, it is usually the development of microcracks that leads to creep fracture. 

These microcracks, at high temperatures, normally form and grow along grain boundaries 

(intergranular cracks). Two forms of intergranular cracking are observed. At high 

stresses, wedge or triple-point cracks are formed, while intergranular cracks develop at 

low stresses by nucleation, growth and link-up of grain boundary cavities. 
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2.4.2 Creep of Alloy 617 in Air and impure He environments 

High-temperature mechanical deformation behavior of Alloy 617 has been 

characterized and this sub-section summarizes the most important findings.  

Studies have shown that the creep behavior of Alloy 617 depends on the test 

temperature. In a review by Shubert et al [55], they identified Alloy 617 as having 

superior creep qualities compared to other high-temperature alloys (Hastelloy-S, 

Hastelloy-X, Nimonic-86, IN-519, and Incoloy 800H). They observed that creep curves 

at 850°C showed the more or less classical form of creep curve with recognizable 

primary, secondary, and tertiary creep regimes. However, at 950°C the 617 curves 

showed an increasing creep rate from the start of the test with no recognizable secondary 

creep regime. This disappearance of the secondary creep regime is consistent with the 

observation made by Roy where increasing the level of stress or temperature decreased 

the length of steady-state regime [56]. In contrast, Chomette noted non-classical creep 

behavior of Alloy 617 between 850-950°C, where a strain rate drop at the beginning of 

the test preceded a creep rate increase to a plateau before the onset of tertiary creep.. 

Creep mechanisms of Alloy 617 have been defined in the literature. Kihara 

studied the evolution of carbides during creep and their effects on the creep properties of 

Inconel 617 at 1000°C and 24.5 MPa [27]. He identified a correlation of creep regime 

with evolution of carbides and determined that the grain boundary migration started in 

the steady state region. Cook went further and pointed out that decarburization at 1000°C 

reduced creep strength as grain boundary migration took place [57]. While these final 

creep stages exhibited grain boundary sliding due to migration of carbides, other 

researchers (Sharma [58] and Kim[59]) have identified dislocation climb as the rate-

limiting creep deformation mechanism for Alloy 617.  

  

2.4.3 Simultaneous action of stress and environmental attack at high temperature 

Under service conditions, it is most often not high-temperature corrosion alone 

that causes failure of components, but the interaction with simultaneous mechanical 

stresses. It is important to point out the difficulty of separating the effects of these two 

factors at high temperatures since there seems to be a synergistic effect of both stress and 

environmental attack. In this section, the effect of corrosion on the mechanical behavior 
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and the effect of applied loads on the corrosion behavior of high temperature alloys are 

discussed. 

Studies have been conducted in an effort to understand the effect of mechanical 

deformation on the high temperature environmental attack. First, Rahmel and Grabke in 

their review [60] have shown that the chromia scale formed at high temperature can 

undergo rupture and spallation as a result of creep. Due to the repetitive exposition and 

oxidation of the base alloy surface, the analysis of the environmental attack could be 

misleading to suggest a scale growing following a linear-rate law while in effect the 

growth is a repetition of the initial parabolic phase. Second, Schnass [42] added that the 

rupture of the scale could increase internal corrosion of the alloy. Under an oxidizing and 

carburizing H2O-CO-H2 environment and mechanical stress, he demonstrated how a Ni-

Cr-Fe alloy suffered preferential grain boundary attack as a result of carbon-bearing 

element penetration and formation of internal carbides along the grain boundaries. These 

carbides can subsequently be selectively oxidized. Attention was also brought to the fact 

that this enhanced corrosion took place at high and not low strain rates. 

It also is evident from several studies that the environmental attack has a bearing 

on the mechanical deformation of the alloys at high temperature. Conflicting observations 

of the effect on the creep resistance have been made. Precipitation hardening of carbides 

at 900°C showed an increase in creep resistance, but the creep strength was reduced after 

thermal ageing at 1000°C since the coarsening of the carbides became less effective 

dislocation barriers [61]. The reduction of creep strength has also been reported to occur 

as a result of chromia scale growth. This growth occurs by formation of vacancies at the 

metal/scale interface when metal ions and electrons migrate outwards during corrosion 

[61, 62]. The gas environment composition has been shown to influence the type of creep 

failure. In a study to investigate the effect of trace impurities in helium on creep behavior, 

Shankar and Natesan [12] observed that a carburizing environment exhibited the lowest 

rupture strain and longest life, while an oxidizing environment exhibited shorter life. 

These different results on creep behavior of Alloy 617 in different helium environments 

point to a complex behavior that is not completely understood. There is general 

agreement, however, that the creep behavior of Alloy 617 is affected significantly by the 
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type of environment. This has been shown by results of creep-rupture strength in air and 

in HTR helium occurring within the same scatter band [44, 63].  

Studies have also been conducted on the synergy between environmental attack 

and cycling. Balanced cycles of equal strain rates in tension and compression were 

subjected on stainless steel (304) at elevated temperature in air. It was observed that as 

the frequency of the cycles was decreased, the fatigue life was reduced. This was 

demonstrated by the change from slip-band-induced transgranular initiation to oxidation-

induced initiation and further propagation of cracks [64]. Sadanada [65] has shown the 

effect of fatigue processes of Alloy 718 at 425°C on the environmental effect at the crack 

tip by favoring oxygen transport ahead of the crack tip during fatigue [66]. 

It is apparent that most of the studies conducted so far sought to understand the 

synergy existing between stress and environmental attack on alloys that were tested for 

longer times and sometimes to failure. The observations made in these tests have shown 

how difficult it is to separate the effects of temperature, cycling, strain rate, and 

environment during high-temperature deformation studies. Yun [67], for instance, 

concluded that the rupture of a specimen at high temperature was not caused by 

oxidation-induced surface cracks alone, but also by the formation of creep pores and 

cracks that were not dependent on the test atmosphere. For this reason, it is believed that 

extra work needs to be done to clarify the near-surface damage in the absence of bulk 

degradation during static and cyclic deformation at high temperature. In this way, the 

study of the change of microstructure around the oxidation-induced surface cracks could 

be simplified and reduced to near-surface damage analysis and the surface response in 

different environments could be studied. Viskari [68, 69] gives an example of this 

approach by describing the course of events that takes place during the intergranular 

crack tip oxidation of Alloy 718. Krupp et al have also shown that there is a change of 

oxidation products within the cracks formed at high temperature by comparing the sharp 

tip of wedge-type specimens during isothermal exposure and thermal-cycling conditions. 
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2.5 Development and characterization of barrier layers proposed for protection of 

Alloy 617 in impure helium environments 

The NEUP 10-963 Final Report [21] provided a comprehensive summary of the 

characterization of coating layers developed by Clark [18], which is presented in this 

section. 

Chromia formed on Alloy 617 is incapable of developing a protective surface 

oxide scale in impure helium environments at higher temperatures (> 800°C) and cannot 

prevent further environmental attack in the form of oxidation, carburization and 

decarburization compared to alloys capable of developing the more stable alumina scale 

[44, 70]. The formation of chromia on 617 has two consequences. First, it induces Cr-

depleted and carbide-depleted zones [61, 71] under the surface oxide layer. The loss of 

chromium from the matrix reduces the degree of solid solution strengthening and also 

leads to a dissolution of chromium carbides as the chromium activity decreases [61]. 

Second, the formation of internal alumina oxides is known to act as initiation sites for 

surface cracks [72], and also, when coupled with mechanical cycling, as an aid in crack 

propagation [73]. To improve the corrosion and oxidation resistance of Alloy 617, the 

formation of alpha alumina scale instead of chromia should be promoted, and also grain 

boundary oxides that affect the mechanical performance of the alloy should be eliminated 

or reduced. 

Even though alpha alumina has more attractive properties (slow growth and 

superior stability) relative to chromia, its formation is preceded by metastable phases 

(gamma and theta) at intermediate temperatures. Two barrier concepts developed on 

Alloy 617 and characterized at the University of California Santa Barbara were used in 

this dissertation. The concepts are based on alpha alumina as a primary surface barrier, 

provided by one or more chemically distinct alloy layers that would promote and sustain 

the formation of the protective scale. One approach relied on aluminizing as a path to 

form an Al reservoir on the alloy surface that can enable and sustain the formation of 

thermally-grown alpha alumina. The second approach involved cladding the aluminized 

surface with a thin layer of FeCrAl(Y/RE), an alloy well known to form alpha alumina at 

lower temperatures much more readily than diffusion aluminide or MCrAlY coatings 

typically used for oxidation protection in Ni-base superalloys. The following sections 
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summarize the suitability of these coatings to protect Alloy 617 in the absence of 

mechanical stress as described by Clark [18, 21].  

A high-activity/low temperature pack cementation aluminizing process was 

performed using a powder mixture of 4Al/4(CrCl3·6H2O)/ 92Al2O3 (in weight percent). 

After being wrapped in alumina paper, the specimens were embedded in the pack, sealed 

in an alumina crucible, and placed in a tube furnace under flowing high purity Ar (XO ≤ 

10-5). Depending on the desired aluminizing thickness, the pack was heated for a 

prescribed temperature (700-850°C) and time (4-10 h). Subsequently, annealing was 

done at 1000°C in flowing, gettered Ar to complete the development of the surface layers 

before the surface was polished down to an 800-grit finish to eliminate residual oxide. Two 

generations of materials with different aluminized layers were prepared, namely: Generation 

I and Generation II. Generation I (Gen I) specimens were made by aluminizing at 

700°C/9.6h and subsequently heat treating (1000°C/16h) to develop the NiAl layer by 

interdiffusion with the substrate. A carbide + sigma phase was formed. Aluminizing for 

Generation II (Gen II) specimens was done at 850°C/4h and heat treated at 1000°C for 

1h. This became the preferred aluminizing process with the advantage of minimizing the 

scale to be removed after heat treatment, preserving a thicker aluminized layer, and also 

developing a more stable sigma phase.  

A subset of aluminized specimens was clad with FeCrAlY by diffusion bonding 

using a high vacuum hot press (1000°C/1h/20MPa). Gen II aluminized creep specimens 

were clad only on the wider surfaces of the gauge length and the excess cladding trimmed 

using a femto-second laser. 

All specimens to be used for subsequent environmental exposures and creep were 

pre-oxidized (1000°C/2h) in gettered Ar (XO ≤ 10-13) to form a thin, continuous alpha 

alumina scale prior to testing.  

2.5.1 Baseline oxidation and interdiffusion properties 

In order to provide a baseline for subsequent characterization of creep behavior in 

impure Helium environments, Clark evaluated the microstructure evolution of the 

synthesized barrier layers in benign environments without applied load. Long-term 

effectiveness of the barrier layers requires that the Al reservoir be stable against depletion 

by subsequent oxidation and interdiffusion with the 617 substrate, and the protective 



 

19 
 

scale needs to be regenerated in case of cracking or spalling. The following subsections 

provide a summary of the characterization of oxidation and interdiffusion properties as 

described by Clark [18]. 

2.5.1.1 Oxidation 

Clark observed that smoother, thin, dense, and adherent α-alumina was formed on 

the NiAl and FeCrAlY layers upon pre-oxidation in low pO2, thereby suppressing the 

plate-like or whisker-like morphologies associated with the transient alumina growth. 

However, the transient alumina phases persisted longer in the aluminized surfaces than 

on those clad with FeCrAlY, and the difference was accentuated at lower temperatures, 

as shown in Figure 2-13 and Figure 2-14. Even though this step demonstrated that the 

alumina formed was sufficiently adherent and durable, creep studies in impure He 

environments are required to verify whether a protective alumina scale will be 

regenerated in the event of local damage (cracking/spallation).  

2.5.1.2 Interdiffusion - Aluminized systems 

Aluminizing at low-temperature and high-activity produced a top layer 

comprising primarily Ni2Al3 with discrete second phases darker in BSE contrast, Figure 

2-15(a,e). Figure 2-16(a) shows an Al:Ni ratio higher than 3:2, presumably because of 

substitution of other elements, e.g. Co, in the Ni2Al3. Clark surmised that the darker low-

Z phases in Figure 2-15(a,e) and Figure 2-16(a) were likely carbides of the elements with 

lower solubility in Ni2Al3 that precipitate in situ as the aluminizing front advances rapidly 

into the 617 substrate. After the lower aluminizing temperature for Gen I, Clark observed 

no layers of intermediate phases at the interface with the substrate, Figure 2-15(a), but 

she observed an incipient layer of sigma phase, corresponding to the spike in the Mo and 

Cr concentrations in Figure 2-16(a), at the similar interface after the higher temperature 

process (Gen II). This layer was interpenetrated by metal that eventually allowed outward 

Ni diffusion to convert the Ni2Al3 layer into NiAl.  

A more desirable NiAl was formed from transformation of Ni2Al3 following the 

heat treatment. During this process, two distinct layers developed at the interface with the 

substrate, consisting primarily of M23C6 carbide, closer to the NiAl, and sigma phase, 

closer to the substrate. Even though these layers were interpenetrated by a small fraction 
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of metallic phases, they acted as effective barriers to slow down interdiffusion with the 

substrate at longer times. The carbide and sigma layers are suspected to be brittle phases, 

and it is not clear if they could be potential crack initiation/propagation zones after strain 

accumulation during static or cyclic creep. Clark noted that a layer of Ni-rich NiAl that 

lacked second phases evolved between the original aluminized thickness marked by Cr-

rich precipitates, and the in-situ diffusion barriers, as shown in Figure 2-16(b). This layer 

had a noticeably lower Cr content than the outer NiAl layer, as shown in Figure 2-17. 

Figure 2-19(a) indicates that the addition of Al to the original 617 composition moves the 

system into regions where the FCC and B2 systems can be in equilibrium with the M23C6 

and sigma phases. 

Slow growth of the carbide and sigma interphases resulting from the additional 

heat treatment at 1000°C are shown in Figure 2-15 and Figure 2-17. The sigma layer 

became destabilized after ~100h and was replaced by a less continuous layer of M6C that 

was believed to be less effective as a diffusion barrier in Gen I specimens (Figure 2-15(a-

d)). Close to the carbide layers, there was a region with small amounts of the L12 phase, 

Figure 2-19(a). In contrast, Clark observed that the higher aluminizing temperature used 

for Gen II resulted in a  much more stable sigma layer over time that was retained even 

after 500h at 1000°C as shown in Figure 2-15(e-h) and Figure 2-17(a,b). The surface 

layers evolved much slower at 800°C, as shown by comparisons of Figure 2-17 and 

Figure 2-18. This was assumed to be the current temperature of interest for the IHX in the 

VHTR. 

2.5.1.3 Interdiffusion – Clad/Aluminized systems 

Clark also showed that cladding of the aluminized surface generated a 

combination of an Al-lean outer layer more favorable to the rapid formation of alpha 

alumina, with an Al-rich reservoir under it. As the FeCrAlY layer was slowly oxidized, 

the underlying aluminide layer was expected to replenish the Al. Additionally, it also 

served as a diffusion barrier between FeCrAlY and 617. In this section, the diffusional 

interactions of the cladding/reservoir system and their long-term durability, as observed 

by Clark are presented.  

Figure 2-20 shows microstructures of Gen I and Gen II aluminized systems with 

FeCrAlY cladding, where Gen II specimens showed residual porosity at the interface 
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between the cladding and the aluminide layer, Figure 2-20(e). Clark could not identify 

the origin of this porosity, but surmised the possibility of asymmetric interdiffusion or 

insufficient creep deformation during bonding. It is worth noting, however, that the Gen I 

specimens were heat treated for 16h at 1000°C to develop the aluminized layer structure 

prior to cladding, whereas the Gen II specimens were clad in the as-aluminized condition 

because the sigma layer was already present. The outer surface was Ni-rich NiAl in Gen I 

and Ni2Al3 evolving into Al-rich NiAl during the process, as suggested by the presence of 

Cr-rich precipitates in Figure 2-20(e). Clark hypothesized that the chemical differences 

resulted in variations in the interdiffusion and creep behavior occurring during the 

diffusion bonding process, leading to porosity in Gen II but not in Gen I. Subsequent 

diffusion eliminated the pores at 1000°C (Figure 2-20f-h), but much more slowly at 

800°C (Figure 2-21). It remains to be verified whether the presence or absence of 

precipitates in the NiAl layer of the clad systems could have an effect on the mechanical 

integrity of the system during creep. 

According to Clark, cladding of aluminized specimens rendered the 

carbide+sigma  diffusion barrier layers less stable than the un-clad aluminized layers at 

1000°C (Figure 2-15 and Figure 2-20). In general, the sigma layer was disrupted and 

largely eliminated in the presence of the cladding although it was slightly more durable in 

the Gen II specimens. Figure 2-20(b,f) shows that the sigma layer was still continuous 

after 24h at 1000°C in the Gen II specimen, but was discontinuous for the Gen I 

materials. The evolution of the sigma layer composition in Gen I aluminized+clad 

specimens at 1000°C after 16h and 168h is compared in Figure 2-22. The composition of the 

sigma layer was modified by the inward diffusion of Fe from the cladding, thereby reducing 

the content of Mo, Ni and Co, which Clark supposed was responsible for reducing the 

stability of the sigma layer since Mo is a stronger stabilizer for sigma than Fe. The released 

Mo would then favor the formation of M6C, seen after 24h in Figure 2-20(b). 

However, heat treatment at 800°C retained the diffusion barrier layers, Figure 

2-21, with concomitant evolution of carbides within the matrix (Figure 2-18). The Cr 

precipitates within the NiAl layer persisted after the treatment at 800°C, but were largely 

eliminated after 500h at 1000°C, especially for the Gen II specimens. Conversely, Clark 
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did not observe L12 phases develop within the B2 layer in the Gen I or II specimens, in 

contrast with the behavior observed for Gen I without cladding, Figure 2-15(d). 

Clark noted two important changes in the microstructure of the clad layer as 

interdiffusion proceeded. First, a fine dispersion of precipitates evolved near the interface 

with the aluminized layer, which receded gradually, as illustrated in Figure 2-23(a,b). 

TEM analysis in Figure 2-23(c) revealed these precipitates to be B2-(Fe,Ni)Al, 100-200 

nm in size, coherent with the matrix. Atom probe tomography (ATP) identified at least 

two additional distinct populations of Ni-bearing second phases, one in the 10-20nm 

range and the other comprising nanoclusters under 10 nm in diameter, Figure 2-23(d). 

The strength of the FeCrAlY cladding has been shown to be improved by the presence of 

these precipitates – of relevance to the initiation of creep-fatigue damage. However, they 

tend to coarsen and re-dissolve as the matrix transforms from the b.c.c. (A2) structure, 

characteristic of FeCrAlY to f.c.c. (A1), with continued Ni diffusion. At the longer times, 

the cladding consisted of a A2/B2 outer layer, denoted by β/β’ in Figure 2-20, and a 

region of f.c.c. (A1) solid solution next to the remaining NiAl layer. The evolution was 

delayed in Gen II specimens relative to Gen I, with no A1 layer present after 168h at 1000°C 

in the former, Figure 2-20(g), while about half of the clad layer transformed to A1 in the 

latter, Figure 2-20(c). No evolution of an f.c.c. layer was observed by Clark upon heat 

treatment at 800°C, even after 375 h, Figure 2-21(d). B2 precipitates evolved in a finer 

scale than at 1000°C, but they re-dissolved near the interface with the aluminide layer, as 

shown in Figure 2-24.  

Clark prepared diffusion couples between FeCrAlY foils and two NiAl alloy 

plates with compositions Ni50Al50 and Ni60Al40 in an effort to understand the 

interdiffusion phenomena when secondary alloying elements are absent. The results in 

Figure 2-25 show the critical role of the Ni:Al ratio on the evolution of the FeCrAlY 

microstructure. Interdiffusion with the stoichiometric NiAl, Figure 2-25(a), resulted in a 

relatively thin (20μm) layer depleted in Ni and Al and enriched in Fe and, to a lesser 

extent, in Cr. The FeCrAlY, however, appeared uniform in composition, with a 

microstructure consisting of fine B2 precipitates in the A2 matrix (β/β’). In contrast, the 

FeCrAlY/Ni60Al40 couple showed a much larger diffusion-affected region in the B2 

region (>100μm), and a large fraction of the FeCrAlY transformed to a face-centered 
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cubic structure, Figure 2-25(b). She observed an abrupt change in the composition 

profiles within the FeCrAlY layer, with the f.c.c. region containing a much larger Ni:Al 

ratio than the β/β’, which was enriched in Cr. The conversion of the FeCrAlY clad layer 

from its conventional A2 structure into A1 was shown by Clark to have implications to 

its oxidation behavior, as discussed in the next section. 

2.5.2 Exposure to impure helium environments 

In this section, the effectiveness of the alpha alumina barrier relative to the 

chromia scale typical of uncoated 617 in simulated exposures to impure He without 

applied load is summarized. The specimens were all pre-oxidized prior to exposure at 

temperatures of 800-1000°C for times up to 500 h. The impure He environments were 

decarburizing (CO/CO2 ~9 and CO+CO2 ~15 ppm, with XO≈10-21) and carburizing 

(CO/CO2 ~1272 and CO+CO2 ~1910 ppm, with XO≈10-24). This work described in 

Clark’s thesis [18] was performed at the University of Michigan, Ann Arbor. 

Figure 2-26 shows the weight changes per unit area during exposure to impure He 

for uncoated, aluminized, and aluminized+clad 617. Clark observed that the aluminized 

samples showed superior environmental resistance in both carburizing and decarburizing 

environments relative to uncoated 617. The scale in the aluminized specimens, shown in 

Figure 2-27(a,b), had grown over time but remained similar to that produced during the 

pre-oxidation treatment, i.e. dense, continuous alpha alumina, whereas the scale in the 

uncoated 617 was chromia, which is less stable in similar environments as reported 

elsewhere [10, 74]. 

Clark observed that the behavior of aluminized+clad samples was generally worse 

than the uncoated 617 in both the carburizing and decarburizing environments. She 

originally ascribed this behavior to damage associated with trimming of the excess 

cladding. The mechanical shearing approach had been used for the first trimming and was 

found to result in significant edge damage with increased environmental interaction. The 

external appearance of the specimen suggested substantial reaction of the overhang 

cladding surface and neighboring region, as shown by the darkened region in Figure 

2-28(a). The center of the specimen, however, appeared much less affected by the 

exposure, retaining the alumina scale and a similar evolution of A2 into A1 and A2/B2 

observed in the oxidation in gettered Ar – see Figure 2-29. 
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In a second approach, Clark trimmed the excess cladding using a pulsed 

femtosecond laser known to yield minimal thermal distortions that could initiate 

delamination from the substrate. This time there was improved carburization, as shown 

by comparison of Figure 2-28(a and b). The structure of the scale was similar to that 

evolving on the aluminized-only specimens after 500h (cf. Figure 2-27c,d), and the cross 

section was similar to that in Figure 2-29.  

To explore the possibility of the mechanical shearing being the reason for the 

difference in behavior of the over-hang portion of the cladding, Clark conducted two 

different tests. In one case, she exposed pre-oxidized FeCrAlY coupons of similar 

dimensions to both carburizing and decarburizing environments to evaluate the intrinsic 

resistance of the cladding to these environments. These tests yielded maximum weight 

gains ≤ 1.6 mg/mm2, comparable to those of the aluminized 617 specimens in Figure 

2-26. In a second test, she explored the possibility that the excessive weight gain was 

associated with damage to the original scale. She did this by indenting the surface of the 

pre-oxidized specimens to crack the scale, and the specimen was then exposed to the 

carburizing environment. Figure 2-30, revealed that the FeCrAlY was sufficiently robust 

to regenerate the alumina scale in the damaged areas before any significant carburization 

could take place. The morphology of the oxide in Figure 2-30(c,d) suggests some 

transient alumina formation prior to the conversion to alpha. According to Clark, it was 

unlikely that the excess weight gain was due to poor resistance of FeCrAlY against 

carburization as the diffusion of C through alpha alumina is very slow. 

Cross sections of the corners of specimens corresponding to the two different 

trimming approaches are shown in Figure 2-31. Clark showed that the damage was quite 

severe in the mechanically trimmed samples, Figure 2-31(a,b), and proceeded from the 

corner along the boundary between the cladding and the NiAl layer. The penetration in 

Figure 2-31(b) was consistent with the damage observed in Figure 2-28(a). Figure 2-32 

shows that both the cladding and the aluminized layer have been substantially affected, 

with extensive oxidation and carburization. The cladding seemed to have incorporated a 

major fraction of Ni and reduced the Cr so it is likely to have transformed completely into 

f.c.c. (A1) and the aluminized layer has also been depleted in Al presumably due to the 

severe oxidation (darker areas in Figure 2-32). Clark was surprised to observe that the 
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edges of the 617 substrate, which were aluminized but not clad, showed little change after 

100h but severe degradation after 500h, Figure 2-31(a,b), even though the surfaces of the 

aluminized-only specimens experienced no significant damage. 

The laser-trimmed specimens showed significantly reduced damage, as shown in 

Figure 2-31(c,d). Clark observed interdiffusion between the cladding and the aluminized 

layer, as well as some oxidation and possibly some carburization, but only a small crack 

at the corner that did not seem to advance significantly between 100 and 500h. Details 

from the 100h exposure are given in Figure 2-33. In this region the FeCrAlY still retained 

largely the ferritic structure with B2 precipitates (β/β’). Some initial transformation to 

f.c.c was observed at the interface away from the corner in Figure 2-33(a). After 100h, 

there was no degradation at the un-clad edges, which preserved the aluminized structure, 

although some blemishes in the equivalent region were seen after 500h (Figure 2-31(d)). 

Figure 2-36 shows the possible effects of interdiffusion on the degradation 

behavior of the clad specimens when the environment has access to the interface. A 

sample initially exposed for 100h/1000°C to the decarburizing He environment, 

experiencing some formation of A1 solid solution at the interface between the NiAl and 

FeCrAlY, was sectioned and subsequently exposed to a short oxidation treatment for 1h 

at 1000°C in gettered Ar. Clark observed a remarkable difference in oxidation behavior, 

with the f.c.c. forming a chromia scale and the β/β’ structure in the upper part of the 

FeCrAlY forming alumina, which also evolved on the sectioned NiAl surface. She 

proposed that this observation implied that when a carburizing environment accesses a 

region of the interface that has transformed to f.c.c., through an edge crack, the 

subsequent oxidation may not be protective as it is on the NiAl or even the ferritic 

FeCrAlY. There is a need to investigate the potential of degradation at edges during creep 

in impure He environments. 

Clark also designed experiments (that were conducted at the University of 

Michigan, Ann Arbor) on aluminized-only specimens at 800°C, primarily in the 

carburization environment that proved to be the more aggressive for these systems. 

Figure 2-35 shows the evolution of the microstructure as a function of time. The Cr-rich 

precipitates within the NiAl were still retained, although there was some indication of 

carbide evolution (the regions intermediate in brightness between the NiAl matrix and the 
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Cr precipitates). Clark could not conclusively determine if this was a result of some C 

ingress from the environment, which was not observed at higher temperatures and would 

be hindered by the presence of the original alumina barrier. Evolution of carbides under 

the sigma layer, shown in greater detail in Figure 2-36, was also observed. TEM analysis 

revealed the presence of both M23C6 and M6C carbides, as well as discrete sigma 

precipitates and incipient formation of L12, the latter also found in greater proportions at 

higher temperatures. There is a need to evaluate the robustness of the aluminized layer 

against carburization during creep. 

 

2.6 Research Objectives 

The objectives of this research are two-fold. First, is to characterize the near-

surface damage accumulation on Alloy 617 during static and cyclic creep. In order to do 

this, the effect of different controlled helium environments on the damage on Alloy 617 

is analyzed by studying the extent and mechanism of the different types of damage. The 

thesis will therefore focus on oxidizing environment (O potential), carburizing 

environments (C potential), and both environments (O and C potentials). Second, is to 

evaluate the efficacy of the different coating concepts (aluminizing by NiAl, and cladding 

by FeCrAlY) in protecting Alloy 617 against the environmental attack during static and 

cyclic creep. In order to do this, this dissertation will explore both the microstructural 

stability and the mechanical integrity of the different coating layers. 
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Table 2-1 Nominal chemical composition (wt.%) of Alloy 617. Adapted from [75]. 
Ni Cr Co Mo Al Fe Mn Ti Si C Cu B S 

Bal. 22.0 12.5 9.0 1.2 1.0 1.0 0.4 0.1 0.1 0.5 0.006 0.015 

 

Table 2-2 Impurity content in the helium experimental reactors [31, 32]. 
 H2O H2 CO CO2 CH4 O2 N2 

PB 0.5 10 0.5 <0.05 1 - 0.5 

FSV 1 7 3 1 0.1 - - 

AVR 0.15 9 45 0.25 1 - 22 

Dragon 0.1 0.1 0.05 0.02 0.1 0.1 0.05 

THTR <0.01 0.8 0.4 0.2 0.1 - 0.1 

 

Table 2-3 Dimensions of microstructural features observed in the cross-sections of Alloy 
617 samples exposed to He-CO/CO2=9 and 1320 at 850°C for 75h. Adapted from [20]. 

 

Table 2-4 Dimensions of microstructural features observed in the cross-sections of Alloy 
617 samples exposed to He-CO/CO2=9 and 1320 at 850°C for 225h. Adapted from [20] 

 



 

28 
 

 

Table 2-5 Dimensions of microstructural features observed in the cross-sections of Alloy 
617 samples exposed to He-CO/CO2=9 and 1320 at 850°C for 500h. Adapted from [20] 
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Figure 2-1 Typical microstructure for a mill-annealed Alloy 617 [76]. 

 
Figure 2-2 Time-temperature-precipitation diagrams for chromium carbides in Alloy 617 
[23]. 
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Figure 2-3 Amount of precipitates in Alloy 617 calculated by THEROCALC® [23]. 

 

 
Figure 2-4 Oxidation behavior of a Ni-Cr alloy based on Cr-stability diagram. Adapted 
from [19]. 
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Figure 2-5 Microstructure of Alloy 230 after oxidation at 900°C [47]. 

 

 
Figure 2-6 Internal carbide formation in alloy 800 with outer and inner carbide zones 
[42]. 
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Figure 2-7 IN617 samples exposed to He-CO/CO2 = 9 at 850°C. Adapted from [20]. 

 

 

 

 
Figure 2-8 IN617 samples exposed to He-CO/CO2 = 1320 at 850°C. Adapted from [20]. 
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Figure 2-9 Bulk microstructure of IN617 exposed in He-CO/CO2 = 9 at 900°C. Adapted 
from [19]. 

 

 
Figure 2-10 Bulk microstructure of IN617 exposed in He-CO/CO2 = 1272 at 900°C. 
Adapted from [19] 
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Figure 2-11 A model creep curve showing the three stages of creep. 

 

 
Figure 2-12 Deformation mechanism map for pure Ni with a grain size of 32 μm [53]. 

 



 

35 
 

 

 

 

 

 

 
Figure 2-13 Photostimulated luminescence peaks for alumina formed on the surfaces of 
aluminized 617 with and without FeCrAlY cladding, after 1h oxidation in low pO2 at 
1000°C and 900°C. Adapted from [21] 
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Figure 2-14 Surface scales for (a,c) FeCrAlY and (b,d) Aluminized 617, after 1h 
oxidation in low pO2 at (a,b) 1000°C and (c,d) 900°C.  There are transient alumina 
phases in (b-d), as shown in Figure 2-13. Adapted from [21]. 
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Figure 2-15 Microstructures of the Gen-I and Gen-II coating layers on 617, produced by 
aluminizing at 700°C (a) and 850°C (e), respectively.  In both cases the bulk of the 
aluminized layer is Ni2Al3; an incipient sigma layer is found to form during the higher 
temperature process but not at the lower temperature.  The evolution of the 
microstructure upon subsequent heat treatment at 1000°C and (b,f) 16h, (c,g) 100h and 
(d,h) 500h, is shown on the corresponding row of images for each variant of the process.  
The continuous sigma layer that develops initially after aluminizing at 700°C in (a) 
evolves to a discontinuous M6C layer after 500h (d), but is retained at 500h when the 
original coating is deposited at 850°C.  The NiAl layer in the latter is also richer in Al 
(graded from the surface to the interface) as shown by the presence of Ni3Al after 500h in 
(d) but not in (h). Adapted from [21]. 
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Figure 2-16 EDX line scans and microstructures of the coating layer taken on Gen II 
samples (a) as-aluminized and (b) after 4h/1000°C heat treatment. Ni upward diffusion 
transforms the original Ni2Al3 layer to NiAl, but it slows down as the carbide+sigma 
phase diffusion barrier develops in-situ. Adapted from [21]. 

 

 
Figure 2-17 EDX line scans and microstructures of the coating layer from Gen II samples 
heat-treated at 1000°C for (a) 100h and (b) 500h.  The carbide, sigma phase and the 
precipitate-free NiAl increase over time. The bulk of the NiAl layer is still B2 even after 
500h. Adapted from [21]. 
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Figure 2-18 EDS line scans (a,d) microstructural regions (b,c) from which they were 
acquired after (a,b) 100h and (c,d) 500h at 800°C.  Note that the concentration profiles 
are not significantly changed over time, although minor changes are observed in the 
microstructures, especially the increase in precipitation within the substrate next to the 
modified layer at the longer times.  The differences in thickness of the aluminized layer 
are associated with the surface polishing process after aluminizing. Adapted from [21]. 

 

 
Figure 2-19 Phase equilibria for a simplified version of Alloy 617 with (a) Ni, Co, Mo 
and C in the right proportions, and varying Al and Cr, or (b) Ni, Co, Cr and C as a base 
and varying Al and Mo.  The circles represent the composition of 617 in each diagram, 
and the shaded area the fields containing the sigma phase, usually in combination with 
carbides and other metallic phases.  Note that the scale on (b) is enlarged by a factor of 
two relative to that in (a).  (Calculations using the CompuTherm PanNi8 database.) as 
adapted from [21]. 
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Figure 2-20 SEM images of clad + aluminized 617 Gen I (a-d) and Gen II (e-h) samples 
in the as-clad (a,e) and after 1000°C heat treatment for 24 h (b,f), 168 h (c,g), and 500 h 
(d,h). Adapted from [21]. 

 

 
Figure 2-21 SEM images of Gen II clad + aluminized 617 (a) after 1000°C/2h pre-
oxidation treatment and after 800°C exposure for (b) 100h, (c) 225h, and (d) 375h. 
Adapted from [21]. 
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Figure 2-22 Average composition of sigma layer at NiAl/617 interface in a, aluminized 
617 after 16h/1000°C heat treatment and b, clad+aluminized 617 after 168h/1000°C heat 
treatment. The sigma layer increases in Fe content at the expense of Ni and Co in the clad 
sample relative to the original layer formed after aluminizing. Adapted from [21]. 

 

 
Figure 2-23 SEM (a,b) and TEM (c) of B2 precipitates that form in clad + aluminized 
617 after 24h/1000°C. The arrow in (a,b) denotes the position of the original interface.  
(d) Atom probe tomography reveals a bimodal distribution of precipitates.  The 3-D 
reconstruction shows all the atoms wherein the color code is: Fe-pink, Cr-orange, Ni-
green, Al-blue. The precipitates are highlighted by the isoconcentration profiles at 
Ni=10at% where the larger precipitates correspond to those visible in (c) and (d), with 
smaller nanoclusters dispersed in the matrix. Adapted from [21]. 
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Figure 2-24 SEM images of Gen II clad + aluminized 617 after 800°C heat treatment for 
(a) 100h, (b) 225h and (c) 375h. The β/β’ precipitates that form in the FeCrAlY as Ni 
diffuses into this layer dissolve with time and are no longer present by 375h. Adapted 
from [21]. 

 

 
Figure 2-25 EPMA composition profiles for diffusion couples of 100 μm FeCrAlY layers 
with 1mm (a) Ni50Al50 and (b) Ni60Al40 after heat treatments at1000°C/168h in gettered 
Ar. Adapted from [21]. 
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Figure 2-26 Normalized weight gains for uncoated, aluminized and aluminized+FeCrAlY 
clad specimens of 617, exposed to impure He environments at different temperatures and 
for different times.  Note the change in scale between 5 and 10 mg/mm2.  All the coated 
samples were pre-oxidized prior to exposure. The environments are  He with CO:CO2 ≈ 
1272 (carburizing) or CO:CO2 ≈ 9 (decarburizing).  The FeCrAlY in the aluminized+clad 
specimens covered only the broad sides of the aluminized specimen.  Empty circles in the 
clad specimens correspond to those in which the cladding was trimmed mechanically, 
whereas solid circles are for laser-trimmed specimens. Adapted from [21]. 
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Figure 2-27 SEM images of the oxide morphology after 1000°C/500h exposure to impure 
He of aluminized 617 in (a), carburizing and (b), decarburizing conditions and clad + 
aluminized 617 in (c), carburizing and (d), decarburizing conditions. Adapted from [21]. 

 

 
Figure 2-28 Optical images of clad + aluminized 617 specimen surfaces after exposure to 
500h/1000°C/ carburizing He.  The dashed line denotes the profile of the aluminized 617 
substrate underneath, with the cladding overhang around it.  The specimen in (a) had the 
excess cladding mechanically trimmed whereas (b) was laser-trimmed. Adapted from 
[21]. 
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Figure 2-29 SEM images of clad + aluminized 617 after 500h exposures in (a,b) 
decarburizing and (c,d) carburizing environments. Though the edges suffered some 
damage, the central area of the exposed surface maintained a protective alpha alumina 
scale. Adapted from [21]. 

 



 

46 
 

 
Figure 2-30 Images of indented FeCrAlY after exposure to a carburizing environment for 
100h at 1000°C.  (a) overview of the indent after exposure.  (b) close-up of the oxide 
scale that reformed along the diagonal of the indent during exposure.  The area of the 
detail is marked in the left image by the red rectangle in (a).  (c)  SEM image of a FIB 
cross section made through diagonal of indented region in (b) wherein the damaged oxide 
exposed the underlying alloy to a carburizing environment. (d) detail of the regenerated 
alumina scale, wherein the alloy and interface show no evidence of carbide formation 
upon exposure. Adapted from [21]. 

 



 

47 
 

 
Figure 2-31 SEM images of clad + aluminized samples exposed to a carburizing He 
environment at 1000°C for (a,c) 100h and (b,d) 500h. Samples that were laser trimmed 
(c,d) showed less attack than samples that suffered more evident damage during 
mechanical trimming (a,b) prior to exposure. Adapted from [21]. 

 

 

 
Figure 2-32 Cross section of a corner of a mechanically trimmed clad + aluminized 617 
sample after exposure to a carburizing He/1000°C/100h. The spots in the micrograph 
correspond to EDX compositions shown on below the image. Damage to the sample prior 
to exposure resulted in severe oxidation (1-3) and carburization (4-6). The aluminized (7-
8) and clad (9-12) regions were depleted in aluminum and also chromium in the case of 
the cladding. Adapted from [21]. 
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Figure 2-33 SEM images of a clad + aluminized sample that was laser-trimmed prior to 
exposure to a carburizing He environment at 1000°C/100h.  Away from the edge, the 
FeCrAlY cladding has begun to transform to fcc (a), but the edge, which is free from 
carbides (b) still retains the β/β’ microstructure seen at higher magnifications in the inset. 
Adapted from [21]. 

 

 
Figure 2-34 SEM images of the cross section of a Gen I clad + aluminized 617 sample 
that had undergone 100h/1000°C/decarburizing He prior to cross-sectioning and 
oxidation for 1h/1000°C/gettered Ar. The β/β’ microstructure and NiAl layer formed 
alumina, shown at higher magnification in (b). The region where the original FeCrAlY 
layer had been replaced by γ (A1) formed chromia, and its morphology (c) was similar to 
the chromia formed by alloy 617 (d). Adapted from [21]. 
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Figure 2-35 SEM images of the coating cross-section after 800°C exposure to impure He 
(CO:CO2 ≈ 1272) for (a) 100h, (b) 225h, (c) 375h, and (d) 500h. Adapted from [21]. 
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Figure 2-36 TEM image of the DAZ of aluminized 617 after 800°C/375h/carburizing He 
exposure showing EDS measurements and expected phase based on composition, cf. 
Figure 2-34(c). Adapted from [21]. 

 



 

51 
 

CHAPTER 3 

EXPERIMENTAL APPROACH 

This chapter describes the Alloy 617 used for the environmental creep (Chapter 

4), as well as the coatings of NiAl and NiAl+FeCrAlY cladding that were used for a 

major component of the research (Chapter 5).   The experimental tests and procedures 

employed are also described. Section 3.1 describes Alloy 617; Section 3.2 presents the 

preparation of the creep test specimens; and Section 3.3 describes the process for coating 

the alloy. The design and the characterization of the facility used for the conduction of 

the static and cyclic creep tests in controlled helium environments are described in 

Section 3.4. The procedure used for conducting the tests and a summary of the 

experiments and analyses are provided in Sections 3.5 and 3.6. 

3.1 Microstructure of Alloy 617 and Coatings  

Alloy 617 was supplied by Idaho National Laboratory in the form of a 38-mm-

thick plate (Heat #314626, Lot #103374422, ThyssenKrupp VDM USA, Inc.) that had 

been solution-annealed at 1175°C and water-quenched. The as-received microstructure 

(Figure 3-1) had a grain size of 139 ± 13 µm and contained M23C6 carbides distributed 

along the grain boundaries and in the grain interiors.  The composition of this heat of 

Alloy 617 is given in Table 3-1.   

3.2 Specimen Design and Preparation 

A flat rectangular “dog-bone” creep specimen was chosen to obtain high surface 

area-to-volume ratios compared to cylindrical specimens. Creep specimens, Figure 3-2, 

were fabricated by electrical discharge machining and had a gauge cross section of 3 x 2 

mm and a gauge length of 15 mm. Small rectangular block specimens of the same alloy 

with dimensions of 4.0mm x 9.85mm x 1.5mm were used for exposure-only testing.  

Figure 3-3 shows the results of a finite element model analysis of uniform tensile loading 

and indicates that the maximum strain is evenly distributed in the gauge section and is not 

severe in the pin-loading region. Photographs of uncoated and coated specimens are 
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shown in Figure 3-4. Uncoated specimens were machined by electrical discharge 

machining (EDM), mechanically ground starting with a grit 400 SiC paper and polished 

down to 1µm diamond finish until an optically scratch-free surface was obtained. The 

preparation was finalized by cleaning and degreasing ultrasonically in an ethanol-acetone 

mixture for 15 minutes with a subsequent cleaning in distilled water for another 15 

minutes.  

3.3 Processes for Aluminizing and Cladding  

For the coating studies, some specimens received an aluminized coating while 

others received a cladding layer (FeCrAlY) after aluminization.  All coatings were 

applied at the University of California Santa Barbara in Professor Carlos Levi’s research 

group. The NiAl coatings used Al powder (<44μm, 99.5% purity, Alfa Aesar, Ward Hill, 

MA) as the source, Al2O3 powder (500 grit, Norton Co, Worcester, MA) as the filler, and 

CrCl3.6H2O (>99.5% purity, Alfa Aesar) as an activator. Cladding used 50 and 100 µm 

foils of Fecralloy™ procured from Goodfellow, Oakland, PA. Composition of the 

cladding is provided in Table 3-1. The aluminization and cladding processes are 

described in detail by Clark [18], and are briefly described here. 

Aluminization involved a high-activity, low-temperature process by pack 

cementation using a powder mixture of 4Al/4(CrCl3.6H2O)/92Al2O3 (in weight percent). 

The specimens were wrapped in alumina fabric and embedded in the pack, which was 

subsequently sealed in an alumina crucible and placed in a tube furnace under flowing 

high purity Ar (XO ≤ 10-5). The pack was heated to 700°C and held for 9.6 hours. After 

aluminizing, the specimens were annealed (heat treated) at 1000°C in flowing and 

gettered Ar for 16 hours to fully develop the structure of the surface layers. A measured 

oxygen content of XO ≤ 10-13 was achieved by passing the high purity Ar through a 

Centorr 2A Inert Gas Purifier. The oxide layer on the coating produced by the heat 

treatment was removed using a surface grinder. Further pre-oxidation of the specimens to 

develop a thin, continuous layer of alpha alumina was done in flowing gettered Ar (XO ≤ 

10-13) at 1000°C for 2 hours. Two sets of aluminized specimens were made. The first one 

underwent a longer period of aluminizing and heat treatment (700°C/9.6h, 1000°C/16h, 

1000°C/2h), while the heat treatment time for a second set was shortened by increasing 
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the temperature (850°C/4.5h, 1000°C/1h, 1000°C/2h). They are referred to as Generation 

I (Gen I) and Generation II (Gen II) aluminized specimens, respectively. 

FeCrAlY foil was used to clad a subset of the aluminized specimens by diffusion 

bonding in a high vacuum hot press for 1 hour at 1000°C under a pressure of 20 MPa. 

Clad specimens consisted of aluminized 617 coupons sandwiched between two 100 µm 

thick sheets of FeCrAlY foil. The cladding was applied only to the faces of the creep 

specimens and not to the edges as illustrated in Figure 3-5. The thermal history for the 

clad specimens was 850°C/4.5h for aluminizing, 1000°C/1h for heat treatment, 

1000°C/1h for cladding and 1000°C/2h for pre-oxidation (850°C/4.5h, 1000°C/1h, 

1000°C/1h, 1000°C/2h). For both aluminized samples and aluminized plus clad 

specimens, polishing to 800 grit finish was conducted before the pre-oxidation step. 

Microstructure of the as-aluminized substrate is shown in Figure 3-6.  An 

overview of the NiAl layer and the 617 substrate is shown in (Figure 3-6a). Precipitates 

rich in Cr and Mo are situated close to the surface of the NiAl layer (Figure 3-6b), where 

there is also a thin and dense Al2O3 scale formed during the pre-oxidation stage of the 

coating process. Farther from the coating surface, there are Cr-rich precipitate regions 

(Figure 3-6d-e) and a region that is free of precipitates (Figure 3-6f), which is near the 

interdiffusion zone (IDZ). This interdiffusion zone is constituted of Cr and Mo interlayers 

(Figure 3-6g), beyond which lies the substrate (Figure 3-6h). The grain size of the 

substrate following this coating procedure was determined to be 139 ± 33 µm that 

appears to be close to that of the uncoated substrate. A similar image for the aluminized + 

clad coating is shown in Figure 3-7. An overview of the aluminized and clad structure is 

shown in (Figure 3-7a). The FeCrAlY cladding (Figure 3-7b) is intended to act as the Al 

reservoir for formation of Al2O3 scale (Figure 3-7c). There is a precipitate-free 

FeCrAlY/NiAl junction (Figure 3-7d), beyond which there are precipitate-rich and 

precipitate-free regions of NiAl (Figure 3-7e-g), Cr and Mo interlayers of IDZ (Figure 

3-7h) near the underlying 617 substrate (Figure 3-7i).  The grain size of the substrate 

following the aluminization and cladding procedure is close to that of the aluminized 

substrate, since the thermal treatments required for either coating process were similar as 

described earlier.  
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In a subset of aluminized 617 specimens, Focused Ion Beam (FIB) micro-notches 

were placed on the coating to examine the role of pre-existing defects on damage 

processes.  In a subset of clad/aluminized 617 specimens, an additional 24h and 100h at 

1000°C heat treatment was performed to investigate the role of precipitates on damage 

processes.  These procedures are described in more detail in Chapter 5. 

3.4 Experimental Setup: Controlled Impurity Helium Flow Creep System 

High temperature exposures in controlled impurity helium environments have 

been conducted previously in our laboratory [19, 77, 78]. Building on the knowledge and 

success of this previous system that had been designed for exposure tests only, the 

controlled impurity helium flow creep system was constructed to allow for the studies of 

exposure tests in impurities such as CH4, CO and CO2 in the presence of static or cyclic 

stresses. The controlled impurity helium flow creep system is composed of different 

sections as shown in the schematic (Figure 3-8) and the photograph (Figure 3-9): helium 

purification, gas mixing, exposure-mechanical testing, and gas analysis. The helium 

purification system consists of filtering cartridges for further removal of impurities 

present in the initial helium stream of 99.9995% purity. The helium stream is thereafter 

supplied to the gas mixing section to be mixed with controlled amounts of CH4, CO and 

CO2 to establish the target chemistry of test environment. The mixture is then fed to the 

exposure-mechanical testing section where the test specimen is subjected to static or 

cyclic stresses and the furnace provides the required test temperature. The inlet and outlet 

gas ports in the tube in the exposure-mechanical system are connected to a discharge 

ionization detector gas chromatograph (DIDGC) for gas analysis. DIDGC can analyze the 

CH4, CO and CO2 concentrations in the helium stream both at the inlet and outlet of the 

creep retort and therefore enables precise control of the inlet and outlet concentrations 

established during the creep test. Each section is described in more detail hereafter. 

3.4.1 Helium purification system 

This unit is composed of a Perkin Elmer Three-Cartridge Gas Purification System 

and a manual gas stream changeover system connected to two 8m3 pure helium cylinders 

(99.9995%). Helium from the cylinders is further purified by passing through a series of 

moisture, hydrocarbon and oxygen removal cartridges. A manual gas stream changeover 



 

55 
 

system enables switching the flow from a cylinder nearing depletion to a full cylinder 

without flow interruption. This arrangement enables a continuous supply of pure helium 

to the creep retort. 

3.4.2 Gas mixing section 

The gas mixing section is comprised of 3 pre-mixed gas bottles and 3 electronic 

mass-flow controllers manufactured by Omega ®. The electronic mass flow controllers 

used for gas mixing have an accuracy of ±1 ml/min with a full scale operation range of 0 

to 200 ml/min, and are capable of withstanding pressure up to 500 PSIG (3.45 MPa). 

With 3 mass flow controllers, it is possible to adjust the flow rates of the gas supplied to 

achieve the target chemistry. For the He-CO-CO2 environment, one mass flow controller 

is assigned to each of the helium, carbon monoxide, and carbon dioxide gas cylinders. 

For the He-CH4 environment, two mass flow controllers are used to supply helium while 

the third one supplies methane gas for mixing. Lastly, for the He-O2 environment, only 

helium is supplied using the three mass flow controllers, and the composition of oxygen 

is determined by the detection limit of the gas chromatograph (seen in the next section). 

Finally, the mixed environments are fed to the exposure-mechanical testing system 

through 316 stainless steel tubing. 

3.4.3 Exposure-mechanical testing system 

The creep experiments are conducted in a creep retort that consists of a vertical 

split-tube furnace (rated for temperatures up to 1100°C), flowing helium containing 

varying levels of the named impurities, and a static or cyclic load applied via the load 

train. The main components of this system are the creep frame, the specimen chamber, 

the servomotor and the servo-controller unit (Figure 3-9 and Figure 3-10). The creep 

frame is constructed of stainless steel columns and a base for mounting the load train, the 

furnace, and the servomotor unit. The specimen chamber has a minimum volume (38 mm 

internal diameter, 42 mm external diameter, 660.4 mm long) necessary to house the 

specimen, the thermocouple wires, the load train, and the porous alumina within the hot 

zone. Silicone O-rings in the chamber end seals are protected from direct heat by use of 

porous alumina barriers situated at the chamber ends and chilled water circulated around 

the end seals (made of stainless steel 304). Three K-type thermocouples are inserted into 
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the quartz tube from the bottom end seal and are placed within the quartz tube to monitor 

temperatures at the middle and both ends of the gauge section of the specimen. The load 

train components in the hot zone are made of high-temperature molybdenum alloy 

(TZM), which exhibits high strength at 1000°C. The specimen grips are designed using 

creep-resistant Mar-M-247 alloys. In order to protect these components from corrosion in 

impure helium, the TZM cylindrical load train components are coated with high 

temperature boron nitride lubricant and encased in 99.99% pure alumina tubes with 

almost negligible clearance. Since the thermal expansion coefficient of TZM is very low, 

the components do not exhibit sufficient thermal stresses to crack the alumina casings. 

Strain measurement is accomplished by measuring the load-line displacement as 

shown in Figure 3-10. It was demonstrated that strain can be measured from two different 

locations – with similar results (Figure 3-11). Usually, the strains are measured directly 

from the gauge section in the hot zone. However, if the strains are determined via the 

load line displacement instead of the gauge length deformation, the creep system is 

simplified since extra components near the specimen and, which are exposed to gaseous 

environment, are reduced. This precludes any error in estimating the gas consumptions 

during the corrosion-creep testing. In this dissertation, the strains were determined using 

the load line displacement measurements and the verification was done by comparing the 

lengths of the specimens before and after the tests.  

Mechanical experiments in impure He environments are conducted by subjecting 

the specimens to static and cyclic stresses. A digitally controlled closed-loop servomotor 

(Figure 3-9) enabled the application of both static and cyclic loads. A servomotor was 

used instead of conventional dead-weight loading and is capable of operating in either 

load or displacement control. The motor is controlled via the servo-controller unit 

(control panel) from where one can manually or remotely configure the control of the 

load and displacement in real-time. A built-in waveform generator can be programmed to 

cycle or ramp the control point for the duration of the creep tests. Since the servomotor 

contains a closed loop digital PID controller, the control point was accurately 

manipulated in real time. The control panel has an RS-232 serial port enabling a 

computer to have full control of the servomotor for even more functionality. The PC 

attached to it enabled, in conjunction with LabVIEW, the control of the unit’s operation 
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and the collection of data during the experiments. A subset of specimens are only 

exposed to the environment either by specimens in between the grips (with no load 

applied) or attached on the top grip. 

3.4.4 Gas analysis section 

This section is composed of the DIDGC and the PC (Figure 3-8 and Figure 3-9). 

The DIDGC is used to continuously analyze the gas mixture both at the inlet and outlet of 

the creep retort. The PC is used to control the DIDGC and for collection of gas 

composition data. The details of the functioning of the gas chromatograph have been 

extensively described elsewhere [19, 77, 78]. 

3.4.5 Validation of the mechanical system. 

3.4.5.1 Determination of the accuracy of load applied 

The servomotor is an electrical actuator that is used to convert analog signals 

from the controller into a positional change or change in velocity to apply a desired load 

via the load train. It is important to verify the accuracy of both continuous and cyclic 

signals sent from the servomotor. The accuracy of the signals can be controlled by two 

parameters of the servomotor: actuator rate and digital filter. The actuator rate determines 

how fast the setpoint or target load is attained. Slower actuator rates are used to improve 

accuracy of the controller, but minimizing the controller error quick would require faster 

rates. A low pass filter can be programmed to filter out any analog noise in the signal. 

Setting a high filter value (e.g. 40 Hz) allows the controller to respond quickly to 

variations but can become susceptible to analog noise. On the other hand, lowering the 

filter value (e.g. 5 Hz or lower) reduces the noise but the system can become sluggish to 

change. In general, slower actuator rates along with an aggressive filter can produce very 

stable and accurate load control. The servomotor actuator was monitored for a different 

set of rates and filter frequencies (Table 3-2) to determine what combination would give a 

more accurate response of cycling a load from 6.43N/11MPa – 643N/110MPa (the 

domain of load expected to be applied in this work). The response shown in Figure 3-12 

shows that the optimal settings used for static and cyclic loading from the servomotor 

were 0.05 in/min and 0.3125 Hz as actuator rate and digital filter frequency respectively. 
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3.4.5.2 Determination of deformation during creep 

Creep behavior of materials is usually presented in the form of a strain-time 

curve. Strain is determined from the deformation of the material during a creep test and 

the measurements can be done from two different locations in the creep system. 

Conventionally, the deformations are measured by direct monitoring of the deformation 

of the specimen’s gauge section in the hot zone. While this method is direct and gives a 

more accurate determination of deformation, it cannot be used in the current setup as 

there is a need to reduce the surface area of materials in contact with the helium 

environments at creep temperatures. A different method that was used is the monitoring 

of the deformation indirectly via the load line displacement. The assumption is that since 

the material exposed to the test temperatures has a high creep resistance, then the 

extension of the load line would be due to the deformation of the specimen’s gauge. In 

this case, the creep system is simplified by reducing the number of components exposed 

to the environment. A conventional creep system was used to compare the deformation of 

the specimen using the two methods mentioned above as shown in Figure 3-13 and the 

strain-times curves shown in Figure 3-11. Therefore, the load-line method for strain 

determination that was used in all the experiments. 

3.4.6 Temperature uniformity along the specimen gauge section. 

The difficulty of sustaining a uniform temperature along a vertical quartz tube, 

makes it necessary to only focus on the temperature range along the gauge section of the 

specimen. For this reason, after inserting the load train in the quartz tube and mounting 

the assembly on the creep frame, the setup was such that the specimen in the tube was 

always in the central zone of the vertical furnace. Tuning of the temperature controller 

was done to help maintain good control of the test temperature during the experiment. 

This good control of temperature helped minimize overshoots, undershoots, and allowed 

quick response to deviations from the temperature setpoint. Figure 3-14 shows the 

temperature variation along the specimen gauge to be within ± 0.5°C of the setpoint 

temperature.  
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3.4.7 Analysis of inlet/outlet of the creep retort. 

Quartz was chosen for the creep retort to reduce interaction with the impure 

helium environments investigated in this work. Exposure experiments performed 

elsewhere [77] indicate that for the He-CO/CO2=1320 (one of the environments used in 

this work), the deviations in CO and CO2 concentrations between the outlets and the 

inlets of the quartz tubes reached a steady state after ~ 40-50 hours. It is after this 

observation had been made that the exposure specimens were pushed into the furnace for 

testing. Unlike the case for exposure-only studies, creep specimens must be located 

within the furnace before vacuum-purging and temperature ramping procedures take 

place. Even though enough precaution, as stated earlier, had been taken to remove all 

volatiles at 200°C, it took as long as 250 hours for the outlet concentrations to reach a 

steady state. The likelihood that the interaction between the environment and the quartz 

tube or even the load-train could help explain the long times to reach stability in the 

environment chemistry at the outlet (Figure 3-15). Also, the larger volume of the vertical 

quartz tube and its vertical disposition would also make it difficult to sustain the targeted 

environment.  In spite of these challenges, the creep retort is still able to sustain different 

environments that would facilitate the achievement of the objectives of this work. Since 

the study does not involve the need to determine the kinetics of corrosion of the alloy in 

the different environments, the sustained environments were still enough to help develop 

an understanding of the synergy between the effect of exposure in the environments and 

mechanical stresses. In this work, therefore, the chemistry of the target environments at 

the input of the creep retort were verified and sustained for all experiments. 

3.5 Procedure for exposure and creep-exposure tests. 

Most of the exposure and creep-exposure experiments were conducted at 800°C 

in the creep retort. Some select specimens were exposed to helium environments in the 

exposure-only setup described elsewhere [78].  

For the creep-exposure experiments, the specimen was mounted on the grips 

attached to the load train and all the connections and fittings tightened. The creep retort 

was then subjected to a series of purging and evacuating steps using a mechanical 

vacuum pump at 200°C so as to remove any volatiles in the system, before allowing the 

gas mixture (of targeted chemistry) to flow through the retort at 170 ml/min. The 



 

60 
 

temperature was then ramped up to 800°C at a rate of 1°C/min until equilibrium was 

reached. Loading of the specimen was done after the responses from the displacement 

transducers were seen to have stabilized on the LabView software. Gas compositions 

were measured using the DIDGC throughout the experiments at the inlets and the outlets. 

The small rectangular specimens meant for exposure-only experiments were attached to 

the upper grip in the creep retort such that no load was subjected to them during normal 

creep tests.  

Table 3-3 lists the experiments conducted in this research work. The experiments 

were organized around two objectives. The first goal was to study the role of different 

environments (carbon potential, oxygen potential and both carbon and oxygen potentials) 

on the near-surface damage of Alloy 617. The second objective was to understand the 

structural integrity and mechanics of the different coatings in the aluminized-only and the 

clad-aluminized 617 specimens.  

3.6 Microstructural Analysis Techniques 

Microstructural changes of the different specimens were characterized by electron 

microscopy, X-Ray Diffraction (XRD), Auger Electron Microscopy (AES), and Electron 

Microprobe Analysis (EMPA). In general, samples to be examined were sectioned and 

mounted in phenolic resin and mechanically ground and polished, with a final polish 

using 0.25µm diamond paste. 

3.6.1 Electron Microscopy 

A TESCAN Mira3 Field Emission Gun microscope equipped with an EDAX 

energy dispersive spectroscopy (EDS) detector, and an EDAX electron backscatter 

diffraction camera was used for the majority of microstructural characterization studies. 

A Schottky Field Emission filament FEI Nova 200 Nanolab SEM/FIB was used for 

making FIB notches [79]1 of a selected set of specimens. Both these instruments were 

capable of performing secondary electron (SE) imaging, backscattered electron (BSE) 

imaging, and energy dispersive X-ray spectroscopy.  

                                                 
1 Damage induced by use of gallium ion beam exists as a result of FIB machining. It is possible 

that this may influence local compositional changes in the specimen during notching. The use of a reduced 
beam current of 3nA of 30 keV gallium ion penetration is expected to limit the damage to nanometer range. 
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Concentration profiles across the different layers of the coated specimens were 

analyzed using a Cameca SX100 electro-microprobe-analyzer (EMPA). The accelerating 

voltage and beam current used were 15kV and 15nA, respectively. Table 3-4 lists the 

calibration standards and the spectrometer crystals used. The standards were used to first 

calibrate the instrument, and verification was done by using the standards as unknown. It 

is reported that the electron interaction volume of the beam with the Ni-based alloy is 1-

2μm [80]. 

3.6.2 X-Ray Diffraction (XRD) 

Phase identification of the oxidation products on the specimens was performed 

using x-ray diffraction. A Rigaku rotating anode CuKα X-Ray was used in the θ - 2θ 

mode at the operating voltage and current of 40kV and 100mA respectively. In this mode, 

the detector and the sample rotate simultaneously such that the incident and reflecting 

beam angles remain the same. 

3.6.3 Auger Electron Microscopy (AES) 

Selected use was made of a Physical Electronics Auger Nanoprobe 680 to 

characterize composition of surface features. Depth profiling and surface cleaning were 

performed by sputtering the sample surface with 2 keV argon at a current of 1 μA. 

Elemental analysis was calibrated by collecting spectra from oxide standards of Cr2O3 

and Al2O3 and the as-received alloy. Spectra were collected using a 10 keV, 10nA 

electron beam, which yielded a spot size of about 50 nm. Depth profiling was conducted 

by first sputtering with argon for 10 minutes followed by a 1 second hold before 

collecting spectra from points selected on the surfaces.  
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Table 3-1 Chemical Compositions of Alloy 617 and Fecralloy® as provided by 
manufacturer [18]. 

 Alloy 617 Fecralloy® 
 ThyssenKrupp VDM Goodfellow 
Element wt% at% wt% at% 
Ni Bal. Bal.   
Fe 1.6 1.66 Bal. Bal. 
Cr 22.2 24.75 22 22.03 
Co 11.6 11.41   
Mo 8.6 5.20   
Al 1.1 2.36 5 9.65 
Ti 0.4 0.48   
Si 0.1 0.21 0.3 0.56 
Mn 0.1 0.11 0.2 0.19 
Cu 0.04 0.04   
C 0.05 0.24 0.02 0.09 
Y   0.1 0.06 
Zr   0.1 0.06 
  

 

Table 3-2 Digital frequencies and actuator rates used to determine the optimal response 
of the actuator from the load. 
 Filter (Hz) Actuator Rate (in/min) 
a) 0.3125 0.01 0.02 0.05 
b) 0.625 0.01 0.02 0.05 
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Table 3-3 Matrix of experiments conducted in this research work on both uncoated and coated 617 specimens. The objectives of the 
research work are shown side-by-side with the experiments conducted to answer them. Experiments consisted of exposure (E), static 
creep (S) and cyclic creep (C) in controlled impurity helium environments with different impurity potentials at 800°C. 

OBJECTIVES EXPERIMENTS 
1. Determine the role of environment (C, 

O, and both C and O potentials), and 
the absence of environmental effect on 
the near-surface damage during creep 
of Alloy 617. 

Uncoated 617 
He-CO/CO2=1320 (C and O potentials)2 E E+S (50 MPa) E+C (10/50 MPa) 
He- ≤0.1ppm O2 (O potential)3 E E+S (50 MPa) E+C (10/50 MPa) 
He-600ppm CH4 (C potential)4 E E+S (50 MPa)  
He-600ppm CH4 (C potential) + He- ≤0.1 ppm 
O2 (O potential) 

E E+S (50 MPa)  

Coated 617 
Gen I Aluminized 617 in He- ≤0.1ppm O2 (O 
potential) 

E+S (50 MPa) E+C (10/50 MPa) 

Gen II Aluminized 617 in He-CO/CO2=1320 
(C+O potentials) 

E+S (75 MPa) E+C (15/75 MPa) 

 Clad+Aluminized 617 in He-CO/CO2=1320 
(C+O potentials) 

E+S (50 MPa) E+C (10/50 MPa) 
 E+C (15-75 MPa) 

 Clad+Aluminized 617 in He- ≤0.1ppm O2 (O 
potential) 

E+S (75 MPa)  

 Cladding on 617 in He-CO/CO2=1320 (C+O 
potentials) 

 E+C (15/75 MPa) 

 Coated 617 in He-CO/CO2=1320 
2. Understand the mechanics of 

aluminized and clad/aluminized 617 
during cyclic creep. 

Aluminized 617 with notches  100h and 500h of E+C (10/50 MPa) 
Clad/Aluminized 617 after 24h/1000°C extra 
heat treatment 

E+C (10/50 MPa) 

 Clad/Aluminized 617 after 100h/1000°C extra 
heat treatment 

E + C (10-50 MPa) 

 
                                                 
2 In this environment, 1980ppm CO and 1.5ppm CO2 are mixed in pure helium (99.9999%). The concentration ratio of CO:CO2 in helium is 1320. 
3 This environment is pure helium but, since oxidation is expected to occur, 0.1ppm concentration level is given to indicate the gas chromatograph 

detection limit for oxygen.  
4 In this environment, 600ppm of CH4 is contained in pure helium. 
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Table 3-4 Element, spectrometer crystal, and material used for calibration in EMPA 
analysis. The spectrometer crystals used are: Large Lithium Fluoride (LLIF), 
Pentaerythritol (PET), and Large Thallium Acid Phthalate (LTAP). 
Element Crystal Calibration Standard 
Ni LLIF NiAl 
Cr PET pure Cr 
Co LLIF pure Co 
Mo PET pure Mo 
Al LTAP NiAl 
Ti PET pure Ti 
Fe PET pure Fe 
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Figure 3-1 Microstructure of as-received Alloy 617 etched in Kalling's reagent (5g CuCl2, 
100ml ethanol and 100ml HCl). The typical polycrystalline microstructure with an 
average grain size of 139 µm ± 13 µm and grain size distribution are shown in (A) and 
(B), respectively. The M23C6 carbides present initially in the alloy are visible within the 
grain and along the grain boundaries are shown in (C) and (D), respectively. 

 

 
Figure 3-2 Schematic of rectangular "dog-bone" specimen designed for the static and 
cyclic creep experiments of Alloy 617 in controlled impurity helium environments. 
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Figure 3-3 Creep specimen geometry showing tensile stress distribution by FEM 
modeling. Maximum stresses are uniform within the gauge section and stresses at the 
holes are much lower. 

 

 
Figure 3-4 Rectangular “dog-bone” 617 specimens prepared for static and cyclic creep 
experiments. Three kinds of specimens used in this research work are as-polished and 
uncoated (A), as-aluminized (C), and as-clad/aluminized 617. (B), (D) and (F) show the 
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gauge faces that are perpendicular to the flat faces in (A), (C) and (E). Note that the 
cladding is applied on an aluminized specimen only on the flat gauge area as shown in 
(E), and not on the perpendicular faces of the gauge (F). 

 

 
Figure 3-5 Schematic of dog-bone creep specimen indicating the face surfaces of the 
gauge to be clad and aluminized, while the edge surfaces are aluminized only. 
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Figure 3-6 Microstructure of as-coated aluminized 617 (Gen II) showing a thick NiAl 
coating with chromium and molybdenum precipitates and a sigma layer (a-h), with Al2O3 
formed on NiAl surface after pre-oxidation (c). The average grain size of the underneath 
617 is 139µm and the distribution of grains is shown in (i).  
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Figure 3-7 Microstructure of as-coated clad-aluminized 617 showing FeCrAlY cladding 
and NiAl layers with chromium precipitates and a sigma layer (a-i), with Al2O3 formed 
on FeCrAlY surface after pre-oxidation (c). 
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Figure 3-8 Schematic of the Controlled-Impurity-Flow Creep system. The three major 
sections: helium purification, gas mixing, exposure-mechanical testing, and gas analysis. 
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Figure 3-9 Photograph of the Controlled-Impurity-Flow Creep system. The three major sections are: helium purification, gas mixing, 
exposure-mechanical testing, and gas analysis. 
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Figure 3-10 Image of the exposure-mechanical testing system showing the creep frame and the specimen chamber. 

 



 

73 
 

 

 
Figure 3-11 Strain versus time data for Alloy 617 showing the verifiability of strain 
measurements taken at two different locations: loadline and gauge. 
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Figure 3-12 Different settings (actuator rate and digital filter frequency) used to evaluate 
how accurately the servomotor applied load from 11-110 MPa. For each actuator rate, 
two digital filter frequencies (0.3125 Hz and 0.625 Hz) were tested. The actuator rates are 
(A) 0.01in/min, (C) 0.02 in/min, and (E) 0.05 in/min, and their respective insets (B), (D), 
and (F). The optimal settings were determined to be 0.05 in/min and 0.3125 Hz. 
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Figure 3-13 Old creep frame developed for static creep testing of Alloy 617 in controlled 
impure helium environments. The loading here is provided by dead-weights. 

 

 
Figure 3-14 Temperature profile obtained along the gauge of the specimen for creep 
experiments in controlled impurity helium environments at 800°C. The error in the 
measurements was ±0.5°C. 
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Figure 3-15 Differences in the inlet and outlet CO2 (a,c) and CO (b,d) concentrations due 
to the interactions of He-CO/CO2=1320 with the quartz tubes and/or creep retort 
assembly. For the exposure-only experiments (a,b) [77], the concentrations between the 
inlet and outlet reached a steady state after ~40-50h; for the creep-exposure experiments 
(c,d) the times were longer (250h). 
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CHAPTER 4 

EFFECT OF IMPURE HELIUM ENVIRONMENTS ON THE EXTENT AND 

MECHANISMS OF NEAR-SURFACE DAMAGE OF ALLOY 617 DURING 

CREEP AT 800°C 

 

In this chapter, the role of different impure helium environments on damage 

accumulation in the surface and near-surface regions of uncoated Alloy 617 is examined.  

In particular the role of creep strain on damage accumulation is investigated, with the 

goal of inferring how such an attack would affect the long-term degradation of Alloy 617 

under creep and cyclic creep conditions.  

Studies were conducted to characterize the near-surface damage of Alloy 617 as a 

function of carbon and oxygen potentials in helium during static and cyclic creep at 

800°C. All creep tests were interrupted at nominal strains well before failure, and the 

damage was limited to the near-surface region, which is of most interest in differentiating 

the effects of environment. Sections 4.1 to 4.5 present the effects of two environments, 

oxidizing (He-≤0.1ppm O2) and carburizing/oxidizing (He-CO/CO2=1320), on the type 

of near-surface damage of Alloy 617 under static (50 MPa) and cyclic (10/50 MPa) 

loading. The former is an environment where oxidation only is expected to occur, while 

in the latter environment both oxidation and carburization are expected. In these studies, 

surface morphologies, cross-sections, and chemical characteristics of the oxide scale are 

examined. The role of stress on environmental attack, the role of gas environment on 

creep behavior, the morphology and growth rates of Cr2O3, and whether chromia 

formation is a step-wise mechanism of formation of carbides before their oxidation, will 

be discussed in Section 4.6.  

4.1 Creep Behavior of Alloy 617 in He-≤0.1ppm O2 and He-CO/CO2=1320 

The creep behavior of Alloy 617 in the oxidizing and carburizing/oxidizing 

impure He environments is shown in Figure 4-1 for both static and cyclic creep 
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conditions. The details of the creep behavior (time under load, minimum creep rate and 

strains) are listed in Table 4-1. For the sake of comparing the creep behavior for both 

static and cyclic loading, the creep curves for the cyclic loading are shown as creep strain 

vs. time at maximum stress. Figure 4-1a shows the creep curves of Alloy 617 in the 

different environments and stress conditions at 800°C. Figure 4-1b-c show the static and 

cyclic creep behavior of the alloy in He-≤0.1ppm O2 and He-CO/CO2=1320 

environments respectively. The tests were interrupted at approximately the same nominal 

strains5 long before failure, and the creep curves show the primary and secondary stages 

of the creep behavior. To achieve the same strain levels, the exposure under cyclic stress 

was approximately twice as long as under static stress. The measured steady state 

(minimum) creep rates under the two environments for both static and cyclic loading 

were similar6. It is concluded, that up to the nominal strains reached in the tests, the 

nature of test environment and type of loading do not affect the bulk creep behavior of 

Alloy 617.  Since environmental attack is a time-dependent phenomenon, the extra time 

under cyclic strain accumulation provides more information on the surface scale 

formation and near-surface damage.   

4.2 Morphology of surface oxide 

The surface scale morphologies of Alloy 617 after creep in the two environments 

exhibited marked differences. The nature of applied loading (static versus cyclic) did not 

affect the type of oxide morphology produced on the alloy surface in either environment, 

and so the oxide morphology for static loading (50 MPa) was shown for each 

environment.  

Following exposure for 211 h in the oxidizing-only environment (He-≤0.1ppm 

O2) and a total creep strain of 1.9% strain, the alloy formed an overall nodular-type 

                                                 
5 The tests were stopped at ~2% strain for two reasons. First, these tests were designed as a 

feasibility study aimed to help understand the synergistic relationship between environmental and 
mechanical effects during creep before significant mechanical damage could take place and hence render it 
difficult to appreciate the environmental effects on the surface of the alloy. Second, the strain level was 
chosen such that the cyclic tests did not take too long to reach the same strain as in static tests and so would 
have made it unfeasible to conduct extra studies of creep of Alloy 617 as a function of environment 
composition, loading, and presence or absence of coatings.  

6 Creep strain rates, as indicated by the linear part of the creep curves, under static and cyclic 
loading in the two environments fall within the same scatter band, and  so there seems to be no effect on 
creep behavior of environment composition and loading type.  
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surface oxide with enhanced oxidation at the grain boundaries, as shown in Figure 4-2a. 

The oxidation is generally uniform, but spallation of the oxide layer is observed in certain 

parts of the specimen surface. This localized loss of the surface oxide – possibly a result 

of compressive stresses of the scale, test loading, cooling from test temperature, or a 

combination of all these factors – exposed an underlying substrate surface with evidence 

of intergranular grain boundary cracking (Figure 4-2b,c). Thick oxide ridges along the 

grain boundaries (Figure 4-2d,e), as viewed from the surface, are indicative of enhanced 

grain boundary oxidation, since grain boundaries are fast diffusion paths. The nature of 

the oxide is similar at the grain boundary as on the grain, and is rich in Cr and O, as 

shown in Figure 4-3. 

In contrast to the morphology of the oxide produced in the oxidizing environment, 

the surface oxide that developed after 206 h in the carburizing/oxidizing environment 

(He-CO/CO2=1320) was smooth – not nodular (Figure 4-4a). There was no indication of 

thick oxide ridges along the grain boundaries, and certain areas showed the opening of 

grain boundaries. Spallation of the surface oxide occurred here as well and exposed 

needle-like features underneath the smoother part of the oxide, as shown in Figure 4-4b,c. 

The same needle-like features were observed in the intergranular cracking (Figure 4-4d), 

and cross-sections will show that they extend from the surface into the alloy.   

4.3 Characterization of Damage Penetration 

Here surface damage is defined as surface scale formed as a result of exposure to 

environment, and the presence of intrusions (cracks or internal oxidation) due to the 

effect of environment and stress. The nature of loading (whether static or cyclic) did not 

change the type of damage in either environment. However, as shown in Table 4-2, the 

near-surface regions of specimens subjected to cyclic loading (10/50 MPa) experienced 

more frequent and deeper Cr2O3 and/or Al2O3 intrusions, as well as thicker surface scales 

than for specimens crept at static loading (50 MPa) in the same environments. In order to 

attain the same nominal strains, specimens under cyclic loading were crept for twice as 

long as for those under static loading, and this accounted for thicker and more penetrative 

oxides in the former, which is presumed to be only a function of time at temperature. The 

carburizing/oxidizing environment was more damaging – number and extent of grains 

attacked  than the oxidizing environment under the same type of loading. In summary, 
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there is an increase in the frequency of grain attack, the depth of grain boundary 

intrusions, and the thickness of the surface oxide in the presence of carbon and oxygen 

potentials (He-CO/CO2=1320) than when only oxygen (He-≤0.1ppm O2) is present. This 

is also the case under cyclic loading (10/50 MPa) when compared to static loading (50 

MPa). Figure 4-5 compares the combined effect of environment and stress on the surface 

damage of Alloy 617 at 800°C for the different test conditions, while quantification of the 

damage is presented in Table 4-2. 

Cross-sections of Alloy 617 crept in the He-≤0.1ppm O2 are shown in Figure 4-6 

and Figure 4-7. In this environment, the damage is comprised of a surface chromia scale 

and internal oxide (alumina) in select grain boundaries. It is worth noting that the less 

porous and continuous chromia, which appears to be of a fine and nodular structure, is 

limited to the surface and there is no substantive presence of chromia penetrating the 

grain boundaries. Figure 4-6a shows the surface scale and grain boundary intrusions.  

From Figure 4-6b it can be seen that the surface oxide at the intersection of the grain 

boundary with the specimen surface is thicker than elsewhere (where the scale thickness 

is generally uniform), indicative of the thick grain boundary oxide ridges seen earlier on 

the surface in Figure 4-2. Also, a closer look at the surface oxide shows the presence of a 

mixture of matrix and scale. The thicker grain boundary oxides and the presence of 

matrix within the surface scale are indicative of an outward growth of the outer scale. 

Cr2O3 scale has been shown to grow mainly outwardly [81-83].  Underneath the surface 

chromia scale, there is a thin alumina scale that extends internally along certain grain 

boundaries, as shown in Figure 4-7. The chromia surface scale and internal and sub-

surface alumina oxides are identified by EDS maps in Figure 4-8. In this environment, it 

can be said that cracks are initiated by internal alumina oxides. The cross-section and 

surface morphology can both be seen in Figure 4-9 where the sample has been tilted to 

45° relative to the beam. 

In He-CO/CO2=1320, the damage is comprised of a chromia scale located on the 

surface and extending into the matrix along the grain boundary, and internal alumina 

close to the surface scale and cracks (Figure 4-10a). Internal oxidation occurs below the 

surface scale (Figure 4-10b), and alongside the chromia-filled crack (Figure 4-10c). The 

surface scale is made of porous, blocky, coarse-grained, and plate-like features, with no 
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indication of enhanced scale ridges at the intersection of grain boundaries and the surface 

(Figure 4-10d). The crack tip is composed of the same corrosion product as that on the 

surface (chromia) and alumina around the crack (Figure 4-11b-d). Carbides have 

precipitated in the matrix of the alloy, and there is a carbide-free zone close to the 

chromia crack (Figure 4-12b). The precipitate-free zones are present near the grain 

boundaries and also the surface, most likely as a result of the depletion of Cr during the 

nucleation and growth of the Cr-rich carbides. These zones are easier to observe here 

than in the oxidizing environment due to the precipitation of carbides.  Occasionally, 

alumina – dark phase – is incorporated in certain areas of the chromia-filled crack body – 

bright phase – and also alongside the crack, as shown in Figure 4-12c,d. The carbides 

near the surface are formed as a result of carburization effect of the environment. Figure 

4-13 shows the presence of carbides near the surface and their diminished presence in the 

bulk. The chromia surface scale and crack corrosion product, and internal alumina oxides 

are identified by EDS maps as shown in Figure 4-14. The surface/cross-sectional 

features, as shown in Figure 4-15, characterize the surface and grain boundary oxides, 

and the continuation of the surface oxide into the matrix via the grain boundaries. Also, it 

is clearer here that the needle-like oxide features are below the smooth upper layer, and 

are exposed when spallation occurs. It is apparent that in the carburizing/oxidizing 

environment, the corrosion products are thicker on the surface, and penetrate deeper into 

the matrix along the grain boundaries than in the oxidizing environment. Another 

difference is that the oxide formed in He-CO/CO2=1320 is more porous than that in He-

≤0.1ppm O2. This difference in morphology of the oxides developed in the two 

environments points to the possibility of the two scales having different crystalline 

structures or different pathway of formation.  

4.4 Determination of Oxide Structure by XRD Analysis 

X-Ray diffractometry was used to identify the phases in the oxide films and hence 

determine the crystallographic structure of the different scales. Identification of phases in 

bulk and surface was done in the θ-2θ mode as shown in Figure 4-16, while surface-

sensitive diffractometry was performed to highlight the surface corrosion products using 

a grazing angle of incidence of 2° with 2θ between 23° and 67° (Figure 4-17). The 

identified phases were γ-Ni substrate (PDF: 65-2865), Cr2O3 (PDF: 38-1479), and Cr23C6 
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(PDF: 65-3132), while Al2O3 peaks (PDF: 10-0173) were not unambiguously identified; 

therefore, only the expected peak positions are shown. The XRD data is normalized in 

order to accentuate the peaks of phases produced during corrosion compared to stronger 

peaks from the Ni-substrate and to facilitate comparison of different testing conditions. 

Since the volume of interaction of X-rays is greater for bulk compared to surface 

characterization, different normalization is used ((I/Imax)1/2 and I/Imax respectively). 

Figure 4-16 shows the results for the bulk measurement of the corrosion products 

developed for Alloy 617 in the different He environments. γ-Ni substrate (peaks at 43.5° 

and 50.5°) is the only phase identified in the as-received alloy (Figure 4-16a), and no 

carbides are identified as they are in solution. Results for static and cyclic loading are 

compared here to show the effect of exposure time and not the effect of the type of 

loading, since the latter is not expected to produce different corrosion products in the 

same environment. In He-≤0.1ppm O2, the main corrosion product is Cr2O3, and the 

effect of time increase from 211 h to 690 h is seen by the increased Cr2O3 peak intensities 

in (Figure 4-16b,c). The extra peak seen at 29° for the 211 h data was not identified and it 

is assumed to be an artifact. Cr2O3 and Cr23C6 were produced in He-CO/CO2=1320, and 

here also an increase in the peak heights is seen with increase in exposure time 

(comparison of 206h and 553h data in Figure 4-16d and e respectively). Comparison of 

the effect of the two environments reveals that He-CO/CO2=1320 produces more intense 

Cr2O3 peaks than He-≤0.1ppm O2 for short- (Figure 4-16b,d) and long-exposure times 

(Figure 4-16c,e), consistent with a thicker oxide in He-CO/CO2=1320, as summarized in 

Table 4-2. Also, since there is an overlap in the peaks of Cr2O3 and Cr23C6 phases (peak 

at 33.5°), this increase in peak height could also be due to the increased precipitation of 

these carbides in the He-CO/CO2=1320. The reduction in peak intensity of γ-Ni substrate 

relative to Cr2O3 (peaks between 50°-52°) is more significant in He-CO/CO2=1320 

relative to He-≤0.1ppm O2 (Figure 4-16d relative to Figure 4-16b, and Figure 4-16e 

relative to Figure 4-16c), a condition that could be attributed to reduction of the volume 

fraction of the matrix phase in the sampling volume as more significant oxidation occurs 

in He-CO/CO2=1320.  

The results for the XRD surface characterization of the corrosion products 

developed for Alloy 617 in the different He environments are shown in Figure 4-17. The 
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main phase identified is Cr2O3; however, the substrate was picked up as well. Once again 

the peak intensities of Cr2O3 are weaker in He-≤0.1ppm O2 than in He-CO/CO2=1320 

(Figure 4-17a,c and Figure 4-17b,d) while the effect of time on the intensity of Cr2O3 

peaks is not noticeable for exposures in the same environment (Figure 4-17a,b and Figure 

4-17c,d). It is also noticeable that there are no carbides identified within the oxide scale. 

The conclusion here is that Cr2O3 with the same crystallographic structure was 

developed in the different environments even though their morphologies were different. 

This difference in morphology of the grown oxides will be subsequently described in the 

discussion section in terms of the difference in porosity of Cr2O3, the effect of ambient 

oxygen partial pressure, and the possibility of difference in pathway of oxide formation. 

4.5 Determination of Oxide Composition by Auger Analysis 

Since XRD is not expected to be able to detect all the phases, Auger depth 

profiling was used to determine the composition of the oxides as a function of depth. The 

composition profiles were taken after 10 minutes of sputtering with 10 keV argon at a 

current of 10 nA. Figure 4-18 shows the composition of the corrosion surface products as 

a function of sputtering time for Alloy 617 exposed to four He-environments.  

The concentration profiles show the presence of an oxide (mainly Cr2O3) for at 

least the first 50 minutes of sputtering. Since the morphology and porosity of the oxides 

were distinct, and therefore different depending on the environmental exposure, 

calibration of the sputtering distance with the time could not be determined accurately, 

and sputtering time is used in the data instead. Figure 4-18a shows the presence of 

surface Cr2O3 up to 200 minutes of sputtering for He-≤0.1ppm O2, but just 70 minutes for 

He-CO/CO2=1320 in Figure 4-18b. 

4.6 Discussion 

In this study, the type of near-surface damage of Alloy 617 at 800°C has been 

shown to depend on the gas chemistry represented by the two helium environments. 

Porous, and thick surface Cr2O3 together with deep grain boundary oxides and internal 

carbide precipitation characterized the alloy crept in He-CO/CO2=1320, an environment 

with low oxygen partial pressure. A high oxygen partial pressure environment (He-

≤0.1ppm O2) produced thinner and less porous surface Cr2O3. In order to understand the 
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different surface damage mechanisms, this section will examine the role of stress, oxygen 

partial pressure, and carbon potential in the environment.  

4.6.1 Role of stress in near-surface damage of Alloy 617 

Environmental attack during creep of Ni-Cr alloys has been shown to be 

accelerated by the presence of mechanical stresses. Jang reported that the application of 

tensile loading during high-temperature oxidation of Alloy 617 in air and helium 

environments between 900-1100°C enhanced the thickness of the surface-oxide layer, the 

internal corrosion, and decarburization. He attributed this acceleration of environmental 

attack to the increase in diffusion of the oxidizing agent and gaseous reaction products 

[71]. Carbon intrusion was deeper in Alloy Hastelloy X  [43] during accelerating creep 

than during steady state creep, and also at the rupture portion than at grip sections of the 

test specimen, further establishing the role of stress in accelerating environmental attack.  

In this dissertation, comparison between unstressed and stressed conditions was 

made only for the more damaging carburizing/oxidizing environment. Even though the 

bulk creep behavior of Alloy 617 was not changed by varying the loading (static versus 

cyclic) in the two environments (Table 4-1), the alloy surface was significantly more 

damaged in the carburizing/oxidizing environment (Table 4-2).  The creep behavior and 

characterization of the near-surface damage of the alloy in the oxidizing environment 

(He-≤0.1ppm O2) was used as a baseline for understanding the behavior in an 

environment with activity of carbon and low oxygen partial pressure (He-

CO/CO2=1320). To determine if the significant grain boundary attack is attributed to the 

application of mechanical stress during exposure in He-CO/CO2=1320, as opposed to 

exposure only, Figure 4-19 compares the surface damage of stressed (50 

MPa/1.7%/206h) and unstressed (0 MPa/0%/308h) specimens, and shows that the near-

surface grain boundaries are attacked whether stress is applied or not. This means that 

stress is not responsible for the extensive damage in the He-CO/CO2=1320 environment, 

and so the other possibility is the role of carburization on the damage accumulation near 

the surface. Tawancy et al [70] reported extensive intergranular cracking near the surface 

of a tensile-tested specimen that had been exposed to a carburizing environment prior to 

testing. This surface cracking was more likely due to the specimen surface layer being 

hardened by carburization, a condition in agreement with the concept of case-hardening 



 

85 
 

known to occur during carburization. It is, therefore, reasonable to conclude that stress 

does not, in the environmental condition here, initiate grain boundary attack, but rather 

there is an environmental effect by the carburizing environment that stress only 

accelerates. 

4.6.2 Stability diagram and stability of carbides/oxides 

In the current work, impurities used in the helium environments were expected to 

be oxidizing, in the case of He-≤0.1ppm O2, or carburizing and oxidizing in He-

CO/CO2=1320 with respect to Alloy 617. Helium is an inert gas, but since achieving an 

oxygen-free environment is not feasible, the environment was designated as containing 

an oxygen level equal to or less than the detection limit of the gas chromatograph 

(0.1ppm O2) used in the analyses of the test environments. In this regard, He-≤0.1ppm O2 

is considered to be a high oxygen potential environment (equilibrium oxygen partial 

pressure of 0.1ppm or 10-7 atm). Gas mixtures containing CO and CO2 are usually used 

when it is required that the partial pressure of oxygen in a gas phase be fixed at a very 

low value [84]. He-CO/CO2=1320, with equilibrium oxygen partial pressure of 2.1 x 10-

25 atm and carbon activity of 0.4 in the gas mixture, falls in this category. Since the gas 

contains both CO and CO2 impurities, carburization and/or oxidation are expected to 

occur. 

The corrosion modes of Ni-Cr alloys in impure He environments can be 

understood by analyzing the stability diagram of chromium to determine the 

thermodynamic stability of the different phases formed in Ni-Cr alloys at a given 

temperature. From the Cr-C-O stability diagram, Figure 4-20, the regions where Cr, its 

carbide and oxide are stable can be identified as a function of equilibrium carbon activity 

and oxygen potential of the test environment [33, 35]. As previously explained in Chapter 

2, the most stable oxide and carbide phases of the candidate alloys are Cr2O3 and Cr23C6. 

The oxygen and carbon activities of the He environments used in this work are within the 

region of stability of Cr2O3 and Cr23C6 for He-CO/CO2=1320 (oxygen partial pressure of 

2.1 x 10-25 atm and carbon activity of 0.4) and Cr2O3 for He-≤0.1ppm O2 (oxygen partial 

pressure of 10-7 atm).  It should be pointed out that equilibrium between the alloy surface 

and CO and CO2 impurities in the primary coolant helium is not expected to be achieved 

under the fast-flowing service conditions [30]. Therefore, these calculated equilibrium 
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values of oxygen and carbon activities in the gas are not expected to occur. However, 

Gulsoy showed that the steady-state values of oxygen and carbon activities could not be 

calculated due to lack of data in the literature, but that the anticipated difference between 

the equilibrium and steady-state values was not expected to affect the diffusion and 

mechanism of Cr oxidation [77]. 

4.6.3 Effect of environmental attack on creep 

The effects of chemistry of the gas environment on bulk creep behavior of 

chromia-forming alloys have been explored in the past. For instance, it has been reported  

that the precipitation of carbides could lower the creep ductility of the alloy [12, 43, 57, 

85]; oxidation could lead to formation of surface cracks that would reduce the load-

bearing area [67]; and decarburization could reduce the creep strength of the alloy [12, 

43, 44]. 

The creep behavior of Alloy 617 in the He-≤0.1ppm O2 and He-CO/CO2=1320 

environments was shown in section 4.1, showing no immediately observable effect of the 

chemistry of the helium environments or load types on the creep strain rates. This is 

surprising since it would appear that the differences in the near-surface damage in the two 

environmental conditions would significantly affect the creep rates. The creep tests were 

interrupted in the secondary creep regime, and this is confirmed by the fact that features 

associated with the initiation of the tertiary stage (formation of voids and necking) did not 

occur. The environmental effect was, therefore, reduced to surface effects only. The 

surface effects on the alloy in the environments were short internal oxides/cracks in He-

≤0.1ppm O2 and long grain boundary cracks and carbide precipitation in He-

CO/CO2=1320. Understanding the effect on the load-bearing area of the depths of these 

intrusions (internal oxide/cracks and grain boundary cracks) is important. Table 4-3 

shows an approximation of the reduction of cross-sectional area due to oxidation and 

development of cracks after creep in the two environments. For simplicity, the cross-

sectional area reduction due to creep elongation is not considered here. The load-bearing 

area is somewhat reduced (to 91-94%) in the carburizing/oxidizing environments 

compared to the oxidizing environments (98-99%). From this analysis, one could say that 

alloy 617 should creep faster in the carburizing/oxidizing compared to an oxidizing-only 

environment. It should not be forgotten, however, that carburization in the alloy causes 
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precipitation of carbides in the matrix, and so the effect of a reduced load-bearing cross-

sectional area could be offset by the redistribution of carbon in the matrix to produce 

enhanced carbide precipitation, hence higher creep strength in the surface and core of the 

specimen. The first implication of deeper-attacked grain boundaries in He-

CO/CO2=1320, is that the alloy might reach tertiary stage faster and fail sooner than 

would be the case in He-≤0.1ppm O2. This early onset of tertiary creep in He 

environments was seen by Mino [86], and he attributed it to early initiation and growth of 

surface cracks and resultant reduction of the effective cross-sectional area. The second 

possibility of the effect of the near-surface damage is that the matrix carburization could 

delay the initiation of the tertiary stage in He-CO/CO2=1320, whereas failure could be 

rapid in the He-≤0.1ppm O2 as observed by Shankar [12]. In this respect, the effect of 

environmental attack on the long-term creep behavior is complex and needs further 

investigation. Longer and uninterrupted creep studies of Alloy 617 in He-0.1ppmO2 and 

He-CO/CO2=1320 would be helpful to better understand the long-term effect of the 

environment on creep deformation. 

4.6.4 Morphology and rate of growth of Cr2O3 

Morphological differences of the surface oxides formed in the two environments 

were reported in the results section, supporting earlier observation that chromia scales 

differ in their protective abilities depending on the gas in which they are grown [87]. In 

this work, He-≤0.1ppm O2 (high oxygen partial pressure) produced less porous and 

continuous surface oxide, while porous, and thicker Cr2O3 characterized the surface 

produced in He-CO/CO2=1320 (low oxygen partial pressure). 

The occurrence of porosity in surface Cr2O3 produced in a carburizing/oxidizing 

environment in the temperature range of 850-1000°C has been reported by Kumar [10, 

19]. According to the author, the carburization of the alloy resulted in the formation of 

discontinuous Cr7C3 precipitates over a thin Cr2O3 film as the oxide layer kept growing. 

However, the surface carbide became thermodynamically unstable after the Cr activity 

fell below a critical value at the alloy/oxide interface, and it dissolved in the oxide to 

release CO and Cr, the latter of which contributed further to the oxide scale growth. The 

dissolution of these carbides left voids and pores in the oxide, making the alloy more 

vulnerable to further environmental attack. Even though no Cr7C3 carbides were observed 
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in the current work, and no carbides were observed within the chromium oxide scale 

(Figure 4-17), the close gas chemistry between He-CO/CO2=1320 and that used by 

Kumar makes it likely that this mechanism could explain the porous nature of Cr2O3 

formed in He-CO/CO2=1320. 

The growth rate of the oxide could therefore explain the difference in the 

thickness of the surface oxide scales formed in the two environments. The 

carburizing/oxidizing environment produced thicker Cr2O3 scales. It is generally agreed 

that Cr2O3 surface scale grows in the outward direction [82, 83]. The mechanism of 

Cr2O3 formation has been shown to vary, however, depending on the ambient oxygen 

partial pressure, which determines the species accounting for the chromium transport in 

the oxide scale. According to Atkinson and Taylor [88], Cr vacancies and Cr interstitials 

are the primary mobile species in high and low oxygen partial pressure environments, 

respectively. This means that Cr vacancies are expected to be the primary mobile species 

in the oxidizing environment (He-≤0.1ppm O2), while Cr interstitials will be dominant in 

the carburizing/oxidizing environment (He-CO/CO2=1320) used in this work. Gulsoy 

[89] further established that the self-diffusion coefficient of Cr in Cr2O3 based on the 

measured surface oxidation rates of Alloy 617 in He-CO-CO2 environments was greater 

for Cr interstitials than for Cr vacancies. The implication of this determination is that the 

growth rate of Cr2O3 is expected to be greater in low oxygen partial pressure 

environments (in this case, He-CO/CO2=1320) than that observed in high oxygen partial 

pressure environments (in this case, He-≤0.1ppm O2). Another factor worth mentioning 

is that as established by Wagner [90] the growth rate of Cr2O3 has been shown to be 

dependent on the ambient oxygen partial pressure when vacancy diffusion is dominant,  

whereas it is dependent on the oxygen partial pressure at the alloy/oxide interface when 

interstitial diffusion is dominant. Considering that the Cr2O3 scale has been shown to be 

inherently permeable to molecular oxidants [13, 47], and, as stated above, that the growth 

by interstitial diffusion is a function of the oxygen partial pressure in the alloy/oxide 

interface, it is reasonable that Cr2O3 scale observed in He-CO/CO2=1320 would be 

thicker.  
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4.6.5 Evaluation of a stepwise mechanism of oxidation of previously-formed 

carbides  

As seen earlier, the oxidation and growth of Cr2O3 is a function of partial pressure 

of oxygen in the environment. Also, it appears that the carburizing potential of an 

environment causes case hardening of the alloy surface and rendered it susceptible to 

cracking, thereby exposing fresh surface to the oxidation potential of the environment. It 

also has been shown that the near-surface damage on Alloy 617 was significantly more 

severe (deeper intrusions and thicker surface scale) in He-CO/CO2=1320 than in He-

≤0.1ppm O2. It is possible that the environmental damage is accelerated by the presence 

of carbon – in addition to oxygen – in the He-CO/CO2=1320, compared to only oxygen 

in the He-≤0.1ppm O2. The faster diffusion of carbon compared to oxygen can explain 

why the grain boundary intrusions are deeper in a carburizing/oxidizing environment than 

in an oxidizing-only environment. Schnaas [42] observed how a Ni-Cr-Fe alloy suffered 

preferential grain boundary attack as a result of carbon-bearing element penetration and 

formation of internal carbides along the grain boundaries. He posited that these carbides 

can subsequently be selectively oxidized. In this section, the morphology of surface 

corrosion product and the cross-section of Alloy 617 are characterized after creep in He-

600 ppm CH4 (expected to be only carburizing) and also after subsequent creep in He-

≤0.1ppm O2 (an oxidizing only environment), where it is hypothesized that carbides 

would form and be oxidized, respectively. Since it has been established earlier that the 

nature of loading (static vs. cyclic) did not affect the type of oxide morphology, the 

studies here were conducted under static loading (50 MPa). The total time after exposure 

(250 h) in the two environments was set to be similar to the total time under static 

loadings for the previous environments in Table 4-1.  

The morphology of the surface corrosion product developed after 137 h of creep 

in He-600ppm CH4 consisted of dark and bright isolated surface features (Figure 

4-21a,b), and the surface layer was not of nodular type as seen in He-≤0.1ppm O2 (Figure 

4-2d), nor smooth (non-nodular) as seen in He-CO/CO2=1320 (Figure 4-4a). No 

spallation was apparent on the surface of the alloy, and, like in the He-CO/CO2=1320 

environment, there was no indication of thick oxide ridges along the slightly-cracked 

grain boundaries (Figure 4-21c). However, the surface of Alloy 617 crept in He-600ppm 
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CH4 for 137 h and subsequently in He-≤0.1ppm O2 for 113 h revealed a different 

morphology. A survey of the surface shows clearly demarcated grain boundaries (Figure 

4-22a,b), and also that the morphology of the surface corrosion product has evolved from 

the isolated features seen in Figure 4-21 into needle-shaped features underneath a smooth 

layer similarly to what was observed in He-CO/CO2=1320. Figure 4-22c shows some 

openings on the surface of the alloy where one can observe development of plate-like 

features, but around which the layer seems to be coalescing into a relatively smoother 

upper layer.  

FIB cross-sections of Alloy 617 crept in He-600ppm CH4 (Figure 4-23) and in 

He-600ppm CH4 + He-≤0.1ppm O2 (Figure 4-24) are shown tilted to 45° to reveal the 

morphology of the surface corrosion product and the cross-sections. A deposited 

platinum layer protected the surface corrosion product during the FIB milling process 

used to reveal the cross-section. The surface oxide (revealed as rich in Cr and O by EDS) 

is seen in Figure 4-23b-d as a discontinuous scale. The grain boundary opening seen on 

the surface is shown on the cross-sectional view to penetrate into the alloy (Figure 

4-23c). The grain boundary intrusion shows the beginning of development of finger-like 

growth of oxide on the walls of the separated grains. In this He-600ppm CH4 

environment, where carburization was expected to occur, the surface scale is rich in 

oxygen and not in carbon. After the introduction of an oxidizing environment, the cross-

sectional surface oxide (Figure 4-24) is more continuous than in the He-600ppmCH4. 

Also, the grain boundary opening on the surface penetrates deeper into the alloy than 

before. The grain boundary and surface oxides now appear to be porous, blocky, coarse-

grained, and plate-like, similar to the observations made in He-CO/CO2=1320 

environment (Figure 4-15). These observations show the likelihood of a stepwise 

mechanism of carbides forming prior to their oxidation.  

Bulk X-Ray diffractometry in Figure 4-16 shows that the exposure of the alloy for 

137h in He-600ppm CH4 (Figure 4-16f) forms low-intensity peaks of Cr2O3, and an extra 

113h in He-≤0.1ppm O2 (Figure 4-16g) doesn’t change the peak heights significantly. 

After 137h in He-600ppm CH4, and further 113h in He-≤0.1ppm O2, the main corrosion 

product is Cr2O3 with peak intensities comparable to what is formed after 211h in He-

≤0.1ppm O2 (Figure 4-16b), but not to 206h in He-CO/CO2=1320 (Figure 4-16d).  
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Grazing incidence X-Ray diffractometry shows that the surface corrosion product in He-

600ppm CH4 (Figure 4-17e) is Cr2O3, even though the signals are weaker than in He-

0.1ppmO2 (Figure 4-17a,b). 

According to Auger depth profiles, the surface oxide formed after exposure to He-

600ppm CH4 and then to He-≤0.1ppm O2 (Figure 4-18c) required the same sputtering 

time as that one formed in He-0.1ppm O2 (Figure 4-18a), and not as the one in He-

CO/CO2=1320 (Figure 4-18b). This is surprising since Figure 4-18b and Figure 4-18c are 

profiles of oxides that were shown to have similar morphologies (Figure 4-15 and Figure 

4-24). Figure 4-18d shows the profile of the surface oxide in He-600ppm CH4 where 

Cr2O3 has not developed yet.    

Even though the morphology of the oxide formed here on the surface of Alloy 

617 resembles slightly that formed in the He-CO/CO2=1320, it appears that the extent of 

grain boundary damage is not similar to that seen in the He-CO/CO2=1320. The 

environments used in the literature to provide carburizing environments are either 

carburizing/reducing (CH4-H2, [42, 91]) or carburizing (He-CH4, [12, 85]). To understand 

the mechanism of formation of Cr2O3 in the He-CO/CO2=1320 (carburizing/oxidizing), it 

was deemed better to avoid a reducing environment (CH4-H2), which would not favor the 

formation of the protective Cr2O3 layer on the alloy surface.  The He-CH4 environment, 

while not reducing, did not form noticeable carbides as expected. It seems that this 

environment does not produce carbon easily. According to Christ [35, 92], the decay of 

CH4 into C and H2 is a very slow process, and so this could explain the difficulty of 

carbide precipitation. Even though the reaction is supposed to produce a high carbon 

activity, no carbon on the surface was detected nor any carburization observed in the 

matrix. This is consistent with the observations made in this dissertation, where no 

carburization occurred at the test conditions imposed here. For this reason, it cannot be 

conclusively determined whether the damage in He-CO/CO2=1320 follows a stepwise 

process of carbide formation prior to their oxidation.  

4.7 Summary 

Exposure to oxidizing and carburizing/oxidizing helium environments during 

interrupted creep enhanced different modes of damage accumulation in the surface and 

near-surface regions of Alloy 617. While the alloy suffered surface oxidation and internal 
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oxidation in both environments, crack depth and frequency were more extensive in the 

carburizing/oxidizing environment. This damage accumulation was attributed to the 

synergy existing between stress and chemistry of the gas environments that affected the 

extent of surface damage accumulation of the alloy. It has been shown that the presence 

of mechanical loads enhances – but is not the cause of – grain boundary attack by the 

environment, and that cycling the load increases surface damage accumulation. By 

ensuring that bulk creep deformation was the same in both environments, it was shown 

that there was no effect of environment on creep deformation and that the environmental 

damage was limited to the near-surface regions of the alloy (surface and internal 

oxidation and matrix carburization).   

The mechanism of the more damaging environment (He-CO/CO2=1320) in creep 

damage accumulation has not been completely understood in terms of oxidation of 

carbides. However, the existence of different Cr2O3 growth rates due to Cr interstitial 

atoms or Cr vacancies as primary mobile species as a result of low or high oxygen partial 

pressures in unstressed specimens is confirmed during the application of stress in this 

work. Also, the carburizing nature of the environment has been shown to cause 

embrittlement of the near-surface regions of the alloy, which exposes new alloy surfaces 

and allows for inward oxidation and cracks to take place. The next chapter will examine 

the protective role of coating layers in mitigating the environmental attack in uncoated 

617 during creep deformation. 
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Table 4-1 Interrupted creep behavior of Alloy 617 at 800°C in oxidizing and 
carburizing/slightly oxidizing helium environments. 

Environment Load Strain (%) Minimum Creep 
Rate (10-8/s) Test Time (h) 

He - ≤0.1ppm O2 
Static (50 MPa) 1.9 1.7 211 

Cyclic (10-50 MPa) 2.3 0.94 690 

He–CO/ CO2=1320 
 

Static (50 MPa) 1.7 1.3 206 

Cyclic (10-50 MPa) 2.1 1.4 553 

 

 

Table 4-2 Quantification of surface damage in Alloy 617 crept at 800°C in oxidizing and 
carburizing/oxidizing helium environments. 

Environment Load Test 
Time (h) 

Strain 
(%) 

Number of 
grain boundary 

intrusions7 

Average 
intrusion 

depth (μm) 

Average 
oxide 

thickness 
(μm) 

He - ≤0.1ppm O2 
Static (50 MPa) 211 1.9 6 7.5 ± 2.4 1.0 ± 0.3 

Cyclic (10-50 MPa) 690 2.3 34 13.8 ± 6.4 1.3 ± 0.3 

He–CO/ CO2=1320 
Static (50 MPa) 206 1.7 31 34.3 ± 21.9 2.0 ± 0.4 

Cyclic (10-50 MPa) 553 2.1 45 48.9 ± 14.1 3.5 ± 0.4 

 

 

 

 

 

 

 

 

 

                                                 
7 Counts per 6mm of specimen gauge length. 
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Table 4-3 Effect of surface cracks on the load-bearing area for static and cyclic loading in 
He-≤0.1ppm O2 and He-CO/CO2=1320 environments. 

  Load-Bearing Area  

 Intrusion 
Depth (μm) 

Length (μm) Width (μm) Area (μm2) Area (%) 

Original Specimen 
Dimensions 

N/A 3000 2000 6000000 100 

50 MPa 

He-≤0.1ppm O2 

15 2985 1985 5925225 98.8 

10/50 MPa 

He-≤0.1ppm O2 

28 2972 1972 5860784 97.7 

50 MPa 

He-CO/CO2=1320 

60 2932 1932 5664624 94.4 

10/50 MPa 

He-CO/CO2=1320 

100 2900 1900 5510000 91.8 
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Figure 4-1 Interrupted static and cyclic creep behavior at 800°C of Alloy 617 in (A) all 
environments, (B) He-≤0.1ppm O2, and (C) He-CO/CO2=1320. 
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Figure 4-2 SEM micrographs of the surface morphology of Alloy 617 crept at 800°C in 
an oxidizing environment (He-≤0.1ppm O2). The stress/strain/time-at-peak-stress 
conditions are 50MPa/1.9%/211h. The stress axis is vertical and in the plane of the page. 
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Figure 4-3 Similarity in EDS composition of oxide (rich in Cr and O) located along grain 
boundary and grain formed on Alloy 617 crept at 800°C in an oxidizing environment 
(He-≤0.1ppm O2). The stress/strain/time-at-peak-stress conditions are 50MPa/1.9%/211h. 
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Figure 4-4 SEM micrographs of the surface morphology of Alloy 617 crept at 800°C in a 
carburizing/slightly oxidizing environment (He-CO/CO2=1320). The stress/strain/time-
at-peak-stress conditions are 50MPa/1.7%/206h. The stress axis is vertical and in the 
plane of the page. 
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Figure 4-5 SEM images comparing the surface damage in Alloy 617 crept at 800°C in 
different environments and loading types. The images show the effect on the surface 
scale thickness and depth of intrusions of the different stress/strain/total test time 
conditions: (a) 50 MPa/1.9%/211 h, (b) 10/50 MPa/2.3%/690 h, (c) 50 MPa/1.7%/206 h, 
and (d) 10/50 MPa/2.1%/553 h. The studies were conducted in He-≤0.1ppm O2 (a,b) and 
He-CO/CO2=1320 (c,d) environments. The stress axis is horizontal and in the plane of 
the page. 
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Figure 4-6 SEM micrographs of cross-sections of Alloy 617 crept at 800°C in an 
oxidizing environment (He-≤0.1ppm O2), showing surface scale and grain boundary 
cracks. The stress/strain/time-at-peak-stress conditions are 50MPa/1.9%/211h. The stress 
axis is vertical and in the plane of the page. 
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Figure 4-7 SEM micrographs of cross-sections of Alloy 617 crept at 800°C in an 
oxidizing environment (He-≤0.1ppm O2), showing surface scale and internal oxidation 
along grain boundaries. The stress/strain/time-at-peak-stress conditions are 
50MPa/1.9%/211h. The stress axis is vertical and in the plane of the page. 
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Figure 4-8 EDS maps of cross-sections of Alloy 617 crept at 800°C in an oxidizing 
environment (He-≤0.1ppm O2), showing chromia surface scale and internal alumina. The 
stress/strain/time-at-peak-stress conditions are 50MPa/1.9%/211h. The stress axis is 
vertical and in the plane of the page. 
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Figure 4-9 SEM images of a cross-section made in the FIB of Alloy 617 crept at 800°C in 
an oxidizing environment (He-≤0.1ppm O2), showing surface scale and internal oxidation 
along grain boundaries. The stress/strain/time-at-peak-stress conditions are 
50MPa/1.9%/211h. The stress axis is horizontal. 
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Figure 4-10 SEM micrographs of cross-sections of Alloy 617 crept at 800°C in a 
carburizing/slightly oxidizing environment (He-CO/CO2=1320), showing significant 
crack penetration alongside alumina formation. The stress/strain/time-at-peak-stress 
conditions are 50MPa/1.7%/206h. The stress axis is vertical and in the plane of the page. 

 

 



 

105 
 

 

 
Figure 4-11 SEM micrographs of cross-sections of Alloy 617 crept at 800°C in a 
carburizing/slightly oxidizing environment (He-CO/CO2=1320), showing corrosion 
products at the crack tip. The stress/strain/time-at-peak-stress conditions are 
50MPa/1.7%/206h. The stress axis is vertical and in the plane of the page. 
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Figure 4-12 SEM micrographs of cross-sections of Alloy 617 crept at 800°C in a 
carburizing/slightly oxidizing environment (He-CO/CO2=1320), showing precipitation of 
carbides and crack formation. The stress/strain/time-at-peak-stress conditions are 
50MPa/1.7%/206h. The stress axis is vertical and in the plane of the page. 
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Figure 4-13 SEM micrographs of cross-sections of Alloy 617 crept at 800°C in a 
carburizing/slightly oxidizing environment (He-CO/CO2=1320), showing significant 
carburization effect of environment on near-surface region (b), and absence of carbides in 
the bulk (c). The stress/strain/time-at-peak-stress conditions are 50MPa/1.7%/206h. The 
stress axis is vertical and in the plane of the page. 
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Figure 4-14 EDS maps of cross-sections of Alloy 617 crept at 800°C in a 
carburizing/slightly oxidizing environment (He-CO/CO2=1320), showing chromia and 
alumina within the crack. The stress/strain/time-at-peak-stress conditions are 
50MPa/1.7%/206h. The stress axis is vertical and in the plane of the page. 
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Figure 4-15 SEM images of a cross-section made in the FIB of Alloy 617 crept at 800°C 
in a carburizing/slightly oxidizing environment (He-CO/CO2=1320), showing corrosion 
products at the crack tip. The stress/strain/time-at-peak-stress conditions are 
50MPa/1.7%/206h. The stress axis is horizontal.  
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Figure 4-16 X-ray diffraction of Alloy 617 (a) compared with the alloy in different 
environment and loading conditions (b-g). The durations indicated are total test times. 
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Figure 4-17 Grazing X-ray diffraction of Alloy 617 in different impure He environments 
and loading conditions (a-f). The incidence angle is 2°. The durations indicated are total 
test times. 



 

112 
 

 
Figure 4-18 Depth profiling of surface oxide on Alloy 617 exposed to (a) oxidizing, (b) 
carburizing/oxidizing, (c) carburizing then oxidizing, and (d) carburizing. The durations 
indicated are total test times. 
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Figure 4-19 BSE micrographs comparing the near-surface damage in Alloy 617 subjected 
to He-CO/CO2=1320. The stress/strain/total test time conditions are:(a) 50 
MPa/1.7%/206h and (b)0 MPa/0%/308h. 

 

 
Figure 4-20 A representative Cr-C-O stability diagram taken from Gulsoy [77]. The 
equilibrium oxygen partial pressure and carbon activities of environments He-≤0.1ppm 
O2 (oxygen partial pressure of 10-7 atm) and He-CO/CO2=1320 (oxygen partial pressure 
of 2.1 x 10-25 atm and carbon activity of 0.4) at 800°C indicate the regions of stability of 
carbide and oxide.  



 

114 
 

 

 

 
Figure 4-21 SEM micrographs of the surface morphology of Alloy 617 crept 
(50MPa/137h) at 800°C in He-600ppm CH4 environment. The stress axis is vertical and 
in the plane of the page. 
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Figure 4-22 SEM micrographs of the surface morphology of Alloy 617 crept at 800°C in 
He-600ppm CH4 (50MPa/137h) and subsequently in He-≤0.1ppm O2 (50MPa/113h)  
environments. The stress axis is vertical and in the plane of the page. 
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Figure 4-23 SEM images of a cross-section made in the FIB of Alloy 617 crept at 800°C 
in He-600ppm CH4 (50MPa/137h) environment. Cr2O3 starts to develop in a finger-like 
manner within the crack (c), and as a discontinuous surface oxide (d). 

 



 

117 
 

 
Figure 4-24 SEM images of a cross-section made in the FIB of Alloy 617 crept at 800°C 
in He-600ppm CH4 (50MPa/137h) and subsequently in He-≤0.1ppm O2 (50MPa/113h)  
environments. The morphology of the surface oxide and the grain boundary oxides are 
similar to what was seen in He-CO/CO2=1320 environment (Figure 4-15). 
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CHAPTER 5 

INVESTIGATION OF EFFICACY OF α-AL2O3 FORMING BARRIER 

LAYERS, NIAL AND FECRALY, DURING CREEP OF ALLOY 617 IN 

IMPURE HELIUM ENVIRONMENTS AT 800°C 

 

In Chapter 4, surface chromia (Cr2O3) was shown to form naturally upon 

exposure of uncoated 617 to impure helium environments at 800°C. However, its 

formation did not protect against further internal oxidation and carburization of the 

substrate. Thus, in this chapter the study of coatings that favor the formation of a more 

protective alumina (α-Al2O3) is explored. The coatings were developed in a parallel 

research effort by Professor Carlos Levi’s group at the University of California, Santa 

Barbara [93, 94]. Specifically, a nickel aluminide (NiAl) coating, with and without a 

FeCrAlY clad overlayer was developed for Alloy 617. Both coating approaches were 

shown to protect 617 against oxidation and carburization in impure He environments 

where no stress was applied. At the temperatures of interest (800-1000°C), NiAl offered a 

diffusionally stable coating that resisted long-term interdiffusion with 617. However, the 

formation of metastable γ-Al2O3 and θ-Al2O3 preceded the formation of the more 

protective α-Al2O3. In an effort to alter this occurrence, the NiAl layer was clad with 

FeCrAlY. At 800°C this dual layer FeCrAlY/NiAl system showed an improvement of the 

oxidation properties of the two coatings (compared to either layer used alone). The outer 

FeCrAlY cladding increased the formation of protective α-Al2O3, while the inner NiAl 

reduced interdiffusion with 617 and also provided an additional supply of Al for oxide 

formation.  

This chapter examines the role of static and cyclic creep deformation of coated 

617 at 800°C in impure He environments. Two coating systems are explored, as 

schematized in Figure 5-1: aluminized-only (NiAl/617) and aluminized + clad 

(FeCrAlY/NiAl/617). A limited study of the clad-only system (FeCrAlY/617) is 

presented to examine the behavior during creep without the NiAl layer. The effects of 
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creep deformation on potential changes in microstructure, near-surface composition, and 

the structural stability (cracking or delamination under stress) of the different coating 

layers are assessed for the as-deposited coatings. In a related experiment, artificial 

micronotches that were produced by FIB machining are introduced into the NiAl layer of 

aluminized-only creep specimens to study the role of defects on initiation and 

propagation of cracks during creep. Finally, the role of NiAl precipitates on accumulation 

of creep damage in the NiAl layer of the FeCrAlY/NiAl/617 system is examined.  

5.1 Effect of stress and impure helium environments on coating/substrate systems 

In this section, the bulk creep behavior at 800°C in impure helium, the effect of 

stress on microstructure/composition changes in the coatings, and the relative resistance 

of each system to environmental and mechanical degradation are examined for the 

aluminized-only and aluminized+clad coating/substrate systems. Table 5.1 presents 

environment, stress, and coating/substrate test matrix examined in this study. The impure 

helium environments were oxidizing (He-≤0.1ppm O2 and He-8ppm of O2) and 

carburizing/slightly oxidizing (He-CO/CO2=1320). For NiAl/617 and FeCrAlY/NiAl/617 

specimens, static creep tests at 50 MPa and 75 MPa as well as cyclic tests at 10/50 MPa 

and 15/75 MPa were conducted. To verify the behavior of the cladding on the substrate, 

cyclic creep of FeCrAlY/617 at 15/75 MPa was studied. Table 5.2 shows the process 

conditions used during the aluminizing and cladding processes. Two types of NiAl/617 

were processed via pack cementation and are referred to as Generation I (Gen I) and 

Generation II (Gen II) [18]. Gen I NiAl/617 specimens were aluminized at 700°C for 

~9.6h and subsequently heat treated at 1000°C for 18h. Gen II NiAl/617 specimens 

underwent aluminizing and heat treatment at 850°C/4h and 1000°C/3h respectively. 

Cladding with FeCrAlY alloy by hot pressing was done at 1000°C for 1h on selected Gen 

II NiAl/617 specimens. Microstructures of these as-deposited coating/617 systems are 

described in Chapter 3. 

5.1.1 Creep behavior of coating/substrate systems 

Figure 5-2 presents the creep deformation curves for the static and cyclic creep 

tests for the different coating/substrate systems and the uncoated 617 in the different 

impure helium environments, and Table 5.3 summarizes the test conditions. At 75 MPa 
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static or 15/75 MPa cyclic creep, strain rates in creep varied by roughly a factor of three, 

with the FeCrAlY/NiAl/617 showing the fastest creep rate under static loading and the 

FeCrAlY/617 having the slowest creep rate (only one static test was conducted). At σmax 

= 50 MPa the creep rates and the total creep strains of the NiAl/617 and FeCrAlY/617 

conditions differed only marginally.  However, it is interesting to note that at the lower 

stress, the creep rate measured for the uncoated 617 is about a factor of 5 lower than the 

average creep rates for both coating systems for both loading conditions. While some 

differentiation of creep rates based on coating system could be inferred, it is important to 

note that we observed some scatter (1 - 1.7 10-8/s) in the creep rates of uncoated 617 

under the same test conditions, as described in Chapter 4.  Thus, the variation in creep 

rates cannot necessarily be ascribed to the thermal history associated with 

coating/cladding processes or the architectural differences among the various 

combinations of coatings. 

5.1.2 Microstructural changes and compositional evolution of coating systems  

Changes in microstructure of coating and substrate. 

The microstructure characterization of the coated specimens prior to creep studies 

was presented in Chapter 3, but will be reviewed here for the purpose of comparing them 

with microstructures of specimens crept at 800°C.  

As presented by Clark in her exposure studies [18], the microstructure of Gen I 

NiAl/617 after aluminizing at 700°C for 9.6h and heat treating at 1000°C for 18h is 

shown in Figure 5-3a. The microstructure of this ~20μm coating after the 1000°C heat 

treatment and prior to creep consists of an NiAl matrix with precipitates rich in Cr and 

Mo near the surface, but free of precipitates closer to the interdiffusion zone (IDZ). The 

upper layer of this IDZ is composed of Cr-rich M23C6 carbides, while the lower layer 

closer to the substrate is sigma phase. Subsequent to exposure in a decarburizing 

environment at 800°C/500h, the microstructure of the initially heat-treated NiAl/617 

appears as shown in Figure 5-3b. The microstructure of Gen I NiAl/617 crept in He-

8ppm O2 at 10/50 MPa cyclic stress for 513h to a 3% strain is shown in Figure 5-4. The 

microstructure is such that the NiAl layer and sigma phase are retained (Figure 5-4a), 

while the Cr-rich precipitates in the outer layer (Figure 5-4b) are still present with some 

of them appearing darker (probably evolving to M23C6 carbides). The NiAl region that 



 

121 
 

was precipitate-free after heat treatment now contains precipitates (Figure 5-4c), and the 

region in the 617 matrix adjacent to the sigma phase has needle-like precipitates (Figure 

5-4e) after creep exposure. The underlying substrate shows no sign of oxidation (Figure 

5-4f) or grain boundary cracking as was observed for crept uncoated 617 specimens 

(Chapter 4).  

The microstructure of as-deposited Gen II NiAl/617 after aluminizing at 850°C 

for 4.5h and heat treating at 1000°C for 3h is shown in Figure 5-5. This higher 

aluminizing temperature produced thicker Gen II coatings (~60μm) than their Gen I 

counterparts (~20μm). The coating surface here is also mainly NiAl with precipitates rich 

in Cr and Mo near the surface, but it is free of precipitates closer to the interdiffusion 

zone (IDZ). The upper layer of this IDZ is composed of Cr-rich M23C6 carbides, while 

the lower layer consists of sigma phase. Figure 5-6 shows the evolution of the 

microstructure of Gen II NiAl/617 specimens subsequent to 120h of creep at 

800°C/15/75 MPa and a strain accumulation of 16%. The NiAl layer and sigma phase are 

retained while some Cr-rich precipitates appear darker in tone in the outer NiAl layer. 

There is formation of precipitates in the region that was precipitate-free and also under 

the sigma phase in the alloy. No environmental attack is visible on the underlying 

substrate. 

The FeCrAlY/NiAl/617 system had a thermal history of 850°C/4.5h and 

1000°C/4h of aluminizing and cladding/heat treatment respectively. The as-deposited 

microstructure is shown in Figure 5-7. The NiAl layer contains the already-established 

Cr-rich precipitates, whereas there are no precipitates between the FeCrAlY/NiAl 

interface and the NiAl/617 interdiffusion zone. The Cr- and Mo-rich interlayers of the 

interdiffusion zone are also present. After 140h of creep at 800°C (Figure 5-8), the 

porosity still remains at the interface of the cladding with the aluminized layer. A portion 

of the NiAl precipitates has evolved slightly to brighter features and the needle-like 

precipitates typical of the interdiffusion zone is also shown with no visible environmental 

attack on the matrix. 

 

 

Compositional evolution of coating and substrate. 
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Figure 5-9 to Figure 5-12 show concentration profiles (obtained by EDS or 

EMPA) across the coating layers of NiAl/617 and FeCrAlY/NiAl/617 coating/substrate 

systems prior to and following creep in impure helium environments at 800°C. The effect 

of stress on the composition of the coating layers after creep is evaluated in comparison 

with the evolution of coating composition in the unstressed systems that were 

investigated by Clark [18].  

Clark characterized concentration profiles of Gen I NiAl/617 specimens after 

1000°C/16h heat treatment in Figure 5-9a, and after 800°C/500h exposure in Figure 5-9b, 

and showed similar concentrations in the NiAl layer and the underlying alloy, even 

though precipitates had formed after exposure in a lower temperature. The crept Gen I 

NiAl/617 showed a similar concentration profile despite the application of cyclic (Figure 

5-10a) or static (Figure 5-10b) stress. These observations indicate that the formation of 

precipitates after exposure in 800°C were a result of ageing and not due to interdiffusion 

between the NiAl and the alloy, or due to environmental effects. Also, this means that the 

alumina formed on the surface of the NiAl provided adequate protection against 

environmental attack, and that there was no effect of stress on the microstructural or 

compositional evolution. 

Figure 5-11 shows that the coating remains as NiAl with Gen II processing, but 

this time it is Al-rich with the presence of precipitates in the outer NiAl region and a 

precipitate-free region closer to the IDZ as in Gen I NiAl/617. Even though, Gen II 

NiAl/617 specimens were not exposed to a lower temperature (800°C) subsequent to heat 

treatment at 1000°C in the absence of stress, the microstructure of the crept specimens 

indicate a similar evolution. Since all the concentration profiles of the Gen II NiAl/617 

specimens crept under cyclic loading (σmax = 75 MPa) and strains (4-16%) for times (120-

286h), as shown in Figure 5-11b-e, indicate no change when compared to the unstressed 

condition after heat treatment (Figure 5-11a), it is also concluded here that stress does not 

have an effect on the coating composition of Gen II NiAl/617. 

Lastly, the evolution of the microstructure and composition of unstressed 

FeCrAlY/NiAl/617 specimens show that there is similar diffusion of Al into the cladding 

and counter-diffusion of Fe in the NiAl layer after heat treatment at 1000°C/4h (Figure 

5-12b) and exposure at 800°C/100h in (Figure 5-12c). Also, the NiAl layer consists of an 
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Al-rich outer region with precipitates and Ni-rich inner region without precipitates. A 

similar evolution is observed in the stressed specimens (Figure 5-12d-g); and hence it can 

also be concluded that stress has no effect on the composition of this system.  

In summary, alloy 617 that was vulnerable to carburizing and oxidizing 

environments, as seen in Chapter 4, is now protected against environmental attack as a 

result of protection by the more effective Al2O3 formed on the surface of NiAl or 

FeCrAlY. Ageing – and not exposure to environment – is the cause for the  

microstructural changes in the coating layer and underlying substrate. Finally, the 

aluminide + clad coating layers successfully act as sufficient aluminum reservoir 

necessarily for the formation of protective oxide, and also act as an efficient diffusion 

barrier with the underlying substrate.  

5.1.3 Damage characterization of coated systems 

Although creep deformation did not have an effect on the composition evolution 

of the three coating/substrate systems, the propensity to damage accumulation under 

stress did depend on the type of coating system. Figure 5-13 and Figure 5-14 show the 

surface morphology of the Gen I and Gen II NiAl/617, respectively, subjected to static 

and cyclic creep deformation at stresses up to 75 MPa and strains up to 16%. Cracks 

develop on the surface of the NiAl layer and are perpendicular to the stress axis. Figure 

5-15 and Figure 5-16 show that the corresponding cross-sections do not reveal any cracks 

through the coating layer or through the brittle IDZ.  The absence of cracks deeper than 

the superficial region of the NiAl layer indicates that the cracks are limited to the thin 

alumina surface scale. The aluminizing conditions are not expected to be a factor in the 

formation of cracks in the NiAl layer, since no cracks are observed in the Gen I (Figure 

5-15) and Gen II (Figure 5-16) cross-sections. 

While neither face nor edge surfaces cracked below the thin Al2O3 on NiAl/617, 

cracking of the NiAl layer during creep and cyclic creep occurred the situation was 

dramatically different for the FeCrAlY/NiAl/617 specimens subjected to the same creep 

conditions. The introduction of the cladding layer above the NiAl layer (recall that edges 

were not clad) was associated with the development of cracks in the NiAl layer, both on 

the faces beneath the cladding and on the edges that were not clad. On the clad surfaces 

(image a of Figure 5-17 to Figure 5-20), grain boundary shifting and uplifts are observed, 
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and superficial cracks confined to the alumina scale run perpendicular to the stress axis 

across the grains. The edge surfaces of the gauge, however, which are not clad, now 

display cracks in the NiAl layer with depths reaching the NiAl-617 interdiffusion zone, 

and that also run perpendicular to the stress axis. The crack openings on the edge surfaces 

measure ~40um for 16% creep strain (image b of Figure 5-17 and Figure 5-18), and 

~10um for 4% creep strain (image b of Figure 5-19 and Figure 5-20). The surface 

morphology of the cladding here displays grain boundary uplifts after creep, and cracks 

were observed in the aluminide layer (images c and d of Figure 5-17 to Figure 5-20) yet 

they were absent in the unclad NiAl layer (Figure 5-14 and Figure 5-15). Cross-sectional 

views of the FeCrAlY/NiAl/617 system confirm the grain boundary sliding of the 

cladding by the presence of necking in the cladding, whereas cracks/voids are present 

within the aluminized-only layer with the openings roughly proportional to the level of 

strain attained (4% or 16%). Voids that formed in the NiAl layer, after creep strain of 

16%, are connected to the brittle layers of the interdiffusion zone and the cladding layer 

(image c of Figure 5-17 and Figure 5-18) or the environment (image d of Figure 5-17 and 

Figure 5-18) when the cladding is absent, as on the specimen edges. Pores along the 

junction between the cladding and NiAl, shown in Chapter 2 to characterize the process 

of cladding of the aluminized layer, do not seem to be associated with the formation of 

cracks. Under low stress (10 MPa and 10/50 MPa) and 4% strain, FeCrAlY/NiAl/617 

shows the initiation of cracks in the central region of the NiAl layer in regions where 

pores are absent (image c of Figure 5-19 and Figure 5-20). At the lower strain level, the 

cracks are not long enough to link the cladding and the interdiffusion zone. Even though 

the cracks/voids are formed in this system, their penetration into the underlying 617 is 

slowed down at the interdiffusion zone. It is noteworthy that the cracks on the 

aluminized-only face (Figure 5-21a, edge surface of gauge) correspond well with the 

cross-sectional cracks seen on the aluminized layer that has cladding (Figure 5-21b, face 

surface of gauge), as shown in Figure 5-21. This shows that most of these cracks are 

continuous and wrap around the specimen gauge. Since no cracking was observed in 

NiAl/617, it is believed that the cladding overlay on the NiAl layer is the source of 

constraint that explains the cracking in this system. The wrapping of the cracks around 

the gauge also shows that the cracks in the sandwiched NiAl are exposed to the 
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environment; hence the oxidation of the crack walls to form Al2O3 within the coating 

layers, but Cr2O3 in the substrate (Figure 5-22 and Figure 5-23). The implication of this 

observation is that the capability of the coating layers to protect the underlying substrate 

against environmental attack is dependent on the crack depth. Therefore, it is expected 

that as long as the cracks do not grow beyond the interdiffusion zone, the more protective 

Al2O3 will protect the underlying substrate. 

Cyclic creep of FeCrAlY/617 at 15/75 MPa and to a strain of 14% confirmed the 

ductile nature of the cladding layer reported above (FeCrAlY/NiAl/617). As seen before, 

the cladding layer was characterized by grain boundary sliding and grain uplifts (Figure 

5-24a). On the surface of the cladding, grain boundaries are seen to have moved and there 

is presence of cracks running across the grains and perpendicular to the stress axis. 

According to the cross-sectional view (Figure 5-24c), the interface between the cladding 

and 617 did not crack, in contrast to the NiAl layer inserted between that cracked in the 

FeCrAlY/NiAl/617 system. Similarly to damage accumulation on 617 in He-

CO/CO2=1320, cracks occurred on the unclad edge surface (Figure 5-24b) penetrating 

deep beyond the chromia scale, and also precipitation of carbides was observed in the 

near-surface region (Figure 5-24d). While this clad/617 system was subjected to only 

cyclic creep stresses, results from comparisons between cyclic and static creep damage 

suggest that the same level of damage would have occurred under static creep tests. 

In summary, the NiAl layer that was shown to be an effective diffusion barrier 

and which formed the protective Al2O3 less readily than FeCrAlY, performed well in 

creep and withstood stresses better without a cladding overlay. Also, upon formation of 

cracks in the layers, the protection of the underlying substrate could still be guaranteed as 

long as the cracks do not grow further. 

5.2 Role of pre-existing defects on damage accumulation during creep of 

aluminized 617. 

As shown above, the mechanical integrity (absence of crack formation) of the 

NiAl layer in both Gen I and Gen II aluminized systems (NiAl/617) was retained after a 

creep strain up to 16% in impure helium environments. Since there was no evidence of 

formation of cracks in the aluminide layer and in the interdiffusion zone during creep of a 

“defect-free” NiAl/617 system, it was of interest to evaluate the behavior of the layer 
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when prior  damage was introduced to determine if such damage could compromise the 

coating integrity.  

 Therefore, cyclic creep experiments were conducted at 10/50 MPa for ~200h and 

~600h at 800°C to investigate the behavior of FIB-notched aluminized specimens in the 

carburizing/oxidizing environment, as shown in Figure 5-25. Note that the time reported 

here is total test time, which is equivalent to twice the time at maximum stress. On the 

wider surface of the specimen gauge (Figure 5-25a), three sets of notches were machined 

in a grouping (Figure 5-25b) on one specimen face with the goal of increasing the 

chances of being able to reach at least one set during sample polishing after the test. Each 

set consisted of notches of 100 µm by 3 µm and varying depths of 10 µm, 20 µm, and 30 

µm (Figure 5-25c-e).  Varying notch depths were used to probe damage accumulation at 

different depths in the NiAl layer. The longer test duration was employed to evaluate the 

effect of extended exposure in the impure helium environment, and also to characterize 

the propagation of cracks that were expected to initiate during the shorter test.   

The creep behavior of the NiAl specimens with and without notches is shown in 

(Figure 5-26). While the primary creep strains are somewhat different, the FIB micro-

notches do not affect the global creep deformation rate after 200h and 600h. Global and 

local strains are defined as strains achieved for the entire specimen during creep and 

strains determined locally from spacing of notches, respectively. The strains local to the 

notched areas on the specimen are higher compared to the global strains during creep, 

and this difference is more significant with increased creep time. For instance, the 

local/global strain values for the ~200h-test specimen were 3.7%/3.5% (Figure 5-27a,b), 

while the ~600h test yielded 7.9%/6.4% (Figure 5-27c,d). The difference in the local 

versus global strains can be understood by comparing the change in the individual notch 

openings for the two durations, where this difference is more significant for the notch 

opening after ~600h (Figure 5-28). The evolution of the shape of the notch root is of 

interest. Figure 5-29 shows a global view of the comparison between the notch profiles of 

the untested coupon (Figure 5-29a) and the crept specimens (Figure 5-29b,c). It is clear 

that the initial sharp notch tips (Figure 5-29a) blunt with increasing creep strains (Figure 

5-29b,c). It is important to note the effect of creep strain on the profile of the notches. 

The sharp notch tips (Figure 5-30: 1a-c) are blunted after ~200h and 3.5% strain (Figure 
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5-30: 2a-c). Further straining to 6.4% after ~600h (Figure 5-30: 3a-c) produces kinks in 

the regions immediately close to the notch root with an increase in the notch opening. 

Oxidation of the notch is also present. After 3.5% strain and 200 h of exposure to the 

carburizing/oxidizing environment, the notch tip starts to assume a round profile and is 

blunted, while the alumina at the tip penetrates into the aluminide layer by ~1 µm (Figure 

5-31: 2a-c). However, further creep straining (6.4%) and after 600h of exposure, while 

producing a change in geometry of the notch tip and an increase of the notch opening, 

does not translate into an increase in oxide penetration or cracking at the notch root 

(Figure 5-31: 3a-c). This lack of significant increase in crack propagation or oxide 

penetration at the tip of the notch root is interesting especially considering the high local 

strains developed by the significant dimensional change in the notch opening, as shown 

in Figure 5-28c,d. 

5.3 Measuring effect of NiAl precipitates on cyclic creep 

In Chapter 2, it was shown that the use of both FeCrAlY and NiAl barrier layers 

optimized their different oxidation properties at high temperatures and in impure He 

environments. It was explained that a coating/substrate developed by adding FeCrAlY 

cladding onto aluminized 617 was ideal in that the FeCrAlY layer would readily form the 

protective alumina scale, while the NiAl layer would provide an additional Al reservoir 

and also significantly reduce interdiffusion between the coating layers and the underlying 

substrate. The FeCrAlY/NiAl/617 system was, however, shown in section 5.1 to be less 

robust and prone to local crack formation in the NiAl layer under mechanical stresses 

while no such damage was observed in the aluminized-only 617. Cyclic creep studies 

clearly showed (Figure 5-17 to Figure 5-20) that the cracking was initiated in the 

precipitate-rich region of the NiAl layer at low stress/strain and grew into large voids at 

higher stress/strains. Additionally, Clark [18] also showed that longer heat treatments (> 

24h) of the FeCrAlY/NiAl/617 system at 1000°C essentially dissolved the precipitates in 

the NiAl precipitate-rich region, but that the interdiffusion zone was modified for times 

longer than 100h (Figure 5-32b,c). Therefore, an investigation was conducted to 

determine if the presence or absence of precipitates plays a role in the crack formation in 

the NiAl layer during cyclic creep of the FeCrAlY/NiAl/617 system. In order to do this, 

clad-aluminized specimens, developed at UCSB following the normal coating procedure 
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described in Chapter 2, were heat-treated at 1000°C in argon for 24h and 100h, and cyclic 

crept at low stress (10-50 MPa) in a carburizing/oxidizing environment. The comparison 

of the cyclic creep behavior at 800°C of the three clad-aluminized specimens having 

undergone 4h (as-coated), and extra 24h and 100h heat treatments is shown in Figure 

5-33. The creep behavior of the FeCrAlY/NiAl/617 system that has been subjected to 

additional heat treatment at 1000°C is within the scatter seen in Figure 5-2. 

Dissolution of NiAl precipitates in FeCrAlY/NiAl/617 with additional 24h and 

100h heat treatments at 1000°C lowers the ease of internal damage in the form of 

cracking during creep. While the surface damage on the specimens in the three conditions 

consisted of the normal cladding behavior where grain boundary sliding and uplifts are 

present (Figure 5-34a-c), the frequency of cracks on the aluminized-only layer has been 

reduced with additional heat treatment (Figure 5-34d-f). Following the additional 100h 

heat treatment, only a small number of cracks are present on the aluminized-only layer. 

The cross-sectional views of the different layers revealed the reduced internal damage in 

the form of cracking the NiAl layer that has the cladding overlay (Figure 5-35a-c). 

However, the unclad NiAl layer is still characterized by the same type of cracking 

through the layer as was observed in specimens without extra heat treatment (Figure 

5-35d-f). The dissolution of precipitates in the clad NiAl layer with further heat treatment 

is supported by EBSD characterization. Figure 5-36 shows the position of the large voids 

created after high stress/strain creep to coincide with the precipitate-rich NiAl region 

where the grains are much smaller. Cracking in the NiAl layer is shown to be localized in 

the precipitate-rich region of the NiAl layer having undergone low stress/strain creep, as 

shown in Figure 5-37. Additional heat treatment of the FeCrAlY/NiAl/617 system is 

associated with the dissolution of the NiAl precipitates (Figure 5-38a-c) and with the 

growth of grains in the region where the precipitates have been dissolved (Figure 5-38d-

f). The dissolution of the NiAl precipitates is most likely the reason for grain growth 

since there are no more precipitates to pin down the growth. 

5.4 Discussion  

The barrier layers (NiAl and FeCrAlY) investigated in this work were studied to 

examine their protective role of Alloy 617 against environmental attack while 

maintaining their structural integrity over time when subjected to static and cyclic creep 



 

129 
 

deformation.  This means that for the coating layers to be effective in offering protection 

for Alloy 617 in He environments, they need to be resistant to the effects of mechanical 

strains while protecting the underlying substrate from environmental attack already 

shown in Chapter 4. It was indeed possible for the coating systems to provide protection 

for the substrate, although interesting secondary cracking processes were observed in the 

clad + aluminized system.  In this section, the capability of the coating layers to protect 

against environmental attack will be discussed, and the mechanical behavior of the layers 

assessed. 

5.4.1 Environmental protection of NiAl and FeCrAlY 

In the results section, it was shown that the environmental attack in the form of 

grain boundary intrusions (Chapter 4) does not take place in the coated 617. Comparing 

the near-surface regions of Alloy 617 crept in low and high oxygen partial pressure 

(Figure 4-4) with the region beneath the interdiffusion zone in the coated specimen 

(Figure 5-4e, Figure 5-6e, and Figure 5-8h), it is evident that the coating layers have 

protected Alloy 617 by preventing the intrusion of grain boundaries and formation of 

internal oxides. The formation of a dense, compact, and more protective α-Al2O3 

compared to the “porous” Cr2O3 is responsible for this improvement. As shown in 

Chapters 2 and 4, the natural-forming Cr2O3 is less protective on Alloy 617, and its role 

of environmental protection on 617 is susceptible to the environment in which they are 

grown and the level of oxygen partial pressure. However, α-Al2O3 is believed to come 

close to satisfying the requirements of an ideal surface oxide layer: slow-growing, 

continuous and free from pores that would enhance the diffusion of oxidants from the 

gaseous environment. Since no microstructural changes in the coating layers or the 

underlying substrate could be associated with the carburizing or oxidizing nature of the 

environment, it was established that Al2O3 played a dominant and sufficient role in 

protecting the NiAl layer and the underlying 617. 

In general, the behavior of the NiAl/617 system (Figure 5-4 and Figure 5-6) 

shows that aluminizing is a sufficient way of protecting 617 against carburization and 

oxidation. It is known that NiAl does not readily form the stable α-Al2O3, and so it is 

assumed that pre-oxidation of the coating surface at low oxygen partial pressure prior to 

creep provided the required phase of alumina. This environmental protection was also 
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confirmed in the FeCrAlY/NiAl/617 system (Figure 5-8). Even though NiAl offers the 

resistance to environmental attack required during creep, the FeCrAlY cladding is still 

considered essential as an overlay on NiAl since the resulting composite system offers a 

long-lasting reservoir of Al for the formation of the stable scale as well as offering a 

diffusion barrier between the cladding and 617. 

Based on the findings of Chapter 4, where the carburizing and oxidizing 

environments are shown to be the initiators of near-surface damage in Alloy 617, one 

would expect that a similar mechanism would be observed on the surface of alumina-

forming coatings. Indeed, cracking originating from the surface and that penetrate into 

the coating have been reported before in the presence and absence of mechanical strains. 

In a study by Tolpygo and Clarke [95], where the rumpling mechanism of nickel 

aluminide at 1150°C during cyclic oxidation was investigated, they reported that cracking 

of the alumina scale occurred with the development of through-thickness cracks that 

provided oxygen ingress to the coating surface so that the crack tips penetrated deeper 

into the coating with subsequent cycling. This observation shows that the conditions of 

environment and temperature cycling were sufficient to initiate surface cracks in the 

coating. It should be pointed out, however, that the main reason in their study for the 

development of these environmentally-induced surface cracks was due to the surface 

roughening/undulation of the aluminide coating or the cladding. Tolpygo noted that the 

undulation of the coating layer initiated separation and cracking of the coating layer and 

the superalloy. He also asserted that one factor causing this undulation was the presence 

of cyclic plastic strains in the coating driven by growth strains in the alumina surface 

scale. Obviously the NiAl and FeCrAlY layers used in the current research have not 

displayed this undulating behavior in the absence of mechanical strains as shown by 

Clark [18] or after static and cyclic creep as shown earlier in findings here. 

5.4.2 Mechanical aspect of NiAl and FeCrAlY 

The effectiveness of a coating layer depends also on whether the role of 

environmental protection could be affected by the application of mechanical strain. One 

possible role of stress would be to increase the rate of interdiffusion of elements across 

the coating layers. However, this was not observed in the present study since the 

elemental concentration profiles produced by EDS/EMPA analysis were similar before 
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and after creep deformation. The second effect of mechanical strains is on the propensity 

to cracking in the coating with increased strain accumulation. This cracking has been 

reported by Pollock and others [96] where, with the imposition of a constant total 

compressive strain range of 0.35% by sustained peak low cycle fatigue on aluminide-

coated superalloy, they observed that the oxide-filled cracks penetrated the bond coat and 

the interdiffusion zone after approximately 80% of the cyclic life. It is intriguing that the 

NiAl used in this research accommodated high cyclic strains without formation of any 

environmentally-induced or mechanically-induced cracks. If the cracks were to form, it is 

surmised that they would be initiated either on the surface (environmentally-induced) or 

from the brittle interdiffusion zone, as seen by Shneider and Grünling [97]. Pollock also 

showed that the failure process due to fatigue cycling with compressive holds consisted 

of cracks extending from the surface through the bond coat, past the interdiffusion zone 

and substrate before a long crack could grow into the underlying Ni-alloy substrate [96]. 

There are also other reports where high temperature embrittlement of the nickel 

aluminide have appeared to be related to oxygen penetration along grain boundaries [98]. 

Furthermore, the resistance to crack initiation and propagation from the notches planted 

in the NiAl, consistent with the resistance to initiate cracks from the surface alumina, 

makes it more unlikely that cracks would form on the surface without the presence of 

undulations or mechanical stress. In the absence of surface cracks, the interdiffusion 

zone, a brittle phase formed during the aluminizing process, would be expected to initiate 

cracks that would then be propagated into the underlying substrate. Therefore, the 

absence of cracking in NiAl/617 clearly indicates that Al2O3 resists the ingress of 

oxidants; hence, no initiation of cracking on the surface, and also could point to the 

increased ductility of the NiAl layer because of the presence of Cr that also helps to 

reduce the amount of aluminum required for oxidation [99]. Additionally, the 

interdiffusion zone is made up of carbide and sigma layers believed to be brittle phases. 

However, the interpenetration of these layers by 617 (Figure 5-39) is thought to allow 

limited interdiffusion but also prevent cracking by breaking up the former into 

discontinuous layers [21].  

As already established, the addition of FeCrAlY overlay on NiAl was meant to 

provide a composite system with enough Al for formation of Al2O3 more readily, but also 
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to provide a good diffusion barrier between the cladding and 617. While this composite 

system displayed protection of 617 from the environment, the mechanical integrity of the 

composite structure was not sustained with strain accumulation. It is important to look at 

the creep deformation mechanisms and the source of cracking in the system to explain the 

mechanical instability. Even though there is no consensus on the mode of creep 

deformation in NiAl and no data on FeCrAlY, the mode of creep deformation of the 

system could be generalized to be a combination of grain boundary sliding for FeCrAlY 

(based on the observation of grain shifting) and dislocation creep for 617 [52, 100, 101] 

and NiAl [102]. Clark in her work [18] did not observe the grain shifting of unstressed 

FeCrAlY alloy, but this phenomenon has been reported to occur in the absence of stress 

purely as a result of oxide and alloy mismatch on cooling by Nychka [103]. Therefore, it 

is reasonable to suspect that mechanical strains would enhance an effect of pronounced 

grain shifting and uplifts during creep. It is not clear, though, whether this difference in 

creep deformation modes in the different layers and substrate could explain the cracking 

in the NiAl since the EBSD maps do not show any evidence of grain-to-grain constraint 

from FeCrAlY to NiAl that would explain why grain upshifts in FeCrAlY would 

engender a constrain in NiAl. 

Cracks on NiAl when clad with FeCrAlY (only the face surfaces were clad) were 

tracked as shown in Figure 5-21 and shown to wrap around the specimen gauge. Since 

NiAl by itself does not crack under stress, it is likely that the cracks initiate underneath 

the cladding at the FeCrAlY/NiAl interface before propagating around the specimen. 

There are two likely possibilities to explain this cracking phenomenon. One possibility is 

that there is an association between the dissolution of precipitates in the unclad NiAl and 

the reduced propensity to cracking in NiAl. However, the findings in Figure 5-35 show 

that the cracking in the NiAl was not entirely eliminated even after 100h of additional 

heat treatment to dissolve the NiAl precipitates. As pointed out earlier, the lack of proof 

that the grains in the FeCrAlY and NiAl are aligned makes it difficult to ascribe the crack 

initiation in the precipitate-rich region of unclad NiAl to the grain shifting in the 

FeCrAlY cladding. The second possibility is that cracking is caused by a change in the 

stress state during creep in the NiAl that is now sandwiched between the FeCrAlY 

cladding and the substrate, and this is an interesting topic for future work both in terms of 
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the stress analysis and in terms of designing a different specimen configuration or 

cladding process to eliminate the unclad surfaces. For example, it would be informative 

to study the static and cyclic creep behavior of the two coating layers when applied on a 

tubular substrate. The application of the cladding would need to be changed from hot 

pressing (not practical for cladding around the gauge of the current rectangular specimen) 

into an ion plasma deposition or low plasma spraying technique that would be practical 

for cladding around the specimen. 

Finally, the higher creep rates of coated 617 compared to their uncoated 

counterparts need to be verified since lower creep strength of coated systems could have 

implications on their suitability for long-time service. It has been observed that coated 

substrates have lower creep strengths compared to the bare alloys (Figure 5-2h,i.j).  It 

was initially believed that the higher creep rates could be ascribed to the additional high 

temperature processing that the coatings undergo, but this has been ruled out by 

Dryepondt [104], and can be ignored for the coatings here since there was no evidence of 

change in grain sizes due to the coating treatment (Sections 3.1 and 3.3). Standard 

estimates could be made for the properties of composite coating/substrate systems, as 

described by Osgerby and Dyson [105], but the estimates could be simplified by 

considering the coatings as non-load bearing. This way, a comparison of the creep rates 

and stresses could be made using the appropriate Norton law relating creep strain rate to 

applied stress. Figure 5-40 shows an approximation of the creep strain rate-stress 

dependency of the coated specimens used in this work. The exponent determined for 

NiAl/617 and FeCrAlY/NiAl/617 is 5.5 and 4.5 respectively. For the sake of the analysis, 

Equation 5.1 is used to determine by how much the stress of the NiAl/617 system 

changes relative to the bare alloy. If the target stress on the NiAl/617 is 𝜎1  and the 

effective stress on the 617 is 𝜎2, the measured strain rate is 𝜀1̇, while the new strain rate 

based on the effective stress would be 𝜀2̇. The measured NiAl thickness is ~ 43μm, and 

the gauge dimensions with the coating are 3.03mm x 1.98mm. Given that 𝜀1̇=4x10-8/s, 

𝜎1=50 MPa, and 𝜎2=51.85 MPa, the new creep strain rate would be 𝜀2̇=4.88x10-8/s, 

which is an increase of 22% (compared to 200% determined in this work). This means 

that the application of an extra layer of coating does not significantly change the effective 

stress and the resulting creep strain rate. The observed jump in creep strain rate of the 
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coated specimens would therefore be understood more clearly given more 

complementary data and specifically by verifying the non-load bearing theory given in 

the literature. 

 

 𝜀1̇
𝜀2̇

= �
𝜎1
𝜎2
�
5.5

 
(5.1) 

5.5 Summary and conclusions. 

The application of either NiAl or NiAl+FeCrAlY coatings prevented damage in 

the near-surface regions of the underlying 617 during exposure to oxidizing and 

carburizing/oxidizing helium environments and creep or cyclic creep conditions. The 

main reason for this was the protection against the diffusion of oxidants from the 

environment by the slow-growing alumina scale on NiAl and FeCrAlY. The coating 

layers used here also did not display surface undulation that has been reported to initiate 

surface cracks on the alumina scale/coating interface. The NiAl coating layer remained 

stable and did not display any cracking in the layer or in the interdiffusion zone after 

significant strain accumulation. It was also resistant to initiation and propagation of 

cracks from FIB-notches planted to simulate defects in the layer.  Unfortunately, the NiAl 

layer was vulnerable to cracking in the presence of a FeCrAlY cladding overlay that was 

meant to provide a coating system with a sustained environmental protection role. A 

different cladding technique on a tubular specimen is proposed to replace the hot pressing 

technique on rectangular specimens. The cladding overlay on the aluminide coating using 

hot pressing could probably be the origin of a different stress state on the specimen that 

was clad only on two face surfaces. The calculated stresses were based on the total cross-

sectional area of the coated specimens, while in fact the coating layers might be non-load 

bearing. For this reason, complementary studies are needed to verify whether NiAl and 

FeCrAlY layers are non-load bearing.. 
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Table 5.1 Test matrix of static and cyclic creep experiments at 800°C conducted to 
evaluate the efficacy of coatings layers to offer environmental protection while ensuring 
mechanical integrity (no cracking). 

 NiAl/617 FeCrAlY/617 FeCrAlY/NiAl/617 
Low 

Stress 
8ppm O2 50 MPa  CO/CO2 = 1320 50 MPa 
8ppm O2 10-50 MPa CO/CO2 = 1320 10-50 MPa 

High 
Stress 

CO/CO2 = 1320 75 MPa 0.1ppm O2 75 MPa 
CO/CO2 = 1320 15-75 MPa CO/CO2 = 1320 15-75 MPa CO/CO2 = 1320 15-75 MPa 

 
Table 5.2 Temperature and time conditions for aluminizing of 617 by pack cementation 
under flowing high purity Ar. 

 Aluminizing Conditions Heat Treatment Conditions 
 Temperature (°C) Time (h) Temperature (°C) Time (h) 

Gen I NiAl 700 9.6 1000 16 
Gen II NiAl 850 4.5 1000 3 
Cladding + 
Gen II NiAl 

850 4.5 1000 4 

 

Table 5.3 Interrupted creep behavior of uncoated 617, aluminized 617 (NiAl/617), clad-
only 617 (FeCrAlY/617), and clad-aluminized 617 (FeCrAlY/NiAl/617) tested at 800°C 
in different helium environments.  

Curve Specimen Creep Test Environment Strain 
(%) 

Steady-State 
Creep 

Rate (10-8/s) 

Total  
test time 

(h) 

Cycles 

a Clad-
aluminized 

 

Static Creep  
(75 MPa) 

He-≤0.1ppm O2 16 62 109 N/A 

b Clad-
aluminized 

 

Cyclic Creep  
(15-75 MPa) 

He-CO/CO2=1320 16 36 140 3358 

c Aluminized Cyclic Creep  
(15-75 MPa) 

He-CO/CO2=1320 16 35 120 2871 

d Aluminized Static Creep  
(75 MPa) 

He-CO/CO2=1320 15 30 139 N/A 

e Clad Cyclic Creep  
(15-75 MPa) 

He-CO/CO2=1320 14 24 167 3992 

 f Clad-
aluminized 

Cyclic Creep  
(10-50 MPa) 

He-CO/CO2=1320 4 8 213 3191 

g Clad-
aluminized 

Static Creep  
(50 MPa) 

He-CO/CO2=1320 4 8 120 N/A 

h Aluminized Static Creep  
(50 MPa) 

He-8ppm O2 3 4 215 N/A 

i Aluminized Cyclic Creep  
(10-50 MPa) 

He-8ppm O2 3 3 513 7691 

j Uncoated Cyclic Creep  
(10-50 MPa) 

He-CO/CO2=1320 2 1 553 8294 
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Table 5.4 Ductile-Brittle Transition Temperatures of Diffusion and Overlay Coatings 
[106]. LTHA; Low Temperature High Activity; HTLA: High Temperature Low Activity. 
Coating Type  DBTT (°C) 

Diffusion Coatings LTHA Nickel Aluminide 840 

HTLA Nickel Aluminide 600 

Overlay Coatings Co-Cr-Al-Y 235-910 

Ni-Cr-Al-Y 430 
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Figure 5-1 Schematic showing the cross-sections perpendicular to the stress axis of: (a) 
uncoated 617, explored in Chapter 4,  and (c,d) coated 617 that is explored in this 
chapter. The study of clad 617 (b) was used to confirm the general mechanical behavior 
of the FeCrAlY layer on 617. 
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Figure 5-2 Interrupted creep behavior of uncoated 617 (j), aluminized 617 (NiAl/617, 
c,d,h,i), clad-only 617 (FeCrAlY/617, e), and clad-aluminized 617 (FeCrAlY/NiAl/617, 
a,b,f,g) tested at 800°C in different helium environments. 

 

 
Figure 5-3 Micrograph showing the microstructural evolution of Gen I NiAl/617 showing 
(a) system as-aluminized at 700°C/9.6h and heat-treated at 1000°C/18h, and (b) 
subsequent exposure to a decarburizing environment at 800°C/500h. Adapted from 
reference [18].  
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Figure 5-4 Microstructure evolution of Gen I clad-aluminized 617 after creep (10/50 
MPa/513h/ε=3). The duration reported is total test time. 
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Figure 5-5 Microstructure of as-coated aluminized 617 (Gen II) showing a thick NiAl 
coating with chromium and molybdenum precipitates and a sigma layer (a-h), with Al2O3 
formed on NiAl surface after pre-oxidation (c). The average grain size of the underneath 
617 is 139µm and the distribution of grains is shown in (i) 
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Figure 5-6 Gen 2 NiAl 617 crept Microstructure evolution of Gen II aluminized-only 617 
after creep (15/75 MPa/120h/ε=16). The duration reported is total test time. 
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Figure 5-7 Microstructure of as-coated clad-aluminized 617 showing FeCrAlY cladding 
and NiAl layers with chromium precipitates and a sigma layer (a-i), with Al2O3 formed 
on FeCrAlY surface after pre-oxidation (c). 
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Figure 5-8 Microstructure evolution of clad-aluminized 617 after creep (15/75 
MPa/140h/ε=16). The duration reported is total test time. 
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Figure 5-9 EDS concentration profiles of Gen I aluminized 617 showing the effect of 
ageing on compositional evolution. (a) shows the as-received 617 aluminized at 
700°C/9.6h and heat treated at 1000°/18h, and (b) shows aluminized 617 exposed to a 
decarburizing environment at 800°C/500h. Adapted from reference [18]. 

 

 

Figure 5-10 EMPA concentration profiles of Gen I aluminized 617 after (a) cyclic creep 
(10-50 MPa, 513h) and (b) static creep (50 MPa, 215h) at 800°C. The stress axis is 
vertical and in the plane of the page. The duration reported is total test time. 
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Figure 5-11 EMPA concentration profiles of Gen II aluminized 617 specimens evaluating 
the effect of creep deformation at 800°C on compositional evolution. The profiles shown 
are for: (a) as-received material after a heat treatment of 1000°C/4h; (b) static creep 
50 MPa/212 h/ε=4%; (c) static creep 60 MPa/286 h/ε=10%; (d) static creep 75 
MPa/139h/ε=15%; and (e) cyclic creep at 15-75 MPa/120h/ ε=16%. The fluctuations in 
the Cr levels are attributed to the presence of precipitates along the profile scan line. The 
stress axis is vertical and in the plane of the page. The duration reported is total test time. 
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Figure 5-12 EMPA concentration profiles Gen II FeCrAlY/NiAl/617 exploring the 
potential effect of creep deformation at 800°C on compositional evolution. The profiles 
shown are for: (b) as-received specimen subjected to a heat treatment of 1000°C/4 h and 
clad at 1000°C/2 h, (a, c) after 800°C/100 h exposure without load, (d) cyclic creep at 15-
75 MPa/117 h/ε=17%, (e) static creep at 75 MPa/109 h/ ε=16%, (f) static creep at 
50 MPa/120 h/ε=4%, and (g) cyclic creep at 10-50 MPa/213 h/ε=4%. The stress axis is 
vertical and in the plane of the page. The duration reported is total test time. 
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Figure 5-13 SEM images showing damage on the surface of Gen I NiAl/617 specimens 
after creep in He-8ppm O2 at 800°C. The stress/strain conditions were (a) 10-50 
MPa/513h/ε=3% and (b) 50 MPa/215h/ε=3%. The stress axis is vertical and in the plane 
of the page. The duration reported is total test time. 

 

 

Figure 5-14 SEM images showing damage on the surface of Gen II NiAl/617 specimens 
after creep in He-CO/CO2=1320 at 800°C. The stress/strain conditions were (a) 75 
MPa/139h/15% and (b) 15-75 MPa/120h/ε=16%. The stress axis is vertical and in the 
plane of the page. The duration reported is total test time. 
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Figure 5-15 Cross-sectional SEM images showing no cracking on Gen I NiAl/617 
specimens after creep in He-8ppm O2 at 800°C. The stress/strain conditions were (a) 10-
50 MPa/513h/ε=3% and (b) 50 MPa/215h/ε=3%. The stress axis is vertical and in the 
plane of the page. The duration reported is total test time. 
 
 

 

Figure 5-16 Cross-sectional SEM images showing no cracking on Gen II NiAl/617 
specimens after creep in He-CO/CO2=1320 at 800°C. The stress/strain conditions were 
(a) 75 MPa/139h/15%, and (b) 15-75 MPa/120h/ε=16%.  The stress axis is vertical and in 
the plane of the page. The duration reported is total test time. 
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Figure 5-17 SEM images of crept FeCrAlY/NiAl/617 specimens showing damage on (a) 
the wider surface that is aluminized and clad, (b) narrower surface that is aluminized 
only, with accompanying cross-sectional views (c) parallel to the narrower surface, (d) 
parallel to the wider surface. The wider surface shows grain uplifts in the cladding 
whereas the narrower surface shows cracks in the aluminized-only layer. The test 
conditions are 75 MPa/109h/ε=16%/He-0.1ppmO2. The duration reported is total test 
time. 
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Figure 5-18 SEM images of crept FeCrAlY/NiAl/617 specimens showing damage on (a) 
the wider surface that is aluminized and clad, (b) narrower surface that is aluminized 
only, with accompanying cross-sectional views (c) parallel to the narrower surface, (d) 
parallel to the wider surface. The wider surface shows grain uplifts in the cladding 
whereas the narrower surface shows cracks in the aluminized-only layer. The test 
conditions are 15/75 MPa/140h/ε=16%/He-CO/CO2=1320. The duration reported is total 
test time. 
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Figure 5-19 SEM images of crept FeCrAlY/NiAl/617 specimens showing damage on (a) 
the wider surface that is aluminized and clad, (b) narrower surface that is aluminized 
only, with accompanying cross-sectional views (c) parallel to the narrower surface, (d) 
parallel to the wider surface. The wider surface shows grain uplifts in the cladding 
whereas the narrower surface shows cracks in the aluminized-only layer. The test 
conditions are 50 MPa/120h/ε=4%/He-CO/CO2=1320. The duration reported is total test 
time. 
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Figure 5-20 SEM images of crept FeCrAlY/NiAl/617 specimens showing damage on (a) 
the wider surface that is aluminized and clad, (b) narrower surface that is aluminized 
only, with accompanying cross-sectional views (c) parallel to the narrower surface, (d) 
parallel to the wider surface. The wider surface shows grain uplifts in the cladding 
whereas the narrower surface shows cracks in the aluminized-only layer. The test 
conditions are 10/50 MPa/213h/4%/He-CO/CO2=1320. The duration reported is total test 
time. 
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Figure 5-21 SEM images of FeCrAlY/NiAl/617 after cyclical creep (15/75 MPa, 140h) to 
16% strain showing that the NiAl cracks wrap around the specimen. The duration 
reported is total test time. 
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Figure 5-22 EDS elementals maps taken from a cross-section parallel to the stress axis of 
clad-aluminized 617 after cyclic creep (15/75 MPa/140h/ε=16%). The region corresponds 
to clad surfaces. The duration reported is total test time. 
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Figure 5-23 EDS elementals maps taken from a cross-section parallel to the stress axis of 
clad-aluminized 617 after cyclic creep (15/75 MPa/140h/ε=16%). The region corresponds 
to aluminized-only surfaces. The duration reported is total test time. 
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Figure 5-24 SEM images of FeCrAlY/617 specimens showing damage on the (a) wider 
surface that is clad, and (b), the narrower surface that is bare 617(b), as well as cross 
sectional views (c) parallel to the narrower surface (c), and (d) parallel to the wider 
surface. The wider surface shows grain uplifts in the cladding whereas the narrower 
surface shows environmental attack in the exposed 617. The stress/strain conditions were 
15-75 MPa/167h/ε=14% in a carburizing environment (He-CO/CO2=1320). The stress 
axis is vertical and in the plane of the page. The duration reported is total test time. 
 



 

157 
 

 

Figure 5-25 SEM images showing FIB notches used to investigate crack propagation in 
the aluminized layer of Gen II NiAl/617. Three sets of implanted notches with each set 
having 3 different depths as schematized in (e) to provide a larger specimen area for post-
experiment analysis. 
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Figure 5-26 Curves of interrupted cyclic creep of NiAl/617 with and without notches 
indicating that the presence of the localized notches does not affect the creep rates (slope 
of linear part of curve). Note that the creep strains are reported as a function of time at 
peak stress. The total time at exposure is reported in the text, and is equivalent to twice 
the time at peak stress.  
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Figure 5-27 SEM images (low magnification) showing the determination of local strain 
after cyclic creep (10-50 MPa) at 800°C in a carburizing environment (He-
CO/CO2=1320) and subjected to 198h/3.5% strain (a,b) and 594h/6.4% strain (c,d). The 
stress axis is vertical and in the plane of the page. The duration reported is total test time. 
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Figure 5-28 SEM images (high magnification) showing the dimensional changes on the 
individual notches after cyclic creep (10-50 MPa) at 800°C in a carburizing environment 
(He-CO/CO2=1320) and subjected to (a,b) 198h/3.5% strain and (c,d) 594h/6.4% strain. 
Note the significant dimensional change in the notch opening after higher strains (c→d 
compared to a→b). The stress axis is vertical and in the plane of the page. The duration 
reported is total test time. 
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Figure 5-29 SEM images (high magnification) showing the three notches on the untested 
coupon (a), and those having undergone cyclic creep (10-50 MPa) at 800°C in a 
carburizing environment (He-CO/CO2=1320) and subjected to 198h/3.5% strain (b) and 
594h/6.4% strain (c). The stress axis is vertical and in the plane of the page. The duration 
reported is total test time. 
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Figure 5-30 SEM images (low magnification) showing the three notches on the untested 
coupon (1), and those having undergone cyclic creep (10-50 MPa) at 800°C in a 
carburizing environment (He-CO/CO2=1320) and subjected to 198h/3.5% strain (2) and 
594h/6.4% strain (3). Note the penetration of the oxide at the notch root in (2) and the 
effect of microstructure in the neighborhood of the tip oxidation as seen in (3). The stress 
axis is vertical and in the plane of the page. The duration reported is total test time.  
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Figure 5-31 SEM images (high magnification) showing the three notches on the untested 
coupon (1), and those having undergone cyclic creep (10-50 MPa) at 800°C in a 
carburizing environment (He-CO/CO2=1320) and subjected to 198h/3.5% strain (2) and 
594h/6.4% strain (3). Note the penetration of the oxide at the notch root in (2) and the 
effect of microstructure in the neighborhood of the tip oxidation as seen in (3). The stress 
axis is vertical and in the plane of the page. The duration reported is total test time.  
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Figure 5-32 SEM images of Gen II clad + aluminized 617 (a) as clad and after 1000°C 
heat treatment for (b) 24h, (c) 100h and (d) 500h. The dashed lines in (a,b,c,d) indicate 
the approximate boundary between Al-rich NiAl and Ni-rich NiAl. The heat treatment of 
interest for dissolving the precipitates is ~24h.[18] 

 

 
Figure 5-33 Curves of cyclic creep of FeCrAlY/NiAl/617 in carburizing/oxidizing 
environments interrupted after nominal strains of 3% and 4%. The specimens that 
received extra heat treatment have a lower creep rate. 
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Figure 5-34 SEM images of crept FeCrAlY/NiAl/617 specimens showing surface damage 
on wider surface that is aluminized+clad (a,b,c) and narrower surface that is aluminized 
only (d,e,f). Even though the cracks in the NiAl layer still exist, they have been reduced 
significantly by the additional heat treatment. The stress axis is vertical and in the plane 
of the page. 
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Figure 5-35 SEM images of crept FeCrAlY/NiAl/617 specimens showing internal 
damage parallel to the narrower aluminized-only surface (a,b,c), and parallel to the wider 
aluminized+clad surface (d,e,f). Even though the cracks in the unclad NiAl layer still 
exist, additional heat treatment has almost eliminated the cracks in the clad NiAl layer. 
The stress axis is vertical and in the plane of the page. 
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Figure 5-36 (a) Microstructure close to a void formed after high stress/strain cyclic creep 
tests of the clad-aluminized 617 and (b) corresponding EBSD map. The grain size and 
thickness of the FeCrAlY cladding are comparable and the precipitate-rich region in NiAl 
has smaller grains than the surrounding areas. The stress axis is vertical and in the plane 
of the page. 

 

 
Figure 5-37 EBSD characterization of region close to a crack that formed after low 
stress/strain cyclic creep tests of the clad-aluminized 617. The grain size and thickness of 
the FeCrAlY cladding are comparable and the precipitate-rich region in NiAl has smaller 
grains than the surrounding areas. The crack seems to initiate farther away from pores 
and in the precipitate-rich region in NiAl. The stress axis is vertical and in the plane of 
the page. 
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Figure 5-38 SEM images with corresponding EBSD grain maps of FeCrAlY/NiAl/617 
specimens crept at 800°C in a carburizing/oxidizing environment showing the NiAl 
region (between the dashed lines). The different heat treatment conditions before creep 
were (a) 4h/1000°C/Ar for as-coated specimen, (b) as-coated + 24h/1000°C, and (c) as-
coated + 100h/1000°C. The creep conditions of the specimens at 800°C were: (a) 15-75 
MPa/ε=16%/110h, (b) 15-75 MPa/ε=3%/118h, and (c) 15-75 MPa/ε=3%/117 h. NiAl 
precipitates in the presence of cladding disappear with additional heat treatment. The 
stress axis is vertical and in the plane of the page. The duration reported is total test time. 
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Figure 5-39 SEM images of untested NiAl/617 (a,c) and NiAl/617 after creep conditions 
of 15-75 MPa/16% (b,d). Note the integrity of the IDZ zone of brittle carbides and sigma 
phases shown in c and d. The stress axis is vertical and in the plane of the page.  
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Figure 5-40 Approximation of creep strain rate dependence on stress for the coating 
layers (NiAl/617 and FeCrAlY/NiAl/617) used in this research work. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

The conclusions from the static and cyclic creep studies of Alloy 617 with and 

without barrier layers at 800°C in impure helium environments are the following: 

1. Based on the observations of surface and near-surface damage of Alloy 

617 during creep, surface Cr2O3 formed in He-CO/CO2=1320 (low pO2 

and presence of carbon activity) is less protective than the scale formed in 

He-≤0.1ppm O2 (high pO2). Carburization also plays a role in the 

embrittlement of the surface regions, hence rendering internal corrosion 

more extensive in He-CO/CO2=1320. 

2. Mechanical loading and particularly cyclic loading accelerates the extent 

of damage on Alloy 617, but the type of surface damage does not change. 

3. There is no observable effect of environment on creep deformation as long 

as the damage accumulation is limited to the surface and near-surface 

regions of the alloy. 

4. NiAl and FeCrAlY coating layers are effective in preventing 

environmental attack on the underlying Alloy 617 by favoring the 

formation of slow-growing α-Al2O3 that is more protective than the 

naturally-forming Cr2O3. 

5. Absence of surface cracks on NiAl in NiAl/617 and FeCrAlY in 

FeCrAlY/NiAl/617 may be due to lack of surface roughening/undulation 

on the coating surface during the cycling of load. 

6. The addition of cladding on aluminized 617, while promoting a more 

efficient formation of α-Al2O3, is the source of cracking in the sandwiched 

NiAl layer during creep. 
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6.2 Recommendations for future work 

The work in this dissertation has made a contribution to high-temperature 

mechanical and corrosion studies by examining the nature of environmental attack on 

surface and near-surface regions of Cr2O3-forming Alloy 617 during early creep and to 

present methods of mitigating this damage by use of Al2O3-forming coatings. Further 

study is recommended to address several important questions arising from this work, but 

which were outside the scope of the present investigation. 

One important finding was that the compositional difference of the two gas 

environments determined the type of near-surface damage but did not affect the bulk 

creep deformation behavior of Alloy 617. The creep studies in this work were interrupted 

at nominal strains before failure and the damage was limited to the near-surface region in 

order to easily differentiate the effects of environment. Inferring the long term 

degradation of Alloy 617 in impure He environments cannot be done by examining only 

near-surface environmental effects produced during the short-time tests conducted in this 

research. Longer tests, though not practical in a laboratory setting, will still be required. 

This is especially true since previous research on the effects of environment on long-term 

creep behavior of Alloy 617 have not been conclusive. There is need to conduct longer 

creep studies to investigate the long-term effect of impure helium environments on creep 

behavior, especially in the tertiary stage, where bulk void formation and grain boundary 

sliding are expected to compound the surface damage accumulation.  This will provide 

more insight on the synergy that might exist between the different stages of creep and 

environment – two time-dependent phenomena that are difficult to isolate.  

Another finding was that despite the large creep strain accumulation on the 

NiAl/617 system, the aluminide layer did not suffer any cracks from the surface or the 

interdiffusion zone. It was also shown that in the likelihood that there were pre-existing-

defects in the coating layer, no initiation or propagation of cracks occurred. Longer 

studies with static creep tests conducted to failure are necessary to examine the behavior 

of the barrier layer where more time would be allowed for possible crack initiation. It is 

likely that failure would be initiated in the bulk of the substrate during prolonged creep if 

the environmental attack on the substrate continued to be suppressed, and if the aluminide 

layer remained ductile at temperature for much longer exposure times. Another 
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possibility is that crack initiation from the interdiffusion zone could occur and render the 

underlying substrate vulnerable to the environmental attack. All these possibilities could 

be explored in long exposure creep tests on the order of 5000-10,000 hours in duration. 

A major challenge in providing a more mechanically stable dual coating system 

was the cracking of NiAl when sandwiched between FeCrAlY and 617. The source of the 

cracking was associated with the cladding since the aluminized-only 617 specimens were 

crack-free after creep in similar conditions. The study of this phenomenon in the present 

work was complicated by the inability to clad all surfaces of the gauge section of the 

creep specimens, as was possible for the aluminizing-only specimens. A different method 

of cladding – perhaps by ion plasma deposition or low pressure plasma – could be 

pursued either on the same rectangular configuration or on tubular specimens.  

Subsequent creep studies on these new coating/substrate specimens would ensure 

uniform state of stress around the specimen. 
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