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Abstract

Social Media, electronic health records, credit card transactional
and administrative data, web scraping, and numerous other ways of
collecting information have changed the landscape for those interested
in addressing policy-relevant research questions. During the same
time, the traditional sources of data, such as large-scale surveys, that
have been a stable source for policy-relevant research have suffered set-
backs due to large nonresponse and increasing data collection costs.
The non-survey data usually contain detailed information on certain
behaviors on a large number of individuals (such as all credit card
transactions) but very little background information on them (such
as important covariates to address the policy-relevant question). On
the other hand, the survey data contains detailed information on co-
variates but not so detailed information on the behaviors. Both data
sources may not be perfect for the target population of interest. This
paper develops and evaluates a framework for linking information from
multiple imperfect data sources along with the Census data to draw
statistical inference. An explicit modeling framework involving se-
lection into the big data, sampling and nonresponse mechanism in
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the survey data, distribution of the key variables of interest and cer-
tain marginal distributions from the Census Data are used as building
blocks to draw inference about the population quantity of interest.

1 Introduction

The digital revolution, though at least 50 years old, is coming to fruition
now due to, in large part, ever increasing computational infrastructure and
inexpensive storage. Social media, computerized or electronic records and
many other digitized archives have changed the landscape of data. Statisti-
cians have witnessed such changes in the landscape in the recent past. The
advent of powerful desktop and server machines in the late eighties and early
nineties made it possible to fit many statistical models that were impractical
to implement a few years earlier and many old algorithms such as Metropo-
lis (Metropolis et al (1953)), Hastings-Metropolis (Hastings (1970)), Gibbs
sampling (Geman and Geman (1984)) and other Markov Chain Monte Carlo
methods were no more theoretical exercises or relegated to main frame com-
puters but became a common practice, so much so that, complex statistical
model building has become quite routine.

The statisticians are at the cusp of the next stage of revolution where data
from many sources and in many forms are becoming available and beckoning
them to rise up to the challenge of integrating these data sources to construct
inference about the population, their primary goal. The new challenge also
includes the art and science of processing huge data sets that are not neces-
sarily in the familiar rectangular format with rows for subjects and columns
for variables.

During the same time period, the probability sample surveys, the tradi-
tional bread-and-butter tool for researchers has been facing challenges due to
declining response rates. Many surveys conducted by survey research firms
with tremendous perseverance and costs range between 40% to 50% and some
telephone surveys much less. The government surveys are still eliciting larger
response rates but at the enormous cost of nonresponse follow-up. Public fa-
tigue, privacy and confidentiality concerns and costs will continue to affect
the surveys. Hence, the surveys are relying more and more on post-survey
adjustments using scant variables available on respondents and nonrespon-
dents.

The real task for the statistical community is to face the challenge of
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declining response rates and the rising costs of conducting surveys with an
increasing opportunity afforded by non-survey data sources without deviating
from the principal objective: representative or “valid” inference about the
target population of interest. There is a need for discovering a new set of
tools or reshaping the old tools to leverage these two kinds of data sources.
This can be done through refining the design of surveys and statistical models
for combining information from multiple sources.

The goal of this paper is to lay out certain statistical framework for com-
bining information from multiple data sources using the statistical modeling
and imputation framework. Clearly lay out the assumptions needed to pool
information from multiple sources and use those assumptions to construct
“synthetic” or “plausible” data sets representative of the target population
interest. This will enable the research community to broaden the scope of
questions that can be asked and answered.

2 Big Data versus Survey Data

Declining response rates and increasing costs of traditional surveys and the
advent of big data may tempt us to consider big data as the primary (or the
only?) source for inferring about the population. To delve into the conse-
quence of this possibility, consider the problem of estimating the prevalence
rate, θ, of a certain attribute. Define a binary variable where X = 1 is for
subjects with the attribute and X = 0, otherwise. A simple random sample
survey of size nS results in an estimate θ̂S, the sample proportion. The sam-
pling variance of this estimate is θ(1 − θ)/nS. For now assume that there is
no nonresponse.

Suppose that the same variable is captured in a non-survey data of size nA,
resulting in an estimate θ̂A, the proportion computed based the elements in
the non-survey data. Suppose that A = 1 denotes that the person is captured
in the non-survey data. Generally no information is available for the subjects
not captured in the non-survey data. Nevertheless, let Pr(A = 1|X = 0) = π
and Pr(A = 1|X = 1) = ρπ be the respective probabilities of capturing
persons without and with the attribute. That is ρ is the rate of capturing
a person with the attribute in the non-survey data relative to those without
the attribute.

Suppose that we apply the same binomial model. Note that this a sub-
jective model without the probability sampling framework as in the case of
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θ̂S. Some of the early references where such models were considered for non-
probability samples are Smith (1983), Rubin (1987) and Deville (1991). The
basic idea is to model the selection as a function of outcome and covariates
and then lay out the conditions under which the observed sample can be used
to project or predict the nonsampled part of the population. The response
propensity models are examples of such subjective probability models that
allows for post-survey adjustments (Little (1982)).

It follows that Pr(X = 1|A = 1) = θρπ/(θρπ +(1− θ)π) = θρ/(θρ+(1−
θ)). The bias in the estimate θ̂A is −θ(1− ρ)(1− θ)/[1− (1− ρ)θ]. Thus the
mean square error of θ̂A, under the assumed binomial model, is

MSE(θ̂A) =
θ(1 − θ)

nA

ρ + nAθ(1 − θ)(1 − ρ)2

(1 − (1 − ρ)θ)2

The relative efficiency of the estimate from the non-survey data relative to
the random sample estimate is

REA|S =
nA(1 − (1 − ρ)θ)2

nS(ρ + nAθ(1 − θ)(1 − ρ)2)
.

Note that, this relative efficiency is not always greater than one even is
nA is very large compared to nS. Let nA be very large relative to nS and the
above equation simplifies to,

(1 − (1 − ρ)θ)2

nSθ(1 − θ)(1 − ρ)2
.

An interesting question is when does the estimate from the big data become
less efficient than the survey data. It can be shown the above equation is less
than 1 for (nA >> nS), when

nS ≥
(1 − (1 − ρ)θ)2

θ(1 − θ)(1 − ρ)2
.

To get some perspective, suppose that ρ = 1.2 (that is, people with the
attribute are 20% more likely to be captured in the non-survey data than
those without the attribute) and the true prevalence rate is θ = 0.1, then the
non-survey data is less efficient whenever nS ≥ 289. Suppose that ρ = 1.05
and for the same θ, the threshold simple random size is nS ≥ 4, 489. That is,
the squared bias term tends to dominate even with the modest differential
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inclusion probabilities with respect to the outcome of interest in the non-
survey data. It is not hard to imagine some differential inclusion probabilities
related to the outcome of interest when the non-survey data are constructed
for special purposes (Marketing companies, particular banks etc).

Of course, the real surveys rarely employ simple random sample design
but typically involve unequal probabilities of selection, stratification and clus-
tering. Thus, nS could be interpreted as effective sample size adjusted for
design effect.

The simple analysis suggests that selection bias can have a big impact
on the inferences from the non-survey data and could not be even checked
without having a reliable survey or some external data to check against or to
calibrate. That is, “big data” need to be free of coverage errors, especially
for government statistics, academic research where the generalizability of the
results is the norm.

On the other hand, if an estimate, ρ̂, of ρ were available (say, based on
a substudy: a small carefully designed survey or experiment) then one could
construct a bias corrected estimate, θ̃A, by equating

θ̂A =
ρ̂θ̃A

1 − (1 − ρ̂)θ̃A

,

yielding,

θ̃A =
θ̂A

ρ̂ + (1 − ρ̂)θ̂A

.

A pooled estimate combining the survey and non-survey data can be
derived as

θ̂ = (v−1
S + v−1

A )−1(θ̂S/vS + θ̃A/vA)

where vS = θ̂S(1 − θ̂S)/nS and vA = θ̃A(1 − θ̃A)/nA. An implicit Bayesian
model is to treat θ|A ∼ N(θ̃A, vA) as the prior distribution and θ̂S|θ ∼
N(θ, vS) as the sampling distribution.

3 Strategies for Estimating Selection Bias

It is critically important to assess and estimate the selection bias term ρ.
Fortunately, the modeling framework provides for laying out the assumptions
and some approaches for estimating the selection bias. Suppose that Z is a
covariate with k categories such that Pr(A = 1|X = 1, Z = j) = Pr(A =
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1|X = 0, Z = j) = Pr(A = 1|Z = j), j = 1, 2, . . . , k. This is akin to
missing at random assumption in the missing data framework (Rubin (1976))
conditional on Z.

Note that

Pr(A = 1|X = 1) =
∑

j

Pr(A = 1|Z = j)Pr(Z = j|X = 1)

and
pr(A = 1|X = 0) =

∑

j

Pr(A = 1|Z = j)Pr(Z = j|X = 0)

. Writing

Pr(A = 1|Z = j) = Pr(Z = j|A = 1)Pr(A = 1)/Pr(Z = j),

we obtain

ρ =
Pr(A = 1|X = 1)

Pr(A = 1|X = 0)
=

∑
j Pr(Z = j|X = 1)Pr(Z = j|A = 1)/Pr(Z = j)

∑
j Pr(Z = j|X = 0)Pr(Z = j|A = 1)/Pr(Z = j)

Thus, to implement this method we need estimates of the marginal and
various conditional distributions of the covariate, Z.

• From the non-survey data we need estimates of Pr(Z = j|A = 1).

• The Census or the population data may provide Pr(Z = j)

• A sample survey or a pilot study may provide Pr(Z = j|X = l), l =
0, 1.

The categorical nature of the covariates makes these building blocks as aggre-
gate data that producers of non-survey data may be able to provide without
violating privacy and confidentiality. For example, if the non-survey data
source is a bank, for example, and Z is the categories of total “volume”,
then the bank may be able to provide the marginal distribution of based on
its customers.

What are some of the options for constructing Z? Suppose that
the non-survey and survey data have some common covariates U . Suppose
that β̂S is the estimated regression coefficient, in a logistic regression model
with X as the dependent variable and U as independent variables, obtained
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from the survey data. Let Z = [1 + exp(−U tβ̂S)]−1 be the predicted proba-
bility. The same regression coefficient, β̂S, is then applied to the non-survey
data to construct Z. That is, Z is the (counterfactual) prediction of X for
the subjects in the non-survey data that would have been obtained had they
been in the survey data. The underlying assumption is that conditional on
having the same prediction under the survey data, the actual attribute status
is not related to the selection into non-survey data. The predicted variable,
Z, can be categorized to create classes.

The second approach is to use some common variables between the non-
survey and the sample frame data sets. Some examples of such variables are
block or block group characteristics. Suppose that S = 1 indicates a sampled
subject and S = 0 indicates a non-sampled subject. Let U be the frame vari-
ables also available in the non-survey data (or can be attached to non-survey
data). Let β̂S denote the regression coefficient from the logistic regression
model predicting S from U . Apply this estimated regression coefficient to
the non-survey data. This covariate represents the likelihood of subjects in
the non-survey data for being predicted to be in the sample. Again, this
covariate could be categorized to form classes.

A final example of a strategy for constructing the covariate Z is the
propensity of being in the survey data. Specifically, append the non-survey
and survey data and define D = 1 for the survey subjects and D = 0 for
the non-survey subjects. Estimate the propensity score by using a logistic
regression model with D as the dependent variable and all the common co-
variates in the two data sets. The categories can be created based on the
propensity score. The rationale underlying this strategy is that if the sub-
ject in the non-survey data matches to subject in the survey data then the
labeling of subjects as survey/non-survey is completely at random.This strat-
egy was used to correct for discrepancies between the self-report and clinical
measures of chronic conditions such as hypertension, diabetes etc by pooling
data from the National Health Interview Survey and National Health and
Nutrition Examination Survey as described in Schenker, Raghunathan and
Bondarenko (2010).

The central theme of all these approaches is to balance or match the non-
survey data with the survey or population data through propensity scoring.
Within the matched sets, selection bias is assumed to be non-existent or
at least negligible. Note that, the bias corrected non-survey data estimate
will have very small mean square error relative to survey based estimate (if
the bias correction is successful). Thus, the the survey goal could be just
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to provide enough data to permit bias-correction. A smaller scale survey
with high response rate could possibly be mounted with lower cost and thus
leveraging the information in the larger non-survey data.

Obviously, the survey data is subject to nonresponse but several studies
(Groves et al (2010)) have shown that even with high nonresponse rate, the
survey estimates suffer from lower nonresponse bias, if at all. This may be
due to chances of completely missing a significant section of the population
in a probability sample survey is quite rare. For example, in the big data
from Apple’s Research Kit (or Twitter or Facebook or any other data source)
will have only iphone users (Twitter or Facebook or some specific attributes).
However, in probability survey even with higher propensity of response for
the iphone users compared to non-iphone users, a few non-iphone users might
participate and provide relevant data. Using auxiliary variables collected
on respondents and nonrespondents (through proper planning at the design
stage and collected during the conduct of the survey), post-stratification
techniques one can derive unbiased estimates from the biased survey data.
For an interesting example, see Wei et al (2015).

Some sources of auxiliary variables include interviewer observations, con-
textual or geographical data estimated from a variety of sources, commercial
data etc. To some extent, the survey world did not creatively plan the col-
lection and the use of auxiliary variables with an anticipation of the steep
decline in the response rates. One of the reasons is that survey inference,
as a field, was less embracing towards the use of statistical modeling in the
inferential activities where as the non-survey inference world fully embraced
and exploited the modern statistical modeling and computational advances
to its great advantage. The quote “All models are wrong and some are use-
ful”, attributed to George Box, a famous statistician summarizes the attitude
needed: Carefully craft the model that captures the important features of
the data being analyzed, perform proper diagnostics to assess the model fit
and then proceed with the inference about the population, fully incorporat-
ing the uncertainties in the non-observed data conditional on the model. An
assessment of sensitivity of the inferences to the model assumptions needs to
be a standard feature in all inferential activities.

The design-based inference paradigm adopted the notion that all models
are wrong, therefore, no model should be used. Instead, it made numerous
“algorithmic” assumptions (such hot-deck, cold-deck, editing rules, pooling
strata, combine PSUs etc) without any framework for checking these assump-
tions. However, the model assumptions were adopted in some cases such as
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small area estimation. This schizophrenic application of statistical thinking
needs to change.

4 Going Beyond Each Through Combining

Consider a situation were a data source A provides variables (U,X, Y ), the
data source B provides (U,X,Z) and data source C provides (U, Y, Z). If
the data sources A, B and C are representative of the same population then
vertically appending the data creates a traditional missing data problem
(missing Z in the data set A, missing Y in the data set B and missing X in the
data set C). Existing technology such as multiple imputation can be applied
to create completed data sets that allows joint analysis of (U,X, Y, Z). Note
that, such leveraging extends the utility of each data source beyond what it
was intended to be. This strategy could be used by the data repositories,
Federal agencies to use the variety of data already collected, harmonize the
variables and link it spatially and temporally.

An example of one such project is to consider the 1940 census which is
now available electronically to create a cohort of individuals and then try to
link (deterministic or probabilistic) first to all available digitized information
such as the Current Population Surveys, American Community Surveys, vari-
ous other surveys, Administrative records, mortality files etc. This requires a
concerted efforts working across agencies within the confines of secured envi-
ronment, such as Census Bureau Research Data Center. This first stage effort
will provide a data set with considerable holes (missing information). The
investigation of missing portions will then lead to sampling of non-digitized
records such as later year census data for digitization and incorporation into
the data set.

Obviously, the cohort formed from the 1940 census is not a representative
for the later years. Thus, sub-sampling and digitization of subjects in the
later census years and and attaching available survey data to them will im-
prove the representativeness and provide better temporal picture. Once all
reasonable efforts have been made to fill-in as much information as possible
through deterministic or probabilistic linking then one can adopt a statis-
tical approach for multiply imputing the missing portions of the data set.
Thus creating a retrospective observation based longitudinal data entirely
by leveraging the existing data resources.

The goal is not to create an actual data set, but a plausible data set

9



that matches the population in various respects. Just like an imputed data
for any one survey is not an actual data set but a plausible data set. The
reasonableness of such a data set can be assessed by comparing the inferences
from this data set to the inferences from the actual data set for a given time
period and given set of variables. For example, one can check whether the
plausible data set so constructed yield descriptive and analytical inferences
for, say the year 1990, yield similar to the one based on, say 1990 long
form. Such calibration of the plausible data increases the confidence in the
inferences constructed from it.

Returning the example with three data sources, A, B and C, suppose that
each one them may be subject to selection bias. Usually, the selection bias is
not be known. The unknown information are the conditional distributions,
[Z|U,X, Y,A], [Y |U,X,Z,B] and [X|U, Y, Z, C ].

Suppose that a small representative survey is conducted to collect data
D, on (U,X, Y, Z), appropriately weighted and imputed for missing values
using the design variables, paradata and other auxiliary variables. The goal
is not make this survey a primary vehicle for drawing inference about the
population but enough to estimate the quantities needed to leverage the
large data sets A,B and C.

The following strategy could be used to achieve our goal of creating a
plausible data set from the population:

1. Append all four data sets (vertically concatenate). Create a categorical
variable V with three levels, with V = 1 for data A, V = 2 for data B
and V = 3 for data C. Set V to be missing for all subjects in the data
set D. When this variable is imputed the observed data is being used
allocate subjects in the data set D to one of the three data sources.

2. Impute the missing values in Z for data A by applying the restriction
that model be fit and predicted values be generated by sub setting the
data with V = 1.

3. Impute the missing values in Y in the data B by restricting model fit
and imputation to V = 2

4. Impute the missing values in Z in the data set C by restricting the
model fit and imputation to V = 3.

5. The final step is assign weights to subjects in the data sets A,B and
C commensurate with their representation in the population. For ex-
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ample, the post-stratification based on the population characteristics
(for example, the census data or estimated from large surveys such as
the American Community Survey, the Current Population Survey or
the National Health Interview Survey). The second option is to use
the imputed data set D to estimate the representation of the subjects
like those in A,B and C. Suppose that pA, pB and pC be the weighted
estimated of proportion for categorical variable V in the data set D.
Let mA, mB and mC be the sizes of data sets A,B and C, respectively
with m = mA + mB + mC . Assign each subject in the data set A
the weight of mA/mpA. Similarly, mB/mpB and mC/mpC for the data
sets B and C, respectively. All subjects in the data set D receives the
original survey weight.

There are many refinements of the procedure described above. For exam-
ple, suppose that conditional distributions derived from data set A do not
match the conditional distributions in the data sets D. This implies cer-
tain level of uncertainty in the actual population distribution. Imputation
approach can incorporate these uncertainties by refining the model assump-
tions or by creating imputations under different model assumptions. Thus,
the modeling principles provide a concrete infrastructure for leveraging data
from multiple sources.

To incorporate the uncertainty in the imputations, the above steps can
be repeated several times to create a set of multiply imputed plausible data
sets. Standard multiple imputation combining rules (Rubin (1987), Little
and Rubin (2002), Raghunathan (2015)) can be applied to create inferences.
Of course, this strategy extends to many variables with arbitrary pattern of
missing data and more than three data sources that can be pooled to create
large plausible data set from the population adjusted for selection bias.

One of the ongoing project involves creating an infrastructure to develop
an understanding of relationship between demographic and socio-economic
factors (X), health conditions (D) and medical expenditures (E). Each of
these variables are multivariate. Unfortunately, there is no single data source
that provides comprehensive information on all three domains for the entire
population. However, there are several data sets measuring a subset of these
domains. For example, the Medicare Current Beneficiary Survey, National
Health Interview Survey, National Health and Nutrition Examination Survey,
Health and Retirement Study, Medical Expenditure Panel Survey, National
Comorbidity Survey etc are some of the representative surveys provide data
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in some of these dimensions. Through calibration, post-stratification and
imputation plausible data set is being created for four age segments of the
population: Age 65 and above, 45 to 64, 18 to 44 and under 18 years of age.
The work has been completed for Age 65 and above for the period 1999-2009,
primarily using MCBS, NHANES and CMS claims as data sources (Cutler
et al (2015)).

5 Discussion

Combining survey and non-survey data sources provides unique opportunities
to extend the usefulness of each data source and pose challenges in terms of
the methodology to be used to harness information from these sources. The
declining response rates in sample surveys and potential selection bias in the
non-survey data sources makes the task as that of pooling information from
imperfect sources.

Even with low response rate surveys, through auxiliary variables and post-
stratification, it is possible to adjust for bias and by reducing the sample size,
more efforts can be devoted for increasing the response rate or reducing the
nonresponse bias. This smaller high quality survey can then be used to
correct for potential selection bias in the non-survey data.

The central theme of this paper is that task of combining information
from multiple imperfect data sources can be accomplished through proper
development of statistical models with reasonable assumptions that be di-
rectly or indirectly tested or validated. The current missing data framework,
modeling and software can be modified to achieve this goal. Some simple
examples given in this paper are just for kindling the imagination for this
line of research to be undertaken by the scientific community.

There are several limitations. The data sources could be collected under
different contexts, some are self-reports and others could be record based. It
is possible that some data were collected on web, some on telephone, some
through mail and some through in-person interview. The mode differences
may make the measurement not comparable. There may design differences
across the surveys being pooled.

Non-survey data may also differ in important ways. For example, Twit-
ter, Facebook caters to different audiences. Privacy concerns of people who
use these social media sites may be different from those who do not. Thus
any variable highly patterned by the privacy concern is subject to biased
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estimation. It is important to understand the purpose for which the data are
collected and the context in which the data is provided.

All these limitations are challenges that require thoughtful small scale
experiments and incorporation of results through modeling. There is no
doubt that the landscape for the data analysis has changed and will continue
to change. This reality should propel us to think creative ways to harness
the information from survey and non-survey data sources.
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