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A. Executive Summary  

 

Thin film deposition is a technology of applying a very thin film of material onto a substrate surface to 

be coated, or onto a previously deposited coating to form layers. As a modified Atomic Layer 

Deposition method, Spatial ALD grows as a promising technique that improves the efficiency of the 

process by separating the half-reactions spatially instead of through the use of purge steps in 

convectional ALD. Dasgupta Research Group is interested to study about the effect of deposition 

conditions such as gap size, gap alignment and substrate temperature on the characteristics of thin film 

coating. Therefore, Professor Dasgupta requested for the design and manufacture of a heated motorized 

substrate stage as a part of the Spatial Atomic Layer Deposition system. The motorized stage has six 

major specifications: x-axis linear motions to achieve the deposition rate of 0.1 nm/sec; uniform heating 

of the substrate from ambient temperature up to maximum temperature of 200 °C; precise 20-50 μm gap 

size control between the substrate and the depositor; gap alignment to ensure parallelism between the 

substrate and the stage; 5μm flatness tolerances of the stage; securing of the substrate throughout the 

process.  

 

Based on the engineering specifications and budget constraints, the team used Pugh Chart to assist the 

concept selection process. The concept, with the use of three stepper motors and gap measurements 

sensors to control the gap size and gap alignment, was chosen because of reasonable costs involved and 

its precise close-loop feedback control system used to achieve the project goals. The final design 

includes seven key components:  Invar as heated plate to reduce the effect of thermal expansion, 

capacitive sensors to measure the gap size; vacuum chuck to secure the substrate; polyimide heater to 

heat the stage uniformly; stepper motors to perform tilt and vertical (z-axis) height adjustments; 

horizontal linear stage to oscillate the stage in x-axis during deposition; set screws to secure the heated 

stage in place. In order to achieve low flatness tolerances, the team selected grinding and milling as two 

major manufacturing methods for the Invar plate and the aluminum plate. The low flatness tolerances of 

the final product proved that the selected manufacturing methods were suitable for the applications. 

Through persuasive design concept and persistent negotiation with the vendor, the team successfully 

kept the budget under USD 10,000 and acquired all the component with the cost of USD 7969.06. 

 

Overall, the final design achieved all the required specifications except uniform heating due to the delay 

in the arrival of the parts. Through validations and engineering analysis performed, the final design 

proved to be a promising solution for Dasgupta Research Group’s SALD study. Nonetheless, based on 

the performance of the prototype, the team recommended the use of the three sensors instead of two for 

better gap size control results, recalibration of the sensors to improve the accuracy of the sensors result, 

use of thicker screw sizes to better support the heated plate, and use of several thermocouples for precise 

temperature measurements.  The design can be further improved with a more advanced user interface for 

the control system, a more precise sensor mounting method, and additions of markings on the heated 

plate for repeatable wafer placement.  
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B. Problem Descriptions and Background 
 

B.1 Background 

Thin film deposition is a technology of applying a very thin film of material onto a substrate surface to 

be coated, or onto a previously deposited coating to form layers. Developed primarily for the silicon 

integrated circuit industry, thin film deposition has become a general technology used in various areas of 

application for designing and constructing complex structures, layer by layer.  Nowadays, thin film 

deposition manufacturing processes are widely utilized in semiconductor industry and solar energy 

conversion applications [1]. 
 

One of the most widely researched film deposition methods is atomic layer deposition (ALD) which is a 

thin film growth technique capable of the conformal coating of ultra-high-aspect-ratio structures with 

sub-nanometer precision films. As shown in Figure A, the atomic monolayers are formed through two 

time-sequenced self-limiting surface reactions, each one being separated by purge steps. It has been 

shown that the material loading and particle size can be controlled by simply varying the number of 

ALD cycles. [2] ALD can be used to deposit various types of materials such as compound 

semiconductors, high-κ dielectrics and metallic nitrides used in the metal gates of MOSFETs. [3] 

Especially due to its sub-nanometer precision film deposition capability, ALD has become a widely used 

technique in semiconductor industry to form metal/high-k (high permittivity) gate oxide stacks for field 

effect transistors, capacitors for dynamic random access memory (DRAM) devices, as well as in the thin 

film magnetic head industry to form gap dielectrics, where the control of ultra-thin films is essential and 

the conformity requirements are high. [4] For instance, Intel Corporation has reported using ALD to 

deposit high-k gate dielectric for its 45 nm Complementary metal–oxide–semiconductor (CMOS) 

technology. [5] Also, there have been many approaches regarding its utilization in solar energy 

conversion applications such as lithium batteries, photovoltaics and photoelectrochemical cells. 
 

 
Figure B.1: Schematic illustration of a complete atomic layer deposition (ALD) cycle including 4 steps-

precursor dose, purge, reactant dose and purge), separated into individual half-reactions and purge 

cycles, on the Substrate [6] 
 

Though ALD allows the nanoengineering of surfaces with precise nanoscale control, there are several 

major drawbacks regarding ALD, which are its low deposition rate and limited chamber size, making 

ALD less attractive for commercial and industrial applications that require high throughput processing 

and large scale chemical deposition. An approach to overcome these drawbacks is SALD, which is a 
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modified ALD method where the half-reactions are separated spatially instead of through the use of 

purge steps. As illustrated in Figure B, the different precursors are supplied constantly in between inert 

gas regions. Films are then grown by alternatively exposing the substrate from one precursor region to 

the other going across the inert gas regions. In this way, the oscillation of the substrate (or of the gases 

injector) from one precursor zone to the second one, going across the inert gas regions, reproduces the 

classical conventional ALD scheme which is that the first metal precursor reacts with the surface 

forming a monolayer while any unreacted precursor is swept away and purged in the inert region; then 

the second precursor reacts with the previous monolayer forming a layer of material; finally the sample 

returns to the first precursor region again going across the inert region where any by-products and excess 

precursor are purged. This allows for higher deposition rate and higher throughput ALD. [7] 
 

 
Figure B.2: Schematic illustration of a complete spatial atomic layer deposition (SALD) reactor 

concept, where the precursor half-reaction zones are separated by inert gas curtains. By moving the 

substrate horizontally underneath the injector, the two half-reactions will take place sequentially to form 

an ALD monolayer. The close proximity between the depositor and the substrate combined with the 

inert gas flows gives an excellent separation between the precursors [8] 
 

B.2 Motivation 

SALD is becoming more popular and shows great promises in overcoming the limitations found in 

conventional ALD. However, it is a relatively new technique, and requires further research and 

development for optimization. Dasgupta Research Group is currently designing its own SALD reactor to 

evaluate the effect of deposition conditions on the growth properties of SALD. Thus, Professor 

Dasgupta requested that the team design and build a heated motorized substrate stage as a part of the 

SALD system which is capable of controlling and altering gap space and gap alignment between the 

substrate and the depositor and temperature of the substrate in order to study how these factors affect the 

homogenous coating of nanoparticles. 
 

B.3 Problem Descriptions 

Dasgupta Research Group is currently designing its own SALD station to conduct a research which 

studies the effect of deposition conditions on the characteristics of thin film coating. The group’s current 

design concept fulfill the requirements but does not have a tilt adjustment system. Therefore, the gap 

alignment between the substrate and the depositor is not adjustable. Professor Dasgupta requested that 

the team design and build a heated motorized substrate stage as a part of the SALD system that is 
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capable of controlling and adjusting gap space, gap alignment, and temperature of the substrate. There 

have been previous SALD stations built by companies and research groups that are capable to perform 

heating and oscillating movement of substrate. However, none of the machines have the capability to 

fulfill all the requirements stated by the sponsor which include substrate holding system, substrate 

heating system and precise adjustment of gap space and gap alignment of the substrate with respect to 

the depositor. 
 

B.4 Key Challenges 

After the interview with the sponsor, the team found several possible key challenges regarding the 

completion of the project as listed below: 
 

B.4.a Budget 

Find an option that satisfies both the engineering specifications and available budget provided by the 

sponsor. The team will have to compare and select a feasible option from different ideas such as 

purchasing products and partly building a customized system. 
 

B.4.b Material selection 

Components such as substrate stage are required to be uniformly heated up to 200 ℃ and maintain 

acceptable tolerances for flatness. Thus, the team will have to find suitable materials that not only have 

sufficiently low coefficient of thermal expansion but also reasonable thermal conductivity and 

machinability. 
 

B.4.c Modeling and computational analysis 

Finite element analysis is planned to be used to study the mechanical stability and heat transfer along the 

substrate to predict heat transfer along the substrate and possible alterations in tolerances of flatness due 

to thermal expansions on the heated component because the system requires microscale precision. 
 

B.4.d Safety 

It is very essential that the system is safe for users, so the team will have to consider safety mechanism 

that prevents any thermal, electrical and chemical hazards. 

 

B.5 Literature Review 

The team did research on other SALD station in existence right now for the reference and also to form a 

benchmark for the design. Examples of these designs are shown and discussed in more detail below.  
 

B.5.a Eastman Kodak 

Eastman Kodak is a company based in the United States, their main focus of using SALD is for thin film 

transistors using Aluminum oxide and Zinc oxide deposition. In their design for SALD (Figure C, pg. 6), 

the substrate is placed on top of the depositor head and supported by the flow of gases which are 

pumped through the gas slots. Deposition occurs when the substrate oscillates back and forth over the 

gas flows. The proximity between the substrate and the coating head is determined by the pressure of the 

gas flow. 
 



7 

   
Figure B.3: Schematics (a) and actual machine (b) of Eastman Kodak SALD station  

 

Since the system uses pressure of gas flow to support the substrate, the substrate is maintained in close 

proximity to the depositor without the need for extremely high tolerance mechanical fixtures. This 

allows the substrate to have a higher translation speed across the reactor which will result in a higher 

deposition rate. However, this design concept does not suit the purpose of this project. Although it has a 

high deposition rate, it is not the major requirement for the design. Whereas the gap size is very 

important because it is the manipulated variable for the research. Therefore, one of the disadvantages of 

this design from Eastman Kodak is the inaccurate gap sizing which just sufficient for good deposition. 

[9] 
 

B.5.b TNO 

This design was created by TNO which is a company based in Netherlands. The main application for 

TNO using SALD is the surface passivation layers on crystalline silicon solar cells. They started their 

rotary proof of principle reactor in 2009. As shown in Figure D, the half reaction zones are incorporated 

in a round reactor head surrounded by exhaust zones. The reactor head is mounted on top of a rotary 

substrate table. The whole reactor is built in a convection oven. The round reactor is stationary with the 

substrate table rotating under it for deposition.  

 
Figure B.4: Schematics of the SALD station by TNO. 
 

Their machine was able to achieve a high rotating speed of 600 rpm and a deposition rate of 0.12 

nm/cycle which is a high value for an industrial scale. Again, speed is not the team’s main focus in the 

design and the speed of wafer passing through the reactions zones varies radially. Although in theory, 

the growth per cycle in ALD is independent of rotation speed, the exposure time of the substrate to the 



8 

precursor have to be sufficient for saturation in order to achieve a homogenous deposition layer. Other 

than that, this design is limited to the geometry of the substrate it can hold. Since it is the substrate table 

is round, substrates used are only limited to round wafers of 150 or 200mm or semi squared substrates. 

Lastly, the team are unable to very its gap between the substrate and the depositor. [10] 
 

Overall, after researches on other SALD stations and the interview with Professor Dasgupta, the team 

are able to sort out and determine the user requirements of the project.  
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C. User Requirement and Engineering Specification 
 

The meeting with Professor Neil Dasgupta, the main sponsor of the project, gave the team a clear idea 

on the requirements that need to be addressed. Table 1 (pg. 7) shows the summarized list of user 

requirements explicitly described by the project sponsor, the priority level and engineering specification 

for each user requirement. The team gained understanding on the relative priority of the user 

requirements through the interview session and sorted the user requirements into three different 

categories, which are high, medium and low; high represents requirements that must be satisfied in the 

solution; medium and low represent requirements that are not the main focus of the project, but would 

be an added plus if able to be satisfied. Under Professor Dasgupta’s suggestions, the team have divided 

the project requirements into four main areas; mechanical design of the heated plates & finite element 

analysis, heat transfer analysis, electronic control and external requirements. 
 

Table C.1: Summarized list of user requirements for specific areas of the heated motorized stage along 

with their respective priority level and engineering specification 

Requirements (order of priority) Engineering Specifications Priority** 

Consistent parallel alignment Gap difference along the stage measured  

 by 2D gap sensor: < 10 μm 
★ 

Flat Surface Tolerance of surface machining: ±1 μm ★ 

Gap Control Minimum gap size: 20 - 50 μm 

Resolution of z-axis linear motion: 10 μm 
★ 

Uniform heating of the stage Temperature gradient: < 5 oC/cm ★ 

Required Deposition Rate of 0.1nm/sec Velocity: 30 cm/sec ★ 

Ability to secure the substrate firmly Force exerted: < 40 N (for standard silicon 

wafers) 

O 

Ability to work under a wide range of 

temperature 

Operating temperature: Ambient - 200 oC O 

Components should withstand high 

temperature 

% difference between maximum operating 

temperature and measured component 

temperature > 10 % 

O 

Cleanliness Cleanroom standards: ISO 9 O 

Safety Teflon coating: withstand up to 327 oC O 

Ability to hold various types of 

substrates 

Able to hold 3 different material type (various 

with size) 
Ⅹ 

 

** (★: high O: medium  Ⅹ: low) 
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C.1 Mechanical Design of the Heated plates and Finite Element Analysis 

The heated plate holds an extremely important role in this project. Its main function is to hold the 

substrate, move it rapidly during the deposition process, and able to hold various types of substrates. 
 

C.1.a A very flat heated plate surface (★) 

Similarly, flatness of the heated plate is the key to ensure a uniform deposition surface on the substrates. 

The heated plate needs to have a very flat surface relative to the depositor. In order words, the team need 

to control the parallelism between heated plate and the depositor as high as possible with ±1 μm surface 

machining tolerance. After talking to several companies which specialized in making isolation platform 

like NewPort, this is definitely a good target value for the project. 
 

C.1.b Deposition rate of 0.1nm/sec (★) 

According to Professor Dasgupta, the substrates needs to move at the desired velocity in order to 

achieve the deposition rate of 0.1nm/sec. The team have performed the calculation based on the 

assumptions given by Professor: a) the deposition takes place 1 Å per cycle. b) 4 cycles per oscillations. 

c) size of depositor is approximately 150mm, i.e. the substrate need to pass through 150mm to complete 

one oscillation. Using Eq. 1, the team determined that the heated plate together with the substrate need 

to move around 60mm/s. After reviewing the related catalog online from company like Zaber, this value 

is a reasonable target value that enables the team to reach the ideal speed while not losing its resolution.  
 

C.1.c Able to secure the substrates firmly throughout the process (o) 

As required, heated plate needs to be able to secure the substrates firmly while moving the substrate 

rapidly especially during the depositions. In other context, the holders is required to hold the substrate, 

keep it at a certain temperature and release it quickly without damaging the substrate or causing 

contamination. Throughout the process, it should not exert force larger than its tensile strength and 

should not interrupt the movements of the substrates. [11] For now, the team will use the commonly-

used silicon wafer as the standard. Thus, the target value is a chucking system that applied force is not 

larger than 40 N. [12] and the pressure is between range of 200 mbar and 800 mbar. [11] According to 

Professor Dasgupta, vacuum chuck, electrostatic and mechanical clips are the three most common 

methods to secure the substrates in the industry. [13] Electrostatic chucks might not serve as a good 

option for the team because of its poor thermal control and also possible particle entrapment in the 

chuck. On the other hand, vacuum chuck has proved to be a promising method and has been greatly used 

in the related field. [14]. For mechanical clips, although it serves as a less costly option, it might need 

extra care when selecting the right material to work with especially no unnecessary heat loss is desired 

throughout the process. 
 

C.1.d Able to hold various types of substrates (X) 

The substrates holder should be able to hold various kind of substrates. It will greatly enhance its 

functionality if it is able to hold substrates varies in geometry, size, texture and ductility. Thus, the team 

need a chucking system that is flexible with the inputs and able to hold various kind of substrates 

equally well. Thus, the target engineering specification is to be able to hold 3 different substrates 

material, like glass, silicon wafer, and plastic, with various size. If the heated plate is able to secure 3 

different substrates material, the heated plate is considered to have the ability to holder various substrate 

types and thus the requirement is fulfilled. 
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C.2 Heat Transfer Analysis 

Since SALD process required heating of the substrate up to 200 oC, all components needed to have wide 

working temperature range and withstand the high operating temperature for long period of time. 

Meanwhile, the heated plate needed to be heated uniformly during the process.  
 

C.2.a Able to work under a wide range of temperature (O) 

As requested by the sponsor, the motorized stage should be able to be operated at a wide range of 

temperature, specifically from room temperature to 200 oC. The main reason for this is to study the 

effect of temperature on the spatial atomic layer deposition. By providing options to the user to calibrate 

the temperature level ideal to specific chemical reaction for effective film layer deposition, [15] the 

temperature range where growth is saturated depends on the specific ALD process or also referred to as 

the ‘ALD temperature window’ can be determine. That way, uniform and saturated monolayer of film 

could be formed. Besides that, the ability of the stage to be calibrated into a range of temperature 

increases its potential to accommodate film layer deposition for various chemical reactions, instead of 

being specific to only a single chemical process. 
 

C.2.b Uniform heating of the stage (★) 

It is important to ensure a uniform heating throughout the stage. The heating chuck has to be able to heat 

up the surface of the stage involved in the deposition process through conduction. In engineering words, 

the temperature gradient along the surface should ideally be zero. This means the everywhere along the 

surface of the stage has the same temperature value. Realistically, this is impossible. Therefore, the team 

specified a benchmark for the temperature gradient along the surface of the stage to be 0.5 oC/cm. 

Uniform heating of the stage facilitates even deposition of the film layer along the stage. Besides that, 

the stage would undergo even linear thermal expansion when exposed to uniform heating, and thus able 

to retain the desired flat surface throughout the deposition process. In order to achieve uniform heating, 

a planar-like heating mechanism that is able to cover the entire surface of the stage will be used to 

simultaneously heat up the entire surface of the stage. The option the team are currently considering to 

use as the heater is [16] Watlow’s silicon rubber heater, which could be designed to the exact shape and 

size needed. 
 

C.2.c Manufactured components are able to withstand operating temperature (O) 

Besides the stage, there are several other main components involved in the building of the whole system. 

Since the stage will be heated up to a maximum of 200 oC, it is crucial to make sure that the other 

components are also able to withstand the same maximum temperature. Therefore, materials with an 

ideally low coefficient of thermal expansion (CTE) will be selected to manufacture parts under thermal 

exposure. [17] CTE is the change in dimension (linear, area, or volume) of a material in response to a 

change in temperature. The reason for this is to prevent unwanted expansion of the parts, which will 

affect alignment of the stage. The stage has to be aligned and parallel to the gas manifold throughout the 

entire deposition process to be able to deposit uniform and even nanofilms. 

C.3 Electronic Controls 

Feedback control system is critical in ensuring the parallel alignment and precise gap control between 

the depositor and the substrate.  

 

C.3.a Parallel alignment (★) 

The substrate need to be able to work with perfect parallel alignment with the depositor especially 

during the deposition process. This is extremely crucial because failure to do so will cause non-uniform 
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deposition and produce undesired substrates. In order words, the heated plate and the depositor as well 

as the ground should maintain constant parallel alignment between each other. 
 

In order to achieve this, the heated plates need to function under the conditions that the distance between 

the substrate and the depositor is always 90 degree. Same goes to the heated plates and the depositor 

with the ground plate. To fulfill this requirement, the team set the target gap difference along the stage 

as measured by a 2D gap sensor should be less than 10 μm. This is a reasonable target value, measurable 

at the same time not losing the high resolution required by this project. 
 

C.3.b Precise gap control (★) 

The motorized stage is required to have a good gap control between substrate and depositor. Distance 

between substrate and the depositor need to be small in order for a good atomic deposition to take place. 

Besides, serving as a research prototype, Professor requested the team to have the gap control to be 

within range of 20 to 50 μm. This enables Professor and his group to conduct related experiments in 

figuring out the effect of gap distance on the spatial atomic layer deposition process. The team also set 

the z-axis linear motion to have at least 10 μm to have a more precise gap control. This target value, 

again, is backed with research backed on the available solution in the market like micrometer head and 

high-precision z-axis linear actuator. 
 

C.4 External Requirements 

Other than user requirements, there are external requirements that need to be fulfilled for high quality 

product and user experience. 
 

C.4.a Cleanliness (O) 

The overall cleanliness of the system should be maintained at all times. A clean outer casing to surround 

the stage and its other components could be built to prevent any contamination from the external 

environment. Besides that, materials used to manufacture the system are potentially at risk of chemical 

corrosion, due to the constant exposure to chemical gases. Corrosion of any part of the system would 

cause unwanted contamination to the deposited film. [18] So, to prevent corrosion from occurring, either 

the material or the chemical environment must be adjusted. In the project, specific reactant gases have 

already been fixed and therefore, the team look to adjust exposed material with protective coating, 

resistant to chemical reactions. Besides that, the system will be installed in a laboratory of the 

Dasgupta’s Research Group. ISO cleanroom standards will be used to classify the room air condition in 

the laboratory. [19] ISO cleanroom describes the classification of clean rooms exclusively in terms of 

the concentration of airborne particles. The laboratory environment will be represented by ISO class 9, 

which represents standard room air condition. 
 

C.4.b Safety (O) 

The safety of the project will always be the main priority. It is of utmost importance to ensure that the 

design fulfills safety regulations and could operate safely without causing any harm to users. As 

mentioned by Professor Neil Dasgupta, there are three major safety aspects that needs to be considered; 

which are thermal, electrical and chemical hazards. The system will potentially be heated up to 200 oC. 

Excessive heating could cause undesirable effect to the system. The material used to manufacture the 

stage should be able to resist expansion upon thermal contact. This is crucial to maintain the flatness of 

the stage for uniform deposition. [20] Various binary iron-nickel alloys such as Invar with CTE of 1.2 ×
10−6K−1 is a great option to be considered. However, minor components such as wiring, micrometer, 

etc. which are sensitive to heat, could be damaged by the overexposure to heat. Burnt components such 
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as exposed wires due to the melting of non-heat resistant insulator will potentially induce electrical 

threats to any users, which could result in electric shock, electrocution or even fire.  Therefore, all the 

components that are under thermal contact are to be properly insulated using Teflon coating. The high 

melting point of Teflon at 327 oC helps to protect heat-sensitive components from being damaged. 

Besides that, the temperature of the system could be regulated by having a proper cooling system such 

as air flow or heat conductive shelves [21]. By installing air flow at areas where heat is undesirable, 

ideal operating temperature will be able to be maintained. The specified benchmark to prevent the 

overheating of components is to have the measured component temperature to be below 10% of the 

maximum operating temperature of that particular component. 
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D. Concept Generation 

Concept generation was carried out after the project goal and problems were defined through sponsor 

interviews, and user requirements and engineering specifications were identified. As a preliminary step 

of the concept generation, function structure development was done through systematic methods. 

Finally, team members used concept generation techniques to generate concepts that satisfy the user 

requirements and engineering specifications. 

 

D.1 Function Structure Development 

In order to generate concepts, a thorough analysis on device functions was necessary. Function structure 

development on the heated motorized stage was carried out in a systematic way, including 

brainstorming, functional decomposition and morphological matrix. Each stage of the development was 

determined based on the user requirements and engineering specifications that were previously 

identified by a stakeholder. 

 

D.1.a Brainstorming 

As an initial step of function structure development, the team created a mind map, as shown in Figure 

D.1. It included the main project goal and following user requirements that need to be fulfilled. After the 

user requirements were specified in the mind map, further brainstorming was done for each user 

requirement by creating branched out functions that find solutions to the requirements. 

 

 
Figure D.1: Mind map that brainstorms the project goal, user requirements and functions that fulfill the 

requirements. 
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D.1.b Functional Decomposition 

After major functions were identified and discussed by creating the mind map, functional decomposition 

was used to break down complex problems into simpler functions. In order to simplify the problem, a 

function tree (Figure D.2) was developed to address the problem as several primary functions such as to 

control gap size, to maintain parallel alignment, to heat substrate, etc. Then, further functional 

decomposition was performed to identify sub-functions. 

  
Figure D.2: Function tree includes the project goal, primary functions and corresponding sub-functions. 

 

D.1.c Function Structure Diagram 

Functional decomposition that was defined as a function tree was transformed into a function structure 

diagram (Figure D.3). Based on the main functions and sub-functions defined in the function tree, a 

block diagram was designed to demonstrate and study the logical flow of energy, material, and 

information as the product performs the function for which it was designed. In the design, energy 

included mechanical, electrical and thermal energies, material included various kinds of substrate, and 

information signals took forms of mechanical, electrical and software. The function structure diagram 

helped in understanding the interrelationships among the sub-functions. As an example, when horizontal 

oscillating movement of the substrate was considered, substrate slides along the surface of the heated 

plate due to inertia had to be taken into account. This indicates that the horizontal substrate movement 

was indeed related to the substrate holding mechanism. In addition, gap control, another essential sub-

function, is determined by various other sub-functions such as substrate heating which might cause non-

uniform thermal expansion, vertical linear motion of substrate stage and tilt adjustment mechanism. 

Knowing the inter-relationships among the sub-functions, the team combined and modified some of 

these features and integrate them into a concept as a whole. 
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Figure D.3: Function structure diagram demonstrates the flow of energy, material and information 

within the Spatial ALD system. A large box with bold outlines represents the entire system, and small 

text boxes indicate sub-functions that need be included in the concepts. The diagram shows the 

interrelationships among the sub-functions. 

 

D.2 Morphological Matrix 

As the last step of concept generation, the morphological matrix was created. Morphological matrix is a 

tool that provides a systematic way to generate creative solutions in design. Using the functional 

decomposition results, sub-functions were listed on the leftmost column of the matrix. Then, sketches 

and texts were filled out across the horizontal rows to describe the means for fulfilling that function. 

After various possible solutions for each sub-function were found, the table was examined to combine 

the partial solutions to form full solutions. 
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Table D.4: Morphological matrix shows sub-functions that need be fulfilled and possible solutions for 

each sub-function. The cells colored blue indicates one possible full solution to the problem. 

 

A Vertical 

Motion 
 

Pulley Hydraulic  
 

Linear Stage 
 

Motor  
 

Slots 

B Gap 

Measurement 
 

Digital 

Microscope 

 
Laser Sensor  

Capacitor 

Sensor 

 
Caliper 

 
Taper Gauge 

C Tilt 

Adjustment 
 

Machine   
Stepper Motor 

Magnets 

 
Pressurized 

Gas  
Spring 

D Horizontal 

Oscillating 

Motion  
Tread Newton 

Billiard Balls 
Rotational Linear Stage 

Magnet 

Levitation 

E measure 

temperature 

Infrared Thermometer Thermocouple Laser  
Feedback 

Sensor 

F heat from 

ambient to 

200 deg C Solar Radiation Convection  Conduction  Induction Infrared 

G Uniform 

Heating 

Thin Plate Insulating 

Case 

Jacket Heater Flexible 

Heaters 

Fluid Heating 

H Secure 

Substrate 

Mechanical  Vacuum  
Electrostatic  Groove Threaded 

 

D.3 Concept Generation Results 

After the function structure was developed, twenty concepts were generated to find solutions to the 

defined problems. Various types of concepts were created by combining functions to form a total 
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solution. The team used the SCAMPER (Substitute, Combine, Adapt, Modify, Put to another use, 

Eliminate and Reverse) method to generate useful and innovative concepts. 

 

The team substituted a conventional linear motorized stage and a tilt adjustment stage with stepper 

motors and set screws to save cost. Secondly, the team combined the tilt adjustment and height 

adjustment mechanisms into one system using the stepper motors and set screws, so that the team could 

save cost from spending two separate parts for each mechanism. Additionally, the team also modified 

the shape of the circular groove and heated plate to be a rectangular shape in order to enhance the 

machinability of the parts. Lastly, since the team were provided with a vacuum line at Dasgupta 

Research Lab, the team used this vacuum channel as the vacuum chucking system for the substrate. 

 

D.3.a Concept 1 

 
Figure D.5: Generated concept 1 which includes labelled parts that satisfy sub-functions identified from 

the functional decomposition process 

 

This concept uses a vacuum chucking system to hold the substrate in place on top of a heated plate 

which is heated by a thin plate heater placed at the bottom of the heated plate. The vertical motion is 

actuated by the three micrometer heads which also perform tilt adjustment of the substrate to maintain 

parallelism with respect to the depositor, and four set screws are used to secure the position of the plates. 

These vertical linear motion and tilt adjustment stages are mounted on a linear motorized stage and 

oscillate horizontally. The system is equipped with a thermocouple and 1-D laser displacement sensor 

for temperature and gap size measurement. The primary advantages of this concept are the high 

precision vertical and horizontal motion controlled by the micrometers, laser displacement sensors and 

linear actuator. However, the use of manual equipment such as micrometers could introduce systematic 

and human errors to the measured readings. 
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D.3.b Concept 2 

 
Figure D.6: Generated concept 2 which includes labelled parts that satisfy sub-functions identified from 

the functional decomposition process 

 

This concept uses a groove to place and hold the substrate in place on top of a heated plate which is 

heated by a thin plate heater located at the bottom of the heated plate. The vertical motion is actuated by 

the three stepper motors which also perform tilt adjustment of the substrate to maintain parallelism with 

respect to the depositor. These vertical linear motion and tilt adjustment stages are mounted on a linear 

motorized stage, and the system and oscillate horizontally. The system is equipped with a thermocouple 

and 1-D laser displacement sensor for temperature and gap size measurement. One of the main 

advantages of the concept is the use of stepper motor for vertical axis motion, which provides high 

resolution motion control.  
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D.3.c Concept 14 

 

 
Figure D.7: Generated concept 14 which includes labelled parts that satisfy sub-functions identified 

from the functional decomposition process 

 

This concept uses a simple mechanical clamp to secure the substrate to the stage, in order to prevent the 

substrate from moving during horizontal and vertical motion. To aid vertical motion for gap control, a 

“stage-shelf” with slots at different height levels is used. The stage can be easily moved to different 

height levels and fixed on the respective slots. Then, a digital microscope will function to measure the 

gap between the depositor and stage to ensure precise gap control. On the other hand, a linear actuator is 

used to facilitate horizontal motion. For heating, fluid is flowed through a channel beneath the stage, 

which then conducts heat through the stage to provide energy for the deposition process. One of the 

main advantages of this concept is that the height level could be easily adjusted, but the large resolution 

of the vertical motion is a potential drawback. 
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D.3.d Concept 9 

 
 

Figure D.8: Generated concept 9 which includes labelled parts that satisfy sub-functions identified from 

the functional decomposition process 

 

This concept uses grooves to hold the substrate in place on top of a moving conveyor stage. Under the 

conveyor stage, 4 hydraulic jacks are place to adjust the tilt angle of the stage to align it to the depositor. 

The whole system is placed inside a convection oven to for heating and equipped with a temperature 

sensor and 2D gap sensor. The main advantage of this concept is its ability to provide uniform heat to 

the system. However, this may cause unwanted overheating on other minor components that have low 

operating temperature. 
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D.3.e Concept 12 

 
Figure D.9: Generated concept 12 which includes labelled parts that satisfy sub-functions identified 

from the functional decomposition process 

 

This concept is similar to the convective oven concepts. Using several convection heating filaments can 

ensure uniform heating of the substrate. Besides, this concept also uses the tilt adjustment springs to 

ensure the parallelism between the heated plate and the depositor. Besides, using the linear stage 

actuator, the stage can undergo a precise and fast oscillation motion. The stepper motor and measuring 

calipers, on the other hand, are used for z-axis motion control, allowing the user to measure and hence 

control the gap size. Lastly, to secure the substrate to the stage, vacuum chuck is used to exert certain 

pressure on the substrate and hold it in place. The primary advantage of this concept is the 

comprehensive vertical axis control using springs, weights and stepper motor. However, the use of the 

measuring calipers to monitor gap size is not ideal to measure nanoscale gaps. 

 

E. Concept Selection 

 

After the 20 concepts were generated, a scoring system was developed to assess the ability of each 

concept to meet the project’s engineering specifications. The engineering specifications developed from 

the user requirements with the stakeholders in the beginning of the project were used in this scoring 

system and weights were applied to these engineering specifications according to their importance. 

These engineering specifications and their associated weights are documented in the QFD which is 

located in Appendix B. Using the previous motorized stage design as the benchmark, a Pugh chart was 

created and the concepts could be generated and narrowed down to five concepts from 20 concepts.  

 

The chosen five concepts are listed and described above. In order to choose the best concept out of the 

five, external requirements were introduced into the scoring system to further assess the feasibility of 
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these concepts. The external requirements added are the machinability, safety, durability and estimated 

cost of the concept. The Pugh chart with the external requirements included was created and shown 

below.  

 

Table E.1: Pugh chart of the five chosen concepts which includes weighted engineering specifications 

and scores of each concept 

 
 

After carefully assessing each criteria, a design was singled out from the rest and that became the final 

design. This design is concept design 1 (Figure D5, page 18). This concept uses stepper motors for tilt 

adjustment and vertical linear motion and set screws are used to bolt down the stage after any tilt 

adjustments. A linear motion stage is used for horizontal motion and a sensor to measure the gap size 

between the substrate and the depositor. The stage is also equipped with a groove and a vacuum 

chucking system to hold the substrates in place and a thin film heating system right under the stage.  

 

The top five concepts were able to meet most of the user requirements given by the stakeholders. One of 

the advantages of the chosen concept that makes it more suitable than the other five is mostly due to its 

ability to function at a more precise manner particularly in the gap size and gap alignment requirement 

as well as its motion in the vertical and horizontal plane. Although Concept 2 has around the same level 
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of functionality as Concept 1, the cost of it is above the budget given to the team causing it to be ruled 

out. However, Concept 1 do come with some disadvantages. One of the disadvantages is the 

manufacturability of the concept where it needs to be precise and flat, the usage of an outside source to 

accomplish this is required. 
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F. Final Concept Description  

 

 
Figure F.1: CAD illustration of the chosen current concept incorporated the latest updates in the design 

which includes labelled parts that satisfy sub-functions identified from the functional decomposition 

process 

 

There are 7 key features in the latest concept: substrate securing mechanism, substrate heating system, 

vertical linear motion, tilt adjustment, position securing mechanism, horizontal linear motion, and gap 

measurement system. The primary advantages of this concept were the high precision vertical and 

horizontal motion controlled by the stepper motors, capacitive sensors and linear translational stage.  

 

 
Figure F.2: Exploded view of the overall assembly. It involves the detailed illustration of all the parts 

and components used in the assembly. 

 

F.1.Vacuum chucking System 

It uses a vacuum chucking system to hold the substrate in place on top of a heated plate which is made 

out of Invar 36 and is heated by Watlow Electric’s Polyimide heater attached at the bottom of the heated 
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plate with thermally conductive adhesive. NPT fittings and Teflon tubing were used to channel the 

vacuum from the source to the plate. 

 

 
Figure F.3: Close-up of the vacuum chuck and heater connections. 

 

F.2. Vertical Linear Motion and Tilt Adjustment 

The vertical motion is actuated by the three stepper motors with resolution of 1.5 µm. The stepper 

motors were also used to perform tilt adjustment of the substrate to maintain parallelism of the substrate 

with respect to the depositor.  

 

F.3. Set Screws Securing Mechanism 

There are four set screws with O-rings to provide downward forces onto the heated plate that acts as a 

clamping mechanism to maintain the adjusted position. The O-rings were isolated from the stage using 

the ceramic shoulder bushing. The shoulder bushing also insulated the set screws to prevent thermal 

expansion of the set screws.  

 
Figure F.5: Illustration of the position securing mechanism that involves the Hex nut, ¼” Stainless Steel 

Screw, PTFE O-ring and Steatite shoulder bushing. 

 

F.4. Horizontal Linear Motion 

The stepper motors and the heated plate were mounted on a linear motorized stage and oscillate 

horizontally. The linear motion was performed by using horizontal linear stage from Aerotech Inc..  

 

F.5. Polyimide Heater 

The uniform heating of the stage was ensured using polyimide heater and several thermocouples 

installed along the stage. The polyimide heater was flexible and thus was cover the entire stage easily. 

Thermocouples were installed along the stage to monitor the temperature gradient of the stage.  
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F.6. Gap Size Control 

Two capacitive sensors probes with 0.1 µm resolution were used to monitor the gap size between the 

depositor and the substrate. The gap measurements were then processed in Matlab and commands were 

sent to the stepper motors through Arduino to achieve the desired gap size. 

  

 
Figure F.3: Close-up view of the depositors and substrate. It demonstrates the gap measurement process 

between the depositor and the heated plate. 

 
F.7. Wiring Management 

Wire clamps were used to manage the wire and prevent the tangling of the wires during motion. 

Additionally, a wire carrier was used to carry wires from the stepper motors and the capacitive sensors.  

 

 
Figure F.6: Illustration of the wiring management in the design. Wire clamps and wire carrier are used 

to prevent tangling of the wires during the dynamic motion. 
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G. Key Design Drivers and Challenges  

 

G.1. Key Design Drivers  

Table F.1: Key design drivers that motivate the design specifications of the project are illustrated. 

Priority Design Drivers  Description Importance 

1 Gap control 

and tilt 

adjustment 

Stage must have the ability to 

move along the Z-axis to control 

gap size, while being able to tilt 

at a correct angle to ensure 

parallel alignment between the 

stage and depositor. 

Improper alignment between the stage 

and depositor will cause both surfaces to 

collide during horizontal motion of the 

stage. Inability to maintain gap size at a 

desired value will prevent from studying 

the effect of gap size on Spatial ALD 

results. 

2 Uniform 

substrate 

heating 

The heated plate should be 

uniformly heated to a specific 

temperature between ambient 

to 200 °𝐶. 

Without uniform heating, deposition 

will not occur at a uniform and ideal 

rate. In ability to maintain constant 

temperature will prevent from studying 

the effect of temperature on Spatial 

ALD results. 

3 Chucking 

system 

The prototype should have a 

mechanism which holds the 

substrate in place during the 

deposition process.  

Substrate needs to stay in place during 

the accelerating and decelerating motion 

of the stage. Moving substrate will 

affect the repeatability of Spatial ALD 

results. 

4 Horizontal 

linear motion 

The stage should be able to 

perform oscillating motion in 

horizontal axis during deposition 

process at a desired speed.  

The ability to control the motion of the 

stage at a desired speed will help 

determine the rate of deposition. 

 

There were four main design drivers including, gap control, uniform substrate heating, substrate 

chucking system and horizontal linear motion. Based on the design specifications, the engineering 

fundamentals were identified. 

 

First, gap control was a crucial aspect that needed to be fulfilled. The stage had to be able to move along 

the vertical axis in order to adjust to the desired gap distance between the substrate and depositor. This 

ability to adjust the stage to variable height in manipulating gap size helped future research studies on 

the effects of gap size on Spatial ALD results. Besides that, the stage had to perform tilt adjustment at a 

correct plane angle to ensure parallel alignment between both the stage and depositor. It was important 

that parallel alignment was maintained throughout the deposition process to prevent unwanted collision 

of the01 depositor and the heated plate. In order to achieve these requirements, a three-point-micrometer 

mechanisms and laser displacement sensor were required. 

 

Secondly, uniform heating of the substrate was another important design driver of the design process. 

Every chemical reaction takes place at a specific temperature range. Therefore, the substrate had to be 
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able to be heated to a desired temperature between ambient to 200 °𝐶. Temperature adjustability of the 

substrate would help study the effect of temperature on Spatial ALD results. In addition, the specified 

temperature for the deposition process should be maintained during the deposition process, because 

constant temperature would result in uniform deposition. 

 

The substrate chucking system was another key design driver in the project. The stage needed an 

appropriate mechanism to hold and secure the substrate in place during the deposition process, which 

involved horizontal linear motion. The reason for this was to prevent the substrate from sliding or 

rotating as the stage accelerated or decelerated. Moving substrate could lead to non-uniform deposition. 

Vacuum chuck was selected to fulfill the substrate securing. 

 

Lastly, the horizontal linear motion of the system was required, because the substrate should be able to 

oscillate forth and back during the deposition process at a desired speed. The ability of the linear 

actuator to control the motion of the stage at a desired speed would enable control of deposition rate. 

Therefore, the system required a high end linear actuator to control the horizontal motion. 

 

G.2. Engineering Analysis on Gap Control 

It was important to be able to monitor the gap size effectively. One main motivation of the project was 

to study the effect of gap size on Spatial ALD results. Therefore, the team needed to perform 

engineering analysis to study precise gap size control. Theoretical modelling was utilized as the mode of 

analysis. Based on the analysis, physical requirements of the components, such as the stepper motors, 

sensors and the heated plate could be determined. There were three aspects the team considered 

analyzing; load and stress applied on the stepper motors both during static and in motion and sensors 

specifications. 

 

Firstly, the static load applied on the stepper motors was determined. The stepper motors are the only 

supporting mechanism that would hold the heated plate. In order to perform this analysis, the mass of 

the heated plate had to be calculated. Since Invar 36 was used (refer engineering analysis for uniform 

heating mechanism) as a material for the heated plate, its density was obtained to calculate the total 

downward force due to weight using Eq. 1, where ρ = density of the materials, V = the volume of the 

components and g = the acceleration due to gravity. By calculating the force due to weight, load exerted 

on each of the three stepper motors supporting the stage could be determined. Figure G.2.1 shows the 

components of the analysis. The maximum static load upon each stepper motors was calculated to be 

3.24N, using Eq. 2. 
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Figure G.2.1: Free body diagram for static load analysis on stepper motors with M representing the total 

mass of the heated plate and R1, R2 and R3 representing the reaction forces from the stepper motors. 

 

 W = ρVg  (Eq. 1) 

 R1 = R2 = R3 = W/3  (Eq. 2) 

 

where M = mass of the heated plate and R1, R2, R3 = reaction forces from the stepper motors. 

 

After that, the load exerted on the stepper motors at motion (during deposition process) was calculated. 

During the deposition process, the stage would oscillate back and forth horizontally. This motion would 

cause the stage to shift from its desired position. Therefore, a locking mechanism composed of nuts and 

compressive silicon o-rings was introduced at the four ends of the heated plate, to impose a downwards 

force on the heated plate against the stepper motors, creating friction to hold the heated plate in place. 

The assumption made for this analysis was that the normal force from the motors on the heated plate are 

only dependent on the amount of force exerted by the springs and the weight of the stage. The 

relationship is shown in Eq. 3, with Fs = spring force, M = weight of the stage, and Fm = force on the 

motor. After trial and error, the team calculated that when the force of the locking mechanism exerted 

was 14N, the upward thrust of the motor was 23.7N, using the result from Eq. 2. This result showed that 

the total frictional force on the heated plate was greater than inertial force causing the heated plate to 

shift, as shown in Eq. 3. With these values, the resulting total load applied on the stepper motors was 

calculated to be 23.7 N, by summing up both the forces from the locking mechanism and weight of the 

heated plate, using Eq. 4. To prevent any unwanted failure modes, the team decided to define a safety 

factor of 2 for the maximum load capacity of the stepper motors. Eq. 5 was used to determine the 

appropriate motor load capacity with safety factor of 2, with S.F. = safety factor, Fm = total load applied 

upon the three stepper motors. 
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Figure G.2.2: Free body diagram for dynamic load analysis on the heated plate with M representing the 

total mass of the heated plate and Fs and Fm representing the spring forces and reaction forces from the 

stepper motors respectively. 

 

 Fs + M = Fm  (Eq. 3) 

 μs. Fs + μs. Fs = F (Eq. 4) 

 Maximum load capacity of each stepper motor = S. F. (Fm) 3⁄  (Eq. 5) 

 

where Fs = spring force, M = weight of the stage, and Fm = force on the motor. 

 

Lastly, an appropriate set of sensors had to be used to ensure precise gap control. Analysis on sensor 

specifications was done to determine suitable sensors for the project. The resolution of the sensors was 

an important specification because without sufficient resolution, the system would not be able to reliably 

make the required adjustment. On the other hand, sensors with great resolution specification, far beyond 

the needed criteria for the system would impose burden on the budget. It was decided by the project 

sponsor, Professor Neil Dasgupta, that the stage could be adjusted from a gap of 20 to 50 microns from 

the depositor. To achieve this gap control range, sensors with at least one micron resolution would 

provide the stage the ability to be adjusted to at least 100 step heights within the 100 microns range. 

Besides that, the bandwidth of the sensor was as important as the resolution. It indicates the ability of the 

sensor to respond at different frequencies. Since the measured target, the heated plate, would be 

oscillating horizontally at 60 mm/sec, it was essential to select sensors with appropriate bandwidth 

characteristic. The team worked closely with engineers from Capacitec to select the best sensors suitable 

for the project. 
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G.3. Engineering Analysis on Uniform Substrate Heating 

Maintaining uniform substrate heating was crucial in ensuring the success of the project. In order to 

achieve this, heat transfer analysis was carried out and theoretical modeling was chosen as the major 

mode of the analysis. It provided better understanding of the heat transfer mechanism in the system and 

determined the constraints or requirements for the materials properties. In general, there were three key 

components in the heat transfer analysis: thermal expansion of the heated plate, thermal conductivity of 

the heated plate and the heat loss to the environment.  

 

First of all, the thermal expansion of heated plate was calculated. Using Eq. 6, the minimum coefficient 

of thermal expansion for substrate stage and heated plate were determined. The assumptions were made 

based on the engineering specifications and the dimensions of the final design. The assumptions 

included the maximum allowable expansion of the material was 10 µm, the thickness of the heated plate 

was 0.1”, the thickness of the substrate stage was 0.5”, the ambient temperature,T1 and final 

temperature, T2 were 21°𝐂 and 200°𝐂 respectively.  

 

 ∆L =  αLo∆T  (Eq. 6) 

 

where ∆L = change in length, α = coefficient of thermal expansion, Lo = initial thickness of the heated 

plate, and ∆T = change in temperature of the plates. 

 

From the calculation, the maximum thermal expansion coefficient of the heated plate material was 21.99 

x 10-6 K-1 and that for the substrate stage was 4.40 x 10-6 K-1. Material with higher coefficient of thermal 

expansion would result in expansion of more than 10 µm which was undesired. Thus, as long as the 

selected material for heated plate and substrate stage had the coefficient of thermal expansion below 

these values, it was safe to conclude that the thermal expansion effect on the uniform substrate heating 

was negligible. 

 

Next, to determine the thermal conductivity of the heated plate, Eq. 7 and Eq. 8 were used. It was 

assumed that the system was in parallel slab, the ambient temperature was 21 °C, the final temperature 

was 200 °C and applied watt densities from Ultramic (the heating filaments provided by the sponsor, 

Watlow Electric) was between 600 - 750 W/in2. Therefore, the minimum thermal conductivity 

coefficient for heated plate with dimension of 1” x 4” x 4” was 13.2 - 16.5 W/mK.  

 

 Qc = (T2 − T1) R1−2⁄   (Eq. 7) 

 R = L Ak⁄  (Eq. 8) 
 
 
where T1 = ambient temperature, T2 = final temperature, R1-2 = thermal resistance; L = thickness of the 
heated plate, A = area of the heated plate and k = thermal conductivity coefficient. 
 

Knowing the minimum thermal conductivity coefficient and the maximum thermal coefficient, the team 

could select the best candidate for heated plate and substrate stage. Through careful comparison, Invar 
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36, with thermal expansion coefficient of 1.72 x 10-6 K-1 and thermal conductivity of 13 W/mK, stood 

out as the most promising candidate for heated plate. 

 

G.4. Engineering analysis on Clamping/Chucking System 

During the concept selection process for the clamping or chucking system, the team decided to opt out 

of mechanical clamping mechanism and chose to utilize a vacuum chucking system for the final design. 

This was because the team did not want any extra features present on top of the surface of the substrate. 

This would not only cause the added features to obstruct the path of the deposition process, it would 

prevent some parts of the substrate surface from getting exposed to the reaction gases. 

 

The vacuum chucking system on the other hand will not encounter these problems as it was able to hold 

the substrate in place from the bottom of the substrate. Besides that, it has the ability to hold substrates 

of various shapes and sizes. Instead of purchasing a vacuum chucking system, the team decided to build 

one by drilling a hole through the center of the substrate stage and run a vacuum channel through it.  

 

In order to prove that the designed chucking system would work, the team decided that an empirical 

testing on the system is the most appropriate because it was fast and most credible in proving the 

functionality of the concept. The objective was to determine how much force is needed to move the 

substrate while under vacuum suction and to ensure it will not break under the vacuum pressure. Since a 

100mm diameter silicon wafer would be the first substrate to be tested by Dasgupta Research Group 

with the prototype, a silicon wafer was used to prove the functionality of the vacuum chucking system. 

The experimental setup and the force gauge used was a Model HF-200 digital force gauge shown in 

Figure G.4.1 and Figure G.4.2. 

 

The empirical test was conducted in the research lab of Dasgupta Research Group. A 1/16 inch 

aluminum plate was machined to scale to the substrate stage with a 0.25 inch hole in the center. The 

empirical test was conducted according to a written procedure which can be found in Appendix H. 
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Figure G.4.1: experimental setup of the empirical testing 

 

 
Figure G.4.2: Picture of Model HF-200 Digital Force Gauge used in the empirical testing of vacuum 

chucking system 

 

The force exerted on the substrate during the deposition process due to inertia was calculated using 

Newton’s 2nd law, F=ma, where m is the mass of the substrate = 0.040kg, a = acceleration of the 

substrate = 3 x 9.8m/s2 = 29.4m/s2, and force applied from inertia = F = 1.176N. 

 

Table G.4.1: Results of the empirical testing for the vacuum chucking system shows the consistency of 

the three experiments conducted. 

Test Number 1 2 3 

Force (N) 2.5 2.4 2.6 
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The force needed to move the substrate away from its initial position was an average of 2.5N, which was 

nearly twice as large as the inertial force. Therefore, the team was able to conclude that the vacuum 

chucking system provided a sufficient amount of force to hold the substrate in place and did not break 

the wafer during the deposition process. The team decided to keep the dimensions of the design 

unchanged because of the satisfactory results it had provided. This fulfilled the chucking system design 

driver. With this major design driver fulfilled, further testing would need to be done in the future on 

different substrates of different materials and rigidity. 

 

G.5. Engineering Analysis on Horizontal Linear Motion 

In order to verify that the chosen linear stage, PRO-165LM-0150 by Aerotech satisfies the user 

requirements, engineering analysis was performed. Because each unit of horizontal linear translational 

stage is costly, there was difficulty in performing tests with the actual linear stages. Thus, various kinds 

of theoretical engineering analysis was conducted instead of an empirical testing. Theoretical modeling 

included the horizontal motion speed and acceleration required for the application and error in pitch and 

roll rotations during the motion. 

   

One of the significant user requirements Professor Dasgupta mentioned during the sponsor interview 

was that the SALD system must be able to perform the deposition rate of 0.1 nm/sec. In order to find a 

suitable linear stage for this application, the team calculated the minimum speed and acceleration of 

linear motion based on the deposition rate, geometrical parameters and characteristics of ALD. 

 

Using the given values as listed in Table G.5.1, the team converted the deposition rate to the linear 

motion speed using Equation 9. 

 

Table G.5.1: The table summarizes the given information on the deposition rate and specifications of 

the linear stage. 

  

Required deposition rate 0.1 nm/sec 

Total length of the gas depositor 0.127 m 

Thickness of Al2O3 atomic monolayer 1 Å/cycle 

Number of ALD cycles during one 

oscillation 
4 cycles 

 

To fulfill the required deposition rate, 0.4 nm Al2O3 should be deposited in  4 sec. Knowing that one 

oscillation along the depositor is consisted of four ALD cycles, the team found out that 0.4 nm of Al2O3 

layers would be formed. Thus, the team concluded that the substrate must be able to travel one 

oscillation in approximately  4 sec. The total length of the gas depositor is 0.127 m, so the speed 

required is 0.03175 m/sec. 

 

In order to achieve, the required speed within a range of 0.011 m, the team used Eq. 9, Eq. 10 and Eq. 

11 to calculate the minimum acceleration required for the linear stage: [23] 

 

 astage = 3g = 29.42 m s2⁄  (Eq. 9) 

 vrequired = 0.03175 m s⁄ = v0 + astaget = 0 + 29.42 m s2⁄ × t (Eq. 10) 
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t = 0.001079 sec 

 x =
1

2
astaget2 + v0t + x0 =

1

2
(29.42 m s2⁄ )(0.001079 sec)2 + 0 + 0 (Eq.11) 

= 0.00001713 m < 0.011 m 

 

where, astage is the acceleration of the linear translational stage provided in the spec sheet of PRO-

165LM-0150 by Aerotech, vrequired is the required velocity, v0 is the initial velocity, t is the time of 

acceleration, and x0 is the initial position of the stage. Based on the calculation, the team concluded that 

the acceleration of the stage is sufficient to move the stage as required. 

 

In addition to satisfying the deposition rate with an appropriate speed and acceleration in linear motion, 

it was essential to calculate the possible error from linear motion along the rail of the linear stage, PRO-

165LM-0150 by Aerotech. By considering the calculated error as shown in Figure G.5.2, it could be 

confirmed that the given information on the pitch tolerances and roll tolerances, shown in Table G.5.1, 

was sufficiently low to satisfy consistent parallel alignment. 

 

 
Figure G.5.1: A schematic representation of the error caused by pitch and roll rotations of the stage as it 

slides along the rail of the linear stage 

 

Table: G.5.2: The error due to the pitch and roll tolerances are summarized, and shows that the error is 

low enough to maintain the flatness tolerances for parallel adjustment. 

Model: PRO-165LM-0150 

by Aerotech 

Tolerances Error due to 𝟑. 𝟓 𝐢𝐧𝐜𝐡 

lever arm 

Pitch 33.94 μrad 3.017 μm 

Roll 33.94 μrad 3.017 μm 

 

Based on the dimensions of the heated plate, the team found out that the length of the lever arm 

was 3.017 μm. Using Eq. 12, the team found out that the largest error caused by the pitch and roll 

tolerances was calculated. [23] 

 

 Err = Tolerancepitch_roll × Llever_arm  (Eq. 12) 

Err =  33.94 × 10−6 × 0.0889 m = 3.01726 × 10−6m = 3.017 μm 

 

where Err is the error due to the pitch and roll rotations, Tolerancepitch_roll are the pitch and roll 

tolerances and Llever_arm is the length of the lever arm. 
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Based on the calculated error, the team could confirm that the error caused by the pitch and roll rotations 

are within the error limit defined as the engineering specification for consistent parallel alignment. 

 

G.6. Finite Element Analysis  

In order to ensure that the theoretical calculations performed on the thermal and static loading analysis 

hold true, further computer-aided analysis was carried out. Finite element analysis on the heat transfer 

and deflection was performed using Solidworks Simulation. 

 

G.6.1. Heat Transfer along Top Surface of Heated Invar 36 Plate 

In order to ensure that the silicon wafer placed on top of the heated plate was uniformly heated 

at 200 ℃, heat transfer analysis was conducted on the system. Assuming that the Polyimide heater 

remained its constant temperature at 200 ℃, the team performed finite element analysis, including 

thermal conduction of materials with thermal conductivity coefficients of 15 W/m ∙ K for Invar 36 and 

 1.3 W/m ∙ K for silicon, thermal convection coefficient of 10 W/m2 ∙ K for natural air convection, and 

surface to surface radiation considering ambient temperature and emissivity coefficient of 0.93 for 

silicon wafer. As shown in Figure G.6.1., it could be concluded that the temperature of the silicon wafer 

would be maintained at 200 ℃. 

 
Figure G.6.1.: The schematic representation of the finite element analysis on heat transfer along the top 

surface of the heated Invar 36 plate 
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G.6.2. Heat Transfer on Screws and Stepper Motor Spindles 

For the stepper motor spindles, it was essential to ensure that the spindles did not get heated up to 

temperature that is above the operating temperature of the motor body. If excessive heat was transferred 

from the spindle to the motor body, there could be possibility of motor failure. Using the material 

properties of stainless steel 303 and silicon, including the thermal conductivity coefficients 

of 16.3 W/m ∙ K and 149 W/m ∙ K, respectively, thermal convection coefficient of 10 W/m2 ∙ K for 

natural air convection, and surface to surface radiation considering ambient temperature and emissivity 

coefficient of 0.54 for stainless steel 303. As shown in Figure G.6.2., it could be confirmed that the 

temperature of the stepper motor spindle decreases, and the temperature at the bottom of the spindle 

would be 61.3 ℃, which was lower than 140 ℃, the operating temperature of the stepper motor. 

 
Figure G.6.2.: The schematic representation of the finite element analysis on heat transfer on the 

stainless steel 303 stepper motor spindles 

 

G.6.3. Deflection on Motor Spindle Due to Load at Different Angles 

Even though the maximum loading capacity of the motor, 45 N, provided by the vendor was sufficient 

to support the normal stress caused by the weight of the heated plate, there could be possible failure of 

the motor spindle when the force due to weight was at an angle instead of being normal to the horizontal 

x- and y- plane. Therefore, failure analysis of the motor spindle was carried out, using the mechanical 

properties of stainless steel 303, including, yield strength of 621 MPa, Young’s Modulus of 193 GPa, 

and Poisson’s Ratio of 0.25. Force due to weight of the heated plate distributed among the three spindles 

with the magnitude of 15 N applied at 5 degrees of offset from the vertical axis. The angle of 5 degrees 

was chosen as an extreme case where the tilt of the heated plate became 5 degrees with respect to the 

horizontal x- and y- plane. As shown in Figure G.6.3., it could be concluded that the motor spindle 

neither failed nor buckled. The results also showed that the amount of deflection in x-direction, but the 

deflection did not affect the flatness and parallel alignment of the SALD system, because gap size 

measurement would be done after the deflection occurred. 
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Figure G.6.3.: The schematic representation of the finite element analysis on deflection of the stainless 

steel 303 stepper motor spindle due to weight of the heated plate applied to the top of the spindle at an 

angle of 5 degrees 

 

G.6.4. Deflection of Heated Invar 36 Plate 

The deflection of the heated Invar plate was one of the most critical factor in determining the flatness 

tolerance of the silicon substrate. Because there were three point loads from the three motor spindles that 

act against the weight of the heated plate, analysis on possible deflection of the plate due to moment was 

necessary. For the finite element analysis, identical geometries for the plate, motor spindle, and location 

of the three motor spindles were identified, and the density of 8.055 g/cm3 was used as the mechanical 

property of Invar. As shown in Figure G.6.4., it could be concluded that the deflection at the center of 

the heated plate was observed carefully, because the 4 in diameter silicon wafer will be placed at the 

center portion of the heated plate. The difference in height at the center portion was ± 0.16 μm which 

was quite negligible compared to the flatness tolerance of ± 10 μm which was identified as one of the 

engineering specifications. 
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Figure G.6.4.: The schematic representation of the finite element analysis on deflection of the heated 

Invar 36 plate as a result of moment caused by the distributed downward force due the weight of the 

plate itself and the reacting upward force from the three stepper motor spindles. 

 

G.7. FMEA / Risk Analysis 

 

Table G.7.1: FMEA Table, where data and analysis on the failure modes effects were tabulated 
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Heated 

plate 

Heats up the 

substrate 

Non-

uniform 

heat points 

on the 

heated 

plate 

surface 

Uneven 

heating of 

the substrate 

7 Wrong placement of 

heater causing the 

heat transfer to be 

non-uniform across 

the stage 

2 Test by 

measuring 

temperature 

1 14 Choose 

suitable 

heating 

plate 

 

Secures the 

substrate in 

place, parallel 

to the 

depositor 

Bending of 

the surface 

due to 

thermal 

expansion 

Misalignme

nt between 

substrate 

and 

depositor 

(not 

parallel) 

7 Uneven surface 

machining 

2 Choose a 

material with 

low 

coefficient of 

thermal 

expansion 

4 56 Choose 

material 

with low 

coefficient 

of thermal 

expansion 
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Botto

m 

plate 

Holds the 

stepper 

motors 

(mounts) and 

all the 

components 

above (heated 

plate, stage) 

Cracks and 

breaks 

Material is 

not strong 

enough to 

withstand 

load 

4 Fatigue 2 Perform 

strength 

calculation 

2 16 Choose 

material 

that is 

durable 

Steppe

r 

motor 

Adjusts the 

vertical 

height of the 

stage (tilt 

control) 

Step losses Errors in 

output 

heights, 

causing 

misalignme

nt of stage 

with 

depositor 

7 Back driving and 

pay load increase 

with time 

2 Test and 

validate 

method 

6 84 Research on 

motor 

specificatio

ns 

 

Holds the 

stage in 

position 

Wearing of 

the spindle 

tip 

Errors in 

output 

heights, 

causing 

misalignme

nt of stage 

with 

depositor 

5 Repeated loading 

and unloading 

2 Non-rotating 

spindle to 

reduce point 

friction 

3 30 Choose 

suitable tip 

and spindle 

characteristi

cs 

Horizo

ntal 

linear 

actuat

or 

Controls the 

horizontal 

motion of the 

system 

Overheated 

motor 

Mechanical 

and 

electrical 

components 

failure 

8 Extended use of 

actuator 

1 Cooling 

system 

4 32 Research on 

motor 

specificatio

ns 

Bread

board 

Holds the 

linear 

actuator in 

position 

Potential 

deformatio

n of 

breadboard 

due to 

creep 

Uneven 

surface of 

breadboard, 

leading to 

misalignme

nt of 

installed 

stage 

3 Fatigue 3 Perform 

stress 

calculation. 

Compare 

with material 

properties 

1 9 Simulation 

on 

breadboard 

material 

Vacuu

m 

tubing 

Channels and 

evacuates 

air/gases 

Worn and 

tangled 

tube 

Pressure 

leakage 

1 Fatigue and creep 1 Choose a 

material 

resistant to 

1 1 Choose 

durable 



42 

from the 

heated plate 

wearing. 

Remove 

excessive 

lengths of 

tube 

tubing 

material 

Screw

s and 

Silicon

e 

rubber 

O-

rings 

Connects the 

heated plate 

and stage 

Fatigue, 

screw 

fracture 

Heated plate 

will collapse 

or 

misalignme

nt 

3 fatigue and creep 3 Perform 

stress 

calculation 

3 27 Research 

insulating 

methods 

 

Secures the 

position of 

the stage after 

tilt and height 

adjustment 

Fatigue, 

screw 

fracture, 

heated 

springs 

Unable to 

compress 

the springs 

to lock the 

heated plate 

in place 

3  2 Perform 

stress 

calculation 

5 30 Research 

insulating 

methods 

Capaci

tive 

sensor 

Monitors the 

gap between 

the depositor 

and stage 

 

Unable to 

provide 

accurate 

measuremen

t 

3 Dirty and wet 

environment 

2 Test and 

validate 

method 

5 30 Research 

sensor 

specificatio

ns 

Therm

ocoupl

e 

Monitors the 

temperature 

of the 

substrate 

Detached 

thermocou

ple 

Inability to 

monitor 

temperature 

accurately 

6 Loose connection 2 Test and 

validate 

method 

5 60 Research 

thermocoup

le 

specificatio

ns 

 

Based on the FMEA table, the team was able to identify what kind of failure in the design is most likely 

to occur. With the heated plate heated to a temperature of 200 oC, many sub-components of the system 

like the stepper motors and set screws have the possibility of getting heated as well. This will cause the 

possibility of thermal expansion in these sub components and will therefore results in non-uniform 

deposition and thermal stress. Over time, thermal stresses will cause fatigue and failure of these 

components. Maximum operating temperature of the stepper motors becomes an issue as well since they 

are in close proximity with the heated plate.  

 

To reduce the risk of thermal stress and overheating components, the team used steatite shoulder 

bushings and silicone rubber O-rings to insulate the set screws from getting heated up and the O-rings to 

compensate the thermal expansion. Round cap screws were used to have a point contact between the 
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stepper motor spindle and heated plate. This minimized the heat transfer potential between the 

components.  

 

Table G.7.2: Illustration of the risk associated with each hazard 

Hazard Hazard 

Situations 

L
ik

el
ih

o
o
d

 

C
o
n

se
q

u
en

ce
 

O
v
er

a
ll

 R
is

k
 Approach Status of 

Approach/Timeline 

Burns The users could 

be burnt when 

exposed to the 

high temperature 

heated plate or 

depositors as a 

result of 

carelessness or in 

the event of 

accidents. 

4 4 16 Mitigate and Research: 

 

Add insulation on the 

stage. 

Engineering analysis 

performed on heated 

stage.  

Electrical 

Shock 

When using the 

device, the user 

could be shocked 

due to the 

exceeded current, 

broken wires or 

parts, or water 

exposures.  

3 5 15 Research: 

Perform circuit analysis 

and make sure the 

wiring and the 

components used are 

water resistant. 

 

 

Will be included in 

the next stage of 

engineering analysis. 

Cut The user could be 

cut due to the 

broken substrates. 

4 2 8 Watch: 

In the future, some 

sensors might 

incorporate into the 

stage to detect the 

broken substrates and 

alert the users 

accordingly. 

- 

Finger 

Sprain 

For users with big 

hands, they could 

get finger sprain 

when tightening 

the set screws.  

2 3 6 Research and Watch: 

Perform empirical tests 

and build computer 

simulations to make sure 

the users can easily 

tighten or untighten the 

Obtaining the part 

and getting ready to 

build the prototype. 
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screws under normal 

circumstances. In the 

future or if time allows, 

some reminder/safety 

labels will be used.   

Hand 

injuries 

In the event of the 

stage collapses 

due to overload or 

fatigue when the 

user is tightening 

the set screws, the 

user could  

experience hand 

injuries 

3 4 12 Research: 

Conduct fatigue analysis 

to make sure the stage 

can withstand the loads 

for a long period of 

time. 

Will be included in 

the next stage of 

engineering analysis.  

Suffocating 

chemical 

gases 

During the 

deposition, the 

user might 

experience 

suffocation from 

the chemical 

vapors. 

3 4 12 Watch:  

Still unsure about the 

deposition process.  

- 

Body parts 

stuck in the 

machine 

components 

The user might 

have their body 

parts caught in 

the suction of the 

vacuum. 

2 4 8 Watch: 

The possibility of this 

hazard can be greatly 

reduce by installing the 

design in the fume hood 

instead. With that, the 

user will not interact 

with the motorized stage 

directly. 

- 

 

Based on the risk analysis, the hazards that possess the highest overall risk was the burn injuries. The 

heating process involved in the design reaches as high as 200 °C. Hence, the user might experience 

burns as a result of carelessness or in the event of accidental contacts with the heated plate or depositors. 

The likelihood of this hazard to occur is high and the consequence of this hazard varies depending on the 

level of exposure to the high temperature components. To further reduce the possibility of this hazard 

happening, engineering analysis regarding the heat transfer in the substrate stage is conducted. 

 

In general, to reduce the risks associated with the design, it is advisable to install the design in fume 

hood. With this measure, the users will reduce the interactions with the design during the heating 

process and therefore greatly decreases the hazard possibility. Thereby, the overall risk associated with 



45 

the design is at an acceptable levels as long as the design is installed in the fume hood for the safety 

measure.  

 

G.8. Challenges  

While some of the challenges mentioned in Design Review 2, which includes the parallelism difficulty 

and the budget constraints, remain as something the team strive to work better on, there are some new 

challenges emerged as the project progresses. 

 

One of the major newly emerged challenges is the determination of the springs with the appropriate 

spring constant. As the team improvised the mock-up with the latest locking mechanism using springs, it 

was a challenge for the team to determine the appropriate springs to ensure that the springs exert the 

right amount of force on the substrate stage and will not cause instability in the system. Through 

thorough engineering analysis and close examinations on the engineering specifications, the team 

eventually overcame the challenge by using O-rings instead of the springs.  

 

 

There are several issues that is unknown to the team and require further analysis on. First, the difference 

of expansion rate for heated plate and the heating filament might cause undesired effects. Heated plate, 

which is made of Invar (1.72 -2.1 cm/cm°C), and the heating filament, which mainly made of 

Aluminium Nitride (4.5 cm/cm°C), have different coefficient of expansion. This will lead to different 

expansion rate and even accumulate shear stress on the rather brittle heating filament. Therefore, the 

team need to acquire more information for the polyimide Heater and perform empirical tests as well as 

theoretical analysis regarding this issue. These issues are important and require the team to look further 

into to make sure the final design is capable of achieving the desired goals. 

 

In an effort of addressing the problem proposed by the sponsors under the budget limits, the design is 

updated and improvised. However, there are still some major expected issues. First of all, with the 

change from micrometer heads to stepper motors, the team might encounter challenges when writing 

codes for the stepper motors. With the lack of strong background in the mechatronic field, it might cost 

the team a lot of time and effort in writing the required codes to achieve the task. The same also applies 

to the sensors application. Therefore, the team needs to obtain the parts as soon as possible and 

familiarize with them. The team can approach the company and request some helps from the companies. 

 

Furthermore, the gap control system using the stepper motor might induce some problems in the next 

design and manufacturing stage. One of the major concerns in using stepper motor is step losses. 

Although the gap control system involves a closed loop control system, step losses might lead to 

constant calibration and adjustment which is undesired. Fortunately, the cost of the stepper motor is 

considerably affordable. This provides the room for the team to perform tests on the stepper motor 

before finalizing the design.  
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Among all, maintaining the parallelism between the depositor and the substrates is considered the most 

challenging aspect in the design. It is critical to ensure that the depositor and the substrates are parallel 

to each other. Failure to achieve this might result in non-uniform deposition and unwanted machine 

failure due to collision. To tackle the parallel alignment issue, the design uses a three-point-micrometer 

head mechanism and a high precision laser displacement sensor. However, the micrometer head and 

laser sensor contribute to a certain degree of measurement error. Furthermore, these micrometer heads 

are adjusted manually to achieve the desired heights based on the laser sensor readings. Thus, this design 

aspect requires high precision and accurate components with proper tools handling to hit the desired 

parallel alignment requirement. 

 

Due to the budget constraints of the project, it is very difficult to keep the cost low while being able to 

achieve all the requirements of the projects. This project requires high resolution and precision in 

controlling the stage, horizontal and vertical motion, and therefore, it is expensive to acquire the motors 

and sensors that are able to meet the required specifications accordingly. To ensure a high quality 

outcome of the project, it is crucial to consider the trade-offs between obtaining the required high 

precision and resolution components and cost. 

 

Based on the final design concepts, there are several expected major problems. Firstly, utilizing stepper 

motors and set screws as the tilt adjustment and vertical-axis motion mechanisms may be a challenge 

because the team has no previous experience in building this mechanism. Thus, unexpected 

manufacturing and assembly issues could potentially occur. To solve this problem, the team sought 

assistance from Leo Tse, a PhD candidate from Barton Research Group in University of Michigan, to 

provide the team with technical assistance and advices regarding vertical axis motion and tilt 

adjustments. He will serve as a valuable asset to the team based on his previous experience in building a 

similar mechanism for his project. 

 

Furthermore, the team may encounter problems implementing a feedback control system to monitor the 

heating of the substrate due to unfamiliarity in this particular field. This could result in ineffective 

heating of the substrate, leading to an inability to provide uniform heat to the stage. Therefore, the team 

will be receiving technical advices regarding heating mechanisms from one of the project’s sponsor, 

Watlow Electric Manufacturing Company. The engineers from Watlow Co. will be providing 

appropriate solutions for proper and uniform heating of the stage, besides building a suitable feedback 

control system to monitor the heating process. 

 

The last major problem could be the machining of the flat surface for the stage and heated plate. The flat 

surface is critical to ensure uniform deposition of the nanofilm layers. However, the fine surface 

machining are costly and difficult to achieve with the equipment currently available in the machine 

shop. The team will consult the machine shop coordinator and outsource to various fine machining 

companies around Ann Arbor to find the best way to manufacture the necessary flat surface stage. 
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G.9. Validation  

Verification is necessary to make sure the design can achieve the engineering specifications of the 

project. The team verified three key design drivers, including uniform heating, flat surface, and securing 

the substrate, by conducting virtual or physical tests to ensure the result met the corresponding 

engineering specifications.  For the remaining design drivers, the team will start performing the 

corresponding physical tests to verify the feasibility of the components once the parts arrive. Below 

include the detailed discussions of the recommended verification methods. The further descriptions of 

the verification methods, that could be done once all the components are arrived, are described in 

Appendix I. 

 

G.9.1. Gap Alignment and Gap Size Control 

First and foremost, the design was required to maintain consistent parallel alignment. The engineering 

specifications for this key design driver is that the gap difference along the stage needs to be less than 10 

microns. To verify this engineering specification, the team performed motor performance testing. 

 

In order to ensure precise control of the parallel alignment and gap size, it was essential to determine the 

resolution of vertical motion. Since the vertical motion of the heated plate was solely dependent on the 

resolution of the stepper motors, the step resolution of the motor’s linear motion had to be calculated. 

Because the motor spindle is expected to move with a fine resolution of 1.5 𝜇𝑚/𝑠𝑡𝑒𝑝, the spindle linear 

motion was measured using a digital microscope (Infinity 2-2). The digital microscope enabled a close-

up picture to be digitally captured to a PC, and this digital image of the linear motor spindle motion 

could be measured following the recommended ASTM E-399 procedure. First, using the PC monitor 

image resolution of 1280 x 1024, an image of a ruler with known scales (resolution: 200 𝜇𝑚) was 

captured and utilized to establish the scaling factor. By measuring the number of pixels using a 

computer software, Paint, a scaling factor (units of 14.29 𝜇𝑚 per pixel) was established by a calibration 

process. The number of pixels on the digital image could then be converted into the range of motion 

in 𝜇𝑚. After 100 steps and 1000 steps, the motor spindle was calculated to have moved 144 𝜇𝑚, 

and 1447 𝜇𝑚, respectively. It could be concluded that the motor testing showed repeatable step 

resolution of the stepper motors. Thus, the team could ensure that precise control of the parallel 

alignment and gap size could be fulfilled with the stepper motors. 

 

 
Figure G.9.1: A digital image of a ruler which was used to establish a scaling factor of 14.4 𝜇𝑚 per 

pixel (20 pixels for 200 𝜇𝑚) 



48 

  
Figure G.9.2: Two digital images which show (a) starting and (b) end position of the motor spindle set 

to move 100 steps which is equivalent to 10 pixels (𝑥1 = 914, 𝑥2 = 904). 

 

  
Figure G.9.3: Two digital images which show (a) starting and (b) end position of the motor spindle set 

to move 1000 steps which is equivalent to 101 pixels (𝑥1 = 1076, 𝑥2 = 975). 

 

G.9.2. Flat Surface 

The thickness of the Invar 36 plate was measured at 8 different points on the plate. The measured 

maximum thickness was 0.013033 m and minimum thickness was 0.013025 m. By calculating the 

difference between the two measured values, it was concluded that the thickness tolerance achieved after 

surface grinding was 8 𝜇𝑚. 

 

The deflection of the heated Invar 36 plate was one of the most critical factor in determining the flatness 

tolerance of the silicon substrate. Because there are three point loads from the three motor spindles that 

act against the weight of the heated plate, analysis on possible deflection of the plate was necessary. 

Thus, a finite element analysis was conducted using ANSYS to study the possible deflection of the Invar 

36 plate. For the analysis, identical geometries of the plate, motor spindles, and location of the three 

motor spindles were identified, and density of 8.055 g/cm3, Young’s Modulus of 141 GPa and the yield 

strength of 276 MPa were used as the mechanical properties of Invar 36. As shown in Figure XX, it 

could be concluded that the maximum deflection along the surface of the heated plate was ± 0.4371 μm 
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which was quite negligible compared to the flatness tolerance of ± 10 μm which was identified as one 

of the engineering specifications. 

 

  
Figure G.9.4: The schematic representation of the finite element analysis on deflection of the heated 

Invar 36 plate as a result of moment caused by the distributed downward force due the weight of the 

plate itself and the reacting upward force from the three stepper motor spindles. 

 

G.9.3 Uniform Heating 

In order to ensure that the silicon wafer placed on top of the heated plate is uniformly heated at 200 ℃, 

heat transfer analysis was conducted on the system. Assuming that the Polyimide heater remains its 

constant temperature at 205 ℃. The finite element analysis was performed using thermal conduction of 

materials with thermal conductivity coefficients of 15 W/m ∙ K for Invar 36 and  1.3 W/m ∙ K for 

silicon, thermal convection coefficient of 5 W/m2 ∙ K for natural air convection, and surface to surface 

radiation considering ambient temperature and emissivity coefficient of 0.8 for components. As shown 

in Figure XX, it could be concluded that the temperature of the silicon wafer would be maintained 

at 200 ℃. 

 
Figure G.9.5: Schematic representation of the surface temperature map of the top surface of the heated 

Invar 36 plate created using ANSYS 
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Figure G.9.6: Schematic representation of the surface temperature map of the top surface of the heated 

silicon substrate using ANSYS 

 

G.9.4 Substrate Securing Mechanism 

In order to validate that the vacuum chucking system, an empirical testing was performed. The 

maximum force required to move the substrate was determined. The testing was also utilized to ensure 

that the substrate did not break due to the downward force caused by vacuum suction. A 100 mm 

diameter silicon wafer was used during the testing because it was likely to be the most frequently used 

substrate. The digital force gauge was used to measure the shear force needed to move the substrate that 

was secured in place by the vacuum chucking system. The force from the force gauge was applied at an 

angle of 45° from the x-axis. After obtaining the force value of 19 N, the reaction force was calculated 

using Equation XX, 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒, 𝐹ℎ = 19 × sin(45°) = 13.44 𝑁. Thus, the maximum 

shear force required to move the secured silicon wafer was determined to be 13.44 𝑁. The experimental 

setup and the force gauge used was a Model HF-200 digital force gauge are demonstrated in Figure XX 

and Figure G.9.7. 

 

 
Figure G.9.7: Picture of Model HF-200 Digital Force Gauge used in the empirical testing of vacuum 

chucking system 
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Figure G.9.8: Free body diagram of the empirical testing on vacuum chucking system\ 

 

G.9.5. Deposition Rate 

Another significant user requirements defined by the sponsor was to fulfill deposition rate of 1 nm/sec. 

Based on numerical calculations using Eq. 9, 10 and 11, it was concluded that the heated plate had to 

oscillate in a horizontal axis at a speed greater than 31.75 cm/sec. Because the main purpose of the 

Spatial ALD system is to be able to deposit atomic monolayers on the substrate at a desired deposition 

rate, the speed of the horizontal motion became one of the priority design drivers. However, it was 

inappropriate to directly relate the linear motion speed to the deposition rate, because the deposition 

characteristics of Spatial ALD were still not well defined. For example, there were other factors such as 

shearing of reactant gas zones at the contacting surface of the substrate and thermal gradient which 

would form along the substrate at different positions and high speed which could prevent the system to 

achieve the desired deposition rate. 

 

After Aerotech’s PRO165LM-200 was determined as the horizontal linear stage, it was necessary to 

validate that the linear motion speed actually fulfills the desired deposition rate. However, since the 

depositor was not scheduled to be designed and functioning yet, the process of conducting empirical 

experiments through actual atomic layer deposition was not feasible. The team will be able to test the 

validity by performing Spatial ALD once the depositor is capable of creating two reactant gas zones 

separated by inert gas curtains. 

 

If the experiment is conducted, the team will record the duration of deposition. After the deposition is 

over, the thickness of atomic monolayers deposited on the sample will need to be analyzed. In order to 

measure nano-scale thickness of the monolayers, X-ray reflectivity (XRR) will be used. XRR is one of 

the most reliable techniques to determine film thickness and surface/interface roughness with no special 

sample preparation. It can be used to determine measure film thickness from several to 1000 nm. Thus 

the multilayer thin film ALD samples can be characterized by determining the thickness, roughness and 

density of the film using XRR data. 
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H. Discussion/ Design Critique 

Based on the performance of the final design, the team evaluated the strength and weakness of the 

design. A further reflection on the future improvements for the design was made. The team also 

provided several recommendations on both system-level and detailed-level to further increase the 

functionality of the design. 

 

H.1. Strength and Weakness of the Design 

After the team built a working prototype and performed validation tests, the team was able to evaluate 

the strengths and weakness of the design. The strengths and weakness were evaluated based on the 

fulfillment of the user requirements.  

 

User 

Requirements 

Strength Weakness Potential 

Improvement 

Consistent 

Parallel 

Alignment and  

Gap Control 

1) The system was able to 

precisely align the stage 

within 10 μm according to the 

measurements of the sensors. 

1) Significant amount of human 

error involved in the mounting of 

the sensors. Sensors need to be 

mounted parallel to each other.  

Use a different 

power supply to 

power the stepper 

motors to perform 

faster 

2) The system was able to 

adjust the gap size with high 

precision and accuracy. 

2) Significant amount of time is 

consumed for the gap alignment 

process to take place.  

 

Flat Surface The surface’s flatness was 

sufficient to show the proof of 

concept < 10μm 

The flatness requires a higher 

level of machining in order to 

achieve a flatness of < 5μm 

Used a different 

machining method 

other than surface 

grinding 

Uniform 

Heating 

Virtual analysis proves that 

uniform heating is achievable 

with the heating system 

Watlow is providing.  

Requires validation in the future N/A 

Secure substrate 

firmly 

The vacuum chucking system 

was able to hold the substrate 

in position during operation 

Difficult to position the center of 

the substrate on top of the 

vacuum opening 

Have markings/ 

grooves on the 

stage to indicate 

optimal placement 

of substrate 
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H.2. Future Modifications 

Based on the performance of the prototype, the team suggested several future modifications to further 

improve the current design. Below includes the details descriptions of each suggestion. 

 

First of all, the team suggested an improved, more precise sensor mounting method. In the current 

prototype, the sensors were mounted using adhesive and double-sided tape. This might affect the 

alignment of the sensors and the depositor, resulting in less accurate measurements. Therefore, it is 

strongly advised to have the sensors mounted carefully using better adhesive with the consult of 

engineers from Capacitec company. Besides, to ensure the depositor is aligned with the sensors, it is 

critical to manufacture the depositor and the sensors mounting case with higher precisions, 5 μm. This 

can further improve the alignment between the depositor and the sensors.  

 

Additionally, the design can be further improved with a more robust control system with better user 

interfaces. The algorithms and sensors data were currently processed in Matlab under the command 

from the user. A separate, Aerotech-owned software/interface was used to control the linear stage. To 

simplify the procedures, it is suggested to develop a more involved feedback control system, allowing 

the user to control both the linear stage and the tilt adjustment mechanism with a single interface. In 

order to complete the feedback control system, it is advised to consult Aerotech engineers to obtain 

more information for the data acquisition from the linear stage. A modified user interface can be 

performed using MatLab GUIDE or LabView with window that includes the list of the commands 

available to control Arduino and the linear stage as well as textbox or drop down menu to allow the user 

input the command.  

 

Furthermore, the team suggested the purchase of ceramic shoulder bushings with larger inner diameter 

or use of other insulation methods. From the attempts made to grind or sand the shoulder bushing to a 

larger inner diameter, the team concluded that it is extremely hard to machine ceramic shoulder bushing. 

Therefore, it is strongly suggested to purchase ceramic shoulder bushing with the inner diameters, 0.3”. 

Besides that to improve the design, it is advised to include markings on the heated stage for repeatable 

wafer placement. This could be done by machining small circle markings with various dimensions on 

the heated plate.  

 

Lastly, to better improve the uniform heating of the stage, the heater could be designed through several 

stages of analysis. In the first pass, it is encouraged to design the heater based on the Finite Element 

Analysis (FEA) on the Invar plate by assuming that that heater is heating the stage uniformly at 200 ℃. 

From the FEA result, the engineers from Watlow will determine the number of heating zones required 

for uniform heating and manufacture the heater for the testing purpose. If it does not perform the heating 

uniformly. The second stage of the heater design should be carried out. In the second pass of heater 

design, the heater will be designed based on the FEA results on the heater with the assumption that the 

Invar is heated to 200 ℃ and determining the required power density to supply to each heating zones. 

Close cooperation with Watlow engineers are strongly encouraged to guarantee the heater designed with 

the desired specifications. 
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H.3. Recommendations 

To further improve the functionality of the design, the team provided several recommendations in both 

system and detailed levels. 

 

H.3.1. System-Level Recommendations 

Recommendations for the overall system were made. Below includes the details descriptions of each 

suggestion. 

 

1. Number of iterations 

One cycle of the current control system involves roll axes control at home position, then another 

roll axes control at the end of the stage, and lastly pitch axes control at the end of the stage. This 

helped to align the heated plate to the depositor. However, due to mechanical limitations, the 

heated plate would not be perfectly parallel to the depositor. A certain degree of angle error 

would be introduced. To resolve this issue, the aforementioned cycle could be repeated several 

times to reduce the magnitude of angle error. The Matlab codes involved could be placed in a 

loop cycle to be repeated at defined number of times. 

 

2. Addition of an extra sensor 

Currently, two capacitive sensors were used to measure the gap between the heated plate and the 

depositor. These sensors were initially installed directly above the two tips of the stepper motors. 

This location was defined as the home position. Within the control system, the stage would then 

be moved in order to align the third stepper motor x-location with the two sensors. Therefore, the 

gap at three stepper motor tips could not be actively determined at every instance. To resolve this 

issue, a third sensor could be introduced and installed directly above the third stepper motor tip. 

This could help to actively determine the gap size at three locations of the stage at every 

instance, instead of two. 

 

3. Addition of thermocouple 

To ensure uniform heating of the stage, thermocouples would be introduced along the heated 

plate. Engineers from Walow recommended the team to bore holes on the heated plate to install 

these thermocouples. These additional holes on the heated plate would subsequently increase the 

number of heat sinks, and therefore reducing the ability of the heater to uniformly heat the plate. 

To resolve this issue, more heat transfer analysis were needed to be done to determine these 

locations of cold zones.  
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H.3.2. Detailed-Level Recommendations 

Some detailed level recommendations were also made to improve the design. Below includes the details 

descriptions of each suggestion. 

 

1. Sensors recalibration 

Currently, the capacitive sensors were only able to detect gap range up to 250 micrometers. 

Therefore, tilt adjustments of the heated plate could only be done within the mentioned gap 

range. This limited the adjustability of the stage. To improve this, the sensors could be calibrated 

to a higher sensing range. The maximum sensing range that could be possibly calibrated with the 

sensors was one millimeter. Besides that, the sensors were to be tested to determine the accuracy 

of their readings. A high precision micrometer could be used to calibrate the readings of the 

sensors. The reading from the micrometer could be used to compare with the readings from the 

sensors to identify their degree of accuracy. 

 

2. Power supply for each motor 

Power supply with similar volt-amp values should be provided to each stepper motor.  Currently, 

two stepper motors were supplied with the same power sources. This reduced the speed of the 

motors. Therefore, providing similar volt-amp values to each motor would help to maintain the 

stepper motors at similar vertical speed. By doing so, each stepper motors would be supplied 

with the same power to drive their respective spindles.  

 

3. Thicker screw size 

To better support the linear stage and enhance stability of the system, it is recommended to use a 

thicker screw size for set screw securing mechanisms. Currently, 10-32 screws were used. The 

team suggested the use of ¼” screws to substitute these screws in providing better balance and 

ensuring longer life spans of the set screws mechanisms. 
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APPENDIX 

Appendix A: Project Plan for the Entire Semester
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Appendix B: QFD Chart 
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Appendix C: Generated Concepts 

 

Concept 1 

 

Concept 2 

 

Concept 3 

 

Concept 4 

 

Concept 5 

 

Concept 6

 

Concept 7

 

Concept 8

 

Concept 9

 

Concept 10

 

Concept 11

 

Concept 12

 

Concept 13

 

Concept 14

 

Concept 15

 

Concept 16 

 

Concept 17

 

Concept 18

 

Concept 19

 

Concept 20
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Appendix D: Pugh Chart  

 

 



60 

Appendix E: Initial Mock-up Design 

To better visualize the final design concept and ensure the feasibility of the design, a design mock-up 

was created based on the final design concept. The material used in the mock up included 4 wood rods, 

3 black solid plastic rod, foam and cardboards. 

 

A.E.1. Features 

The mock-up consistd of 6 main components: the depositor, the substrate, stage with groove, stepper 

motors as tilt adjustment mechanisms, linear actuator and the heating system. 

 

 

Figure A.E.1: The mock up consisted of several components. The major components included: 

substrate stage with groove, set screws (4 wood rods), stepper motors (black solid plastic rod), linear 

actuator and the heating system. 

 

The mock-up was built closely to the final design concepts based on the relative dimensions and size 

required by the sponsor, Professor Dasgupta. The ‘stepper motors’ built using black solid plastic rod was 

adjustable, mimicking the real functions of stepper motors in the real design, i.e. adjusting the tilt and 

height of the stage.  

 

Moreover the stage was built on top of the linear actuator which was covered with tape at the sides to 

reduce frictions and to allow horizontal motion of the stage as an effort to simulate the motion of the 

actual linear actuator.  

 

In conclusion, the mock-up was built very similarly with the final design concepts, illustrating all the 

features in it. This provided the team a better picture of the functionality of the design and useful 

insights on the potential problems or issues to consider in the next steps of the project. 
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A.E.2. Key Insights gained from the mock up. 

Through the construction of the mock up, team gained several insights and developed a better 

understanding on the design. 

 

Firstly, it helped the team to be aware of potential design and manufacturing issues that could rise when 

the actual prototype were to be built. Some of the features of the design that could be a manufacturing 

challenge were the groove, the mounts of the sensors and stepper motors. The construction of the mock-

up’s stage to full scale dimensions helped the team in gaining a better idea on the set screws sizes 

suitable for t design, the maximum length of the stepper motors’ spindle needed and the machining of 

the stage required to achieve target flatness. Additionally, the building process of the mock-up provided 

useful hints on possible methods of securing the stage to the linear actuator and the installation the 

suitable pipe fittings for the vacuum chuck system.  

 

Besides that, by building the simple mock-up, the team was able to better understand the sequence of 

assembling the components together. This helped in visualizing the interaction between the components 

when the system was functioning. Thus, it increased the team’s awareness on the effects of the different 

processes, such as heating, displacement sensing and gap alignment adjustment on the deposition of the 

thin film nano layers. 
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Appendix F: Written Procedure 

 

1. Wear safety glasses and nitrile gloves during the testing procedure. 

 

2. Clean the surface of the substrate stage with a clean fabric before placing the silicon wafer on 

top.  

 

3. Connect a suitable sized tube from the pipe fitting of the substrate stage to the vacuum channel 

provided in the lab. 

 

4. Hold the substrate stage in an upright position. 

 

5. Place the silicon wafer using a specialized forceps. 

 

6. Turn on the vacuum channel. 

 

7. Prepare the force gauge and exert a force onto the wafer on the side. 

 

8. Once the wafer moves away from its initial position, record the force value used. 

 

9. Repeat step 8 for 2 more times. 
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Appendix G: Manufacturing Plans and Drawings 

 

Machining Plan Analysis 

 

Table A.G.1.: Descriptions of the manufacturing methods and its corresponding advantages as well as 

the disadvantages of the methods. 

Manufacturing Methods Advantage Disadvantage 

Waterjet Versatile, precise Messy, Noisy 

End Milling Precise Time consuming, expertise 

Band saw Quick, non-versatile Inaccurate 

Laser Cutting Versatile, precise, clean Expensive 

Shearing Quick Inaccurate 

 

Since flatness is very crucial for the design, the materials for the main components of the prototype were 

machined to be as flat as possible. The bottom plate and bottom support block were purchased with 

polished surface. The team decided to use the milling machine provided by the university to drill the 

holes and end mill the parts to size since it has high precision. The Invar plate was not purchased to be 

surface polished, therefore the team outsourced the Invar plate to be surface ground at Wolverine 

Grinding Inc. Surface grinding was able to achieve a flatness of < 10μm. The rest of the materials were 

found in the University’s Machine shop to fabricate a replica depositor to show in the Design Expo. The 

team still used the milling machine because high precision is required for the mounting of the sensor on 

the replica depositor. Below consists the manufacturing plans and drawings for all the machined parts.  
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Bottom Plate  
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Support Wall  
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Depositor Bracket 
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Depositor Top Plate 
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Depositor  

 
 

 
 

  



69 

Bottom plate Support 
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Base Plate/Heated Plate 
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Depositor Supporting Bracket 
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Appendix H: Bill of Materials 
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Appendix I: Validation Protocol 

This section provides further descriptions of the empirical tests to validate the engineering specifications 

once all the components, including depositor (manufactured to tight tolerances), heater, and 

thermocouples, are installed into the current prototype.  

 

A.I.1 Parallel Alignment 

 

Engineering Specifications:  The gap difference along the stage needs to be less than 10 microns 

 

Components needed to test:  Heated motorized stage with the linear stage, depositor and capacitive 

sensors casing (if capacitive sensors are used) 

 

Equipment:  Slip gauge or two capacitive sensors with <10 microns resolution 
 

Procedure: 

1. Misalign the heated stage and perform tilt adjustments based on the feedback from capacitive 

sensors. 

2. After the tilt adjustments, secure the heated stage using nuts. 

3. Use the capacitive sensors or slip gauge to measure the gap distance between the depositors and 

the heated stage along the x-axis. (take at least 10 points) 

4. Record the measurements and calculate the difference of the gap measurements.  

5. After 30 minutes, measure the gap distance again. 

6. Record the measurements and calculate the gap difference. 

7. It is recommended to repeat step 5 and 6 for at least 3 times to ensure the consistent parallel 

alignments of the stage over a long period of time. 

8. Repeat Steps 1 to 8 for two times.  
 

Note: The process described above involves the use of capacitive sensors to measure the gap distance. 

In the case which slip gauge is used, the same procedures applied except the user do not need to 

calculate the gap differences (in Step 4 and 6). Slip gauge is used to verify if two objects is separated by 

a certain distance and do not provide the misalignment information. 
 

Result / Data Analysis: 

1. If the gap difference is less than 10 microns for all 5 sets of measurements, it is safe to say that 

the stage is in consistent parallel alignment.  

2. If the gap difference after a specific time exceeds the 10 microns requirements, the stage is said 

to maintain parallel alignment for only a certain time period. The stage is hence recommended to 

recalibrate after that period of time using the closed loop feedback tilt adjustment. 

3. If the gap difference is more than 10 microns at the first set of measurements, the stage is failed 

to achieve this engineering specification. Modifications of the design is required.  
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A.I.2. Surface Flatness 

 

Engineering Specifications: Tolerance of surface machining of 1 micron. 

 

Components: Heated Plate (Invar 36) 

 

Equipment: Micrometer with an accuracy of 0.0001” and a resolution of 0.0001” or 0.00005”. 

 

Procedure: 

1. Use the micrometer to measure the thickness of the plate at 8 different points around the plate. 

2. Record the values of the measured thickness. 

3. Calculate the Mean value of the measurements. 

4. Calculate the variance and standard deviation of the measurements using the mean value 

obtained above  

5. If standard deviation is less or equal to 0.0001”, the flatness is within the required tolerance. 

Data Analysis Method: 

1. If the surface machining tolerance is less than or equal to 1 microns, it is safe to say that the 

heated plate reach the engineering specification. 

2. If the surface machining tolerance is more than 1 microns, further surface grinding and polishing 

will be done.  

 

Result:  

1. The surface machining tolerance is 2.5 microns; therefore, further surface grinding will be done 

and chemical polishing will be used to minimize surface roughness.  

 

 

  



75 

A.I.3. Gap size control 

 

Engineering Specifications: Gap size between 20 to 50 microns 

 

Components needed to test:  Heated motorized stage with the linear stage, depositor and capacitive 

sensors casing (if capacitive sensors are used) 

 

Equipment:  Slip gauge or two capacitive sensors with <10 microns resolution 
 

Procedure: 

1. Set up the heated stage and mount the capacitive sensors onto the designated casing. 

2. Move the heated stage to 100 microns distance from the depositors. 

3. Use the capacitive sensors to measure the gap distance between the depositors and the heated 

stage.  

4. Take at least 10 measurements and record the measurements. 

5. Repeat Step 2 - 4 for 20, 30, 40, 50, and 75 microns distance. 
 

Note: The process described above involves the use of capacitive sensors to measure the gap distance. 

In the case which slip gauge is used, the same procedures applied. Slip gauge is used to verify if two 

objects is separated by a certain distance and do not provide the misalignment information. 
 

Result / Data Analysis: 

1. If the stage is able to reach gap size control between 20 to 50 microns, the engineering 

requirement is achieved.  

2. If not, determine the range of the gap size control for the stage using the current feedback control 

system. Improve the design by using a more refined control system or a higher resolution stepper 

motors to perform the tilt and height adjustment. 
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A.I.4. Uniform Heating 

 

Engineering Specifications:  Temperature gradient less than 0.5 K/cm 

 

Components needed to test:  Heated motorized stage with the linear stage and heating filaments 

 

Equipment: Thermometers or thermocouples 
 

Procedure: 

1. Set up the stage and attach the heating filaments onto the heated plate.  

2. Heat the heated plate until 200 °C.  

3. Use thermometers or thermocouples to measure the temperature at least 10 different points along 

the stage.  

4. Record all the measurements and calculate the temperature gradient along the heated plate. 
 

Result / Data Analysis: 

1. If the temperature gradient along the heated plate is less than 0.5K/cm, it is safe to say that the 

plate is being heated uniformly.  

2. If the temperature gradient exceeds the 0.5K/cm requirements, it is recommended to improve the 

design by using a better heating system. 
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A.I.5. Optimum Deposition Rate 

 

Engineering Specifications:  Deposition rate should be 0.1 nm/s 

 

Components needed to test:  linear stage and depositor 

 

Equipment: X-ray Reflectivity (XRR) station and ALD thin film sample 
 

Procedure: 

1. Place a silicon wafer at the center of the heated plate. 

2. Turn on the Polyimide heater and heat the stage up to a controlled temperature of 150 ℃. 

3. Perform parallel alignment of the heated plate and move the heated plate up to the desired gap 

size. 

4. Enable the mass flow controllers and set the desired mass flow rates of TMA 

(Trimethylaluminium), nitrogen and water. 

5. Enable the horizontal linear stage  

6. Record the duration of the atomic layer deposition. 

7. After the deposition is finished, measure the thickness of the deposited aluminum oxide by 

running X-ray reflectivity (XRR) on the thin film sample. 

8. Calculate the deposition rate by dividing the measured thickness value by the duration of 

deposition process. 

9. Compare the calculated deposition rate with the goal deposition rate specified by the sponsor. 

 

 

Result / Data Analysis: 

1. If the deposition rate is greater than 0.1 nm/s, then the linear stage speed is satisfactory. 

2. If the deposition rate is less than 0.1 nm/s, then the linear stage speed has to be increased.  
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A.I.6. Secure substrate 

 

Engineering Specifications:  Substrates secured during operating conditions 

 

Components needed to test:  Silicon wafer, vacuum fitting 

 

Equipment: Force gauge 

 

Procedure: 

1. Wear safety glasses and nitrile gloves during the testing procedure. 

2. Clean the surface of the substrate stage with a clean fabric before placing the silicon wafer on 

top.  

3. Connect a suitable sized tube from the pipe fitting of the substrate stage to the vacuum channel 

provided in the lab. 

4. Hold the substrate stage in an upright position. 

5. Place the silicon wafer using a specialized forceps. 

6. Turn on the vacuum channel. 

7. Prepare the force gauge and exert a force onto the wafer on the side. 

8. Once the wafer moves away from its initial position, record the force value used. 

9. Repeat step 8 for 2 more times. 

10. Calculate the average force value needed to shift the wafer. 

 

Result / Data Analysis: 

1. If the amount of force needed to move the wafer is greater than the inertial force of the wafer, it 

is safe to say that the wafer would not move during horizontal motion. 

2. If the wafer shifts, it is recommended to use a vacuum pump with higher pressure value. 
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Appendix J: Matlab Code  

 

%%%% serial communication between Matlab and Arduino UNO 

% define computer port 

comport = 'COM4'; 

baudrate = 9600; 

arduino = serial(comport, 'BaudRate', baudrate); 

fopen(arduino); 

 

% user input to move stage up to sensors detectable range 

servalue= input('move the heated stage up to 200 micron range:'); 

% clear old sensors data 

delete('reading.txt'); 

% delay time to allow new sensors data to be saved 

pause(2); 

 

% read new sensors data 

[date, time, sensorA, sensorB, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t] = textread('reading.txt','%s %s %f %f %f %f 

%f %f %f %f %f %f %f %f %f %f %f %f %f', 1); 

ABdiff = sensorA - sensorB % can be pos or neg 

abs_ABdiff = abs(ABdiff) % magnitude of height 

 

% runs loop until both sensors are within 200 microns from heated stage 

while (sensorA > 200 || sensorB > 200) 

    delete('reading.txt'); 

    pause(1);       

    if (sensorA > 200) 

        a = 1;   % steppor motor 1 moves up a step 

        fprintf(arduino,a); 

    end    

    if (sensorB > 200) 

        a = 3;   % steppor motor 2 moves up a step 

        fprintf(arduino,a); 

    end 

     

% read new sensors data again to evaluate loop condition 

   [date, time, sensorA, sensorB, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t] = textread('reading.txt','%s %s %f %f %f 

%f %f %f %f %f %f %f %f %f %f %f %f %f %f', 1); 

end 
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% user input to begin first roll control at home position 

servalue= input('first roll control, move the stage to home position:'); 

% define maximum height difference at two points on heated stage 

goalvalue = 3; % 3 microns 

 

% runs loop until goal value is achieved  

while (abs_ABdiff > goalvalue) 

    if (ABdiff > 0) 

        a = 4;   % steppor motor 2 moves down a step 

        fprintf(arduino,a);      

    elseif (ABdiff < 0) 

        a = 2;   % steppor motor 1 moves down a step 

        fprintf(arduino,a);      

    end 

     

    % clear old sensors data 

    delete('reading.txt'); 

    pause(1); 

     

    %read new sensors data 

    [date, time, sensorA, sensorB, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t] = textread('reading.txt','%s %s %f %f %f 

%f %f %f %f %f %f %f %f %f %f %f %f %f %f', 1); 

 

    % evaluate sensors data for loop condition 

    ABdiff = sensorA - sensorB 

    abs_ABdiff = abs(ABdiff) 

end 

 

delete('reading.txt'); 

 

% user input to begin second roll control 

servalue= input('second roll control:'); 

delete('reading.txt');     

pause(5); 

[date, time, sensorA, sensorB, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t] = textread('reading.txt','%s %s %f %f %f %f 

%f %f %f %f %f %f %f %f %f %f %f %f %f', 1); 

ABdiff = sensorA - sensorB 

abs_ABdiff = abs(ABdiff) 

goalvalue = 3; % 3 microns 
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while (abs_ABdiff > goalvalue) 

    if (ABdiff > 0) 

        a = 4;   % steppor motor 2 moves down a step 

        fprintf(arduino,a);         

    elseif (ABdiff < 0) 

        a = 2;   % steppor motor 1 moves down a step 

        fprintf(arduino,a);       

    end    

    delete('reading.txt'); 

    pause(1); 

    [date, time, sensorA, sensorB, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t] = textread('reading.txt','%s %s %f %f %f 

%f %f %f %f %f %f %f %f %f %f %f %f %f %f', 1); 

    ABdiff = sensorA - sensorB 

    abs_ABdiff = abs(ABdiff) 

end 

delete('reading.txt'); 

 

% user input to begin third roll control, at home position again 

servalue= input('third roll control, move the stage to home position:'); 

delete('reading.txt');     

pause(5); 

[date, time, sensorA, sensorB, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t] = textread('reading.txt','%s %s %f %f %f %f 

%f %f %f %f %f %f %f %f %f %f %f %f %f', 1); 

ABdiff = sensorA - sensorB 

abs_ABdiff = abs(ABdiff) 

goalvalue = 3; % 3 microns 

 

while (abs_ABdiff > goalvalue) 

    if (ABdiff > 0) 

        a = 4;   % steppor motor 2 moves down a step 

        fprintf(arduino,a);       

    elseif (ABdiff < 0) 

        a = 2;   % steppor motor 1 moves down a step 

        fprintf(arduino,a); 

    end 

    delete('reading.txt'); 

    pause(1); 

    [date, time, sensorA, sensorB, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t] = textread('reading.txt','%s %s %f %f %f 

%f %f %f %f %f %f %f %f %f %f %f %f %f %f', 1); 

    ABdiff = sensorA - sensorB 
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    abs_ABdiff = abs(ABdiff) 

end 
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Appendix K: Arduino Code 

int command; 

int dir; 

int count; 

int microsteps = 1; //The steps/rev used in the stepper motors 

int dirpin1 = 9; 

int steppin1 = 8; 

int dirpin2 = 11; 

int steppin2 = 10; 

int dirpin3 = 13; 

int steppin3 = 12; 

void setup() {          

  Serial.begin(9600);        

  pinMode(steppin1, OUTPUT);      

  pinMode(dirpin1, OUTPUT); 

  pinMode(steppin2, OUTPUT);      

  pinMode(dirpin2, OUTPUT); 

  pinMode(steppin3, OUTPUT);      

  pinMode(dirpin3, OUTPUT); 

  pinMode(13,OUTPUT); 

  digitalWrite(13, LOW); 

  digitalWrite(steppin1, LOW); 

  digitalWrite(dirpin1, LOW); //LOW = Going Up; High = Going Down 

  digitalWrite(steppin2, LOW); 

  digitalWrite(dirpin2, LOW); 

  digitalWrite(steppin3, LOW); 

  digitalWrite(dirpin3, LOW); } 

void loop() { 

  if  (Serial.available()>0) {     

    command = Serial.read(); 

    if (command == 1) { 

      digitalWrite(dirpin1, LOW); 

      delay(2); 

      for (count = 0; count < microsteps; count++) {        

        digitalWrite(steppin1, HIGH); 

        delay(1);           

        digitalWrite(steppin1, LOW);  

        delay(1); } 

       count = 0; } 

    else if (command == 2) { 

      digitalWrite(dirpin1, HIGH); 

      delay(2); 

      for (count = 0; count < microsteps; count++) {        

        digitalWrite(steppin1, HIGH); 

        delay(1);           

        digitalWrite(steppin1, LOW);  
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        delay(1); } 

       count = 0;} 

    else if (command == 3) { 

      digitalWrite(dirpin2, LOW); 

      delay(2); 

      for (count = 0; count < microsteps; count++) {        

        digitalWrite(steppin2, HIGH); 

        delay(1);           

        digitalWrite(steppin2, LOW);  

        delay(1); } 

       count = 0; } 

    else if (command == 4) { 

      digitalWrite(dirpin2, HIGH); 

      delay(2); 

      for (count = 0; count < microsteps; count++) {        

        digitalWrite(steppin2, HIGH); 

        delay(1);           

        digitalWrite(steppin2, LOW);  

        delay(1); } 

       count = 0; } 

    else if (command == 5) { 

      digitalWrite(dirpin3, LOW); 

      delay(2); 

      for (count = 0; count < microsteps; count++) {        

        digitalWrite(steppin3, HIGH); 

        delay(1);           

        digitalWrite(steppin3, LOW);  

        delay(1); } 

       count = 0; } 

    else if (command == 6) { 

      digitalWrite(dirpin3, HIGH); 

      delay(2); 

      for (count = 0; count < microsteps; count++) {        

        digitalWrite(steppin3, HIGH); 

        delay(1);           

        digitalWrite(steppin3, LOW);  

        delay(1); } 

       count = 0;} } } 
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