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ABSTRACT 

 

The infrared (IR) method for determining CO2 concentrations in apatite was calibrated with absolute 
concentrations obtained through Nuclear Reaction Analysis (NRA).  IR data were obtained on 
double-polished apatite samples of varying thickness using polarized transmission infrared 
spectroscopy.  Due to the various sites and orientations of CO3

2– in apatite, the IR spectra are 
complicated and do not have the same shape in different apatite samples.  Hence, simple peak heights 
are not used to characterize CO2 concentrations in apatite.  The total absorbance (Atotal) was derived 
using the integrated area under the curves in a given spectral region (for a given vibrational mode but 
typically include differently sited or oriented CO3

2– subspecies).  Then Atotal is calculated as AE//c + 
2AE⊥c The calibration has been carried out for two wavenumber regions, one with high sensitivity and 
the other can be applied to apatite with high CO2 concentrations.  One calibration is for the 
fundamental asymmetric CO3

2– stretching at wavenumbers of 1600-1300 cm–1, and the CO2 
concentration in wt% can be obtained as (7.56±0.36)×10–6 Atotal/d where d is sample thickness in cm.  
The fundamental stretching bands are strong and hence sensitive for measuring low CO2 
concentrations in apatite, down to ppm level.  The second calibration is for the overtone CO3

2– bands 
at wavenumbers of 2650-2350 cm–1, and the CO2 concentration in wt% is (9.3±0.6)×10–4 Atotal/d 
where d is sample thickness in cm.  The overtone bands are weak and hence are useful for measuring 
high CO2 concentrations in apatite without preparation of super-thin wafers.  The anisotropy is 
significant: difference between AE//c and 2AE⊥c can reach a factor of 2.8.  Hence, for high-accuracy, it 
is best to use polarized IR to determine CO2 concentrations in apatite.  For rough estimation, 
unpolarized IR spectra may be used by estimating Atotal = 3Aunpol, where Aunpol is the average of 
integrated absorbance from unpolarized spectra. 
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INTRODUCTION 

 

The mineral apatite is a common accessory mineral found in terrestrial, martian and lunar 

rocks (e.g., McCubbin and Nekvasil 2008; Boyce et al. 2010; McCubbin et al. 2010a, 2010b, 2012) 

and is a common biomaterial.  It has the ability to take numerous elements, including most volatile 
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elements, into its structure, depending on the composition of the surrounding milieu (Pan and Fleet 

2002; Hughes and Rakovan 2015).  The simplest formula of apatite is Ca5(PO4)3(OH), in which the 

Ca2+ site often contains Sr2+, Ba2+, Pb2+, Na+, and light rare earth elements, the P5+ site often contains 

As5+, Si4+, C4+, and S6+, and the OH- site may be completely substituted by F-, Cl-, and/or CO3
2–.  

Because of this, apatite serves as a good indicator of the conditions of the magmatic environment, 

especially volatile conditions, from which it forms.  In particular, CO2 concentration in apatite may 

be able to indicate CO2 concentration or fugacity in terrestrial-lunar-martian magmas and 

metamorphic rocks.  For this potential to be realized, it is essential to analyze CO2 concentrations in 

small apatite crystals as well as zoning of CO2 in apatite.  The focus of this study is on the 

quantification of CO2 concentrations in apatite by Fourier transform infrared spectroscopy (FTIR).  

CO2 enters apatite structure as carbonate ion CO3
2– in a number of ways, resulting in 

complicated IR peaks originating from CO3
2– in apatite (Tacker 2008).  The CO3

2– ion is a triangular 

plane ion, and may substitute into two different sites in apatite: the OH- ion site and the PO4
3- site.  

The former is referred to as the A site and the latter is referred to the B site for carbonate substitution 

(Fleet and Liu 2003; Fleet and Liu 2007; Fleet 2009).  In the OH- site, CO3
2– may be oriented such 

that the bisector of the triangular CO3
2– ion is parallel to c-axis of apatite (called type A1), or the 

bisector is perpendicular to the c-axis (called type A2) (Tacker 2008).  Based on IR spectra, Tacker 

(2008) also identified two different sites of CO3
2– ion in B site, and interpreted them to be due to 

alignment of the 3 oxygens of CO3
2– onto oxygens of different triangular faces of the PO4

3- 

tetrahedron (see also Ivanova et al. 2001).  Each of these different substitutions results in slight 

changes in the apatite structure and lateral shifts in both the Raman and the IR bands.  In addition, 

these substitutions are not mutually exclusive, and often occur in combination within the same 

crystal.  This multitudinous substitution is most evident in the wavenumber region 1600-1300 cm-1.  
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These substitutions are so complex that the IR signal from a single crystal can elicit as many as 7 

peaks in this region (Tacker 2008). 

There are a number of methods for assessing CO2 concentrations in apatite (e.g., Gulbrandsen 

et al. 1966; Johnson and Maxwell 1981; Santos and Clayton 1995; Cassella et al. 2000; Marks et al. 

2012; Grunenwald et al. 2014).  Note that even though C in apatite is present as carbonate ion, here 

the concentration is referred to as CO2 (wt% or ppm) that would be released if apatite were heated up 

to release all the volatiles, as is the convention.  Previous methods are mostly bulk method, either by 

total carbon titration or total CO2 release (Santos and Clayton 1995; Grunenwald et al. 2014), or KBr 

powder FTIR spectra (Santos and Clayton 1995; Marks et al. 2012; Grunenwald et al. 2014), or vapor 

phase FTIR spectra obtained by reacting 50 mg of apatite with HCl (Cassella et al. 2000).  These 

methods typically require large samples, and even the most recent powder FTIR method by 

Grunenwald et al. (2014) still requires milligrams of apatite.  Apatite crystal specimens are not 

always available in such large sizes.  For example, in available samples from the Moon, apatite 

crystals are often in the range of tens of micrometers in size (Boyce et al. 2010; McCubbin et al. 

2010).  In addition, the powder or vapor FTIR methods (Santos and Clayton 1995; Cassella et al. 

2000; Marks et al. 2012; Grunenwald et al. 2014) are destructive and not enough for the 

determination of heterogeneities at 100-µm scale.  As demonstrated by Wang et al. (2011), IR signals 

of OH and carbonate of single apatite crystals are often very strong, and microbeam FTIR method on 

single apatite crystals has high sensitivity and precision in determining the OH and carbonate 

concentrations once calibrated.  Wang et al. (2011) focused on polarized FTIR analyses of H2O 

concentrations.   

In this work, polarized micro-FTIR is used to quantify CO2 concentrations in apatite.  

Although FTIR can be used to detect specific ion clusters (and in specific sites and orientations) in 

the crystal with high sensitivity and precision, to convert the resulting peak intensities to 
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concentrations an absolute concentration technique is needed for calibration.  The creation of a 

calibration curve using large apatite crystals of varying concentrations would allow for future 

quantification of mineral content in smaller samples (Wang et al. 2011).  Nuclear Reaction Analysis 

(NRA) is an effective way to determine the absolute concentrations of carbonate in large crystals 

(Mathez et al. 1987; Cherniak et al. 2010).  The purpose of this project was to compare FTIR data 

with NRA quantification of carbonate in apatite from a variety of sources to build a calibration curve 

for the FTIR signatures in these crystals.  However, one difficulty in using single crystal FTIR to 

quantify CO2 concentrations in apatite is that the fundamental absorption bands are often too strong 

so that sometimes impractically too thin wafers must be prepared.  To overcome the difficulty, 

appropriate combination bands that are orders of magnitude weaker can be used to determine CO2 

concentrations in apatite when the concentration is relatively high. 

In addition to the high sensitivity and precision, another advantage of using polarized FTIR 

and assessing spectra when the E-vector is parallel or perpendicular to the c-axis of the crystal is 

improved accuracy in quantification of concentrations as well as revealing structural information 

(Libowitzky and Rossman 1996).  It is interesting that with all the discussion of the importance of the 

alignment of CO3 molecule with the c-axis of the apatite crystal (Fleet and Liu 2003; Fleet et al. 

2004; Tacker 2008; Fleet 2009), the IR analysis of apatite parallel and perpendicular to the c-axis is 

quite rare (Suetsugu et al. 1998). Because of the different orientations of the carbonate, it is likely that 

the use of polarized FTIR will provide greater detail on the variety of substitutions, with some more 

prevalent when E//c, and others more prevalent when E⊥c, as well as more accurate quantification of 

CO2 concentrations in apatite. 
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METHODS 

 

Samples 

Four apatite samples were obtained from various locations: Durango, Mexico (Cerro), High 

Atlas Mountains, Morocco (HAM), Faraday Township, Ontario (Gulbrandsen et al. 1966) (ROM) 

and one from an unknown location purchased from an online vendor (GEM).  Two of these samples 

(Cerro, HAM) have been used previously to calibrate the IR method to analyze H2O concentrations 

(Wang et al. 2011).  All samples were mounted on glass slides with crystal bond and cut parallel to 

the c-axis with a diamond wafering saw.  Cerro and HAM are high-quality gem crystals with 

excellent crystalline shape and are easy to cut into oriented wafers.  ROM and GEM crystals are more 

difficult to mount so as to be cut into oriented wafers because the original crystal surfaces are not 

present.  ROM was cut from a triangular prism crystal, resulting in a triangle face with dimensions of 

6, 5.7, and 5.3mm on the three sides, respectively.  GEM was originally nearly spherical so the 

resulting face was an oval with a long diameter of 5.2 mm and a short diameter of 3.1 mm. These 

samples were further cut into 2 pieces.  One piece of each was used for NRA analysis and the other 

was used for polarized micro-FTIR.  

FTIR 

For FTIR, samples were double polished at least three separate times to thicknesses ranging 

from 1.4 mm to 20 µm.  Sample thickness was determined using a Mitutoyo digital micrometer (with 

a precision of ±1 µm and an accuracy of ±2 µm).  For samples <100 µm, interference fringes in the 

FTIR spectra were used to verify and determine thickness using the equation:  

 

 d = 1/(2n∆ω), (1) 
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where d is the thickness of the sample, n is the refractive index and ∆ω is the period of the 

interference fringes in terms of wavenumbers.  A refractive index of 1.65 was used. 

Polarized spectra were obtained for both E//c and E⊥c on the single wafer cut parallel to the 

c-axis at the University of Michigan using a Perkin-Elmer Spectrum GX FTIR spectrometer with a 

microscope attachment, purged with N2 gas.  Spectra were acquired with a mid-infrared source, KBr 

beamsplitter, KRS-5 IR wire grid polarizer and a liquid nitrogen cooled MCT detector.  An aperture 

of 50 µm by 50 µm was used.  Data were recorded from 7800-700 cm–1, with a resolution of 1 cm–1. 

The orientation to the c-axis was verified in each sample using the spectra near wavenumber 

3540 (OH peak), which is zero when the E⊥c and maximal when E//c (Levitt and Condrate 1970; 

Wang et al. 2011).  The peaks in apatite attributed to CO3
2- were compared with polarized FTIR 

spectra of a double-polished crystal of calcite (CaCO3).  

 

Nuclear Reaction Analysis (NRA) 

Nuclear Reaction Analysis (NRA) was used to determine absolute C concentrations in apatite 

(Mathez et al. 1987; Proust et al. 1994; Cherniak et al. 2010). The nuclear reaction is 12C(d,p)13C (i.e., 

12C + 2H →13C + 1H) (Proust et al. 1994; Wang and Nastasi 2009; Csedreki et al. 2014). A high-

energy beam of deuteron (2H) particles bombards the target material (polished apatite crystal). As the 

particles go into the target, some 2H particles react with the target nucleus (12C), converting the target 

nucleus to a new nucleus (13C) and releasing a reaction product (1H) with a specific amount of 

energy.  The released 1H ion with different energy is detected in the NRA proton spectrum at 

different energy channels.  

The samples prepared for NRA were polished with P-600 SiC sandpaper and 0.3 µm alumina 

powder on cloth. Samples were about 50 mm2 in area and 1-3 mm thick. All NRA measurements 
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were carried out at the Michigan Ion Beam Laboratory (MIBL) at the University of Michigan with 

the 1.7 MV tandem accelerator. The deuteron beam energy was selected to be 1.31 MeV to maximize 

the 12C(d,p)13C nuclear reaction cross section (Wang and Nastasi 2009; Csedreki et al. 2014) and 

hence the signal in the spectrum to quantify the carbon concentration in the sample. An Si charged-

particle detector with 15 keV energy resolution was used to acquire the spectrum. The detector was 

placed at a scattering angle of 135°. For the acquisition of the sample spectra a 17.7-µm thick Kapton 

(H10C22N2O5) foil was placed in front of the detector to filter out backscattered deuterons of low 

energy (< 1.1 MeV). This allowed for an increase in the deuteron current on the sample and decreased 

the acquisition times. The acquisition times were 500 seconds with deuteron current on the sample 

130 nA. During the acquisition of the spectrum the direction of the deuteron beam is normal to the 

sample surface. The depth of the sample being probed was estimated using the SIMNRA software 

program  (Mayer 1999).  For the apatite samples, the depth was estimated to be  ~6 µm. 

Atomic carbon concentration was determined through NRA spectrum modeling also using the 

SIMNRA program (Mayer 1999). The NRA method is an absolute method and no independent 

calibration is necessary. Nonetheless, the procedure was verified by analyzing a calcite (CaCO3), 

obtaining carbon concentration of 19.3±1.3 atomic%, in agreement with the stoichiometric 

concentration of carbon of 20 atomic%. 

 

RESULTS 
 

The NRA spectra and modeling curves are shown in Fig. 1.  The peak at 2980 keV reflects 

surface carbon contamination and the data from 2600-2940 keV indicate carbon in the interior of the 

crystal.  The detection limit of the NRA method is 0.113 wt% CO2 and carbon concentration in some 

apatite is not high enough for NRA. For Cerro, the NRA signal is indistinguishable from the 
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background.  Hence, For Cerro, the fitting quality is not high and the uncertainty in modeling the 

carbon concentration is large.  In order to determine concentrations better, constraints from FTIR 

spectra are used to estimate the background in NRA and subtract the same background counts from 

the NRA signals of all samples.  Based on IR spectra in the v3 region (see later sections), the 

integrated absorbace Atotal (see eq. (2)) for Cerro is ~1/5 of that for HAM.  Because Atotal is 

proportional to carbon concentration, a background to the NRA spectra is assigned so that carbon 

concentration in Cerro is ~1/5 of that for HAM.  The resulting carbon concentration in ROM, GEM, 

HAM and Cerro are listed in Table 1.  The CO2 concentration in the ROM apatite grain that was 

analyzed by NRA is 0.66±0.06 wt% (1σ error) based on NRA analysis, not too different from 0.57 

wt% obtained by Gulbrandsen et al. (1966) who analyzed bulk apatite crystals from the same 

location.  

Typical IR spectra with the E vector parallel and perpendicular to the c-axis are shown in Fig. 

2.  Band identifications were taken from Regnier et al. (1994) and Koleva and Petkova (2012).  The 

bands due to PO4 at ~1000 cm–1 are typically oversaturated.  Oversaturation is indicated when the 

peak is at high absorbance values and when the peak region is not smooth, but shows a lot of “noise”. 

These data are not useable for any kind of quantification.  The bands at ~2000 cm–1 are due to 

overtones of PO4.  The OH band at 3540 cm–1 is highly anisotropic, with zero intensity when E//c, 

and is used to verify the orientation of the samples.  Among the fundamental carbonate vibrational 

modes, v3 (double-degenerate antisymmetric stretch in the region of 1600-1300 cm–1) is well 

separated from other bands and suited for the quantification of CO2 concentration.  The v2 mode (out-

of-plane bend in the region of 850-900 cm–1) is close to the main PO4 bands, and oversaturated, 

making it difficult to use.  There are numerous carbonate v3 and v2 bands in apatite due to different 

carbonate substitution (A1, A2, B1 and B2, Tacker 2008).  The v1 mode is IR-inactive and v4 (at 
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~720 cm–1) is not always present.  Hence, among the fundamental vibration modes, the v3 bands are 

calibrated in this study. 

The v3 infrared bands are strong and easily oversaturated.  In the current study, some apatite 

with high CO2 concentration was specifically chosen because NRA requires high concentrations.  

Hence, to avoid supersaturation of the IR bands, the samples must be very thin, and the thinnest 

sample is only 20 µm thick for ROM which has the highest CO2 concentration.  That is, these IR 

bands have high sensitivity and are good for obtaining low CO2 concentrations in apatite once 

calibrated but are not convenient for quantifying high CO2 concentrations (e.g., ≥ 1000 ppm).  To 

overcome this difficulty, the bands for carbonate are also calibrated in apatite in the region of 2650-

2350 cm–1 (tentatively assigned as the first overtone of v3).  The bands in this region are about two 

orders of magnitude weaker than these in 1600-1300 cm–1, can only be clearly resolved when the 

samples are greater than 0.5 mm thick (Fig. 3), and are hence well suited when CO2 concentration is 

high in apatite.  

To view the IR bands more clearly, the left 3 panels of Figure 3 illustrate the spectra in the 

region of 1600-1300 cm–1 for E vector parallel or perpendicular to the c-axis of the apatite crystal.  

The shapes of the peaks are variable from one apatite crystal to another, with major and minor peaks.  

For ROM and GEM apatite crystals, there are major double peaks at 1455 and 1428 cm–1.  When 

E⊥c, the two peaks are nearly identical, and when E//c, these peaks become uneven in height.  The 

right 3 panels of Figure 3 show the same information in the region of 2650-2350 cm–1.  Often the 

absorbance for E⊥c is larger than that for E//c, but for Cerro, the opposite is true.  It can be seen that 

the spectra shape in the region of 2650-2350 cm–1 is similar to that in the region of 1600-1300, and 

these peaks are tentatively assigned to be the first overtone of the various v3 peaks in the region of 

1600-1300 cm–1. 
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The carbonate peaks in the 1600-1300 cm-1 range and the 2650-2350 cm-1 range are consistent 

with peaks observed in the calcite samples herein as well as with those observed by others (Adler and 

Kerr 1962; Gunasekaran et al. 2006) but the spectra of carbonate in apatite are more complicated due 

to the lifting of the double degeneracy and the multiple sites and orientations for the substitution of 

CO3 group into the apatite structure.  Specifically, the shape of the spectra is related to the relative 

abundances of CO3 groups in different sites and orientations, and is variable (e.g., comparing ROM 

with HAM).  Therefore, the simple approach of using linear absorbance of main peaks (e.g., Wang et 

al. 2011) does not work well, so the integrated absorbance over each region is used to quantify the 

CO2 concentration in apatite. 

 

Calibration 

The data in Table 1 are used to calibrate the FTIR technique for the analysis of CO2 

concentration in apatite.  The calibration is based on Beer’s law describing the relationship between 

CO2 concentration and FTIR absorbance as: 

 
    C = αAtotal/d, (2) 

 
where C is CO2 concentration, Atotal (= AE//c + 2AE⊥c because there are two principal axes that are 

perpendicular to the c-axis and one that is parallel to the c-axis) is the total integrated absorbance of 

the IR band in the wavenumber region of either 1600-1300 cm–1 or 2650-2350 cm–1, with total 

meaning summation over three crystallographic directions, d is the sample thickness, and α is a 

constant that contains the molar mass of CO2, the density of apatite and the integrated molar 

absorptivity in a specific spectrum region.  For the units, the unit of Atotal is the same as that of the 
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wavenumber (cm–1), and the unit of d is chosen to be cm, and the unit of C is chosen to be wt% CO2 

(C =1 means 1 wt% of CO2).  Hence, the unit of α is wt%·cm2.  

Because of the multiple possible peaks due to variations in the substitution of the CO3
2- ion 

(Regnier et al. 1994; Fleet and Liu 2004; Fleet et al. 2004), the integrated area between the curve and 

the baseline was used as the characteristic to represent CO2 concentration in apatite.  To obtain the 

baseline, a regression line was created that formed a tangent across the lowest point on either side of 

the bands defining the peaks in the wavenumber range (1600-1300 or 2650-2350 cm–1) (Figure 4).  

For the 1600-1300 cm–1 region, the lowest points are near 1580 cm–1 and 1360 cm–1 (with some 

variability), respectively.  For the 2650-2350 cm–1 region, the lowest points are near 2580 cm–1 and 

2405 m–1.  Then the baseline is subtracted from the spectrum.  The total area of all the bands in a 

region between the two tangential points is obtained by numerical integration ∫Adω from one 

tangential point to the other.  This is done for both the E⊥c spectrum to obtain AE⊥c (the integrated 

absorbance for E⊥c) and for the E//c spectrum to obtain AE//c (the integrated absorbance for E//c).  

Then Atotal is calculated as AE//c + 2AE⊥c. The AE⊥c, AE//c, and Atotal of all samples are listed in Table 1.  

For convenience, the integrated absorbance in the 1600-1300 cm–1 region is referred to as A1440, and 

that in the 2650-2350 cm–1 region is referred to as A2500.  It can be seen that per sample thickness, 

Atotal in the 2650-2350 cm–1 region is about 0.8% of that in the 1300-1600 cm–1 region.   

Figure 5 illustrates the calibration curve for NRA (wt%) vs integrated area of the FTIR signal 

at wavenumbers 1600-1300 cm–1 (a) and wavenumbers 2650-2350 cm–1 (b).  The data are fit by 

equation (2) (i.e., the intercept is forced to be zero) to obtain α using the York algorithm (York 1969) 

but forcing the intercept to be zero.  The Cerro sample is plotted but not used in the fitting because it 

has already been used in estimating the background for NRA.  For the 1600-1300 cm–1 region (v3 

bands), the fit value and 1σ error for the slope α (Fig. 5a) is:  
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  α1600-1300 = (7.56±0.36)×10–6 wt%·cm2,     MSWD = 0.88. (2a) 

 
For the 2650-2350 cm–1 region, the fit (Fig. 5b) gives:  

 
  α2650-2350 = (9.3±0.6)×10–4 wt%·cm2,     MSWD = 2.64. (2b) 

 
The mean square weighted deviation (MSWD) is larger than 1, probably reflecting the difficulty of 

integrating the smaller peaks over a wide range of wavenumbers. 

  On the basis of 2σ reproducibility of IR spectra, the detection limit of the integrated 

absorbance is of the order 1 cm–1.   Therefore, the detection limit for infrared measurement of CO2 in 

apatite using the v3 bands can be sub-ppm for 1-mm thick apatite samples.  For 0.1-mm thick apatite 

crystals, the detection limit is about 8 ppm.  That is, the v3 bands are very sensitive for quantitative 

measurements of CO2 in apatite using polarized IR on oriented crystals, but very thin wafers must be 

prepared when the CO2 concentration is > 0.1 wt%.  On the other hand, for a 1-mm thick apatite 

crystal, the detection limit using the bands in the 2650-2350 cm–1 region is about 100 ppm, and wt% 

level CO2 concentrations can be measured using these bands. 

 

H2O concentration in the apatite samples 

The IR data also provide information on H2O concentration using the calibration of Wang et 

al. (2011).  All the spectra show a dominant peak at 3540 cm–1 for OH in apatite, and hence simple 

linear absorbance can be used to obtain H2O concentration.  For HAM and Cerro, the peak at 3540 

cm–1 was oversaturated (the samples were not thin enough for the OH peak because no special effort 

was made to obtain OH concentrations).  Wang et al. (2011) reported H2O concentrations of 0.44 and 

0.085 wt% for HAM and Cerro, respectively.  For ROM and GEM, the H2O concentrations so 
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obtained are shown in Table 1.  It can be seen that ROM has the lowest H2O but the highest CO2 

concentration among the samples.  The GEM crystal for this study has lower H2O concentration 

compared to Gem3 and Gem4 used in Wang et al. (2011).  

 

 

 

DISCUSSION 

 

The various peaks in the v3 region 

The substitution of CO3
2- into the apatite crystal is complex (El Feki et al. 1999; Comodi and 

Liu 2000; Ivanova et al. 2001; Leventouri et al. 2001; Fleet and Liu 2003, 2004, 2005; Fleet et al. 

2004; Antonakos et al. 2007; Koleva and Petkova 2012).  As summarized by Tacker (2008), CO3
2- 

can substitute on the OH (or Cl or F) site (Type A) as well as on a PO4
3- site (Type B).  Type A 

substitutions occur in two different forms (Fleet et al. 2004).  Using X-ray structural analysis, Fleet 

and Liu (2003) and Fleet et al. (2004) discovered an A-type substitution ordered along the apatite 

channel, which they labeled A1 because they also identified a second Type A substitution in a 

“stuffed” position which apparently acts as a charge balance for a B-type substitution (A2).  The 

different Type A substitutions are reflected by different bands in the IR spectrum, with A1 bands at 

1541 and 1449 cm-1 and A2 bands at 1563 and 1506 cm-1 (Fleet et al. 2004).  The Type B 

substitutions also occur in two different forms.  According to Tacker (2008), the B1 substitution is on 

one face of the PO4 molecule, while the B2 substitution is on a different face with resulting IR 

spectral bands at 1450 and 1409 cm-1 (B1) and 1460 and 1427 cm-1 (B2).   
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The complication of identification is evident in the overlapping of these bands in the IR 

spectra between 1460 and 1445 cm-1.  One benefit of using polished single crystals and polarized 

spectra is the ability to pull out details of these differing substitutions.    

The utility of using polarized vectors parallel and perpendicular to the c-axis of the crystal is 

evident in Figure 6.  When E⊥c, the two major peaks are similar in height.  When E//c, the band at 

1428 cm–1 is smaller in height relative to the band at 1455 cm–1.  This would imply that the band at 

1428 cm–1 is reflecting the activity of a substitution that is at a high angle to the c-axis and thus 

decreases when the energy is parallel to c (B2). The band at ~1406 cm–1 has been identified as a B1 

signal, which corresponds to v3a in Fleet et al. (2004), parallel to the c-axis.  There are other subtle 

differences between perpendicular and parallel spectra, with small shoulders appearing at the 

wavenumbers identified by Tacker (2008) as the four substitution sites.  For example, the A1 

substitution is stronger at 1455 cm–1 (combined with the B2 substitution) and disappears at higher 

wavenumbers.  The A1 substitution at these higher wavenumbers is evident only when E//c.  The A2 

substitution is visible only when E⊥c, which is consistent with integration in the columnar anion (F-, 

Cl-, OH-) perpendicular to the c-axis (Fleet et al. 2004; Tacker 2008).  The IR bands for B1 and B2 

substitutions are at lower wavenumbers than those for the A1 and A2 substitutions. 

In addition to being able to identify the multiple substitutions that are made by CO3
2- into 

apatite, which is aided by the use of spectra from both parallel and perpendicular energy, the 

integrated area of the entirety from these wavenumbers can be used to quantify the amount of CO3
2- 

in the crystal using a calibration curve.  An implicit assumption is that all the subspecies have the 

same integrated molar absorptivity.  Note these are all subspecies of CO3
2–, not the chemically 

different species such as CO3
2– and CO2, or OH and H2O.  Even for major species of the same 

element, the molar absorptivities are not very different.  For example, Newman et al. (1986) 

estimated that for two major species of H (hydroxyl group OH– and neutral molecule of H2O) in 
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rhyolitic glasses, the integrated molar absorptivity for OH is 1.67 times that for H2O at the 3550 cm–1 

band, and 0.83 times that for H2O at the 4000 cm–1 band, and 1.16 times that for H2O at the 7100 cm-1 

band.  On the other hand, Leschik et al. (2004) cautioned that it is difficult to verify whether the 

results in Newman et al. (1986) are due to difference in the molar absorptivities or due to structural 

variations, meaning that molar absorptivities of different H species may be roughly identical.  

Furthermore, it is expected that the integrated molar absorptivities of differently positioned or 

oriented CO3
2– are more similar than the different chemical species of OH– and H2O.  Hence, the 

assumption that the differently sited or oriented CO3
2– subspecies have the same integrated molar 

absorptivity is reasonable although future high-precision work is needed to distinguish small 

differences in integrated molar absorptivities for different CO3
2– subspecies. 

Once the various substitutions of CO3
2– into apatite are understood and the peak positions well 

quantified, it may be possible to deconvolute the various peaks in Figure 6 and use them to quantify 

the concentrations of each type and subtype of CO3
2– substitution in apatite (Comodi and Liu 2000).  

The relative concentrations of the various subspecies may depend on temperature, pressure, melt 

composition such as the availability of P and F-OH-Cl, and other ambient conditions.  If the 

controlling factors for the different substitutions are understood, the deconvoluted concentrations of 

the CO3
2– subspecies might be able to provide rich information on apatite formation conditions.  

 

Using unpolarized spectra to roughly estimate CO2 concentrations in apatite 

  Because apatite is ubiquitous in both geological (Harlov 2015; Hughes and Rakovan 2015) 

and biological systems (Grunenwald et al. 2014), the use of these calibrations may be widespread.  

One advantage of calibrating for both lower (1600-1300 cm-1) and higher (2650-2450 cm-1) 

wavenumbers is that samples with higher carbonate content (as in biological samples) do not have to 

be thinned to <100 µm in order to quantify the carbonate concentration.  
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 Often apatite crystals are small or otherwise difficult to orient.  For CO3
2– in apatite, at least 

for the four samples studied in this work, the degree of anisotropy is not very large, with the ratio of 

A//c/A⊥c ranging from 0.47 to 2.73 for the 1600-1300 cm–1 bands, not too different from 1.  This is in 

contrast to the OH band at 3540 cm–1 in apatite, which is completely anisotropic, with the ratio of 

A//c/A⊥c being infinity.  The smaller degree of anisotropy means that CO2 concentration in apatite may 

be roughly estimated using unpolarized spectra on unoriented apatite crystals.  Such rough estimation 

can be achieved by measuring a couple of unpolarized spectra on unoriented apatite sections, finding 

the average integrated absorbance, multiplying it by 3 to estimate the total integrated absorbance 

(Atotal), and then using eq. (2) and the appropriate value of α to estimate the CO2 concentration.  

Consider the range of A//c/A⊥c ratios from 0.47 to 2.73 as observed in this study for the 1600-1300 cm-1 

bands.  If the ratio of A//c/A⊥c = 0.47, then using a single unpolarized spectrum of a random section 

would lead to an estimated Atotal to be 0.57 to 1.21 times the true Atotal.  If the ratio of A//c/A⊥c = 2.73, 

then using a single unpolarized spectrum of a random section would lead to an estimated Atotal to be 

0.63 to 1.73 times the true Atotal.  Combining these results, the estimated Atotal and CO2 content would 

be 0.57 to 1.72 times the true values using one unpolarized IR spectrum on a random section.  

Measuring and averaging two or more randomly oriented sections would reduce the uncertainty 

significantly.   

The detail of the data is evident in these natural samples that are double polished and analyzed 

using polarized FTIR.  In addition to being able to identify the multiple substitutions that are made by 

CO3
2- into apatite, which is aided by the use of spectra from both parallel and perpendicular energy, 

the integrated area of the entirety from these wavenumbers can be used to quantify the amount of 

CO3
2- in the crystal using a calibration curve. While this calibration curve can be roughly used with 
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unoriented samples, more work is necessary to verify the utility of such a curve on samples that are 

prepared as KBr pellets.   
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Table 1. NRA and FTIR data on apatite 
  
Apatite H2O 

wt% 
CO2 
wt% 

A1440 
E⊥c 

A1440 
E//c 

A1440 
total 

A2500 
E⊥c 

A2500 
E//c 

A2500 
total 

ROM 0.043±0.008 0.664±0.055 37250 17380 91870 323±17 125±3 772±34 
GEM 0.24±0.01 0.181±0.040 8890±52 6590±263 24380±159 64.5±1.3 27.5±0.7 157±3 
HAM -- 0.142±0.034 5018±270 5438±134 15474±674 43.7±1.3 31.6±1.3 119.1±1.2 
Cerro -- 0.028±0.012 683 1868 3234 -- -- -- 

Note: H2O concentration is based on IR measurement in this study using the calibration of Wang et al. (2011).  CO2 
concentration is based on NRA analyses in this study, except for  Cerro, for which the CO2 concentration was estimated 
using the relationship between total absorbance of Cerro and the total absorbance of HAM (see text).  Because of this, the 
CO2 values of Cerro are not used in the calibration. The absorbances are integrated absorbances per cm thickness. For 
Cerro, the CO2 concentration is low and hence A2500 cannot be determined well.   
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Fig. 1.  NRA spectra of four samples.  The points are data and the curves are modeling  
of the data using the SIMNRA software (Mayer, 1999). 
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Fig. 2. Two polarized FTIR spectra for an apatite crystal from High Atlas Mountain (HAM),  
one for E⊥c and one for E//c.  The thickness of the crystal is 65 µm.  
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Figure 3.  Polarized FTIR spectra at 1600-1300 cm–1 and 2650-2350 cm–1 collected from  
single apatite crystals.  Note difference in this thickness of each sample, especially between  
wavenumber region of 1600-1300 cm–1 and of 2650-2350 cm–1.  To avoid oversaturation, the  
spectra at 1600-1300 cm-1 must be collected on very thin wafers.  To get significant signal,  
the spectra at 2650-2350 cm-1 must be collected on thick wafers.  The different shapes are  
due to different proportions of carbonate ions in A1, A2, B1 and B2 substitutions (see text). 
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Figure 4.  Illustration of baseline fitting for a polarized FTIR spectra  
at the v3 region (1600-1300 cm–1) for E⊥c of a single apatite crystal ROM. 
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Figure 5.  Calibration line for IR measurements of CO2 in apatite.  The  
integrated infrared absorbances are plotted on the horizontal axis.  CO2  
concentrations determined by NRA are plotted on the vertical axis.  The  
Cerro sample is plotted but not used in the fitting because it has already  
been used in estimating the background for NRA. 
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Figure 6.  Polarized spectra illustrating the different peaks when E^c and when E//c. 
A1 is the CO2 substitution at the OH site and parallel to the c-axis of the crystal, A2 is  
perpendicular to the c-axis. B1 and B2 substitutions are on different faces of the PO4  
molecule (see text). 
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