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Complexity is important in the course of evolution, but consensus of what complexity analysis entails is elusive.
In this study, multivariate complexity is measured and analyzed in terms of magnitude of change and the trends
behind those changes. Multivariate morphological and functional complexities were analyzed using 3D surface
models of centric diatom genera from the Eocene to Oligocene, a transitional time when temperatures cooled,
sea levels rose, and glaciation increased. Diatoms were chosen for study because of their importance in biostra-
tigraphy, biogeochemical cycling, productivity, food web dynamics, and sensitivity to environmental conditions.
Probabilistic analysis using aMarkov chain indicated an increase in total complexity across the Eocene–Oligocene
transition (EOT). Causal inference via structural equation modeling indicated weakly driven functional andmor-
phological complexity trends over the EOT.Morphological and functional complexity trends differedwith respect
to predation resistance as responses to ecological complexity as environmental and climate change occurred
across the EOT. Macroevolutionary patterns of morphological and functional complexity with respect to ecolog-
ical complexity did not necessarily coincide over time.
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1. Introduction

That organisms becomemore complex over time has been espoused
as the dominant viewpoint in biology (e.g., Lamarck, 1809; Darwin,
1859; Miconi, 2008; McShea and Brandon, 2010; Auerbach and
Bongard, 2014) because evolution has occurred fromunicellular tomul-
ticellular entities. The nominal basis for this claim is that by counting
cells, complexity can be determined (e.g., Wicken, 1979; McShea,
1991; McShea and Brandon, 2010). Aside from this obvious pronounce-
ment, no consensus exists on the definition of complexity (especially
over multiple disciplines), analyses have entailed discordant ap-
proaches, and equivocal results have been produced (McNamara, 2006).

Complexity of organisms has been based on various attributes such
as size (e.g., McShea and Brandon, 2010; McShea and Hordijk, 2013),
body plan (Valentine, 2000), heterogeneity or degree of differentiation
(Darwin, 1859), and pattern arrangement of number of parts
(e.g., McShea, 1991, 1992; McShea and Venit, 2001). Complexity is usu-
ally determined at a one- (1D) or two-dimensional scale (2D) or level
(e.g., McShea, 1991; McShea and Brandon, 2010) where, e.g., bits of in-
formation and their sequential structure are assessed (e.g., McShea,
1992; Adami, 2002). Whenever questions arise about the definition of
complexity or parts, qualifiers (e.g., McShea and Venit, 2001), nuanced
descriptions (e.g., McShea, 1992; McShea and Brandon, 2010), or nega-
tion terms (e.g., Wicken, 1979; McShea, 1991) are invoked in order to
legitimize the methods used in complexity analysis. Definitions of
parts and whole entities with respect to complexity are described,
which are dependent on boundary determinations, which in turn are
context and scale dependent and must be defined a priori for complex-
ity analysis to begin. Applying such constraints across the board pre-
sents difficulties in generalizing complexity measurement and analysis
and arriving at a consensus on what is meant by complexity.

At the other end of the spectrum, complex systems are analyzed by
treating different organisms as “particles” and applying a particular al-
gorithm such as an artificial neural network via agent-based modeling
(e.g., Yaeger et al., 2008) to determine large scale complexity trends.
While results have been intriguing (e.g., Auerbach and Bongard,
2014), computational complexity sometimes substitutes for biological
complexity (e.g., Adami, 2002), and meaningful attributes of actual or-
ganisms and their significance are not necessarily recovered by such
methods. In spite of this, many 1D and 2D systems-based assessments
express complexity change over time as probabilistic (e.g., Yaeger
et al., 2008; McShea and Brandon, 2010). By using a probability-based
framework, the likelihood of a future event of complexity change and
its trend over time can be inferred as a result rather than merely
counting and cataloging the frequency of past events of complexity
change. To start, measuring complexity as a deterministic quantity
aids in circumventing the need for elaborate, specific descriptions and
conceptualizations in order to constrain analyses to fit the purposes of
isolated studies.

Complexity as a deterministic quantity is useful in studying a single
event or determining a long term macroevolutionary trend where
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probabilities of outcomes enable assessment at the n-systems level. For
biological complexity, an n-complex system relating functionality to
form is important in the evolution and coevolution of organisms. Differ-
ent types of complexity as deterministic quantities can be aggregated as
n-dimensional measures. Complexity as a multidimensional quantity
enables its assessment as n-macroevolutionary trends, with potentially
different magnitudes and/or drivers for each trend. Understanding the
differencesmay enable discernment of long termpatterns of complexity
changes in evolution.

1.1. Purposes of the study

Multicellular taxa are typically chosen for study in complexity
analysis (e.g., McShea, 1992), since it is taken for granted that only
multicellular organisms qualify. However, complexity assessment
is a comparative exercise, and among the unicells, diatoms possess
complex morphology (Harwood et al., 2007), representing a mono-
phyletic group at the class or phylum level (Williams and Kociolek,
2007). Diatoms account for at least 40% of total productivity, 50% of or-
ganic carbon sequestration in the sediment (Falkowski et al., 2004), and
are important in the global carbon (Hopkinson et al., 2011) and silica
(Knoll, 2003) cycles. Diatoms are biogeochemically and stratigraphically
important in characterizingpaleoenvironments andpaleoclimates as a re-
sult of their ubiquitous distribution and diversity (e.g., Harwood et al.,
2007; Jordan and Stickley, 2010). Upwelling affected silica cycling and
productivity in surface waters throughout the Cenozoic, and since the Ol-
igocene, diatoms are the dominant contributors to the global silica cycle
as evidenced by their high sedimentation rate (Harwood et al.,
2007;Witkowski et al., 2014). Limiting conditions for silica availabil-
ity (Conley, 2002; Harwood et al., 2007) and other nutrients in the
oceans control not only diatom productivity, evolution and diversifi-
cation (Jordan and Stickley, 2010), but also diatom morphological
features and the degree to which they are silicified (Barron and
Baldauf, 1989).

The Eocene–Oligocene transition (EOT) is an important period of
changing composition of diatom taxa during the Cenozoic (Jordan and
Stickley, 2010) because of changes from increasing levels of atmospher-
ic CO2with greenhouse temperatures and high sea levels during the Eo-
cene to low levels of atmospheric CO2, with icehouse temperatures and
low sea levels with ice sheet expansion in the Oligocene (Zachos et al.,
2008; Jordan and Stickley, 2010). Centric diatoms contributed to a
major shift in global carbon cycling and increasing oxygenation of sur-
face waters during the change from greenhouse to icehouse conditions
(Armbrust, 2009). Since the Cretaceous, centric diatoms have endured,
survived and proliferated, exhibiting a wide variety of morphologies
(Harwood et al., 2007). Although centric diatomswere prevalent during
the Cenozoic, morphological and functional complexity are neither eas-
ily discernible upon cursory inspection of the taxa nor is the relation be-
tween complexity and environmental and climate conditions evident
during this time.

To measure complexity in centric diatoms from the Eocene and Oli-
gocene, three-dimensional (3D) surface models will be devised using
parametric 3D equations (Pappas, 2005a, 2005b, 2008; Pappas and
Miller, 2013), and their numerical solutionwill be used inmeasurement
of morphological complexity. Functional complexity will be measured
as a quantity with respect to surface area extracted from measurement
of morphological complexity. Morphological and functional complexity
will be aggregated asmultivariate quantities, and from this, rank order-
ing of taxa from the Eocene to the Oligocene will serve as a vector of
complexity change over time. Magnitude of short and long term com-
plexity change will be probabilistically analyzed andmeasured with re-
gard to steady-state conditions. Causal inference will be used to
determinemode of complexity as an evolutionary trend usingmultivar-
iate modeling and probabilistic analysis. The context of morphological
and functional complexity will be examined in terms of ecological
changes that occurred during the EOT.
2. Methods

Measuring complexity is not the same as measuring diversity. Com-
plexity is not about counting the number of all the different taxa that
existed in the Eocene and Oligocene. To attempt to consider every last
possible taxon, especially rare or accidental occurrences, is neither at-
tainable nor necessary. Rather, complexity is about the number of differ-
ent kinds of surface morphological patterns common among taxa.
Surface morphological patterns are redundant over a number of differ-
ent taxa (e.g., Barber and Haworth, 1981), and for a circumscribed
time period from the Eocene to the Oligocene, a finite number of pat-
terns occur. Such patterns fall into succinct categories based on surface
geometry.

Geometrically, whole diatom frustules are capped cylinders. On their
exterior valve faces, layers of pores or foramina are arranged in various
patterns (Round et al., 1990). Areolae or puncta can be spaced regularly
or irregularly, change in size or shape, be radiating from one spot, ar-
ranged concentrically from the center, or lined up in a parallel fashion
(Barber and Haworth, 1981). Rows of areolae or punctamay form a dis-
continuous, random, sparse, or dense pattern (Barber and Haworth,
1981). In spite of the vast array of possible combinations of features
on their frustule surfaces, redundant centric diatom structural geomet-
ric features are commonly recognized over many taxa.

These surface morphological patterns are discernable from taxa in
the Eocene and Oligocene, where diatoms are indicative of the prevail-
ing environmental and climate conditions and are accumulated in the
sediments via rapid burial or from lack of exposure to high alkalinity
and high temperature pore waters (e.g., Barron and Baldauf, 1989,
1995). For selection purposes, taxa may be grouped by traditional mor-
phological classification categories since a monophyletic tree of diatom
taxa has yet to be realized (e.g., Williams and Kociolek, 2007; Theriot
et al., 2010, 2011). Classification groups specified in Fenner (1985)
and Round et al. (1990) are used as general non-phylogenetic taxonom-
ic bins although these descriptors have been used in phylogenetic as-
sessments (e.g.,Williams and Kociolek, 2007; Theriot et al., 2010, 2011).

Taxon groups in the Coscinodiscophyceae (e.g., Round et al., 1990;
Williams and Kociolek, 2007) characterize many of the centric taxa
from the Eocene and Oligocene consisting of the Coscinodiscales,
Stictodiscales, Arachnoidiscales, and Asterolamprales (e.g., Fenner,
1985; Round et al., 1990). Of these taxon orders, particular gross geom-
etries on the valve face can be described in terms of different sizes and
degrees of pores and distinct arrangements of surface features in a radi-
ating pattern (e.g., Barber and Haworth, 1981; Round et al., 1990). From
actual centric taxa obtained fromEocene andOligocene sediments, pub-
lished accounts from the Deep Sea Drilling Project (DSDP), Ocean Dril-
ling Program (ODP), Integrated Ocean Drilling Program (IODP), and
the United States Geological Survey (USGS) are used to determine the
pool of taxa fromwhich to select exemplars of surface geometry having
the specific arrangement of pores or radiating features mentioned
above. As a result, diatom biostratigraphic markers qualify as the best
means to select exemplars of surface morphological patterns for com-
plexity analysis.

The basis of diatombiostratigraphy rests on evolution and extinction
of taxa documented by their first and last appearances (Scherer et al.,
2007). Multiple taxa representing a given time period make the strati-
graphic picturemore robust and stable, and transitions between diatom
assemblages are an indication of evolutionary change (Scherer et al.,
2007). Taxa used in stratigraphic zonations have widespread distribu-
tions and are usually larger andmorewell-preserved than their smaller,
rarer counterparts. Diatom assemblages incurredmajor turnover events
at times of rapid high latitude cooling and changes in oceanic circulation
of surface waters and are an indicator of this chronostratigraphic evolu-
tionary record (Barron and Baldauf, 1989; Scherer et al., 2007). Zona-
tions based on first and last abundant appearances reiterate evidence
of diatom evolutionary changes (Scherer et al., 2007). Diatom evolution
is exemplified by unique taxa found in biostratigraphic zones.
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The particular centric diatom genera that were chosen from which
to make 3D surface models have been restricted to those in the
Coscinodiscophyceae with an approximate circular valve and cross-
sectional shape and cylindrical 3D shape. This will enable the elimina-
tion of overall shape as a confounding factor and make modeling of
the taxa for comparative purposes simpler. Taxon selection
representing surface morphology was based on specific criteria:
(1) the importance of the taxon in diatom biostratigraphy; (2) relative
abundance for a given time period; and/or (3) whether a species from
a genus was a marker at first or last occurrence. These taxa may have
originated at an earlier time or occur in both the Eocene and Oligocene,
but many published reports were used to obtain the best consensus of
information fromwhich to choose centric diatom genera. Diatom zona-
tion is an ongoing refinement process governed by first and last taxon
appearances, reconciling different zonation schemes, incomplete strati-
graphic sequences, andmatching diatom to calcareous nanofossil zones
(e.g., Barron and Baldauf, 1989) or magnetostratigraphy (e.g., Barron
and Baldauf, 1995). Opal deposition at different latitudes, regions and
oceans, and non-continuous cores of diatom-containing sediments are
considerations for matching diatom zones, and dissolution, bioturba-
tion, or diagenesis introducing biases in discerning the fossil diatom re-
cord (e.g., Harwood et al., 2007) further complicate the matching of
different zonation schemes. However, there is much agreement in dia-
tom zone correlations so that particular centric diatom genera can be
construed to be representative or important in either the Eocene or Ol-
igocene for the purposes of this study. For the entire formal probability
selection process, see the Appendix A.

The Eocene–Oligocene centric diatom genera are assembled from
published accounts in Hajόs (1976), Gombos (1983a, 1983b, 1987),
Gombos and Ciesielski (1983), Fenner (1984a, 1984b, 1985), Barron
(1985), Baldauf and Barron (1987), Saito et al. (1988), Baldauf and
Monjanel (1989), Fenner and Mikkelsen (1990), Fourtanier (1991),
Harwood and Maruyama (1992), Barron and Mahood (1993), Barron
and Baldauf (1995), Arney et al. (2003), Barron et al. (2004), Bohaty
et al. (2011), Oreshkina (2012), and Gladenkov (2012).

Representative genera chosen as the basis for 3D surfaces models
are: Actinoptychus C. G. Ehrenberg, typically found in the Early toMiddle
Eocene (Fenner, 1985); Arachnoidiscus Deane ex Pritchard, which is
considered to be robust to preservation issues (Fenner and Mikkelsen,
1990) and a representative of the Early Eocene (Fourtanier, 1991);
Asterolampra C. G. Ehrenberg, where Asterolampra marylandica
Ehrenberg is representative of the Middle to earliest Late Eocene
(Fenner, 1984a, 1984b, 1985; Fenner and Mikkelsen, 1990; Barron and
Baldauf, 1995) and the genus is prevalent (Fenner, 1985); Brightwellia
J. Ralfs in A. Pritchard, where Brightwellia hyperborea Grunow is repre-
sentative of the Middle Eocene (Gombos, 1983b; Fenner, 1985; Barron
and Baldauf, 1995; Oreshkina, 2012); Craspedodiscus C. G. Ehrenberg,
where Craspedodiscus oblongus (Greville) Grunow in A. Schmidt is rep-
resentative of the Early Eocene (Fenner, 1985; Fourtanier, 1991; Barron
and Baldauf, 1995).

Genera chosen for study representing the Oligocene are: Cestodiscus
Greville, where Cestodiscus reticulatus Fenner is important in the Early
Oligocene (Fenner, 1985; Barron and Baldauf, 1995; Barron et al.,
2004), with 50 to 80% of diatom assemblages being composed of
Cestodiscus species; Coscinodiscus C. G. Ehrenberg, where Coscinodiscus
excavatus Greville is important in the Early Oligocene (Fenner, 1985;
Barron and Baldauf, 1995; Barron et al., 2004) and many other species
are present throughout the Oligocene (Barron and Mahood, 1993);
Rocella Hanna, where Rocella vigilans Fenner (Oligocene) and Rocella
gelida (Mann) Bukry (Oligocene into the Miocene) (Gombos and
Ciesielski, 1983; Fenner, 1984a, 1984b, 1985; Baldauf and Barron,
1987; Baldauf and Monjanel, 1989; Barron and Baldauf, 1995) are im-
portant. Two additional genera are chosen to be used as Oligocene rep-
resentatives based on relative abundances even though these taxa may
have originated in the Upper Cretaceous (Harwood and Nikolaev,
1995). The genera are: Stellarima Hasle and Sims, the species of which
occur frequently (Baldauf and Barron, 1987; Saito et al., 1988), with
the genus containing long-ranging taxa (Scherer et al., 2000;
Witkowski and Harwood, 2011); Stictodiscus R. K. Greville, where spe-
cies are common, Stictodiscus kittonianusGreville is a keymarker species
(Baldauf and Barron, 1987; Barron and Mahood, 1993; Arney et al.,
2003), with the genus containing long-ranging taxa (Scherer et al.,
2000). Actinoptychus, Arachnoidiscus, and Stictodiscus are benthic,
Actinoptychus also has some planktonic species, and all other taxa are
planktonic (Baldauf and Barron, 1987). All taxon names were checked
using the following: G Dallas Hanna Database (Catalog of Diatom
Names, California Academy of Sciences, On-line Version updated 19
Sep. 2011. Compiled by Elisabeth Fourtanier and J. Patrick Kociolek.
Available online at http://research.calacademy.org/research/diatoms/
names/index.asp); ITIS (http://www.itis.gov); WoRMS (http://www.
marinespecies.org).

Diatom specimens are not well preserved over long periods of geo-
logic time (Barron and Baldauf, 1995; Harwood et al., 2007), because
opaline silica will dissolve in alkaline waters and warm temperatures
where the longer the diatom is exposed to seawater, the more likely it
is to dissolve. Opal deposition is subject to diagenesis (Barron and
Baldauf, 1995) and will accumulate in upwelling regions where there
has been high productivity (Fenner, 1985). Using a 3D surfacemodeling
technique enables control of the quantity (large numbers of specimens
can bemade), quality (no taphonomic alterations), and fidelity (models
capturing essential geometric characteristic features of morphology) of
model specimens. Time and expense of acquiring the appropriate spec-
imens for study is also minimized. Published micrographs on diatom
taxa are readily available via the Internet on which to base 3D surface
morphology models. Diatom biomechanical data is scant, and using
3D surface models to extrapolate values in concert with empirical data
enables functional complexity analysis.

The 3D surface morphologies for each diatom genus are constructed
as hybrid surface patterns based on light and/or scanning electron mi-
crographs of taxa as pictured in the following: Hajόs (1976)
(Arachnoidiscus Coscinodiscus), Gombos (1983a) (Asterolampra,
Brightwellia, Stellarima), Gombos and Ciesielski (1983) (Asterolampra,
Brightwellia, Coscinodiscus, Rocella, Stictodiscus), Gombos (1987)
(Brightwellia, Craspedodisus), Fenner (1984a, 1984b) (Cestodisdus,
Coscinodiscus), Fenner (1985) (Asterolampra, Brightwellia, Cestodiscus),
Barron (1985) (Rocella), Baldauf and Barron (1987) (Actinoptychus,
Asterolampra, Cestodiscus, Coscinodiscus, Stellarima, Stictodiscus),
Baldauf and Monjanel (1989) (Actinoptychus, Cestodiscus, Coscinodiscus,
Craspedodiscus), Round et al. (1990) (Actinoptychus, Arachnoidiscus,
Asterolampra, Brightwellia, Coscinodiscus, Craspedodiscus, Rocella,
Stellarima, Stictodiscus), Fourtanier (1991) (Craspedodiscus, Stellarima,
Stictodiscus), Harwood and Maruyama (1992) (Asterolampra,
Cestodiscus, Coscinodiscus, Rocella), Barron et al. (2004) (Cestodiscus,
Coscinodiscus), Bohaty et al. (2011) (Actinoptychus, Stictodiscus),
Oreshkina (2012) (Brightwellia), Gladenkov (2012) (Arachnoidiscus).

2.1. Morphological complexity

Measurement of morphological complexity is based on 3D surface
models (Pappas, 2005a, 2005b, 2008; Pappas and Miller, 2013) of cen-
tric diatom taxa listed above. A 3D surface is a proxy for the phenotype
of an organism (Pappas andMiller, 2013).When viewing a diatomusing
a compound light or scanning electron microscope, focusing up and
down allows one to see the 3D quality of the surface. That is, the heights
of processes reflect a lighter tint or shade than the depths of pores
which are darker. The shades and tints are qualities of the 3D surface
texture. Changes from one morphological surface structure to another
are changes in geometry of peaks, valleys and saddles over the entire
surface. On the 3D surface, a single point can be selected. A line drawn
through this point, touching only that point, is a slope of the surface.
Each point on the surface has a slope, and the slopes are calculated
from geometrically-created models of 3D diatom surfaces via the
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Fig. 1. Load vs. diameter after Hamm et al.'s (2003) data. Coscinodiscus granii is used as a
reference point from with respect to the best-fit curve. Taxa plotted from left to right
are: Fragilariopsis kerguelensis, Thalassiosira punctigera (50 μm), T. punctigera (100 μm),
and Coscinodiscus graniiwhere y=950.83e−0.018x and R2=0.9345.

70 J.L. Pappas / Marine Micropaleontology 122 (2016) 67–86
Pythagorean Theorem. These slopes are a numerical representation of
the morphological features of the 3D diatom surface.

To create themodels, parametric 3D equationsmake use of 3D coor-
dinates (x, y, z) via parameters (u, v) in a Euclidean space (e.g., Pappas
and Miller, 2013). Such equations enable the depiction of a 3D form
where any point on the surface is characterized by the parameters in
the context of the coordinates. In this way, one can move from point
to point on the 3D surface to see how the slopes change. The slopes on
the 3D surface are calculated via first partial derivatives of the paramet-
ric 3D equations and solved on an interval defining the boundary values
of those derivatives. The result is a Jacobian matrix (i.e., Jacobian) of
values of all the slopes on the 3D surface. A summary value of the ma-
trix, the Jacobian determinant, is calculated to represent morphological
complexity of the 3D surface. The higher the number calculated, the
higher the number of slopes on the surface, and the finer the texture
of the surface morphology, resulting in a more morphologically com-
plex 3D surface. For more details on methods of calculation, see the
Appendix A.

2.2. Functional complexity

Diatoms have amorphous opaline biogenic silica frustules as a result
of synthesis and polymerization of silaffins, long-chain polyamines, and
other proteins (e.g., frustulins) (Kröger and Poulsen, 2008). Diatom
frustules exhibit many patterns and ornamentation (Round et al.,
1990) and consist of nanoscale silica spheres (Hamm et al., 2003;
Hamm, 2007) arranged in closely packed layers of “honeycomb” sheets
which give the diatom frustule a lightweight appearance (Hamm,
2005). Different shaped holes in each layer overlapping each other
and providing a sort of scaffolding configuration strengthen the frustule
where the layers act together in concert to resist breakage (Hamm,
2005). Pores on the frustule are linedwith nanoscale amounts of mono-
saccharides such as glucuromannans (Tesson and Hildebrand, 2013).

The whole diatom is encased in a polysaccharidemucilage tube that
provides a shield in terms of predation, turgor pressure, cell division and
development, and photosynthesis (Round et al., 1990; Hamm et al.,
2003). Collisions with sand or other sedimentary particles, ice, and de-
bris may produce abrasions or deformation of the diatom frustule
(Hamm, 2005). Diatoms are able to withstand osmolality changes as a
result of changes in salinity (Round et al., 1990). Diatoms are a rich
source of food for organisms of all sizes (Round et al., 1990), including
microcrustaceans and those worms that use mandibles or teeth to
crack planktonic diatoms for ingestion of their contents (e.g., Hamm,
2005). Gastropods scrape diatoms from substrate, using a filing motion
with their radulae to induce stress to the diatom frustule (Hamm,2007).

The relationship between form and function is important in the
evolution of organisms (Wainwright, 2007). Many forms of organ-
isms have evolved for relatively few identifiable and redundant func-
tions (Adami et al., 2000; Adami, 2002). Measuring functional
complexity involves the deformation of a 3D surface as a continuum
in form and position when changing from an original to deformed
state. Deformation occurs in which the principal axes of strain are as-
sumed to remain parallel and the density and stiffness of the mate-
rials remain unchanged (Heinbockel, 2001).

Diatom frustules can undergo small deformations, exhibiting elastic-
ity as a result of the impact of forces (Hamm et al., 2003; Hamm, 2005).
From empirical tests, the more ornamented the surface, the more resis-
tant it is to breakage (Hammet al., 2003; Hamm, 2005, 2007). At themi-
crometer scale, diatom frustules undergo creep as the application of a
force to the frustule travels around, not through the nanospheres of sil-
ica (Hammet al., 2003). The behavior of layers of amorphous silica alter-
nating and infused with glucuromannans occurs approximately as a
linear elastic system where internal forces are minimal.

The degree to which stress and strain affect the diatom frustule sur-
face depends on the degree of ornamentation presentwhich is reflected
in the amount of surface area. Size of the diatom frustule affects surface
area aswell. Valve face surface area can be obtained frommeasurement
of the radius (or length of non-circular diatom shapes), and surface area
can be used in calculating stress and strain.

Published data from Hamm et al. (2003) are used for force values
and their relationship to particular taxa and their maximum diameter
or length. A plot of this relationship was devised, and a negative
exponential function is used as a least squares best-fit curve of y=
950.83e−0.018x with R2=0.9345 where Coscinodiscus granii Gough is
used as the reference taxon at which the function must converge
(Fig. 1). From Fig. 1, diatoms with heavier ornamented, rougher tex-
tured surfaces require more force to break than smoother surfaces
with fine features. That is, texture is 3D surface quality in terms of
roughness, graininess, smoothness, or any other descriptor about the
peaks, valleys and saddles that are geometrically characteristic of the
surface of the diatom. The surface area of a largest possible patch on
the diatom valve face is calculated via the results obtained for morpho-
logical complexity. Stress on the surface area is calculated using Hooke's
Law and is used as a measurement of functional complexity of the 3D
surface. For more details onmethods of calculation, see the Appendix A.

2.3. Multivariate complexity analysis

Matrices of morphological and functional complexity values, are ag-
gregated using external unfolding analysis (Coombs, 1964; Heiser,
1987) based on multidimensional scaling (MDS) (Heiser, 1987) to cre-
ate complexity gradients. The multivariate technique folds different
types of data onto their ideal points so that themap that results depicts
approximate distances among taxon complexities. Trade-offs among
taxa and their complexity attributes are calculated as transformed prox-
imities to produce a low dimensional complexity spatial map as com-
plexity gradients of taxa over time. Eocene and Oligocene taxa can be
combined as average proximities to assess morphological, functional
and total complexity. The resultant gradients will rank the morpholog-
ical, functional and total complexities as the change in complexity from
the Eocene to Oligocene as a vector of taxa over time. For more details,
see the Appendix A.

2.4. Magnitude and rate of complexity change

Using total complexity results as initial conditions, complexity
change can be simulated to occur over a long period of time culminating
in a steady-state system via a finite discrete Markov chain. At equilibri-
um the expectation is that probability values will attain the same value
across all taxa. If differences between initial andfinal states are detected,
then changes of increasing or decreasing probability values are an indi-
cation of increasing or decreasing complexity. The hypotheses to be
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tested are: H0: Complexity does not change over time; HA1: Complexity
increases over time; HA2: Complexity decreases over time.

Taxon complexity shifts occur as a finite number of probable transi-
tions. At each step, change in state (=taxon) is represented by theprob-
ability that the new state (=another taxon) occurs only with reference
to the just current state. The history of previous changes are not a factor
in a Markov process, and the expected outcome is a mean number of
steps to achieve each state where ultimately over a long period of
time, equilibrium (stationary probability distribution) is reached. In
the long run, magnitude of complexity change at equilibrium is mea-
sured as a distancemetric between initial and final states of theMarkov
chain. In the short run, mean first passage time as the magnitude of
complexity change is the time it takes to get from the initial complexity
state to each subsequent complexity state, culminating in arrival at the
equilibrium complexity state. The length of time is a measure of the
short term behavior between complexity states. The more transition
states needed to get from one state to another, the higher the mean
first passage time. The rate of complexity change can be determined
by a plot of the taxon rank-ordered total complexity gradient versus
total complexity transition states for each taxon. A least-squares best-
fit curve is determined, and the slope of the curve is the rate of total
complexity change. For more details, see the Appendix A.
Table 1
Correlation coefficient categories for evaluation of results from structural equationmodel-
ing (SEM).

Correlation Evolutionary trend

Positive correlation coefficient Driven Not random
Zero correlation coefficient No relation between

variables
No relation between
variables

Negative correlation coefficient Not driven Random
2.5. Complexity change over time: driven or random trend?

To determine the mode of complexity change over time, structural
equation modeling (SEM) (Pearl, 2000) is used. Originally used by
Wright (1921), SEM involves a group of inferentially related variables
in a graphical depiction of those relationships with respect to the causal
assumptions used to devise the model. Causal analysis is used to model
changing events and the actual and potential conditions under which
such events might occur (Pearl, 2009). In causal inference, confounding
bias as untested assumptions, unobserved factors, or non-experimental
data can be taken into account (Pearl, 2000, 2009). SEM can include in-
dependent variables becoming dependent variables as well as the re-
verse (Pearl, 2000) and be both a cause and an effect in the same
model (e.g., Bowen and Guo, 2012; Pearl, 2000).

Causal inference can be used to determine whether a driven or
random evolutionary trend is exhibited by centric diatom genera at
the EOT. Each type of trend can be characterized via probability values.
For a driven trend, centric diatom taxon complexity follows a time-
directed trajectory so that those taxa occurring in the Oligocene have
a complexity probability of 1, and those taxa occurring in the Eocene
have a complexity probability of 0. To represent a random trend,
Bernoulli sampling at the 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, and 0.95 levels is
used to randomly assign a probability of 0 or 1 to a given taxon. The pro-
portion of 0 s to 1 s for the entire taxon data set is dictated by the level of
Bernoulli sampling.

For input data, total complexity measurements are used in SEM.
The Jacobian determinant is used as morphological complexity, and
the Cauchy traction data extracted from Fig. 1 are used as non-
orthonormalized functional complexity measures for taxa. Each data
set is square root transformed to approximate a multivariate normal
distribution, and this rescaling insures that no category of data exerts
undue influence in SEM. Time is represented as categorical variables
so that Eocene is represented by 0 since it always precedes the Oligo-
cene which is represented by 1. To test for a driven or random trend
as potential outcomes, probabilities represent counterfactual condi-
tionals (Pearl, 2000) of complexity change over time.

Counterfactuals enable the consideration of potential outcomes
which can be characterized by “What if…” statements (Pearl, 2000)
alongside actual outcomes (Neyman, 1923; Rubin, 1974). “Driven” or
“Random” are counterfactual to each other in SEM. Counterfactuals are
conditional statements that can be focused into hypotheses to be tested
with respect to evolutionary trends:H0: Complexity change over time is
a random evolutionary trend; HA: Complexity change over time is a
driven evolutionary trend.

In SEM, the different types of variables are combined into a single
analysis and depicted as a path diagram representing the structural
part of the model. Such graphs can be models of predictions and inter-
ventions (Pearl, 2000). Predictions involve cause and direct effect. Inter-
ventions produce indirect effects, including insertion or deletion of
observations, action or observation exchange, insertion or deletion of
actions (Pearl, 2000), and act as confounding variables or paths
(e.g., Pearl, 2000, 2009). Connections representing predictions and in-
terventions are represented by unidirectional arrows as causes, and
bi-directed arrows representing associations (Pearl, 2000). Causal dia-
grams structured such that the effects are identifiable will have a mini-
mal number of path connections that are stable (Pearl, 2000). An acyclic
directed graph is a causal diagram that has mutually independent error
variances and is a well-structured model having the Markovian proper-
ty (Pearl, 2000).

Causal connections can be made between endogenous and exoge-
nous variables whichmay be observed or unobserved. Endogenous var-
iables are potential or realized effects and are influenced by other
variables. Exogenous variables not influenced by other variables such
as error variances that serve as background influences on the outcomes
of endogenous variables (Pearl, 2000). Observed variables are directly
measured and are also indicator variables. Unobserved variables and
their relationship to observed variables constitutes the measurement
part of SEM (e.g., Bowen and Guo, 2012).

In graphical SEM, vertices are drawn as rectangles representing en-
dogenous observed variables and ovals representing endogenous unob-
served variables. Exogenous unobserved variables represented by small
circles are attached at the base of a unidirectional arrow. Means, vari-
ances, regression weights, and intercepts can be assigned values as con-
straints in SEM or left to vary freely, depending on the minimality and
stability levels achieved in attempting to fit a structuralmodel usingmax-
imum likelihood or a least-squares approach (Bowen and Guo, 2012).
Constraints are used to produce a causal path diagram that enables the es-
timation of interventions and/or counterfactuals for predictions (Pearl,
2000). Interventions and counterfactuals can be represented either as
quantities via variables or actions as arrows (Pearl, 2000).

The counterfactual conditional, “Random,” representing random
outcome as an evolutionary trend is represented by the statement,
“Evolutionary trend would be random had complexity changes from
the Eocene to the Oligocene occurred by chance.” The counterfactual
“Driven” representingdriven outcomeas an evolutionary trend is repre-
sented by the statement, “Evolutionary trendwould be driven had com-
plexity changes from the Eocene to the Oligocene occurred in one
direction.” In each model, the probability values for “Driven” indicate
time-dependence where Eocene = 0 and Oligocene = 1 and for “Ran-
dom” indicate Bernoulli sampling, viz. 0 or 1 at levels from 0.1 to 0.95
that are assigned to each taxon. To decide if the null hypothesis should
be rejected, correlation coefficients calculated for causally inferred rela-
tionships among variableswill be evaluated according to Table 1, where
the largest correlation provides the decision on potential outcome. A
positive correlation coefficient indicates a driven and non-random
trend, a zero value indicates no relation between variables, and a nega-
tive value indicates a non-driven and random trend. Non-random and
non-driven trends may be fractal or chaotic and are not evaluated at



Fig. 2. Diatom 3D surface models of Actinoptychus, Arachnoidiscus, Craspedodiscus, Cestodiscus, Stellarima (top row), Asterolampra, Brightwellia, Coscinodiscus, Rocella, Stictodiscus (bottom row).
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this time. Only a driven or random trendwill be evaluated. Formore de-
tails on structural equation modeling, see the Appendix A.

3. Results

A total of 313 3D surface models were created for centric diatom
genera from the Eocene and Oligocene. Each genus was represented
by 31–33models; examples are depicted in Fig. 2. Jacobians were calcu-
lated for each model from which each matrix was made square asym-
metric using the cross product of the columns. Jacobian determinants
were calculated and averaged for each genus as measurement of mor-
phological complexity. Rank ordering the taxa indicates that Stictodiscus
is themostmorphologically complex followed by Actinoptychus, Rocella,
Asterolampra, Brightwellia, Coscinodiscus, Craspedodiscus, Cestodiscus,
Arachnoidiscus, and Stellarima, the least morphologically complex
(Fig. 3). The five most morphologically complex taxa have more irregu-
lar features on their valve faces than those with more regular valve face
features. Morphological complexity change over time is mixed.

Functional complexity was calculated for each 3D diatom surface
model as the Cauchy stress tensor using surface area of the valve face
and interpolated scalar values of the Cauchy traction vector from
Hamm et al.'s (2003) empirical load data (Fig. 4; least squares best-fit
curve y=950.62e−0.018x with R2=0.9982). The results were analyzed
using unidimensional external unfolding analysis (Fig. 5) where the so-
lution was non-degenerate, having non-zero Kruskal's and Young's
Fig. 3.Morphological complexity based on the average Jacobian determinant for eachdiatom3D
from Stellarima to Stictodiscus, respectively, representing the Eocene or Oligocene.
STRESS values, a low De Sarbo's Index (1.2), and a Shepard's Index of
72% (Table 2 and Fig. 6) and final coordinates were averaged for each
genus. Rank ordering indicated that highest functional complexity oc-
curs with Asterolampra, followed by Arachnoidiscus, Rocella, and
Stictodiscus. These taxa exhibit multilayered structures on their valve
face surfaces and have an irregularity to their surface features. Next in
line going from more to less functional complexity are Cestodiscus,
Coscinodiscus, Craspedodiscus and Stellarima (Fig. 5). These genera
have a more regular, repeating cross-hatching valve face surface, with
finer cross-hatching occurring frommore to less complex forms, respec-
tively. The last two genera in line have very different valve face surfaces,
with Actinoptychushaving large smooth,flatter sections andBrightwellia
having a ring of holes surrounded by finely textured regular features.
For functional complexity, four of the Oligocene taxa occur near the
head of the time arrow.

Total complexity was determined as the aggregation of morpholog-
ical and functional complexity values using external unfolding analysis.
The solution was non-degenerate, having non-zero Kruskal's and
Young's STRESS values, a low De Sarbo's Index (2.0), and a Shepard's
Index of 74% (Table 3 and Fig. 7), and unidimensional final proximities
were averaged for each diatomgenus. Rank ordering of total complexity
values follows a gradient similar to functional complexity with two ex-
ceptions (Fig. 8).Brightwellia and Actinoptychus trade places so that total
complexity is least for Actinoptychus (Fig. 8). On a taxon-by-taxon basis,
functional complexity contributes to total complexity change over time.
surfacemodel. Arrowpoints in thedirection of least tomostmorphologically complex taxa



Fig. 4. Combined force data with adjusted values for diatom 3D surface models. The least
squares best-fit curve y=950.62e−0.018x with R2=0.9982 is based on the original curve
(Fig. 1) using Coscinodiscus granii as the reference point (130 μm diameter) to convert
patch surface areas to diameters based on the face of a cylinder with height = 1.
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Taxa were combined into an Eocene or Oligocene time bin for mor-
phological, functional and total complexity using averaged proximities
from external unfolding analysis. The percentages of the amount of con-
tribution to each type complexity indicate that the Oligocene bin contains
more complex taxa combined of which morphological complexity
Fig. 5. Functional complexity based on Cauchy stress tensor values for each diatom genus from
direction of least functionally complex, Brightwellia, to most functionally complex, Asterolampr

Table 2
Diagnostics for 1D and 2D external unfolding analysis of functional complexity values.

Diagnostic

Iterations
Penalized stress

Stress part
Penalty part

Badness of fit Normalized stress
Kruskal's Stress-I
Kruskal's Stress-II
Young's S-Stress-I
Young's S-Stress-II

Goodness of fit Dispersion accounted for
Variance accounted for
Recovered preference orders
Spearman's Rho
Kendall's Tau-b

Variation coefficients Variation proximities
Variation transformed proximities
Variation distances

Degeneracy indices Sum-of-squares of DeSarbo's intermixedness ind
Shepard's rough non-degeneracy index
contributes positively to this result (Fig. 9). Functional complexity indi-
cates the opposite by contributing negatively to the Oligocene bin (Fig. 9).

3.1. Magnitude and rate of complexity change

Using the results from external unfolding total complexity analysis,
an initial probability transition probability matrix was calculated
(Table 4) as input to produce a finite discrete Markov chain of ten cen-
tric diatom genera from the Eocene or Oligocene (Fig. 10). The Markov
chain is acyclic with no connection between Actinoptychus at the start
and Asterolampra at the end (Fig. 10). The Markov chain is irreducible,
transient, non-absorbing, and reversible, and as all states are aperiodic
and positive recurrent, the Markov chain is ergodic. As a result and
using the Chapman–Kolmogorov equation relating n-transition proba-
bilities among all taxa, the stationary probability states are equivalent
to the limiting probability states as the values of the Markov chain at
equilibrium (Table 5).

The stationary probability distribution indicates that transition from
state to state as taxon shifts is exponential (Fig. 11). Equilibrium is
achieved and verified by the normalized left eigenvector elements
that sums to one for the eigenvalue equal to one. From the stationary
distribution, initial complexity state at Actinoptychus is 0.072. Subse-
quently, the complexity transition values range from 0.073 for
Brightwellia to 0.08 for Stellarima, Craspedodiscus, and Coscinodiscus to
approximately 0.1 for Cestodiscus, Stictodiscus, and Rocella to 0.13 for
the average final proximities from unidimensional external unfolding. Arrow points in the
a, representing the Eocene or Oligocene.

1D PREFSCAL
unfolding

2D PREFSCAL
unfolding

5000 5000
.659788856752 .522988312586

2.276719864819 .019482682569
7.856230504374 14.038968922059
.417915502470 .000379565312
.646463844673 .019482435988

2.485296272389 .037385585377
.742137743428 .020417442640
.878613655667 .027157055296
.582084497530 .999620434688
.131812933801 .998859015639
.678548607942 .985993204524
.313899873360 .973227315183
.255336290642 .948715666859

2.468256953469 2.468256953469
1.008911927748 .736608150986
.332685604713 .720682107040

ices 1.523355677308 1.236062642009
.722133475328 .727192048278



Fig. 6. 2D external unfolding non-degenerate functional complexity space. See Table 2 for diagnostic measures.
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Arachnoidiscus to 0.16 for Asterolampra. Overall, approximately twice
as much time is spent in Arachnoidiscus and Asterolampra states as
initial state Actinoptychus. At equilibrium, the more complex taxa,
Arachnoidiscus and Asterolampra persist longer than the less complex
taxon Actinoptychus. When comparing Oligocene taxa to Eocene
taxa, there is an increase in complexity of approximately 1.1 to 1.5
times the initial state of Actinoptychus (Fig. 11, Table 6).

The distance between initial transition and final stationary (limiting)
probability matrices is calculated as a Frobenius norm of 0.019053. The
Table 3
Diagnostics for 1D and 2D external unfolding analysis of total complexity values.

Diagnostic 1D PREFSCAL
unfolding

2D PREFSCAL
unfolding

Iterations 5000 5000
Penalized stress 2.605252264042 .351576153530

Stress part .637575933383 .009468416789
Penalty part 10.645538835326 13.054536411464

Badness of fit Normalized stress .388466827967 .000089642742
Kruskal's Stress-I .623271071017 .009467985096
Kruskal's Stress-II 2.578092032429 .016322959925
Young's
S-Stress-I

.715364037772 .009229561479

Young's
S-Stress-II

.868877463194 .011255972417

Goodness of fit Dispersion
accounted for

.611533172033 .999910357258

Variance
accounted for

.123482129344 .999748753499

Recovered
preference orders

.693283127948 .946569298646

Spearman's Rho .364306944583 .943470778234
Kendall's Tau-b .316687454314 .906600015476

Variation
coefficients

Variation
proximities

2.749852632077 2.749852632077

Variation
transformed
proximities

.939219618337 .846069714793

Variation
distances

.301793435185 .829860339418

Degeneracy
indices

Sum-of-Squares
of DeSarbo's
intermixedness
indices

1.943820752045 2.022062731149

Shepard's rough
non-degeneracy
index

.720056798012 .738516151935
small positive change indicates an increase in total complexity that oc-
curred in the long run for centric diatom genera across the EOT.

Mean first passage time decreases from least to most complex
taxa (Fig. 12). More transitions are necessary, and therefore more
time is used to get from the initial state, Actinoptychus, to two Eocene
taxa—Brightwellia and Craspedodiscus—and three Oligocene
taxa—Stellarima, Coscinodiscus, and Cestodiscus—in contrast to the
remaining taxa. The shortest transition period occurs from initial
state Actinoptychus to more complex states, Stictodiscus, Rocella,
Arachnoidiscus and Asterolampra (Fig. 12). Transitioning from less
to another less complex taxon is more time consuming than
transitioning from less to more complex taxa. Taxon rank-ordered
total complexity vs. total complexity transition states is depicted in
Fig. 13. Least squares best-fit curve is ytrans=1.4081x+85.087
(R2=0.9543), with slope = 1.4081 as the rate of complexity change
over time.

From initial to final state at equilibrium, total complexity increases
over time in the long run via discrete finite Markov chain analysis.
More complex centric diatom genera are more likely to occur in the
short run via mean first passage time, therefore complexity increases.
From these analyses, H0 and HA2 are rejected.

3.2. Complexity change over time: driven or random trend?

A sample size of 313 3D surface models representing taxa from 10
centric diatom genera were used in SEM to determine mode of com-
plexity trend. The theoretical causal structure of the model is character-
ized by an evolutionary trend as an effect of complexity change which
occurs as an effect over time. Unweighted least squares was used to cal-
culate the discrepancy (χ2) function. Of the 100+differentmodels that
were created, 7 admissiblemodels described the theoretical structure of
the relationship of the variables had a stability index between 0 and 1.
Minimality as minimum discrepancy (CMIN) yielded a best-fit model
with lowest root mean square residual (RMR) and highest goodness-
of-fit (GFI; AGFI; PGFI) statistics, reflecting a less penalized solution
that is more parsimonious than others.

The best-fit structural model resulted in a path diagram of a recur-
sive directed acyclic graph (Markovian) based on unweighted least
squares representing the causal inference model (Fig. 14). Minimality
and stability were achieved, and a permutation test of 500 iterations
yielded p = 0.002. Diagnostics indicated that Bernoulli sampling =
0.5 was the best-fit model (Table 6). All models tested were



Fig. 7. 2D external unfolding non-degenerate total complexity space. See Table 3 for diagnostic measures.
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unconstrained with regard to arrows between unobserved and ob-
served endogenous variables.

The best-fit model (Table 6) resulted in 18 variables of 6 observed
and 12 unobserved variables of which nine were endogenous and
nine were exogenous (Fig. 14). There were 26 parameters where 17
had fixed weights and nine error variances were set equal to one as
input to constrain the model to be linear among unobserved endoge-
nous variables. Forty-two sample moments were calculated with 6 un-
constrained estimated parameters and 36 degrees of freedom.

Regression weights as standardized estimates are labeled on each
arrow in the path diagram (Fig. 15) and are an indicator of the stability
of the model. Unobserved endogenous variables were highly correlated
with direct effects from Time to Complexity (0.707) and from Complex-
ity to Evolutionary Trend (0.816). Predictors explained the variance at
50% for Complexity and 66.7% for Evolutionary Trend (Fig. 15). Time
was correlated with indirect effects on Evolutionary Trend (0.577). Var-
iancewas not predicted for Time (Fig. 15). Using Table 1, an overall evo-
lutionary trend can be causally inferred from these results.

Regression weights between observed and unobserved endogenous
variables from the path diagram indicated direct effects where Com-
plexity and Functional complexity were highly positively correlated
(0.965), while Complexity was highly negatively correlated with Mor-
phological complexity (−0.831). Time indirectly was highly correlated
with Functional complexity (0.682) and highly negatively correlated
Fig. 8. Total complexity for each diatom genus from the average final proximities from uni
Actinoptychus, to most complex taxon, Asterolampra, representing the Eocene or Oligocene.
withMorphological complexity (−0.588). Predictors explained the var-
iance at 69% for Morphological complexity and 93.1% for Functional
complexity. Using Table 1, these results indicate that morphological
and functional complexity are causally opposing evolutionary trends.

Eocene had a low negative correlation (−0.198) and Oligocene had
a low positive correlation (0.113) with Time (Fig. 15). Driven had a low
positive correlation with a small direct effect on Evolutionary Trend
(0.099), while Random had a correlation near zero (0.012) and a negli-
gible direct effect. Predictors for Eocene, Oligocene, Driven, and Random
were in the range of 0 to 4%. Indirect effects for Driven on Time and
Complexitywere negligible (0.057 and 0.081, respectively) and for Ran-
dom were near zero (0.007 and 0.010, respectively). Using Table 1, an
overall evolutionary trend as directly driven cannot be causally inferred.

Residual covariances among observed endogenous variables were
[−1, 1] and are sufficiently small so that implied correlations of all var-
iables are approximately equal to actual correlations expected of the
input variables indicating the minimality of themodel. Implied correla-
tions showed that Evolutionary Trend was highly positively correlated
with Functional complexity (0.788) and highly negatively correlated
with Morphological complexity (−0.679). Morphological complexity
was highly negatively correlated to Functional complexity (−0.802)
reinforcing the earlier result regarding regression weights. Observed
endogenous variables implied correlations with each other had negligi-
ble values ranging from −0.14 to 0.12. Using Table 1, implied
dimensional external unfolding. Arrow points in the direction of least complex taxon,



Fig. 9. Comparison of combined taxa Eocene and Oligocene bins for morphological, func-
tional and total complexity.
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correlations indicate morphological and functional complexity as caus-
ally inferred opposing evolutionary trends, reinforcing earlier results.

Subtracting the residual covariance matrix from the implied
covariance matrix results in the sample matrix. From this, the sample
correlation matrix indicated that Morphological and Functional com-
plexity were highly negatively correlated (−0.838), Oligocene and
Drivenwere highly positively correlated (1.000), and Eocenewas highly
negatively correlated (−0.818) with Oligocene and Driven. Functional
complexitywas positively correlated (0.205)whileMorphological com-
plexity had a smaller positive correlationwith Driven (0.085). Function-
al complexity was negatively correlated with Eocene (−0.356) and
positively correlated with Oligocene (0.202). Morphological complexity
had a correlation near zero with Eocene (0.001) and small positive cor-
relation with Oligocene (0.085). Correlations of Morphological com-
plexity, Functional complexity, Eocene, Oligocene, and Driven with
Random were very small values (−0.068, 0.011, 0.073, −0.022,
−0.022, respectively). Using Table 1, sample correlations indicate mor-
phological and functional complexity to be inferred as weakly driven
evolutionary trends, and the null hypothesis can be rejected.

4. Discussion

Initially, 3D surfaces of centric diatom genera were measured deter-
ministically to assess morphological, functional, and total complexity.
As such, parts did not have to be defined, and there was no need to
refer to particular descriptors, negation terms or qualifiers. Rather
than relying on quantity via counting, quality of 3D surfacemorpholog-
ical features was used tomeasure complexity and provide a natural link
between formand function. Itwas shown that complexity ismeasurable
as a multivariate quantity. Each type of complexity is multivariable, en-
ablingmultiplemeasurements to be consolidated into specific complex-
ity values in determining n-dimensional complexity.

Measurement of the magnitude and mode of complexity as an evo-
lutionary trend was accomplished within probability (Markovian)
frameworks. Finding complexity to be a dynamical, ergodic system
could be used as predictive values to enable projection of trends beyond
the results given. Given the results of this study, for example, increasing
total complexity and functional complexity (unlikemorphological com-
plexity) as a driven trend may be projected to be true throughout the
Cenozoic to the recent. Probabilistic frameworks presented here could
be used with additional taxa to test whether the trends are maintained,
and if not, what hypotheses may emerge as relevant for testing.

Additional diatom taxa could be used in an extension of the current
study. From diatom biostratigraphy of the Late Oligocene to the
Quaternary, Cestodiscus and Coscinodiscus are prevalent alongwithmor-
phologically similar Actinocyclus Ehrenberg (Barron, 1985), and
Asteromphalus Ehrenberg is present (Barron, 1985) which is morpho-
logically similar to Asterolampra. The very large genus of Thalassiosira
P. T. Cleve is well represented, especially in the Pliocene onward



Fig. 10. Finite discrete Markov chain of centric diatom genera with arrows representing conditional probabilities from the limiting probability matrix. Each probability represents the
chance that a taxon will become more complex than the preceding taxon in the chain. All taxa in the Markov chain are self-looping, indicating ergodicity.
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(Barron, 1985), and somewhat similar in valve face geometric texture to
Stellarima.

Throughout the Cenozoic into the Quaternary, other stratigraphically
important taxa (e.g., Barron et al., 2015), both centric and pennate, in-
clude Hemiaulus Ehrenberg, Clavularia Greville, Cavitatus jouseana
(Sheshukova-Poretskaya) Williams, Triceratium Ehrenberg, Rhizosolenia
T. Brightwell, Nitzschia Hassall, Rouxia J. Brun and Héribaud-Joseph in
Héribaud (Fenner, 1985; Barron, 1982/1983; Barron, 1985). The expecta-
tion is that functional complexity of the pennate taxa would be similar to
Fragilariopsis kerguelensis with their position nearby on the load curve
(Fig. 1). For Triceratium, the expectation of functional complexity is a po-
sition above Thalassiosira and below the pennates on the load curve
(Fig. 1). From the result of this study, inferences about any diatom
taxon position could be made, and whether any of these taxa would bol-
ster or detract from the results of the current study would need to be
tested.

Taxa such as Hemiaulus (Eocene) and Rhizosolenia (Miocene) have
protrusions whichmay be construed to bemorphologically complex at-
tributes of frustule structure. As single cells, Rhizosolenia is lightly silici-
fied compared to the more robustly silicified Hemiaulus (Round et al.,
1990) whichmay be viewed as more functionally complex. Protrusions
are primarily used to form chains, andwith both taxa, these protrusions
are easily broken (Round et al., 1990). Predation resistance is unlikely to
be functionally significant for these taxa, and therefore functional com-
plexitywould require a differentmeasurewith respect to ability to form
colonies.
Complexity change was determined by looking at gradients of taxa
per time as well as time bins of combined taxa. On a taxon-by-taxon
basis, functional complexity was more important in total complexity
(Figs. 5 and 8). By contrast, when looking at combined taxa in time
bins, morphological complexity contributed more to total complexity
(Fig. 9). Functional and morphological complexity occur in opposing
ways, and these results were supported by causal inference analysis
(Fig. 15). Thatmorphological and functional complexitymay exhibit op-
posing trends has been determined in previous studies (e.g., McShea
and Hordijk, 2013).

Functional complexity was found to be a driver of increase in com-
plexity change as an evolutionary trend. An increase in functional com-
plexity may induce a decrease in environments selecting for increasing
morphological complexity (Auerbach and Bongard, 2014). Morphologi-
cal complexity may not increase in complex environments if the cost is
too high (Auerbach and Bongard, 2014), and higher morphological
complexity is not necessarily equivalent to evolutionary complexity
and success (McNamara, 2006).

Many surface morphologies can have the same functionality
(Wainwright, 2007). Fine details and attributes of phenotype in combi-
nation determine functional properties which are related to the under-
lying design or body plan of an organism. An increase in structural
duplication and the greater number of elements in a given form, the
more morphological dimensions are required to account for that form
(Wainwright, 2007). Redundancy in design elements enables the ex-
pression of different functional capabilities for each element, resulting
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Fig. 11. Stationary probability distribution for the total complexity finite discrete Markov
chain.
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in functional separation and the potential for novelties in organismal
form (Alfaro et al., 2004;Wainwright, 2007). Highly different morphol-
ogies can produce the same functionality (Alfaro et al., 2004;
Wainwright, 2007) which facilitates phenotypic diversification
(Wainwright, 2007). Centric diatoms from the Eocene and Oligocene
may be exhibiting this pattern.

Diatommorphological changes have been closely linked to environ-
mental changes (Round et al., 1990), and distributional patterns were
affected by environmental changes during the EOT (Jordan and Stickley,
2010; Gladenkov, 2014). In the Early Cretaceous, diatoms were more
environmentally tolerant, hadmore complicated and variable life cycles
(Harwood et al., 2007), and by the Early Eocene were cosmopolitanly
distributed (Fenner, 1985; Harwood et al., 2007). Oceanic circulation
was influenced by equatorial patternswith relatively warm bottomwa-
ters and broad upwelling events with locally high biogenic silica depo-
sition in upwelling regions (Barron and Baldauf, 1989; Baldauf and
Barron, 1990). In the Middle Eocene, species with robust, heavily silici-
fied frustules were present, and widespread biogenic silica deposition
occurred because of an intensive increase in oceanic circulation via in-
creased tectonic activity (Baldauf and Barron, 1990). As a result, surface
water productivity increased with increasing coastal and equatorial up-
welling activity (Barron and Baldauf, 1989; Baldauf and Barron, 1990),
and diatom assemblages generally became more provincial (Fenner,
1985). By the late Middle Eocene, polar cooling accelerated, latitudinal
thermal gradients became more pronounced, and increased stratifica-
tion occurred (Barron and Baldauf, 1989; Baldauf and Barron, 1990;
Zachos et al., 2008).

Continued cooling occurred in the earliest Oligocene, and biogenic
silica deposits increased in the Southern Oceans and decreased in the
middle latitudes (Barron and Baldauf, 1989; Baldauf and Barron,
1990). In the low latitudes, upwelling events became well established,
oceanic circulation continued to intensify, and diatoms continued to
be provincial (Fenner, 1985). In the Late Oligocene, biogenic silica depo-
sition increased in some areas, but sediments in the equatorial Pacific
were devoid of diatom frustules (Barron and Baldauf, 1989). An increase
in taxa with finely silicified frustules emerged as heavily silicified forms
decreased (Fenner, 1985; Barron and Baldauf, 1989) as biogenic silica
deposition changed inmagnitude from the Atlantic to Pacific and South-
ern Oceans (Barron and Baldauf, 1989).

Turbulence in the oceanic water column for brief periods spurred di-
atomproductivity to ensure that diatoms dominated the Cenozoic (Katz
et al., 2004). Rapid evolutionary response (Jordan and Stickley, 2010)
via selectivity led to the rise and success of diatoms (Katz et al., 2004).
Episodic nutrient availability was capitalized on by diatoms because of
their ability to acquire and store resources (Katz et al., 2004). During



Table 6
Best-fit diagnostics for SEM models. All models are unconstrained with Bernoulli sampling used to assign probability 0 or 1 to each taxon. Best-fit parameters measured are as follows:
NPAR is the number of estimated parameters, CMIN is the minimum discrepancy, RMR is root mean residual, GFI is goodness-of-fit, AGFI is adjusted goodness-of-fit, and PGFI is parsimo-
nious goodness-of-fit. Best-fit model used for analysis is Bernoulli sampling = 0.5.

Model NPAR CMIN RMR GFI AGFI PGFI

Bernoulli sampling = 0.1 6 508.457 .375 .988 .987 .847
Bernoulli sampling = 0.25 6 489.740 .367 .989 .987 .848
Bernoulli sampling = 0.4 6 471.892 .359 .989 .988 .848
Bernoulli sampling = 0.5 6 468.681 .358 .989 .988 .848
Bernoulli sampling = 0.6 6 470.861 .359 .989 .988 .848
Bernoulli sampling = 0.75 6 483.943 .364 .989 .987 .848
Bernoulli sampling = 0.95 6 522.560 .380 .988 .986 .847
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the Eocene and Oligocene, major diatom turnover events occurred to
change the composition of assemblages in response to changing cli-
mates (Barron and Baldauf, 1989; Baldauf and Barron, 1990), sea levels,
ice advancement, and atmospheric CO2 levels (Jordan and Stickley,
2010). Diatoms prospered in shallow waters on continental margins
and have changed the structure of marine food webs (Katz et al., 2004).

From the current study, the composition of diatom taxa that oc-
curred throughout the Eocene and Oligocene changed in complexity.
Actinoptychus, a morphologically complex genus (Fig. 3), occurred in
the Late Cretaceous into the Eocene (Baldauf and Barron, 1987;
Harwood and Nikolaev, 1995). Along with the less morphologically
complex Craspedodiscus (Fig. 3) in the Early to Middle Eocene, morpho-
logically complex Asterolampra and Brightwellia (Fig. 3) were prevalent
(Fenner, 1985). Arachnoidiscus, a morphologically less complex genus
having a regular surface pattern (Fig. 3), was abundant as well during
this time (Fenner and Mikkelsen, 1990). By the end of the Middle Eo-
cene, the less common species of Craspedodiscus disappeared, and by
the Middle to Late Eocene, although Asterolampra, Brightwellia, and
Craspedodiscus still dominated, many common and typical Eocene taxa
disappeared in theMiddle Oligocene (Fenner, 1985). In the Early Oligo-
cene, cosmopolitan species were still present, and at the Eocene–Oligo-
cene boundary, the less complex genus, Cestodiscus (Fig. 3) had species
that became endemics. Cosmopolitan species of the morphologically
less complex genus, Coscinodiscus, and the more complex genus Rocella
(Fig. 3) first appear and became common during the Middle Oligocene
(Fenner, 1985).

With increasing cooling and oceanic turbulence along with
increased tectonic activity producing increases in productivity and di-
versification from the Eocene to the Oligocene, environmental and cli-
mate change resulted in more complex ecological habitats for diatoms
(Katz et al., 2004; Jordan and Stickley, 2010). Environmental specificity
and adaptability of diatoms (Harwood et al., 2007) may indicate
ecospace differentiation and expansion to accommodate the change
Fig. 12. Mean first passage time from the initial state, Actinoptychus, to each succeeding
state (=taxon) in the process of changing complexity. Each successive state has fewer
transitions than the preceding state.
from cosmopolitan tomore provincial and endemic taxa. Taking advan-
tage of the expansion of ecospace induces an increase in ecological com-
plexity (Knoll and Bambach, 2000) which may be a response to
changing latitudinal, bathymetric, hydrodynamic, and temperature gra-
dients. The cost of even slightly increasing complexity may be accept-
ably borne in terms of ability to acquire nutrients and resources in
changing environmental and climate conditions. Such costs may induce
the adaptation of specific diatom taxa to specialized environments.

Selectivity of predation resistance is evident in centric diatom mor-
phologies (Smetacek, 2001). Selecting for predation resistance should
cause more complex morphologies to evolve than what might happen
by chance (Auerbach and Bongard, 2014). However, mechanical com-
plexity decreases in environments that select for increasingmorpholog-
ical complexity (Auerbach and Bongard, 2014) so that morphological
complexity may decrease as a response to increasing functional com-
plexity (McShea and Hordijk, 2013). This may be inferred with centric
diatom genera from the Eocene and Oligocene by the current study.
By the timeof the turnover event at the EOT,Brightwelliabecameextinct
as did many species of Actinoptychus, Arachnoidiscus, Asterolampra, and
Craspedodiscus, so that these Eocene taxa were unavailable as food for
predators. Oligocene taxa Rocella, Stictodiscus and many species of
Cestodiscus, and Stellarima became extinct as another turnover event
from theMiddle to LateMiocene occurredwith the proliferation of pen-
nate diatom taxa (Strelnikova, 1990). The net result is a loss of morpho-
logically complex centric taxa over time, yet more predation resistance
is necessary because increasing ecological complexity provided an
Fig. 13. Plot of taxon rank-ordered total complexity vs. total complexity transition states
from mean first passage times from discrete finite Markov chain. Least squares best-fit
curve is ytrans=1.4081x+85.087 with R2=0.9543; the slope = 1.4081 and is the rate of
complexity change over time.



Fig. 14. SEM of labeled causal inference diagram for centric diatom genera and evolutionary trend of complexity. Path from unobserved endogenous variables Time to Complexity to Evo-
lutionary Trend is constrained to be linear (regressionweights=1). All exogenous variables are set to error variances=1 and constrained to be linearly related to unobservedendogenous
variables. Observed endogenous variables are unconstrained. Driven and Random are probability vectors that are counterfactual to each other.

Fig. 15. SEM of resultant causal inference diagram for centric diatom genera and evolutionary trend of complexity. Standardized implied and sample correlation coefficients for uncon-
strained observed and standardized implied correlation coefficients for unobserved endogenous variables.
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Table 7
‡Terms with parameters and coefficients of the z-equation for each centric diatom genus.
For all parameters,u ,v∈[0,2π].

Taxon z-Equation†

Actinoptychus γsin3u−mcos tvsinςucosωusinΞv± cos 3v
+ cos(10u−3)−kcosΨusinρu

Arachnoidiscus ψ ; cosβv4B
n

; sin
; cos

o
tu4

Asterolampra ε sin 7v3 s sin 0.37u3 mcos1.5u + μ cos 2.7u2 κ sin 4.2u2

+ Γ sin 1.9u2 N cos Λu2 + J sin lu3 Q sin βu3 1.7cos1.5u
Brightwellia sinΛu�2sinKu22sin14ul cos tu 3sinξvψ− cosςu cosωv
Cestodiscus 3sin ϕu5− cosςu cosωv
Coscinodiscus ςsin ϕuΩ− cosςu cosωv
Craspedodiscus ψsin ϕuΩ−Λcosςu cosωv
Rocella 2cos�v3NcosqukWsinNv33cosβv3sin0.1u123sinMu3cosCv
Stellarima Ω ; costuk− ; cosςu ; cosωvþ ; cosεuτ ; sinψ

n v
u

o
Stictodiscus sinΛuϑcosςuτ sinξv cosωvW sinmu� cosρu

‡ See text for x- and y-equations.
† Coefficients: 0 ≤ ε ≤ 2, 0 ≤ β ≤ 4.3, 0.1 ≤ μ ≤ 0.4, 0.1 ≤ κ ≤ 1, 0.1 ≤ q ≤ 2, 0.2 ≤m ≤ 1.6, 0.2 ≤

Λ ≤ 4, 0.4 ≤ Γ ≤ 0.7, 0.5 ≤ γ ≤ 2, 0.6 ≤ ϕ ≤ 1, 0.7 ≤ J ≤ 2.5, 0.7 ≤ L ≤ 8, 1 ≤ τ ≤ 2, 1 ≤W ≤ 3, 1 ≤ ψ ≤
4.1, 1 ≤ t,Ω ≤ 5, 1 ≤ � ≤ 6, 1 ≤ k ≤ 8, 1 ≤M ≤ 10.3, 2 ≤ l ≤ 3, 2 ≤ s ≤ 4, 2 ≤ C ≤ 10, 2.7 ≤N ≤ 10, 8 ≤
K ≤ 10, 8 ≤ ξ ≤ 31, 20 ≤Ψ ≤ 60, 30 ≤ ς ≤ 590, 43 ≤ ρ ≤ 85, 50 ≤ ω ≤ 1050.
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avenue for increasing abundances of Cenozoic marine invertebrates,
which in turn induced large changes in marine food webs (Katz et al.,
2004).

Limiting nutrient conditions in the oceans have changed the de-
gree of silicification of diatom frustules but has not prevented diatom
diversification (Harwood et al., 2007; Jordan and Stickley, 2010). In
general, diatom genera richness is highly correlated with Cenozoic
invertebrate richness (Katz et al., 2004). Increased quality and
quantity of primary producers during the Cenozoic has influenced
marine invertebrate evolution (Katz et al., 2004). Coevolution of di-
atom taxa and some predators may be evidence of a driven response
(Smetacek, 2001; Michels et al., 2012). For some copepods, silica
coating on their chitinous teeth is a coevolved trait with diatoms
(Katz et al., 2004; Michels et al., 2012). Few studies exist on preda-
tion resistance at the scale of diatoms, and invertebrate grazers are
inferred to be species specific in terms of head size relative to diatom
size (Tall et al., 2006a, 2006b).

For centric diatoms across the EOT, all have differing morphologies
yet all have some degree of predation resistance (Hamm, 2005). Plank-
ton evolution is generally driven by predator–prey interactions rather
than competition (Smetacek, 2001). The variety of morphologies of
the diatom frustule is a reflection of predation resistance as a unifying
functionality rather than competitive advantage among diatom taxa
(Smetacek, 2001). However, as diatoms inhabit more specific habitats
(e.g., Round et al., 1990; Lowe, 2011) over the long term, this situation
may place limitations on the kinds of diatoms that are available to pred-
ators in a given area. Nutritional value of protein, lipids and carbohy-
drates vary in different diatom taxa (Lowe, 2011). Predators may
occupy specific habitats which may restrict their access to highly nutri-
tious diatoms (Lowe, 2011). Some diatomsmay avoid predators by ver-
tically descending in the water column at night to acquire nutrients,
then vertically ascending during daylight to photosynthesize (Katz
et al., 2004). All of these factors could put selective pressure on
predators.

Rapid evolution of diatoms during the Eocene and Oligocene oc-
curred in response to environmental and climate conditions, increas-
ing diatom environmental specificity and the proliferation of
endemic and provincial taxa. Selecting for predation resistance
might occur as a constraint on the kinds of predators adapted to
the specific habitats now occupied by diatoms during this time.
Functional efficiency (McShea and Hordijk, 2013) may be more a re-
sult of changing ecological complexity rather than morphological
complexity. Ecological complexity over the long term increases as a
directional pattern, and functional complexity should do so as well
(Knoll and Bambach, 2000). Morphological complexity changes in
response to ecological complexity, yet need not be increasing or
driven. Morphological and functional complexity change may re-
spond in opposing, unconnected ways to ecological complexity.

5. Conclusions

Using 3D surface models of centric diatom genera, morphological
and functional complexity was analyzed as multivariate quantities.
Markov chain analysis enabled a probabilistic framework in which to
measure multivariate total complexity as increasing across the EOT.
Functional complexity on a taxon-by-taxon basis contributed to in-
creasing total complexity. Combined taxa in Eocene or Oligocene bins
indicated that morphological complexity contributed to increasing
total complexity. Functional complexity does not need to increase
with increasingly complex morphologies or vice versa. From causal in-
ference analysis, morphological and functional complexity exhibited
weakly driven evolutionary trends. Changes in environmental and cli-
mate conditions across the EOT may have induced predation resistance
as an ecological response differently when looking at morphological in
contrast to functional complexity as macroevolutionary patterns over
time.
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Appendix A

A.1. Methods

A.1.1. Selection procedure of taxa for inclusion in complexity analysis
I define all possible surface morphological patterns to be the pool

from which to select samples, s. Prior knowledge, Z, consists of types
of n-surface morphological patterns for Coscinodiscales, Stictodiscales,
Arachnoidiscales, and Asterolamprales given as Z1, Z2, Z3, Z4, respective-
ly. The values to be determined are the genera, Y, that have the i, 1, 2,…,
n-surface morphological patterns.

The selection indicator variable for samples s1, s2, s3, s4 is
As = (A1, A2, …, An)T. The sampling scheme to select genera

from As is
n Ai ¼ 1; i∈s
otherwise;Ai ¼ 0; i∈s . Sampling is accomplished ac-

cording to the rule used to evaluate A and is given as
f(AS | Z,Y;Φ) where Φ is an unknown parameter (Smith, 1983).
From Z, the rule for genus selection is: the valve face shape approxi-
mates circularity and has radiating areolae reflecting radial symmetry.
The sampling scheme is based only on Z so that any genus, Yi, can be
selected via As. That is in probability terms, P (Y = y, A = a | Z =
z) = P (Y = y | Z = z) P (A = a | Z = z). In effect, the rule becomes
f (As | Z; Φ), and the sampling selection process satisfies conditional
independence and the ignorability criterion (Dawid, 1979; Smith,
1983; Pearl, 2000, 2009).

A.2. Morphological complexity

Partial derivatives numerically solved from parametric 3D equations
with boundary conditions [0, 2π] become elements of the Jacobian ma-
trix (Jacobian) (Pappas, 2005a, 2005b, 2008; Pappas and Miller, 2013).
Parametric 3D equations are a vector mapping F(u,v)=
f [x(u,v),y(u,v),z(u,v)] with F(x,y,z)=F[ f(u,v),g(u,v),h(u,v)]so that
tangent planes F(u,v)=F(x,y,z)for one dimension. Similarly, tangent
planes for the other two dimensions as G(u,v)=G(x,y,z) and
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H(u,v)=H(x,y,z) can be defined. Since 3D surface models are size in-
variant, and rotation and reflection involve only a switch in parameters
and a change in sign, respectively (Pappas and Miller, 2013), numerical
solutions of this affine mapping for all forms can be compared with re-
spect to morphological complexity.

Implicit equations x= f(u,v), y=g(u,v), and z=h(u,v) are the basis
for a diatom 3D surface model where x, y, z are independent. These
equations represent amodified capped cylinder where the cap is the di-
atom valve face surface with a circular shaped boundary where x and y
are identical equations except for a cosine function in the x-direction
and a sine function in the y-direction. Changes in the 3D valve face
occur in the z-direction so that z is a function of parameterized x and y
and is given as x=g(u,v), y=h(u,v), and z= f(x,y).

The generalized system of parametric 3D equations for cy-

lindrical centric diatoms is: a cos v
�
1þ

�
sinbu2

cosbu2

��
c
�

cos ju2

sin ju2

�
,

a sin v
�
1þ

�
sinbu2

cosbu2

��
c
�

cos ju2

sin ju2

�
, and the z-equation varies

for each centric diatom genus as given in Table 7‡. Coefficients
for the x- and y-equations are 6≤ a≤40, 0.5≤b ≤2, 1≤p≤2,
0.2≤ c≤1, 0.5≤ j≤1, 0≤ s≤30, 0≤ t≤90, and 2≤ k≤8; coefficients
for the z-equation are given in Table 7‡.

Each column of the Jacobian represents each parameter, u, v, and

each parameter is a vector and is given as J ¼
"u1 v1
u2 v2
u3 v3

#
¼

"
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

#
.

The 3 × 2 asymmetric matrix is made square (3 × 3matrix) by calculat-
ing the magnitude of the cross product of row elements for each taxon
which becomes the third column in the matrix. The cross product of
the two columns is ‖u×v‖=‖u‖ ‖v‖sinθ, where θ is the angle between
u and v, and ‖u×v‖is the vector of magnitude. The Jacobian becomes

Mu;v ¼
"
u1v1ðu2v3−u3v2Þi
u2v2ðu3v1−u1v3Þ j
u3v3ðu1v2−u2v1Þk

#
¼

"
∂x
∂u

∂x
∂v ð∂y∂u � ∂z

∂v−
∂z
∂u � ∂y

∂vÞ
∂y
∂u

∂y
∂v ð∂z∂u � ∂x

∂v−
∂x
∂u � ∂z

∂vÞ
∂z
∂u

∂z
∂v ð∂x∂u � ∂y

∂v−
∂y
∂u � ∂x

∂vÞ

#
¼

"m11 m12 m13
m21 m22 m23
m31 m32 m33

#
.

The Jacobian determinant is det(Mu ,v)=m11[(m22m33)−(m23m32)]−
m12[(m21m33)−(m23m31)]+m13[(m21m32)−(m22m31)], and is a sum-
mary value of 3D surfacemorphological complexity. Values for the Jaco-
bian determinants for each diatom genus are averaged and rank-
ordered to produce a morphological complexity gradient. The higher
the Jacobian determinant, the higher the number of tangent lines and
planes on the valve face that are more closely spaced together
representing a finer textured surface.
A.3. Functional complexity

As with morphological complexity measurement, surface geometry
is measured using parametric 3D equations that are solved numerically
as Jacobians (Pappas and Miller, 2013). For the diatom as a capped cyl-
inder, the sides of the cylinder are fixed so that variation of the valve
face—a capped end of the cylinder—is represented as a patch by keeping
x- and y-directions constant while varying the z-direction in the para-
metric 3D equations. In this way, z becomes a function of x and y so
that z is now dependent on x and y (Taylor and Mann, 1983). From

Eq. (3),

" j1
j2
j3

#
¼

"
ð∂y∂u � ∂z

∂v−
∂z
∂u � ∂y

∂vÞ
ð∂z∂u � ∂x

∂v−
∂x
∂u � ∂z

∂vÞ
ð∂x∂u � ∂y

∂v−
∂y
∂u � ∂x

∂vÞ

#
¼

"m13
m23
m33

#
. From the cross products

and the Pythagorean Theorem, the patch surface area is calculated as

Spatch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21 þ j22 þ j23

q
Δu Δv with boundary conditions u ,v∈ [0,2π];

total whole 3D surface area is Stotal ¼ ∫
v

0
∫
u

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21 þ j22 þ j23

q
du dv. The rela-

tion between diameter and surface area of a cylinder is
cylindersurface area=2πr+2πrh.
Stress and strain on the diatom frustule surface can be calculated on a
patch that is representative of that surface. Newton's second law de-
scribes the change from a diatom valve face at rest to its deformed con-
figuration as ∇⋅σ+F as a governing equation of motion in terms of
stress σ. Displacement as deformation is given as the governing equation

ε ¼ 1
2

h
∇uþ ð∇uÞT

i
in terms of strain є. A force acting on the valve face

surface will cause changes in multiple directions. A continuous linear
elastic material such as the amorphous silica-polysaccharide matrix ex-
hibits stress and strain related to each other as the constitutive equation
given by Hooke's Law of σ=−cε, where σ is the stress tensor, ԑ is the
strain tensor, and c is the elasticity (or stiffness) tensor, and all tensors

are contravariant. The stress tensor is expressed as σ ¼
"σ xx σ xy σ xz
σyx σyy σyz
σ zx σ zy σ zz

#
,

and for x=1, y = 2, z = 3, then σ ¼
"σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

#
. For the strain

tensor, ε ¼
" ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

#
. Hooke's Law becomes σ ij ¼ −∑

3

k¼1
∑
3

l¼1
cijklεkl

where i and j = 1, 2, 3, and in particular for continuous materials, σ is
the Cauchy stress tensor and ԑ is the infinitesimal strain tensor. The
Cauchy stress tensor is a measure of true stress relative to the actual de-
formation that occurs at a given timewhen stress is small, elasticity is lin-
ear, and it completely defines stress at each point internally. While the
stress and strain tensors are second order, the elasticity (or stiffness) ten-

sor is fourth order and is given as cijkl ¼

"
c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

#
.

For small deformations with linear elasticity, the Cauchy stress
tensor is related to surface traction as the Cauchy traction vector
expressed as Tij(n)=σijni or T

ðnÞ ¼ σ � n ¼ dFi
dS where Fi is force and S is

surface area. Surface traction is everywhere on the surface boundary
so that strains and displacements are minimal. The Cauchy stress

tensor becomes σ ¼
"σ xx τxy τxz
τyx σyy τyz
τzx τzy σ zz

#
. According to the Euler–Cauchy

stress principle, action of one body on another body is the system of dis-
tributed forces internally as a vector field and is the surface traction,
T(n), that depends only on n. Externally, forces on the surface are
governed by Euler's equations of motion so that the laws of conserva-
tion of mass, energy and momentum hold; contact forces that act on
the surface are balanced by internal forces in the material that is being
affected (Heinbockel, 2001).

From a given point, all the stress vectors are acting on all planes of a
continuous amorphous silica-polysaccharide diatom surface. Endpoints
are defined on an ellipsoid surface oriented to have coordinate axes in
the same direction as principal axes that are the principal stress
vectors, σ1 ,σ2 ,σ3. Normal stresses are σxx ,σyy ,σzz and calculated for
each diatom model via patch surface area adjusted to diameter value
for x-values and finding Cauchy traction vector (T(n)) scalar force values
using the y-intercept and slope from the curve fit of Hamm et al.'s
(2003) data.

Each 3D diatom valve surface will dictate the direction of forces
on that surface; stresses normal to the surface are orthogonal. To
calculate the tensor, numerical representation of the 3D diatom
valve face surface is necessarily diagonalized and orthonormalized.
The 3 × 3 asymmetric Jacobian matrix is diagonalized via a Gram

matrix on an inner product space as GðXÞ ¼
"X1 � X1 X1 � X2 X1 � X3
X2 � X1 X2 � X2 X2 � X3
X3 � X1 X3 � X2 X3 � X3

#

or Gðx1;…; x3Þ ¼
" hx1; x1i hx1; x2i hx1; x3i
hx2; x1i hx2; x2i hx2; x3i
hx3; x1i hx3; x2i hx3; x3i

#
. That is, the inner matrix
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product of the Jacobian matrix is the Gram matrix. The Gramian
determinant will have a non-singular value if linear independence holds

true; that is, |G| N 0. Next, the Grammatrix is orthonormalized asGð X
kXkÞ ¼"

X1 �X1
kX1 �X1k

X1 �X2
kX1 �X2k

X1 �X3
kX1 �X3k

X2 �X1
kX2 �X1k

X2 �X2
kX2 �X2k

X2 �X3
kX2 �X3k

X3 �X1
kX3 �X1k

X3 �X2
kX3 �X2k

X3 �X3
kX3 �X3k

#
. The product of the scalar value of the Cauchy

traction vector and the orthonormalized Grammatrix for each 3D diatom
surface model will yield the Cauchy stress tensor matrix entries. The
Cauchy stress tensor is calculated asσ=T(n) ⋅n and acts as representation
of diatom 3D surface functional complexity.
A.4. Multivariate complexity analysis

External unfolding is instituted using iterative or stress
majorization (De Leeuw, 1988; Heiser, 1995; Bussing et al., 2005;
Martins et al., 2009) in which stepwiseminimization occurs between
a majorizing function and original loss function with respect to
transformed proximities of the original data points (De Leeuw,
1988; Heiser, 1995). This is termed the sandwich inequality (De
Leeuw, 1977) for original loss function, f(x), andmajorizing function,
g(x), for k steps and is f(xk+1)≤g(xk+1)bg(xk)= f(xk). The
majorizing function coincides with the original function at minimal-
ly one supporting point (Heiser, 1995; De Leeuw and Michailidis,
2000). At each step in the minimization process, the differences be-
tween the original and majorizing functions are updated and
assessed until a local convergence is achieved usually at a linear or
sometimes a quadratic rate (De Leeuw and Michailidis, 2000).

Degeneracy is a problem in distance-based multivariate techniques
in which optimal distances are found that relate to trivial spatial solu-
tions as results are independent of the original data (Kruskal and
Carroll, 1969; Bussing, 2010). To avoid degeneracy in external unfolding
analysis, particular loss functions based on STRESS (standardized resid-
ual sum-of-squares) (Kruskal, 1964), are instituted to assess badness-
of-fit and goodness-of-fit. Penalties are necessarily imposed (Bussing,
2010), and a large penalty means that arbitrary or trivial STRESS values
occur as almost equal distances between original points. STRESS func-
tions used to deal with degeneracy assessment include Kruskal's
STRESS-1 (raw STRESS—see Kruskal, 1964) and STRESS-2 (normalized
STRESS—see Kruskal and Carroll, 1969) and Young's STRESS-1 and
STRESS-2 (Young and Lewyckyj, 1979) based on squared distances. A
penalty based on the coefficient of variation will occur when the trans-
formations of the proximities have small variances in distances and re-
sult in an arbitrary spatial map (Bussing et al., 2005). A penalty on the
intercept or slope is included in the transformation process when the
transformations allow approximately equal distances or have a zero
slope (Bussing, 2006).

The PREFSCAL algorithm (Bussing et al., 2005; Borg and Groenen,
2005; Bussing, 2006; Martins et al., 2009) uses a penalized STRESS
loss function with implicit normalization (Bussing, 2010), p-STRESS,
and the squared penalized STRESS (Bussing, 2010), expressed as
σp

2(Γ,X,Y)=σr
2λ(Γ,X,Y)μ(Γ) where σr

2(Γ,X,Y), is the raw STRESS, μ(Γ)
is the penalty function, and λ is a penalty parameter in 0 b λ ≤ 1. As λ in-
creases, σr

2(Γ,X,Y) influences the outcome less; i.e., as λ approaches
zero, a stronger penalty is instituted. The result is a minimization of
the penalized STRESS function (Borg and Groenen, 2005). The penalty
function is μðΓÞ ¼ 1þ ω

ν2ðΓÞ where ν2(Γ) is the coefficient of variation,

andω is a penalty parameter with values ofω ≥ 0. Asω increases, a con-
comitant increase in the coefficient of variation results in a decreasing
penalty function and an increase in non-degeneracy (Borg and
Groenen, 2005; Bussing, 2010).
A.5. Magnitude and rate of complexity change

To calculate the transitions between all taxa, the total complexity
vector is used to calculate a tensor product. From averaged proximities
of total complexity, A, an outer product matrix is calculated as W=
A⊗AT that represents the square paired product matrix of diatom
taxa. Each row of W is then linearly transformed on the interval [0, 1]

and thematrix becomesTðaNÞ ¼
"
a1i ⋯ a1n
⋮

ami ⋯ amn

#
. Next, T(aN) is normal-

ized using the basis vector

"
ei
⋮
en

#
so that the resultant row elements in

columns i to n sum to one for rows 1 to m. That is, the elements of
each row of the matrix are divided by the sum of each transposed
row's elements so that each row now represents a probability distribu-
tion of each taxon. This right stochasticmatrix is the transition probabil-
ity matrix, P, where each row is the taxon's conditional probability
states with respect to every other taxon's state.

To satisfy the Markov property, probability P of a sequence of ran-
dom variables (taxa), X, is of the form P{Xn+1=xn+1|Xn=xn} and are
conditional probabilities of stepwise transitions from one state to an-
other in state space, S, where only the previous state affects the next
succeeding state; the transitions in time occurring from n to n + 1 are
pij
(n)=P{Xn+1= j |Xn= i}, and the probabilities are independent

(Stewart, 1994). For a homogenous system, n-transition states are
calculated as a transition probability matrix according to the recursive

formula from Chapman–Kolmogorov given as pðnÞij ¼ ∑
all k

pðlÞik p
ðn−lÞ
kj

where 0 b l b n for conditional probabilities pij(n) between genera, with
0≤pij≤1 for row elements, i, and for all i, ∑

j
pij ¼ 1. The matrix entries

are conditional probabilities of complexity.
Let xn be the random variables of a homogeneous discrete time

Markov chain in state space, S. We want a probability distribution
of complexity states from the transition probability matrix, P, to rep-
resent equilibrium or steady-state, resulting in a stationary distribu-
tion as probability vector, π. This vector is obtained via convergence
of a system of homogeneous difference equations calculated for each
step via the iterative power method, with initial state distribution, π

(0), and given as πðnÞ
ij ¼ ∑

all i; j
PðnÞ
ij ðfXnþ1 ¼ jjXn ¼ igÞ πijð0Þ ¼ ∑

all i
pijπi .

For each state in the transition probability matrix, each πj is calcu-
lated as the dot product of π with the jth column of P. The initial
state distribution is independent of the limiting distribution, and
the stationary distribution will converge to a limiting distribution
if lim

n→∞
πn ¼ π exists.

For an ergodic Markov chain, since P(n) and π(n) converge to the

same distribution, lim
n→∞

pðnÞij ¼ π j for all i. P is a positive square sto-

chastic matrix; therefore, there is a unique largest positive eigen-
value associated with a positive eigenvector viz. π (Stewart,
1994). The stationary probability vector is obtained iteratively by
a linear combination of the eigenvectors, e, with conditional prob-
abilities from P. Because P is stochastic, Pe = e and e=(1,1, … , 1)T

with π=πP=λπ. For (P′− I)π=0, the e of e that corresponds to the
eigenvalue λ=1 for the transpose of P is a left eigenvector, eL, that is
π of the Markov chain (Stewart, 1994). For eLP=λLeL and PeR=λReR,
λL=λR but eL≠eR. The left eigenvector associated with λ=1 is the
equilibrium of the system that represents steady-state complexity.
The subdominant right eigenvectors associated with |λ |mod b1 are
interpretable as the number of transitions needed for a given level
of complexity to reach equilibrium. For an aperiodic, irreducible
Markov chain, if there is a value of n≥1 such that Pn has all positive
entries, then the Perron–Frobenius theorem holds true, and π is
unique (Stewart, 1994).
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Magnitude of complexity change is measured as a distance
metric between initial and final states of the Markov chain.

This metric is the Frobenius norm and is calculated as kFrTðaNÞe−TðbNÞek ¼h
tr ððTðaNÞe−TðbNÞeÞ � ðTðaNÞe−TðbNÞeÞ

0
Þ
i1=2 , where T(aN)e and T(bN)e

are the initial transition and stationary (limiting) probability matrices,
respectively, and tr is the trace. In the short run, complexity change is
measured using mean first passage time (M) as the mean number of
transitions from one complexity state to another for states j≠k asMjk ¼
1þ∑

i≠k
pjiMik ; mean recurrence times are Mkk ¼ 1þ∑

i≠k
pkiMik

(Stewart, 1994). Total complexity transition states are calculated

as TCtrans ¼ ∑
taxonfinal

i≠k
Mjk−Mij, where j≠k and i = 1, …, taxonfinal.

A.6. Complexity change over time: driven or random trend? Counterfactuals

The counterfactual conditional for each model, M, is given as
YxðtÞ ΔYMx ðtÞ, where Y represents effects as evolutionary trends (ET)
with “Driven” (Dr) and “Random” (Ran) as particular effects, x repre-
sents causes as particular kinds of complexity, t represents the particu-
lar time from the Eocene to the Oligocene. The probability vectors Dr
and Ran for particular probabilities dr and ran, respectively as counter-
factual conditionals Prob(DrET=dr) and Prob (RanET= ran) are
Prob[(ET = et) □ → (Dr = dr)] and Prob[(ET = et) □ → (Ran = ran)]
where DrET ðtÞ ΔDrModelET ðtÞ and RanET ðtÞ ΔRanModelET ðtÞ.

A.6.1. Structural equations
A generalized functional set of equations representing the structural

model are xi= fi(pai,εi) where pai is the set of variables as causes of Xi, Ei
are background exogenous variables (error variances) that aremutually
independent, and i=1,…, n (Pearl, 2000). For nine variables, functional
measurement equations are Fi= fF(C,ξF)=αF+ΛFη+φ, Mi=
fM(C,ξM)=αM+ΛMη+γ, Ei= fE(T,ξE)=αE+ΛEη+δ, Oi= fO(T,ξO)=
αO+ΛOη+ζ, Dri= fDr(ET,ξDr)=αDr+ΛDrη+ς, Rani= fRan(ET,ξRan)=
αRan+ΛRanη+ψ, Ci= fC(ξC), Ti= fT(ξT), and ETi= fET(Ci,Ti,ξET), where F
and M are vectors of observed endogenous complexity variables func-
tional andmorphological, respectively, E andO are vectors of categorical
time variables Eocene and Oligocene, respectively, Dr and Ran are
vectors of probability evolutionary trend values Driven and Random, re-
spectively, α is the intercept, Λ is the matrix of the square roots of pre-
dictor variables given as squared multiple correlations, η is the vector
of unobserved endogenous (indicator) variables, ξ are the error vari-
ances for C, T, and ET, and given asφ ,γ ,δ ,ζ ,ς ,ψ for F,M, E, O,Dr, Ran, re-
spectively, and i = 1, …, n. Indicators of the vector of unobserved
endogenous variables are expressed as the structural equation η=
αη+Bη+Γξ+ϑ where B is the matrix of interactions among the unob-
served endogenous variables on each other, Γ is the matrix of coeffi-
cients of error variances ξ with respect to observed endogenous
variables impact on η, and ϑ are the error variances with respect to un-
observed endogenous variables.
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