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ABSTRACT

FACTORS AFFECTING THE BEHAVIOR OF GREAT LAKES SEA LAMPREY
(PETROMYZON MARINUS) AT TRAPS

BY

Joshua J. Beaulaurier

Sea Lamprey (Petromyzon marinus) is a parasitic species that have affected Great Lakes 

fisheries in many ways. Control of sea lamprey populations through binational efforts started in 

1950s and continues today. The primary technique used to control sea lamprey is the application 

of lampricides to streams to kill larvae before they become parasites. The Great Lakes Fishery 

Commission is looking for an alternative method of control to complement lampricides to reduce 

sea lamprey abundance.

Trapping adult sea lamprey as they migrate upstream is used for assessment of spawning 

population in the stream. Trapping efficiency needs to be improved before this method could be 

used as an alternative method of control. Thus, the understanding of sea lamprey behavior at 

traps is important to try and improve trap success. A male mating pheromone component 

(3kPZS) used as an attractant in traps has been shown to increase trap capture. Also, other 

external factors are likely to affect the behavior of sea lamprey at traps. Video was used to record 

sea lamprey behavior at five traps across five migration seasons, with one trap being baited with 

3kPZS. I found sea lamprey are 31% more likely to enter after approaching the trap when it was 

baited with pheromone. I found additional environmental factors that affected the probability that 

a sea lamprey would enter and be retained in a trap.
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Overall Introduction
Sea lamprey {Petromyzon marinus) are an invasive fish species that invaded the 

Laurentian Great Lakes triggering negative cascading effects to the aquatic ecosystem (Lark 

1973; Smith and Tibbies 1980). Sea lamprey were a contributing factor in the collapse of lake 

trout {Salvelinus namaycush), whitefish (Coregonus clupeaformis), deep water cisco 

(Leucichthys Coregonus) and blackfin cisco {Coregonus nigripinnis) populations in the Great 

Lakes during the 1940s and 1950s (Morman et al. 1980; Page et al. 2013). Sea lampreys entered 

the Great Lakes from the Atlantic Ocean through a series of shipping canals that were built to 

connect the Upper Great Lakes with the Atlantic Ocean (Morman et al. 1980). They had invaded 

all o f the Great Lakes by 1938, and by the early 1960s lake trout fishery harvests had declined to 

2% of pre-invasion levels (Schneider et al. 1996). Management efforts to control sea lamprey 

populations throughout the Great Lakes region started in the 1950s and continue today. Due to 

destruction of valuable fish stocks and the adverse effect of sea lamprey on the ecological 

balance of fish species in the Great Lakes, the Great Lakes Fishery Commission (GLFC) was 

established in 1955 by a treaty between Canada and the United States (GLFC 2002). Their 

mission is to coordinate efforts to formulate and implement a program to eradicate or minimize 

sea lamprey populations in the Great Lakes (Pearce et al. 1980).

The sea lamprey life cycle in the Great Lakes begins in tributaries where fertilized eggs 

hatch into small, wormlike larvae called ammocoetes which burrow into the soft bottoms of 

streams to filter-feed on detritus for 3 to 6 years (Potter 1980). After ammocoetes reach 

appropriate size, they metamorphose into juveniles that migrate downstream and into the Great 

Lakes where they parasitize fish for 12 to 20 months. Juvenile sea lamprey do their damage by
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attaching to large fish with their suction-cup mouth and rasping a hole through the fish's scales 

and skin with their teeth, so they can feed on its blood and body fluids. During its parasitic 

lifetime, a single sea lamprey has been estimated to destroy 6.6 to 18.9 kg of host species (Swink 

2003). After the juvenile period, maturing adults migrate back into tributaries to find a mate, 

spawn and die. Depending on the productivity of the system, the complete life cycle o f sea 

lamprey from egg to adult, takes an average of 5 to 8 years to complete.

Sea lamprey control employs an integrated pest management strategy, which 

includes defining targets for control that optimize benefits, using quantitative methods and 

systems approaches, and applying alternative methods of control that consist of using 

lampricides to eliminate larval lamprey, barriers to limit access to productive spawning habitat, 

and traps to reduce reproductive potential of the adult population (Christie and Goddard 2003) 

The primary technique of control involves applying a lampricide, 3-trifluoromethyl-4- 

nitrophenol (TFM), to streams to kill ammocoetes while they are burrowed in the stream bottom. 

Lampricides are effective at killing ammocoetes, and have a minimal impact on other fish 

species, aquatic plants, invertebrates, and wildlife (Dahl et al. 1980). Alternative control 

methods are used despite the obvious success of lampricides because of public concern about 

pesticide use and the rising costs of lampricides. In their recent mission statement, GLFC stated 

that they wish to decrease the use of lampricides, and implement an alternative control method 

while still maintaining sea lamprey abundance at or below target levels (GLFC 2011). The true 

effectiveness of alternative control methods, which targets adults, depends on the ability to 

overcome compensation and recruitment variation (Dawson and Jones 2009). Thus, spawners 

need to be reduced to the point where few or no high recruitment events will occur.
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Pheromones have been found to play a role in different stages of the sea lamprey life 

cycle. Ammocoetes release a pheromone which activates in the water column to indicate the 

habitat quality for spawning adults and induce migration of adult lamprey to the mouths of water 

systems (Moore and Schleen 1980; Bjersulius et al 2000; Wagner et al 2009). Adult sea lamprey 

pheromones start to play roles in the migration of lamprey as they migrate upstream. Adult sea 

lampreys have been found to be attracted to 7a, 12a, 24-trihydroxy-3-one-5a-cholan-24-sulfate 

(3kPZS), a component of a pheromone known to be released by mature males, and traps baited 

with this male mating pheromone component have been found to capture more sea lampreys than 

unbaited traps (Johnson et al.2009; 2013). Male sea lamprey pheromones have been found to 

improve trapping efficiency in various stream systems (Johnson et al. 2009).

In addition to pheromones, there could be various external factors that could contribute to 

sea lamprey entering and being retained in a trap. Sea lamprey, Pacific lamprey (Entosphenus 

tridentatus), and European river lamprey (Lampetra fluviatilis) vary their migratory activity in 

response to increased discharge, whereas nightly variation in migratory activity in European 

brook lamprey ( L. planeri) has been attributed to both temperature and discharge (Applegate 

1950; Skidmore 1959; Malmquist 1980; Almeida et al. 2002; Luzier and Silver 2005; Masters et 

al. 2006; Andrade et al. 2007). For example, a curvilinear relationship was found between sea 

lamprey migratory activity and water temperature, with temperatures between 10°C and 18°C 

stimulating activity (Applegate 1950). Various other factors could play a role in the behavior of 

sea lamprey at traps, such as the location and design of the trap, time of night, and time of 

season.

Even though pheromone-baited traps have been shown to capture more sea lamprey on 

average than unbaited traps (Johnson et al. 2013), there are few data at traps on the actual
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entrance and retention rate of sea lampreys and numbers of sea lamprey approaching traps. 

Although pheromone-baited traps could be a promising alternative control method, this method 

still needs to be evaluated. Additionally, by evaluating various external factors that could 

contribute to the attraction and retention of sea lamprey in traps, I could potentially make 

recommendations to managers on how to trap more sea lamprey with or without the use of 

pheromones. To address these issues, this study proposes: 1) to evaluate sea lamprey behavior at 

a trap which was either pheromone baited or unbaited through analysis of video, and 2) to 

evaluate external factors which could also influence entrance and retention rates of sea lampreys 

at traps including water temperature, discharge, time of season, time of night, trap, and 

interactions between these factors.
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Chapter 1: t h e  i n f l u e n c e  o f  t h e  a p p l i c a t i o n  o f  a  s y n t h e s i z e d  m a l e
MATING PHEROMONE ON THE BEHAVIOR OF SEA LAMPREY AT A TRAP

Abstract

Great Lakes sea lamprey is an invasive species that has had an impact on game fish populations. 

Methods of control alternative to lampricides are currently being investigated. Teeter (1980) and 

colleagues were the first to demonstrate that the pheromones emitted by a nesting male sea 

lamprey function as an attractant to ovulating females. A male pheromone compound (3-keto 

Petromyzonol sulfate: “3kPZS”) was identified, synthesized, and was shown to lure up to 60% of 

females into traps in controlled field environments (Johnson et al. 2009). That research has led 

to management-scale tests of the synthesized mating pheromone, 3kPZS, as bait in trapping 

systems operated by sea lamprey control agents. To be trapped, individual sea lamprey must first 

encounter, then enter, and then be retained in traps. Entrance and retention rates of sea lamprey 

in traps may be influenced by application of pheromones to a trap. A trap near Mackinaw City, 

Michigan, was baited with pheromone every other night during the 2011 and 2012 spawning 

seasons, and behavior of sea lamprey at the trap was video recorded. Entrance and retention rates 

of sea lamprey were determined through video analysis. The data indicated that sea lamprey 

that approached the trap were more likely to enter the trap when it was baited with 3kPZS. 

Environmental factors were also found to play a role in the probability of entry and retention of 

sea lamprey in traps.
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Introduction

Sea lamprey traps are currently only used for assessment purposes, but if the efficiency of 

traps could be increased they could also function to help control sea lamprey (GLFC 2011). 

Managers currently use traps to perform mark-recapture studies for estimate populations of adult 

spawning sea lamprey to assess the effectiveness of the control program from previous years 

(Mullet et al 2003). Current trapping operations, where used, only remove about 40% of the 

adult population from tributaries throughout the Great Lakes (Sullivan and Adair 2012), which is 

too low to suppress sea lamprey recruitment (McLaughin 2007). However, by observing sea 

lamprey behavior at traps, I may be able to determine how traps can capture and retain larger 

percentages of the individuals that encounter them. The trapping process could be viewed as 

individual movements through certain behavioral states as Bravener and McLaughlin (2013) 

stated in a conceptual model that consists of four phases: unavailable, available, trapped and 

removed. A sea lamprey is “unavailable” during the spawning run where those individuals do not 

encounter a trap. A sea lamprey becomes “available” to be trapped when coming into close 

proximity to a trap. A sea lamprey is “trapped” when that individual navigates through the 

funnel into the trap and stays in the trap to be “removed” by the control agents. Sea lamprey 

behavior can affect durations in and transitions between states (Bravener and McLaughlin 2013). 

This study, in part, is interested in the behavior of sea lamprey after they become “available” to 

be trapped and before being “removed” by control agents. These sea lamprey can choose to not 

enter the trap, enter the trap and be retained and therefore “removed”, or enter the trap but later 

escape and therefore not be “removed44. All of these behaviors could be quantified by analyzing 

video recorded at sea lamprey traps during the adult migratory season. Probabilities of entrance 

and retention can depend on the physical features of a trap or its location, the locomotor and
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sensory capabilities of the individual sea lamprey, and environmental conditions that influence 

lamprey behavior (Bravener and McLaughlin 2013).

One of the factors that may affect trap efficiency is the use of attractants. By using 

natural sea lamprey pheromones as a trap attractant the efficiency of traps to capture and retain 

adult sea lamprey could be increased. Many attractants have been used to bring animals into 

certain locations for different purposes. Teeter (1980) and colleagues were the first to 

demonstrate that the odor emitted (pheromones) by a nesting male sea lamprey functions as an 

attractant to ovulating females (Johnson 2009). The male mating pheromone has been identified 

with several other components as mainly a bile acid: 7a, 12a, 24-trihydroxy-3-one-5a-cholan-24- 

sulfate (3kPZS; Li et al. 2002). Subsequent efforts focused principally on ascertaining whether 

the pheromone may be used effectively as trap attractants (Johnson et al. 2005, 2009; Wagner et 

al. 2006). Scientists synthesized the male mating pheromone, which was subsequently shown to 

attract sexually immature and mature lamprey upstream to the pheromone’s source (Siefkes et al. 

2005) and into 3kPZS-baited traps (Johnson et al. 2009; 2009; Luehring et al. 2011).

Research is currently underway to assess whether the pheromones sea lamprey use to 

communicate can be exploited to capture individuals effectively on a management-level scale.

In a natural environment, larval migratory pheromones have been primarily responsible for 

directing spawning adults to certain habitat rich systems, then as adults migrate upstream, 3kPZS 

also has elevated upstream migratory activity of pre-ovulated females (Moore and Schleen 1980; 

Bjerslius et al. 2000); Wagner et al. 2009). Immature sea lamprey may be exposed to 3kPZS if 

spawning habitats are inhabited by mature spermiating males. In those cases, the presence of 

3kPZS may be an indicator of suitable spawning habitat within a stream, thereby triggering 

increased migratory activity and priming of the neuroendocrine system of immature lamprey
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(Chung-Davidson et al. 2013). The pheromone, 3kPZS, drives upstream movement toward the 

nest, but still unidentified components retain females on nests and induce spawning behaviors 

(Johnson et al. 2012a). Most recent research on 3kPZS has been conducted in the laboratory, 

mimicking the natural environments with manipulated subjects and no pheromone competition 

from free ranging males (Johnson et al. 2010).

The aforementioned research has led to management-scale tests of synthesized 3kPZS as 

bait in trapping systems operated by United States Federal Wildlife Service (USFWS) and 

Fisheries and Ocean Canada (DFO. Management-scale field trials conducted by Johnson et al. 

(2009, 2013) in ten U.S. streams indicated that efficiency of capture at sites where 3kPZS was 

applied as trap bait increased by an average of 10% compared to the 10-year historical average. 

Increases were found to be variable, with some sites experiencing increases of over 25%.

As well as pheromones, there could be various external factors that could contribute to 

lamprey entering and being retained in a trap. Several lamprey species’ nightly movements 

appear to be due to environmental variation in the system but none have been found to be 

important (Applegate 1950; Skidmore 1959; Malmquist 1980; Almeida et al. 2002; Luzier and 

Silver 2005; Masters et al. 2006; Andrade et al. 2007). There was a curvilinear relationship 

between water temperature and migratory activity, being optimum between 10°C and 18°C and 

decreasing above and below those temperatures for Great Lakes sea lamprey. (Applegate 1950). 

Landlocked sea lamprey also showed a relationship between migratory activity and water 

temperature with changes in water temperature more important than absolute water temperature 

(Skidmore 1959). The migratory activity of other species of lamprey has been found to increase 

due to stream discharge and water temperature (Masters et al. 2006; Malmqvist 1980). If factors
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that can be manipulated by control agents (i.e., trap design, attractants) affect trapping efficiency 

then this can lead to improved trapping success.

With improvements in trap design and deployment, and the potential for using 

pheromones to increase trap capture rates, trapping may become a key element of control in the 

future and even surpass barriers as the primary alternative to lampricides (Jones 2007). 

Quantifying sea lamprey behavior at traps will help fine tune trap design to improve overall 

trapping efficiency. Underwater video is a valuable method for evaluating trap efficiency 

because, unlike other methods such as simple trap counts, it allows the observer to record the 

behavior of all individuals that encounter the trap, regardless of whether they enter the trap or 

not, or enter and then escape. In this chapter, underwater video was used to determine how 

baiting traps with synthesized 3kPZS changes the effect of physical, temporal, and 

environmental factors on sea lamprey behavior at traps. I predicted that 3kPZS application to 

traps and surrounding waters will improve trap performance by increasing the probability of a 

lamprey entering a trap upon encounter, while not decreasing the probability of a lamprey being 

retained in a trap. I also predicted that when a trap was baited with 3kPZS, the probability of sea 

lamprey entering a trap upon approach 1) increases with time of night, 2) increases with time of 

season, 3) increases with water temperature, and 4) increases with stream discharge.

Methods 

Study Site

Video was collected at a permanent sea lamprey trap on the Carp Lake Outlet during May 

through Mid-June in 2011 and May through Mid-June in 2012. The permanent trap is located on 

the Carp River at a low head barrier dam near Mackinaw City, MI USA that is a tributary of
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Lake Michigan (Figure 1). The permanent trap has six separate entrances oriented vertically on 

the front of the trap. The trap openings are 88.9 mm x 88.9 mm with fingers 12.7 mm apart in 

one funnel that was 1181.1 mm high x 228.6 mm wide x 304.8 mm deep (Figure 2). These 

fingers consist o f 4 metal appendages that drape over the back of the funnel. The fingers are used 

to inhibit the exit of sea lamprey from the trap allowing them to be retained. The fingers only 

open inward into the trap and cannot be pushed outward. The fingers rest into toothed metal 

grooves to keep them positioned correctly in the trap opening. During the study period, 

synthesized 3kPZS was applied to the trap every other night. Video was recorded nightly at a 

permanent trap using a Digital Video Recorder (DVR). Sea lampreys move primarily at night, so 

video was recorded from 21:00 to 05:00 each day. Video was recorded during the entire sea 

lamprey migration season occurring in the beginning of May to mid-June when sea lamprey 

travel up Great Lakes tributaries to find suitable habitat in which to spawn.

2011 Trapping season

There were two traps, one permanent and one portable, with two underwater video 

cameras (Lorex Cvc6990 B&W submersible camera) attached to each trap. Cameras were 

secured to a 2 x 4 that was fastened to the outer enclosure and included a 10-watt halogen light to 

illuminate the view of each camera (Laguna PowerGlo Mini Pond Light Kit PT-1550). In field 

studies, no consistent differences have been found in the numbers of sea lampreys caught in lit 

versus unlit traps (Stamplecoskie 2012). The cameras were positioned 30 cm from trap entrance 

to record sea lamprey behaviors but to not occlude the entrances to the traps. The lights were 

connected to a 12 V transformer (Laguna PowerGlo Mini Pond Light Kit PT-1550) that switched 

them on at dusk. Video was set to record from 21:00 to 5:00 each night using a Digital recorder
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(DVR, Lorex 8 channel Pentaplex Network DVR). The lights, video cameras, and DVR were 

powered by two 12 V marine Batteries (Everstart Maxx 29 deep-cycle marine). Video was 

downloaded twice, during the middle and end of the season, to an external hard drive. Batteries 

were checked and replaced daily to maximize the video recording during the night. Video 

cameras were checked daily and readjusted as needed to get the best video quality of the trap 

entrance.

The synthesized form of 3kPZS was applied every night to either the permanent trap or 

the portable trap by a battery operated, programmable peristaltic pump (Admiral Reef Dosing 

Pump, Norwich, CT) that applied 3kPZS at the dosage of 10'12 M. This concentration of 3kPZS 

delivers the highest capture efficiency of ovulated females in baited traps (Johnson et al. 2009) 

and is within the detection of olfactory threshold of pre-ovulated females (Siefkes and Li 2004). 

The 3kPZS batch # 183-EJH-290-3 synthesized in February 2010 (Bridge Organics), was applied 

to the trap. The batch had purities greater than 99% based on high pressure liquid 

chromatography and mass spectrometry.

Due to the poor video quality of the portable trap, only the permanent trap video was 

analyzed. All the recorded video was watched using playback of the video in ten minute 

increments via Digiclient 6.0 (Digimerge 2006). All video recorded during the study was 

observed by one reviewer that was blind to the baiting schedules of each trap. Each time a sea 

lamprey entered the field of view of a camera the observer recorded the date and time. If a sea 

lamprey entered the trap the observation was recorded as “entered” and the date and time of the 

entry was recorded. If a sea lamprey did not enter the trap the observation was recorded as “did 

not enter” and the date and time of the lamprey leaving the field of view of the camera was
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recorded. If a sea lamprey entered the field of view by escaping out the trap entrance the 

observation was recorded as “escaped” and the date and time of the escape was recorded.

2012 Trapping Season

In 2012, only the permanent trap was used for video analysis. Two underwater 

video cameras (Security Labs Waterproof Color Cameras with infrared and 8 LED built in lights, 

Security Labs, Inc., www.security-labs.com) were secured to the permanent trap on a 2 X 4 

fastened to the outer enclosure, which was positioned 30 cm from trap entrance to record sea 

lamprey behaviors but to not occlude the entrance to the trap. Video was set to record from 

21:00 to 5:00 each night using a Digital recorder (Q-see Security Surveillance, 4 Ch. H.264 

network DVR, Digital Peripheral Solutions). The video cameras, and DVR were powered by 

two 12 V marine Batteries (Everstart Maxx 29 deep-cycle marine) that were paralleled to get 

maximum video during the night. Video was downloaded daily on to an external hard drive. 

Batteries were checked and replaced daily to maximize the video recording during the night. 

Video cameras where checked daily and readjusted as needed to get the best video quality of the 

trap entrance.

The polymer form of 3kPZS known as polyethylene glycol (PEG) was placed into a 

polyvinyl chloride plastic pipe (average weight was 18.3g) with each consisting of about 11.3 g 

of polymer/3kPZS mixture. PEG was placed in an Automatic pet feeder with a LCD Clock that 

was set to drop the PEG at 21:00 into a mesh bag that extended down into the water. The 

amount of 3kPZS needed to achieve 10'12M was determined daily by using discharge rating 

curves (Gore 2006). When water levels were above those used to develop the rating curves, 

stream discharge was manually estimated using the velocity area method (McMahon et al. 1996).
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The 3kPZS batch # 183-EJH-290-3 synthesized in February 2010 (Bridge Organics), was used to 

make the emitters. The batch had purities greater than 99% based on high pressure liquid 

chromatography and mass spectrometry.

All the recorded video was watched using playback of the video in two hour increments, 

via “EFPlayer HD”. All video recorded during the study was observed by two reviewers blind to 

the baiting schedules of the trap. Behavior of sea lamprey was quantified in the same manner as 

in the video recorded during 2011.

External factors

Other factors were measured to see whether they affected entrance and retention rates of 

sea lampreys. Water temperature was recorded two ways, by a water temperature data logger 

(2011), and daily by the trap operators with a mercury thermometer that was held in the water for 

two minutes to get an accurate temperature (2012). Gauge height was recorded every day to be 

inputted into a discharge equation that outputs the discharge by using a discharge curve. The 

video was divided into different hours of the night ranging from 1-8 corresponding with the hour 

of recording; for example 21:00-21:59 would be recorded as hour 1, 22:00-22:59 as hour 2, etc. 

All observations within the hour of the night would receive the corresponding number to account 

for all the observations in the data set. The total catch was recorded every day by the control 

agents in which the agents sorted the sea lamprey as male or female that were captured during 

the night. The total catch amounts were summed for males and females each day for the entire 

migratory season. Time of season was divided into four equal divisions based on total catch (i.e., 

time of season 1 included the dates in which 0- 25% of the total trap catch occurred during the 

season).
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Data analysis

Retention was calculated on an hourly basis as^ ntn^ J ^ apes). All statistical analyses were

conducted using (SPSS® version 20; IBM Corp., 2011), unless stated otherwise. To test the 

predictive ability of factors affecting the probability of entry we conducted a logistic regression 

using all of the video observations of lamprey approaching a trap with the following full model 

to test:

(  Trap e n t r y  \
log e n t r y )  =  Q + Piyear + p2pheromone baited + p3time of night + p4ime of season +

Pswater temperature + Pestream discharge + P?year x pheromone baited + Psyear x hour of night 

+ pgyear x pheromone baited x hour of night + pioyear x pheromone baited x water temperature

We created a model that included all predictor variables that were useful in predicting the 

response variable by conducting a stepwise method (backward: likelihood ratio).

To test the predictions on the factors affecting the probability of retention we conducted a linear 

regression on all of the data testing the same factors and interactions used in the aforementioned 

model. We created a model that included all predictor variables that were useful in predicting the 

response variable by conducting a stepwise method (backward: likelihood ratio).

Results

In 2011, we recorded 46 hours and 31 minutes of video over 21 nights, yielding 742 

observations during the migratory period. Video was only recorded between 21:00 and 02:00 

due to issues with lighting and power. The majority of observations (96%) were recorded in 

times of season 2 and 3. In 2012, we recorded 321 hours and 5 minutes of video over 44 nights
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yielding, 13,135 observations during the migratory period. The majority of observations (70%) 

were recorded in times of season 2 and 3. Video was recorded between 21:00 and 05:00.

Probability of entry

The best model to significantly explain probability of entry included the following factors 

and interactions: pheromone baited, hour of night, time of season, discharge, pheromone baited 

by year, hour of night by year, pheromone baited by hour of night by year, and pheromone baited 

by year by water temperature (Table 1). Sea lamprey were 1.31 times more likely to enter the 

trap when it was baited with pheromone (x2=44.346, df=l, p<0.0001) (Figure 3). Hour of night 

significantly explained some of the variance in probability of entry with entry more likely to 

occur later in the night/early morning (x2=70.893, df=7, p<0.0001) (Table 2, Figure 4). 

Probability of entry in hours of night 5,6,7,and 8 (midnight and later) was significantly different 

than in hour 1, entry rate in hours 2, 3, and 4 were not significantly different from hour 1. The 

probability that a sea lamprey would enter the trap upon approach decreased from the beginning 

to the end of the season (%2=642.328, df=3, p<0.0001) (Figure 5). Sea lamprey were less likely 

to enter the trap as stream discharge decreased (x2=2 1.424, df=l, p<0.0001). As the main effects 

were added to the model some hours of night changed from significant predictors to non­

significant predictors, indicating other factors can statistically explain differences in probability 

of entry (Table 2).

Pheromone by year interaction was significant with sea lamprey more likely to enter the 

trap when it was baited than when it was not baited during both 2011 and 2012 (x2=21.425, 

df=2, p<0.0001) (Figure 6). Hour of night by year interaction significantly explained probability 

of entry (x2=19.854, df=4, p=0.001) in both 2011 and 2012. In 2011, probability of entry was
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highest in hour 3 (23:00-00:00) and decreased to hour five (01:00-02:00) (Figure 7). In 2012, 

hour 5 had the highest probability of entry and hour 3 had the lowest (Figure 7). Pheromone 

baited by hour of night by year interaction significantly explained proability of entry 

(X2=55.836, df=l 1, p<0.0001). In 2011, the highest probability of sea lamprey entering the trap 

when baited with pheromone occurred in hour 5, but when the trap was not baited with 

pheromone the lowest proability of entry occurred in the same hour (Figure 8). In 2012, when 

the trap was baited with pheromone probability of entry was highest in hour 6 (2 am-3 am), and 

lowest in hour 3(11 pm-midnight) (Figure 8). The interaction between pheromone and year and 

water temperature significantly explained probability of entry (x2=135.887, df=4, p<0.0001).

Probability of Retention

The best model to significantly explain probability of retention included the following 

factors and interactions: hour of night, total trap catch, hour of night by year, time of season by 

year, water temperature by year, hour of night by pheromone baited by year, and time of season 

by year by pheromone baited (Table 3). Hour of night significantly explained retention 

(X2= l0961.039, df=7, p<0.0001), with retention decreasing after 00:00 (Figure 9). Time of 

season was a significant factor influencing the retention of sea lamprey in the trap (x2=l 328.619, 

df=3, p<0.0001). The retention rate decreased from time of season 1 to 2 then increased again 

(Figure 10). For the change in significance as main effects were added to the model refer to 

table 4.

The interaction between hour of night and year significantly explained variation in 

retention (x2—1950.224, df=5, p<0.0001). Both years had a similar pattern of retention over the 

night, with higher retention observed early in the evening (hours 1-3; 21:00-00:00), then a

16



decrease in retention (Figure 11). The time of season by year interaction significantly explained 

some of the variation in proability of retention (x2=31.975, df=3, p<0.0001), with sea lamprey 

more likely to be retained during the entire 2011 season when compared to 2012 (Figure 12). 

Water temperature by year significantly explained some of the variation in proability of retention 

with an increase in retention with increasing water temperature . (x2=323.443, df=2, p<0.0001). 

The interaction between hour of night and year and pheromone baited helped to significantly 

explain probability of retention (x2=403.415, df=13, p<0.0001). In 2011, retention showed a 

decrease after midnight for both baited and non-baited nights (Figure 13). In 2012, retention 

showed a large decrease from midnight to 5 am on both baited and non-baited nights.(Figure 13). 

In 2011, retention is higher overall. However, in 2011 no video was recorded between 02:00 and 

05:00 when probability of retention was observed to be lowest in 2012. (Figure 13). The 

interaction between time of season and year and pheromone baited significantly explained 

retention (x2~991.234, df=5, p<0.0001). In 2011, probability of retention remained constant 

across times of season 2, 3, and 4 whether the trap was baited or not baited (Figure 14). In 2012, 

proability of retention when the trap was pheromone baited was highest in time of season 1 and 

lowest in 2 (Figure 14).

Discussion

The use of sea lamprey pheromone increased the probability of entry into a trap when 

baited with synthesized 3kPZS versus when the trap was not baited (Figure 3). While looking at 

the interaction of pheromone baited with year, in both 2011 and 2012 when the trap was baited 

with pheromone the probability of entry was increased vs. when the trap was not baited. In 2011,
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as also reported in Johnson et al. (2013), sea lamprey observed approaching the trap were 68% 

(confidence interval = 24%-128%) more likely to enter when the trap was baited with 3kPZS 

than when not baited. In 2012, sea lampreys were 31% more likely to enter when the trap was 

baited with 3kPZS then when not baited. However, in 2011 there were much fewer observations 

recorded compared to 2012 due to the lack of quality video, battery life, and problems with 

cameras and lighting, with most observations occurring from 21:00 to 00:00 (Table 5 and 6). In a 

previous study, 3kPZS-baited traps captured significantly more prespermiated, pre-ovulated, and 

ovulated sea lampreys than paired unbaited traps (Johnson et al. 2013). My research indicates 

that 3kPZS-baited traps are more effective due to the fact that sea lampreys approaching a trap 

are more likely to enter when the trap is baited with 3kPZS.

The probability o f a sea lamprey entering a trap increased as the night continued into the 

early morning hours (Figure 4). Movement of sea lamprey coincides with photoreceptors that 

limit movement during diurnal times and restricts movement to night time (Binder et al 2008). 

Interaction of hour of night by year indicated a different pattern in probability of entry between 

2011 and 2012. In 2011, probability of entry declined after midnight, while in 2012 probability 

increased into early morning. However, during the 2011 season video was recorded only until 

02:00 (five total hours), while during 2012 video was recorded until 05:00 (eight total hours). As 

lamprey movement continues into early morning the lamprey were more likely to enter the trap.

The different times of season in the spawning migration of sea lamprey affected the 

likelihood of entry, with entry being more likely at the beginning of the season than at the end of 

the season (Figure 5). Spawning migration is mainly controlled by the temperature of the 

surrounding waters which controls the start of movement of sea lamprey upstream as well as the 

presence of larval pheromone to identify existing quality spawning grounds (Wagner et al 2009).
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The decrease in probability of entry towards the end of the spawning season could be contributed 

to the lack of energy/fat stores that propels the whole migration and spawning activity in lamprey 

(Beamish 1974). Thus, weakened lamprey may desist from exhibiting strong directed upstream 

movements. As the time of spawning approaches lampreys have been observed to reverse course 

and head downstream to locate spawning habitat and mates (Wagner et al. 2010).

Water discharge is negatively correlated with the probability of a sea lamprey entering 

the trap. Increased discharge from smaller streams may cause sea lamprey to locate the larval 

pheromone plume easier and faster to locate quality spawning habitat. Stronger rheotactic cues 

help determine suitable habitat to spawn for optimum larval success. Discharge has been found 

to be a significant factor on smaller streams but less of a factor in larger systems (Binder & 

McDonald 2010). Carp Lake Outlet is considered a small to medium system compared to St. 

Mary’s River.

Interaction between multiple factors influenced the probability that a sea lamprey would 

enter the trap. The interaction of pheromone baited by year by hour of night significantly 

explained some of the variance in probability of entry. Probability of entry was not always 

higher when the trap was baited with pheromone compared to when it was not baited, and this 

relationship changed with the hour of night. This could be due to the fact that 3kPZS is only a 

single component of the complete mating pheromone released by adult male sea lamprey 

(Johnson et al. 2012). An additional significant predictor of probability of entry was the 

interaction between pheromone baited by year by water temperature with probability of entry 

increasing with water temperature. Temperature modulates upstream migration, general health, 

and sexual maturation in all lamprey (Binder and McDonald 2008; Clemens et al. 2009; Keefer 

et al. 2009), so it follows that behavior of sea lamprey would change in response to these factors.
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The other important component of the trapping process is retention of the individuals that 

enter the trap. Hourly retention was significantly lower after midnight in both years (Figure 11). 

This is likely due to the fact that there are more lampreys in the trap, and some have been in the 

trap longer which increases the likelihood that they will find an escape route. Midnight could be 

the best time to remove the greatest number of reproductive and immature individuals from the 

system before the majority of the lamprey leave the trap. Some traps in the St. Mary’s River are 

emptied between midnight and 1 am and again at approximately 9 am as research has shown an 

increase in catch with the additional trap check (Jean Adams, U.S. Geological Survey, 

unpublished data). Retention was greatest at the end of the spawning season (Figure 10). Lack of 

fat stores towards the end of the season could result in individuals not leaving the trap because 

they do not have the energy to disperse to find a partner to reproduce before perishing. 

Alternatively, the motivation of lamprey to try and escape the trap may be influenced by the 

density of sea lamprey in the trap; less lamprey (in late season) may result in higher retention. 

While 2011 had a higher probability of retention than 2012, both years show a similar pattern 

(Figure 12).

Interactions between various factors influenced the probability of retention. Water 

temperature by year significantly explained variation in the retention of sea lamprey with 

probability of retention being higher in 2011. Pheromone baited by year by hour of night 

indicated retention increasing and decreasing throughout the night with no obvious pattern 

detected. In 2011, the only difference in retention between hours of night occurred in hour 5 

(01:00 -02:00 ) when retention was significantly higher when the trap was baited vs. unbaited. 

Probability of retention was highest in both years before midnight, but individuals were more 

likely to be retained in 2011 (Figure 11). Pheromone baited by year by time of season indicates
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a difference in the pattern of retention throughout the season between years and between baited 

and unbaited nights. Pheromone baited by year by water temperature and pheromone baited by 

year by discharge were significant interactions that explained some of the variance in retention, 

but clear patterns were difficult to discern.

Pheromone baiting proved to be successful in attracting sea lamprey to enter the trap, but 

it did not have an effect on retaining the individuals in the trap. Even though 3kPZS might be 

used as an attractant, and has been known to stimulate upstream movement in immature and 

mature sea lamprey (Johnson et al. 2013), it does not help retain the individuals in the trap. 

Probability of entry was higher later in the night, while probability of retention was lower later in 

the night. Probability o f entry was higher at the beginning of the season, and retention was higher 

at the end of the season. Some sea lamprey traps on the St. Mary’s River do night traps checks 

between midnight and two in the morning, which could be beneficial by yielding more lampreys 

being taken from the water system before lampreys start to escape from the traps. Sea lamprey 

entrance rates were influenced mainly by main effects and interactions between pheromone, hour 

of night, and water temperature. Retaining those individuals that entered the trap is more 

complex with many different factors contributing (through main effects or interactions) to the 

retention of sea lamprey.

The results found in this research could help sea lamprey control agents maximize the 

adult population that could be captured in traps if traps were going to start being used as a 

removal method in their control plan. Synthesized 3kPZS proved to increase the probability of 

sea lamprey entering a trap, just as previous studies suggested that in the field and in control 

settings, lamprey were attracted to baited traps (Johnson et al 2013; Li et al 2012; Luehring et al 

2011). Larval pheromone still must be present to attract sea lamprey into a particular stream
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where the synthesized pheromone can be discharged from a trap, as 3kPZS has not been shown 

to increase the rate at which sea lamprey encounter traps. As sea lamprey mature in streams they 

become harder to trap, as they begin moving back down stream and are not lured to the barrier- 

integrated trap with just 3kPZS. A male sea lamprey on a nest excreting the complete 

pheromone would retain a mature female because it has the complete components of pheromones 

to keep that female versus having just one component. As 3kPZS is the primary component to 

induce upstream movement to the spawning nest (Johnson et al 2012a), and other components of 

the complete pheromone are beginning to be identified (Li et al 2012). In pheromone systems of 

fish and insects, mixtures of compounds are used to present certain messages to the receiver but 

when partial components of fish and insect pheromones are used in traps capture rates vary and 

often can be lower than when all components are used (Johnson et al. 2006; Howse et al. 1998). 

If additional components of the mating pheromone could be identified and synthesized it could 

increase the effectiveness of barrier-integrated traps. If components of the pheromone released 

by larvae to attract adult sea lamprey to quality habitat could be identified and synthesized then 

the rate at which adults encounter traps could likely be increased.

Other environmental factors such as water temperature were shown to increase the 

likelihood of lamprey entering and being retained in a trap. Water temperature is an important 

factor, with optimum temperatures for trapping being just below optimum temperatures for the 

development of sea lamprey embryos (Binder et al. 2010). More sea lamprey can be removed at 

the beginning to the middle of the season versus the end. In order for trapping to be used as an 

alternative method for control of adult sea lampreys, it must be efficient enough to reduce 

reproductive potential (i.e., animals are removed at a greater rate than they can replace 

themselves). Trapping can improve assessment of program effectiveness and fits within the
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framework of integrated pest management (Christie and Goddard 2003). Traps baited with 

3kPZS could be one of the first o f several tactics used to enhance the overall effectiveness of the 

control program by modifying behavior with chemosensory cues (Twohey et al. 2003). 

Integrating the use of pheromone cues to lure more sea lamprey into streams that are more 

effective to treat could be especially beneficial for the control program (Miller and Cowles 1990; 

Wagner et al 2012; Hassanalie et al 2008). The cost of 3kPZS to be applied to traps operated by 

control agents, and the cost to synthesize 3kPZs has decreased 40 fold in the past decade 

(Johnson et al. 2013). Therefore, the GLFC is registering the pheromone with the Environmental 

Protection Agency and Health Canada through the North American Free Trade Agreement as the 

first vertebrate pheromone ever used for pest control (Johnson et al 2013). Further research is 

needed on other components of the male pheromone to determine how components besides 

3kPZS impact sea lamprey migratory behavior.
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Table 1. Main factors and interactions that significantly explained probability of entry of sea 
lamprey with Wald Chi-Square, degrees of freedom, and significance reported.

Tests of Model Effects

Source Type III

Wald Chi-Square df Sig.

(Intercept) 3.458 1 0.063

Pheromone.baited 4.611 1 0.032

Hour.of.night 30.016 7 0.0001

Time of season 574.282 3 0.0001

Discharge.cms 8.545 1 0.003

Pheromone.baited * Year 35.949 1 0.0001

Hour.of.night * Year 20.020 4 0.0001

Pheromone.baited * 

Hour.of.night * Year
94.124 11 0.0001

Pheromone.baited * Year * 

Water.temp
135.887 4 0.0001

Dependent Variable: Entered

Model: (Intercept), Pheromone.baited, Hour.of.night, Time of season, 

Discharge.cms, Pheromone.baited * Year, Hour.of.night * Year, 

Pheromone.baited * Hour.of.night * Year, Pheromone.baited * Year * Water.temp
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Table 2. Sea lamprey entry factors showing parameter coefficients (B),standard errors (SE),
significance (Sig.), and odds ratio (OR) as factors were added to the model.

Model 1 Model 2 Model 3 Model 4
Variables B SE Sig. OR B SE Sig. OR B SE Sig. OR B SE Sig. OR
Pheromones 0.274 0.0411 0.0001 1.315 0.254 0.0416 0.0001 1.29 0.282 0.0447 0.0001 1.326 0.273 0.0448 0.0001 1.314

Hour of nights 8 0.381 0.146 0.009 1.46 0.296 0.151 0.05 1.344 0.237 0.1518 0.118 1.268

Hour of nights 7 0.524 0.1244 0.0001 1.69 0.464 0.1287 0.0001 1.591 0.411 0.1296 0.002 1.508
Hour of nights 6 0.513 0.1131 0.0001 1.67 0.467 0.1171 0.0001 1.595 0.415 0.1179 0.0001 1.514

Hour of nights 5 0.556 0.101 0.0001 1.74 0.537 0.1048 0.0001 1.711 0.503 0.1054 0.0001 1.654
Hour of nights 4 0.166 0.0921 0.071 1.18 0.185 0.0959 0.054 1.203 0.165 0.0962 0.086 1.18
Hour of nights 3 0.124 0.0871 0.154 1.13 0.138 0.0911 0.129 1.148 0.122 0.0914 0.183 1.129
Hour of nights 2 0.121 0.0855 0.156 1.13 0.108 0.0891 0.225 1.114 0.098 0.0894 0.274 1.103
Hour of nights 1 0 0 1 0 1

Time of season=4 -1.617 0.0953 0.0001 0.198 -1.786 0.1021 0.0001 0.168

Time of season=3 -0.388 0.0944 0.0001 0.679 -0.483 0.0966 0.0001 0.617

Time of season=2 -0.471 0.0916 0.0001 0.624 -0.547 0.0931 0.0001 0.578
Time of season=l 0 1 0 1

Discharge -0.438 0.0946 0.0001 0.645,

Table 3. Main factors and interactions that significantly explained retention of sea lamprey with 
Wald Chi-Square, degrees of freedom, and significance reported.

Tests of Model Effects

Source Type III

Wald Chi-Square df Sig.

(Intercept) 7.213 1 0.007

Hour.of.night 3800.081 7 0.000

Time of season 6.933 3 0.074

Hour.of.night * Year 134.425 4 0.0001

Time of season * Year 19.120 3 0.0001

Year * Water.temp 719.357 2 0.0001

Hour.of.night * Year *
441.976 11 0.0001

Pheromone.baited

Time of season * Year *
991.234 5 0.0001

Pheromone.baited

Dependent Variable: Retention.hourly

Model: (Intercept), Hour.of.night, Time of season, Hour.of.night * Year, Time of 

season* Year, Year * Water.temp, Hour.of.night * Year * Pheromone.baited, Time

of season* Year * Pheromone.baited
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Table 4. Sea lamprey entry factors showing parameter coefficients (B), standard errors (SE),
significance (Sig.), and odds ratio (OR) as factors were added to the model.

M odel M odel
1 2

V ariables B SE Sig. OR B SE Sig OR
Hour of nights 8 -0.566 0.022 0.0001 0.568 -0.547 0.021 0,0001 0.579
Hour of nights 7 -0.621 0.0195 0.0001 0.537 -0.598 0.0187 0.0001 0.55
Hour o f nights 6 -0.671 0.0178 0.0001 0.511 -0.628 0,0171 0.0001 0.534
Hour of nights 5 -0.71 0.0165 0.0001 0.492 -0.671 0.0158 0.0001 0.511
Hour o f nights 4 -0.633 0.0157 0.0001 0.531 -0.602 0.0151 0.0001 0.547
Hour o f nights 3 -0.015 0.0152 0.321 0.985 0.021 0.0146 0.148 1.021
Hour of nights 2 0.043 0.0152 0.005 1.044 0.07 0.0146 0.0001 1.072
Hour o f nights 1 0a 1 0a 1
Time of season=4 0.062 0.0134 0.0001 1.064
Time of season=3 -0.036 0.0129 0.005 0.964
Time of season=2 -0.218 0.0128 0.0001 0.804
Time of season=l 0a 1

Table 5 . The hours of sea lamprey video watched by the observer in 2011.
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2011

Time

Hours Minutes Start - End Observations

2 2 21:00-23:29

2 59 21:00-23:59 2

1 53 00:00-1:15 & 21:00-21:38

0 25 21:00-21:25

3 0 21:00-24:00

6 30 00:00-5:00 & 21:00-22:30

0 35 21:00-21:35

0 35 21:00-21:35 1

0 25 21:00-21:25 5

0 30 21:00-21:30 2

1 36 22:24-24:00 12

4 23 00:00-2 :40  & 21:00 - 22:43 2

3 0 21:00-24:00 160

4 55 00:00-1:55& 21:00 - 24:00 278

4 19 00:00-1 :1 9 &  21:00 - 24:00 251

1 35 21:00-22:35 6

1 2 21:00-22:02

0 47 21:00-21:47

3 0 21:00-24:00 9

0 25 00:00-00:25

2 23 21:00-23:23 18

46 31 742

Table 6. The hours 

of sea lamprey 

video watched by 

the observers in 

2012 .
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Carp Lake Outlet 2012

Date Hours Minutes

Time 

Start - End Observation

May 1 3 8 20:52 - 24:00 10

2 4 33 0:00-0:33 & 19:00-24:00 2

3 1 50 0:00-1:50 0

5 3 1 20:59-24:00 14

6 8 1 0:00-5:01 & 21:00-24:00 3

7 7 23 0:00-4:23 & 21:00-24:00 0

8 8 0 00:00-5:00 & 21:00-24:00 25

9 8 0 00:00-5:00 & 21:00-24:00 82

10 8 0 00:00-5:00 & 21:00-24:00 46

11 8 0 00:00-5:00 & 21:00-24:00 539

12 8 0 00:00-5:00 & 21:00-24:00 120

13 8 0 00:00-5:00 & 21:00-24:00 95

14 8 0 00:00-5:00 & 21:00-24:00 1403

15 8 0 00:00-5:00 & 21:00-24:00 897

16 8 0 00:00-5:00 & 21:00-24:00 67

17 8 0 00:00-5:00 & 21:00-24:00 27

18 8 0 00:00-5:00 & 21:00-24:00 1206

19 8 0 00:00-5:00 & 21:00-24:00 1186

20 8 0 00:00-5:00 & 21:00-24:00 1871

21 8 0 00:00-5:00 & 21:00-24:00 53

22 8 0 00:00-5:00 & 21:00-24:00 262
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24

25

26

27

28

29

30

31

jne

2

3

4

5

6

7

8

9

10

11

12

13

14

8 0 00:00-5:00 & 21:00-24:00 1082

8 0 00:00-5:00 & 21:00-24:00 1116

8 0 00:00-5:00 & 21:00-24:00 529

8 0 00:00-5:00 & 21:00-24:00 304

8 0 00:00-5:00 & 21:00-24:00 19

8 0 00:00-5:00 & 21:00-24:00 969

8 0 00:00-5:00 & 21:00-24:00 327

8 0 00:00-5:00 & 21:00-24:00 35

8 0 00:00-5:00 & 21:00-24:00 25

8 1 00:00-5:01 & 21:00-24:00 3

8 1 00:00-5:00 & 20:59-24:00 16

8 2 00:00-5:02 & 21:00-24:00 93

8 1 00:00-5:01 & 21:00-24:00 88

8 1 00:00-5:01 & 21:00-24:00 331

7 1 00:00-4:01 & 21:00-24:00 140

8 0 00:00-5:00 & 21:00-24:00 85

8 0 00:00-5:00 & 21:00-24:00 43

6 2 00:00-5:00 & 21:00-22:02 2

3 0 21:00-24:00 14

8 0 00:00-5:00 & 21:00-24:00 18

8 0 00:00-5:00 & 21:00-24:00 3

8 0 00:00-5:00 & 21:00-24:00 2

5 0 00:00-5:00

321 5 13135
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Figure 1. Location of the Carp Lake Outlet.
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Chapter 2: FACTORS INFLUENCING THE ENTRANCE AND RETENTION 
RATES OF SEA LAMPREY AT TRAPS IN TWO GREAT LAKES TRIBUTARIES

Abstract
Trapping of sea lamprey has been used only for assessment purposes and to provide 

specimens for research purposes. In order for trapping to be used as a control method, the 

efficiency of traps needs to be improved. By studying the behavior of sea lamprey at traps, we 

may be able to determine important factors that affect trapping success. Traps vary in size, shape, 

and type. Along with the different trap types, environmental factors play a role in the entry and 

retention of sea lamprey. Entrance and retention rates of sea lamprey at a trap on the Cheboygan 

River and three traps on the St. Mary’s River were determined through video analysis. The data 

indicated that sea lamprey entry was linked to time of season and the interaction of trap and 

water temperature, whereas there were multiple different physical and environmental factors 

playing a role in the retention of sea lamprey in traps.
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Introduction

Sea lamprey traps have been used to capture migrating adult lamprey in streams as they 

are seeking reproductive habitat (Applegate 1950). The Great Lakes Fishery Commission 

(GLFC) is looking for alternative methods to reduce the use o f lampricides; trapping could be 

one of those alternative methods (GLFC 2001a). Trapping efficiency would need to be improved 

to be considered as a viable alternative or complement to lampricide control (GLFC 2011).

There are many factors that could potentially contribute to improved trapping such as different 

trap designs, placement of traps, and environmental factors.

Sea lamprey traps in the Great Lakes vary in their capture efficiency. There are different 

trap designs, ranging in size and type (i.e., permanent or portable; GLFC 2001a). Some traps are 

integrated with a barrier, or otherwise placed strategically to intercept sea lamprey on their 

spawning migration. Permanent traps are concrete or steel, usually square or rectangular in 

shape, built into a permanent barrier (Mclaughlin et al 2007). Portable traps are rectanglar or 

circular in shape, with either one or both sides containing a funnel guiding the lamprey toward 

the trap entrance. The funnel of portable traps can be oriented at the bottom, middle, or top of 

the entrance. Permanent traps often have no funnel, and the entrance is usually oriented 

vertically. Along with differences in trap design, the placement of those traps in streams can 

affect the rate at which sea lamprey encounter and enter the traps.

Environmental factors are important variables affecting behavior of sea lamprey during 

the migratory and spawning season, and could have potential effects on the entrance and
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retention of sea lamprey in traps. Sea lamprey begin migrating upstream when temperatures 

reach 10 °C (Applegate 1950), with peak migrations occurring in water temperatures of 15 °C 

(Binder et al 2005). Sea lamprey migratory behavior could also be affected by stream discharge. 

When water discharge is high, their ability to navigate could be compromised due to their poor 

swimming ability (Beamish 1974). Increased discharge from smaller streams may increase the 

probability that sea lamprey will locate the larval pheromone plumes in streams to find 

acceptable spawning habitat (Wagner et al 2009). Later in the season, sea lamprey movement 

starts increasing during daylight due to high water temperatures, poor health, and the physical 

determination to spawn before perishing (Binder and McDonald 2008), but, little to no research 

has observed how sea lamprey move throughout the entire migratory and spawning season.

The sea lamprey trapping process can be considered as individual movements that begin 

with a sea lamprey being unavailable when it is at large in the river. When a sea lamprey comes 

in close proximity to a trap it becomes available to be trapped. A sea lamprey is trapped when it 

enters the trap opening, and then is either lost due to escape or is retained (Bravener and 

McLaughlin 2013). The final step is sea lamprey being removed from the trap by control agents. 

Behavior of lamprey as they are moving through the different stages can be observed and 

quantified by analyzing video recorded at traps during the spawning migration. The use of video 

could provide insight into the movements of the lamprey as they are interacting with the traps, 

and potentially help us determine what improvements could be made to enhance the trapping 

process for agents to use trapping as a control method.

Sea lamprey trapping needs to be improved for the GLFC to use trapping as more of a 

suppression tool, rather than its current use as an assessment tool. Researching the factors that 

affect the probability of sea lamprey entering and/or being retained in a trap can help improve
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trapping efficiency. I examined the effects of trap design/location, and environmental factors like 

water temperature, water discharge, different times of the season and night, on probability of 

entrance and retention of sea lamprey in traps using video. Based on behavioral studies and the 

opinion of control agents, predictions were made as to how sea lamprey behavior around traps 

would change with physical and environmental factors. The predictions were 1) probability of 

entrance varies by trap, 2) probability of entrance increases as water temperature increases, 3) 

probability of entrance increases later in the season 4) probability of entrance increases later in 

the night 5) probability of retention varies by trap, 6) probability of retention decreases as water 

temperature increases, 7) probability of retention decreases later in the season; and 8) probability 

of retention decreases later in the night.

M ethods

Study sites
This study was conducted at Cheboygan River(one trap), and St. Mary’s River (three traps) 

during four migratory seasons (Figure 1). Video was collected at a trap in the Cheboygan River 

at the lock and dam near Cheboygan, Michigan during 2006. This trap was one of four traps 

operating in a spillway in 2006, and historically had the largest trap catches of all four traps. The 

trap had two entrances, both of which were funnels stacked one on top of the other with 

dimensions of 622.3 mm high x 685.8 mm wide x 660.4 mm deep, with a 196.85 mm x 165.1 

mm rectangular opening, and 12.7 mm between the fingers. The trap was checked in the morning 

daily, and at that time any fish in the trap were counted and removed.

Video was collected at three different traps in the St. Mary’s River, which is the stream that

connects Lakes Superior and Huron between Sault Ste Marie, Ontario and Sault Ste. Marie,

Michigan. All traps at the St. Mary’s River were located in the tailrace of the Clergue Generating

Station (GS). Video was collected at the North Attractant Water trap (SM NAWT) during 2008,
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2009, the South Attractant Water trap (SM SAWT) during 2009, and the North Central Portable 

(SM NCP) during 2009. The SM NAWT and the SM SAWT are permanent traps that are located 

on the north and south side of the tailrace, respectively. The SM NCP trap is one of three 

portable traps that were suspended by chains and positioned between the permanent traps along 

the generating station wall. The SM NAWT and SM SAWT traps had water introduced into the 

holding chamber so that the water flowing through the trap opening acts as an attractant for sea 

lamprey to enter, whereas the SM NCP traps was placed in an area of high flow. The SM 

NAWT trap has two entrances, both of which are funnels 1524 mm high x 863.6 mm wide x 

660.4 mm deep, with a rectangular opening of 1524 mm x 82.55 mm and 12.7 mm between 

fingers. The SM SAWT trap has two cages of identical size. Both cages have two entrances -  

one that faces downstream and one that faces toward shore. The downstream facing openings are 

rectangular without a funnel, 2032 mm high, 139.7 mm wide and 12.7 mm between fingers. The 

SM NCP trap has 2 funnels, both of which are 812.8 mm high, 812.8 mm wide, 660.4 mm deep, 

with a 76.2 mm diameter circular opening, and 19.05 mm” between fingers. The three traps were 

checked each morning around 0600 hours during times of high sea lamprey activity. The SM 

NCP was also checked at night (around 02:00) during the peak of sea lamprey migratory activity. 

At the time of trap check any fish in the trap were counted and removed. Checking portable traps 

at night was thought to improve trap efficiency by maximizing retention and therefore, total 

catch. During times when sea lamprey activity was lower, and trap catches minimal, traps were 

checked most days but not necessarily early in the morning.

Video recordings
In the Cheboygan River, an underwater video camera (Lorex Cvc6990 B and W Submersible

Camera) was positioned 61 cm from the trap entrance so as to record sea lamprey behaviors, but

not occlude the entrance to the trap. A 10-watt halogen light positioned above the trap
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illuminated the inside. The light was connected to a 12 V DC photoswitch (Flexcharge Night 

Watchman) that switched the light on after dark. In field settings, no consistent differences have 

been found in the numbers of sea lampreys caught in lit versus unlit traps when LED lights were 

used (Stamplecoskie 2012). Video was recorded at this trap using a Digital Video Recorder (JSA 

HQ400 8 channel DVR). The light was powered by a 12 V battery (7.2 Ah Sealed Lead Acid 

Rechargeable Battery), and the cameras and DVR were powered by 12 V deep-cycle marine 

batteries. Behavior of sea lampreys during three partial nights (between 21:00 and 24:00, with 

two nights during the peak of the migration season) was observed.

Sault Ste Marie trap entrances were outfitted with CCTV black and white waterproof 

bullet cameras (Speco Technologies, Amityville, NY). Cameras were mounted and oriented to 

view the outside of each trap entrance. Floodlights with red filtering were mounted above each 

trap entrance to illuminate the area for video observations. Red lighting has been shown to have 

minimal effect on fish behavior compared to white or other colors (Widder et al. 2005; Binder 

and McDonald 2007). Video was recorded using either a DVR or a VCR with quad processor to 

split the camera feeds. Power was available at these sites and used to power all equipment 

required to obtain video recordings. The method of video subsampling at the St. Mary's traps 

differed for each year. This is because sea lamprey behavior at these sites was initially quantified 

to test different hypotheses. For 2008, two times were randomly selected from each of six nights, 

between 21:00 to 05:00, and behavior of the first five sea lampreys after each selected time was 

recorded. For 2009, the behavior of one untagged sea lamprey within seven minutes prior and 

following every observation of a PIT-tagged sea lamprey was recorded. For 2010, all sea 

lamprey behavior was recorded that occurred between 21:00 and 05:00 on every other night for 

four nights.
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External factors

Factors that were measured which may affect entrance and retention rates of sea lamprey 

were water temperature, stream discharge, time of night, and time of season. For Cheboygan, 

water temperature was collected daily by control agents using a mercury thermometer. For St. 

Mary’s, water temperature was recorded by a temperature logger (HOBO Water Temp Pro,

Onset Computer Corporation, Bourne, MA, USA) every two hours during the study. For 

Cheboygan, no discharge was collected, as the trap was located in the spillway of a dam where 

effects of discharge were likely minimal. For St. Mary’s, hourly discharge data at Clergue GS 

were provided by staff at Brookfield Renewable Energy. To analyze specific sea lamprey 

behavior in accordance with time of night and season, video data were divided into different 

hours of the night ranging from 1 to 8 and different times of the trapping season ranging from 1 

to 4. Video recordings were usually made from 21:00 hours until 05:00 hours each night during 

the study period. This represented the period when migrating sea lamprey were expected to be 

most active near the traps (Binder and McDonald, 2007). Hours of night corresponded with the 

hour of recording. For example, 21:00—21:59 would be recorded as hour 1; hour of night 2 was 

22:00-22:59, etc. All observations within the hour of the night would receive the corresponding 

number to account for all the observations in the data set. Time of season was divided into 4 

equal divisions based on total catch. The total catch was recorded every day by the control agents 

then summed and divided equally. Time of season 1 included the dates in which 0-25% of the 

total trap catch occurred during the season, time of season 2 included the dates in which 26—50% 

of the total catch occurred, etc.
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Data Analysis

Retention was calculated on an hourly basis a s - tri^ tr^ apes) . All statistical analyses

were conducted using SPSS (version 20 (IBM Corp., 2011) unless stated otherwise. To test the 

predictive ability o f factors affecting the probability of entry, a logistic regression was conducted 

using all of the video observations of lamprey approaching a trap with the following full model 

to test:

( Trap entry \
i-Trap entry)  “  Q + PiYear + p2trap and location + p3time of night + p4time of season +

pswater temperature + p6Stream discharge +p7trap x time of night + pstrap x time of season + 

P9trap x water temperature + Piotrap x stream discharge

I created a model that included all predictor variables that were useful in predicting the response 

variable by conducting a stepwise method (backward: likelihood ratio).

To test the predictions on the factors affecting the probability of retention I conducted a 

linear regression on all of the video observations of lamprey and tested the same factors and 

interactions used in the aforementioned model. I created a model that included all predictor 

variables that were useful in predicting the response variable by conducting a stepwise method 

(backward: likelihood ratio).

Results

Behavior of sea lamprey during three nights between 21:00 and 24:00 was observed for a 

total of 1260 observation in the Cheboygan River. Over 2008 and 2009, the three St. Mary’s 

traps yield 122 (SM NAWT), 120 (SM SAWT), and 104 (SM NCP) observations.
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Entrance

The best model to explain probability of entry included the following factors and 

interactions: time of season and trap x water temperature (Table 1). When just using trap as an 

explanatory variable, the Cheboygan River and St. Mary’s River SM NCP traps were 

significantly different. But, when additional variables are included in the model, trap does not 

help to explain probability of entry (Figure 2). Lamprey are less likely to enter a trap in the final 

fourth of the season (x2=35.059, df= l, p<0.0001) (Figure 3; Table 2). Only time of season 3 and 

4 had data for all four traps, so time of season 1 and 2 were excluded from the data set. The 

probability of entry was not observed to change with hour o f night. There was a significant trap 

by water temperature interaction which explained some of the variance in probability of entry 

(Figure 4; Table 1) (%2=9.511, df=4 ,p<0.050). As water temperature increased the probability of 

entry increased for SM NAWT and SM SAWT, but the true correlation is hard to tease out for all 

the traps (Figure 4). The probability of entry increases later in the season but the likelihood of 

sea lamprey entry is low.

Retention

The best model to significantly explain probability o f retention included the following 

factors and interactions: hour o f night, water temperature, hour of night by trap, trap by time of 

season, and trap by water temperature (Table 3). Hour of night proved to be a significant factor 

in retaining sea lamprey in traps (x2=293.494, df=7, p<0.0001) (Table 3). The probability of sea 

lamprey being retained in traps decreased from the first hour (Table 4; Figure 5). Water 

temperature appeared to be a significant factor in retaining sea lamprey in traps (x2=5.162, df=l,
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p<0.023) (Table 4). The probability of retention decreased as water temperature increased 

(Table 4).

There were several interactions that explained the retention of sea lamprey in traps. The 

probability of a trap retaining sea lamprey decreases as the night goes on in some traps as 

indicated by the significant trap by hour of night interaction (x2=1475.338, df=15, p<0.0001) 

(Table 3; Figure 6). The interaction of trap by time of season was significant in explaining 

retention of sea lamprey in traps (x2=37.533, df=3, p<0.0001), with SM NAWT having the 

lowest retention, although highly variable (Figure 7). The other traps had similar retention in the 

two time periods of the season. The interaction of trap and water temperature was significant, but 

the interaction proved difficult to interpret (x2=67.243, df=3, p<0.0001) (Figure 8; Table 3).

Discussion

Probability of entry varies by trap when the interaction of water temperature and trap are 

considered. The rate at which sea lamprey enter a trap did not differ between traps, when the 

main effect o f trap was tested. Probability of entry increased as water temperature increased 

among traps. Probability of entry did not increase later in the season, but rather decreased later 

in the season. The probability that a sea lamprey would enter a trap did not change with hour of 

night.

The significant factors that influence entry into traps are time of season and the 

interaction of trap and water temperature. The different times of season in the spawning 

migration of sea lamprey affected the likelihood of entry, with sea lampreys being more likely to 

enter the trap in the third quarter of the season rather than the last quarter of the season (Figure

4). In this study, sea lamprey were observed only in the second half of the migratory season

54



(times of season 3 and 4), and sea lamprey energy reserves towards the end of the migratory 

season are depleted (Beamish 1974). Time of season is related to water temperature, as 

temperatures change throughout the season. As water temperatures increased, the likelihood of 

sea lamprey entering the SM NAWT and SM SAWT traps increased. Spawning migration of sea 

lamprey has been linked to the temperature of the surrounding waters, which controls the start of 

movement upstream (Wagner et al 2009) until they reach barriers. Lamprey that reach the 

barrier pool remain there until spawning actually begins, then reverse their movement to locate 

the spawning grounds downstream (Wagner et al. 2010).

Probability of retention varied when there were interactions between trap and other 

factors. Probability of retention decreased as water temperatures increased Probability of 

retention decreased later in the season for SM NCP and Cheboygan trap. Probability of retention 

decreased later in the night for some traps.

The significant factors that influence retention of sea lamprey in a trap are hour of night, 

water temperature, hour of night by trap, trap by time of season and trap by water temperature. 

The probability of sea lamprey being retained in traps starts to decrease after midnight (Figure

5). The Cheboygan trap lacked observations after midnight, while retention varied greatly for the 

other traps (Figure 6). Sea lamprey caught earlier in the evening were more likely to escape; 

they are more likely to find the escape route the longer they exhibit active searching behavior in 

the trap Servicing traps at night is currently being employed in some traps in the St. Mary’s 

River to increase the capture rate of adult sea lamprey in that system.

The retention of sea lamprey decreased as water temperature increased, but this trend was 

not observed across all traps (Figure 8). Water temperature is linked to many sea lamprey
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behaviors during the spawning season because temperature helps initiate the beginning of the 

migration season, as well as the act of spawning with the help of other cues like pheromones 

(Binder and McDonald 2008). Movement of lamprey during the migratory season is most 

pronounced between 15°C and 20°C (Binder et al. 2011), with 18°C being the optimum 

development for embryos of sea lamprey. This movement occurs when water temperature and 

stream flow increase during the spring (Binder and McDonald 2010, Hardisty and Potter 1971, 

Robinson and Bayer 2005), so an increase in searching behavior should result in a greater 

probability of escapement.

The variability in retention was partially explained by interactions between additional 

factors such as the interaction between time of season and trap and hour of night and trap. The 

retention rate of sea lamprey at traps decreased from season 3 to season 4 (Figure 7). The 

motivation to spawn before dying may be an important factor later in the season, which may 

decrease the ability of traps to retain sea lamprey. Sea lamprey is less likely to be retained later 

in the evening at many traps. Trap catch may be increased if traps are checked twice a day to 

reduce the number of sea lamprey escaping the traps.

General conclusions

The only variable in common which significantly affected both entry and retention was 

the interaction between trap and water temperature. A study conducted during the 2011 trapping 

season on the St. Mary’s River traps observed in this study and two other traps in the river, 

determined that daily mean water temperature, water temperature2, and the two-day change in 

temperature explained 85% of the variability in the log-transformed trap catch (Barber et al. 

2012). Control agents already track water temperature carefully to determine when to begin 

setting sea lamprey traps across the Great Lakes basin.

56



Explaining retention was more complex than explaining probability of entry, with 

multiple interactions and factors contributing to retaining sea lamprey. The different trap designs 

may be a key in explaining the different rates of retention. There is evidence to suggest that there 

is likely a trade-off between entrance and retention rate relating to trap design (Bravener and 

McLaughlin 2013). For example, the Carp Lake Outlet trap (see Chapter 1) had a relatively high 

entrance rate and low retention rate compared to the St. Mary’s and Cheboygan traps. Trap 

designs with three entrance funnels caught significantly more crawfish (Procambarus clarkia 

and P acutus acutus) in Louisiana ponds than did trap designs with one or two funnels (Pfister 

and Romaire 1983). Conversely, the retentive ability of the trap designs was inversely related to 

the number of entrance funnels of crawfish (Pfister and Romaire 1983).

A limitation of this chapter is the lack of observations of sea lamprey behavior across the 

entire migratory season. Most traps did not have observations in the first half of the season, so 

observations from only the second half of the season were used to inform my conclusions. 

Additionally, the video of sea lamprey behavior were subsampled differently for all of the traps. 

However, this study was able to help us understand some of the variables affecting the likelihood 

that a sea lamprey will enter and be retained in a trap. Much research is currently being done to 

understand sea lamprey migratory pathways in streams (Bravener 2011), to improve trap 

placement, and determine attractive water flows which maximize trap success (Barber et al. 

2012). Other research is ongoing into new trap designs, such as the use of eel-ladder traps to trap 

sea lampreys (McDonald and Desrochers 2012).
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Table 1. Main factors and interactions that significantly explained probability of entry of sea
lamprey with Wald Chi-Square, degrees of freedom, and significance reported.

Tests of Model Effects

Source Type III

Wald Chi-Square df Sig.

(Intercept) 8.575 1 0.003

Time of season 12.431 1 0.000

Trap * Water.temp 9.511 4 0.050

Dependent Variable: Entered

Model: (Intercept), Time of season, Trap * Water.temp

Table 2. Sea lamprey entry factors showing parameter coefficients (B),standard errors (SE), 
significance (Sig.), and odds ratio (OR) as factors were added to the model.

Model 1 Model 2
Variables B SE Sig. OR B SE Sig. OR
Time of Season -0.854 0.1443 0.0001 0.426 -1.314 0.3728 0.0001 6.74
Interactions
SM NCP*Watertemperature 0.095 0.0683 0.164 1.1
SM SAWT*Water temperature 0.074 0.0643 0.251 1.077
SM NAWT*Water temperature 0.139 0.0777 0.073 1.149
Che boyga n * Wate r te m pe ratu re 0.074 0.0588 0.208 1.077.
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Table 3. Main factors and interactions that significantly explained probability of retention of sea
lamprey with Wald Chi-Square, degrees of freedom, and significance reported.

Tests of Model Effects

Source Type III

Wald Chi-Square df Sig.

(Intercept) 88.563 1 0.000

Hour.of.night 221.739 7 0.000

Water.temp 3.846 1 0.050

Hour.of.night * Trap 752.819 14 0.000

Trap * Time of season 10.946 3 0.012

Trap * Water.temp 67.243 3 0.000

Dependent Variable: Retention.hourly

Model: (Intercept), Hour.of.night, Water.temp, Hour.of.night * Trap, Trap * Time 

of season, Trap * Water.temp

Table 4. Sea lamprey retention factors showing parameter coefficients (B), standard errors (SE), 
significance (Sig.), and odds ratio (OR) as factors were added to the model.

Model 1 Model 2
Variables B SE Sig. OR B SE Sig. OR
Hour of night=8 -0.054 0.0381 0.158 0.948 -0.063 0.0382 0.101 0.939
Hour o f night=7 -0.057 0.0228 0.012 0.944 -0.067 0.0232 0.004 0.935
Hour o f night=6 -0.25 0.0175 0.0001 0.778 -0.261 0.018 0.0001 0.771
Hour o f night=5 -0.025 0.0152 0.105 0.976 -0.037 0.0162 0.021 0.963
Hour of night=4 -0.071 0.0121 0.0001 0.931 -0.082 0.013 0.0001 0.921
Hour o f night=3 0 0.0089 0.956 1 -0.003 0.009 0.697 0.997
Hour of night=2 0.001 0.0082 0.921 1.001 0 0.0082 0.953 1
Hour o f night=l 0a 1 oa 1
Water tem perature -0.002 0.001 0.023 0.998.
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Figure 1. Locations of Cheboygan River and St. Mary’s River.
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