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ABSTRACT 

During the last few decades, global climate change has been one of the major 

drivers of species extinction, and has altered many ecological interactions. Monarch 

butterflies, which represent a cultural icon in North America, have been experiencing 

population declines due to several anthropogenic forces associated with environmental 

change. In addition, a monarch protozoan neogregarine parasite, Ophryocystis 

elektroscirrha (OE), aggravates their situation by decreasing the reproductive success 

and longevity of adult butterflies. Previous studies have shown that global warming can 

modify the interaction between parasites and their hosts. This study aimed to assess 

how a rise in temperature affects the virulence and transmission potential of OE. I 

hypothesized that an increase in temperature would result in shorter adult life spans 

and higher parasite loads. A total of 154 larvae were reared on artificial diet in 

incubators at three temperatures, 22°C, 25°C and 28°C until adult emergence or 

premature death. Approximately 30 larvae from each temperature were inoculated with 

10 OE spores and 20 larvae were un-inoculated controls. Developmental time, pupal 

weight and spore loads were measured and data were analyzed using generalized linear 

models. Unexpected co-infection with an unknown pathogen resulted in high larval 

mortality in both OE-inoculated and control treatments, preventing an independent 

assessment of the effect of temperature on the monarch-OE interaction. As a result of 

co-infection, monarchs inoculated with OE were more likely to die during the larval 

stage. As expected, the total developmental time of butterflies declined at higher 

temperatures. Importantly, only 8 out of 42 OE-inoculated larvae that survived to 

adulthood produced OE spores, suggesting an antagonistic interaction between the 

unknown pathogen and OE. Overall, higher temperatures appeared to have a largely 
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positive effect on monarch performance, since butterflies reared at warmer 

temperatures had shorter developmental times, resulting in a decrease in exposure time 

to the unknown pathogen. In conclusion, the unknown pathogen interacted in complex 

ways with OE, affecting monarch performance more than the increase in temperature 

itself. In this changing world, temperature sensitive host-parasite interactions could 

potentially be altered by global warming. However, they need to be studied within the 

context of how multiple pathogens will interact with their hosts under elevated 

temperature scenarios.   

 

  



5	
	

INTRODUCTION  

Over the last century, our planet has been experiencing rapid alterations in climate 

caused by human activity (Rahmstorf et al. 2007, Smith et al. 2009). Changes in 

precipitation and temperature across the globe have been shifting the distribution of 

ecosystems, communities, and populations (Walther et al. 2002, Walther 2010), and the 

physiology of individuals (Root et al. 2003). For example, alterations in river flow due to 

modified precipitation regimes can have impacts on entire freshwater ecosystems (Doll 

and Zhang 2010). Likewise, precipitation variation can shift plant communities and 

induce alterations in soil ecosystems (Kardol et al. 2010). Moreover, climate change is 

leading to mismatch in resource and consumer phenology, which causes population 

declines of animals such as migratory birds (Both et al. 2006). Increases in temperature 

can also lead to changes in organism traits such as coloration (Root et al. 2003, Roulin 

2014).  Critically, ecological interactions such as predation, competition, symbiosis and 

parasitism are also experiencing major alterations under climate change (Hoegh-

Guldberg 1999, Tylianakis et al. 2008) and merit increased study.   

For example, climate change may alter parasite-host interactions. Rising 

temperatures can increase parasite virulence and transmission rates and decrease 

incubation periods. For example, in malaria, the process of sporogony, which consists of 

the incubation period of the parasite’s spores, is temperature-dependent (Detinova 

1962). A rise in temperature due to climate change accelerates sporogony, increasing the 

rate of development of the malaria parasite. Moreover, a rise in temperature can 

accelerate the development of the mosquito host, increasing the number of bites per life 

time, which in turn increases transmission rate (Lindsay and Birley 1996). 
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Another study of malaria in an East African highland associated temperatures 

from 1970 to 2003 with reported cases of malaria. According to this study, an increment 

of around 1oC over this period of time was associated with an increase in the size of 

malaria epidemics, due to an increase in transmission of the disease (Alonso et al. 2011). 

Furthermore, a recent study in the highlands of Colombia and Ethiopia showed that 

variation in temperature can affect the spatial-temporal distribution of malaria, by 

shifting the vector to higher elevations (Siraj et al. 2014). Malaria incidence decreases at 

high elevation, because lower temperatures reduce the mosquito’s reproduction and 

biting rate and also slow down the development of the parasite.  But warmer 

temperatures due to climate change are leading to a higher altitude range of mosquito 

vector populations. This could increase the risk of epidemic in highlands where there are 

dense human populations.  Siraj et al (2014) predict an increase of malaria cases in 

Ethiopia between 35 and 64 percent and between 10 and 80 percent in Colombia when 

the temperature rises 1°C. In a similar example, research using a gradient in altitude as a 

proxy for temperature showed that at lower altitude, which coincides with higher 

temperatures, ticks and their hosts were more abundant. Ticks are vectors for Lyme 

disease, tick-borne encephalitis virus and loupin ill virus. Ticks’ hosts include deer, hare 

and grouse. If climate change shifts tick and host abundance to higher altitudes, then 

there will be higher risk of the transmission of these diseases to humans, livestock and 

wildlife on upland areas.  (Gilbert 2010). 

Likewise, the interaction between amphibians and the trematode, Ribeiroia 

ondatrae, is temperature-dependent. Ribeiroia ondatrae, a planorbella worm, infects 

three hosts sequentially: snails, amphibians, and mammals. When infecting snails, it 
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reduces the fecundity by consuming the snail gonads; when infecting amphibians, it 

creates limb malformations or it atrophies the development of the limbs. When there is 

a rise in the temperature, the growth rate of both the snail and the parasite are faster, 

increasing the abundance of the parasite and its transmission to amphibians. Thus, the 

disease is enhanced by temperature (Paull and Johnson 2011). 

On the other hand, a rise in temperature does not always increase the rate of 

parasite transmission. In the plague, the bacteria, Yersinia pestis, enhances 

transmission by blocking the proventriculus (foregut valve) of the flea vector, 

stimulating the flea to keep biting in order to get a blood meal. When the temperature 

rises by more than 5°C, the bacteria is unable to block the proventriculus of the flea, 

thus the transmission rate (biting rate) declines (Hinnebusch et al. 1998).   

Some parasites that have a portion of their life cycle outside a host, and depend 

on water for transmission, may be spread more easily under global climate change 

(Slenning 2010). A study of how climate change can influence water-related diarrheal 

diseases, such as cholera, showed that an increment in temperature of approximately 

1⁰C in Tanzania from 1977 to 2004, was associated with a higher number of cholera 

cases because of increasing rainfall. The dry season was negatively associated with the 

number of cholera cases, since cholera depends on water for transmission. The 

predictions from this research for 2030 describe a scenario with a 15 to 30 percent 

increase in cholera cases in a model using an increment of 1°C, and between 60 and 100 

percent, when considering an increment of 2°C (Traerup et al. 2011). 

Based on all the cases mentioned above, it appears critical to keep conducting 

research that evaluates how disease dynamics are altered under changing climate 
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regimes.  Therefore, the overall goal of my research was to increase our understanding 

of disease dynamics between a parasite and its host in a changing environment.  Such 

work can help to predict the impact of disease on humans, livestock and wildlife as the 

temperature continues to increase on our planet. I studied the effects of climate change 

on disease dynamics using the protozoan parasite, Ophryocystis elektroscirrha (OE for 

short), and the monarch butterfly, Danaus plexippus. 

 

Study system 

The monarch butterfly, Danaus plexippus, (Lepidoptera: Danaidae) and its OE 

parasite are a good study system for several reasons. First, O. elektroscirrha belongs to 

an apicomplexan group called Gregarinia, which is related to the protist Plasmodium, 

which causes malaria, and to Toxoplasma, which causes toxoplasmosis. Both of these 

diseases can prove lethal to humans. Therefore, by studying how the transmission rate 

and virulence of this parasite change in different temperature scenarios, general 

predictions for other diseases caused by similar types of parasites might be made.  

Moreover, there is a good foundation of information collected for more than 70 years on 

monarch butterflies (Beall 1941, Brower 1961, Reichste et al. 1968). This amount of 

information makes research on this organism easier. Furthermore, because monarch 

butterflies are a threatened species due to habitat loss and OE parasite infection 

(McLaughlin and Myers 1970, Pleasants and Oberhauser 2013), research related to their 

diseases is critical, in order to help understand potential conservation efforts. Likewise, 

since monarch butterflies are iconic in North American culture, can relate to their 

conservation and protection (Pleasants and Oberhauser 2013, Diffendorfer et al. 2014, 
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Flockhart et al. 2015).  Additionally, both the parasite and host can be easily 

manipulated for experimentation.  For example, the number of parasites that infect the 

monarch caterpillars can be controlled, and it is easy to quantify adult survival and 

fitness.  

Monarchs have a metamorphic life cycle comprised of four stages: egg, larva 

(caterpillar), pupa (chrysalis) and adult butterfly. The larva first consumes its own 

eggshell, and then feeds on milkweed plants (Asclepias sp.) until reaching pupation. 

When the adult emerges, its main source of energy comes from nectar. In eastern North 

America, monarchs migrate to Mexico to overwinter and then return for the breeding 

season in summer.  

Monarch butterflies worldwide are infected by a neogregarine parasite, 

Ophryocystis elektroscirrha (McLaughlin and Myers 1970, Altizer et al. 2000) (Figure 

1). O. elektroscirrha, OE for short, infects the caterpillar when an infected butterfly lays 

eggs covered with the parasite spores and also spreads spores on milkweed leaves 

during oviposition. The neonate larva gets infected when it eats the eggshell or 

surrounding foliage, introducing this parasite into its mid gut, where OE spores lyse and 

release sporozoites that cross the midgut wall reaching the hypodermis. The parasite 

then reproduces asexually and when the caterpillar goes into the pupal stage, the 

parasite reproduces sexually. Finally, virulence is expressed after the spore-covered 

adult emerges from the chrysalis, reducing monarch flight ability, fecundity and lifespan 

(Altizer and Oberhauser 1999, de Roode et al. 2007).  Population models suggest that 

OE may reduce the size of some monarch populations by 50% (Altizer et al. 2004). 
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As previously stated, studies linking global climate change and disease dynamics 

should be conducted to better predict their interactions in a changing world. Therefore 

my research proposed to assess how temperature affects the disease dynamic of 

monarch butterflies and their parasite. I hypothesized that a rise in temperature will 

increase the virulence and transmission potential of the OE parasite. Based on climate 

change models that expect 1°C to 3°C increases in temperature (IPCC 2013), I predicted 

that larvae and pupae reared at higher temperatures will suffer an increase in both 

virulence and transmission potential compared with butterflies reared at ambient 

temperatures.  A decrease in pupal mass and adult lifespan denotes an increase in 

virulence (de Roode et al. 2008b), while a higher parasite load denotes as increase in 

transmission potential (de Roode et al. 2008b, de Roode et al. 2009). 

 

MATERIALS AND METHODS 

 

Temperature experiment 

To test the effect of temperature on virulence and transmission potential of the 

OE parasite on D. plexippus, I reared monarch larvae to the second instar at one of three 

different temperatures and then infected them with OE spores. Larvae were then 

returned to their experimental temperature and reared until adult eclosion or death.  

Some models predict temperature increases of up to 3oC (IPCC report 2013, Leung and 

Qian 2005, Di Lorenzo 2015) and I based my experiments on this value. Given the wide 

latitudinal distribution of monarch breeding in the US, I chose to compare three 

temperatures that correspond to summer breeding temperatures at high, medium and 

low latitudes. The temperatures chosen were selected using July daily average 
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temperature of three cities that are located on each of those three latitudes and that 

approximate the distribution of monarchs in the eastern US.  Each of those 

temperatures differs by 3oC. That way the mid latitude temperature serves as the 

potential climate change scenario of high latitude monarch breeding sites. Likewise, the 

low latitude temperature serves as the potential climate change scenario of mid latitude 

monarch breeding sites. Specifically, the high latitude temperature is 22.6oC; the mid 

latitude temperature is 25.8oC, and the low latitude temperature is 28.9oC. For example, 

a comparison based on the temperatures of high and mid latitudes can assess (a) current 

differences in parasite virulence and transmission potential between these breeding 

points, and (b) future expectations for high latitude breeding sites. 

 

I infected a total of 30 monarch caterpillars per temperature treatment, and I had 

an additional 20 caterpillars as uninfected controls for each temperature. Inoculations 

occurred over a period of 12 days as neonates became available; larvae were divided 

evenly among treatments each day. Monarch eggs for this experiment were obtained 

from a colony raised in our lab. This colony originated from a migratory monarch 

population in the Midwestern US.  For my experiments, I obtained eggs from four to six 

female butterflies kept inside net enclosures, fed at libitum with a honey solution on 

sponges.  Eggs were laid on Asclepias tuberosa and Asclepias curassavica plants. 

Neonate caterpillars were assigned randomly to treatment groups and placed in 

individual 1 oz. plastic cups immediately after hatching.  I raised all the caterpillars in 

individual cups, inside incubators at their corresponding temperature, all at 16:8 

light:dark.  Because larval host plant quality can influence the virulence and 

transmission potential of OE (de Roode et al. 2008a, Sternberg et al. 2012), I reared all 
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monarchs on artificial diet throughout their development to equalize larval diet quality 

among temperatures.  However, to ensure that each inoculated larva received the same 

dose of OE spores, I infected treatment larvae by placing 10 parasite spores on one 

Asclepias tuberosa (butterflyweed) leaf disc (8mm diameter) that was consumed by 

each treatment larva. All disks came from a single A. tuberosa plant.  The foliage of A. 

tuberosa is free of the cardenolides that influence monarch infection by OE.  To ensure 

consumption of all parasites, I enclosed each 2nd instar larva in a petri-dish with a leaf 

disk inside; only caterpillars that consumed their entire leaf disk (and therefore entire 

parasite dose) were used in the experiment. The OE spores for my experiment 

originated from a single butterfly from a Georgia population. 

 

Measures of virulence & transmission potential 

For holometabolous insects, pupal mass is often tightly correlated with fecundity 

(Lill and Marquis 2001). 72 hours after pupation, I weighed pupal mass as a proxy for 

fecundity. Therefore, a decrease in pupal mass associated with OE infection served as a 

measure of virulence (decline in fitness).  I determined transmission potential by the 

number of spores carried by the butterflies (parasite load). I estimated transmission 

potential (parasite load) by counting spores on adults (de Roode et al. 2009). Spore 

loads were quantified by vortexing monarch bodies in 5 ml of water and counting the 

number of spores using a hemocytometer slide. Finally, I measured adult lifespan as a 

second index of virulence. After adult eclosion, I placed butterflies in glassine envelopes 

at 140C and monitored them daily to calculate the number of days between eclosion and 

death (de Roode et al. 2007).  
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Monarch realized production estimate 

In the middle of the experiment, the caterpillars became exposed to a second unknown 

pathogen that interacted with OE and temperature in complex ways (see “Results”, 

below). In order to understand how co-infection and temperature influenced both 

survival and fitness we made a simple calculation. We multiplied the percent monarch 

survival under each treatment by the average mass of the survivors to obtain monarch 

realized production (realized biomass). This was calculated for females and for males 

independently, and then they were summed to calculate “total production.”  We could 

then calculate the effect of temperature on OE virulence (in the presence of co-infection) 

by subtracting average inoculated monarch production from the average monarch 

production of controls. 

 

Plant chemistry and wing chemistry 

 I estimated the foliar cardenolide concentration of the plant used as the source of 

leaf disks (above) to ensure that it was free of cardenolides. I collected three leaf 

samples from the foliage of the plant and analyzed them for cardenolide concentration.  

Briefly, foliage for cardenolides was extracted in methanol and analyzed using high 

performance liquid chromatography with digitoxin as an internal standard, using well-

established methods (de Roode et al. 2008a, Sternberg et al. 2012, Tao et al. 2015).  I 

also analyzed ten cups of artificial diet to confirm the absence of cardenolides in the 

diet, which is based on agar, nutrients, vitamins and low-cardenolide milkweed powder. 

I also analyzed the artificial diet for carbon and nitrogen concentration using a TruMac 
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CN Analyzer. (Leco Corporation, St. Joseph, MI).  Finally, I analyzed the wings of all 

surviving butterflies to determine if there was any trace of cardenolide sequestered from 

the artificial diet. 

 

Statistical Analysis  

All analyses were conducted using SAS 9.4.  The proportion of larvae that died before 

maturity was compared among temperature treatments using generalized linear models 

with a binomial distribution and a logit link function (Littell et al. 2002).  A similar 

model was used to compare the proportion of inoculated larvae that produced spores as 

adults among temperature treatments. General linear models were used to compare the 

following indices of monarch performance among temperature treatments; larval 

period, pupal period, adult period, total developmental period, and pupal mass. Because 

all experimental larvae were not inoculated on the same day, we used the Julian date of 

inoculation as a covariate to account for any variation in egg or diet quality over time. 

The first inoculation started on November first (Julian day 305) and the last inoculation 

was on November 20th (Julian day 324). 

 

RESULTS 

We observed an uncontrolled infection with an unidentified pathogen that altered 

the interaction between OE and monarch butterflies. This co-infection occurred in both 

control and inoculated monarchs, and may have prevented a clear assessment of how 

temperature affects OE-monarch parasitic interactions. Effects of the unknown 
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pathogen were most apparent as caterpillars began the process of pupation (Figure 3). 

Symptoms included an extended larval period, lethargic behavior, mortality entering or 

during the pupal stage, and suppuration of a black fluid after death. Contamination with 

the unknown pathogen increased as the experiment progressed, so that later 

inoculations were more likely to suffer co-infection than were early inoculations.  While 

I recognize that this co-infection has compromised the original experimental design, the 

results presented below nonetheless provide insight into how OE and co-infection 

influence simultaneously monarch butterflies under a range of experimental 

temperatures. 

 

Mortality  

Monarch mortality varied between 26% and 63% among treatments (Figure 4).  

Larvae inoculated with OE were marginally more likely to die before adult emergence 

than were uninoculated larvae (X2=3.26, d.f.=1, P=0.0709, Figure 4). The high mortality 

in the control larvae represents the presence of the additional pathogen, which appears 

lethal to monarchs. Monarch mortality was marginally higher at 25oC than at 22 or 28oC 

(X2 = 4.86, d.f.= 2, P=0.0882, Figure 4), but temperature had no effect on the 

magnitude of mortality increase caused by OE inoculation (inoculation by temperature 

interaction: X2 = 1.00, d.f.= 2, P =0.6068, Figure 4). 

 

Effects of increased temperature on OE virulence  

(1) Monarch pupal mass 
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Overall, inoculated pupae weighed more than uninoculated pupae, and pupal 

mass increased with temperature (F1,61 = 6.72, P=0.0119, F2,61 = 3.87, P=0.0262, 

respectively, Figure 5). Notably, female pupal mass (and therefore fecundity) was 

particularly responsive to increasing temperature (Inoculation*temperature*gender 

F2,61=4.88, P=0.0108, Figure 5). However, female pupae reared at 28 oC weighed less 

when inoculated than when uninoculated, although sample size was low for this group 

of pupae.  Despite these overall trends, individuals inoculated later in the experiment 

actually weighed less than their counterpart control pupae, suggesting an interaction 

between OE and increasing contamination by the unknown pathogen (F1,61 = 6.68, P = 

0.0122, Figure 6a).  Moreover, monarch pupal mass declined markedly at lower 

temperatures during later inoculations, presumably because slower development 

increased exposure to contamination (F2,61 = 3.90, P = 0.0255, Figure 6b) 

(2) Monarch lifespan and developmental period 

Neither temperature nor infection by OE influenced adult lifespan (inoculation 

F1,60=0.98, P=0.3267, Temperature F2,60=2.62, P=0.0807, inoculation*temperature 

interaction F2,60=0.96, P=0.3864, Table 1). However, larval period, pupal period and 

total developmental period of the butterflies were reduced at higher temperatures as 

expected for a poikilotherm (F2,70=11.45, P <0.0001, Table 1). 

Overall, inoculated caterpillars grew faster (shorter larval period) than did 

uninoculated ones (F1,70=7.88,  P=0.0065, Figure 7a). This pattern became more 

pronounced for caterpillars that were inoculated later (inoculation*inoculation date: 

F1,70= 7.97,  P=0.0062). As expected, larvae reared at warmer temperatures grew faster 

(F2,70=11.45 ,P < 0.0001, Figure 7b), with temperature-mediated differences in larval 
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period increasing as the experiment progressed (temperature*inoculation date F2,70= 

11.84, P <0.0001). This likely arises as increasing contamination magnified the 

differences in larval period caused by temperature (Figure 7b). The length of the pupal 

period decreased with increasing temperature (F2,72=97.94 ,P < 0.0001, Figure 8) but 

was unaffected by inoculation with OE. 

Over the entire developmental period, butterflies infected with OE had shorter 

life cycles than did control butterflies (F1,67 =5.02, P=0.0284, Figure 9). Furthermore, as 

expected, butterflies growing at warmer temperatures had shorter developmental 

periods (F2,67=7.04, P =0.0017, Figure 10). As noted previously, individuals that were 

inoculated later with OE expressed even longer life cycles (temperature*inoculation date 

F2,67=7.20, P=0.0015), presumably as a result of increasing co-infection. 

 

Effects of increased temperature on OE transmission potential 

Of the 42 inoculated butterflies that survived to adulthood, only 8 produced OE 

spores and I was therefore unable to compare spore loads among treatment groups. 

However, the likelihood of producing any spores differed marginally among 

temperatures, whereby the probability of producing E spores appeared much higher at 

22oC than at higher temperatures (X2=5.27, d.f.=2, P=0.0716, Figure 11).  We suggest 

that co-infection with the unknown pathogen greatly reduced spore production at higher 

temperatures. 
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Chemical analysis of artificial diet and butterflies 

The artificial diet that I used averaged 42.74% carbon and 6.35% nitrogen. The 

C:N ratio was 6.73, similar to values measured in the artificial diets we have used in 

previous laboratory experiments (carbon: 40%, nitrogen: 6%, C:N = 6.57). There were 

no measurable cardenolides present in the artificial diet.   Likewise, the A. tuberosa 

plants that served as sources for the leaf disks we used during inoculation contained no 

measurable cardenolides.   Finally, none of the butterfly wings that we analyzed 

contained measurable cardenolide concentrations.  

 

Monarch realized production estimate 

OE-inoculated females had lower realized production than did control females 

(Figure 12A) . The difference in production between inoculation treatments was 

particularly pronounced at the highest temperature of 28°C, at which the production 

gained was around three times higher than the production gained at 22°C and 25°C. The 

same pattern was observed for males (Figure 12B) and for total monarch production 

(Figure 12C). 

OE-virulence increased markedly at 28°C (Figure 12D) because infection with OE 

eliminated all biomass gains of control monarchs at that temperature. 

DISCUSSION 

In this study, I found that co-infection with OE and another (unknown) pathogen 

altered monarch butterfly performance and longevity. Importantly, I have shown that 
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the effect of this co-infection on monarch performance may be greater than the effect of 

the predicted rise in temperature associated with global warming.  However, I observed 

some complex interactions between co-infection and temperature treatment. 

First, and perhaps the most important finding, this additional pathogenic burden 

can result in high mortality at larval, pupal and adult stages of monarch butterflies.  The 

highest mortality rates were observed in larvae, particularly when they were infected 

with OE (Figure 4). This is especially interesting because OE is usually not lethal to 

monarchs, reducing only the lifespan and fitness of adult hosts (McLaughlin and Myers 

1970, de Roode et al. 2008a, de Roode et al. 2008b).  At this time, I have not been able 

to identify the unknown pathogen.  In addition to OE, monarch butterflies have been 

reported to suffer infection from nuclearpolyhedrosis virus, Nosema (a microsporidian), 

the bacterium Micrococcus flaccidifex danai, and Pseudomonas bacteria (Brown 1927, 

McLaughlin and Myers 1970)).  Although I sent monarch cadavers to the insect 

pathology imaging group at Mississippi State University, they were unable to isolate any 

of the known pathogens of monarch from my samples. 

Humans and other animals often experience co-infection by different pathogens 

like bacteria, viruses, nematodes, fungi and macro-parasites among others, and may 

even suffer from three or more infectious diseases simultaneously (Lau et al. 2010, 

Romansic et al. 2011). These co-infections might act in a synergistic way, increasing 

virulence (Romansic et al. 2011) or in an antagonistic way, obstructing the development 

or resource intake of the other pathogen (Fenton et al. 2008, Jolles et al. 2015). Finally, 

agents of co-infection can coexist without having effects on each other (Pedersen and 

Fenton 2007).  
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When discussing synergism or antagonism, it is important to distinguish between 

effects on the fitness of the host and effects on the fitness of the parasite.  For example, 

the secondary pathogen present in my caterpillars interacted in an antagonistic way 

with OE.  As described above, those individuals infected with OE were more likely to die 

before adulthood than were individuals not infected with OE (Figure 4). This co-

infection might be synergistic for the unknown pathogen, but is clearly antagonistic for 

OE, which requires mobile adult butterflies for transmission (Figure 1).  

I observed a second powerful indication of the antagonism between the unknown 

pathogen and OE.  Of the monarchs that I inoculated with OE that survived the co-

infection, only 19% (8 out of 42 survivors) produced any OE spores.  Typically, nearly all 

inoculated larvae develop into adults with substantial spore loads (Sternberg et al. 

2012).  This important result demonstrates that adult monarchs that survived the co-

infection should not represent a high risk of OE transmission to other individuals.  

However, the unknown pathogen can cause substantial monarch mortality (Figure 4), 

overwhelming any potential positive effects of clearing the OE parasite. 

What might have led to such high pathogen burdens in my experimental 

monarchs?  My chemical analysis of the artificial diet showed that the diet was free of 

cardenolides and perhaps other important secondary metabolites that might control 

pathogens in wild monarch populations (de Roode et al. 2013).  Previous work on the 

gypsy moth, Lymantria dispar, has shown that the LD50 of the gypsy moth nuclear 

polyhedrosis virus is 800 polyhedral inclusion bodies (PIBs) on artificial diet whereas it 

is closer to 50,000 PIBs on foliage (Hunter 2016).  It is therefore possible that the use of 

artificial diet magnified the interaction between the unknown pathogen and OE. 

However, artificial diet was not the cause of co-infection, as artificial diet has been used 
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in numerous other experiments and can successfully maintain healthy colonies during 

their larval cycle. Moreover, similar symptoms of an unknown disease agent have been 

reported from foliage-feeding monarchs in other research labs and in natural monarch 

populations.  Nonetheless, all previous studies of OE transmission potential and 

virulence have used fresh plant foliage (de Roode et al. 2008a, Sternberg et al. 2012, Tao 

et al. 2015).  Milkweed foliage has important anti-pathogenic properties (de Roode et al. 

2008a) and mediates variation in the gut microbiome of monarch caterpillars (M.D. 

Hunter & J. de Roode, unpublished work).  Additionally, the rearing conditions that I 

used could have enhanced the exposure or virulence of the unknown pathogen.  

Specifically, while larvae were reared in closed individual cups, lower levels of 

ventilation and higher levels of humidity may have increased the potential for infection.  

Moreover, despite sterilizing all equipment between each individual feeding, there exists 

the potential for contamination among cups within incubators. 

Probability of co-infection with the unknown pathogen may have increased over 

the course of the experiment.  This may explain the increasingly deleterious effect of OE 

inoculation on monarch pupal mass in later inoculations (Figure 6a).  Moreover, the 

development times of larvae and pupae became longer in later inoculations, again 

suggesting an increase in infection by the unknown pathogen (Figures 7, 9, 10). 

Given that my study was originally designed to investigate the effect of 

temperature on monarch-OE interactions, I am particularly interested in how my 

temperature treatments influenced monarch performance under co-infection.  It 

appears that the unknown pathogen modified the effects of temperature on monarch 

growth rate and pupal mass. As expected, larvae and pupae developed faster at warmer 

than at cooler temperatures (Figures 7b, 8). However, at 22oC, larval development 
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became notably slower in later inoculations, presumably as a result of more 

contamination (Figure 7b). This same pattern was evident in the total developmental 

period of monarchs, whereby individuals that were inoculated later in the experiment 

grew particularly slowly at cooler temperatures (Figure 10).  Additionally, pupal mass 

decreased in later inoculations, especially at cooler temperatures (Figure 6b).  I infer 

from this that warmer temperatures, and the shorter larval periods that they caused, 

helped to protect monarch larvae from co-infection and its deleterious consequences for 

pupal mass.  However, I also observed that surviving monarchs were more likely to 

produce OE spores at lower than at higher temperatures (Figure 11), suggesting that 

high temperatures increased the antagonistic effects of the unknown pathogen against 

OE if co-infection had occurred. 

My observations of monarch responses to temperature are broadly consistent 

with previous studies.  For example, (Zalucki 1982) reported that the optimal 

temperature for larval survival and growth in monarchs is from 27 to 29° C. 

Temperatures higher than 30° C or lower than 25° C slow larval development 

considerably, and temperatures above 33 and under 12° C are lethal to caterpillars. 

Moreover, variation in temperature with alternating periods of high temperature can 

increase developmental rate and decrease the probability of exposure the pathogens 

(Zalucki 1982, York and Oberhauser 2002). York and Oberhauser (2002) also reported 

that monarchs weighed less after exposure to high temperatures, which is in contrast to 

my results; in my study, monarch pupal masses were generally greatest under my 

highest temperature treatment (Figure 5).  However, York and Oberhauser (2002) used 

an extreme high temperature treatment of 36 oC in their experiments, greatly exceeding 

the optimal temperature for monarchs, and higher than my highest treatment of 28 oC.   
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Overall, based on my work and previous studies (Zalucki 1982, York and Oberhauser 

2002, Lemoine 2015, Lemoine et al. 2015), higher temperatures within the optimal 

range for monarchs appear to increase butterfly performance and likely decrease the 

probability of pathogen infection. 

My study focused on isolating the effects of temperature on monarch-parasite 

interactions, keeping food quality constant on an artificial diet.  In the field, it is possible 

that changing plant chemistry under rising temperatures might influence plant quality, 

altering monarch-OE interactions.   Previous studies investigating how temperature 

influences milkweed foliar chemistry provide contradictory results.  For example, 

Lemoine et al. (2015) reported that warming had no influence on specific leaf area, 

water content, or latex exudation of milkweed leaves, concluding that rising 

temperatures would have no effect on foliar quality for monarchs.  In contrast, Couture 

et al. (2015) reported increases in foliar nitrogen concentration and decreases in foliar 

thickness with increasing temperature; both were associated with improved monarch 

performance.  However, Lemoine et al. (2015) used a lower range of temperatures (12 to 

15 oC) than did Couture et al. (2015) (24 to 30 oC).  The latter study was therefore similar 

to ours in its temperature range.  While these plant traits may influence monarch 

susceptibility to the unknown pathogen, they are unlikely to influence OE infection, 

which is associated primarily with foliar cardenolide concentrations (de Roode et al. 

2008a, Gowler et al. 2015).  Rather, rising temperatures will likely have a greater 

influence on the future distribution of milkweed species (Lemoine 2015).  Milkweed 

species vary enormously in their cardenolides (Agrawal and Fishbein 2008) and their 

antibiotic effects on monarch parasites (Sternberg et al. 2012). 



24	
	

I found one previous study of the effects of temperature on the virulence and 

transmission of OE in monarchs.  This unpublished doctoral dissertation (E.A. Lindsey, 

Emory University, 2008) suggests that infected monarchs reared at lower temperatures 

produced fewer spores while monarchs reared at higher temperatures suffered higher 

virulence.  This unpublished work generally contradicts my findings, in which spore 

loads were greatest at lower temperatures (Figure 11) and monarch pupal mass 

increased with temperature (Figure 5).  The different results from these studies may 

stem from the prevalence of co-infection in my experiments, or the use of milkweed 

foliage rather than artificial diet in the experiments by Lindsey.  Clearly, additional work 

will be necessary to isolate the precise effects of temperature on monarch-OE 

interactions. 

Another unexpected result in my experiment was that inoculated and control 

adult butterflies had similar lifespans. This is surprising because OE is known to 

significantly decrease adult longevity (McLaughlin and Myers 1970, de Roode et al. 

2007).  However, OE-induced reductions in lifespan are usually associated with high 

spore loads on adult butterflies. In my experiment, very few of the inoculated butterflies 

that survived to adulthood produced any spores  (see above).  It therefore is possible 

that clearing of OE by the unknown pathogen uncoupled the typical relationship 

between OE inoculation and adult longevity.  Additionally, the most heavily-infected 

monarchs may have died prior to adult eclosion (Figure 4).  

 To my knowledge, this is the first study to describe the effects of elevated 

temperature on co-infection of monarch butterflies with interacting pathogens.  Overall, 
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elevated temperature in combination with a second pathogen affected OE-monarch 

interactions. 

 The temperatures chosen for this experiment correspond to three US cities. 

Specifically, Ann Arbor, MI was our model high latitude city, at ~42 oN latitude, with a 

July average daily temperature of 22.6oC; the mid latitude city was Knoxville, TN, at  

~35 oN latitude, with a July average daily temperature of 25.8oC; the low latitude city 

was Miami, FL, at ~25 oN latitude, with a July average daily temperature of 28.9oC.   

Accordingly, Knoxville serves as a model for a “future Ann Arbor” whereas Miami serves 

as a model for a “future Knoxville.”  However, the cities also provide predictions for 

current latitudinal variation in response to co-infection.  Hence, we predict that 

monarch co-infection in Miami will result in higher OE virulence than will monarch co-

infection in Knoxville or Ann Arbor.  To our knowledge, co-infection has not been 

studied previously at these locations.  

Notably, the higher OE virulence that we observed at higher temperature resulted 

from co-infection eradicating the gains in performance made by control monarchs at 

28oC.  The high performance of monarchs at 28oC is consistent with previous research, 

in which monarch fitness is maximized between 27-29 oC (Zalucki 1982, Lemoine et al. 

2015). On the other hand, the cost of hosting OE (OE virulence) was also higher at 28oC, 

presumably because all the production gained for controls at 28oC was completely 

eliminated by OE. Thus, there was a higher loss in monarch production (higher 

virulence) at the highest temperature. This demonstrates that virulence is not only 

intrinsic to the OE parasite, but is also influenced by the environmental conditions 

under which the parasite and host develop. 
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  These results have important implications in a changing world, in which global 

warming can alter host-parasite interactions.  There are, of course, additional potential 

effects of environmental change on monarch-parasite interactions.  For example, the 

propensity of monarchs to migrate may decline at higher temperatures because of better 

conditions for larvae and year-round availability of milkweeds (Oberhauser and 

Peterson 2003).  Low migration selects for higher parasite virulence in the OE-monarch 

system (Altizer et al. 2000).  Additionally, environmental change may influence the 

geographic distribution of parasites, monarchs, and milkweeds (Zipkin et al. 2012, 

Lemoine 2015) and therefore the complex interactions among them (Hunter 2016). 

Given the potential expansion or shift in the range of monarchs, they may come into 

contact with new pathogens, and thus experience novel co-infections.  Further work on 

co-infection under environmental change is urgently needed to predict and manage the 

populations of organisms in a changing world.  
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 FIGURE LEGENDS 

 

Figure 1. Lifecycle of the monarch butterfly, Danaus plexippus, and its protozoan 

parasite, Ophryocystis elektroscirrha. 

 

Figure 2. Design of an experiment to assess the effects of temperature on the interaction 

between monarch butterflies and their protozoan parasite.  Numbers refer to the sample 

sizes of caterpillars reared in each treatment group. 

 

Figure 3. Consequences of infection with an unknown pathogen that infected 

experimental monarch larvae. Caterpillars became lethargic and often died immediately 

before or during pupation. A black substance suppurating out of their body was usually 

found. Pupal cases showed deformities and black or brown spots different from those 

seen when infected just by OE parasites. Most such pupae failed to emerge. 

 

Figure 4. Mortality of monarch butterflies reared at three different temperatures that 

were either inoculated with OE protozoan parasite or left un-inoculated (control).   

Initial sample sizes are reported in Figure 2. Temperatures reported are in centigrade. 
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Figure 5. Pupal mass of female and male monarch butterflies reared at different 

temperatures, with or without parasite inoculation. “Inoc” are those pupae from larvae 

that were inoculated with the OE parasite; “Cont” are pupae from un-inoculated larvae. 

Sample size is reported in Table 1. Bars represent the standard errors around the mean. 

 

Figure 6. The pupal mass of monarchs (A) that were either inoculated or not inoculated 

with OE parasites, and (B) that were reared under three different experimental 

temperatures.  Julian days refer to the date upon which larvae were originally inoculated 

with OE. 

 

Figure 7. The larval period of monarchs (A) that were either inoculated or not inoculated 

with OE parasites, and (B) that were reared under three different experimental 

temperatures.  Julian days refer to the date upon which larvae were originally inoculated 

with OE. 

 

Figure 8. The pupal period of monarchs that were either inoculated or not inoculated 

with OE parasites, and that were reared under three different experimental 

temperatures.  Sample size is reported in Table 1. Bars represent standard errors around 

the mean. 
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Figure 9. The total developmental period of monarch butterflies that were either 

inoculated or not inoculated with OE parasites. Julian days refer to the date upon which 

larvae were originally inoculated with OE. Total developmental period ranges from the 

day larvae hatched to the day that adult butterflies died. 

 

Figure 10. The total developmental period of monarch butterflies that were reared under 

three different experimental temperatures. Julian days refer to the date upon which 

larvae were originally inoculated with OE. Total developmental period ranges from the 

day larvae hatched to the day that adult butterflies died. 

 

Figure 11. The proportion of OE-inoculated monarch adults that produced OE spores. 

Monarchs were reared under three different experimental temperatures. Interaction 

with an unknown pathogen may have cleared OE infection or heavily co-infected 

individuals may have died before adulthood. 

 

Figure 12.  The realized production (A, B, C) of control and inoculated monarch butterflies 

reared under three different temperatures, and (D) the corresponding virulence (control 

production minus inoculated production) of the OE parasite at those temperatures.  Realized 

production is calculated as the product of monarch survival and the pupal mass of survivors. 
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Figure 12 
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Table 1. Monarch butterfly developmental periods, pupal mass, mortality, and adult spore production. Monarchs were 

reared under three different experimental temperatures and larvae were either inoculated or not inoculated with OE 

parasites (control). The numbers in each cell represent the mean, the standard error (in parenthesis) and the number of 

butterflies used (sample size, n), respectively. The “mortality” row shows the proportion of individuals that died in each 

treatment. The last row,  “spore production”, shows the proportion of OE-inoculated butterflies that produced OE spores. 

 



Table 2. Summary of co-infection and temperature effect on OE virulence and monarch 

performance. The “Results” column indicates what happens when monarchs are 

experiencing the effect of (A) co-infection, and (B) an elevated temperature due to global 

warming. The “Implication” column describes what the results means in terms of a 

decrease or increase in OE virulence or monarch performance. 

A 

																																												Co-infection	effects	
Result	 Implication	
Inoculated	larva	dies	 Increase	in	OE	virulence	in	larvae	

Larva	develops	faster	
Decrease	in	larval	exposure	to	predation	
Decrease	in	larval	feeding	time	

Pupa	weights	less	 Increase	in	OE	virulence	in	pupae	

Adult	doesn't	produce	OE	spores	
Decrease	in	OE	virulence	in	adult	
Decrease	in	OE	transmission	potential	in	adult	

 

B 

																																										Elevated	temperature	effects	
Result	 Implication	
Larva	develops	faster	 Decrease	likehood	of	becoming	co-infected	
Pupa	weights	more	 Increase	in	adult	reproductive	success	(fitness)	
Pupa	develops	faster	 Decrease	likelihood	of	pupal	predation	
 


