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INTRODUCTION 
 Crash severity is a key predictor of injury outcome in crashes (e.g., Kononen et al. 
2011, Klinich et al. 2010, Viano and Parenteau 2010, Ydenius 2010, Sunnevang et al.  2009, 
Digges and Dalmotas 2007).   The best available measure of crash severity is delta-V, the 
nominal change in velocity experienced by a vehicle involved in a crash.  Although delta-V is 
expressed as a velocity, it represents the energy absorbed by each vehicle and accounts for 
mass and stiffness differences between vehicles involved in multi-vehicle crashes. 
 The National Automotive Sampling System (NASS) includes three major datasets that 
are sampled annually from crashes in the U.S.  The General Estimates System (GES) is a 
complex stratified sample of 50,000 police-reported crashes in the U.S.  This dataset 
includes only information available from the police report, which does not include delta-V. 
The Crashworthiness Data System (CDS) is a complex stratified sample of 5,000 towaway 
crashes involving light vehicles.  This dataset includes details of in-depth crash 
investigations performed on vehicles selected for inclusion.  Delta-V is included in CDS. The 
Fatality Analysis Reporting System (FARS) is a census of all fatal crashes that occur on 
public roads in the U.S.  Most information in FARS comes from police reports, though there 
is some additional phone follow-up.  No delta-V information is available in FARS. When 
injury data are based on police reports, they are limited to the categories of killed (K), 
incapacitating injury (A), non-incapacitating injury (B), possible injury (C), or no injury (O).   
 Each dataset has a different data collection approach, and only CDS includes delta-V.  
Delta-V estimates are calculated by measuring vehicle crush and entering the 
measurements and other vehicle information into the WinSMASH (Sharma et al. 2007) 
program.  WinSMASH uses vehicle mass and dimensions, as well as stiffness coefficients 
based on crash tests, to estimate the delta-V required to produce the observed level of crush. 
 An alternative method of measuring delta-V is to download recorded acceleration 
from Event Data Recorders (EDRs).  At this time, only some vehicles are equipped with 
EDRs, and only a small portion record lateral acceleration.  Most crashes (other than full-
frontals) have a lateral component of delta-V.  CDS includes     EDR reports for any vehicles 
for which they have received permission.  However, the EDR reports are only available for a 
nonrandom subset of CDS case vehicles. EDR reports are not available for GES or FARS.  
Although EDRs provide promise for collecting measured delta-V, they will not replace delta-
V based on in-depth damage measurements in the near future.   
 While CDS includes delta-V, the database is limited to towaway crashes and light 
vehicles.  It would often be useful to know delta-V distributions for GES or FARS, which 
include different populations of crashes, since analysis of outcomes or safety benefits must 
account for crash severity.   
 To this end, researchers have attempted to estimate crash severity for individual 
cases in GES using injury outcome. Farmer (2003) compared two commonly used measures 
of crash severity from police reports to corresponding measures from accident 
investigations in CDS.  First, he compared posted speed limit to delta-V.  Posted speed limit 
is often used as a proxy for crash speed (or crash severity) in analyses of GES data.  
Although Farmer found a relationship between posted speed and delta-V, it is too weak to 
reasonably use posted speed limit as a substitute for the probable delta-V in a given GES 
case.  Farmer also investigated injury coding by police compared to outcomes recorded in 



medical records, but he did not explicitly explore injury outcome as an indication of crash 
severity. 
 Farmer’s goal was to identify a substitute measure of crash severity for individual 
cases when delta-V is not available.  Although it would be ideal to have an adequate delta-V 
surrogate for each case, an estimate of the delta-V distribution for a class of cases would be 
useful in several other circumstances.  For example, evaluations of NHTSA’s crash testing 
program commonly compare the test speed to field distributions of delta-V for similar 
crashes to understand what real-world benefit might result from crash testing (Hackney et 
al (1996), Newstead et al (1996), Arbalaez et al, 2005).  Delta-V distributions could also 
prove beneficial when estimating safety benefits for any countermeasure (e.g., forward 
collision warning, crash-imminent braking) that might reduce delta-V without eliminating a 
crash altogether. 
  This paper presents a method that uses injury patterns in GES, combined with the 
relationship between delta-V and injury from CDS, to estimate the distribution of delta-V for 
a group of similar crashes.  The method does not estimate delta-V for individual crashes, but 
instead identifies general patterns of the relationship between delta-V and injury that 
should hold for a larger population of similar crashes. 
 

METHODS 
 The proposed approach to estimate delta-V depends on two assumptions. First, the 
delta-V distribution can be modeled with a parametric form that will hold for different 
classes of crashes, though each class of crashes will have different parameters.  Second, the 
relationship between delta-V and injury is fixed for a given impact direction, and that 
relationship will hold for the general population of vehicles involved in impacts in the same 
direction. 
 
 The estimation process itself requires three elements: 

1) Injury risk curve for a specific damage location 
2) Distributional form for delta-V 
3) Injury distribution for occupants in target crashes  

 
 The injury risk curve captures the relationship between delta-V and injury.  Delta-V 
describes the severity of the crash as experienced by a given vehicle, and injury risk is 
related to crashworthiness.  Since crashworthiness differs for different parts of the vehicle 
structure, this relationship must be modeled for a specific crash direction.  Since CDS 
contains delta-V estimates as well as multiple measures of injury severity (AIS and KABCO), 
it can be used to develop injury risk curves.   
  

Choosing an appropriate statistical distribution reduces the number of parameters 
needed to define the model.  In general, a lognormal distribution describes the CDS delta-V 
distributions well.  There should be fewer parameters in the delta-V distribution than there 
are levels of injury. The lognormal has two free parameters.  
  
  The distribution of injury levels is the data-based target of the fitting process. The 
injury distribution is the percentage of occupants who sustain injury at each level. Since 
there are several available injury scales (e.g., AIS, KABCO), it is important to use the same 



injury outcome measure for both the injury risk curves and the empirical injury distribution.  
When using GES or FARS, the injury coding system will be the KABCO scale. Even though AIS 
is a more precise injury scoring system, the injury risk curves from CDS should predict risk 
on the KABCO scale. If AIS scoring is available in the injury data source (e.g., a hospital 
database that has injury outcome but few or no crash details), CDS-based risk curves should 
predict risk of AIS injury levels instead.  In this paper, only KABCO-based estimation is 
demonstrated. 

 
Estimation 
 The first step in estimation is to sort crashes by damage areas in a manner that can 
be achieved in both CDS and GES.  The second step is to generate the risk curves for the each 
crash type.  In this paper, the risk curves are based on cumulative logistic regression using 
log-transformed delta-V as the predictor and KABCO injury level as the outcome variable.  
Cumulative logistic regression is an extension of binary logistic regression, which fits one or 
more predictors to a binary outcome. The logistic regression model is given by Equation 1. 
 
𝑝𝑝 = 1

1 + exp (−(𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖x𝑖𝑖))𝑖𝑖
�  (1) 

where, p is the estimated probability of the outcome (e.g., injury),  
 β0 is the intercept, and 
 βi are the estimated coefficients of each predictor, xi, i=1..r where r is the number of 

predictors in the equation  
 
 Cumulative logistic regression is essentially the same as logistic regression except 
that it allows more than two ordered categories of outcome.  The model creates a series of 
increasing cutpoints among the ordered categories and fits a single slope parameter for 
each xi and a separate intercept for each cutpoint.  Thus when KABCO is the outcome 
variable and ln delta-V is the predictor, the model fits a single slope parameter for ln delta-V 
and separate intercepts for four cutpoints: K (vs. ABCO), KA (vs. BCO), KAB (vs. CO), and 
KABC (vs. O).  The advantage of the cumulative model (rather than other possible choices 
such as generalized logit) is that the predicted risk of more severe injury is always lower 
than the predicted risk of less severe injury, which generally describes real-world injury 
patterns. 
 The joint distribution of each injury level in the database is the product of the risk of 
injury at each delta-V and the probability of experiencing that delta-V in a crash.  As an 
example, Figure 1 shows a lognormal delta-V distribution with parameters µ=2.0 and σ=0.4 
that might represent the probability of experiencing a frontal crash at each delta-V.  Figure 2 
shows the same delta-V distribution plotted with the KA injury risk curve and their joint 
distribution (the product at each delta-V value).  Figure 3 shows the joint injury distribution 
for each injury level.     
 



 
Figure 1. Example of lognormal delta-V distribution. In this graph, µ=2.0 and σ=0.4. 



 
Figure 2.  Injury risk curve for KA injuries, distribution of crash severity, and the 

distribution of injury KA injury probability (the product of injury risk and crash severity 
distribution.)   

 
Figure 3. Joint risk of being in a crash with a given delta-V and injured (at each injury level).  
 
 For each of the joint distributions in Figure 3, the area under the curve represents 
the total risk of the group of injury levels (e.g., KAB).  Since each outcome is cumulative, the 
area between the curves represents the total risk of a specific (non-cumulative) outcome 



(e.g., B injury only). The remaining probability (1 minus probability of any injury) is the 
probability of no injury.  Thus the proportion of injuries among K, A, B, C, and O can be 
estimated using these products of the injury risk model and a given delta-V distribution.    

If the injury-risk curves based on CDS models are considered fixed, then the only free 
parameters in the system illustrated in Figure 3 are those that describe the delta-V 
distribution.  If the KABCO injury distribution is known for a dataset but the delta-V 
distribution is not, different values of μ and σ defining the delta-V distribution can be tested 
until the product of the injury risk and delta-V curves come as close as possible to the target 
(data-based) proportions of K, A, B, C, and O injuries.   
 Because the injury distribution has four degrees of freedom (the fifth injury level is 
constrained to sum to 1) and the delta-V distribution has two degrees of freedom, not all 
injury distributions can be perfectly recovered with this system. As a result, we need a loss 
function to score the match between the injury distributions in the target dataset and those 
predicted by the product of injury risk and delta-V distribution.  
 The chi-square test statistic is a common measure of correspondence between model 
and data for a contingency table and is suitable for this application.  The equation for the 
chi-square statistic is given in Equation 2.  The parameters that minimize this loss function 
are selected for the delta-V distribution that results from the estimation process. 
 
Χ2 = ∑ (𝑜𝑜𝑖𝑖−𝑒𝑒𝑖𝑖)2

𝑒𝑒𝑖𝑖𝑖𝑖  (2) 

where 
 o is the observed cell proportion, 
 e is the expected cell proportion (from lognormal model), and 
 i sums over the five cells in the table (one for each injury level) 
 
Validation 
 In this paper, the performance of the method is tested in two ways. First, a 
simulation explores issues related to bias and required sample size for use of the method.  
Each run of the simulation involved generating a sample of simulated injury levels for 100, 
1000, or 5000 cases and then using the delta-V estimation method described above to 
estimate the parameters of the underlying delta-V distribution.  
 Each case in the simulation was generated in two steps, each of which corresponds to 
the model assumptions underlying the method. First, a value of delta-V was selected at 
random from a lognormal distribution with parameters µ=3.0 and σ=0.7. Next, an injury 
level on the KABCO scale was selected at random based on the risk model developed from 
CDS and the delta-V value selected in the first step. Once a simulated sample was generated, 
the empirical distribution of injury levels for that sample was returned. Based only on the 
distribution of the five injury levels, along with the fixed injury risk curves, the method 
described above was used to estimate the parameters of the delta-V distribution for each 
simulated sample.  The process was repeated 100 times for each sample size. 
 Second, to explore the performance of the method on real data, the model was used 
to estimate the parameters of the delta-V distribution for frontal cases in the CDS database 
(where delta-V distribution is known.)  The outcome of the injury-based estimation process 
is compared to both a direct sample estimate of the parameters of the lognormal delta-V 
distribution from CDS and the purely empirical (non-parametric) distribution of delta-V 
from the same cases. 



 These validation efforts do not push the boundaries of the underlying assumptions of 
the model.  The simulation uses the assumed model to produce test data and the CDS 
comparison is to the same data from which the injury risk curves are developed. However, 
there are infinitely many ways the model can be wrong relative to real-world data, so it is 
appropriate to limit the scope of this paper to testing the model under friendlier conditions.  
Future work should explore the robustness of the model to violations of its underlying 
assumptions. 
 

RESULTS 
 
Delta-V Distribution Form  
 The typical method of testing the fit of a distributional form to data is the 
Kolmogorov-Smirnoff test.  However, this method does not work with a stratified, weighted 
sample.  Instead, graphical methods were used to look at the relationship between the delta-
V distribution for frontals (defined as general area of damage (GAD1) equal to “F”) in CDS 
and a variety of candidate distributions.  
 The lognormal distribution fits the delta-V distribution for classes of crashes fairly 
well. Figure 4 shows how ln delta-V for frontals in CDS is related to the normal distribution.  
(Comparing the log of delta-V to the normal distribution is equivalent to comparing delta-V 
to the lognormal distribution.) Specifically, the proportion of the delta-V distribution for 
frontal crashes was computed for bins in 1 mph increments.  This proportion was 
cumulated and compared to the z-score associated with the cumulative proportion of each 
delta-V bin.  The straight line in Figure 4 between the normal variate and ln(delta-V) 
indicates that the lognormal distribution is a good fit to delta-V in frontals in CDS.  
Additional investigation of delta-V distributions indicated that the lognormal is a good fit for 
other crash modes as well. The gamma distribution was also a good candidate but was not 
used in this paper. 



 
Figure 4. Plot of normal variates for each quantile vs. ln delta-V (in mph). 

 
Injury Risk Curves 
 Injury risk curves using cumulative logistic regression to identify risk of KABCO 
injury outcome as a function of delta-V for vehicles with frontal damage in CDS are shown in 
Table 1 and Figure 5.  There is a single coefficient for log-transformed delta-V and a 
separate intercept for each level of injury (cumulated).  No other potential injury predictors 
were considered in the model, so they reflects the distribution of age, gender, and belt use 
found in CDS and GES.  The risk curves have a common slope, and each successive intercept 
predicts the probability of a given level or worse injury.  For example, the “B” intercept of -
4.9928 determines the risk of K, A, or B injury as a function of delta-V in a frontal impact.  
 
 



Table 1 
Coefficients and Fit Statistics for Injury Model in Frontal Impacts 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate 
Standard 

Error 

Wald 
Chi-

Square Pr > ChiSq 

Intercept K 1 -9.4901 0.3145 910.4918 <.0001 

Intercept A 1 -6.0136 0.6559 84.0483 <.0001 

Intercept B 1 -4.9928 0.3382 217.9715 <.0001 

Intercept C 1 -3.9414 0.2559 237.2877 <.0001 

Ln (delta-V 
mph) 

  1 1.4070 0.1056 177.6847 <.0001 

 

 
Figure 5. Cumulative logistic risk models for KABCO injuries in frontal impacts.  Each line 

represents the risk of the group of injury levels for a given delta-V value. 
 
Simulation 
 The arbitrary parameters of the simulation were µ=3.0 and σ=0.7, and three sample-
size scenarios were tested for the injury data: 100, 1000, and 5000 cases. Figure 6 shows 



the distribution of the estimated mean of the delta-V distribution for simulated samples 
sizes of 100, 1000, and 5000 crashes.  The estimation process becomes more precise as 
sample size goes up.  In addition, there is no evidence of bias as the average estimate for all 
three sample sizes was 3.0. 
 

 
Figure 6. Simulation results for estimation of mean delta-V.  The true value is 2.0. 
 
 Figure 7 shows the distribution of estimated standard deviation of the delta-V 
distribution for simulated samples sizes of 100, 1000, and 5000 crashes.  As with estimating 
the mean value, the estimation process becomes more precise as sample size goes up.  
However, standard deviation is more difficult to estimate precisely and the results are more 
varied. At a sample size of 100, the estimation method frequently reaches the end of the 
search space, suggesting that the estimates are not stable for such a small sample size.  The 
standard deviation estimates for sample sizes of 100, 1000, and 5000 were 0.65, 0.69, and 
0.70, respectively.  This suggests that the approach is unbiased for standard deviation as 
well, but sufficient sample size is required to have a stable estimate.   
 



 
Figure 7. Simulation results for estimation of standard deviation of delta-V.  The true value 
is 0.7. 
 
Estimation of CDS Delta-V Distribution 
 When the estimation approach was applied to the injury distribution from CDS 
frontals, the resulting parameters to define the delta-V distribution were µ=2.47 and σ=0.43.  
The parameters developed from the actual data were µ=2.43 and σ=0.44.  Table 3 shows the 
empirical (weighted) distribution of injury for CDS frontals (with non-missing delta-V).  The 
last column shows the estimated injury distribution, based on the best-fit lognormal 
parameters and the embedded risk models for frontal crashes.  The proportions match quite 
well with Χ2=xxx. 
 

Table 3 
Empirical and Estimated Proportion of KABCO Injuries for Frontals in CDS 

Injury Level Empirical Proportion of 
Cases 

Estimated Proportion of 
Cases (µ=2.47, σ=0.43) 

K 60.59% 60.62% 
A 19.82% 19.88% 
B 11.20% 11.08% 
C 8.10% 8.12% 
O 0.29% 0.30% 

 
 Figure 8 shows three distributions for comparison.  The solid black line is the 
weighted cumulative distribution of delta-V from frontal cases in CDS.  The dashed gray line 
shows the lognormal distribution calculated directly from the data in CDS.  The dotted gray 
line shows the lognormal distribution estimated using the injury-risk-curve approach.  The 
correspondence of all three distributions is quite close, suggesting that the injury-based 
approach proposed in this paper works well.   
 



 
Figure 8. Three distributions of delta-V for frontals in CDS.  Solid line represents empirical 
delta-V cumulative curve.  Dashed line is the lognormal distribution estimated directly from 
the data, and the dotted line is the lognormal distribution estimated only from the injury 
distribution. 
 

DISCUSSION 
 
 This paper presents a method of estimating the delta-V distribution for a group of 
cases when only injury patterns are known.  The method does not estimate delta-V for a 
specific case.  Its primary purpose is to understand the general nature of crash severity for 
groups of crashes. 
 The comparison between predicted and actual delta V distributions in CDS are very 
promising.  Simulation shows that the method is unbiased when the underlying 
assumptions are not violated.  When used for CDS data, the injury-based approach produced 
a lognormal distribution that was very close to the empirical distribution.  
 However, the conditions for these comparisons were ideal.  In the simulation, the 
underlying model matched the one used in the estimation process.  The goal was to identify 
bias and appropriate sample size, but future work might explore the robustness of the 
method under varying violations of the underlying assumptions. In the comparison to CDS, 
the risk models used for the injury-based estimation come from the same data that are 
being estimated, and the distributional form is known to work well for these data. 
Nonetheless, the match to the empirical results encouraging. 
 There are a variety of practical uses for this method.  For example, frontal crash tests 
for NCAP are targeted at the 95th percentile of delta-V so that protection in such a crash 
should be as good or better for 95 percent of frontal crashes.  However, the 95th percentile 
estimated from CDS data has two potential problems.  On the one hand, CDS crashes are all 



towaways and are therefore more severe, on average, than all police-reported crashes.  On 
the other hand, CDS cases with missing delta-V have higher injury rates, suggesting that the 
distribution for known-delta-V cases in CDS is biased low.   
 The injury-based estimation method described in this paper could address either of 
these issues.  Used with frontals from GES, this method can identify the percentile of all 
police-reported crashes at which testing is conducted.  This percentile is likely to be 
substantially higher than 95%.  Alternatively, the method could be used (and possibly 
compared to results from multiple imputation) to estimate the delta-V distribution for all 
CDS frontals, including those without delta-V based on crush measurements. 
 A limitation of this method is that injury-risk is only considered a function of delta-V, 
even though additional predictors such as belt use and occupant age affect injury.    
Although age is available in GES, belt-use coding in GES is considered unreliable because it 
is based on police reports rather than evidence collected by an accident investigator.  
Vehicle occupants are motivated by belt-use laws to report being belted, even if they were 
not.   Thus in this model, the intercepts reflect the general distribution of age, belt use, and 
other relevant variables.   For example, if the overall belt-use rate is 80%, then the risk 
associated with each level of injury will be a mixture of the risk for belted and the risk for 
unbelted occupants in an 80-20 mix.  If the CDS and GES populations have similar belt-use 
rates and similar age distributions, which should generally be the case, then the models 
based on CDS data will be appropriate for GES cases.  In addition, although the vehicle age 
distribution is newer for raw counts in CDS compared to GES, the weighted distributions of 
vehicle age for the two datasets are similar, as would be expected. 

Another limitation is that the simulation does not account for the stratified sampling 
used with GES.  In GES, sampling is stratified in favor of cases with greater injury and then 
reweighted to national population proportions.  Because the sampling approach was not 
simulated, the results of the simulation with respect to sample size will not directly apply to 
GES raw sample sizes.  Nonetheless, the large samples available in GES for most groups of 
crashes should be sufficient.  
 As vehicles are increasingly equipped with crash avoidance technologies that may 
mitigate crash severity, as well as more sophisticated occupant protection countermeasures, 
it will be increasingly important to understand delta-V in crashes beyond those measured in 
CDS.  The benefits of crash mitigation can only be estimated relative to existing delta-V 
distributions.  The estimation method described here can help to better characterize 
crashes for benefits estimation and other purposes.   
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