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We consider an e-commerce retailer (e-tailer) who sells a catalog of products to customers from different

regions during a finite selling season and fulfills orders through multiple fulfillment centers. The e-tailer faces

a Joint Pricing and Fulfillment (JPF) problem: At the beginning of each period, she needs to jointly decide

the price for each product and how to fulfill an incoming order. The objective is to maximize the total

expected profits defined as total expected revenues minus total expected shipping costs (all other costs are

fixed in this problem). The exact optimal policy for JPF is difficult to solve; so, we propose two heuristics

that have provably good performance compared to reasonable benchmarks. Our first heuristic directly uses

the solution of a deterministic approximation of JPF as its control parameters whereas our second heuristic

improves the first heuristic by adaptively adjusting the original control parameters at the beginning of every

period. An important feature of the second heuristic is that it decouples the pricing and fulfillment decisions,

making it easy to implement. We show theoretically and numerically that the second heuristic significantly

outperforms the first heuristic and is very close to a benchmark that jointly re-optimizes the full deterministic

problem at every period.

Key words : dynamic pricing, fulfillment policies, e-commerce retail, asymptotic analysis.

1. Introduction

Driven by the growing population of internet users, the retailing industry has witnessed

a boom in the e-commerce channel during the past decades. According to U.S. Census

Bureau (2016), for the year of 2015, the sales of e-commerce retail in the United States

grows continually at an impressive rate of 14.63%, which accounted for 68% of the growth

of the U.S. retail sector. While the growth statistics are impressive, it does not mean that

online retailing is an easy business to run. As pointed out in Rigby (2014), Amazon.com,

whose figure is similar to other e-tailers, has averaged only 1.3% in operating margin over

the past three years; in contrast, the operating margin for department/discount stores

typically run about 6% to 10%. Despite its razor-thin margin, e-tailers have to spend
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heavily in expenditure to meet consumers’ evolving expectation. For example, building a

highly productive fulfillment center (FC), the typical facility through which e-tailers handle

in/outbound logistic, costs at least $250 million, ten times more than building a large

department store (Rigby 2014). All these factors put together highlight the importance

for e-tailers to operate in a way that maximizes their revenue while at the same time

minimizing their expenditure.

Compared to its brick-and-mortar counterpart, an e-tailer has extra flexibilities in

responding to the market by being able to change prices frequently in real-time (Chen 2014)

and reduce outbound shipping cost through tactical order fulfillment (Agatz et al. 2008).

Indeed, powered by a vast amount of data and efficient IT infrastructure, e-tailers nowa-

days actively adjust their prices according to the imbalance between supply and demand,

and other external factors in the market. This practice, also known as dynamic pricing,

has been widely adopted in many industries including airlines, car rental, hotel, and cruise.

The retailing industry is among the latest incursions, pioneered by Amazon.com, who is

reported to adjust its price lists every ten minutes on average (Shpanya 2014). As also

reported in the same article, at least 22% of retailers, including Sears, Bestbuy, and Wal-

mart, have chosen to implement automatic pricing solutions in their online channel and

improve their gross margin by 10%.

Unlike pricing decisions that are executed online and have an immediate impact on

the revenue stream, an e-tailer’s fulfillment decisions affect the physical distribution of

inventories and have an immediate impact on its operating cost. Among the different parts

of an e-tailer’s fulfillment plan, outbound shipping is often cited as the primary source

of cost (Dinlersoz and Li 2006). For example, Amazon.com spent $11.54 billion in the

fiscal year of 2015 on outbound shipping alone (including sortation and delivery center

costs); this roughly represents 10% of its net revenue ($107.01 billion) and 30% incremental

over the total costs in 2014 ($8.71 billion) (Amazon.com 2015). While consumers value

a good fulfillment model, they often do not want to share the cost by paying additional

shipping fees. According to Sides and Hogan (2015), 72% of the consumers surveyed cite

free shipping as the offering they would take advantage of when shopping online, and

87% of them rank free shipping as being more important than fast shipping. Moreover,

an extra charge on delivery can negatively impact consumer’s purchase intention. For

example, UPS (2014) attributes 50% of shopping cart abandonments to unexpectedly high
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shipping fee. To mitigate the adverse effects of charging shipping fee, many retailers now

offer appealing shipping options for online shoppers such as unconditional free shipping

(Nordstrom, Zappos), contingent free shipping (Amazon.com, Jet.com), and free in-store

pickup (Macy’s, Walmart). As a consequence, e-tailers are strongly incentivized to find the

cheapest fulfillment plan on every single order.

Conceptually, pricing and fulfillment decisions are closely tied together, since they both

immediately affect the balance between supply and demand. On the one hand, an e-tailer’s

fulfillment strategy affects her pricing decision as the price that maximizes total revenues

does not necessarily maximize total expected profits (i.e., revenue minus cost); on the other

hand, the effectiveness of a fulfilment strategy heavily depends on the current inventory

distribution and forecasted future demands, which in turn are determined by the pricing

decision. This interdependency calls for a systematic study of joint pricing and fulfillment

optimization. To illustrate the potential benefit of managing pricing and fulfillment jointly

instead of separately in an e-commerce environment, we describe the following simple

example. Consider an e-tailer selling a cast-iron grill pan weighing 7.1 lbs to Midwest and

West Coast regions. Customers from both regions see the same price posted online. The

demand for the grill pan is divisible and deterministic. For the purpose of illustration,

we assume a demand function λ(p) = 58− p for both regions. The price is restricted to

within the range of $14.22 and $30.34 (see Camelcamelcamel.com 2016 for a price history

of a similar product at Amazon.com). The e-tailer has a distribution network consisting

of two FCs located at California (CA) and Illinois (IL), which hold CCA and CIL unit

of inventory, respectively. Each customer purchases exactly one grill pan, which is to be

shipped immediately from either FC using UPS’ 3-day select service. Figure 1 describes

the basic setting of the profit maximization problem faced by the e-tailer, where we use

MI (Michigan) and OR (Oregon) as representatives of Midwest and Westcoast regions,

respectively. Shipping cost data is gathered from UPS (2016).

Suppose that CIL = 30 and CCA = 28, i.e., the inventory level in IL is slightly higher

than the inventory level in CA. If the e-tailer manages the pricing decision separately from

fulfillment assignment (i.e., in subsequent manner), she would first solve a revenue max-

imization problem: maxp∈[$14.22,$30.34] {p(58− p) + p(58− p) : (58− p) + (58− p)≤ 10 + 48} .

The optimal solution is given by p = $29.00, which results in 29 units of demand from

each MI and OR and yields a total revenue of $29× 29× 2 = $1,682.00. Next, she needs
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to decide how to fulfill these orders by solving the following cost minimization problem:

min
xij≥0
{
∑

i∈{CA,IL}
∑

j∈{MI,OR} cijxij :
∑

i∈{CA,IL} xij = 29,∀j,
∑

j∈{MI,OR} xij ≤ Ci,∀i}. The

optimal solution is xIL,MI = 29, xIL,OR = 1, xCA,MI = 0, xCA,OR = 28. This yields a total

shipping costs of $1,123.05, leaving the e-tailer with a net profit of $1,682.00−$1,123.05 =

$558.95. Suppose now that the e-tailer manages the pricing and fulfillment decisions jointly

by solving the following profit maximization problem:

max
p∈[$14.22,$30.34], xij≥0

p(58− p) + p(58− p)−
∑

i∈{CA,IL}

∑
j∈{MI,OR}

cijxij

s.t.
∑

i∈{CA,IL}

xij = 58− p, ∀j,
∑

j∈{MI,OR}

xij ≤Ci, ∀i.

The optimal solution is p = $30.34, xIL,MI = xCA,OR = 27.66, xIL,OR = xCA,MI = 0. The

corresponding net profit is $624.56, which is 8.22% larger than the net profit of managing

the pricing and fulfillment decisions separately. This is because, although the increment

in price lowers the revenue, it also reduces the demand so that we no longer ship on the

IL-OR and CA-MI routes which have negative profit margins. It is not difficult to check

that increasing inventory imbalance across the two FCs will result in a larger marginal

improvement. For example, if we set CIL = 9 and CCA = 49, the marginal improvement of

net profit due to optimizing price and fulfillment assignment jointly is as large as 101.20%.

The above example shows that optimizing pricing and fulfillment decisions jointly could

be very effective even when future demands are known exactly. It is safe to conjecture that

this benefit will even be larger when the e-tailer is facing uncertain demand. Indeed, even if

the initial inventory levels are properly chosen by taking into account both the pricing and

Figure 1 A 2-FC 2-Demand-Location Example.
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fulfillment decisions, inventory imbalance is bound to happen within the replenishment

cycle due to demand randomness. Moreover, demand for an item may depend not only on its

own price, but also on the price of other products that may be complements or substitutes.

This suggests that, in order to get the most profit, e-tailers need to continuously check-

and-correct for the imbalance across their supply networks, which brings us to the research

question of this paper: How should an e-tailer manage the pricing and fulfillment decision

for multiple products jointly by utilizing the information regarding the current inventory

distribution and future demand projection in a way that maximizes total expected profits?

Our results and contributions. We consider a multi-period Joint Pricing and Fulfill-

ment (JPF) problem where an e-tailer sells multiple products to customers coming from

different demand locations and demands are fulfilled through multiple FCs. The deci-

sion variables are the price and fulfillment assignment; the objective is to maximize total

expected profits. Our results and contributions in this paper are summarized below:

1. To the best of our knowledge, we are the first to consider the JPF problem. This is

surprising given the importance of pricing and fulfillment as tactical levers to maximize

total expected profits in e-tail setting. See Section 2 for extensive literature on these

individual problems.

2. A distinct feature of e-commerce retail is that the e-tailer cannot price-differentiate

customers from different demand locations by charging different prices for the same

product during the same period. This constraint introduces complexities that do not

previously appear in the relevant literature (see discussions in Section 3). To overcome

this problem, we propose a novel deterministic relaxation of the original stochastic

control problem where all the random variables are approximated by their expected

values and the pricing decision is approximated by a randomization over a fixed set of

discrete prices. We show that there exists a set of discrete prices such that the optimal

value of the resulting Approximate Linear Program (ALP) well approximates that of

JPF.

3. We first propose a simple heuristic, which we call Randomized Pricing and Control

(RPF). RPF uses the ALP solution as probabilities to set pricing and fulfillment

decisions at each time period. Although this is a static heuristic (it uses the same prob-

abilities throughout the selling season), we show in our numerical studies in Section
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7 that it dominates a benchmark policy that determines the pricing and fulfillment

decisions separately, even if those are re-optimized at the beginning of each period.

4. Next, we refine RPF by adaptively adjusting the pricing and fulfillment decisions in

every period: prices are adjusted using a linear control without any re-optimization,

while the fulfillment problem is solved as a simple transportation problem that is

separable over the products (and thus can be solved in parallel). We prove that this

new heuristic (called R2PF, for Re-adjust and Re-optimize Pricing and Fulfillment)

has a significantly better performance than RPF; our numerical studies confirm and

quantify this.

5. Methodologically, our work contributes to the literature by (1) proposing a deter-

ministic approximation of JPF problem, (2) generalizing existing works on one-point

adjustment to distribution adjustment (see Section 2 for more discussions), and (3)

proposing a novel combination of a real-time adjustment of some decision variables

with a re-optimized update of other decision variables. We think that this combination

of separately adjusting two subsets of decision variables can also be useful for other

applications where the number of decision variables is large and the problem has some

structure that can be exploited to do this.

6. Managerially, our work offers an interesting insight: It highlights the potential benefit

of an effective top-down policy for managing both demand (via pricing) and supply

(via fulfillment). The purpose of the first stage of R2PF is to maintain balance between

supply and demand at an aggregate level, between total available inventories at all

FCs and total forecasted future demands from all locations. The second stage of R2PF

deals with what is left of the first stage: It takes into account the actual inventory

distribution across different FCs and computes a fulfillment assignment that minimizes

total shipping costs. These two stages are, in general, indispensable. Without the

aggregate re-balancing in the first stage, the fulfillment optimization in the second

stage will only be minimizing shipping cost without maximizing revenue; without the

fulfillment optimization in the second stage, the aggregate re-balancing in the first

stage may result in a high shipping cost, which leads to a lower net profit.

Organization of the paper. The related literature is reviewed in Section 2. In Section

3, we formally formulate the JPF problem and state our modeling assumptions. We propose

an approximation scheme and our performance measure in Section 4. Sections 5 and 6 are
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devoted to the analysis of our heuristics. Numerical experiments are presented in Section 7.

Finally, in Section 8, we conclude the paper. All the proof of the results and the parameters

of the numerical experiments can be found in the electronic companion for this paper.

2. Literature Review

In terms of topic, the problem that we study in this paper is related to three streams of

literature: dynamic pricing, e-commerce fulfillment policies, and the interaction between

pricing and fulfillment-related decisions. In terms of methodology, our work is related to

the study of asymptotic performance of re-optimization-based heuristic and linear control

(or real-time adjustment) heuristic. We discuss them in turn.

Dynamic Pricing. In the revenue management (RM) literature, research on dynamic

pricing studies how a firm should dynamically change their price to balance supply and

demand during a finite selling season; see Talluri and van Ryzin (2006) and Özer and

Phillips (2012) for comprehensive reviews. Although the idea was popularized by its appli-

cation in airline ticket pricing, as argued by Boyd and Bilegan (2003), the classic dynamic

pricing model can also cover the revenue maximization problem in e-commerce. Several

works discuss how to design an optimal pricing policy for specific types of e-tailer’s prob-

lems. For example, Netessine et al. (2006) and Aydin and Ziya (2008) explore the optimal

policy for dynamic pricing and packaging when an e-tailer offers an additional product

other than the product requested by consumers as a bundle; Ferreira et al. (2015) and

Fisher et al. (2015) devise pricing decision support systems for large e-tailers and illustrate

their effectiveness by conducting field experiments. Compared to the existing models in the

RM literature and the papers cited above, our model shares similarity in the price-induced

nature of demand generation and some related assumptions (see Section 3). Unlike the

existing literature, though, we jointly consider both the pricing and fulfillment decisions.

E-commerce Fulfillment Policies. The advent of e-commerce has led to substan-

tial research in various aspects of optimizing e-commerce supply chains; see Simchi-Levi

et al. (2004) and Agatz et al. (2008) for comprehensive reviews. The fulfillment part of

our model focuses exclusively on designing an outbound shipping assignment strategy that

helps the e-tailer minimize total shipping costs. A similar problem was first studied by

Xu et al. (2009); they construct a heuristic that periodically re-evaluates the real-time
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assignment decisions based on the currently available information, and illustrate its effec-

tiveness using numerical experiments. Their objective is to minimize the number of split

shipments. Acimovic and Graves (2014) study a similar problem and develop a heuristic

that minimizes total shipping costs instead of the number of split shipments. Using indus-

try data, they show that their heuristic captures 36% of the savings on costs induced by the

optimal hindsight heuristic. More recently, Jasin and Sinha (2015) consider a multi-item

fulfillment cost minimization problem. They first propose a heuristic based on the solution

of a deterministic relaxation linear program (LP). They then show how to improve the

performance of the first heuristic by carefully constructing a correlated rounding scheme

and prove its theoretical performance guarantee. Since our focus in this work is on the

benefit of joint optimization of pricing and fulfillment decisions, for the fulfillment part,

we simplify the model in Jasin and Sinha (2015) by requiring that each order consists of

exactly one item. However, the additional layer of the pricing decision, as well as the re-

adjusting/re-optimization feature of our main heuristic, precludes a direct generalization

of the methodology used in Jasin and Sinha (2015).

Interaction between pricing and fulfillment-related decisions. There have been

a few works that study the interplay between e-tailer’s pricing decisions and shipping pol-

icy, i.e., the format and the extra fee charged on deliveries. Leng and Becerril-Arreola

(2010) investigate the impact of contingent free-shipping policy on consumers’ purchase

decision and derived optimal static pricing and the free-shipping cut-off for e-tailers;

Becerril-Arreola et al. (2013) extend the model analyzed in Leng and Becerril-Arreola

(2010) by incorporating a second-stage inventory level decision and study the problem by

a simulation-based analysis. Gümüş et al. (2013) develop a game-theoretic model to study

whether it is optimal for the e-tailer to charge a separate shipping charge, or to incorporate

it in the product price but offer a free-shipping policy. In our work, we do not explicitly

consider the issue of designing a shipping policy (the format and the extra charge for deliv-

eries); instead, we simply assume a certain cost structure and analyze how to dynamically

adjust both the price and fulfillment decisions given the structure.

Re-optimization-based heuristics. In the broader dynamic optimization literature

where a multi-period stochastic control problem is often intractable, re-optimization is typi-

cally used as a heuristic approach due to its simplicity. Roughly speaking, a re-optimization-

based heuristic first approximates the original stochastic control problem with a simple
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optimization problem (e.g., an LP); as time evolves and uncertainties are realized, the

heuristic re-optimizes the approximate optimization problem by updating its parameters

to the status quo. In the operations management (OM) literature, this idea has been

applied to price-based RM (Maglaras and Meissner 2006, Jasin 2014), quantity-based RM

(Reiman and Wang 2008, Ciocan and Farias 2012, Jasin and Kumar 2012, 2013), inventory

control (Plambeck and Ward 2006, Secomandi 2008, Doğru et al. 2010, Ahn et al. 2015),

and vehicle routing (Secomandi and Margot 2009). Our main heuristic shares the same

spirit with existing literature. However, there are some subtleties that differentiate previous

works from ours. First, in our setting, it is not trivial to construct a proper determinis-

tic relaxation that both well approximates the original stochastic control and motivates a

practical heuristic (see Section 4). We propose a sequence of approximation schemes that

trade-offs computational complexity with approximation quality. Second, since our approx-

imate optimization can be very large in size for a high-quality approximation, frequent

re-optimizations may not be practically feasible. Thus, we introduce a new methodological

novelty by decoupling the pricing and fulfillment decisions. For our main heuristic, only

the fulfillment assignment decisions involve re-solving an LP. The size of this LP is much

smaller than the original approximate optimization problem and is decomposable over the

products. This makes the re-optimization part of our heuristic very time-efficient.

Linear control (real-time adjustment) heuristics. Broadly speaking, a linear con-

trol prescribes that the current decision rule can be calculated as an affine function of a

baseline control and realized historical outcomes. Similar to re-optimization-based heuris-

tics, linear control is often used as a heuristic approach to deal with an intractable multi-

period stochastic control problem. It also has been widely applied in different applica-

tions including robust optimization (Ben-Tal et al. 2004, Bertsimas et al. 2010), portfolio

management (Calafiore 2009, Moallemi and Saglam 2012), and dynamic pricing (Atar

and Reiman 2012, Jasin 2014, Chen et al. 2015). Since a linear control typically runs in

real-time, without re-solving any optimization, it is very time-efficient and is sometimes

preferable to re-optimization-based heuristics. The exact value of the parameters used in

a linear control can either be optimized off-line or computed in a specific way to achieve

a certain objective. In our main heuristic, the pricing decisions are adjusted according to

an autonomous price update scheme akin to the one used in Jasin (2014) and Chen et al.

(2015) (see Section 6). (Although our update rule is not exactly linear, it shares the same
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spirit of real-time adjustment.) However, there is an important difference: In both Jasin

(2014) and Chen et al. (2015), the adjustment is made directly to the price of each prod-

uct whereas, in ours, the adjustment is made to the set of discrete prices from which the

actual price will be sampled. Thus, we are essentially generalizing the one-point adjustment

scheme in existing literature to a distribution adjustment scheme.

3. Problem Formulation

Consider a monopolistic e-tailer selling a catalog of K products to customers in J locations

with sales fulfilled from I FCs. Throughout the paper, we will use [N ] to denote the set

{1, . . . ,N} for any N ∈ N+. The selling season is finite and divided into T ≥ 1 periods.

(Although we assume a discrete-time setting in the analysis, our results can also be applied

to continuous-time setting. Indeed, we will use a continuous-time setting for our numerical

experiments in Section 7.) At the beginning of period t, the e-tailer posts the price vector

pt = (ptk) for K products. For each location j ∈ [J ], the price vector induces a demand

vector Dt
j(p

t) = (Dt
jk(p

t)) with rate vector λj(p
t) = (λjk(p

t)), where λj(pt) = E [Dt
j(p

t)].

(For convenience, we assume stationary rate functions. Our results can also be generalized

to the case of non-stationary rates.) Demands across different periods are assumed to

be independent, but can be correlated among different products within the same period.

Moreover, as is common in the literature, we allow at most one customer’s arrival in each

period across all demand locations, i.e.,
∑J

j=1

∑n
k=1D

t
jk(p

t) ≤ 1. This is without loss of

generality since we can always slice the selling season fine enough so that at most one

customer arrives in each period across all locations. The quantity λjk(p
t) can thus be

interpreted as the purchase probability of product k from demand location j in period

t. We will also use λtot(p) = (
∑J

j=1 λjk(p))
K
k=1 to denote the total purchase probability, or

aggregate demand rate over all locations. Our model implicitly assumes that a customer

only purchases at most one product at a time. (The case where customers purchase multiple

products at the same time is challenging to analyze, even from the perspective of pure

fulfillment decisions, see Jasin and Sinha 2015. We leave this for future pursuit.)

A common feature of e-commerce retail is that customers from all all demand locations

observe a same price vector pt from the same website at the same point of time. Com-

pared to brick-and-mortar retailers where prices could be different across different physical

stores, this distinct feature limits the e-tailer’s degree of freedom in controlling demand



Lei, Jasin, and Sinha: Dynamic Joint Pricing and Order Fulfillment for E-commerce Retailers
11

intensity from multiple locations. (Technically, the e-tailer can set different prices to differ-

ent customers at the same point of time according to their profiles retrieved from cookies.

However, such practice may cause severe adverse effect since (1) it will lead to customer’s

unfair perception, psychological resistance, negative word-of-mouth, and brand switching

(Zhan and Lloyd 2014), and (2) it is commonly considered as unethical if not unlawful

(Reid 2014).) Indeed, this is also the very feature that makes the analysis of JPF in e-

commerce setting more challenging than the typical setting in RM model. (See Section 4 for

more discussions.) For each location j ∈ [J ], let Rt
j(p

t) := (pt)>Dt
j(p

t) denote the realized

revenue in period t, where (pt)> indicates the transpose of pt. We call rj(p
t) = E [Rt

j(p
t)] the

revenue rate for location j in period t. We use Jf denote the K ×K Jacobian matrix for

any f = (f1, f2, . . . , fK) : RK→RK , i.e., Jf(x) = [(∇f1(x))>; . . . ; (∇fK(x))>] where ∇fk(x)

is the gradient of fk at x. Let Ωp :=⊗Kk=1[pl, pu]⊂RK and Ωλ ⊂RK denote the convex and

compact sets of feasible prices and demand rates, respectively. (Without loss of generality,

we assume that the domain of price and demand rates at all locations are the same.) To

facilitate our analysis, we make the following assumptions on the underlying demand and

revenue rate functions for all j ∈ [J ]:

A1. The demand rates λj(p) : Ωp→ Ωλ and λtot(p) : Ωp→⊗Kk=1[0,1] are invertible, twice-

differentiable and monotonically decreasing in its individual argument.

A2. The revenue rates rj(p) is continuous and strictly unimodal with interior maximizer.

A3. For all p ∈ Ωp, the absolute eigenvalues of Jλtot(p) are bounded from below, whereas

the absolute eigenvalues of ∇2rj(p) are bounded from above.

Assumptions A1 and A2 are standard regularity conditions assumed in the RM literature

(see similar assumptions in Gallego and van Ryzin 1997). The first part of A3 is a natural

consequence of the invertibility of demand function; the second part of A3 is easily satisfied,

especially for a compact pricing decision region. Both of them have been assumed in the

dynamic pricing literature (e.g., Wang et al. 2014, Chen et al. 2015). It can be easily

shown that Assumptions A1 - A3 are satisfied by a broad class of demand functions such

as linear, exponential and logit demand models. Note that we do not assume that the

revenue rate is concave when viewed as a function of demand rate instead of price, which is

a critical assumption in most existing studies on dynamic pricing. As will be discussed in

Section 4, we are able to sidestep the necessity of such assumption by a novel deterministic

formulation of the original stochastic problem.
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After a customer in location j makes a purchase of product k, the e-tailer chooses an

FC i from which the order should be fulfilled immediately. We do not allow any deliberate

delay in shipment for further savings in cost, since it is in itself is a complex research

problem and beyond the scope of this work; see Xu et al. (2009) for further discussions on

the same assumption. The shipping cost of product k from FC i to location j is cijk ≥ 0.

Let X t
ijk ∈ {0,1} denote the e-tailer’s decision to fulfill an incoming order for product k

from location j in period t using the inventory available at FC i. We assume that FC

i carries Ci = (Cik) � 1 units of initial inventory before the selling season starts and no

replenishment occurs during the selling season. (We use 1 to denote a column vector with

proper dimension whose entries are all ones, and a� b to denote ai ≥ bi for any vectors a, b

with the same dimension). The assumption on no replenishment opportunity is commonly

made in previous works on dynamic fulfillment optimization (e.g., Xu et al. 2009, Acimovic

and Graves 2014, and Jasin and Sinha 2015). The justifications are as follows: (1) we

can interpret our selling season as the time window between two replenishments and we

focus on the tactical instead of strategic decisions; and, (2) the impact of stockout can be

accounted for as explained shortly. For ease of exposition, we define a fictitious FC 0 that

has an infinite amount of initial inventory, i.e., C0 = +∞·1), and shipping costs set by us

at c0jk := max{2 maxi∈[I] cijk, pu} for all j, k. The formulation of FC 0 serves the purpose of

backup facility when certain product is depleted at all real FCs, and technically guarantees

that there is always a feasible solution to our problem. In practice, the e-tailer may also

decide to simply announce that the product is unavailable when it is depleted at all real

FCs; in this case, the cost of shipping from FC 0 can be interpreted as the cost of lost

sales. Our analysis does not depend on the specific cost of shipping from FC 0. For the

purpose of this work, we set the cost to be no smaller than both the maximum revenue of a

single product and all the other fulfillment options simply to emphasize the undesirability

of fulfilling from FC 0.

In addition to having to make the pricing and fulfillment decisions, the e-tailer also needs

to satisfy several constraints. First, any arriving order in period t must be fulfilled in the

same period (i.e., no backorder or intentionally delayed shipment) by a unit of inventory at

a certain FC. Second, the number of orders each FC fulfilled throughout the selling season

cannot exceed the initial inventory level at that FC. The e-tailer’s objective is to maximize



Lei, Jasin, and Sinha: Dynamic Joint Pricing and Order Fulfillment for E-commerce Retailers
13

the total expected profit, which is defined as total expected revenues minus total expected

fulfillment costs. We can write the optimal control formulation of JPF problem as follows:

(JPF) J ∗ := max
{pt,π ,Xt,π}∈Π

Eπ
[

T∑
t=1

J∑
j=1

(
pt,π
)>
Dt
j(p

t,π)−
T∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t,π
ijk

]

s.t.

I∑
i=0

X t,π
ijk =Dt

jk

(
pt,π
)
, ∀j, k, t (1)

T∑
t=1

J∑
j=1

X t,π
ijk ≤Cik, ∀i, k (2)

pt,π ∈Ωp, X
t,π
ijk ∈ {0,1}, ∀i, j, k, t (3)

where Π is the set of all non-anticipating policies and the constraints must hold almost

surely. For notational brevity, we will suppress the dependency on π whenever the heuristic

used is clear from the context.

Remark 1. In practice, e-tailers usually offer different options for delivery speed. Our

modeling framework is general enough to cover this extra layer of complexity. Consider

the original JPF model, with an addition of L different shipping options. Each shipping

option ` of product k requires a nominal fee s`k ≥ 0 paid by consumers and induces a

cost of cijk` for e-tailers to adopt this option to ship a single unit of product k from FC

i to location j. We can define the random demand as Dt
jk`(p) ∈ {0,1} with mean λjk`(p).

Since the e-tailer now can collect additional nominal fee for shipping, the revenue rate

is therefore rjkl(p) = (pk + s`k) · λjk`(p). Lastly, we use X t
ijk` ∈ {0,1} denote the e-tailer’s

decision to fulfill an incoming order for product k from location j with option ` in period

t using the inventory available at FC i. The optimal control of JPF problem with shipping

options (JPF-S) can be formulated similarly as the original JPF problem. Although our

exposition in the remainder of this paper is based on the original JPF formulation, all the

results can be easily generalized to the case of JPF-S.

4. A Deterministic Approximation of JPF

In practice, the magnitude of demand intensity faced by an e-tailer is often high, especially

during holiday seasons. (According to CNN 2015, Amazon.com sold 398 items per second

during its global shopping event exclusively for Amazon Prime members on July 15, 2015.)

This translates into the need for e-tailers to make fast real-time decisions, both in terms of
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pricing and fulfillment decisions. This requirement, together with the well-known curse of

dimensionality of dynamic programming, makes solving JPF optimally practically infeasi-

ble. In the RM literature where a similar problem is encountered, many researchers turn

their attention to develop heuristics that are both easy to implement and have a provably

good performance under well-defined metrics. One heuristic that has drawn a lot of atten-

tion, most notably because of its practical appeal, is based on a deterministic relaxation

of the original optimal control problem, where all the random variables are replaced by

their means. (This approach is also called the Certainty Equivalent (CE) approach in the

wider operations research literature, e.g., Ciocan and Farias 2012.) The benefits of such

relaxation in RM literature, under some proper conditions, are threefold: (1) the resulting

deterministic optimization turns out to be a concave maximization problem and is much

easier to solve than the original stochastic problem; (2) its solution serves naturally as a

simple heuristic; and, (3) its optimal value serves as an upper bound for the optimal control

problem. Consequently, when analyzing the performance of any feasible policy, it suffices

to benchmark it against the optimal value of the deterministic relaxation. To mimic this

idea, let us first consider the following deterministic formulation of JPF, which we call

Deterministic JPF (DJPF):

(DJPF) J D := max
{pt,xt}

T∑
t=1

J∑
j=1

rj(p
t)−

T∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
t
ijk

s.t.
I∑
i=0

xtijk = λjk(p
t), ∀j, k, t (4)

T∑
t=1

J∑
j=1

xtijk ≤Cik, ∀i, k (5)

pt ∈Ωp, x
t
ij ∈ [0,1] (6)

The optimal solution of DJPF has a natural interpretation: pt can be used as the posted

price vector in period t and xtijk/λjk(p
t) can be used as the probability of fulfilling an

order of product k from location j in period t using an inventory in FC i. The important

question is whether this is a good heuristic in comparison to the optimal one; if so, in

what sense. It should be noted that one of the key elements in proving the near-optimality

of CE-type heuristic in a typical RM literature is the fact that the optimal value of the

deterministic relaxation is an upper bound of the optimal value of the original stochastic
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problem. Under the standard assumptions that demand rate is invertible in price and

revenue is concave in demand rate (revenue does not have to be concave in price), the

typical proof of this fact proceeds in two steps: First, re-write the original problem using

demand rate instead of price as the decision variable; and second, apply Jensen’s inequality

to the objective function. When applied to JPF, unfortunately, this two-step procedure

do not yield DJPF. This is so because, in any given period, the price vector observed

by customers in all locations are the same, which results in new non-linear constraints

that cannot be easily transformed into deterministic constraints by standard techniques.

If demand rates are linear in prices, then DJPF is indeed a proper deterministic relaxation

of JPF and J ∗ ≤ J D. In general, even if revenue rate is concave in demand rate, it is

possible that J ∗ > J D. This means that the performance of a heuristic derived directly

from the solution of DJPF, if it is intended to mimic J D at all, may in fact deviate a lot

from J ∗ unless J ∗ ≈J D (see numerical results in Section 7). Motivated by the preceding

discussions, in this paper, we will use an alternative deterministic formulation based on

the idea of price discretization. We will show that it is possible to construct a deterministic

optimization problem whose optimal value is at most ε > 0 smaller than J ∗. We will then

use this alternative deterministic formulation to construct our heuristics. (That said, our

approach in this paper can also be used in combination with DJPF if the e-tailer prefers

to solve DJPF instead of our proposed formulation.)

An Approximate Linear Program. We start by selecting M different price vectors

q1, . . . , qM ∈Ωp. We will describe the precise construction of the price vectors shortly. Let

q = (qm)Mm=1 denote the set of our discrete price vectors and αt = (αt1, . . . , α
t
M) denote a

weight vector whose entries are all non-negative and sum up to one. For a fixed discretiza-

tion set q, consider the following Approximate Linear Program (ALP):

(ALP) J ALP := max
{αt,xt}

T∑
t=1

J∑
j=1

M∑
m=1

αtmrj(qm)−
T∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
t
ijk

s.t.

I∑
i=0

xtijk =

M∑
m=1

αtmλjk(qm), ∀j, k, t (7)

T∑
t=1

J∑
j=1

xtijk ≤Cik, ∀i, k (8)

0≤ xtijk ≤ 1, ∀i, j, k, t (9)
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M∑
m=1

αtm = 1, αtm ≥ 0, ∀m,t (10)

Some comments are in order. First, the solution of ALP can be used to construct a joint

pricing and fulfillment heuristic: In period t, we apply price vector qm with probability αtm

and fulfill an order of product k from location j using an inventory in FC i with probability

xtijk/
∑M

m=1α
t
mλjk(qm) (since FC 0 has infinite inventory, ALP always has a solution). We

will formally present this heuristic and its performance in Section 5. Second, if we include

the optimal prices solution from DJPF in the discretization set q, it is not difficult to see

that J D ≤J ALP . Thus, one can view ALP as a generalization of DJPF that allows price

vector to be sampled from a multi-point distribution instead of a singleton. Third, since

ALP is an LP and demand rates are stationary, it is not difficult to see that there exists a

stationary optimal solution satisfying xtijk = x1
ijk and αtm = α1

m for all t. (Let (xtijk) and (αtm)

denote a pair of optimal solution of ALP. Define: xt∗ijk = 1
T

∑T
s=1 xijs and αt∗m = 1

T

∑T
s=1α

s
m.

It is not difficult to check that (xt∗ijk) and (αt∗m) are also optimal for ALP.) Without loss

of generality, throughout this paper we will be working with a stationary optimal solution

of ALP, which is simply denoted as x∗ := (x∗ijk) and α∗ := (α∗m). We will also assume that

α∗m > 0 for all m ∈ [M ], since if αm = 0 for some m, we can simply delete q∗m from the set

q∗ without affecting any of the decisions on α∗m and x∗ijk. The following lemma tells us that

there exists a set of discrete price vectors q such that J ∗−J ALP ≤ ε. This means that JPF

can be well-approximated by ALP, at the cost of increased computational complexity.

Lemma 1. Given ε > 0, under assumptions A1, there exists a discretization q such that

J ∗−J ALP ≤ ε

In proving Lemma 1, we first define a specific set of dicrete price vectors that forms a

uniform grid on Ωp and show that it indeed satisfies the approximation guarantee. Formally,

given a positive integer M , we divide the feasible set [pl, pu] into bM 1/Kc sub-intervals of

equal length and let Q∗ = {pl+(i− 1
2
)(pu−pl)/(bM 1/Kc+1)}bM

1/Kc
i=1 be the set of mid-points

of all these sub-intervals. We then define our uniform grid as the set of all possible K-

permutations ofQ∗, i.e., q∗ = {(p1, . . . , pK)∈Ωp : pk ∈Q∗ ∀k ∈ [K]}. The number of required

grid points could be large for a fine approximation (roughly proportional to ε−K if demands

are correlated among products, Kε−1 if demands are independent); however, both of our
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heuristics only solve it once before the selling season and is, therefore, computationally

feasible. From a practical perspective, e-tailers often work with a predetermined finite set of

discrete prices (see e.g. Section 5.2.1.3 in Talluri and van Ryzin 2006 and Cohen et al. 2014).

In this context, our main result in this paper can be seen as a way to further exploit the

given set to maximize total expected profits. Lemma 1 provides a theoretical justification

that this type of approximation well approximates the original stochastic control problem

(for a sufficiently fine discretization). Although our heuristics can be applied in combination

with any price discretization q∗, in the remaining of this paper we will always use the set

of uniform grids discussed above for consistency.

Asymptotic Regime and Performance Measure. In the sequel, we will use the

optimal value of ALP as the benchmark to evaluate the theoretical performance of our

heuristics. Motivated by the large volume of sales faced by e-tailers, and for the purpose of

theoretical performance analysis, we will consider a sequence of JPFs and ALPs where both

the length of selling season and the amount of initial inventories are scaled proportionally

by a factor of θ while keeping all the other parameters unchanged. More specifically, in the

θth problem, the length of selling season is given by T (θ) = θT and the amount of initial

inventories in FC i is given by Ci(θ) = θCi. Since we only allow at most one new arrival in

each period, increasing the selling season by θ is equivalent to multiplying the number of

potential demands by θ. In other words, in the prescribed asymptotic setting, we essentially

scale both the potential demands and initial inventories proportionally. Naturally, we shall

interpret the scaling parameter θ as the size of the problem.

Asymptotic analysis allows us to study the theoretical performance of a given heuristic

with respect to a certain benchmark (e.g., the optimal policy) without having to actually

compute the exact solution of the proposed benchmark, which can be difficult. Although

there is no theoretical guarantee that a heuristic that performs well in asymptotic setting

(e.g., large demand and large inventory setting) will also perform well in non-asymptotic

setting, existing works in the literature utilizing this approach (e.g., in RM (Gallego and

van Ryzin 1994, 1997), in inventory management (Huh et al. 2009, Xin and Goldberg 2014),

and in queueing (Harrison 1998, Ata and Kumar 2005)) have found that heuristics that

perform well in asymptotic setting tend to also perform sufficiently well, if not extremely

well, in non-asymptotic setting. This provides another motivation for asymptotic analysis.
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But, most importantly, a heuristic developed in this manner can also be used as a baseline

policy on which more sophisticated heuristics can be developed.

Let J ∗(θ) and Rπ(θ) denote the total expected profits collected by the optimal policy

and a specific heuristic π ∈ Π on a problem with size θ, respectively; also, let J ALP (θ)

denote the optimal value of ALP with size θ. We will use the loss of heuristic π for large

θ as our performance measure, which is defined as Lπ(θ) := J ALP (θ)−E [Rπ(θ)].

5. First Heuristic: Randomized Pricing and Fulfillment

In this section, we describe a simple non-adaptive heuristic motivated by ALP and discuss

its asymptotic performance. Let σtk : [J ]→ [I]∪ {0} denote the fulfillment assignment for

period t, i.e., σtk(j) = i indicates that we fulfill an order of product k from location j in

period t from FC i. Our first heuristic uses the solution of ALP directly to construct a

randomized heuristic. Note that, for a fixed set of discrete price vectors q∗, α∗ and x∗ are

the optimal sampling vector and fulfillment vector given by ALP. The idea behind our first

heuristic is to sample a price vector pt from q∗ according to α∗, and sample the fulfillment

assignment σt according to x∗. Let Ct
i denote the inventory level in FC i at the beginning

of period t. We formally define our first heuristic below.

Randomized Pricing and Fulfillment Heuristic (RPF)

1. Initialization: Fix a discretization q∗ and solve ALP to get α∗, x∗.

2. During period t≥ 1, do:

a. Sample pt = q∗m with probability P{pt = q∗m}= α∗m and apply pt.

b. Sample σtk(j) with probability P{σtk(j) = i}= y∗ijk := x∗ijk/
∑I

i=0 x
∗
ijk.

c. If there exists a (j, k)∈ [J ]⊗ [K] such that Dt
jk = 1, do:

i. If Ct
σtk(j),k

> 0, fulfill the order from FC σtk(j) and update Ct+1
σtk(j),k

=Ct
σtk(j),k

− 1;

ii. Otherwise, fulfill the order from FC 0.

The following theorem characterizes the performance of the RPF heuristic.

Theorem 1. Let q∗ be the uniform price grids discussed in Section 4. There exists a

constant Ψ1 > 0 independent of θ≥ 1 such that

LRPF (θ)≤Ψ1

√
θ.

Some comments are in order. First, it is not difficult to show that J ALP (θ) is an upper

bound of total expected profits under any feasible joint pricing and fulfillment policy that
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restricts pt ∈ q∗ for all t. Since J ALP (θ) = θJ ALP is of order θ, Theorem 1 tells us that RPF

is asymptotically optimal relative to J ALP (θ) among that class of policies (i.e., the average

loss per period of RPF is of order 1/
√
θ, which is small for large θ). Moreover, it can be

shown that the above bound is tight: For some problem instances, there exists a constant

Ψ′1 > 0 independent of θ ≥ 1 such that J ALP (θ)− E[RRPF (θ)] ≥ Ψ′1
√
θ (see Remark 2 in

Jasin 2014 for an argument for the simplistic example where I = J =K = 1). This means

that Theorem 1 completely characterizes the asymptotic performance of RPF, in general.

Second, although RPF is asymptotically optimal, a heuristic that has a stronger perfor-

mance guarantee than
√
θ is still highly desirable. For one thing, the bound in Theorem 1

is only asymptotic in nature, which means that the performance of RPF may not be too

satisfactory if θ is not sufficiently large (we will test this using numerical experiments in

Section 7). Another reason is the relatively thin operating margin of e-commerce retailing,

as discussed in Section 1. This underscores the importance of earning (or saving) as many

dollars as possible. The important question is how to construct a heuristic that main-

tains the tractability of RPF while at the same time significantly improves its performance

guarantee. One simple idea is to re-optimize the ALP at the beginning of every period by

replacing the initial inventory level Ci with the current on-hand inventory level, denoted by

Ct
i . Per our brief discussions in Section 2, re-optimization-based heuristic has been shown

to be effective in the broad literature of dynamic optimization. However, it is not always

practically feasible. The bottleneck in our setting is the number of price vector discretiza-

tions, which can be exponential in the number of products (with a 5-point discretization

for each product and a total of 10 products, we have a total of 510 ≈ 107 price vector

discretizations). Motivated by this, in this paper, we will not focus on the heuristic that

fully re-optimizes ALP. Instead, in the next section, we will develop a novel re-adjust-and-

re-optimize heuristic based on the idea of combining autonomous price adjustment with

re-optimization of only the fulfillment part of ALP.

6. Second Heuristic: Re-adjust and Re-optimize Pricing and
Fulfillment

We now discuss a modification of RPF that adaptively adjusts the discretization set q∗

and updates the fulfillment vector x∗ every period. An important feature of the proposed

heuristic is that although the prices and fulfillment probabilities are still decided jointly at

the beginning of the selling season via solving ALP, their adjustments during the selling



Lei, Jasin, and Sinha: Dynamic Joint Pricing and Order Fulfillment for E-commerce Retailers
20

season are done almost separately through a two-stage process: (1) We first adjust the

discretization set q∗ based on the observed demand realizations and the aggregate total

of remaining inventories in all FCs at the beginning of period t; (2) we then update the

fulfillment probabilities by re-optimizing the fulfillment part of ALP (we will define it

shortly), which has a much smaller number of variables compared to the full ALP.

In the proposed heuristic, price is used as a lever to compensate for the fluctuation in

demand realizations: To adapt with the total remaining inventories, the seller raises future

prices if the realized demands in the current period are higher than expected and drops the

prices otherwise. However, changing q∗ directly affects the demands in all J locations, not

just one. This calls for the second-stage adjustment on the fulfillment assignment which

must be carefully calculated so as not to favor the correction in only a few locations. More

specifically, we solve another LP to update our fulfillment assignment accordingly. Our

main result in this section is to show that, under some conditions, a scheme that partially

decouples the adjustment in prices from the adjustment in fulfillment and guarantees a

significant improvement over RPF exists.

We start with defining some notations that will be useful for our exposition. Let Ct :=

(Ct
i ) denote the vector of inventory level at the beginning of period t. Given the new

discretization set qt = (qtm) (by definition, we have q1 = q∗), we update the fulfillment

probabilities by solving the following Fulfillment LP (FLP):

FLPt(qt,Ct) :=

{
min
xijk≥0

c>x, :
I∑
i=0

xijk =
M∑
m=1

α∗mλjk
(
qtm
)
,

J∑
j=1

xijk ≤
Ct
ik

T − t+ 1

}
, (11)

where c and x denote the cost and fulfillment vectors, respectively. For notational brevity,

we will often write FLP(qt,Ct) simply as FLPt whenever the values of qt and Ct used

are clear from the context. Note that we drop the constraints xijk ≤ 1; this is without

loss of generality since xijk ≤
∑M

m=1α
∗
mλjk(q

t
m) ≤

∑M
m=1α

∗
mλjk(pl . . . , pl) ≤ 1. Let ytijk :=

xtijk/
∑I

i=0 x
t
ijk and let Y t

ijk be an indicator variable with Y t
ijk = 1 if σtk(j) = i and 0 otherwise.

(By definition, P(Y t
ijk = 1) = ytijk.) In other words, ytijk is the conditional probability of

using FC i to fulfill an order of product k from location j conditioning on such order being

observed. Define:

∆Ct
ik :=

J∑
j=1

[
X t
ijk− ytijk

(
M∑
m=1

α∗mλjk
(
qtm
))]

. (12)
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Note that ∆Ct
ik can be interpreted as the size of aggregate randomness in inventory

consumption of product k at FC i. To be precise, ∆Ct
ik should have been written as a

function of pt and qt. We suppress this notational dependencies for the sake of brevity. Let

∆Ct
i = [∆Ct

i1; ∆Ct
i2; . . . ; ∆Ct

iK ]>. We are now ready to define our second heuristic.

Re-adjust and Re-optimize Pricing and Fulfillment Heuristic (R2PF)

1. Initialization: Fix discretization q∗ and solve ALP to get α∗, x∗.

Define q1 = q∗ and x̂1 = x∗.

2. During period t≥ 1, do:
a. Adjust Price: For each m, define qtm such that

λtot
(
qtm
)

:= proj
⊗Kk=1[0,1]

[
λtot(q∗m)− 1

Mαm

(
I∑
i=0

t−1∑
s=1

∆Cs
i

T − s

)]
.

b. Adjust Fulfillment: Set x̂t+1 equals to the optimal solution of FLPt(qt+1;Ct).

c. Sample pt with probability P{pt = qtm}= α∗m and apply pt.

d. Sample σtk(j) with probability P{σtk(j) = i}= ytijk := x̂tijk/
∑I

i=0 x̂
t
ijk.

e. If there exists a (j, k)∈ [J ]⊗ [K] such that Dt
jk = 1, do:

i. If Ct
σtk(j),k

> 0, fulfill the order from FC σtk(j) and update Ct+1
σtk(j),k

=Ct
σtk(j),k

− 1;

ii. Otherwise, fulfill the order from FC 0.

Note that, by definition, ∆Cs
ik is the error (or deviation) from the expected consumption

of product k in FC i at period s. So, the term ∆Cs
ik/(T−s) can be interpreted as the portion

of this error to be corrected in period t > s. (The term T − s in the denominator indicates

that the correction for the error incurred in period s is to be distributed uniformly through-

out the remaining periods. Although this may not be the optimal correction mechanism,

Jasin 2014 has shown in the context of dynamic pricing that it is sufficient to guarantee a

very strong performance bound.) Thus, at period t, the cumulative errors (across all FCs)

for product k that needs to be corrected is given by
∑I

i=0

∑t
s=1 ∆Cs

ik/(T − s). Our idea is

to correct these errors by perturbing the original set of discrete price vectors q∗ to qt such

that the following system of balance equations holds:

J∑
j=1

M∑
m=1

α∗mλjk
(
qtm
)

=
J∑
j=1

M∑
m=1

α∗mλjk (q∗m)−
I∑
i=0

t−1∑
s=1

∆Cs
ik

T − s
, ∀k. (13)

If λtot(q∗m)− (
∑I

i=0

∑t−1
s=1 ∆Cs

i /(T − s))/(Mαm)∈⊗Kk=1[0,1], it can be easily verified that

a solution to the system of non-linear equations in Step 2a is also a solution to (13).

Moreover, by the invertibility of λtot(·) (Assumption A1), the system in Step 2a always
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has a unique solution of qt. Although we need to perturb potentially all price vectors in

q∗, the computation in Step 2a can be done in parallel. This decomposability is crucial

for the time-efficiency of R2PF. We want to emphasize: Although Step 2a helps balance

future demands with remaining inventories, it only does so at an aggregate (across all the

FCs) level. To address the potential inventory imbalance that exists across different FCs

due to demand randomness and our fulfillment heuristic, another layer of adjustment is

needed. We do this by re-optimizing FLP in Step 2b, parameterized with adjusted expected

demands under the new discretization set qt. This extra step is crucial for making sure

that we are also minimizing total shipping costs while maximizing total revenues.

Before we evaluate the asymptotic performance of R2PF, we need to first introduce a

concept that will be useful for the analysis. Consider the initial transportation problem

faced by the e-tailer, i.e., FLP1. Since we assume that each customer only requests at most

one product, FLP1 can be decomposed into K transportation LPs defined as follows:

FLP1
k(q
∗,Ck) :=

{
min
xijk≥0

I∑
i=0

J∑
j=1

cijkxijk :
I∑
i=0

xijk =
M∑
m=1

α∗mλjk(q
∗
m),

J∑
j=1

xijk ≤
Cik
T

}
.

We assume without loss of generality that
∑J

j=1 x
∗
ijk = Cik (otherwise, we can always

define C̃ik :=
∑J

j=1 x
∗
ijk and replace the original initial inventory Cik with C̃ik without

changing anything else). The inventory constraints in FLP1
k are, therefore, all binding.

Now, from the literature of transportation LP (e.g., Dantzig and Thapa 2006), we know

that there is exactly one redundant constraint in every FLP1
k. Moreover, if we delete an

arbitrary constraint, the remaining constraints are always linearly independent. Let FLP
1

k

be the LP where we delete the inventory constraint regarding FC 0; by Theorem 2.5 in

Bertsimas and Tsitsiklis (1997), FLP
1

k is equivalent to FLP1
k. We call a basic solution to

FLP1 as DR-degenerate (“DR” is short for de-redundancy) if and only if the corresponding

basic solution to FLP
1

k is degenerate for some k ∈ [K].

The following theorem characterizes the performance of R2PF.

Theorem 2. Let q∗ be the uniform price grids discussed in Section 3. Suppose that

FLP1(q∗,C) has a unique non-DR-degenerate optimal solution. There exists a constant

Ψ2 > 0 independent of θ≥ 1 such that

LR2PF (θ) ≤ Ψ2(1 + log θ).
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Some comments are in order. First, since R2PF may use different discretization sets in

different periods, J ALP (θ) is not necessarily an upper bound for E[RR2PF (θ)]. However,

given that the expected loss of RPF relative to J ALP (θ) is of order
√
θ, the bound in

Theorem 2 is still useful because it shows that R2PF guarantees a significant improvement

over RPF, at least asymptotically. Second, the fact that R2PF significantly improves RPF

is quite surprising. For one thing, aside from the definition {∆Ct
ik}, the adjustment formula

in Step 2a is pretty much independent of the actual inventory distribution across I FCs

at the beginning of period t+ 1 — they only depend on the aggregate errors. Moreover,

although it is known in the literature that frequent re-optimizations has a potential to

significantly improve performance (see Section 2), it matters what is being re-optimized.

In the case of R2PF, the fulfillment LP takes as its input the new discretization set that is

adjusted almost independently of the current inventory distribution and how it would affect

total shipping costs. It is, thus, not immediately clear that frequent re-optimizations of the

fulfillment LP updated in this manner still yields the level of improvement that we want.

Fortunately, we show that the proposed combination of aggregate demand adjustments and

fulfillment re-optimizations still give a significant improvement over RPF. Lastly, we want

to emphasize that the non-DR-degeneracy assumption only applies to the initial FLP1

and is not required for the subsequent FLPt for all t ≥ 2. Similar conditions have been

used in other works that study the performance of re-optimization-based heuristic with

deterministic relaxation being an LP, e.g., Jasin and Kumar (2012, 2013), and Johnson

et al. (2015). Although this assumption is critical for the tractability of the proof, our

numerical results in Section 7 show that R2PF still performs well when FLP1 is degenerate.

7. Numerical Experiments

We now conduct two numerical experiments to illustrate the performance of the proposed

heuristics in comparison to some natural benchmarks. The setting of our numerical study

is placed in the continental United States. We set I = 6 and J = 15 (i.e., the e-tailer has

six FCs serving fifteen different demand locations) and select our fifteen demand locations

to be the fifteen largest metropolitan statistical areas (MSAs) estimated by U.S. Census

Bureau (2014a). The demand process is generated as follows: We first generate a sequence

of Poisson arrivals with arrival rate from location j to be γj = pois-rate ×mkt-sharej.

Specifically, pois-rate∈ (0,1] denote the probability of a new arrival and mkt-sharej is the
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conditional probability that this arrival comes from region j. We set the default value of

pois-rate to be 0.9 and mkt-sharej to be the ratio of total population in the jth largest

MSA and
∑

jmkt-sharej. A customer arriving from location j makes a purchase with

probability exp(Aj + Bjp). The demand parameters are chosen as follows: We first set

“baseline” demand parameters A1 and B1. For all j ≥ 2, we set Aj = income1
incomej

× A1 and

Bj = income1
incomej

×B1, where incomej represents the medium household income of the jth largest

MSA, as reported in U.S. Census Bureau (2014b). Since we want exp(Aj +Bjp) ≤ 1 for

all p ∈Ωp, we set Aj’s to be vectors with negative components, and Bj’s to be diagonally

dominated matrices with negative diagonal components. (The baseline parameters are

generated to satisfy these constraints.) By our construction of Aj and Bj, a customer from

a demand region with higher income is more likely to make a purchase compared to a

customer from a demand region with lower income. For simplicity, we normalize T to 1.

This means that the scaling factor θ is the length of selling season and can be immediately

interpreted as the size of potential market. For both experiments, we use the value of θ

ranging from 100 to 2,000 where, in our setting, θ= 100 corresponds to the case where we

have about 2 units of inventory for each product in each FC and θ = 2,000 corresponds

to the case with about 40 units of inventory for each product in each warehouse (see the

discussions how we set the value of Cik below). We intentionally choose these numbers

to highlight the performance of our heuristics in non-asymptotic setting. (In reality, an

e-tailer can easily sell this amount of inventory within a few hours during peak season.)

The logistic networks of both experiments consist of six FCs selected from the list of

the most efficient warehouses (in terms of possible transit lead-times) in the U.S., as

reported by Chicago Consulting (2013). The outbound shipping costs of a single-item

package from different FCs to different locations are calculated using the cost equation

estimated in Section EC.3 in Jasin and Sinha (2015), assuming that each package weighs

exactly one pounds. As for the fictious stores, per Section 3, their costs are calculated as

c0jk := max{2 maxi∈[I] cijk, pu} for all j, k. The average shipping cost over all FC-MSA pair

is $9.55. We, therefore, set the feasible price range to be $100 and $250, since the annual

outbound transportation costs as a percentage of net sales typically varies between 4%

to 10% (Tompkins Supply Chain Consortium 2012). (In reality, the ratio between price

range and shipping cost highly varies with the type of product; our choice above at least

guarantees that the relative magnitude between revenue and cost is practical.) The initial
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inventory level is set to be slightly higher than the number of total arrivals, which reflects

the common reality where firm stocks neither too low such that the induced demand has

to be really scarce, nor too high as if there is no inventory constraint at all. Specifically, we

first match between FCs and MSAs such that (1) each FC serves five MSA, (2) each MSA

is served by 2 FCs, and (3) the total mileage between all the assigned FC-MSA pairs is

minimized. For each MSA j, we define λ̂j = pois-rate × mkt-sharej × 0.9 and let each

of the two FCs serving MSAj to fulfill a portion of the λ̂j, where the portion is decided by

a random number drawn uniformly from [0.4,0.6]. (Our results are robust with respect to

slight perturbation in the numbers 0.9, 0.4, and 0.6.) The initial inventory at each of the

FC is then calculated as the sum of all the demand portions from the five MSAs it serves.

The initial inventory level at the fictitious store is set to be 20 for all products, so that the

available inventory will never be depleted. For a specific θ, we always round down θCik.

We denote by RPF-m and R2PF-m the RPF and R2PF heuristics proposed in Sections

5 and 6 respectively, where m denotes the number of discretizations we select for the price

of a single product, i.e., M =mK . (It is noteworthy that, in both experiments, the initial

FLPs are DR-degenerate.) As a benchmark, we implement a Full-reopt-m heuristic, which

re-optimizes an updated ALP in each period for the optimal αt and xt. Compared to the

original ALP, the updated ALP replaces the inventory parameters Cik with the current

inventory level while keeping everything else the same. As discussed in Section 5, although

Full-reopt-m potentially has a very good performance, it may not be practically feasible

due to heavy computation burden. Finally, to test whether the joint pricing and fulfillment

optimization indeed generates higher profit than separate pricing and optimization, we also

implement a Sep-reopt heuristic, where the pricing decisions and fulfillment decisions are

optimized separately in every period as follows: At the beginning of period t, we first com-

pute the new price vector by solving a constrained revenue maximization problem defined

as {maxp∈Ω

∑J
j=1 rj(p) : λjk(p)≤

∑I
i=1C

t−1
ik /(T − t), ∀k}, where the inventory of product k

is aggregated over all FCs; and, then we optimize the fulfillment assignment decisions by

solving a transportation LP taking the new price vector and the current inventory levels

as input, defined as {min0≤xijk≤1

∑I
i=0

∑J
j=1 cijkxijk :

∑I
i=0 xijk = λjk(p

t) ∀j, k,
∑J

j=1 xijk ≤

Ct−1
ik /(T − t) ∀i, k}. For a specific choice of θ, we simulate all the heuristics for 100 runs

to approximate their total expected profit. For each run, we first generate the arrival
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sequence, then use it as input for all the heuristics; this allows us to minimize the impact

of randomness in demand generation.

Experiment 1

The purpose of the first experiment is to illustrate that: (1) both RPF-m and R2PF-

m perform well, even for a relatively sparse set of price discretization and without the

non-DR-degeneracy assumption; and (2) even the static heuristic RPF-m dominates the

performance of Sep-reopt. To do this, we choose K = 9 and m= 3, which means that M =

39 = 19,683. For each θ, we run three algorithms, namely RPF-3, R2PF-3 and Sep-reopt),

and compares their average performances. (We do not run Full-reopt in this experiment

because the required computation time is simply too long; see Table 3.) The results can be

found in Table 1. In addition to reporting the loss (as defined in Section 4) and percentage

loss, we also report the percentage improvement in total profits for both RPF-3 and R2PF-

3 relative to the profit of Sep-reopt ; this helps us better understand the benefit of joint

pricing and fulfillment optimization.

θ
RPFC-3 R2PFC-3 Sep-reopt

Loss % Loss %Improve Loss % Loss %Improve Loss % Loss

100 3955.73 58.22% 0.79% 3912.13 57.57% 2.33% 3977.89 58.54%
200 5614.07 41.31% 3.67% 5204.59 38.30% 8.99% 5896.56 43.39%
400 5865.35 21.58% 3.29% 4560.62 16.78% 9.61% 6543.76 24.08%
600 6695.66 16.42% 2.25% 5523.25 13.55% 5.77% 7446.25 18.26%
800 7713.76 14.19% 2.43% 6850.85 12.60% 4.33% 8821.08 16.23%
1000 9559.36 14.07% 1.71% 8376.92 12.33% 3.77% 10539.29 15.51%
1500 9729.57 9.55% 1.74% 8072.33 7.92% 3.57% 11303.72 11.09%
2000 11959.26 8.80% 1.93% 7825.35 5.76% 5.33% 14304.14 10.53%

Table 1 Performances of different heuristics with varying θ

We now make several observations. First, it is obvious that the percentage loss of RPF-3

and R2PF-3 both converges to zero as θ grows large; moreover, R2PF-3 converges signif-

icantly faster than RPF-3. This empirically validates our theoretical results in Theorem

1 and 2. Second, for all θ ≥ 200, the performance of RPF-3 dominates that of Sep-reopt

by at least 1.7%. The real-time adjustment in R2PF-3 brings an additional 3.5% in profit.

This illustrates the benefit of joint pricing and fulfillment optimization, even if the e-tailer

only performs it once before the selling season with relatively sparse price discretization.

Third, under our choice of parameters, J ALP = 67.9494> J D = 63.8075. This illustrates
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our point in Section 4 that the CE-type deterministic relaxation may not be a proper

benchmark for evaluating heuristics.

Experiment 2

The purpose of the second experiment is to (1) study how the number of price dis-

cretizations affects the performance of RPF-m and R2PF-m, (2) compare the performance

of R2PF-m with that of Full-reopt-m, and (3) test the robustness of the proposed heuris-

tic. For this experiment, we choose K = 5 and m ∈ {2,5,8}, which means that M ∈
{32, 3125, 32768}. We run RPF-m, R2PF-m, Sep-reopt, and Full-reopt-m for different m,

with an exception of Full-reopt-8 which we do not run because its computation time is

too long (see Table 3). Note that, with different choices of m, the exact value of J ALP

is different. Hence, the absolute losses with respect to J ALP are not directly comparable

among the heuristics with different number of discretizations (the percentage loss can still

be used to test the robustness of the heuristics). Due to the same reason, we also report

the expected profits of Sep-reopt instead of its losses.

Several findings can be drawn from the results of the second experiments. First, the

performance of all heuristics tested in experiment 1 are robust, as the results in this

experiment reclaim the findings in the first experiment. Second, for the same choice of

m, R2PF-m always has comparable performance with Full-reopt-m; moreover, as shown

in Table 3, this is achieved with a significant reduction in computation time. Third, for

all three heuristics that manage pricing and fulfillment decisions jointly, in general, finer

discretization leads to higher profit as long as θ is large enough (compare the numbers in

%Improve columns). Fourth, compared to the first experiment, the improvement of joint

pricing and fulfillment optimization over separate pricing and fulfillment is significantly

larger. This can be explained by the relatively larger gap between J ALP and J D, since

the expected total profit of Sep-reopt can at best be closest to J D. (Specifically, J ALP =

66.1347,69.5241,70.5807 for m= 2,5,8, respectively, whereas J D = 53.3431.) Finally, for

some instances (e.g., R2PFC-2 when θ= 1500) the loss is actually negative, which suggest

that the total expected profits of R2PFC-2 can be greater than J ALP (θ). This, together

with the finding in the first experiment, confirms our conjecture in Section 4 that, in

general, neither J ALP nor J D is an upper bound for different heuristics.

Lastly, we report the running time of a single simulation for Full-reopt-m and Full-

reopt-m with different values of m. For the same problem instance, R2PFC-m runs much
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θ
RPFC-2 RPFC-5 RPFC-8

Loss %Loss %Improve Loss %Loss %Improve Loss %Loss %Improve

100 3147.60 47.59% 110.63% 3876.79 58.62% 74.84% 3953.14 59.77% 72.55%
200 3754.57 28.39% 58.32% 4649.50 35.15% 50.70% 5335.73 40.34% 40.76%
400 3972.55 15.02% 49.07% 6833.73 25.83% 36.76% 6436.06 24.33% 41.66%
600 4587.75 11.56% 44.87% 7214.78 18.18% 40.89% 7679.50 19.35% 40.98%
800 5862.10 11.08% 46.39% 8449.77 15.97% 45.43% 7926.62 14.98% 49.38%
1000 6703.25 10.14% 47.32% 8831.96 13.35% 49.33% 9579.95 14.49% 49.62%
1500 8737.27 8.81% 45.97% 10625.81 10.71% 50.24% 11352.69 11.44% 51.27%
2000 8601.42 6.50% 48.88% 11026.35 8.34% 53.44% 13196.07 9.98% 52.99%

θ
R2PFC-2 R2PFC-5 R2PFC-8

Loss %Loss %Improve Loss %Loss %Improve Loss %Loss %Improve

100 2538.69 36.52% 155.16% 3256.51 46.84% 124.61% 3254.96 46.82% 128.12%
200 1826.41 13.14% 92.03% 3707.53 26.66% 70.43% 4407.40 31.70% 61.15%
400 2201.77 7.92% 61.52% 2876.74 10.34% 65.32% 1954.38 7.03% 74.04%
600 3155.06 7.56% 51.42% 2865.25 6.87% 60.37% 2619.60 6.28% 63.84%
800 1262.29 2.27% 60.90% 4660.29 8.38% 58.57% 1742.11 3.13% 70.20%
1000 3039.23 4.37% 56.77% 2544.18 3.66% 66.04% 3407.57 4.90% 66.39%
1500 -761.32 -0.73% 61.23% 1674.99 1.61% 65.56% 4980.87 4.78% 62.66%
2000 991.53 0.71% 58.10% 4078.56 2.93% 62.49% 2199.75 1.58% 67.25%

θ
Full-reopt-2 Full-reopt-5 Sep-reopt

Loss %Loss %Improve Loss %Loss %Improve Profit

100 2403.49 34.05% 165.06% 3253.78 46.10% 127.74% 1645.45
200 1454.08 10.30% 98.30% 3728.16 26.41% 71.02% 5983.23
400 1714.29 6.07% 64.76% 2390.11 8.47% 68.79% 15081.29
600 2741.67 6.47% 53.20% 1693.57 4.00% 65.31% 24224.53
800 1094.80 1.94% 61.44% 3035.18 5.38% 63.77% 32136.91
1000 2289.27 3.24% 58.62% 2617.94 3.71% 65.95% 40340.76
1500 -2511.69 -2.37% 63.86% 889.25 0.84% 66.85% 61977.02
2000 -565.48 -0.40% 59.87% 2360.87 1.67% 64.60% 83064.69

Table 2 Expected loss of different heuristic with varying θ

faster than Full-reopt-m. All experiments were implemented on a desktop computer with

3.40GHz Intel Core i7-3770 CPU and 8 GB of RAM.

R2PFC-5 (K=5) R2PFC-8 (K=5) R2PFC-9 (K=3)

23.12 23.69 25.49

Full-reopt-5 (K=5) Full-reopt-8 (K=5) Full-reopt-9 (K=3)

992.87 10814.08 7170.38

Table 3 Typical running time (in seconds) for a single simulation for selected heuristics (θ = 2000)
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8. Summary

In this paper, we consider a joint pricing and fulfillment problem faced by e-commerce

retailers. In this environment, the inability of the e-tailer to charge different prices for

customers coming from different regions introduces a subtlety that does not permit a triv-

ial generalization of methodology in existing literature. To cope with this, we propose a

novel LP-based approximation scheme and show that it approximates the original optimal

control formulation well. Motivated by the structure of the optimal solution to the approx-

imation LP, we further propose two different heuristics that have a strong performance

guarantee. In our major heuristic, we frequently adjust the pricing decision according to an

autonomous error-correcting scheme and re-solving the fulfillment decision by an updated

transportation LP. We believe that this heuristic has desirable features since (1) it decou-

ples the real-time decision in pricing and fulfillment assignment, which in practice may be

managed by different functions, and (2) it yields a high total expected profits without sacri-

ficing the computation time. Our numerical results show that both heuristics not only have

good theoretical performance in asymptotic setting but also work well in non-asymptotic

setting with only a few units of inventory in each FC. We further believe that our analytical

framework can be used to address other stochastic optimization problems abound in the

broader OM context where different related decisions have to be made jointly in real-time.
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Electronic Companion

EC.1. Proof of Lemma 1

In what follows, we will only show the existence of a proper set q∗ under the single-product setting; the

argument can be easily extended to the multiple-product setting. Let F t : Ωp→ [0,1] denote the CDF for

pricing decision during period t under the optimal heuristic π∗. Also, let r̄tj and λ̄tj denote the expected

revenue and demand rate from location j during period t under π∗ (since we only consider the single-product

setting, there is no need to use subscript k), i.e.,

r̄tj := Eπ∗
[Rtj(p

t)] =

∫
Ωp

rj(p) dF
t(p) and λ̄tj :=Eπ∗

[Dt
j(p

t)] =

∫
Ωp

λj(p) dF
t(p).

To prove Lemma 1, we first show that there exist weight vectors {αt} such that, for the uniform grid

q∗defined in Section 4 and some sufficiently small εr, ελ > 0, the following hold:∣∣∣∣∣r̄tj −
M∑
m=1

αtmrj(q
∗
m)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωp

pλj(p) dF
t(p)−

M∑
m=1

αmrj(q
∗
m)

∣∣∣∣∣≤ εr ∀j, t, (EC.1)∣∣∣∣∣λ̄tj −
M∑
m=1

αtmλj(q
∗
m)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωp

λj(p) dF
t(p)−

M∑
m=1

αtmλj(q
∗
m)

∣∣∣∣∣≤ ελ ∀j, t, (EC.2)

M∑
m=1

αtm = 1, αtm ≥ 0, ∀m,t. (EC.3)

Define a uniform partition of the interval Ωp as Ωp = ∪Mm=1Pm :=
[
∪M−1
m=1 [pl + (m− 1) ∆q, pl +m∆q)

]
∪

[pu−∆q, pu], where ∆q := (pu− pl)/M is the length of the sub-intervals. Then q∗ can be expressed explictly

as q∗ = (pl + (m− 1/2)∆q)
M
m=1. Consider a choice of weight vector αtm =

∫
Pm

dF t(p). Note that (EC.3) is

satisfied immediately by definition. We now show that the combination of q∗ and αt defined above satisfy

(EC.1) and (EC.2). By definition, for all j ∈ [J ], we have∣∣∣∣∣λ̄tj −
M∑
m=1

αtmλj(q
∗
m)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωp

λj(p) dF
t(p)−

M∑
m=1

αtmλj(q
∗
m)

∣∣∣∣∣=
∣∣∣∣∣
M∑
m=1

∫
Pm

(λj(p)−λj(q∗m)) dF t(p)

∣∣∣∣∣
≤

M∑
m=1

∫
Pm

|λj(p)−λj(q∗m)| dF t(p)≤ λu∆q.

where the first inequality follows from triangular inequality and the last inequality follows from Assumption

A1 together with λu := maxj∈[J],p∈Ωp |λ′j(p)|. By similar argument, since |r′j(p)| ≤ |λj(p) + pλ′j(p)| ≤ 1 + puλu

for all p∈Ωp, it is not difficult to show that (EC.1) is satisfied for εr = (1 + puλu)∆q.

We now show that the choices of q∗ and αt above guarantees a good approximation. Let x̃t denote the

optimal solution to the following LP:

FCA := min
{xt

ij
}

{
T∑
t=1

I∑
i=0

J∑
j=1

cijx
t
ij :

I∑
i=0

xtij =

M∑
m=1

αtmλj(q
∗
m),

T∑
t=1

J∑
j=1

xtij ≤Ci, 0≤ xtij ≤ 1

}
.

Also, let x̄t denote the optimal solution of the following LP:

FCO := min
{xt

ij
}

{
T∑
t=1

I∑
i=0

J∑
j=1

cijx
t
ij :

I∑
i=0

xtij = λ̄tj ,

T∑
t=1

J∑
j=1

xtij ≤Ci, 0≤ xtij ≤ 1

}
.
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The only difference between FCA and FCO is on the RHS of fulfillment constraint. Since the optimal value

of an LP is convex and thus Lipschitz continuous on a compact set in its RHS parameters (see Theorem 5.1

in Bertsimas and Tsitsiklis 1997) there exists a constants K > 0 such that FCA −FCO ≤Kc̄λu∆q, where

c̄= maxi∈[I]∪{0},j∈[J] cij . So,

J ∗−J ALP

≤

[
T∑
t=1

J∑
j=1

r̄tj −FCO

]
−

[
T∑
t=1

J∑
j=1

M∑
m=1

αtmrj(q
∗
m)−FCA

]
≤

T∑
t=1

J∑
j=1

∣∣∣∣∣r̄tj −
M∑
m=1

αtmrj(q
∗
m)

∣∣∣∣∣+ (FCA−FCO
)

≤ [TJ(1 + puλu) +Kc̄λu] ∆q ≤
(pu− pl) [TJ(1 + puλu) +Kc̄λu]

M
.

The proof is concluded by letting M = d(pu− pl) [TJ(1 + puλu) +Kc̄λu]/εe+ 1. �

EC.2. Proof of Theorem 1

Let q∗ be the set of discrete prices defined in Section 4. Without loss of generality, we assume that T = 1.

We consider a variant of RPF (V-RPF) defined as follow: during period t, fulfill the order from location j

according to σtk(j) regardless of the availability of the corresponding FC; if the FC runs out of inventory,

the retailer incurs a penalty cost of c̄ := 2 · max
j∈[J],k[K]

c0jk. In other words, V-RPF incurs the same revenue as

RPF, yet no smaller fulfillment cost. Consequently, the loss can be bounded as follows:

J ALP (θ)−E [RRPF (θ)]≤J ALP (θ)−E [RV−RPF (θ)]

= E

[
θ∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

θ∑
t=1

J∑
j=1

(pt)>Dt
j(p

t)

]
+ c̄ E

 I∑
i=1

K∑
k=1

(
θ∑
t=1

J∑
j=1

Xt
ijk−Cik(θ)

)+


+ E

[
θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk−

θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]

= E

[
θ∑
t=1

J∑
j=1

∆Rtj

]
+ c̄ E

 I∑
i=0

K∑
k=1

(
θ∑
t=1

J∑
j=1

Xt
ijk−Cik(θ)

)+
+E

[
θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijk∆X
t
ijk

]
,

where ∆Rtj :=
∑M

m=1α
∗
mrj(q

∗
m)− (pt)>Dt

j(p
t), and ∆Xt

ijk := Xt
ijk − x∗ijk. By definition of RPF, E [∆Rtj ] =

E [∆Xt
ijk] = 0. As for the last term, by triangular inequality,

E

 I∑
i=0

K∑
k=1

(
θ∑
t=1

J∑
j=1

Xt
ijk−Cik(θ)

)+


≤ E

 I∑
i=0

K∑
k=1

(
θ∑
t=1

J∑
j=1

Xt
ijk− θ

J∑
j=1

x∗ijk

)+
+E

 I∑
i=0

K∑
k=1

(
θ

J∑
j=1

x∗ijk−Ci(θ)

)+


≤
I∑
i=0

J∑
j=1

K∑
k=1

E

( θ∑
t=1

Xt
ijk−x∗ijk

)+
+ 0≤

I∑
i=0

J∑
j=1

K∑
k=1

[
Var

(
θ∑
t=1

∆Xt
ijk

)]1/2

=O
(√

θ
)
,

where the second inequality follows from the inventory constraint in ALP, the last inequality follows because

∆Xt
ijk’s are independent and bounded from above by Dt

jk ≤ 1. This completes the proof. �
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EC.3. Proof of Theorem 2

Let T = 1. Per our discussion in Section 6, we can assume
∑J

j=1 x
∗
ijk = Cik without loss of generality. Let

Ct
i (θ) be the on-hand inventory level in FC i at the beginning of period t for a problem with size θ. By

definition, we have C1
i (θ) = θCi. Fix θ > 0. We divide our proof into several steps.

Step 1

We first define additional terms that will be useful for the proof:

∆t
jk :=Dt

jk (pt)−λjk(pt), ∆̃t
jk :=Dt

jk (pt)−
M∑
m=1

α∗mλjk (qtm) , and ∆ytijk := Y t
ijk− ytijk.

To be precise, all the above terms should be written as a function of pt and qt. We suppress these notational

dependencies for brevity. The term ∆t
jk can be interpreted as the size of demand randomness induced by

pt; the term ∆̃t
jk as the size of randomness induced by the sampling procedure; the term ∆ytijk as the size

of randomness in the fulfillment outcome. Together with the term ∆Ct
ik defined in Section 6, all the above

deltas are bounded random variables with zero mean for all t≤ θ. The proof is not difficult and is omitted.

Below we discuss two key observations that are useful to help us express the evolution of fulfill-

ment decisions over time. We call an FLPt to be “balanced” if its input parameters (qt,Ct) satisfy (i)∑J

j=1

∑M

m=1α
∗
mλjk(q

t
m) =

∑I

i=0C
t
ik/(T − t + 1) for all k, and (ii) Ct

ik > 0 for all i, k. We make our first

observation regarding the solution of a balanced FLPt.

Observation EC.1. The optimal solution xt to a non-DR-degenerate balanced FLPt(qt,Ct) has the following

property: For every k ∈ [K], there are exactly I + J strictly positive components in (xtijk)i∈{0}∪[I],j∈[J], with

the other components equal to zero. Moreover, the inventory constraints are all binding.

Proof. Note that FLPt(qt,Ct) is separable over k, so solving FLPt(qt,Ct) is equivalent to solving K

sub-problems defined below:

FLPtk(q
t,Ct

k) :=

{
min
xijk≥0

I∑
i=0

J∑
j=1

cijkxijk :

I∑
i=0

xijk =

M∑
m=1

α∗mλjk(q
t
m),

J∑
j=1

xijk ≤Ct
ik/(T − t+ 1)

}
.

Since FLPt(qt,Ct) is balanced, all the inventory constraints in FLPtk(q
t,Ct

k) must be binding. Since

FLPt(qt,Ct) is non-DR-degenerate and separable over k, FLPtk(q
t,Ct

k) is also non-degenerate for each k.

Thus, Observation EC.1 follows directly from the standard result on transportation LP (see Corollary 7.2 in

Dantzig and Thapa 2006). �

Let xk = (xijk)i∈{0}∪[I],j∈[J] and ck = (cijk)i∈{0}∪[I],j∈[J]. Given our assumptions in the statement of The-

orem 2 and at the beginning of this section, FLP1(q∗,C) is non-DR-degenerate and balanced. Thus, for all

k, FLP1
k(q
∗,Ck) are non-degenerate and has I+J non-zero components in x∗k (since there are I+J + 1 con-

straints with exactly one redundant). Let Ak and Qk denote the coefficient matrix and the RHS of inventory

constraints in FLP1
k. Let Āk be the matrix where we delete the (J + 1)th row from Ak, i.e., the row corre-

sponding to the inventory constraint on FC 0, and Q̄k be the vector where we delete C0k/θ from Qk. This

constraint is redundant, since any xk satisfying the system of equations Ākxk = Q̄k automatically satisfies∑J

j=1 x
t
0jk = C0k/θ (the deleted constraint). By Theorem 2.5 in Bertsimas and Tsitsiklis (1997), the FLP1

k



ec4 e-companion to Lei, Jasin, and Sinha: Dynamic Joint Pricing and Order Fulfillment for E-commerce Retailers

is equivalent to
{

min c>k xk : Ākxk = Q̄k, x� 0
}

; moreover, by Lemma 7.1 in Dantzig and Thapa (2006),

Āk has linearly independent rows. Let Bk = {(i, j) : 0< x∗ijk < 1} and Nk = {(i, j) : x∗ijk = 0} be the indices

of the optimal basic and non-basic variables respectively. Without loss of generality, we assume that Āk is

written as [Bk,Nk] where Bk and Nk are the sub-matrices of Āk corresponding to the basic and non-basic

indices in Bk and Nk respectively. Following the same decomposition, the optimal solution can be repre-

sented as x∗k = [x∗k,B,x
∗
k,N ], where x∗k,B =B−1

k Q̄k and x∗k,N = 0 (the invertibility of Bk is proved in Theorem

7.6 in Dantzig and Thapa 2006). Thus, the unique optimal solution to FLP1 can be accordingly written

as x∗ = [x∗B;x∗N ], where x∗B = (x∗k,B)Kk=1, x∗N = (x∗k,N)Kk=1. Note that if we define B = diag(B1, . . . ,BK) as a

block diagonal matrix with (Bk)
K
k=1 as its main diagonal blocks and zero matrices as off-diagonal blocks, and

Q̄= [Q̄1; . . . ; Q̄K ], we can write x∗B =B−1Q̄. Let Qt
k be the RHS of FLPtk and Q̄t

k be the vector where we delete

Ct
0k/(θ− s) from Qk

t . Define δQt
k := ((

∑M

m=1α
∗
m λjk(q

t
m)−

∑M

m=1α
∗
mλjk(q

∗
m))Jj=1, (−

∑t−1
s=1 ∆Cs

ik/(θ− s))Ii=0)

and let δQ̄t
k be the vector where we delete −

∑t−1
s=1 ∆Cs

0k/(θ−s) from δQt
k. Let δQ̄t = (δQ̄t

k)
K
k=1. Following the

same decomposition, we will also write c = [cB;cN ]. Per our definition in Section 3, λtot(p) is the aggregated

purchase probability given a price vector p∈Ωp. We make our second observation below:

Observation EC.2. At period t, as long as the following conditions hold:
J∑
j=1

λj(q
t
m) = λ̂tm := λtot(q∗m)− 1

Mα∗m

(
I∑
i=0

t−1∑
s=1

∆Cs
i

T − s

)
∈⊗Kk=1[0,1], (EC.4)

Ct
ik(θ) = Ĉt

ik(θ) := (θ− t+ 1)

[
Cik−

t−1∑
s=1

∆Cs
ik

θ− s

]
≥ 0, (EC.5)

x∗k,B +B−1
k δQ̄t

k � 0, (EC.6)

then the unique optimal solution to FLPt is given by xtk,B = x∗k,B +B−1
k δQ̄t

k and xtk,N = 0 for all k.

Proof. Under condition (EC.4), FLPt is balanced. This is so because, for all k,
J∑
j=1

M∑
m=1

α∗mλjk(q
t
m) =

J∑
j=1

M∑
m=1

α∗mλjk(q
∗
m)−

I∑
i=0

t∑
s=1

∆Cs
ik

T − s
=

I∑
i=0

Cik−
I∑
i=0

t−1∑
s=1

∆Cs
ik

θ− s
=

I∑
i=0

Ct
ik(θ)

θ− t+ 1
,

where the second equality follows from our assumption in the beginning of this section, and the last equality

follows from the definition of ∆Ct
ik. As a result, for all k, the inventory constraints in FLPtk are all binding.

Notice that condition (EC.4) and (EC.5) implies that Qt
k =Qk + δQt

k � 0, and thus FLPtk is equivalent to{
minxt

k
c>k xtk : Ākx

t
k = Q̄k + δQ̄t

k, x
t
k � 0

}
. The feasibility of the proposed optimal solution can be directly

verified under condition (EC.6); its optimality follows from Karush-Kuhn-Tucker (KKT) conditions; and its

uniqueness follows from the invertibility of Bk. �

Step 2

Define x̂t := (x̂tB,xN) = (x∗B +B−1δQ̄t,0). Let φx = mink∈[K] min(i,j)∈Bk x
∗
ijk > 0 (by non-degeneracy assump-

tion); Φ1 = max
p∈Ωp, j∈[J], k,`∈[K]

|∂λjk(p)/∂p`|> 0 (it is finite by Assumption A1); Φ2 = maxk∈[K] ||B−1
k ||∞ > 0

(it is also finite by the invertibility of Bk); φλ := max{x > 0 : λtot(q∗m) + x · 1 ∈ ⊗Kk=1[0,1], ∀m} > 0 (by

Assumption A1 and the fact that q∗m lies in the interior of Ωp); and v > 0 denote the smallest absolute

eigenvalue of Jλtot (by Assumption A3). Remember that, we assumed without loss of generality that α∗ � 0

since we can delete any α∗m with zero value without changing anything else. We state a lemma.
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Lemma EC.1. Suppose that λtot(qsm) = λ̂sm ∈⊗Kk=1[0,1], xs = x̂s � 0 and Cs
i (θ) = Ĉs

i (θ)� 0 for all s < t.

Then λtot(qtm) = λ̂tm, xt = x̂t and Ct
i (θ) = Ĉt

i (θ) hold if the following two conditions hold at time t

(†) :

∣∣∣∣∣
I∑
i=1

t−1∑
s=1

∆Cs
ik

θ− s

∣∣∣∣∣≤min

{
φx
Φ2

(
1 +

KΦ1

v

)−1

, φλM · min
m∈[M]

α∗m

}
, ∀k,

(††) :

∣∣∣∣∣
t−1∑
s=1

∆Cs
ik

θ− s

∣∣∣∣∣≤Cik, ∀i, k,
Proof. We proceed by induction. The base case (t= 1) can be verified directly by definition. Now, consider

t > 1. Assume the identity holds for s≤ t− 1. Given condition (†) and the definition of φλ, it is not difficult

to show that λ̂tm ∈ ⊗Kk=1[0,1]. Since λtot(qtm) is simply the projection of λ̂tm onto ⊗Kk=1[0,1] (see Step 2a in

R2PF), λtot(qtm) = λ̂tm.

We now show that Ct
ik(θ) = Ĉt

ik(θ). Suppose that, in Step 2c of R2PF, we sample mt for some mt ∈ [M ].

Remember that, in period t−1, the probability of using FC i to fulfill the request of product k from location

j conditioned on Djk = 1 is yt−1
ijk = xt−1

ijk /
∑I

i=0 x
t−1
ijk . Moreover, since conditions (EC.4) - (EC.6) are implied

for all s ≤ t by the inductive assumption, by Observation EC.2, the inventory constraints in FLPt−1 are

binding. So, the remaining inventory at the beginning of period t satisfies:

Ct
ik(θ) = Ct−1

ik (θ)−
J∑
j=1

Xt−1
ijk =Ct−1

ik (θ)−
J∑
j=1

yt−1
ijk

(
M∑
m=1

α∗mλjk(q
t−1
m )

)
−∆Ct−1

ik

= Ct−1
ik (θ)−

J∑
j=1

xt−1
ijk −∆Ct−1

ik =Ct−1
ik (θ)− Ct−1

ik (θ)

θ− t+ 2
−∆Ct−1

ik

= (θ− t+ 2− 1)

[
Cik(θ)−

t−2∑
s=1

∆Cs
ik

θ− s

]
−∆Ct−1

ik = Ĉt
i (θ),

where the second equality follows from the definition of ∆Ct
ik; the third equality follows from the fulfillment

constraint in FLPt; the fourth constraint follows since the inventory constraints in FLPt−1 are binding; and,

the fifth constraints follows from the inductive assumption.

At last, to show that xt = x̂t, by Observation EC.2, it suffices to show conditions (EC.4) - (EC.6) are satis-

fied for period t. Condition (EC.4) is implied by λtot(qtm) = λ̂tm. Since condition (††) implies Ĉt
ik(θ)≥ 0, and we

have shown that Ct
ik(θ) = Ĉt

ik(θ), condition (EC.5) is satisfied. To check condition (EC.6), define δqtm = qtm−

q∗m. By Assumption A1 and Mean Value Theorem, δqtm = [Jλtot(ξtm)]
−1
(∑I

i=0

∑t−1
s=1 ∆Cs

i /(θ− s)
)
/(Mα∗m)

for some ξtm ∈Ωp. By Mean Value Theorem again, there exist ζtmk ∈Ωp such that∣∣∣∣∣
M∑
m=1

α∗m [λjk(q
t
m)−λjk(q∗m)]

∣∣∣∣∣=
∣∣∣∣∣
M∑
m=1

(∇λjk(ζtmk))
>

[Jλtot(ξtm)]
−1

M

(
I∑
i=0

t−1∑
s=1

∆Cs
i

θ− s

)∣∣∣∣∣≤ KΦ1

v
max
k∈[K]

∣∣∣∣∣
I∑
i=0

t−1∑
s=1

∆Cs
ik

θ− s

∣∣∣∣∣
where the inequality holds by Assumption A3 and the definition of Φ1. So,

∣∣∣∣B−1
k δQ̄t

k

∣∣∣∣
∞ ≤

∣∣∣∣B−1
k

∣∣∣∣ · ∣∣∣∣δQ̄t
k

∣∣∣∣≤Φ2 ·
(

1 +
KΦ1

v

)
max
k∈[K]

∣∣∣∣∣
I∑
i=0

t−1∑
s=1

∆Cs
ik

θ− s

∣∣∣∣∣≤ φx,
where the last inequality follows from condition (†). This implies condition (EC.6). �

Step 3
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In this step, we show that the conditions in Lemma EC.1 hold for the majority of the selling season. Define

a stopping time τ(θ) to be the first t such that either (†) or (††) is violated. According to Lemma EC.1,

for any period before τ(θ), we can explicitly characterize the evolution of price, fulfillment assignment, and

inventory consumption. The following lemma provides a lower bound on the length of τ(θ).

Lemma EC.2. There exists a constant Ψ3 > 0 independent of θ such that

E [θ− τ(θ)]≤Ψ3(1 + log θ).

Proof. Define τ1(θ) and τ2(θ) to be the first period t such that conditions (†) and (††) are violated,

respectively. By definition τ(θ) = mini∈{1,2} τi(θ). In what follows, we will only bound τ1(θ), since τ2(θ) can

be bounded using a similar argument.

Let Γk denote the RHS of the inequality in condition (†) in Lemma EC.1. The sequence{
Stk =

I∑
i=0

∆Ct−1
ik

θ− (t− 1)
+

I∑
i=0

∆Ct−2
ik

θ− (t− 2)
+ · · ·+

I∑
i=0

∆C1
ik

θ− 1

}
t≤θ

is a Martingle with respect to the natural filtration {Ht}, where Ht is the history of all information up to the

beginning of period t. This implies that the sequence {|Stk|}t≤θ is a sub-Martingle. By Doob’s submartingle

inequality (see for example Williams 1991) and union bound,

P(τ1(θ)≤ t) ≤ P (|Ssk| ≥ Γk for some s≤ t, k ∈ [K])≤
K∑
k=1

P
(

max
s≤t
|Ssk| ≥ Γk

)
≤

K∑
k=1

E [(Stk)
2
]

Γ2
k

.

Note that ∆Cs
ik and ∆Ct

jk are independent for all s 6= t and i, j ∈ {0}∪ I. So,

E[(Stk)
2
] = E

( t−1∑
s=1

I∑
i=0

∆Cs
ik

θ− s

)2
=

t−1∑
s=1

E
[(∑I

i=0 ∆Cs
ik

)2]
(θ− s)2

=

t−1∑
s=1

∑
i,j∈{0}∪[I] E

[
∆Cs

ik∆C
s
jk

]
(θ− s)2

= O

(
1

θ− t

)
,

where the last inequality follows from the boundedness of E
[
∆Cs

ik∆C
s
jk

]
. The proof is complete by noting

that E [θ− τ1(θ)] =
∑θ

t=2 P(τ1(θ)≤ t) = 1 +
∑θ−1

t=2 O
(

1
θ−t

)
= O(log θ). �

Step 4

We now bound the loss of R2PF. First, note that we can decouple the loss into two terms as follows:

J LP (θ)−E [RR
2PF (θ)]

=E

[
θ∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

θ∑
t=1

J∑
j=1

(pt)>Dt
j(p

t)

]
+E

[
θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk−

θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]
.

The two terms on the RHS of the equation above are the loss in revenue and the loss in fulfillment cost

of R2PF, respectively. We start with providing an upper bound for the loss in revenue:

E

[
θ∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

θ∑
t=1

J∑
j=1

(pt)>Dt
j(p

t)

]

≤E

[
τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

τ(θ)−1∑
t=1

J∑
j=1

Rtj(p
t)

]
+E

 θ∑
t=τ(θ)

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)
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=E

[
τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

τ(θ)−1∑
t=1

J∑
j=1

Rtj(p
t)

]
+E

[
(θ− τ(θ) + 1)

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)

]

≤E

[
τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

τ(θ)−1∑
t=1

J∑
j=1

Rtj(p
t)

]
+Kpu(1 + Ψ3 + Ψ3 log θ), (EC.7)

where the last inequality follows from Lemma EC.2, the boundedness of price, and the assumption of at most

one arrival per period. Let ∆̂t
j =
∑M

m=1α
∗
mrj(q

t
m)− (pt)>Dj(p

t). Define rtot(p) =
∑J

j=1 rj(p) = p>λtot(p). By

Assumption A1, there exists an inverse of λtot(p), which we will denote as p(λtot) : ⊗Kk=1[0,1]→ Ωp. With

slight abuse of notation, we will use rtot(λtot) = (p(λtot))>λtot to denote total revenue rate as a function

of aggregate demand. Let λ∗m = λtot(q∗m), λtm = λtot(qtm), and εt =
∑I

i=0

∑t−1
s=1 ∆Cs

i /(θ− s). For t≤ τ(θ), we

know thatλtm = λ∗m− εt/(Mα∗m). By Taylor’s expansion at λ∗m, we have

rtot(qtm) = rtot(λtm) = rtot(λ∗m)− (∇rtot(λ∗m))>εtm/(Mα∗m) + (εt)>∇2rtot(ηt)εt/(2M2(α∗m)2)

= rtot(q∗m)− (∇rtot(λ∗m))>εtm/(Mα∗m) + (εt)>∇2rtot(ηt)εt/(2M2(α∗m)2)

for some ηtm ∈⊗Kk=1[0,1]∈Ωp. So, the first term in (EC.7) can be bounded as follows:

E

[
τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
∗
m)−

τ(θ)−1∑
t=1

J∑
j=1

Rtj(p
t)

]

=E

[
τ(θ)−1∑
t=1

M∑
m=1

α∗mr
tot(q∗m)−

τ(θ)−1∑
t=1

M∑
m=1

α∗mr
tot(qtm)

]
+E

[
τ(θ)−1∑
t=1

J∑
j=1

M∑
m=1

α∗mrj(q
t
m)−

τ(θ)−1∑
t=1

J∑
j=1

(pt)>Dj(p
t)

]

≤ E

[
τ(θ)−1∑
t=2

M∑
m=1

(∇rtot(λ∗m))>εt

M

]
− E

[
τ(θ)−1∑
t=2

M∑
m=1

(εt)>∇2rtot(ηtm)εt

2M2 minm∈[M]α∗m

]
+E

[
τ(θ)∑
t=1

J∑
j=1

∆̂t
j

]
+Kpu, (EC.8)

where the last inequality holds because E [∆̂
τ(θ)
j ]≤Kpu. Note that {

∑J

j=1 ∆̂t
j}t≤θ is a Martingale with respect

to {Ht}t≤θ and τ(θ) is bounded. So, by stopping time theorem (Williams 1991), E [
∑τ(θ)

t=1

∑J

j=1 ∆̂t
j ] = 0.

We are left to bound the first two terms in (EC.8). Note that E [
∑τ(θ)−1

t=2 εt] = E [
∑τ(θ)

t=2 ε
t]−E [

∑θ

t=τ(θ) ε
t] =

−E [
∑θ

t=τ(θ) ε
t]. By stopping time theorem again, E[ετ(θ)] = 0, and E[εt] = 0 for all t > τ(θ). Consequently,

E[
∑τ(θ)−1

t=2

∑M

m=1(∇rtot(λ∗m))>εt] = (
∑M

m=1∇rtot(λ∗m))>E[
∑τ(θ)−1

t=2 εt] = 0. As for the second term in (EC.8),

let Φ3 > 0 be the largest absolute eigenvalue of ∇2rtot. By Assumption A3, Φ3 is finite. We thus have

E

[
τ(θ)−1∑
t=2

M∑
m=1

(εt)>∇2rtot(ηtm)εt

]
≤Φ3E

τ(θ)−1∑
t=2

K∑
k=1

(
I∑
i=1

t−1∑
s=1

∆Cs
ik

θ− s

)2


= Φ3

τ(θ)−1∑
t=2

K∑
k=1

∑
1≤s,v≤t−1

E
[(∑I

i=1 ∆Cs
ik

)2 (∑I

i=1 ∆Cv
ik

)2]
(θ− s)(θ− v)

= Φ3

τ(θ)−1∑
t=2

K∑
k=1

t−1∑
s=1

E
[(∑I

i=1 ∆Cs
ik

)2]
(θ− s)2

=O(log θ).

At last we bound the loss of fulfillment cost. By Lemma EC.1, for t < τ(θ), xt = [x∗B +B−1δQ̄t;0]. By

definition, c̄ is larger than all unit shipping costs. So,

E

[
θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk−

θ∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]

≤E

[
τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk−

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]
+E

 θ∑
t=τ(θ)

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk
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≤E

[
τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk−

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]
+ c̄IJKE[θ− τ(θ) + 1]

≤E

[
τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkX
t
ijk−

τ(θ)−1∑
t=1

I∑
i=0

J∑
j=1

K∑
k=1

cijkx
∗
ijk

]
+ c̄IJK(1 + Ψ3 + Ψ3 log θ). (EC.9)

We are left to bound the first term in (EC.9). Let ∆xtijk =Xt
ijk−xtijk. Since xt = x̂t for all t < τ(θ), we have:

E

[
τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

cijkX
t
ijk−

τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

cijkx
∗
ijk

]

= E

[
τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

K∑
k=1

cijk
(
xtijk−x∗ijk

)]
+E

[
τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

cij∆x
t
ij

]

= E

[
τ(θ)−1∑
t=1

c>BB
−1δQ̄t

]
+E

[
τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

cij∆x
t
ij

]

≤ c̄(I + J)K||B−1||1

{
E

[
τ(θ)−1∑
t=1

J∑
j=1

K∑
k=1

M∑
m=1

α∗m (λjk(q
t
m)−λjk(q∗m))−

τ(θ)−1∑
t=1

I∑
i=0

K∑
k=1

t∑
s=1

∆Cs
ik

θ− s

]}

+c̄E

[
τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

∆xtij

]

= −2c̄(I + J)K||B−1||1E

[
τ(θ)−1∑
t=1

I∑
i=0

K∑
k=1

t∑
s=1

∆Cs
ik

θ− s

]
+ c̄E

[
τ(θ)−1∑
t=1

I∑
i=1

J∑
j=1

∆xtij

]
where the second inequality follows from the definition of δQ̄t, the second equality follows from the definition

of τ(θ) and Lemma EC.1. Note that {
∑t

s=1 ∆xsij}t≤θ is Martingale with respect to the filtration {Ht}t≤θ.
Following a similar argument as in bounding the revenue loss, it is not difficult to see that the terms after

the above equation can be bounded by a constant independent of θ. �

EC.4. Parameters of Numerical Experiments 1

An arrival customer makes a purchase with probability exp(A1 +B1p) with the following parameters:

A1 =



−1.477
−1.300
−3.419
−4.418
−4.951
−1.542
−3.467
−3.035
−1.103


, B1 =



−6.300 0.333 0.300 0.233 0.283 0.250 0.183 0.283 0.300
0.317 −5.900 0.333 0.283 0.217 0.233 0.250 0.317 0.200
0.183 0.333 −6.400 0.183 0.333 0.283 0.333 0.333 0.333
0.333 0.333 0.167 −6.000 0.167 0.283 0.217 0.267 0.217
0.267 0.250 0.317 0.167 −5.400 0.300 0.267 0.183 0.200
0.183 0.300 0.333 0.217 0.233 −5.400 0.200 0.183 0.200
0.217 0.183 0.283 0.167 0.300 0.283 −5.700 0.200 0.267
0.267 0.233 0.300 0.183 0.300 0.283 0.200 −5.700 0.250
0.333 0.333 0.300 0.317 0.200 0.183 0.250 0.200 −5.800


× 10−3

The absolute magnitude of the components in Aj and Bj depends on the feasible price range, which, in our

setting, depends on the shipping cost. The initial inventory is set as follows:

C =


0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196
0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130
0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122 0.0122
0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189 0.0189
0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127
0.0136 0.0136 0.0136 0.0136 0.0136 0.0136 0.0136 0.0136 0.0136




