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Abstract

In this paper we explore tradeoffs, regarding coding performance, between the thickness
and spacing of the cutset used in Reduced Cutset Coding (RCC) of a Markov random field
image model [10]. Considering MRF models on a square lattice of sites, we show that under
a stationarity condition, increasing the thickness of the cutset reduces coding rate for the
cutset, increasing the spacing between components of the cutset increases the coding rate
of the non-cutset pixels, though the coding rate of the latter is always strictly less than that
of the former. We show that the redundancy of RCC can be decomposed into two terms,
a correlation redundancy due to coding the components of the cutset independently, and a
distribution redundancy due to coding the cutset as a reduced MRF. We provide analysis
of these two sources of redundancy. We present results from numerical simulations with a
homogeneous Ising model that bear out the analytical results. We also present a consistent
estimation algorithm for the moment-matching reduced MRF for the cutset U .

1 Introduction

A Markov random field (MRF) X = {Xi : i ∈ V } is a collection of random variables
on an undirected graph graph G = (V,E), where the nodes1 in V are the random
variable indices and the edges in E represent direct dependencies between the random
variables [14], and is often proposed as a model for many sources of data, such as
images. A family of MRFs on a graph G is defined by a vector statistic t having a
component for each edge and each node. An individual MRF within this family is
indicated by an exponential parameter vector θ whose components correspond to the
components of t. Since there has been relatively little development of algorithms or
theory for the compression of MRFs [2, 7–11, 13], we feel that this is an important
problem to consider. In this paper we explore design tradeoffs of the lossless Reduced
Cutset Coding method introduced in [10].

Reduced Cutset Coding (RCC) is a two-stage algorithm for lossless compression
of an MRF defined on an intractable graph, where tractability is with respect to Be-
lief Propagation (BP) [10, 11, 14]. The method consists, first, of suboptimal lossless
encoding of a cutset U ⊂ V , chosen such that the subgraphs GU and GW induced by
U and W=V \U , respectively, are tractable. The components of XU are encoded with
Arithmetic Coding (AC) using BP to compute a reduced MRF coding distribution. A
reduced MRF for XU is an MRF on the subgraph GU induced by U , with the statistic

An abbreviated version of this paper has been submitted to ISIT 2016.

1We use the terms nodes, sites and pixels interchangeably.



t limited to U , and a possibly different exponential parameter vector θ̃U . Secondly,
conditioned on the encoded cutset XU , the component subsets of the remaining vari-
ables XW are encoded conditioned on their respective boundaries, again using AC,
with BP used to compute the true conditional coding distributions of the variables
in XW with respect to the original MRF.

The rate of this scheme can be expressed as

R =
| U |
| V |

RU +
| W |
| V |

RW , (1)

where RU is the rate in bits per pixel for the cutset U , and likewise RW for the
remainder W . Because GW is tractable for BP, the conditional coding distributions
for the components of XW can be exactly computed. Thus AC will encode each
component on average at its conditional entropy plus an overhead of one or two
bits [15]. Since we have in mind the components of W having many pixels, the
rate RW is well-approximated by 1

|W |H(XW |XU), the ideal coding rate for XW given
XU . Similarly, since U is tractable for BP, the reduced MRF coding distribution
can be computed exactly, and RU is well-approximated by the (normalized) cross
entropy 1

|U |H(XU‖X̃U) between the marginal distribution for XU and the reduced

MRF distribution for the same variables, which we denote X̃U , and which equals the
entropy 1

|U |H(XU) of XU plus the divergence 1
|U |D(XU ||X̃U) between the true and

reduced MRF distributions for XU .
It follows that the rate of this scheme exceeds the rate of an optimal code, which

is
1

|V |
H(XU , XW ) =

|U |
|V |

1

|U |
H(XU) +

|W |
|V |

1

|W |
H(XW |XU),

by the divergence 1
|V |D(XU ||X̃U). For a given cutset U , this divergence is minimized

by choosing the parameter vector θ̃U to be that which causes the mean of the statistic
tU of the reduced MRF X̃U to be the same as the mean of tU on the marginal XU

of the original MRF X [1, 10, 14]. This is called the moment-matching parameter
and denoted θ∗U . In Section 4 we present a consistent algorithm for estimating θ∗U for
a tractable subset U , and as such, for the rest of this paper we let X̃U denote this
moment-matching reduced MRF. Even when divergence is minimized, one normally
expects 1

|U |H(XU) to be larger than 1
|W |H(XW |XU).

In the present paper we consider an MRF on an M × N rectangular lattice of
sites. The statistic t as well as the parameter θ are both row-invariant, and the image
height M is assumed to be very large, so that the sequences of rows of the image
are assumed to form a stationary process. The cutset U consists of k + 1 evenly
spaced nL × N rectangular regions L1, . . . , Lk+1, referred to as lines, so that the k
components of GW are themselves nS ×N rectangular regions S1, . . . , Sk, referred to
as strips. This is an extension of the RCC method of [10], [11], which restricted nL
to be 1.2 Here, M = knS + (k + 1)nL, so that lines and strips alternate, beginning
with a line and ending with a line. This class of cutsets was chosen to simplify both

2Even though now nL can be larger than one, we continue to use the nomenclature of lines.



the algorithm and the analysis. For example, the lines (strips) can be transformed
into a simple chain graph by grouping the pixels in each column of a line (strip) into
one superpixel. If nL and nS are both moderate, for instance at most 10, then BP
can be used to perform exact inference efficiently.

An interesting question is how the cutset parameters nL and nS affect the indi-
vidual rates RU and RW as well as the weightings of RU and RW by the respective
sizes of U and W . First, consider RU . The lines of U are encoded independently with
the respective moment-matching reduced MRF coding distributions. From the sta-
tionarity assumption, these moment-matching reduced MRFs are the same for each
line, and therefore

RU =
1

|U |
H(XU ||X̃U) =

1

nLN
H(XL‖X̃L) =

1

nLN
H(XL) +

1

nLN
D(XL‖X̃L),

where L denotes a block of nL consecutive rows of the image, XL is the subset of the
MRF on L, and X̃L is the same random variables with the moment-matching reduced
MRF distribution. Next, by the Markov property and stationarity,

RW =
1

|W |
H(XW |XU) =

1

nSN
H(XS|X∂S),

where S denotes nS consecutive rows, ∂S denotes the boundary of S, and XS and
X∂S are the respective subsets of random variables on S and ∂S. Therefore, as a
function of line and strip widths, the per-row rate3 is

R̄(nL, nS) =
(k + 1)nL

knS + (k + 1)nL

1

nL
H(XL‖X̃L) +

knS
knS + (k + 1)nL

1

nS
H(XS|X∂S).

When k is large, this is well approximated by

R̄(nL, nS) ≈ nL
nL + nS

1

nL
H(XL‖X̃L) +

nS
nL + nS

1

nS
H(XS|X∂S)

=
nL

nL + nS

1

nL

(
H(XL) +D(XL‖X̃L)

)
+

nS
nL + nS

1

nS
H(XS|X∂S).

Intuitively, as the cutset line width nL increases, RU decreases because both
1
nL
H(XL) and the divergence 1

nL
D(XL||X̃L) would decrease. However, the fraction of

sites nL

nL+nS
encoded at the larger RU rate increases. Hence, there is a potential trade-

off between choosing nL to be large in order to reduce the cutset rate, and choosing
nL to be small in order to reduce the fraction of sites in the cutset. Similarly, as nS
increases, the fraction of pixels nS

nL+nS
encoded at the lower rate increases, but one

intuitively expects R̄W = 1
nS
H(XS|X∂S) to increase. Again, a potential tradeoff.

On the other hand, since the overall rate isR(nL, nS) = 1
|V |H(XV )+ 1

|V |D(XU ||X̃U),

we see that the divergence term 1
|V |D(XU ||X̃U) is the redundancy of the code, and

3The overall rate is the per-row rate divided by the row width N . From now on, we mainly focus
on per-row rate to simplify expressions, and use an overbar to indicate such.



one can therefore focus on what makes it small. Letting ∆(nL, nS)
∆
= 1
|V |D(XU ||X̃U)

denote the redundancy of the code, we will show that the per-row redundancy has the
form

∆̄(nL, nS) =
(k + 1)nL

knS + (k + 1)nL

1

nL
D(XL‖X̃L) +

knS
knS + (k + 1)nL

1

nS
I(XLi

;XLi−1
)

≈ nL
nL + nS

1

nL
D(XL‖X̃L) +

nS
nL + nS

1

nS
I(XLi

;XLi−1
)

where I(XLi
;XLi−1

) is the mutual information between the random variables XLi
on

a line and the random variables XLi−1
on the previous line. Note that in the above

formula for redundancy, which is entirely due to the encoding of the lines, the first
term, which we call the distribution redundancy is due to use of the reduce MRF
coding distribution on each line and the second term, which we call the correlation
redundancy is due the fact that lines are coded independently. Note also that while
the redundancy is entirely due to encoding of the lines, the correlation redundancy
depends on the strip width nS. Moreover, since there is no correlation redundancy in
the encoding of the first line, it is appropriate to think of I(XLi

;XLi−1
) as a penalty

per strip. From this viewpoint, one would expect that increasing nL reduces the
divergence per cutset pixel 1

nL
D(XL||X̃L), but increases the fraction nL

nL+nS
of the

image included in the cutset. Hence, it is not clear what is the best value for nL.
Similarly, one would expect that information I(XLi

;XLi−1
) decreases in nS, while the

fraction of pixels nS

nL+nS
increases in nS. Therefore, it is likewise not clear what nS

should be.
The results of this paper are to show the following results, most of which have been

conjectured above. Under the stationarity assumption, the coding rate RS
nS

of a strip
increases with nS, the coding rate RL

nL
of a line decreases with nL when the moment-

matching reduced MRF is used to encode the lines, and RS
nS

< RL
nL

for all choices
of nS and nL. We also present a consistent estimation algorithm for the moment-
matching parameter θ∗U . We show that the divergence D(XU ||X̃U), equivalently the
redundancy, can be decomposed into a correlation redundancy due to encoding the
lines independently and a distribution redundancy due to approximating the lines as
reduced MRFs, and present analysis of these two sources of redundancy. Numerical
simulations with an Ising model illustrate the propositions.

In the rest of this paper, Section 2 provides background on MRFs and lossless
coding and Section 3 provides an overview Reduced Cutset Coding in the current
setting. Section 4 presents an estimation algorithm for θ∗U , Section 5 establishes the
anticipated tradeoffs between cutset thickness and spacing, and finally, Section 6
discusses numerical simulations with an Ising model.

2 Background

We introduce notation for lossless coding of MRFs.



2.1 Graphs and Markov Random Fields

A path in a graph G = (V,E) is a sequence of nodes, each successive pair of nodes
being joined by an edge in E. A graph is said to be connected if every pair of nodes
i, j ∈ V can be joined by some path, and disconnected otherwise. For any U ⊂ V ,
its boundary ∂U is the set of nodes not in U connected by an edge to a member of
U . The subgraph GU = (U,EU) induced by U is the graph consisting of nodes and
edges contained in U . Likewise, the subgraph GV \U is obtained by removing U and all
edges incident to it from G. If GV \U is disconnected, each maximal connected subset
of GV \U is called a component, and GV \U is simply the collection of the (disjoint)
subgraphs induced by the respective components. A subset U ⊂ V is called a cutset
if GV \U consists of more than one component.

A family of MRFs is specified by an alphabet X and a vector statistic t = (ti, i ∈
V ; ti,j, {i, j} ∈ E) defined on the site values at individual nodes and the endpoints
of edges.4 That is, for a given image x = {xi : i ∈ V }, the function tij : X ×
X −→ R determines the contribution of the pair (xi, xj) to the probability of x,
and similarly for ti : X −→ R. We say that X is an MRF based on t. The entire
family of MRFs based on t is generated by introducing an exponential parameter
vector θ = (θi, i ∈ V ; θij, {i, j} ∈ E) where for each node i, and neighbor j ∈ ∂i, θi
and θij scale the sensitivity of the distribution p(G; x; θ) to the functions ti and tij,
respectively. Specifically, for an MRF X on G based on t with exponential parameter
θ, configuration x has probability p(G; x; θ) given by

p(G; x; θ) = exp{〈θ, t(x)〉 − Φ(θ)}, (2)

where 〈 , 〉 denotes inner product, Φ(θ) is the log-partition function, and the argu-
ments of p(·; ·; ·) indicate, respectively, the graph on which the MRF is defined, the
configuration in question, and the exponential parameter on the graph. For a given
exponential coordinate vector θ, we let µ = µ(θ) denote the expected value of the
statistic t under the MRF induced by θ, and we refer to µ as the moment of the MRF.
The MRF distribution over all configurations is denoted p(G;X; θ), and the entropy
of an MRF is denoted H(G;X; θ).

The conditional probability of a configuration xW on subset W ⊂ V given the
values xU on another subset U ⊂ V is denoted p(G; xW |xU ; θ). It is straightfor-
ward to check that p(G; xW |x∂W ; θ) = p(G; xW |xV \W ; θ) for all W , xW , and x∂W .
This is the Markov Property. The conditional distributions of random subfield XW

given a specific configuration x∂W , or on the random subfield X∂W , are denoted
p(G;XW |x∂W ; θ) and p(G;XW |X∂W ; θ), respectively. Likewise, H(G;XW |x∂W ; θ) and
H(G;XW |X∂W ; θ) are the respective conditional entropies of XW given a specific con-
figuration x∂W or the random subfield X∂W .

For subset U , the marginal probability distribution on XU is denoted p(G;XU ; θ),
where p(G; xU ; θ) denotes the marginal probability of configuration xU . The reduced
MRF distribution for XU on GU based on statistic tU with exponential parameter
θ̃U is denoted p(GU ;XU ; θ̃U) and has the same form as in (2), where ΦU(θ̃U) denotes

4Properly, this is a pairwise MRF. Generalizations to other MRFs are straightforward.



(a) (b)

Figure 1: (a) AC encoding of a lineXL with reduced MRF P (GL;XL; θ̃L) coding distribution
using Belief Propagation, and (b) AC encoding of a strip XS conditioned on its boundary
X∂S with conditional distribution p(G;XS |X∂S ; θ) using Belief Propagation.

the log-partition function for the reduced MRF. Similarly, p(GU ; xU ; θ̃U) denotes the
probability of configurations xU under the reduced MRF distribution. The statis-
tic tU is inherited from the original statistic t. The marginal entropy of XU is de-
noted H(G;XU ; θ) while the entropy of a reduced MRF p(GU ;XU ; θ̃U) is denoted
H(GU ;XU ; θ̃U).

2.2 Belief Propagation and Lossless Coding

In general, ones uses Belief Propagation (BP) [14] to compute p(G; xU ; θ) for a con-
figuration xU . Since the inner product 〈tU(xU), θU〉 can be computed directly, BP is
used to compute the log-partition function Φ(θ), and more generally, to marginalize
over XV \U . If G has no cycles, then p(G; xU ; θ) can be computed with complexity
linear in the number of nodes in V . If G has cycles, one can compute p(G; xU ; θ) by
grouping subsets of V into supernodes such that the new graph is acyclic [14]. In
this case, complexity is exponential in the size of the largest supernode. A graph is
said to be tractable if either G has no cycles or if G can be clustered into an acyclic
graph where the size of the largest supernode is moderate. Similarly, a subset U is
said to be tractable if GU is tractable, in which case p(GU ; xU ; θ̃U) can be computed
for the reduced MRF on GU . Also, for tractable subset W , p(G; xW |x∂W ; θ) can be
computed for configurations xW and x∂W .

For the purposes of this paper it suffices to say that lossless compression with an
optimal encoder involves computation of a coding distribution. For a tractable subset
U , if configuration xU is losslessly compressed with reduced MRF coding distribu-
tion p(GU ;XU ; θ̃U), then the average number of bits produced is the cross entropy
H(G;XU ; θ||GU ;XU ; θ̃U) between the marginal distribution p(G;XU ; θ) and the re-



duced MRF coding distribution p(GU ;XU ; θ̃U) for XU , defined as

H(G;XU ; θ||GU ;XU ; θ̃U) = H(G;XU ; θ) +D(p(G;XU ; θ)||p(GU ;XU ; θ̃U))

whereD(p(G;XU ; θ)||p(GU ;XU ; θ̃U)) is the divergence from p(G;XU ; θ) to p(GU ;XU ; θ̃U)
and is the redundancy in the code [4].

We showed in [10] that the above divergence is minimized at θ∗U , the exponential
parameter on GU such that the corresponding moment µ∗U is equal to the moment
subvector µU under the original MRF p(G;X; θ). The distribution of the reduced
MRF p(GU ;XU ; θ∗U) is called the moment-matching reduced MRF distribution for
XU , denoted X̃U . When the moment-matching reduced MRF p(GU ;XU ; θ∗U) is used
as the coding distribution to encode XU , the cross entropy is in fact the entropy
H(GU ;XU ; θ∗U) of the moment-matching reduced MRF [10].

For a tractable subset W , if configuration xW is encoded conditioned on x∂W
using coding distribution p(G;XW |x∂W ; θ), then the average number of bits produced
is H(G;XW |X∂W ; θ). Therefore, encoding xW conditioned on x∂W is optimal, i.e.,
there is no redundancy.

In [10], Arithmetic Coding (AC) was proposed as the optimal encoder. Figure 1
illustrates the encoding of a line and a strip. The mathematical details of using AC
in the encoding of an MRF are given in [8], [10], and [11], specifically in Chapter VI
of [11].

3 Reduced Cutset Coding

In general, since the cutset U consists of disjoint lines, the entropy of the moment-
matching reduced MRF on GU is actually the sum

∑
Li
H(GLi

;XLi
; θ∗Li

) of the en-
tropies of the reduced MRFs on the individual lines. Similarly, the conditional entropy
of XW given X∂W is the sum

∑
Si
H(G;XSi

|X∂Si
; θ) of the conditional entropies of

the individuals strips given their respective boundaries.
In the present paper, we simplify this by considering vertically homogeneous pa-

rameters for the MRF, i.e., the components of the statistic t and the exponential
parameter θ do not vary vertically within the image. Furthermore, focusing only on
the middle M ′ = (k′ + 1)nL + k′nS ≈ M/2 rows of V , therefore excluding boundary
effects, the image will be roughly stationary in the vertical direction. We let Bn be
an n×N rectangular subset of sites.

The random field XBnL
on a line is encoded with reduced MRF coding distribu-

tion p(GnL
;XBnL

; θ∗BnL
). Normalizing by the number of pixels, the per-row rate for

encoding a line is then

R̄L
nL

=
1

nL
H(G;XBnL

; θ||GnL
;XBnL

; θ∗BnL
)

=
1

nL
H(GBnL

;XBnL
; θ∗BnL

).

The random field XBnS
on a strip is encoded conditioned on X∂BnS

with coding



distribution p(G;XBnS
|X∂BnS

; θ). The per-row rate for encoding a strip is then

R̄S
nS

=
1

nS
H(G;XBnS

| X∂BnS
; θ).

We let R̄nS ,nL
denote the total per-row rate of RCC with cutset parameters nS

and nL, given by

R̄(nS, nL) =
(k + 1)nL

(k + 1)nL + knS
R̄L
nL

+
knS

(k + 1)nL + knS
R̄S
nS
.

Assuming further that M ′ is very large relative to nL and nS, so that k is very large,
this rate is well-approximated by

R̄(nS, nL) ≈ nL
nL + nS

R̄L
nL

+
nS

nL + nS
R̄S
nS
. (3)

We now see that the performance of RCC with cutset parameters nS and nL is
characterized by the rates R̄L

nL
and R̄S

nS
, and the fractions nL

nL+nS
and nS

nL+nS
.

4 Moment-matching θ∗U

Recall from the previous section that the cross-entropy H(p(G;XU ; θ)||p(GU ;XU ; θ̃U)
between the marginal distribution p(G;XU ; θ) of subset XU within an MRF on G with
statistic t and a reduced MRF p(GU ;XU ; θ̃U) on GU with statistic tU is minimized
by the parameter θ∗U such that the expected value Eθ∗U [tU(XU)] of the statistic tU
in the reduced MRF equals the expected value (Eθ[t(X)])U of the statistic t under
the original MRF on the subset U , referred to as the moment-matching parameter.
We will estimate θ∗U from n observations x

(1)
U , . . . ,x

(n)
U on U , by seeking an θ̂nU that

minimizes an empirical version of the cross entropy, at least approximately. First,
some background.

We let Θ = {θ} denote the set of parameter vectors for MRFs on G based on the
statistic t. We restrict attention to the case where Θ is the subset of R|V |+|E| of θ’s
with positive components. In this case, due to the openness of Θ, the family of MRFs
based on t is said to be regular [14]. For parameter θ ∈ Θ, the function

Λ(θ)
∆
= Eθ[t(X)]
∆
= µ

maps θ to µ, the expected value of t under the MRF induced by θ, referred to as
the moment of the MRF. The set M = {µ = Λ(θ) : θ ∈ Θ} is the set of achievable
moments for MRFs on G based on t. We assume that the statistic t is minimal in
that the components of t are affinely independent, meaning that the components of
t(x) do not sum to a constant for all configurations x. In this case, the function Λ(·)
is one-to-one [14]. Then, for µ ∈M, the inverse function

Λ−1(µ) = θ



is well-defined. Moreover, µ is a dual parameter to θ, in that the MRF p(G;X; θ) can
alternatively be expressed as p(G;X;µ). For the MRF induced by parameter θ, the
subvector of moments on the set U is given by

ΛU(θ) = µU

which can be seen as the restriction of Λ(·) to the set U .
For reduced MRFs on GU based on statistic tU , Θ̃U denotes the associated set of

exponential parameters. Now, consider the function

Λ̃U(θ̃U) = µ̃U ,

which maps a parameter θ̃U ∈ Θ̃U to the corresponding moment µ̃U for the reduced
MRF p(GU ;XU ; θ̃U) on GU . Likewise, M̃U = {µ̃U = Λ̃U(µ̃U) : θ̃U ∈ Θ̃U} denotes the
set of achievable moments for reduced MRFs on GU . Since we have assumed that the
statistic t for the original family of MRFs on G is minimal, the statistic tU for the
family of reduced MRFs on GU is also minimal, and the inverse map Λ̃−1

U (µ̃U) = θ̃U
is well-defined. Again, a reduced MRF p(GU ;XU ; θ̃U) can also be parameterized as
p(GU ;XU ; µ̃U).

Given a parameter θ for an MRF p(G;X; θ), a subset U , and a sequence of obser-

vations x
(1)
U , . . . ,x

(n)
U on U , we define the empirical moment of p(G;XU ; θ) as

µ̂nU
∆
=

1

n

n∑
i=1

tU(x
(i)
U ).

While µU = ΛU(θ) is always contained in M̃U , it is not necessarily the case that
the empirical moment µ̂nU is contained in M̃U . However, even if µ̂nU is not in M̃U ,
µ̂nU is still a limit point of M̃U [14], meaning that for every ε > 0, there is an ε-ball
containing µ̂nU that contains infinitely many points of M̃U . Moreover, as stated in
the following proposition, as the number of observations n approaches∞, not only is
µ̂nU in M̃U , but µ̂nU converges to µU .

Proposition 4.1 The empirical moment µ̂nU converges in probability to µU , i.e., for
any ε > 0,

Pr
(∣∣µ̂nU − µU ∣∣ ≤ ε

)
→ 1, as n→∞. (4)

Proof To prove the proposition, one should recall that on a finite graph G, there
does not exist a phase transition [5], and therefore, there is a unique MRF on G for
the specified statistic t and exponential parameter θ. It follows that the sequence
x

(1)
U , . . . ,x

(n)
U , . . . is not only stationary but also ergodic, from which the proposition

follows [6]. This completes the proof. �



Figure 2: Block diagram for finding the moment-matching parameter θ∗U for encoding XU .

We now discuss the empirical version of cross entropy that we will minimize as a
surrogate for cross entropy. From a sequence of observations x

(1)
U , . . . ,x

(n)
U , we define

the empirical cross entropy

Hn
U(µ̂nU ||θ̃U)

∆
= − 1

n

n∑
i=1

log p(GU ; x
(i)
U ; θ̃U)

= −
∑
xU

f(xU : x
(1)
U , . . . ,x

(n)
U ) log p(GU ; xU ; θ̃U)

between the empirical distribution f(xU : x
(1)
U , . . . ,x

(n)
U ) generated by x

(1)
U , . . . ,x

(n)
U

and the reduced MRF p(GU ;XU ; θ̃U) induced by a candidate parameter θ̃U . That it
makes sense to consider the empirical cross entropy to be a function of the empirical
moment µ̂nU is due to the proposition presented later. If U is a tractable subset, then
the probabilities in the summation can be efficiently computed.

Now, our estimate for the moment-matching parameter θ∗U will be the θ̂nU that
minimizes this empirical cross entropy, at least approximately. It is well-known that
ΦU(θ̃U) is convex in θ̃U , and, as follows from the following theorem, so is the empirical
cross-entropy Hn

U(µ̂nU ||θ̃U). If, as we have assumed, the components of tU are affinely
independent, then ΦU(θ̃U) and hence Hn

U(µ̂nU ||θ̃U) is strictly convex. Therefore, either
Hn
U(µ̂nU ||θ̃U) has a unique minimum at a θ̃U at which the gradient of Hn

U(µ̂nU ||θ̃U) is
zero, or since Θ̃U is open, Hn

U(µ̂nU ||θ̃U) does not have a minimum but approaches an
infimum at a limit point of Θ̃U . Moreover, from the following theorem and the fact
that for any µ̂nU there exists θ̃U such that Λ̃U(θ̃U) is arbitrarily close to µ̂nU , we can
find θ̃U such that the gradient is arbitrarily small and such θ̃U must come arbitrarily
close to attaining the infimum of Hn

U(µ̂nU ||θ̃U). In either case, our “moment-matching”

estimate θ̂nU will be a θ̃U that induces a very small gradient.



Proposition 4.2

Hn
U(µ̂nU ||θ̃U) = ΦU(θ̃U)− 〈µ̂nU , θ̃U〉

∇Hn
U(µ̂nU ||θ̃U) = µ̃U − µ̂nU

= Λ̃U(θ̃U)− µ̂nU ,

where the gradient is with respect to θ̃U .

Proof Using relation (2) for the reduced MRF on GU with parameter θ̃U , we get

Hn
U(µ̂nU ||θ̃U) =

1

n

n∑
i=1

[
ΦU(θ̃U)−

〈
t(x

(i)
U ), θ̃U

〉]
= ΦU(θ̃U)−

〈 n∑
i=1

t(x
(i)
U ), θ̃U

〉
= ΦU(θ̃U)−

〈
µ̂nU , θ̃U

〉
It is well-known that ∇ΦU(θ̃U) = µ̃U [14]. Then, taking the gradient of Hn

U(µ̂nU ||θ̃U)
yields

∇Hn
U(µ̂nU ||θ̃U) = ∇ 1

n

n∑
i=1

[
ΦU(θ̃U)−

〈
tU(x

(i)
U ), θ̃U

〉]
= ∇ΦU(θ̃U)−∇ 1

n

n∑
i=1

〈
tU(x

(i)
U ), θ̃U

〉
= ∇ΦU(θ̃U)−∇

〈 1

n

n∑
i=1

tU(x
(i)
U ), θ̃U

〉
= µ̃U −

1

n

n∑
i=1

tU(x
(i)
U )

= µ̃U − µ̂nU .

This completes the proof. �

We now describe how a gradient descent algorithm can be used to find an estimate
θ̂nU of θ∗U at which the gradient of Hn

U(µ̂nU ||θ̃U) is arbitrarily small. From the sequence

x
(1)
U , . . . ,x

(n)
U , we first compute the empirical moment µ̂nU = 1

n

∑n
i=1 tU(x

(i)
U ). Then,

given a candidate parameter θ̃U , use Belief Propagation to compute the negative
log-likelihood − log p(GU ; x

(i)
U ; θ̃U) of the configuration x(i) under the reduced MRF

p(GU ;XU ; θ̃U), for each i = 1, . . . , n. Additionally, we compute the moment µ̃U of the
reduced MRF induced by the candidate parameter θ̃U , which like the probabilities,
can be computed due to tractability of U . We then compute the objective function



Hn
U(µ̂nU ||θ̃U) = − 1

n

∑n
i=1 log p(GU ; x

(i)
U ; θ̃U) and the gradient ∇Hn

U(µ̂nU ||θ̃U) = µ̃U − µ̂nU .

Finally, given a tolerance εµ, if ‖∇Hn
U(µ̂nU ||θ̃U)‖ < εµ, the algorithm terminates and

we set θ̂nU = θ̃U which corresponds to the estimated moment ˆ̂µnU = Λ̃U(θ̂nU) at which

the algorithm is terminated. Note that by Proposition 4.2, the estimated moment ˆ̂µnU
is within εµ of µ̂nU . If ‖∇Hn

U(µ̂nU ||θ̃U)‖ ≥ εµ, we determine a new candidate parameter
θ̃U using a standard gradient descent method [3] and repeat the above steps. This is
illustrated in Figure 2.

Proposition 4.3 The estimate θ̂nU is consistent, i.e., for any ε > 0,

Pr
(∣∣θ̂nU − θ∗U ∣∣ ≤ ε

)
→ 1, as n→∞. (5)

Proof Let B(θ∗U , εθ) be the εθ-ball centered at θ∗U . Assume without loss of generality
that B(θ∗U , εθ) ⊂ Θ̃U . Then, let εµ be the largest tolerance around µU such that the
εµ-ball B(µU , εµ) centered at µU is contained in Λ̃U(B(θ∗U , εθ)). It follows that

Pr
(∣∣θ̂nU − θ∗U ∣∣ ≤ εθ

)
= Pr

(
ˆ̂µnU ∈ Λ̃U(B(θ∗U , εθ))

)
≥ Pr

(
ˆ̂µnU ∈ B(µU , εµ)

)
= Pr

(∣∣ ˆ̂µnU − µU ∣∣ ≤ εµ
)
.

Now let ε′µ = εµ/2 be the tolerance on ‖∇Hn
U(µ̂nU ||θ̃U)‖ in the gradient descent

algorithm. This means that | ˆ̂µnU − µ̂nU | ≤ ε′µ, which in turn implies that

Pr
(∣∣ ˆ̂µnU − µU ∣∣ ≤ εµ

)
= Pr

(∣∣µ̂nU − µU ∣∣ ≤ ε′µ
)
.

Using Proposition 4.1, we can now say that for an arbitrary tolerance δ > 0, there
exists N such that if the number of observations n is greater than or equal to N , then

Pr
(∣∣θ̂nU − θ∗U ∣∣ ≤ εθ

)
≥ Pr

(∣∣µ̂nU − µU ∣∣ ≤ ε′µ
)

≥ 1− δ.

This completes the proof. �

5 Tradeoffs between Lines and Strips

The following proposition shows that, as intuited earlier, strip rate increases with
strip width.

Proposition 5.1

R̄S
n+1 > R̄S

n .



Lemma 5.2 Let r1 denote the first row of rectangular region Bn of sites of height n.
Then,

H(G;Xr1|X∂Bn ; θ) < H(G;Xr1|X∂Bn+1 ; θ). (6)

Proof Note Bn+1 consists of Bn and an additional row rn+1, which is part of the
boundary ofBn. By the Markov property, H(G;Xr1|X∂Bn ; θ) = H(G;Xr1|X∂Bn+1 , Xrn+1 ; θ).
That is, conditioning on ∂Bn+1 and rn+1 is the same as conditioning on ∂Bn. Finally,
H(G;Xr1 |X∂Bn+1 , Xrn+1 ; θ) < H(G;Xr1|X∂Bn+1 ; θ) as the left side has more condi-
tioning. In summary

H(G;Xr1|X∂Bn ; θ) = H(G;Xr1 |X∂Bn+1 , Xrn+1 ; θ)

< H(G;Xr1|X∂Bn+1 ; θ).

This completes the proof of Lemma 5.2. �

We continue with the proof of Proposition 5.1.

Proof By direct calculation we have for a strip of height n+ 1 that

R̄S
n+1 =

1

(n+ 1)
H(G;XBn+1|X∂Bn+1 ; θ)

=
1

(n+ 1)
H(G;XBn|X∂Bn ; θ) +

1

(n+ 1)
H(G;Xr1|X∂Bn+1 ; θ), (7)

and for a strip of height n,

R̄S
n =

1

n
H(G;XBn|X∂Bn ; θ)

=
n+ 1

n

1

(n+ 1)
H(G;XBn|X∂Bn ; θ)

=
1

(n+ 1)
H(G;XBn|X∂Bn ; θ) +

1

n(n+ 1)
H(G;XBn|X∂Bn ; θ)

=
1

(n+ 1)
H(G;XBn|X∂Bn ; θ) +

1

n

n∑
i=1

1

(n+ 1)
H(G;Xri |X∂Bn−i+1

; θ)

<
1

(n+ 1)
H(G;XBn|X∂Bn ; θ) +

1

(n+ 1)
H(G;Xr1|X∂Bn+1 ; θ)

= R̄S
n+1

by (7) and Lemma 5.2. This completes the proof. �

Likewise, the next proposition shows that, as supposed earlier, line rate decreases
with line width.



Proposition 5.3

R̄L
n+1 < R̄L

n .

Proof First we note that reducing XBn+1 to X̃Bn+1 by matching moments and further

reducing the XBn marginal of X̃Bn+1 to X̃Bn by matching moments results in the

same reduced MRF on GBn as would reducing the original XBn to X̃Bn by matching
moments. Let θ∗n be the moment matching parameter for X̃Bn .

R̄l
n+1 =

1

n+ 1
H(GBn+1 ;XBn+1 ; θ

∗
n+1)

=
1

n+ 1

[
H(GBn+1 ;XBn ; θ∗n+1) +H(GBn+1 ;Xrn+1|XBn ; θ∗n+1)

]
<

1

n+ 1

[
H(GBn+1 ;XBn ; θ∗n+1) +

1

n
H(GBn+1 ;XBn ; θ∗n+1)

]
=

1

n
H(GBn+1 ;XBn ; θ∗n+1)

<
1

n
H(GBn ;XBn ; θ∗n)

= R̄L
n ,

where the second inequality is from the maximum entropy property of MRFs. This
completes the proof �

Proposition 5.4 For all strip widths nS and line widths nL,

R̄L
nL

> R̄S
nS
.

Proof We prove the proposition by cases: nS = nL, nS > nL, and nS < nL.
First assume nS = nL = n. Then,

R̄S
nS

=
1

n
H(G;XBn|X∂Bn ; θ)

≤ 1

n
H(G;XBn ; θ)

<
1

n
H(GBn ;XBn ; θ∗n) (8)

= R̄L
nL
,



where (8) follows from the maximum entropy property of MRFs. Next, assume nS >
nL. Then,

R̄S
nS

=
1

nS
H(G;XBn|X∂Bn ; θ)

≤ 1

nS
H(G;XBn ; θ)

<
1

nS
H(GBn ;XBnS

; θ∗nS
) (9)

= R̄L
nS

< R̄L
nL
,

where (9) follows from the maximum entropy property of MRFs. Finally, assume
nS < nL. Then,

R̄S
nS

< R̄S
nL

=
1

nL
H(G;XBnL

|X∂BnL
; θ)

≤ 1

nL
H(G;XBnL

; θ)

<
1

nL
H(GBnL

;XBnL
; θ∗nL

) (10)

= R̄L
nL
,

where (10) follows from the maximum entropy property of MRFs. This completes
the proof. �

Together these three propositions indicate that R̄L
nL

and R̄S
nS

always behave as in
Figure 3 (a), which as discussed in the next section, plots them for a specific case.
They also illustrate the potential tradeoffs between line width nL and strip width nS.
Specifically, by increasing nL the line rate R̄L

nL
decreases, though the fraction nL

nS+nL
of

pixels encoded at the higher rate increases, while increasing nS increases the fraction
nS

nL+nS
of pixels encoded at the lower rate, though the strip rate R̄S

nS
increases.

In addition to considering the effect of nS and nL on rate, we can look at their

influence on the rate redundancy ∆(nS, nL)
∆
= 1
|V |D(XU ||X̃U), which is entirely due

to encoding the lines independently and as moment-matching reduced MRFs. We
use the shorthand notation X̃BnL

to indicate the moment-matching reduced MRF on

BnL
and D(XBnL

||X̃BnL
) to denote the divergence between the marginal and moment-

matching reduced MRF distributions for XBnL
.

Proposition 5.5 The per-row rate redundancy due to coding XU ∼ p(G;XU ; θ) as a
reduced MRF XU ∼ p(GU ;XU : θ∗U) is

∆̄(nS, nL) =
nS

nS + nL
I(Xr1 ;Xr−nS

) +
nL

nS + nL
D(XBnL

||X̃BnL
),

where r1 is the 1st row of a line, and r−nS
is the last row of the previous line.



Proof To prove the proposition, consider a joint distribution p(x1, . . . , xN) on N
variables, where we have in mind each variable representing one of the N = k + 1
lines. By approximating p(x1, . . . , xN) with p̃(x1, . . . , xN) =

∏N
i=1 p̃(xi) we can see

that the divergence between p and p̃ is

D(p||p̃) =
∑

x1,...,xN

p(x1, . . . , xN) log
p(x1, . . . , xN)

p̃(x1) · · · p̃(xN)

= −
∑

x1,...,xN

p(x1, . . . , xN) log p̃(x1) · · · p̃(xN)−H(X1, . . . , XN)

=
N∑
i=1

∑
xi

−p(xi) log p̃(xi)−H(X1, . . . , XN)

=
N∑
i=1

[H(Xi) +D(p(Xi)||p̃(Xi))]−H(X1, . . . , XN)

=
N∑
i=1

[H(Xi)−H(Xi|Xi−1, . . . , X1) +D(p(Xi)||p̃(Xi))]

=
N∑
i=2

I(Xi;Xi−1) +
N∑
i=1

D(p(Xi)||p̃(Xi)).

Applying the stationarity assumption, weighting the last two terms by the (approxi-
mate) fractions in (3), and substituting N = k + 1 and Xi = XBnL

yields

∆̄(nS, nL) =
nS

nS + nL
I(XBnL

;XBnL
,−nS

) +
nL

nS + nL
D(XBnL

||X̃BnL
),

where I(XBnL
;XBnL

,−nS
) is the mutual information between two nL×N rectangular

blocks of sites separated by a nS×N rectangular block of sites. To finish the proof, it
suffices to consider I(X1, X2;Y1, Y2) where X1 −X2 − Y1 − Y2 form a Markov Chain.
In this case,

I(X1, X2;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2)

= H(Y1) +H(Y2|Y1)−H(Y1|X1, X2)−H(Y2|Y1, X1, X2)

= H(Y1) +H(Y2|Y1)−H(Y1|X2)−H(Y2|Y1)

= H(Y1)−H(Y1|X2)

= I(Y1;X2).

Making the appropriate substitutions yields

∆̄(nS, nL) =
nS

nS + nL
I(Xr1 ;Xr−nS

) +
nL

nS + nL
D(XBnL

||X̃BnL
),

where I(Xr1 ;Xr−nS
) is the mutual information between the 1st row of a line and the

last row of the previous line. This completes the proof. �



This proposition shows specifically how the redundancy of RCC has two compo-
nents: a correlation redundancy I(Xr1 ;Xr−nS

) due to encoding the lines independently

of one another, and a distribution redundancy D(XBnL
||X̃BnL

) due to approximating
the lines as moment matching reduced MRFs.

Proposition 5.6 I(Xr1 ;Xr−nS
) is decreasing in nS.

Proof We let Xri,1 denote the 1st row of the i-th line and Xri−1,nL
and Xri−1,nL−1

denote, respectively, the nL-th and (nL − 1)-st lines of the (i− 1)-st line.

I(Xr1 ;Xr−nS
) = H(G; ri,1; θ)−H(G;Xri,1|Xri−1,nL

; θ)

= H(G; ri,1; θ)−H(G;Xri,1|Xri−1,nL
, Xri−1,nL−1

; θ) (11)

> H(G; ri,1; θ)−H(G;Xri,1|Xri−1,nL−1
; θ) (12)

= I(Xr1 ;Xr−(nS+1)
),

where (11) is due to the Markov property and (12) is due to removing conditioning.
This completes the proof. �

To analyze the distribution redundancy, we let ˜̃XBn be the marginal distribution of
XBn−1 as a subset of the moment-matching reduced MRF X̃Bnon Bn. More generally,
XBn decorated with k “tildes” indicates the marginal distribution of XBn−k+1

as a

subset of the moment-matching reduced MRF X̃Bn on Bn. Moreover, we let θ∗n be
shorthand for θ∗Bn

. We then have the following recursive expression for the distribution
redundancy.

Proposition 5.7

D(XBnL
||X̃BnL

) = D(XBnL−1||X̃BnL−1)−D( ˜̃XBnL
||X̃BnL−1)

+H(GBnL
; rnL
|rnL−1; θ∗nL

)−H(G; rnL
|rnL−1; θ),

where D( ˜̃XBnL
||X̃BnL−1) is the divergence between the marginal distribution of XBnL−1

as a subfield of X̃BnL
and the reduced MRF X̃BnL−1 on BnL−1, and where H(·; rn|rn−1; ·)

is the conditional entropy of row rn condition on row rn−1 for the specified graph and
parameter vector.

Proof We prove the proposition by using the fact that the divergence D(XBnL
||X̃BnL

)
between the marginal distribution of XBnL

and the reduced MRF for XBnL
can be



expressed as the difference between the entropy of the latter and that of the former.
Specifically,

D(XBnL
||X̃BnL

) = H(GBnL
;XBnL

; θ∗nL
)−H(G;XBnL

; θ)

= H(GBnL
;XBnL−1 ; θ

∗
nL

)−H(G;XBnL−1 ; θ)

+H(GBnL
; rnL
|rnL−1; θ∗nL

)−H(G; rnL
|rnL−1; θ)

= H(GBnL−1 ;XBnL−1 ; θ
∗
nL−1)−D( ˜̃XBnL

||X̃BnL−1)

−H(G;XBnL−1 ; θ) +H(GBnL
; rnL
|rnL−1; θ∗nL

)−H(G; rnL
|rnL−1; θ)

= H(GBnL−1 ;XBnL−1 ; θ
∗
nL−1)−H(G;XBnL−1 ; θ)

−D( ˜̃XBnL
||X̃BnL−1) +H(GBnL

; rnL
|rnL−1; θ∗nL

)−H(G; rnL
|rnL−1; θ)

= D(XBnL−1||X̃BnL−1)−D( ˜̃XBnL
||X̃BnL−1)

+H(GBnL
; rnL
|rnL−1; θ∗nL

)−H(G; rnL
|rnL−1; θ).

This completes the proof. �

Furthermore, the divergence D( ˜̃XBnL−1||X̃BnL−1) has the following recursive rela-
tionship.

Proposition 5.8

D( ˜̃XBn−k+1
||X̃Bn−k

) = D(
˜̃̃
XBn−k+1

||X̃Bn−k−1
)−D( ˜̃XBn−k

||X̃Bn−k−1
)

+H(GBn−k
; rn−k|rn−k−1; θ∗n−k)−H(GBn−k+1

; rn−k|rn−k−1; θ∗n−k+1)

where D(
˜̃̃
XBn−k+1

||X̃Bn−k−1
) is the divergence between the marginal distribution of

XBn−k−1
as a subfield of X̃Bn−k+1

and the reduced MRF X̃Bn−k−1
on Bn−k−1.

Proof

D( ˜̃XBn−k+1
||X̃Bn−k

) = H(GBn−k
;XBn−k

; θ∗n−k)−H(GBn−k+1
;XBn−k

; θ∗n−k+1)

= H(GBn−k
;XBn−k−1

; θ∗n−k)−H(GBn−k+1
;XBn−k−1

; θ∗n−k+1)

+H(GBn−k
; rn−k|rn−k−1; θ∗n−k)−H(GBn−k+1

; rn−k|rn−k−1; θ∗n−k+1)

= H(GBn−k−1
;XBn−k−1

; θ∗n−k−1)−D( ˜̃Xn−k||X̃n−k−1)

−H(GBn−k+1
;XBn−k−1

; θ∗n−k+1) +H(GBn−k
; rn−k|rn−k−1; θ∗n−k)

−H(GBn−k+1
; rn−k|rn−k−1; θ∗n−k+1)

= D(
˜̃̃
Xn−k+1||X̃n−k−1)−D( ˜̃Xn−k||X̃n−k−1)

+H(GBn−k
; rn−k|rn−k−1; θ∗n−k)−H(GBn−k+1

; rn−k|rn−k−1; θ∗n−k+1).

This completes the proof. �



(a) (b)

(c) (d)

Figure 3: Rate (a) for lines (blue) and strips (red); (b) as a function of nL for nS = 1; (c)
as a function of n = nS = nL; and (d) for nS + nL = 8.

Intuitively we would expect the term D(XBnL
||X̃BnL

) to decrease in nL, as this
divergence is zero when nL = M and indeed we conjecture that this is the case. At
the very least, we expect 1

nL
D(XBnL

||X̃BnL
) to decrease in nL.

We now consider the effects of changing nS and nL on redundancy, as expressed in
Proposition 5.5. Increasing nS decreases distribution redundancy through the factor
nL

nS+nL
. It is not so clear what happens to the correlation redundancy, as increasing nS

increases the fraction nS

nS+nL
, while decreasing the information I(Xr1 ;Xr−nS

). How-
ever, if we keep nS and nL proportional to one another, as nS increases, the fraction
stays the same, the correlation redundancy decreases, and assuming the conjecture,
so too does distribution redundancy.

Similarly, increasing nL decreases the correlation redundancy through the factor
nS

nS+nL
. Even assuming the above conjecture, it is not clear what happens to the distri-

bution redundancy, as increasing nL increases the fraction nL

nS+nL
, while decreasing the

divergence D(XBnL
||X̃BnL

). However, as mentioned above, if nS and nL increase pro-
portionally to one another, then the fraction stays the same and both the correlation
and distribution redundancies decrease in nL.

The complexity of this coding scheme can be expressed as

CnS ,nL
=

nS
nS + nL

|X |nScS +
nL

nS + nL
|X |nLcL

where |X | denotes the number of elements of X , and cS and cL are factors relating
the complexity of encoding a strip versus a line. For example, numerical simulations
show that for nS = nL, the run-time involved in encoding a strip is a little higher



than that for a line, which is due to additional operations for conditioning on the
boundary of a strip. However, the difference becomes negligible as nS and nL become
larger. As a result, the complexity CnS ,nL

is dominated by max{nS, nL}. Given a
constraint max{nS, nL} ≤ n∗ on the maximum exponent in the complexity, since
both Proposition 5.6 and our conjecture indicate choosing nS and nL each to be as
large as possible, we propose setting nS = nL.

6 Example: Homogeneous Ising Model

We simulated a homogeneous Ising model with edge parameter θij = 0.4 and node
parameter θi = 0 using Gibbs sampling. To encode the lines with line width nL, we
approximate the moment-matching parameter θ∗nL

by minimizing the empirical cross
entropy

HnK
nL

(θ̃nL
) =

1

nK

∑
Li

n∑
j=1

− log p(GLi
; x

(j)
Li

; θ̃nL
).

Note that even for a homogeneous MRF, the moment-matching parameter for a subset
U will in general not be homogeneous.

The line rate R̄L
nL

is approximated by

R̂L
nL

=
1

nK

∑
Li

n∑
j=1

− log p(GLi
; x

(j)
Li

; θ∗nL
).

Similarly, R̄S
nS

is approximated by

R̂S
nS

=
1

nK

∑
Si

n∑
j=1

− log p(G; x
(j)
Si
|x(j)
∂Si

; θ).

Figure 3(a) shows R̂L
nL

and R̂L
nS

. As predicted by Propositions 5.1, 5.3, and 5.4,

R̂S
nS

is increasing in nS, R̂L
nL

is decreasing in nL, and R̂S
nS
< R̂L

nL
for all nS, nL. We

computed R̂nS ,nL
from R̂L

nL
and R̂L

nS
using (3), and as seen in Figure 3(b), we found

that R̂nS ,nL
decreases as nL increases for constant nS. We also found, see Figure 3(c),

that R̂nS ,nL
decreases with n increasing when n = nL = nS, which is consistent with

the earlier discussion that presumed the conjecture. Finally, we found that if one
holds the sum nL + nS constant, then the rate R̂nS ,nL

is minimized when nL = 1.
This indicates that the information I(Xr1 ;Xr−nS

) decreases with nS faster than the

divergence D(XBnL
||X̃BnL

) decreases with nL. Though not apparent in the Figure,

we found that R̂7,7 < R̂7,1, an improvement over our earlier paper [10] which focused
exclusively on nL = 1. However, the improvement is nominal, so therefore, at least
for this particular value of θij, does not justify the significantly increased complexity.



7 Concluding Remarks

In this paper we have addressed the topic of tradeoffs in the choice of the width nL and
spacing nS of the cutset components in Reduced Cutset Coding of Markov random
fields. We have provided analysis from the perspective of the rate of this scheme
in terms of the rates for encoding lines and strips and the relative contributions of
each to the overall rate. We have shown that the rate for encoding lines with the
moment-matching reduced MRF decreases with nL, and that the rate for encoding
strips increases with nS, and on the basis of just these results one might conclude that
large nL and small nS would provide an optimal combination. However, we also show
that for all combinations of nL and nS, the rate for encoding lines is strictly greater
than the rate for encoding strips. Moreover, the fraction nL

nS+nL
of sites encoded at

the larger rate obviously increases with nL, while the fraction nS

nS+nL
of sites encoded

at the smaller rate obviously decreases with nS.
Additionally, we have analyzed the problem from the perspective of the redun-

dancy in the code, showing that this redundancy decomposes into a distribution
redundancy due to approximating the lines as moment-matching reduced MRFs, and
a correlation redundancy due to independent coding of the lines. We show that the
correlation redundancy is decreasing in nS and provide analysis of the distribution
redundancy and conjecture that it is decreasing in nL. Indeed, numerical experi-
ments with an Ising model corroborate this conjecture. Moreover, if we let nL be the
height of the original image, then clearly the divergence D(XBnL

||X̃BnL
) = 0, and at

least offhand, there is no reason to suspect that this divergence is non-monotonic in
nL. Naturally, though, further analysis of D(XBnL

||X̃BnL
) remain to be done, and at

least at the moment, we suspect that the recursive relations for D(XBnL
||X̃BnL

) will
be useful in proving our conjecture.

While for general row-invariant statistics t and exponential parameters θ it is not
clear what the best choices of nL and nS should be, our numerical experiments with
a uniform Ising model with parameters θij = 0.4, θi = 0 suggest that letting nS and
nL both be as large as possible achieves a lower rate. However, since the decrease in
rate over a large nS and nL = 1 is in the fourth decimal place (in terms of per-site
rate), the greatly increased complexity in encoding lines with large nL does not seem
worth it. However, more work remains to be done in understanding how differences in
parameter values affect these tradeoffs. And more generally, beyond the Ising model,
we would like to understand how the apparent tradeoffs between nS and nL vary with
θ for different types of statistic t. Previous work of the authors [9, 11, 12] has looked
at the relationship between positively correlated statistics t and quantities of interest
and it will be interesting to see if such statistics can be shown to have significant
consequences for RCC.
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