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Abstract-
In order to determine limiting nutrient of a lotic system above and below a dam, we created
nitrogen, phosphorus, nitrogen and phosphorus, and control agar bioassays. Three sites were
chosen, two for both stream branches above the dam and one below. After two weeks of
incubation in the river, the bioassays were removed and tested for chlorophyll a amounts. We
found that the nitrogen bioassays had the greatest growth in the West branch, but every other
nutrient returned the greatest growth in the Main branch. The trends show that the Main and East
branches are phosphorus limited, but the West branch is nitrogen limited. This study can be used

as preliminary data for future studies, after the Maple River dam is removed.
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Introduction

According to Liebig's law, the nutrient that occurs in the smallest amount is the
determining or limiting factor of the system. In aquatic systems, this is most often phosphorus,
although the amount of nitrogen also plays a critical role (Miiller et al., 2014).

Underlying geology can impact the amount of available phosphorus, as phosphorus only
enters a system through weathering of sedimentary rock (Dodds, 2002). There are determining
factors that influence algal ability to take up certain types of phosphorus such as pH, dissolved
ions, and dissolved oxygen content, since these can dictate whether phosphorus will be soluble
and able to be taken up by algae, or insoluble and unavailable to algae (Bachmann, 2014). Algal
communities tend to have the greatest biomass when all else is held constant in shallow lotic
systems (Taylor, 2001). Green algae also was found to have the greatest growth in conditions
with 10-20 °C and irradiance of 18-175 mmol/m?s (Taylor, 2001). Algae also tends to have
greatest growth in slower (lower discharge) environments (Tornés et al., 2010).

Human agriculture is becoming more of a major cause of nutrient blooms, and increased
algal growth in general (Paerl, 2011). Dams that have been built by humans can also impact the
downstream environment. Riparian vegetation, macroinvertebrates, and the organisms that
interact with them have all been shown to be impacted by dams. When the dam is removed, the
ecosystem may or may not completely recover to the conditions it had before the dam was built,
depending on the sensitivity of the organisms (Doyle et al., 2005).

Dam removal has been shown to shift its accompanying stream from being a phosphorus
sink to a source of phosphorus (Orr et. al., 2006). Such a shift can have reverberating

consequences through a system, such as changes in algal type and increases in biomass amount
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(Rosemond et. al., 2000). For example, were an environment to shift to a more nitrogen poor
environment after an influx of phosphorus, cyanobacteria would dominate (Sellner, 1997) and
could outcompete other algae that are vital to the ecosystem structure.

The Maple River dam is set to be removed in the near future. Within other concerns
about the change in river and riparian morphometry lies concern about changing the structure of
nutrient limitation. In order to determine any potential future changes to downstream
communities, two sites above the dam (East and West Branches) and one site below the dam
(Main Branch) will be monitored (fig. 1). Differences in limiting nutrient will be determined via
insertion and incubation of various different bioassays (phosphorus, nitrogen, nitrogen and
phosphorus together, and a control) in order to assess the impact the future dam removal will
have.

Since chlorophyll a is being used as a parameter of algae present, the East branch location
is likely to have the highest initial value of algae, and grow the most algae on the phosphorus
treatment, as this likely the limiting nutrient of the system. The East branch also is likely to
return the greatest chlorophyll a amount on the bioassays, since it matches closest to the
parameters for greatest algal growth in that it is the shallowest, slowest moving system.
Phosphorus is likely to be the limiting factor as the East branch flows from a lake with
significant housing around it, and likely receives nitrogen runoff from lawn fertilizer, sewage,
and other anthropogenic sources. The Main branch is likely higher in algal growth, since it is the
combination of the two branches before it, but will not exhibit as much growth since the
nutrients from the East branch will be diluted with the water from the West branch that is not as

impacted by human activities.



Stoll 3

Materials and Methods

In order to facilitate slow release of nutrients into the water system, agar nutrient compounds
were created in flower pots following the parameters set by Fairchild et al. and Tank et al.
(Fairchild et al., 1985; Tank et al., 2006).

As we were to look at the differences of the three sites specifically to determine the
limiting nutrient of the area, we attempted to select sites that were the closest in terms of
morphometry, flow and sunlight to control for any potential confounding variables in our
assessment (fig. 1). In order to measure the initial nutrients (NO,, NH,, PO,, total phosphorus,
total nitrogen, SiO,, and chlorophyll a) of each site, we took water samples in acid washed
bottles. To get an estimate of original levels of algae, we took chlorophyll a samples by rinsing
out a plastic syringe three times at each location then filtering 120 cc of river water through a
filter paper. We then wrapped the filter paper in aluminum foil and kept the paper and the water
samples frozen until they could be processed by UMBS chemistry. We took initial water surface
solar irradiance with a LUX photometer, and forest cover with a densiometer. We also took pH
of all our nutrient sites with a Accument AP110 Portable pH meter and conductivity with a Y SI
conductivity meter. Densiometer readings were added for all directions and multiplied by 0.26
according to Forest Science’s criterion (Lemmon, 1956).

To create our bioassays, we heated 1000 milliliters of deionized water on a hot plate and
as the water began to bubble we added first agar, then the nutrient substrates. We then stirred
vigorously until the solution became clear, indicating the additives had dissolved. In the nitrogen
treatment 42.5 grams of NaNO, were added to result in a .5 molarity treatment. To obtain the

same .5 molarity, we added 68 grams of H,PO, to the phosphate treatments. We made both the
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individual nutrient bioassays and the control pots with 20 grams of agar per 1000 mL. We used
30 grams of agar in the treatment with both nitrogen and phosphorus substrates (42.5g and 68g,
respectively), so that the solution would coagulate sufficiently.

We poured approximately 250 mL of solution into four eight centimeter tall (8.5 upper
diameter) flower pots that we stopped with number ten neoprene stoppers. We placed the pots on
test tube holders and allowed them to dry. After the solution had begun to gel, we placed labelled
petri dish covers on top and sealed them with silicon. When the pots had adequately dried, we
siliconed them onto cement blocks in sets of three, moving left to right; control, nitrogen,
nitrogen and phosphorus, then phosphorus (fig. 2). To prevent nutrient mixing, we maintained
distances of 5 centimeters between the stoppered part of the bioassays.

Once twenty four hours of drying time elapsed, we moved the cement blocks into the
three stream locations (fig. 1); East Maple above the dam (45°34°25”N, 84°44°46”W), West
Maple above the dam (45° 33°5”N, 84°47°48”W), and the main branch of the Maple River (45°
31°38”N, 84°46°27°W).

After two and a half weeks, we pulled the nutrient pots from the stream and quantified
the algal growth. We removed the cement blocks from the streambeds, and covered each
individual bioassay with a plastic bag. We kept the blocks out of direct sunlight as we were
collecting. We scrubbed individual bioassays with a toothbrush and rinsed them with 100 mL of
water. We filtered a known volume of the resulting algal slurry as described above using a
chlorophyll a syringe and filter paper, and took a two mL sample of the slurry in a pipette. For
chlorophyll a analysis, we stored both the pipettes and the filter papers in the freezer until

chlorophyll a amount analysis at the UMBS chemistry lab.
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We ran one way ANOVA tests to compare chlorophyll a among treatments within each
site. We also used one-way ANOVA to compare growth of specific nutrients between the sites.

We then performed Tukey post hoc t-tests on our data to determine significance.

Results

From our initial measure of the three nutrient sites, we found that the West branch site
was the coldest, with the highest amount of both surface and underwater illumination (lux), and
the highest discharge. The West branch site also had the most dissolved oxygen, and similar high
levels of conductivity as the Main branch. The Main branch was the deepest of the sites, and had
the greatest overhead cover of the three sites (table 1.). The West branch site had the greatest
initial total nutrients (phosphorus and nitrogen) out of all the sites (table 2.). It also had the
highest initial levels of chlorophyll a.

The Main branch site had the largest growth within the site on the phosphorus bioassays
but it was not found statistically significant (Fig. 3., F=0.256., df=10., p=0.855., n=12.), and the
highest amounts of nitrogen and phosphorus and control growth of the sites. Therefore,
phosphorus is likely to be the limiting nutrient since it returned the greatest algal growth. The
East branch site had the greatest increase of chlorophyll a levels on the phosphorus bioassays,
and the lowest overall nitrogen change (Fig. 3., F=2.635., df=10., p=0.131., n=11.). This was not
significant, but suggests that phosphorus is also limiting in the East branch. West branch showed
the greatest growth on the nitrogen bioassays (Fig. 3., F=0.947., df=6., p=0.517., n=6.). From
this, it appears that nitrogen may be the limiting nutrient of this site.

The West branch site also had the greatest initial chlorophyll a amounts of the sites

(Table 2). Nitrogen bioassays trends were the greatest in the West branch, and the lowest in the
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East (Fig. 4., F=6.527., df=5., p=0.081). The nitrogen and phosphorus treatments tended to be
greatest in terms of chlorophyll a in the Main branch bioassays, and the least in the West branch
(Fig. 5., F=0.462., df=6., p=0.660). The control flowerpots showed the least variance amongst all
the sites, but were slightly higher in the Main branch (Fig. 6., F=0.245., df=6., p=0.793).
Phosphorus treatments were fairly consistent, but slightly higher in the West branch site (Fig. 7.,

F=0.135., df=8., p=0.876). This, however, was not found to be statistically significant.

Discussion

Based on the trends of data, the Main and East branch sites are likely to be phosphorus
limited. Since both these sites are fed from lakes that are developed and used by humans, there
are likely anthropogenic sources of nitrogen in the system that make the specific sites have a
higher Redfield ratio for algal growth. Specific anthropogenic point sources for nutrients could
be from sewage seeping into the water supply, or from runoff of fertilizers (Schindler, 2006).

The West branch site appears to be nitrogen limited. This could be due to the fact that the
West branch is the least used by humans, and therefore has the least incoming bioavailable
nitrogen. Also, we lost several of the bioassays from this location, which could have severely
skewed our results.

The trend of being nitrogen limited at the West branch site also could be due to the higher
discharge not being conducive to nitrogen fixing cyanobacteria. Also, studies have found that
mixing, nutrient levels, and temperature to a certain extent dictate the abundance of

cyanobacteria within a system (Geider, 1987). It is possible that the West branch conditions were
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the least facilitative to cyanobacterial growth out of the sites. This however, goes against our
findings that the West branch site had the highest initial total nitrogen (table 2.).

The control bioassays were highest in the Main branch site. This could indicate that the
Main branch site is the most conducive to algal growth, though the initial chlorophyll a values do
not reflect this. West site, with the highest initial total nitrogen and total phosphorus, has the
potential to be the most productive in terms of algal growth. Since we found that this particular
site appears to be nitrogen limited, it could be that the nutrients within the stream are not found
in the Redfield number of 16 nitrogen to one part phosphorus (Tett et al., 1985).

The future dam removal may have some consequences, such as changing the limiting
nutrient dynamics of the downstream (Main branch) site. The Main branch could also shift to a
non-phosphorus limited system (Orr et. al., 2006). This shift would change the amount and type
of algae (Rosemond et. al., 2000), which could subsequently change the entire river biota of the
area (Scheffer et al., 2001).

Tables and Figures
Table 1. The initial parametrics for the three river sites. Locations were chosen in attempt to find

the the most similar of conditions to control for confounding variables. The West branch had the
highest discharge with the coldest water.

Temperature  Depth Surface Underwater Densiometer  Discharge Conductivity  Dissolved
(°O) (cm) Irradiance irradiance(lux) (% canopy (mL%s) (nS) Oxygen
(lux) cover) (mg/L)
East 19.8 11.8 692 598 8.32 1313.1 171.4 7.2
Maple
West 17.5 20.9 771 607 17.68 13796.5  335.1 8.5
Maple
Main 18.5 34.4 618 602 46.02 8957.7 336.2 9.0

Branch
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Table 2. Initial nutrient data for three river sites. The West branch of the Maple River had the
highest nitrogen and total phosphorus in the water column, but the East branch had the highest
bioavailable phosphorus. The West branch also showed the highest initial value of chlorophyll a,

and therefore had the most abundant original algal community.
NO, NH, PO, Total P Total N  SiO, CHL-a
Main 165 8.7 3.23 3.09 356.4 4.43 0.699
West 254 14.2 6.51 7.12 494.4 493 1.352
East 6.4 8.3 8.28 5.88 301.3 3.81 0.207
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Fig. 1. Locations were chosen based on similarity in morphometry, discharge, and solar
irradiance. Two sites were selected above the Maple River dam (East and West branches) and
one downstream of the dam (Main branch).



Stoll 9

UPSTREAM

000
00
Slolo

@,
9
@

DOWNSTREAM

Fig. 2. Bioassay configuration within the stream sites. To prevent potential mixing of the
nutrients, we placed the treatments side by side about five centimeters apart, with the replicate
treatments downstream.
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Fig 3. Chlorophyll a levels varied through each site, and by nutrient bioassay. Phosphorus tended
to be a limiting nutrient in the Main Branch site. However, chlorophyll a was not significantly
different among the treatments, including the control flowerpot. In the East branch, the
phosphorus bioassay returned the highest chlorophyll a amounts. Nitrogen growth was the lowest
at the East branch site. For the West branch, nitrogen caused the greatest change in chlorophyll a
amount of this system, with phosphorus only slightly less.
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Fig. 4 Nitrogen bioassay comparison between the three sites with one standard error bar. The
West Branch had the largest growth, and the East had the least. The West branch only had one
bioassay remaining after the two week period, so it has no standard error.
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Fig. 5. Nitrogen and phosphorus bioassay comparison between the three sites with one standard
error bar. The Main branch experienced the greatest growth of the three, however, the nitrogen
and phosphorus treatment had the least growth of the bioassays within the Main site.
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Fig. 6. Control bioassay comparison between the three sites with one standard error bar. The
control pot experienced the greatest growth in the Main branch, indicating that this was the most
conducive site to algal growth, even without our nutrient loading treatments.
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Fig. 7. Phosphorus bioassay comparison between the three sites with one standard error bar.
Phosphorus was the greatest growth in both West and Main sites.
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