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[Abstract] Handwriting is a complicated and individual-oriented movement that involves 

fingers, wrist and forearm; handwriting recognition has played an important role in text 

recognition, writer identification, and forgery detection. Two major methods including shape 

analysis and movement analysis were developed to handle such problem. This thesis applies the 

latter method by reviewing the principal differential model developed by James Ramsay and uses 

new data to justify the model. Proper curve registration technique has been applied to new data 

before performing the principal differential method. The model captures the writing features well 

and yields satisfactory categorizing results.  
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1. Problem and Background Information 

1.1. What is the problem? 

Handwriting is a very complicated movement that involves fingers, wrist, and forearm. 

Handwriting results display variations not only among individuals, but also within individuals 

(Ramasy, 2000). Since handwriting recognition plays an important role in improvement of text 

recognition systems, PC-personalization, writer identification, and forgery detection, it has 

gained increasing attention in research and application (Elarian, Abdel-Aal, Ahmad, Parvez, & 

Zidouri, 2014). This thesis aims to review the principal differential model developed by James 

Ramsay and apply it to the new data set to understand the classification mechanism. Proper 

curve registration technique has been applied to new data before performing the principal 

differential method. 

1.2. Shape Analysis and Movement Analysis 

Elarian et al. (2014) concluded that there are two major directions of handwriting analysis. One 

direction looks at the outcome of the words, and characterizes words by their shapes and 

thickness of strokes. This bottom-up approach is called handwriting shape analysis. The way we 

handle the handwriting data is similar to signing your signature in the bank, and bank tellers 

verify your identity by your current signature and past records. However, studying the difference 

of shapes can sometimes be unreliable because shapes are static images, which means the 

method only considers the trace after someone has finished the writing. Moreover, it is highly 

possible for some well-trained criminals who are good at shape imitation to make a forgery. 

Therefore, shape analysis method may fail to detect the minor difference between the true and 

the forgery and yield unsatisfactory results. 

 

The other direction of handling handwriting by recording the whole writing process can provide 

plausible solutions to the above problem. This top-down approach is called handwriting 

movement analysis. In fact, the motivation of the project is to improve the accuracy of signature 

verification in the bank. Since most signatures are processed via electronic devices such as POS 

machines and tablets, what if the machine is able to record the formation of a signature and 

compare it with past records? The method takes more than the static shape into account. 

Recording the whole process gives us the instantaneous feedback when the subject is writing, 

and it enables us to calculate the velocity and acceleration. Ramsay and Silverman (2002) 

proposed that these measurements can reflect the changes of their mental activities. For example, 
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although a person can show similar handwriting images under different mental circumstances, 

the velocity or acceleration plots can show drastic differences. This would inspire researchers to 

develop new methods to characterize individuals under different mental conditions by 

handwriting, and perhaps the application will make handwriting forgery harder than it is now. 

2. Introduction to Functional Data Analysis  

This chapter is a brief summary of the functional data analysis developed by Ramsay (2009). He 

created a new functional data object (I will call it FDA object for simplicity) in R for each 

dataset by using the combination of basis functions and proper choice of roughness penalties. 

Since handwriting is a very complicated movement, the coordinate plots for each data file 

display significant variations. On one hand, the FDA objects that are used to estimate the 

coordinate curves should capture features as much as possible. On the other hand, the number of 

parameters in the FDA objects should be as few as possible to reduce computations and avoid 

over-fitting.  

2.1. The Spline Basis Functions 

In order to fit successful FDA objects, spline basis functions are introduced. Splines are 

constructed by dividing the interval of observation into sub-intervals. The points at boundaries 

are called breaks. Splines can be regarded as piecewise polynomials that have fixed degrees over 

any sub-intervals. The degree is the highest power in the polynomial, and the order is defined as 

degree plus one. Splines can also be defined in terms of knots, which are related to breaks in the 

sense that each knot should have the same value as the break point, but the values may be 

different in the boundaries. In this setting, splines capture the complicated features of 

handwriting locally.  

 

One particular requirement of splines is that neighboring polynomials are constrained to have a 

certain number of matching derivatives. The number depends on the choice of the degree (or the 

order). This is important because it cannot only capture the local features with different 

polynomials, but also guarantees the smoothness of the estimated curves to some degree. In this 

case, the estimated curves are globally constructed and their derivatives can be extracted directly 

from the curves. 

2.2. Building Functional Data Object 

After specifying the basis system, the next step is to define a functional data object by setting the 

coefficients  to the basis system. The coefficients are not the outcome of 



interest, but the linear combination of basis functions with coefficients are. If one function is 

defined, the coefficients are a vector of length . If one functional data object contains multiple 

functions such as handwriting samples for one subject, the coefficients are a matrix of  by .  

Since the handwriting experiment uses multivariate functions for one trial of one subject, the 

coefficient matrix will be generalized to , where . It will give me results 

immediately after I have plugged in the raw data. 

2.3. Smoothing Curves from Raw Data 

The fitting curves can be very messy because the process simply interpolates these points with 

lines. One of the solutions is to build a functional parameter data object with proper roughness 

penalties, aiming to compromise between capturing important writing features and reduce 

computations and over-fitting. 

 

The roughness penalty is to minimize the following mathematical expression: 

 

, where the first part on the right side is the ordinary sum of squared errors of residuals (SSE) 

under the error model   

 

The true errors or residuals  are statistically independent and are assumed to follow a 

Gaussian distribution with mean zero and constant variance. The second part is the measure of 

roughness, and L can be derivative functions or differential operators. The smoothing parameter 

 specifies the emphasis on the L relative to the goodness of fit in the SSE.  takes values in 

any non-negative real numbers. As  approaches positive infinity, curves become less rough 

and converge to a straight line. On the contrary, as  goes to zero, roughness penalties have less 

influence on the curvature, and the curves display more significant fluctuations. In the extreme 

case, the curves simply interpolate each data observations. In practice, the  is changed on a 

logarithmic scale so that it is convenient to implement and interpret. 

 

One of the quantatitive methods to determine  is to calculate the generalized cross-validation 

(GCV) with respect to the . The criterion has a mathematical expression that  

 

The minimum of the GCV function exists and is unique once  is given (controlling for other 
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factors), and the proper  is chosen to minimize the GCV function. In particular, when subjects 

are writing the words, their hands are also having involuntary physiological hand tremor due to 

muscle contraction and relaxation (Marshall & Geoffery, 1956). The machine with high working 

frequency record such variations, leading to the increasing roughness of the curve. Therefore, it 

is practice to use significantly large  such as  to reduce the effect of the random noise. 

3. Theory of Principal Differential Analysis 

3.1. Template-based Feature Correspondence 

The Template-based Feature Correspondence (Wang, Wu, Xu, Shum, & Ji, 2002) provides 

theoretical support for the curve registration in Chapter 4. This writing style model assumes that 

subjects usually generate their handwriting samples based on their inherent styles, known as 

templates. If one subject is required to write the same word many times, the handwriting samples 

will display similar features. The model is described in the following mathematical expression. 

Suppose  is the word to be written (The index  refers to the  handwriting sample),  

is the template that the subject follows and  is the writing process to generate the word . 

Furthermore, each sample has its unique global style-independent parameters such as scale, 

location and slant. Therefore, I have  

 

, where  is random noise, and  represents affine transform parameters. This process 

suggests that for the same word written by the same subject, the differences result from two 

parts. One is the random noise from the hand tremors and the machine errors that are inevitable. 

The other one is the affine transform, which include translation, expansion and contraction. 

Curve registration reverses the above process by identifying  for each subject with . In 

particular, random noise can be modified by applying the roughness penalties to raw data, and 

the unique global style-independent parameters are synthesized by data truncation and 

normalization. Therefore, curve registration technique integrates affine transform to determine 

the final template  for each subject.  

 

The concept of template can be generalized to coordinate, velocity and acceleration curves. They 

are the dynamic criteria in categorizing handwriting across subjects. Since the acceleration is 

associated with forces by muscle contraction, which determines the dynamic templates the most, 

Ramsay (2000) argued that the magnitude of the acceleration was considered as the fundamental 

criterion. It is the magnitude of the 3 dimensional vector defined as 



 

Although coordinate curves are studied separately by decomposing the movement into three 

dimensions, three-dimensional curves are actually subjected to the external forces at the same 

time. Therefore, registering the magnitude of the acceleration vector is plausible to present the 

idea. 

3.2. Principal Differential Model 

The FDA objects allow us to extract derivative curves, and the template theory suggests that 

these derivatives serve as criteria in categorizing writing patterns of subjects. Based on Newton's 

Second Law ( ), Ramsay and Silverman (1997) started with a second-order linear 

differential model  

 

which integrates three types of forces in one formula. The model is then generalized with time-

varying coefficients. Thus, given repeated measurements of sample processes, the linear 

differential operator for each subject is defined as 

 

, where  is the highest order of derivative, and  is the corresponding weight function of 

order  for the subject . The model has the following generic equation: 

 

, where  on the right is the forcing function. The forcing functions normally contain two 

parts. One is external force , which represents the external force that cannot be explained 

by the main differential equation itself. The other is the error function . The above model 

with two forcing functions is to minimize the objective function with respect to coefficient 

functions : 

 

In the handwriting setting, the target functions are of dimension three. Therefore, Ramsay (2000) 

modified the linear differential equation  

 

, where  is the observation index of a multivariate functional data. Here, I only take ,  

coordinates into account because  coordinate does not yield satisfactory registration result. 

3.3. Idea of Subject Categorization 
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The coefficient functions  based on a group of writing samples from the same subject should 

be sensitive to samples written by other subjects. The idea of differentiating handwriting is as 

follows: for each subject, I fit the above model for X and Y coordinates, and extract the residual 

functions, separately. These are the residual functions generated by their own weight functions. 

Then I apply data of one subject to the model of the other one and extract the residual functions 

again. These are the residual functions generated by alternate weight functions. The former 

residual functions are expected to display variation with white noise characteristics, indicating 

that the differential operator succeeds in capturing most handwriting features, and the 

handwriting samples match the subject. Meanwhile, the latter residual functions are expected to 

display variations with drastic patterns, indicating that the differential operator fails to capture 

the most handwriting features, and the handwriting samples do not match the subject (Ramsay & 

Silverman, 2002). 

 

There are several methods for model evaluations. One visual method examines whether the 

model captures the variation well by co-plotting the mean residual function  and the 

average third derivative function . If the magnitude of  is smaller than , 

then the model fits well. Otherwise, residual functions may contain mixed components of higher-

order derivatives, and further separation work needs finishing. A squared multiple correlation 

measure of fit  defined by   

 

can also demonstrate the goodness of fit for the model (Ramsay & Silverman, 2002). The  is 

similar to the  in linear regression, and takes values from . The closer the  is to 1, 

the better the goodness of fit is. 

4. Curve Registration 

Although I can obtain the derivative curves from smoothed curves directly, the variation of 

curves within the same subject is too drastic to perform differential analysis. However, the 

template-based feature correspondence suggests that samples within the same subject do share 

certain characteristics. Ramsay and Silverman (1997) developed the curve registration method to 

integrate affine transforms and retrieve the final template . Therefore, proper registration 

methods have been applied before I perform the principal differential analysis. 

4.1. Amplitude and Phase Variation 



 
Figure 1: Curves witih only phase and amplitude variation 

 

Phase variation and amplitude variation are two representations of differences from the affine 

transforms. The top panel in Figure 1 displays curves with mere phase variation, where the red 

one is the curve . Three curves achieve their maxima and minima at 

different 's, but with the same values. Green and blue curves can be generated by right shifting 

red curve with 1 and -1 unit. The bottom panel in Figure 1 displays curves with mere amplitude 

variation. Although three curves have distinct maxima and minima, but they arrive at the values 

at the same x. The red and green curves can be generated by multiplying the blue curve by 1.2 

and 0.8. 

4.2. Landmark Registration (LM) and Continuous Registration (CR) 

The simplest curve alignment procedure is called landmark registration. A landmark is a 

significant feature at a certain time location that is common to all curves. Landmarks may be the 

location of minima, maxima or zero points. The alignment is achieved by transforming  for 

each curve so that each of them arrives at their landmark locations at the same time . Landmark 

registration method can only yield satisfactory results when raw curves display drastic and 

consistent changing patterns.  

 

Landmark registration is usually a good start to remove phase variation, but a more sophisticated 
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method is needed to modify the existing curves if landmarks are not obvious to detect. James and 

Silverman (1997) illustrated the method of continuous registration that can perform registration 

automatically and reduce the magnitude of amplitude variation. The continuous registration 

method assumes that the dominant difference between pre-registered curves and post-registered 

curves is the amplitude variation, and their coordinate values will be almost proportional to each 

other across the whole period. If the registered curve is plotted against template one, it is ideal to 

see a straight line tending to pass through the origin. If this is true, each curve can be further 

registered towards the template curve by minimizing the smallest eigenvalue of the cross-product 

matrix. 

[
∫{𝑥0(𝑡)}

2𝑑𝑡 ∫ 𝑥0(𝑡)𝑥[ℎ(𝑡)]𝑑𝑡

∫ 𝑥0(𝑡)𝑥[ℎ(𝑡)]𝑑𝑡 ∫{𝑥[ℎ(𝑡)]}2
] 

If the curves are multivariate such as the handwriting example, then it is the sum of the smallest 

eigenvalue across dimensions that are minimized. 

 

One method that evaluates the registration method is to compute the mean squared error (MSE) 

for amplitude and phase variation before and after the CR method. The phase MSE after 

landmark registration is also computed if the CR method is done based on the LM result. If the 

difference between two phase MSEs yields negative numbers, then the CR method shows poor 

alignment. If the LM method is applied to raw curves first, the ratio of phase MSE by total MSE, 

known as RSQR, also reflects how well the LM method has done to reduce phase variations. The 

smaller percentage it achieves; the better result it has after applying the CR method. 

4.3. Time-warping Functions 

The time-warping function is a monotonically increasing function that maps the template writing 

time to the actual writing time for each sample. In addition, the time-warping function should be 

smooth enough to calculate derivatives. If the curves are observed over a common interval 

, then the time-warping functions must satisfy the constraints  and . 

The registered coordinate functions are , where the aligning functions  

and  are inverse functions. 

 

Here, the time-warping functions are defined over the interval  since all the samples are 

finished around 6 seconds and the machine frequency is set as 400 Hz. Take the small-break time 

between “Ann” and “Arbor” as an example. Each subject stops at different time points across 



samples relative to clock time. In terms of stopping time in the template, all samples should 

arrive at their peaks at the same time. The time-warping function serves as a connection that 

ensures all coordinate curves display certain characteristic (such as achieving peaks and crossing 

zeros at the same time), so that the coordinate curves after transformation are comparable. Time-

warping functions can also tell whether the subject is writing faster than normal by calculating 

the time lag . However, it is not the outcome of interest because the template  is 

achieved by minimizing the individual differences.  

4.4. Cross-sectional Mean and Registered Mean 

After obtaining registered curves from raw curves, the mean curve is extracted by taking the 

average of coordinates at each time. Such registered mean curves are the writing template S. 

Compared to cross-sectional mean curves, which only take the average of coordinates of the raw 

curves, registered mean curves avoid obscuring the sharp acceleration peaks and troughs due to 

the messy timing variation. The registered mean curves can reduce the unusual effect of certain 

sample. Therefore, it is better to use registered mean curves than cross-sectional mean curves to 

denote the template . Figure 7 in Chapter 6 shows the mean word plot "Ann Arbor" with LM 

and CR methods. 

5. Handwriting Data Collection and Data Pre-processing 

5.1. Data Collection 

The new data set is obtained from the handwriting experiment in the Biomechanic Research Lab, 

University of Michigan. With the assistance of Sasha Kapshai, I set up the new coordinate 

system, and five subjects (including myself) were required to write “Ann Arbor” for twenty 

times, respectively. Among twenty writing samples, each subject was required to write in a non-

cursive way for the first ten times as opposed to last ten times in a cursive way. The data were 

recorded by the Optotrak Certus machine, and subjects were holding a specially made pen with 

six sensors connected to the computer. The machine recorded the handwriting based on 

movements of six sensors and convert them to the movement of pen tip. The frequency of the 

machine was set to 400 Hz and the time length was set to 7 seconds. The basic unit of 

measurement for distance was millimeter.  

 

Among five subjects, all writing samples were finished around 6 seconds, and it took five 

subjects approximate 3.6 seconds to write “Arbor”. The computer produced one data file after 
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subjects finished one writing sample, and each data file contained 7 columns and 2800 rows. 

There should be 100 data files in total. The first three columns were the radian differences 

between the new coordinate system and its intrinsic coordinate system. The next three columns 

were the values of three-dimensional coordinates under the new coordinate system, and the last 

column was the pen error. Only “pen.x”, “pen.y” and “pen.z” were used to perform future 

analysis. 

pen Rz pen Ry  pen Rx pen x pen y pen z pen error 

0.3342025 0.3141596 -0.0929014 -86.900222 729.42852 119.91264 0.1340895 

Table 1: The column names and sample data of subject 0 and 1 

 

5.2. Data Selection and Normalization 

Writing samples by the subject 3 and 4 were discarded due to the large amounts of missing data. 

(Two subjects held the pen in the way that their hands blocked the sensors from being detected 

by the machine, leading to lots of missing data in the raw data set.) The cursive samples of all 

subjects were also discarded due to poor registration results. 

 

Among “pen.x”, “pen.y”, and “pen.z”, I removed the minus sign of “pen.x” and switch “pen.y” 

and “pen.z” columns in the data file to plot the proper word image. Since all the non-cursive 

writing samples were finished around 6 seconds, each data file needed truncating to 2400 rows 

with the help of the Z coordinate. When people are writing, they have to exert force on the pen to 

leave the trace. In that case, Z coordinate will remain constant. When people finish writing one 

part of the word, such as “Ann” of “Ann Arbor”, they will take a small break by raising their 

hands. When they finish writing the whole word or phrases, the gesture of raising their hands 

will be much more significant. Therefore, the extra Z coordinate plays an important role in 

determining the starting point and ending point for each data file. Although my eyes cannot 

detect them, the machine amplifies the variation by displaying significant jumps in the Z 

dimension while the remaining points form a constant horizontal line. Normally, where the Z 

coordinates have the first jump is the starting point, and where the Z coordinates have last (and 

usually the greatest) jump is the ending point. 



 

Figure 2: Distortion influence on individual sample due to consecutive missing data 

 

Figure 3: Mean “Ann Arbor” plot 

 

For curve registration part, I randomly picked 1000 rows from the total 2400 rows. It 

compromised between capturing necessary writing features and avoiding over-fitting. For the 

principal differential analysis part, to simplify the model, I kept the word “Arbor” by randomly 

selecting 600 observations so that it corresponded to the fact that  time was spent in writing 

“Arbor”. After truncating the data file to 1000 rows, normalization was performed to reduce the 

effect of magnitude. The mean and standard deviance for each column in all data file were 

calculated by the following formula: 

 

Missing data were universally set to 0 after scaling the data to minimize the difference between 

the true shape and actual shape. The magnitude of scaled data ranges from -1 to 3. Although 

missing data have an influence on each writing sample, the overall shape is relatively unchanged. 

For example, the first “A” of “Ann Arbor” in Figure 2 has flatter top than the second “A” due to 

the consecutive missing data in the raw data file. However, the average word plot in Figure 3 

doesn't reflect this unusual local feature because taking the average minimizes the differences 

across samples. 



13 

6. Results and Discussions 

6.1. Registering the Coordinate Curves 

 
Figure 4: Y and Z coordinate matplot of subject 0 

 

Figure 4 shows the matplot of smoothing Y and Z coordinates for subject 0 prior to registration. 

The Z coordinate plot on the right displays significant and consistent jumps around 2.5 second 

(or 1000 in the plot), which is the small break between “Ann” and “Arbor”. Those ten samples 

arrive at their peaks at different time points and different values, which demonstrates the effects 

of phase variation and amplitude variation.  

 

I choose local maximas of Y coordinates as landmarks by hand because Y coordinates show 

more consistency than X and Z coordinates. I set one landmark when the curve reaches its local 

maxima. Figure 5 shows landmarks of the first two samples by subject 0. There are 15 landmarks 

for each sample of subject 0. The number of landmarks differ across subjects, but are generally 

greater than 10. However, there are a few points that are not located at the peaks. For example, 

the curves after the first peak as well as after four consecutive small peaks experience quite flat 

sections. They happen at around 1 second and 3 second, respectively. Therefore, I fit two 

landmarks at the boundaries of these sections to keep the flatness in the registration result.  



 

Figure 5: Landmark selection of the first two Y coordinate plots of subject 0 

 

In order to use landmarks to represent the curves accurately, they should themselves display 

sharp but consistent curvatures. Fortunately, the handwriting curves fit the category well because 

when each subject is required to write “Ann Arbor”, their intrinsic styles force subjects to control 

their muscle to produce necessary variations so that people can identify the word correctly, 

which leads to significant but consistent curvatures.   

 

I apply the LM method first, and then apply the CR method to LM registered curves. I will use 

subject 0 as an example to illustrate how the CR method improves the alignment of coordinate 

curves. The MSEs of X and Y dimensions after the LM registration are 10.4, 4.5 and 93.7, 561, 

with the first one for amplitude variation. The variation of X is quite satisfactory and only 30% 

variation is produced by phase. But the variation of Y is much bigger than expected, and 85.7% 

variation is produced by phase. The large phase variation for the Y coordinate implies that it is 

necessary to perform the CR method on Y dimension to further reduce the variation. The MSEs 

of X and Y coordinate curves after the CR registration are 5.45, 12.8 and 36.2, 59.1. Although 

the variations for X increase, the CR method reduces the variation of Y coordinates significantly. 

Therefore, in this case, the CR method does improve the alignment of LM registered curves. I 
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also perform the CR method directly to raw curves, but the registered curves display poor 

alignment, compared to the former method. This is mainly because handwriting curves are too 

complicated to handle automatically. The raw data contain both phase variation and amplitude 

variation, which violates the assumption for performing the CR method. Either manual splitting 

into sub-intervals or applying the LM method first should be done to substantially reduce phase 

variation as much as possible before performing the CR method. 

 

Figure 6: Registered X and Y coordinate plots with CR method of subject 0 

 

Figure 6 shows the X and Y coordinate curves of subject 0 after the CR registration. X 

coordinate curves for all three subjects display monotonically increasing trends with fewer 

fluctuations, while Y coordinate curves display sharper fluctuations. This is because subjects are 

used to writing words horizontally. During the writing process, they keep their elbows and wrists 

as pivots. Subjects try to keep their forearms still to allow only hands to move from the left side 

to the right side because the fixation of arms also prevents the paper from moving around. Since 

the horizontal movement mainly involves continuous rotation, small amount of force is needed 

to finish the movement. On the contrary, for Y coordinate, subjects need to rotate their wrists to 

let the pen tip interact with the paper to write from the upper part to the lower part. Moreover, 

when subjects finish one up-to-down cycle, they have to jump to the upper place on the right to 

start a new one, making the movement have the zigzag shape. Therefore, extra forces are exerted 



to finish the movement, which accounts for the sharp fluctuation of Y dimension. 

6.2. Obtaining the Word Plot 

The three word plots in Figure 7 are generated using templates of subject 0, 1, and 2. Results 

produced by two methods are marked with different colors. (Note that CR results are based on 

LM registered curves.) Differences across subjects are quite easy to tell, and for each subject, 

two methods produce almost the same word plot, suggesting that either method works fine for 

generating the shape template. 

 

Figure 7: Template word plots for three subjects with LM and CR methods 

 

6.3. Registering the Derivative Curves  
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Figure 8: Registered velocity and acceleration plots for subject 0 

 

 

Figure 9: Mean velocity and accelerations of ten samples of subject 0 

 

However, it is not adequate to analyze the template word plot because they only tell the shape 

difference. The "fda" package enables me to extract the aligned velocity and acceleration curves 

directly. The four plots in Figure 8 are the two-dimensional registered velocity and acceleration 

curves of subject 0 using the time-warping function from registered coordinate curves. It is 

shown that Y dimension yields more desirable results while X dimension plots have messy ones, 

possibly because the CR method contributes to alignment of Y coordinate curves, and I select the 

landmarks of the Y coordinate curves. The scale of curves is also different between two 

dimensions. Figure 9 shows the mean velocity and acceleration curves against each sample. The 

magnitude of Y dimension is 8 times as large as X dimension for velocity and acceleration, 

suggesting that large force is applied on Y dimension.  



 

Although the order of acceleration is  from the plot, the real value can be as large as . It 

is very counter-intuitive that handwriting movement requires very large amount of force. Two 

reasons explain the enormous distinctions. First, scaling procedure is applied to raw data to 

remove magnitude effect on registration, making the range of new data less than 1/10 of raw 

data. Second, the time range is not represented in second, but second multiplied by 400 because 

of the working frequency of the machine. The stretching effect on time also reduces the 

magnitude of acceleration when the derivative is calculated. 

 

It is also worth mentioning that the peaks of velocity and acceleration curves correspond to 

different locations in word plots. When velocity arrives at local peaks, it is usually located in 

points where the nearby strokes display small curvature, such as the straight-line portion of both 

letter “A” in “Ann Arbor”. Subjects simply write along a straight line without external 

interference, thus leading to increasing velocity at first; if there is a turn in the stroke, their 

writing velocity decreases to change the direction later. When acceleration arrives at local peaks, 

it is usually located in the points where the nearby strokes show sharp curvature such as the 

connection between ”b” and “o” because external force has to be applied in order to have abrupt 

direction changes. The pattern also explains why the number of peaks for velocity and 

acceleration are the same, but they appear alternately. 

 

Figure 10: Registered acceleration plots for subject 0 

 

If I look at the magnitude of acceleration , there will be more fluctuations 

due to the superimposition of X and Y dimensions. I exclude the Z coordinate because they yield 

terrible registration results. The plot itself is too complicated to interpret. Nevertheless, 
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throughout the total 6 seconds, it is clear that there are more than 30 jumps in the plot. It 

demonstrates handwriting is a movement of high frequency, which agrees with the earlier 

argument that handwriting movement requires large amount of force. In other words, 

handwriting is, to some extent, compromising between recognition and smoothness in a dynamic 

sense. Since scripts are limited to space, they usually contain certain breaks and turns to 

distinguish themselves from others. Certain amounts of forces have to be exerted on pens to 

yield the desirable result; otherwise, it will be very difficult for people to recognize the scripts. 

 

Notice that acceleration values are approaching zero around 400 (1s), 1000 (2.5s), and 1400 

(3.5s). The second one lasts the longest because it is when subject 0 takes a small break between 

“Ann” and “Arbor”. The only movement subject 0 makes is to lift his hand up, therefore, nothing 

significant changes in X and Y dimensions make the magnitude of acceleration value around 

zero. The other two reflect the flatness in the Y coordinate curves where I select two landmarks 

at each boundary. 

6.4. Extracting Forcing Functions 

 
Figure 11: Forcing functions of X, Y dimensions for subject 0 

 

Figure 11 shows forcing functions of X and Y dimensions for subject 0. To simplify the model, I 

only use "Arbor" section, and the time ranges from 2.4 to 6 seconds (0 to 1440 in the plot). In the 

linear differential model, forcing functions represent the external forces that cannot be explained 



by the main part of the differential equation. For X dimension, forcing functions have significant 

fluctuations around 360 (3.3s), 1000 (4.9s), and 1200 (5.4s). They correspond to the connection 

between “A” and “n”, “b” and “o”, and “o” and “r”. These locations happen to have large 

curvatures, making external force available to capture the writing pattern. Similarly, for Y 

dimension, forcing functions have significant fluctuations around 480 (3.6s), 640-800 (4-4.4s), 

and 1000-1200 (4.9-5.4s). They correspond to the lower part of first “r”, the connection between 

“r” and “b”, and “b” and “r”. Figure 12 displays the third derivative and residual function of the 

first two subjects. The linear differential model up to the third derivative successfully captures 

the majority of variation, as the magnitude of residual function is much smaller than the third 

derivative. Therefore, I have successfully obtained the coefficient function for subject 0 and 

subject 1. 

 

Figure 12: Third derivatives and residual functions of X, Y dimensions 

 

6.5. Performing Principal Differential Analysis  

After I apply the first two subjects' data to their models, residual functions are extracted for X 

and Y dimensions. The upper-left and lower-right plots in Figure 13 and 14 are situations where 

the models are applied to their own handwriting samples, while the other two are situations 

where the models are applied to the alternate handwriting samples. The upper-left and lower-

right plots show small and messy residual functions. The remaining two plots show obvious and 

large patterns, meaning that the coefficient functions do not match the identity of input data. 

Applying the data of subject 1 to the model of subject 0 does not yield satisfactory result of X 

dimension, possibly because the CR method reduces the alignment of registered curves, 

obscuring the difference between two plots in the first row. Therefore, this linear differential 
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model with forcing functions captures the majority of writing features, and successfully 

categorizes the samples of two subjects. 

 

Figure 13: Residual plots of X dimensions between subject 0 and 1 

 

Figure 14: Residual plots of Y dimensions between subject 0 and 1 



7. Challenges with Analysis 

The first drawback of this analysis is the smoothness of raw curves. Since I cannot attach sensors 

to the ordinary pen, subjects have to replace it with the long stick. Unaccustomed to the writing 

object and unable to see the actual writing outcome, subjects may produce slightly different 

writing samples than usual, increasing the roughness of raw data. Such difference may become 

more obvious when I perform principal differential analysis. 

 

Secondly, the normalization method in the data pre-processing part is simply to let data points 

minus their column means, and then divided by their standard deviations. Since the patterns of 

cursive samples after the normalization are too insignificant for me to pick out the landmarks by 

hand, all the cursive samples are discarded. If there is an advanced technique to normalize the 

raw data and amplify the patterns, I can apply the previous analysis to cursive handwriting and 

categorize cursive handwriting samples or to look at the difference between non-cursive and 

cursive handwriting samples within the same subject. 

 

Thirdly, since subjects may inevitably block the sensors from being detected by the machine, 

missing data exist in the raw data. The way I handle the missing data is simply to assign them to 

zero after normalization. If there exists a consecutive part of missing data, simply regarding them 

as zero will distort the individual word plot, which may affect the registration process and 

formation of template. However, one of the refinements is to fit a local linear regression or 

kernel regression to fill in the gap so that the shape after fitting FDA object is more authentic. 

 

Finally, manually selected landmarks may contain artificial errors in alignment, especially when 

the local peaks have small curvatures. It is then very difficult for me to decide the number of 

landmarks, let alone picking them out correctly. In addition, since I apply landmarks from Y 

dimension to X dimension, the landmarks show poor fit with X coordinate curves, especially on 

the boundaries. It will be very effective that certain technique is developed to evaluate the 

location of landmarks, which can adjust their locations automatically to perform an optimal fit. 
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10. Code Index 

#sub0.R library(fda) #import dataset 

#setwd("/Users/mtianwen/Downloads") 

#s0r1<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_003_6d.csv", header=T) 

#s0r2<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_004_6d.csv", header=T) 

#s0r3<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_005_6d.csv", header=T) 

#s0r4<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_006_6d.csv", header=T) 

#s0r5<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_007_6d.csv", header=T) 

#s0r6<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_008_6d.csv", header=T) 

#s0r7<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_009_6d.csv", header=T) 

#s0r8<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_010_6d.csv", header=T) 

#s0r9<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_011_6d.csv", header=T) 

#s0r10<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_012_6d.csv", header=T) 

#s0r11<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_013_6d.csv", header=T) 

  

#x0<-data.frame(s0r1$pen.x, s0r2$pen.x, s0r3$pen.x, s0r4$pen.x, s0r5$pen.x, s0r6$pen.x,  

s0r7$pen.x, s0r8$pen.x, s0r9$pen.x, s0r10$pen.x, s0r11$pen.x, s0r12$pen.x, s0r13$pen.x,  

s0r14$pen.x, s0r15$pen.x, s0r16$pen.x, s0r17$pen.x, s0r18$pen.x, s0r19$pen.x, s0r20$pen.x,  

s0r21$pen.x, s0r22$pen.x) 

#x0<-(-x0) 

#colnames(x0)<-c("rep1", "rep2", "rep3", "rep4", "rep5", "rep6", "rep7", "rep8", "rep9", "rep10", 

#"rep11", "rep12", "rep13", "rep14", "rep15", "rep16", "rep17", "rep18", "rep19",  

#                "rep20", "rep21", "rep22") 

#y0<-data.frame(s0r1$pen.z, s0r2$pen.z, s0r3$pen.z, s0r4$pen.z, s0r5$pen.z, s0r6$pen.z,  

s0r7$pen.z, s0r8$pen.z, s0r9$pen.z, s0r10$pen.z, s0r11$pen.z, s0r12$pen.z,  

s0r13$pen.z, s0r14$pen.z, s0r15$pen.z, s0r16$pen.z, s0r17$pen.z, s0r18$pen.z, 

s0r19$pen.z, s0r20$pen.z, s0r21$pen.z, s0r22$pen.z) 

#colnames(y0)<-colnames(x0) 

#z0<-data.frame(s0r1$pen.y, s0r2$pen.y, s0r3$pen.y, s0r4$pen.y, s0r5$pen.y, s0r6$pen.y,  

s0r7$pen.y, s0r8$pen.y, s0r9$pen.y, s0r10$pen.y, s0r11$pen.y, s0r12$pen.y, 

s0r13$pen.y, s0r14$pen.y, s0r15$pen.y, s0r16$pen.y, s0r17$pen.y, s0r18$pen.y, 

s0r19$pen.y, s0r20$pen.y, s0r21$pen.y, s0r22$pen.y) 

#colnames(z0)<-colnames(z0) 

#for(i in 1:11) { 

#  plot(x0[,i], y0[,i], type="l", main=paste("rep ", i, sep="")) 

#} 
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#s0_eng_start<-c(30, 270, 330, 370, 500, 70, 300, 300, 380, 310, 200,  #3rd 330 

#                300, 250, 310, 260, 360, 200, 270, 210, 500, 370, 440) 

#s0_eng_end<-c(1900, 2350, 2320, 2350, 2340, 1880, 2000, 2150, 2180, 1950, 1850, #3rd 2320 

#              1600, 1620, 1800, 1560, 1650, 1580, 1640, 1720, 2030, 1820, 1960) 

#par(mfrow=c(2,1)) 

#for(i in 1:11) { 

#  plot(x0[s0_eng_start[i]:s0_eng_end[i],i], y0[s0_eng_start[i]:s0_eng_end[i],i], type="l",  

main=paste("rep ", i, sep="")) 

#  plot(rep(s0_eng_start[i]: s0_eng_end[i]), z0[s0_eng_start[i]:s0_eng_end[i],i], type="l",  

main=paste("z of rep ", i, sep="")) 

#} 

Temp<-NULL; k<-1000 

#for(i in 1:11) { 

#  index<-sort(sample(s0_eng_start[i]:s0_eng_end[i], k, replace=F)) 

#  Temp<-cbind(Temp, x0[index,i], y0[index,i], z0[index,i]) 

#} 

#colnames(Temp)<-rep(colnames(x0)[1:11], each=3) 

#Temp<-scale(Temp, center = T, scale=T) 

#Temp[is.na(Temp)]<-0 

#write.csv(Temp, "/Users/mtianwen/Downloads/s0_eng_1.csv", row.names=F) 

#import dataset 

s0_eng_1<-read.csv("s0_eng_1.csv", header = T) 

s0_eng_1<-s0_eng_1[,-c(7:9)] #3rd sample writes something wrong... ignore this part data 

colnames(s0_eng_1)<-rep(c("rep1", "rep2", "rep3", "rep4", "rep5",  

                          "rep6", "rep7", "rep8", "rep9", "rep10"), each=3) 

s0_eng_1<-as.matrix(s0_eng_1) 

  

s0_eng_basis_1<-create.bspline.basis(rangeval=c(0,k), nbasis=floor(k/3), norder=6, 

#dropind=NULL, quadvals=NULL,  

#values=NULL, basisvalue=NULL, names="subject0_english bspline") 

fdatime<-seq(0, 2400, length.out = 1000) 

par(mfrow=c(3,1)) 

matplot(fdatime, s0_eng_1[,seq(1,30,3)], xlab="time", type="l",  

main="x coordinate ", ylab="normalized x") 

matplot(fdatime, s0_eng_1[,seq(2,30,3)], xlab="time", type="l",  

main="y coordinate ", ylab="normalized y") 

matplot(fdatime, s0_eng_1[,seq(3,30,3)], xlab="time", type="l",  



main="z coordinate ", ylab="normalized z") 

s0_eng_1_x<-Data2fd(argvals=fdatime, y=s0_eng_1[,seq(1,30,3)], basisobj=s0_eng_basis_1) 

s0_eng_1_x_eval<-eval.fd(fdatime, s0_eng_1_x) 

s0_eng_1_y<-Data2fd(argvals=fdatime, y=s0_eng_1[,seq(2,30,3)], basisobj=s0_eng_basis_1) 

s0_eng_1_y_eval<-eval.fd(fdatime, s0_eng_1_y) 

s0_eng_1_z<-Data2fd(argvals=fdatime, y=s0_eng_1[,seq(3,30,3)], basisobj=s0_eng_basis_1) 

plot(s0_eng_1_x, main="x coordinate against time for first 10 rep") 

plot(s0_eng_1_y, main="y coordinate against time for first 10 rep") 

plot(s0_eng_1_z, main="z coordinate against time for first 10 rep") 

par(mfrow=c(2,1)) 

for(i in 1:10) { 

  plot(s0_eng_1_x_eval[,i], s0_eng_1_y_eval[,i], type="l", xlab="x", ylab="y",  

  main=paste("Ann Arbor of rep ", i, sep="")) 

  #plot(s0_eng_1_y[i], main=paste("z of rep ", i, sep="")) 

} 

#############################################################################

######### 

########    perform landmark registration for the first ten sample trials     ######## 

i<-2 

x<-fdatime; y<-s0_eng_1_y_eval[,i] 

plot(x, y, type="l", main=paste("rep ", i, sep="")) 

identify(x, y, labels=rep(1:k)) 

points(x[ximarks[i,]], y[ximarks[i,]], pty=1) 

mark_data<-c(65, 152, 233, 280, 325, 378, 431, 515, 588, 633, 737, 805, 856, 898, 934,   

             60, 124, 188, 234, 274, 319, 362, 481, 557, 603, 697, 760, 819, 880, 915, 

             #61, 130, 186, 342, 389, 440, 480, 571, 641, 673, 754, 811, 870, 918, 938, 

             64, 132, 174, 221, 255, 286, 336, 482, 549, 585, 682, 745, 804, 852, 908, 

             70, 141, 188, 234, 281, 326, 375, 497, 567, 614, 714, 775, 828, 883, 923, 

             59, 151, 184, 239, 286, 327, 388, 525, 597, 633, 734, 805, 857, 904, 933, 

             92, 157, 200, 248, 291, 336, 387, 505, 588, 628, 721, 791, 853, 898, 930, 

            123, 197, 243, 295, 326, 365, 420, 534, 617, 674, 783, 834, 881, 920, 943, 

             59, 154, 181, 233, 280, 322, 378, 539, 628, 662, 752, 806, 854, 901, 929,  

             88, 168, 189, 233, 269, 314, 353, 511, 588, 634, 736, 800, 863, 898, 920, 

            121, 225, 257, 306, 343, 385, 432, 526, 613, 656, 750, 818, 873, 919, 940)   

#mark_data<-mark_data/200 

ximarks<-matrix(mark_data, 10, 15, byrow=T) 

PGSctrmean=colMeans(ximarks) 
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wbasisLM<-create.bspline.basis(c(0,k), 18, 3, c(0, PGSctrmean, k)) 

WfdLM<-fd(matrix(0,18,1), wbasisLM) 

WfdParLM<-fdPar(WfdLM, 1, 1e-5) 

par(mfrow=c(2,1)) 

regListLM_z<-landmarkreg(fdobj=s0_eng_1_z, ximarks=ximarks, x0marks=PGSctrmean, 

WfdPar=WfdParLM, monwrd = T) 

plot(regListLM_z$regfd, main="registered z with LM", lwd=2) 

plot(regListLM_z$warpfd, main="warp function for z", lwd=2) 

regListLM_x<-landmarkreg(fdobj=s0_eng_1_x, ximarks=ximarks, x0marks=PGSctrmean, 

WfdPar=WfdParLM, monwrd = T) 

plot(regListLM_x$regfd, main="registered x with LM", lwd=2) 

plot(regListLM_x$warpfd, main="warp function for x", lwd=2) 

regListLM_y<-landmarkreg(fdobj=s0_eng_1_y, ximarks=ximarks, x0marks=PGSctrmean, 

WfdPar=WfdParLM, monwrd = T) 

plot(regListLM_y$regfd, main="registered y with LM", lwd=2) 

plot(regListLM_y$warpfd, main="warp function for y", lwd=2) 

for(i in 1:10) { 

  #plot(regListLM_x$regfd[i], main=paste("x of rep ", i, sep="")) 

  plot(regListLM_y$regfd[i], main=paste("y of rep ", i, sep="")) 

  #plot(regListLM_z$regfd[i], main=paste("z of rep ", i, sep="")) 

} 

#warp deformation plots 

par(mfrow=c(1,1)) 

matplot(rep(1:k), (eval.fd(rep(1:k), regListLM_y$warpfd)-matrix(rep(1:k), k, 10, byrow=F)),  

ylab="h_i(t)-t", type="l", lty=1:2, col=1:9, lwd=2, main="coordinate warp deformation") 

  

AmPhasList_1_x<-AmpPhaseDecomp(s0_eng_1_x, regListLM_x$regfd, regListLM_x$warpfd) 

#10.4, 4.5, 0.302, 0.996;  

AmPhasList_1_y<-AmpPhaseDecomp(s0_eng_1_y, regListLM_y$regfd, regListLM_y$warpfd) 

#93.7, 561, 0.857, 0.995; 

AmPhasList_1_z<-AmpPhaseDecomp(s0_eng_1_z, regListLM_z$regfd, regListLM_z$warpfd) 

#107, 301, 0.737, 1.01; 

reg_x_LM_eval<-eval.fd(rep(1:k), regListLM_x$regfd) 

reg_y_LM_eval<-eval.fd(rep(1:k), regListLM_y$regfd) 

#write.csv(reg_y_LM_eval, file="/Users/mtianwen/Downloads/s0_reg_y_LM_eval.csv", 

row.names=F) 

#plot each "Ann Arbor" 



par(mfrow=c(2,1)) 

for(i in 1:10) { 

  plot(reg_x_LM_eval[,i], reg_y_LM_eval[,i], type="l", xlab="x", ylab="y", 

       main=paste("rep ", i, " with LM", sep="")) 

} 

x_mean_LM<-rowMeans(reg_x_LM_eval) 

plot(rep(1:k), x_mean_LM, xlab="time", ylab="registered x", main="mean x with LM versus 

time", 

type="l", lwd=2) 

y_mean_LM<-rowMeans(reg_y_LM_eval) 

plot(rep(1:k), y_mean_LM, xlab="time", ylab="registered y", main="mean y with LM versus 

time", 

type="l", lwd=2) 

plot(x_mean_LM, y_mean_LM, type="l", xlab="registered x", ylab="registered y", 

main="Ann Arbor with LM registration", lwd=2) 

plot.new() 

#remove trend factor and retrieve residuals 

s0_eng_1_x_residuals<-NULL 

for(i in 1:10) { 

  model<-lm(reg_x_LM_eval[,i] ~ rep(1:k)) 

  s0_eng_1_x_residuals<-cbind(s0_eng_1_x_residuals, model$residuals) 

} 

matplot(s0_eng_1_x_residuals, type="l", lwd=2, xlab="time", ylab="residuals of x", 

main="residuals of registered x with LM") 

abline(h=0, lty=2, lwd=2) 

plot(regListLM_x$regfd, main="registered x with LM", lwd=2) 

#write.csv(s0_eng_1_x_residuals, file="/s0_eng_1_x_residuals.csv", row.names=F) 

#try continuous registration with Function register.fd based on the landmarker result. 

wbasisCR<-create.bspline.basis(c(0,k), 20, 4) 

Wfd0CR<-fd(matrix(0,20,10), wbasisCR) 

WfdParCR<-fdPar(Wfd0CR, 2, 0.1) 

regListCR_x<-register.fd(mean(regListLM_x$regfd), regListLM_x$regfd, WfdParCR) 

plot(regListCR_x$regfd, main="registered x with CR", lwd=2) 

regListCR_y<-register.fd(mean(regListLM_y$regfd), regListLM_y$regfd, WfdParCR) 

plot(regListCR_y$regfd, main="registered y with CR", lwd=2) 

regListCR_z<-register.fd(mean(regListLM_z$regfd), regListLM_z$regfd, WfdParCR) 

plot(regListCR_z$regfd, main="registered z with CR", lwd=2) 
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AmPhasList_1_x_cf<-AmpPhaseDecomp(regListLM_x$regfd, regListCR_x$regfd, 

regListCR_x$warpfd)  

#5.45, 12.8, 0.702, 1;  

AmPhasList_1_y_cf<-AmpPhaseDecomp(regListLM_y$regfd, regListCR_y$regfd, 

regListCR_y$warpfd)  

#36.2, 59.1, 0.62, 1; significant progress 

AmPhasList_1_z_cf<-AmpPhaseDecomp(regListLM_z$regfd, regListCR_z$regfd, 

regListCR_z$warpfd)  

#72.3, 56.6, 0.439, 1.01;  

#warp deformation plots 

par(mfrow=c(1,1)) 

matplot(rep(1:k), (eval.fd(rep(1:k), regListCR_x$warpfd)-matrix(rep(1:k), k, 10, byrow=F)),  

ylab="h_i(t)-t", type="l", lty=1:2, col=1:9, lwd=2, main="x coordinate warp deformation") 

matplot(rep(1:k), (eval.fd(rep(1:k), regListCR_y$warpfd)-matrix(rep(1:k), k, 10, byrow=F)),  

ylab="h_i(t)-t", type="l", lty=1:2, col=1:9, lwd=2, main="y coordinate warp deformation") 

reg_x_CR_eval<-eval.fd(rep(1:k), regListCR_x$regfd) 

reg_y_CR_eval<-eval.fd(rep(1:k), regListCR_y$regfd) 

#plot each "Ann Arbor" 

par(mfrow=c(2,1)) 

for(i in 1:10) { 

  plot(reg_x_CR_eval[,i], reg_y_CR_eval[,i], type="l", lwd=2, xlab="x", ylab="y", 

       main=paste("rep ", i, " with CR", sep="")) 

} 

x_mean_CR<-rowMeans(reg_x_CR_eval) 

plot(rep(1:k), x_mean_CR, xlab="time", ylab="registered x", main="mean x with CR versus 

time",  

type="l", lwd=2) 

y_mean_CR<-rowMeans(reg_y_CR_eval) 

plot(rep(1:k), y_mean_CR, xlab="time", ylab="registered x", main="mean y with CR versus 

time",  

type="l", lwd=2) 

plot(x_mean_CR, y_mean_CR, type="l", xlab="registered x", ylab="registered y", 

main="Ann Arbor with CR registration", lwd=2) 

#superimpose two plots together 

plot(x_mean_CR, y_mean_CR, type="l", lwd=2, xlab="registered x", 

ylab="registered y", main="regular Ann Arbor", col="red") 

lines(x_mean_LM, y_mean_LM, col="blue", lwd=2) 

legend(-1, 2.5, legend=c("CR", "LM"), fill=c("red", "blue"), cex=0.8) 



#remove the trend factor, and retrieve the residuals 

s0_eng_1_x_residuals<-NULL 

for(i in 1:10) { 

  model<-lm(reg_x_CR_eval[,i] ~ rep(1:k)) 

  s0_eng_1_x_residuals<-cbind(s0_eng_1_x_residuals, model$residuals) 

} 

matplot(s0_eng_1_x_residuals, type="l", xlab="time", ylab="residuals of x", 

main="residuals of registered x with CR", lwd=2) 

abline(h=0, lty=2) 

plot(regListCR_x$regfd, main="registered x with CR", lwd=2) 

#register velocity curves with LM method 

D1_x_regfdLM<-register.newfd(deriv.fd(s0_eng_1_x, 1), regListLM_x$warpfd, type='direct') 

D1_y_regfdLM<-register.newfd(deriv.fd(s0_eng_1_y, 1), regListLM_y$warpfd, type='direct') 

matplot(eval.fd(rep(1:k), D1_x_regfdLM), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("x for LM")) 

matplot(eval.fd(rep(1:k), D1_y_regfdLM), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("y for LM")) 

#apply fdPar to smooth the velocity curves 

lambda<-1e+1 

D1_x_regfdPar<-fdPar(D1_x_regfdLM, 3, lambda) 

D1_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_x_regfdLM), D1_x_regfdPar) 

D1_y_regfdPar<-fdPar(D1_y_regfdLM, 3, lambda) 

D1_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_y_regfdLM), D1_y_regfdPar) 

#plotfit.fd(eval.fd(rep(1:k), D1_x_regfdLM), rep(1:k), D1_x_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D1_x_regfdLM), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("x for LM")) 

matplot(eval.fd(rep(1:k), D1_x_smoothList$fd), xlab="time", ylab="velocity", type="l",  

lwd=2, main=paste("x for LM with lambda ", lambda, sep="")) 

#plotfit.fd(eval.fd(rep(1:k), D1_y_regfdLM), rep(1:k), D1_y_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D1_y_regfdLM), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("y for LM")) 

matplot(eval.fd(rep(1:k), D1_y_smoothList$fd), xlab="time", ylab="velocity", type="l",  

lwd=2, main=paste("y for LM with lambda ", lambda, sep="")) 

#lambda<-seq(-8, -6, length.out=41) 

#n<-length(lambda); gcv<-matrix(0, 2, n); sse<-matrix(0, 2, n) 

#for(i in 1:n) { 

#  if(!(i%%5)) print(i) 
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#  D1_x_regfdPar<-fdPar(D1_x_regfdLM, 3, exp(lambda[i])) 

#  D1_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_x_regfdLM), 

D1_x_regfdPar) 

#  gcv[1,i]<-sum(D1_x_smoothList$gcv); sse[1,i]<-D1_x_smoothList$SSE 

#  D1_y_regfdPar<-fdPar(D1_y_regfdLM, 3, exp(lambda[i])) 

#  D1_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_y_regfdLM), 

D1_y_regfdPar) 

#  gcv[2,i]<-sum(D1_y_smoothList$gcv); sse[2,i]<-D1_y_smoothList$SSE 

#} 

#plot(lambda, gcv[1,], type="b") 

#plot(lambda, gcv[2,], type="b") 

#plot(lambda, sse[1,], type="b") 

#plot(lambda, sse[2,], type="b") 

#register acceleration curves with LM method 

D2_x_regfdLM<-register.newfd(deriv.fd(s0_eng_1_x, 2), regListLM_x$warpfd, type='direct') 

D2_y_regfdLM<-register.newfd(deriv.fd(s0_eng_1_y, 2), regListLM_y$warpfd, type='direct') 

matplot(eval.fd(rep(1:k), D2_x_regfdLM), xlab="time", ylab="acce", type="l",  

lwd=2, main="x for LM", ylim=c(-0.025, 0.025)) 

matplot(eval.fd(rep(1:k), D2_y_regfdLM), xlab="time", ylab="acce", type="l",  

lwd=2, main="y for LM", ylim=c(-0.2, 0.2)) 

#apply fdPar to smooth the acceleration curves 

lambda<- 5e+0 

D2_x_regfdPar<-fdPar(D2_x_regfdLM, 2, lambda) 

D2_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_x_regfdLM), D2_x_regfdPar) 

D2_y_regfdPar<-fdPar(D2_y_regfdLM, 2, lambda) 

D2_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_y_regfdLM), D2_y_regfdPar) 

#plotfit.fd(eval.fd(rep(1:k), D2_x_regfdLM), rep(1:k), D2_x_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D2_x_regfdLM), xlab="time", ylab="acce", type="l",  

lwd=2, main=paste("x for LM"), ylim=c(-0.02, 0.02)) 

matplot(eval.fd(rep(1:k), D2_x_smoothList$fd), xlab="time", ylab="acce", type="l",  

lwd=2, main=paste("x for LM with lambda ", lambda, sep=""), ylim=c(-0.01, 0.01)) 

#plotfit.fd(eval.fd(rep(1:k), D2_y_regfdLM), rep(1:k), D2_y_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D2_y_regfdLM), xlab="time", ylab="acce", type="l",  

lwd=2, main=paste("y for LM"), ylim=c(-0.16, 0.16)) 

matplot(eval.fd(rep(1:k), D2_y_smoothList$fd), xlab="time", ylab="acce", type="l",  

lwd=2, main=paste("y for LM with lambda ", lambda, sep=""), ylim=c(-0.1, 0.1)) 

#calculate the third derivative known as "jerk" 

#register tangent accleration curves 



D2mag_s0<-sqrt(eval.fd(rep(1:k), D2_x_smoothList$fd)^2 + eval.fd(rep(1:k), 

D2_y_smoothList$fd)^2) 

matplot(D2mag_s0, type="l", xlab="time", ylab="acce", lwd=2,  

ylim=c(0, 0.1), main="Tangent acceleration") 

D2mag_mean_s0<-apply(D2mag_s0, 1, mean) 

plot(rep(1:k), D2mag_mean_s0, type="l", xlab="time", ylab="tangent acce", ylim=c(0, 0.03),  

lwd=2, main="Mean tangent acceleration") 

#############################################################################

######## 

#CR method sucks... 

#register velocity curves with CR method 

D1_x_regfdCR<-register.newfd(deriv.fd(fdafdX, 1), regListCR_x$Wfd, type='monotone') 

D1_y_regfdCR<-register.newfd(deriv.fd(fdafdY, 1), regListCR_y$Wfd, type='monotone') 

matplot(eval.fd(rep(1:k), D1_x_regfdCR), xlab="time", ylab="velocity", type="l",  

lwd=2, main=paste("x for CR")) 

matplot(eval.fd(rep(1:k), D1_y_regfdCR), xlab="time", ylab="velocity", type="l",  

lwd=2, main=paste("y for CR")) 

#register acceleration curves with CR method 

D2_x_regfdCR<-register.newfd(deriv.fd(fdafdX, 2), regListCR_x$Wfd, type='monotone') 

D2_y_regfdCR<-register.newfd(deriv.fd(fdafdY, 2), regListCR_y$Wfd, type='monotone') 

matplot(eval.fd(rep(1:k), D2_x_regfdCR), xlab="time", ylab="acce", type="l",  

lwd=2, main="x for CR") 

matplot(eval.fd(rep(1:k), D2_y_regfdCR), xlab="time", ylab="acce", type="l",  

lwd=2, main="y for CR") 

mag_acce<-sqrt(eval.fd(rep(1:k), D2_x_regfdCR)^2 + eval.fd(rep(1:k), D2_y_regfdCR)^2) 

matplot(rep(1:k), mag_acce, type="l", lwd=2, xlab="time", ylab="magnitude of acce",  

main="subject 0 with CR") 

par(mfrow=c(1,2)) 

v1<-abs(eval.fd(rep(1:k), D1_x_regfdCR)) 

v2<-abs(eval.fd(rep(1:k), D1_y_regfdCR)) 

plot(c(1,10), c(0, 0.025), type="n", xlab="sample", ylab="Velocity",  

main="mean velocity for each sample") 

lines(colMeans(v1), col="red") 

lines(colMeans(v2), col="blue") 

legend(1.5, 0.016, legend=c("X", "Y"), fill=c("red", "blue")) 

  

a1<-abs(eval.fd(rep(1:k), D2_x_regfdCR)) 

a2<-abs(eval.fd(rep(1:k), D2_y_regfdCR)) 
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plot(c(1,10), c(0, 0.00125), type="n", xlab="sample", ylab="Acce",  

main="mean acce for sample") 

lines(colMeans(a1), col="red") 

lines(colMeans(a2), col="blue") 

legend(1.5, 0.0008, legend=c("X", "Y"), fill=c("red", "blue")) 

sub1.R 

library(fda) 

#import 40 observations of subject 1 and create array "ann arbor" 

s1r1<-read.csv("/Subject1/Subject1_2015_06_12_132558_001_6d.csv", header=T) 

s1r2<-read.csv("/Subject1/Subject1_2015_06_12_132558_002_6d.csv", header=T) 

s1r3<-read.csv("/Subject1/Subject1_2015_06_12_132558_003_6d.csv", header=T) 

s1r4<-read.csv("/Subject1/Subject1_2015_06_12_132558_004_6d.csv", header=T) 

s1r5<-read.csv("/Subject1/Subject1_2015_06_12_132558_005_6d.csv", header=T) 

s1r6<-read.csv("/Subject1/Subject1_2015_06_12_132558_006_6d.csv", header=T) 

s1r7<-read.csv("/Subject1/Subject1_2015_06_12_132558_007_6d.csv", header=T) 

s1r8<-read.csv("/Subject1/Subject1_2015_06_12_132558_008_6d.csv", header=T) 

s1r9<-read.csv("/Subject1/Subject1_2015_06_12_132558_009_6d.csv", header=T) 

s1r10<-read.csv("/Subject1/Subject1_2015_06_12_132558_010_6d.csv", header=T) 

s1r11<-read.csv("/Subject1/Subject1_2015_06_12_132558_011_6d.csv", header=T) 

s1r12<-read.csv("/Subject1/Subject1_2015_06_12_132558_012_6d.csv", header=T) 

s1r13<-read.csv("/Subject1/Subject1_2015_06_12_132558_013_6d.csv", header=T) 

s1r14<-read.csv("/Subject1/Subject1_2015_06_12_132558_014_6d.csv", header=T) 

s1r15<-read.csv("/Subject1/Subject1_2015_06_12_132558_015_6d.csv", header=T) 

s1r16<-read.csv("/Subject1/Subject1_2015_06_12_132558_016_6d.csv", header=T) 

s1r17<-read.csv("/Subject1/Subject1_2015_06_12_132558_017_6d.csv", header=T) 

s1r18<-read.csv("/Subject1/Subject1_2015_06_12_132558_018_6d.csv", header=T) 

s1r19<-read.csv("/Subject1/Subject1_2015_06_12_132558_019_6d.csv", header=T) 

s1r20<-read.csv("/Subject1/Subject1_2015_06_12_132558_020_6d.csv", header=T) 

x1<-data.frame(s1r1$pen.x, s1r2$pen.x, s1r3$pen.x, s1r4$pen.x, s1r5$pen.x, s1r6$pen.x, 

s1r7$pen.x,  

s1r8$pen.x, s1r9$pen.x, s1r10$pen.x, s1r11$pen.x, s1r12$pen.x, s1r13$pen.x, s1r14$pen.x,  

s1r15$pen.x, s1r16$pen.x, s1r17$pen.x, s1r18$pen.x, s1r19$pen.x, s1r20$pen.x) 

x1<-(-x1) 

#x1<-scale(x1, scale=T) 

#x1[is.na(x1)]<-0 

colnames(x1)<-c("rep1", "rep2", "rep3", "rep4", "rep5", "rep6", "rep7", "rep8", "rep9", "rep10", 

"rep11", "rep12", "rep13", "rep14", "rep15", "rep16", "rep17", "rep18", "rep19", "rep20") 



y1<-data.frame(s1r1$pen.z, s1r2$pen.z, s1r3$pen.z, s1r4$pen.z, s1r5$pen.z, s1r6$pen.z, 

s1r7$pen.z,  

s1r8$pen.z, s1r9$pen.z, s1r10$pen.z, s1r11$pen.z, s1r12$pen.z, s1r13$pen.z, s1r14$pen.z,  

s1r15$pen.z, s1r16$pen.z, s1r17$pen.z, s1r18$pen.z, s1r19$pen.z, s1r20$pen.z) 

colnames(y1)<-colnames(x1) 

#y1<-scale(y1, scale=T) 

#y1[is.na(y1)]<-0 

z1<-data.frame(s1r1$pen.y, s1r2$pen.y, s1r3$pen.y, s1r4$pen.y, s1r5$pen.y, s1r6$pen.y, 

s1r7$pen.y,  

s1r8$pen.y, s1r9$pen.y, s1r10$pen.y, s1r11$pen.y, s1r12$pen.y, s1r13$pen.y, s1r14$pen.y,  

s1r15$pen.y, s1r16$pen.y, s1r17$pen.y, s1r18$pen.y, s1r19$pen.y, s1r20$pen.y) 

colnames(z1)<-colnames(z1) 

#z1<-scale(z1, scale=T) 

#z1[is.na(z1)]<-0 

#find the beginning of "Arbor" 

s1_eng_start<-c(1150, 1300, 1320, 890, 840, 930, 1300, 910, 900, 840, 

                640, 940, 1150, 1000, 800, 960, 770, 840, 900, 900) 

s1_eng_end<-c(2000, 2250, 2070, 1800, 1700, 1900, 2270, 1980, 2070, 1900, 

             1500, 2130, 2140, 1960, 1650, 1800, 1600, 1850, 1830, 1780) 

par(mfrow=c(2,1), ask=F) 

for(i in 1:20) { 

  plot(x1[s1_eng_start[i]:s1_eng_end[i],i], y1[s1_eng_start[i]:s1_eng_end[i],i], lwd=1,  

  main=paste("rep ", i, sep="")) 

  abline(h=0, lty=2) 

  plot(rep(s1_eng_start[i]:s1_eng_end[i]), z1[s1_eng_start[i]:s1_eng_end[i], i], 

  main=paste("z of rep ", i, sep="")) 

} 

Temp<-NULL; k<-600 

for(i in 1:20) { 

  index<-sort(sample(s1_eng_start[i]:s1_eng_end[i], k, replace=F)) 

  Temp<-cbind(Temp, x1[index, i], y1[index, i], z1[index, i]) 

} 

colnames(Temp)<-rep(colnames(x1)[1:20], each=3) 

Temp<-scale(Temp, center=T, scale=T) 

Temp[is.na(Temp)]<-0 

#output the data to .csv file and store it 

write.csv(Temp, "/Users/mtianwen/Downloads/s1_eng_arbor.csv", row.names = F) 

#import .csv data to R 
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s1_eng_arbor<-read.csv("/Users/mtianwen/Downloads/s1_eng_arbor.csv", header=T) 

#extract subset of 11 to 20 repetitions 

#s1_eng_2_arbor<-subset(s1_eng_arbor, select=c(1:30)) 

column_name<-c("rep1", "rep2", "rep3", "rep4", "rep5", "rep6", "rep7", "rep8", "rep9", "rep10", 

"rep11", "rep12", "rep13", "rep14", "rep15", "rep16", "rep17", "rep18", "rep19", "rep20") 

colnames(s1_eng_arbor)<-rep(column_name, each=3) 

s1_eng_arbor<-as.matrix(s1_eng_arbor) 

N<-600 

par(mfrow=c(3,1), ask=F) 

matplot(rep(1:N), s1_eng_arbor[,seq(1,60,3)], type="l", main="x coordinate plot",  

ylab="normalized x") 

matplot(rep(1:N), s1_eng_arbor[,seq(2,60,3)], type="l", main="y coordinate plot",  

ylab="normalized y") 

matplot(rep(1:N), s1_eng_arbor[,seq(3,60,3)], type="l", main="z coordinate plot",  

ylab="normalized z") 

#############################################################################

####### 

s1_reg_x_LM_eval<-read.csv("/Users/mtianwen/Downloads/s1_reg_x_LM_eval.csv", header = 

T) 

s1_reg_y_LM_eval<-read.csv("/Users/mtianwen/Downloads/s1_reg_y_LM_eval.csv", header = 

T) 

s1_reg_x_LM_eval<-as.matrix(s1_reg_x_LM_eval) 

s1_reg_y_LM_eval<-as.matrix(s1_reg_y_LM_eval) 

fdaarray<-array(0, dim=c(1000, 10, 2),  

dimnames=list(rep(1:k),c("rep1", "rep2", "rep3", "rep4", "rep5",  

"rep6", "rep7", "rep8", "rep9", "rep10"), 

c("X", "Y"))) 

fdaarray[,,1]<-s1_reg_x_LM_eval 

fdaarray[,,2]<-s1_reg_y_LM_eval 

  

k<-2400 

fdatime<-seq(0, 2400, len=1000) 

fdarange <- c(0, k) 

nbasis<-1005 

norder<-7 

fdabasis = create.bspline.basis(fdarange,nbasis, norder) 

#  parameter object for coordinates 

fdafd  <- fd(array(0, c(nbasis,10,2)), fdabasis) 



lambda <- 1e8 

fdaPar <- fdPar(fdafd, 5, lambda) 

fdafdX <- smooth.basis(fdatime, fdaarray[,,1], fdaPar)$fd 

plot(fdafdX) 

fdafdY <- smooth.basis(fdatime, fdaarray[,,2], fdaPar)$fd 

plot(fdafdY) 

s1_eng_1_x_eval<-eval.fd(fdatime, fdafdX) 

s1_eng_1_y_eval<-eval.fd(fdatime, fdafdY) 

  

s1_eng_start<-fdatime[c(490, 490, 495, 500, 510, 510, 500, 500, 500, 500)] 

for(i in 1:10) { 

  plot(s1_eng_1_x_eval[c(s1_eng_start[i]:1000),i], s1_eng_1_y_eval[c(s1_eng_start[i]:1000),i],  

  type="l") 

} 

Temp<-matrix(0, 600, 20); k<-600 

for(i in 1:10) { 

  Index<-seq(s1_eng_start[i], 2400, len=k) 

  Temp[,2*i-1]<-eval.fd(Index, fdafdX[i]) 

  Temp[,2*i]<-eval.fd(Index, fdafdY[i]) 

} 

  

#output the data to .csv file and store it 

write.csv(Temp, "/Users/mtianwen/Downloads/s1_eng_arbor.csv", row.names = F) 

write.csv(Temp[,seq(1,20,2)], "/Users/mtianwen/Downloads/s1_reg_x_LM_arbor.csv", 

row.names = F) 

write.csv(Temp[,seq(2,20,2)], "/Users/mtianwen/Downloads/s1_reg_y_LM_arbor.csv", 

row.names = F) 

#import .csv data to R 

s1_reg_x_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_x_LM_arbor.csv", 

header=T) 

s1_reg_y_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_y_LM_arbor.csv", 

header=T) 

matplot(s1_eng_arbor, type="l", main="matplot of arbor for subject 1") 

########  The below code is applide for k=1000, try landmark with first ten repetitions 

######## 

i<-10 

x<-rep(1:k); y<-s1_eng_1_z_eval[,i] 

plot(x, y, type="l", main=paste("rep ", i, sep="")) 
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identify(x, y, labels=rep(1:k)) 

points(x[ximarks[i,]], y[ximarks[i,]], pty=1) 

mark_data<-c(80, 138, 282, 330, 408, 455, 515, 561, 584, 651, 731, 794, 855, 902, 930, 

             97, 134, 247, 292, 390, 438, 516, 562, 574, 661, 756, 804, 850, 889, 921, 

             97, 143, 235, 285, 350, 411, 525, 608, 625, 712, 786, 841, 890, 937, 957,  

             68, 125, 217, 275, 354, 410, 464, 525, 542, 637, 713, 777, 834, 880, 915, 

             54, 110, 198, 259, 333, 386, 449, 521, 539, 640, 745, 816, 882, 940, 965, 

             86, 132, 223, 281, 352, 404, 470, 523, 540, 652, 742, 810, 877, 919, 940, 

             65, 106, 208, 266, 329, 372, 434, 492, 512, 673, 758, 816, 873, 923, 950, 

             33,  72, 191, 247, 317, 370, 433, 499, 515, 617, 690, 743, 797, 840, 875, 

             85, 124, 201, 253, 306, 356, 419, 472, 483, 622, 702, 752, 792, 832, 858, 

             12,  51, 160, 218, 294, 345, 408, 468, 486, 597, 697, 757, 838, 889, 930) 

ximarks<-matrix(mark_data, 10, 15, byrow=T) 

PGSctrmean=colMeans(ximarks) 

wbasisLM<-create.bspline.basis(c(0,k), 18, 3, c(0, PGSctrmean, k)) 

WfdLM<-fd(matrix(0,18,1), wbasisLM) 

WfdParLM<-fdPar(WfdLM, 1, 1e-5) 

#############################################################################

####### 

par(mfrow=c(2,1)) 

regListLM_z<-landmarkreg(fdobj=fdafdZ, ximarks=ximarks, x0marks=PGSctrmean, 

WfdPar=WfdParLM, monwrd = T) 

plot(regListLM_z$regfd, main="registered z with LM", lwd=2) 

plot(regListLM_z$warpfd, main="warp function for z", lwd=2) 

regListLM_x<-landmarkreg(fdobj=fdafdX, ximarks=ximarks, x0marks=PGSctrmean, 

WfdPar=WfdParLM, monwrd = T) 

plot(regListLM_x$regfd, main="registered x with LM", lwd=2) 

plot(regListLM_x$warpfd, main="warp function for x", lwd=2) 

regListLM_y<-landmarkreg(fdobj=fdafdY, ximarks=ximarks, x0marks=PGSctrmean, 

WfdPar=WfdParLM, monwrd = T) 

plot(regListLM_y$regfd, main="registered y with LM", lwd=2) 

plot(regListLM_y$warpfd, main="warp function for y", lwd=2) 

for(i in 1:10) { 

  plot(regListLM_y$regfd[i], main=paste("rep ", i, sep="")) 

} 

#warp deformation plots 

par(mfrow=c(1,1)) 



matplot(rep(1:k), (eval.fd(rep(1:k), regListLM_x$warpfd)-matrix(rep(1:k), k, 10, byrow=F)),  

ylab="h_i(t)-t", type="l", lty=1:2, col=1:9, lwd=2, main="coordinate warp deformation") 

#independent of x,y,z 

AmPhasList_1_x<-AmpPhaseDecomp(s1_eng_1_x, regListLM_x$regfd, regListLM_x$warpfd) 

#11.9, -4.4, -0.59, 0.99 

AmPhasList_1_y<-AmpPhaseDecomp(s1_eng_1_y, regListLM_y$regfd, regListLM_y$warpfd)  

#277, 553, 0.666, 0.954 

AmPhasList_1_z<-AmpPhaseDecomp(s1_eng_1_z, regListLM_z$regfd, regListLM_z$warpfd)  

#222, 310, 0.583, 0.971 

reg_x_LM_eval<-eval.fd(rep(1:k), regListLM_x$regfd) 

reg_y_LM_eval<-eval.fd(rep(1:k), regListLM_y$regfd) 

par(mfrow=c(2,1)) 

for(i in 1:10) { 

  plot(reg_x_LM_eval[,i], reg_y_LM_eval[,i], type="l", xlab="x", ylab="y",  

  main=paste("rep ", i, " with LM", sep="")) 

} 

x_mean_LM<-rowMeans(reg_x_LM_eval) 

plot(rep(1:k), x_mean_LM, lwd=2, xlab="time", ylab="registered x", 

main="registered x with LM versus time", type="l") 

y_mean_LM<-rowMeans(reg_y_LM_eval) 

plot(rep(1:k), y_mean_LM, lwd=2, xlab="time", ylab="registered y", 

main="registered y with LM versus time", type="l") 

plot(x_mean_LM, y_mean_LM, lwd=2, type="l", xlab="registered x", 

ylab="registered y", main="Ann Arbor with LM registration") 

plot.new() 

#remove trend factor and retrieve residuals 

s1_eng_1_x_residuals<-NULL 

for(i in 1:10) { 

  model<-lm(reg_x_LM_eval[,i] ~ rep(1:k)) 

  s1_eng_1_x_residuals<-cbind(s1_eng_1_x_residuals, model$residuals) 

} 

matplot(s1_eng_1_x_residuals, type="l", lwd=2, xlab="time", ylab="residuals of x", 

main="residuals of registered x with LM") 

abline(h=0, lty=2, lwd=2) 

plot(regListLM_x$regfd, main="registered x with LM", lwd=2) 

#Notice that maybe it is necessary to fit a functional data object to residual data. 

#try continuous registration with Function register.fd based on the landmarker result. 
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wbasisCR<-create.bspline.basis(c(0,k), 20, 4) 

Wfd0CR<-fd(matrix(0,20,10), wbasisCR) 

WfdParCR<-fdPar(Wfd0CR, 2, 0.1) 

regListCR_x<-register.fd(mean(regListLM_x$regfd), regListLM_x$regfd, WfdParCR) 

plot(regListCR_x$regfd, main="registered x with CR", lwd=2) 

regListCR_y<-register.fd(mean(regListLM_y$regfd), regListLM_y$regfd, WfdParCR) 

plot(regListCR_y$regfd, main="registered y with CR", lwd=2) 

AmPhasList_1_x_cf<-AmpPhaseDecomp(regListLM_x$regfd, regListCR_x$regfd, 

regListCR_x$warpfd)  

#6.9, 6.62, 0.49, 1.01 

AmPhasList_1_y_cf<-AmpPhaseDecomp(regListLM_y$regfd, regListCR_y$regfd, 

regListCR_y$warpfd)  

#220, 76, 0.257, 1.03 significant progress! 

reg_x_CR_eval<-eval.fd(rep(1:k), regListCR_x$regfd) 

reg_y_CR_eval<-eval.fd(rep(1:k), regListCR_y$regfd) 

#plot each "Ann Arbor" 

for(i in 1:10) { 

  plot(reg_x_CR_eval[,i], reg_y_CR_eval[,i], type="l", xlab="x", ylab="y", 

       main=paste("rep ", i, " with CR", sep="")) 

} 

x_mean_CR<-rowMeans(reg_x_CR_eval) 

plot(rep(1:k), x_mean_CR, xlab="time", ylab="registered x", main="registered x with CR versus 

time",  

type="l", lwd=2) 

y_mean_CR<-rowMeans(reg_y_CR_eval) 

plot(rep(1:k), y_mean_CR, xlab="time", ylab="registered x", main="registered y with CR versus 

time",  

type="l", lwd=2) 

plot(x_mean_CR, y_mean_CR, type="l", xlab="registered x", ylab="registered y",  

main="Ann Arbor with CR registration", lwd=2) 

#superimpose two plots together 

plot(x_mean_CR, y_mean_CR, type="l", lwd=2, xlab="registered x", ylab="registered y", 

main="regular Ann Arbor", col="red") 

lines(x_mean_LM, y_mean_LM, col="blue", lwd=2) 

legend(-1, 2, legend=c("CR", "LM"), fill=c("red", "blue"), cex=0.8) 

#remove the trend factor, and retrieve the residuals 

s1_eng_1_x_residuals<-NULL 

for(i in 1:10) { 



  model<-lm(reg_x_CR_eval[,i] ~ rep(1:k)) 

  s1_eng_1_x_residuals<-cbind(s1_eng_1_x_residuals, model$residuals) 

} 

matplot(s1_eng_1_x_residuals, type="l", xlab="time", ylab="residuals of x", 

main="residuals of registered x with CR", lwd=2) 

abline(h=0, lty=2, lwd=2) 

#register velocity curves with LM method 

D1_x_regfdLM<-register.newfd(deriv.fd(s1_eng_1_x, 1), regListLM_x$warpfd, type='direct') 

D1_y_regfdLM<-register.newfd(deriv.fd(s1_eng_1_y, 1), regListLM_y$warpfd, type='direct') 

matplot(eval.fd(rep(1:k), D1_x_regfdLM), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("x for LM"), ylim=c(-0.05, 0.05)) 

matplot(eval.fd(rep(1:k), D1_y_regfdLM), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("y for LM"), ylim=c(-0.5, 0.5)) 

#apply fdPar to smooth the velocity curves 

lambda<-1e+2 

D1_x_regfdPar<-fdPar(D1_x_regfdLM, 2, lambda) 

D1_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_x_regfdLM), D1_x_regfdPar) 

D1_y_regfdPar<-fdPar(D1_y_regfdLM, 2, lambda) 

D1_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_y_regfdLM), D1_y_regfdPar) 

#plotfit.fd(eval.fd(rep(1:k), D1_x_regfdLM), rep(1:k), D1_x_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D1_x_regfdLM), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("x for LM"), ylim=c(-0.05, 0.05)) 

matplot(eval.fd(rep(1:k), D1_x_smoothList$fd), xlab="time", ylab="velocity", type="l",  

lwd=2, main=paste("x for LM with lambda ", lambda, sep=""), ylim=c(-0.05, 0.05)) 

#plotfit.fd(eval.fd(rep(1:k), D1_y_regfdLM), rep(1:k), D1_y_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D1_y_regfdLM), xlab="time", ylab="velocity", type="l",  

lwd=2, main=paste("y for LM"), ylim=c(-0.5, 0.5)) 

matplot(eval.fd(rep(1:k), D1_y_smoothList$fd), xlab="time", ylab="velocity", type="l",  

lwd=2, main=paste("y for LM with lambda ", lambda, sep=""), ylim=c(-0.4, 0.4)) 

#register acceleration curves with LM method 

D2_x_regfdLM<-register.newfd(deriv.fd(s1_eng_1_x, 2), regListLM_x$warpfd, type='direct') 

D2_y_regfdLM<-register.newfd(deriv.fd(s1_eng_1_y, 2), regListLM_y$warpfd, type='direct') 

matplot(eval.fd(rep(1:k), D2_x_regfdLM), xlab="time", ylab="acce", type="l",  

lwd=2, main="x for LM", ylim=c(-0.025, 0.025)) 

matplot(eval.fd(rep(1:k), D2_y_regfdLM), xlab="time", ylab="acce", type="l",  

lwd=2, main="y for LM", ylim=c(-0.2, 0.2)) 

#apply fdPar to smooth the acceleration curves 
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lambda<- 1e+2 

D2_x_regfdPar<-fdPar(D2_x_regfdLM, 2, lambda) 

D2_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_x_regfdLM), D2_x_regfdPar) 

D2_y_regfdPar<-fdPar(D2_y_regfdLM, 2, lambda) 

D2_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_y_regfdLM), D2_y_regfdPar) 

#plotfit.fd(eval.fd(rep(1:k), D2_x_regfdLM), rep(1:k), D2_x_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D2_x_regfdLM), xlab="time", ylab="acce", type="l",  

lwd=2, main=paste("x for LM"), ylim=c(-0.015, 0.015)) 

matplot(eval.fd(rep(1:k), D2_x_smoothList$fd), xlab="time", ylab="acce", type="l",  

lwd=2, main=paste("x for LM with lambda ", lambda, sep=""), ylim=c(-0.006, 0.006)) 

#plotfit.fd(eval.fd(rep(1:k), D2_y_regfdLM), rep(1:k), D2_y_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D2_y_regfdLM), xlab="time", ylab="acce", type="l",  

lwd=2, main=paste("y for LM"), ylim=c(-0.2, 0.2)) 

matplot(eval.fd(rep(1:k), D2_y_smoothList$fd), xlab="time", ylab="acce", type="l",  

lwd=2, main=paste("y for LM with lambda ", lambda, sep=""), ylim=c(-0.05, 0.05)) 

#register tangent accleration curves 

D2mag_s0<-sqrt(eval.fd(rep(1:k), D2_x_regfdLM)^2 + eval.fd(rep(1:k), D2_x_regfdLM)^2) 

matplot(D2mag_s0, type="l", xlab="time", ylab="acce",  

lwd=2, ylim=c(0, 0.05), main="Tangent acceleration for LM") 

D2mag_mean_s0<-apply(D2mag_s0, 1, mean) 

plot(rep(1:k), D2mag_mean_s0, type="l", xlab="time", ylab="tangent acce", ylim=c(0, 0.03),  

lwd=2, main="Mean tangent acceleration for LM") 

D2mag_s0_lambda<-sqrt(eval.fd(rep(1:k), D2_x_smoothList$fd)^2 + eval.fd(rep(1:k), 

D2_y_smoothList$fd)^2) 

matplot(D2mag_s0_lambda, type="l", xlab="time", ylab="acce", lwd=2,  

ylim=c(0, 0.05), main=paste("Tangent acceleration for LM ", lambda, sep="")) 

D2mag_mean_s0_lambda<-apply(D2mag_s0_lambda, 1, mean) 

plot(rep(1:k), D2mag_mean_s0_lambda, type="l", xlab="time", ylab="tangent acce",  

ylim=c(0, 0.03), lwd=2, main=paste("Mean tangent acceleration for LM ", lambda, sep="")) 

  

#############################################################################

############ 

#register velocity curves with CR method 

D1_x_regfdCR<-register.newfd(deriv.fd(regListLM_x$regfd, 1), regListCR_x$Wfd, 

type='periodic') 

D1_y_regfdCR<-register.newfd(deriv.fd(regListLM_y$regfd, 1), regListCR_y$Wfd, 

type='periodic') 

matplot(eval.fd(rep(1:k), D1_x_regfdCR), xlab="time", ylab="velocity", type="l", 



lwd=2, main=paste("x for CR")) 

matplot(eval.fd(rep(1:k), D1_y_regfdCR), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("y for CR")) 

#apply fdPar to smooth the velocity curves 

lambda<-1e+2 

D1_x_regfdPar<-fdPar(D1_x_regfdCR, 3, lambda) 

D1_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_x_regfdCR), D1_x_regfdPar) 

D1_y_regfdPar<-fdPar(D1_y_regfdCR, 3, lambda) 

D1_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_y_regfdCR), D1_y_regfdPar) 

#plotfit.fd(eval.fd(rep(1:k), D1_x_regfdCR), rep(1:k), D1_x_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D1_x_regfdCR), xlab="time", ylab="velocity", type="l", 

lwd=2, main=paste("x for CR"), ylim=c(-0.05, 0.05)) 

matplot(eval.fd(rep(1:k), D1_x_smoothList$fd), type="l",  

lwd=2, main=paste("x for CR with lambda ", lambda, sep=""), ylim=c(-0.05, 0.05)) 

#plotfit.fd(eval.fd(rep(1:k), D1_y_regfdCR), rep(1:k), D1_y_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D1_y_regfdCR), xlab="time", ylab="velocity",  

type="l", lwd=2, main=paste("y for CR"), ylim=c(-0.5, 0.5)) 

matplot(eval.fd(rep(1:k), D1_y_smoothList$fd), type="l",  

lwd=2, main=paste("y for CR with lambda ", lambda, sep=""), ylim=c(-0.4, 0.4)) 

#register acceleration curves with CR method 

D2_x_regfdCR<-register.newfd(deriv.fd(s1_eng_1_x, 2), regListCR_x$Wfd, type='monotone') 

D2_y_regfdCR<-register.newfd(deriv.fd(s1_eng_1_y, 2), regListCR_y$Wfd, type='monotone') 

matplot(eval.fd(rep(1:k), D2_x_regfdCR), xlab="time", ylab="acce", type="l", lwd=2, 

main="x for CR", ylim=c(-0.02, 0.02)) 

matplot(eval.fd(rep(1:k), D2_y_regfdCR), xlab="time", ylab="acce", type="l", lwd=2, 

main="y for CR", ylim=c(-0.15, 0.15)) 

#apply fdPar to smooth the acceleration curves 

lambda<- 1e+1 

D2_x_regfdPar<-fdPar(D2_x_regfdCR, 2, lambda) 

D2_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_x_regfdCR), D2_x_regfdPar) 

D2_y_regfdPar<-fdPar(D2_y_regfdCR, 2, lambda) 

D2_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_y_regfdCR), D2_y_regfdPar) 

#plotfit.fd(eval.fd(rep(1:k), D2_x_regfdLM), rep(1:k), D2_x_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D2_x_regfdCR), xlab="time", ylab="acce", type="l", lwd=2, 

main=paste("x for CR"), ylim=c(-0.02, 0.02)) 

matplot(eval.fd(rep(1:k), D2_x_smoothList$fd), xlab="time", ylab="acce", type="l", lwd=2, 

main=paste("x for CR with lambda ", lambda, sep=""), ylim=c(-0.005, 0.005)) 
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#plotfit.fd(eval.fd(rep(1:k), D2_y_regfdLM), rep(1:k), D2_y_smoothList$fd, type="l") 

matplot(eval.fd(rep(1:k), D2_y_regfdCR), xlab="time", ylab="acce", type="l", lwd=2, 

main=paste("y for CR"), ylim=c(-0.16, 0.16)) 

matplot(eval.fd(rep(1:k), D2_y_smoothList$fd), xlab="time", ylab="acce", type="l", lwd=2, 

main=paste("y for CR with lambda ", lambda, sep=""), ylim=c(-0.05, 0.05)) 

classification to others.R 

library(fda) 

#import data 

reg_x_CR_eval<-read.csv("/Users/mtianwen/Downloads/s0_reg_x_CR_eval_arbor.csv", header 

= T) 

reg_y_CR_eval<-read.csv("/Users/mtianwen/Downloads/s0_reg_y_CR_eval_arbor.csv", header 

= T) 

reg_x_CR_eval<-as.matrix(reg_x_CR_eval)*5 

reg_y_CR_eval<-as.matrix(reg_y_CR_eval)*5 

l<-11 

fdaarray<-array(0, dim=c(600, l, 2),  

dimnames=list(rep(1:600),c("rep1", "rep2", "rep3", "rep4", "rep5",  

"rep6", "rep7", "rep8", "rep9", "rep10", "rep11"), 

c("X", "Y"))) 

  

fdaarray[,,1]<-reg_x_CR_eval 

fdaarray[,,2]<-reg_y_CR_eval 

#set up the fda object for forcing function and its weight function 

s1_reg_x_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_x_LM_arbor.csv", 

header=T) 

s1_reg_y_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_y_LM_arbor.csv", 

header=T) 

reg_x_LM_eval<-as.matrix(s1_reg_x_LM_arbor)*5 

reg_y_LM_eval<-as.matrix(s1_reg_y_LM_arbor)*5 

l<-10 

fdaarray<-array(0, dim=c(600, l, 2),  

dimnames=list(rep(1:k),c("rep1", "rep2", "rep3", "rep4", "rep5",  

"rep6", "rep7", "rep8", "rep9", "rep10"), 

c("X", "Y"))) 

fdaarray[,,1]<-reg_x_LM_eval 

fdaarray[,,2]<-reg_y_LM_eval 

#The below two lines are valid for psuedo data 

fdaarray[,,1]<-X 



fdaarray[,,2]<-Y 

#Perfome pda.fd without forcing function 

k<-1440 

fdatime<-seq(0, k, len=600) 

fdarange <- c(0, k) 

nbasis<-605 

norder<-7 

fdabasis = create.bspline.basis(fdarange,nbasis, norder) 

#  parameter object for coordinates 

fdafd  <- fd(array(0, c(nbasis,l,2)), fdabasis) 

lambda <- 1e8 

fdaPar <- fdPar(fdafd, 5, lambda) 

  

#  set up the two forcing functions 

ufdlist <- vector("list", 2) 

#  constant forcing 

constbasis <- create.constant.basis(fdarange) 

constfd    <- fd(matrix(1,1,l), constbasis) 

ufdlist[[1]] <- constfd 

# time forcing 

linbasis   <- create.monomial.basis(fdarange, 2) 

lincoef    <- matrix(0,2,l) 

lincoef[2,] <- 1 

ufdlist[[2]] <- fd(lincoef, linbasis) 

awtlist    <- vector("list", 2) 

constfd    <- fd(1, constbasis) 

constfdPar <- fdPar(constfd) 

awtlist[[1]] <- constfdPar 

awtlist[[2]] <- constfdPar 

wbasis125 <- create.bspline.basis(fdarange, 125) 

#pdf("092815_2.pdf") 

#First apply the equation to the same writer 

fdafdX <- smooth.basis(fdatime, fdaarray[,,1], fdaPar)$fd 

xfdlist<-vector("list", 1) 

xfdlist[[1]]<-fdafdX 

plot(fdafdX) 

#set the number of basis functions to 125 
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bfd     <- fd(matrix(0,125,1), wbasis125) 

bfdPar  <- fdPar(bfd, 1, 0) 

bwtlist <- vector("list", 2) 

bwtlist[[1]] <- bfdPar 

bwtlist[[2]] <- bfdPar 

bwtlist[[3]] <- bfdPar 

#carry out principal differential analysis 

pdaList <- pda.fd(xfdlist, bwtlist, awtlist, ufdlist) 

bestwtlist <- pdaList$bwtlist 

aestwtlist <- pdaList$awtlist 

resfdlist  <- pdaList$resfdlist 

par(mfrow=c(2,1), ask=F) 

#evaluate forcing functions 

resfdX  <- resfdlist[[1]] 

plot(resfdX, main="Forcing functions for subject 0 with 125 bspline basis") 

resmeanfdX<-mean(resfdX) 

resmeanfdX_eval<-eval.fd(fdatime, resmeanfdX) 

#extract and plot the weight functions 

beta_X<-matrix(0, 600, 3) 

#par(mfrow=c(1,1), ask=F) 

for(j in 1:3) { 

  betafdPar<-bestwtlist[[j]] 

  betafd<-betafdPar$fd 

  betafd_eval<-eval.fd(fdatime, betafd) 

  beta_X[,j]<-betafd_eval 

  plot(fdatime, betafd_eval, type="l", main=paste("weight function for ", j, sep="")) 

} 

#extract and evaluate weight for forcing functions 

w1_X<-aestwtlist[[1]]$fd$coefs 

w2_X<-aestwtlist[[2]]$fd$coefs 

fdafdY <- smooth.basis(fdatime, fdaarray[,,2], fdaPar)$fd 

fdlist<-vector("list", 1) 

xfdlist[[1]]<-fdafdY 

plot(fdafdY) 

#set the number of basis functions to 125 

bfd     <- fd(matrix(0,125,1), wbasis125) 

bfdPar  <- fdPar(bfd, 1, 0) 



bwtlist <- vector("list", 2) 

bwtlist[[1]] <- bfdPar 

bwtlist[[2]] <- bfdPar 

bwtlist[[3]] <- bfdPar 

#carry out principal differential analysis 

pdaList <- pda.fd(xfdlist, bwtlist, awtlist, ufdlist) 

bestwtlist <- pdaList$bwtlist 

aestwtlist <- pdaList$awtlist 

resfdlist  <- pdaList$resfdlist 

par(mfrow=c(2,1)) 

#evaluate forcing functions 

resfdY  <- resfdlist[[1]] 

plot(resfdY, main="Forcing functions for subject 0 with 125 bspline basis") 

resmeanfdY<-mean(resfdY) 

resmeanfdY_eval<-eval.fd(fdatime, resmeanfdY) 

#extract and plot the weight functions 

beta_Y<-matrix(0, 600, 3) 

#par(mfrow=c(1,1), ask=F) 

for(j in 1:3) { 

  betafdPar<-bestwtlist[[j]] 

  betafd<-betafdPar$fd 

  betafd_eval<-eval.fd(fdatime, betafd) 

  beta_Y[,j]<-betafd_eval 

  plot(fdatime, betafd_eval, type="l", main=paste("weight function for ", j, sep="")) 

} 

  

#extract and evaluate weight for forcing functions 

w1_Y<-aestwtlist[[1]]$fd$coefs 

w2_Y<-aestwtlist[[2]]$fd$coefs 

par(mfrow=c(2,1)) 

plot(resfdX) 

plot(resfdY) 

D3fdafdX<-eval.fd(fdatime, fdafdX, 3) 

D3fdafdY<-eval.fd(fdatime, fdafdY, 3) 

D3fdafdX_mean<-apply(D3fdafdX, 1, mean) 

D3fdafdY_mean<-apply(D3fdafdY, 1, mean) 

plot(fdatime, D3fdafdX_mean*1000000, type="l", col="blue", main="x coordinate") 



47 

lines(fdatime, resmeanfdX_eval*1000000, type="l", col="red") 

abline(h=0, lty=2) 

legend(50, -100, legend=c("3rd", "residual"), fill=c("blue", "red"), cex=0.7) 

plot(fdatime, D3fdafdY_mean*1000000, type="l", col="blue", main="y coordinate") 

lines(fdatime, resmeanfdY_eval*1000000, type="l", col="red") 

abline(h=0, lty=2) 

legend(10, 500, legend=c("3rd", "residual"), fill=c("blue", "red"), cex=0.7) 

par(mfrow=c(1,2)) 

#calculate forcing function, which is the L(X(t)) and L(Y(t)), the linear differential operator 

LX<-matrix(0, 600, 11) 

D1_X<-eval.fd(fdatime, fdafdX, 1) 

D2_X<-eval.fd(fdatime, fdafdX, 2) 

LX<-beta_X[,1]*fdaarray[,,1] + beta_X[,2]*D1_X + beta_X[,3]*D2_X + matrix(-w1_X, 600, 

11) 

matplot(fdatime, LX*10^5, type="l", ylim=c(-50, 70), xlab="time", ylab="forcing function",  

main="X dimension for subject 0") 

abline(h=0, lty=2) 

LY<-matrix(0, 600, 11) 

D1_Y<-eval.fd(fdatime, fdafdY, 1) 

D2_Y<-eval.fd(fdatime, fdafdY, 2) 

LY<-beta_Y[,1]*fdaarray[,,2] + beta_Y[,2]*D1_Y + beta_Y[,3]*D2_Y + matrix(-w1_Y, 600, 

11) 

matplot(fdatime, LY*10^5, type="l", ylim=c(-150, 120), xlab="time", ylab="forcing function",  

main="Y dimension for subject 0") 

abline(h=0, lty=2) 

classification to itself.R 

library(fda) 

#import data 

reg_x_CR_eval<-read.csv("/Users/mtianwen/Downloads/s0_reg_x_CR_eval_arbor.csv", header 

= T) 

reg_y_CR_eval<-read.csv("/Users/mtianwen/Downloads/s0_reg_y_CR_eval_arbor.csv", header 

= T) 

reg_x_CR_eval<-as.matrix(reg_x_CR_eval)*5 

reg_y_CR_eval<-as.matrix(reg_y_CR_eval)*5 

l<-11 

fdaarray<-array(0, dim=c(600, l, 2),  

dimnames=list(rep(1:600),c("rep1", "rep2", "rep3", "rep4", "rep5",  

"rep6", "rep7", "rep8", "rep9", "rep10", "rep11"), 



c("X", "Y"))) 

fdaarray[,,1]<-reg_x_CR_eval 

fdaarray[,,2]<-reg_y_CR_eval 

#set up the fda object for forcing function and its weight function 

s1_reg_x_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_x_LM_arbor.csv", 

header=T) 

s1_reg_y_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_y_LM_arbor.csv", 

header=T) 

reg_x_LM_eval<-as.matrix(s1_reg_x_LM_arbor)*5 

reg_y_LM_eval<-as.matrix(s1_reg_y_LM_arbor)*5 

l<-10 

fdaarray<-array(0, dim=c(600, l, 2),  

dimnames=list(rep(1:k),c("rep1", "rep2", "rep3", "rep4", "rep5",  

"rep6", "rep7", "rep8", "rep9", "rep10"), 

c("X", "Y"))) 

fdaarray[,,1]<-reg_x_LM_eval 

fdaarray[,,2]<-reg_y_LM_eval 

#The below two lines are valid for psuedo data 

fdaarray[,,1]<-X 

fdaarray[,,2]<-Y 

#Perfome pda.fd without forcing function 

k<-1440 

fdatime<-seq(0, k, len=600) 

fdarange <- c(0, k) 

nbasis<-605 

norder<-7 

fdabasis = create.bspline.basis(fdarange,nbasis, norder) 

#  parameter object for coordinates 

fdafd  <- fd(array(0, c(nbasis,l,2)), fdabasis) 

lambda <- 1e8 

fdaPar <- fdPar(fdafd, 5, lambda) 

#  set up the two forcing functions 

ufdlist <- vector("list", 2) 

#  constant forcing 

constbasis <- create.constant.basis(fdarange) 

constfd    <- fd(matrix(1,1,l), constbasis) 

ufdlist[[1]] <- constfd 

# time forcing 
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linbasis   <- create.monomial.basis(fdarange, 2) 

lincoef    <- matrix(0,2,l) 

lincoef[2,] <- 1 

ufdlist[[2]] <- fd(lincoef, linbasis) 

awtlist    <- vector("list", 2) 

constfd    <- fd(1, constbasis) 

constfdPar <- fdPar(constfd) 

awtlist[[1]] <- constfdPar 

awtlist[[2]] <- constfdPar 

wbasis125 <- create.bspline.basis(fdarange, 125) 

#pdf("092815_2.pdf") 

#First apply the equation to the same writer 

fdafdX <- smooth.basis(fdatime, fdaarray[,,1], fdaPar)$fd 

xfdlist<-vector("list", 1) 

xfdlist[[1]]<-fdafdX 

plot(fdafdX) 

#set the number of basis functions to 125 

bfd     <- fd(matrix(0,125,1), wbasis125) 

bfdPar  <- fdPar(bfd, 1, 0) 

bwtlist <- vector("list", 2) 

bwtlist[[1]] <- bfdPar 

bwtlist[[2]] <- bfdPar 

bwtlist[[3]] <- bfdPar 

#carry out principal differential analysis 

pdaList <- pda.fd(xfdlist, bwtlist, awtlist, ufdlist) 

bestwtlist <- pdaList$bwtlist 

aestwtlist <- pdaList$awtlist 

resfdlist  <- pdaList$resfdlist 

par(mfrow=c(2,1), ask=F) 

#evaluate forcing functions 

resfdX  <- resfdlist[[1]] 

plot(resfdX, main="Forcing functions for subject 0 with 125 bspline basis") 

resmeanfdX<-mean(resfdX) 

resmeanfdX_eval<-eval.fd(fdatime, resmeanfdX) 

#extract and plot the weight functions 

beta_X<-matrix(0, 600, 3) 

#par(mfrow=c(1,1), ask=F) 



for(j in 1:3) { 

  betafdPar<-bestwtlist[[j]] 

  betafd<-betafdPar$fd 

  betafd_eval<-eval.fd(fdatime, betafd) 

  beta_X[,j]<-betafd_eval 

  plot(fdatime, betafd_eval, type="l", main=paste("weight function for ", j, sep="")) 

} 

#extract and evaluate weight for forcing functions 

w1_X<-aestwtlist[[1]]$fd$coefs 

w2_X<-aestwtlist[[2]]$fd$coefs 

fdafdY <- smooth.basis(fdatime, fdaarray[,,2], fdaPar)$fd 

fdlist<-vector("list", 1) 

xfdlist[[1]]<-fdafdY 

plot(fdafdY) 

#set the number of basis functions to 125 

bfd     <- fd(matrix(0,125,1), wbasis125) 

bfdPar  <- fdPar(bfd, 1, 0) 

bwtlist <- vector("list", 2) 

bwtlist[[1]] <- bfdPar 

bwtlist[[2]] <- bfdPar 

bwtlist[[3]] <- bfdPar 

#carry out principal differential analysis 

pdaList <- pda.fd(xfdlist, bwtlist, awtlist, ufdlist) 

bestwtlist <- pdaList$bwtlist 

aestwtlist <- pdaList$awtlist 

resfdlist  <- pdaList$resfdlist 

par(mfrow=c(2,1)) 

#evaluate forcing functions 

resfdY  <- resfdlist[[1]] 

plot(resfdY, main="Forcing functions for subject 0 with 125 bspline basis") 

resmeanfdY<-mean(resfdY) 

resmeanfdY_eval<-eval.fd(fdatime, resmeanfdY) 

#extract and plot the weight functions 

beta_Y<-matrix(0, 600, 3) 

#par(mfrow=c(1,1), ask=F) 

for(j in 1:3) { 

  betafdPar<-bestwtlist[[j]] 
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  betafd<-betafdPar$fd 

  betafd_eval<-eval.fd(fdatime, betafd) 

  beta_Y[,j]<-betafd_eval 

  plot(fdatime, betafd_eval, type="l", main=paste("weight function for ", j, sep="")) 

} 

  #extract and evaluate weight for forcing functions 

w1_Y<-aestwtlist[[1]]$fd$coefs 

w2_Y<-aestwtlist[[2]]$fd$coefs 

par(mfrow=c(2,1)) 

plot(resfdX) 

plot(resfdY) 

D3fdafdX<-eval.fd(fdatime, fdafdX, 3) 

D3fdafdY<-eval.fd(fdatime, fdafdY, 3) 

D3fdafdX_mean<-apply(D3fdafdX, 1, mean) 

D3fdafdY_mean<-apply(D3fdafdY, 1, mean) 

plot(fdatime, D3fdafdX_mean*1000000, type="l", col="blue", main="x coordinate") 

lines(fdatime, resmeanfdX_eval*1000000, type="l", col="red") 

abline(h=0, lty=2) 

legend(50, -100, legend=c("3rd", "residual"), fill=c("blue", "red"), cex=0.7) 

plot(fdatime, D3fdafdY_mean*1000000, type="l", col="blue", main="y coordinate") 

lines(fdatime, resmeanfdY_eval*1000000, type="l", col="red") 

abline(h=0, lty=2) 

legend(10, 500, legend=c("3rd", "residual"), fill=c("blue", "red"), cex=0.7) 

par(mfrow=c(1,2)) 

#calculate forcing function, which is the L(X(t)) and L(Y(t)), the linear differential operator 

LX<-matrix(0, 600, 11) 

D1_X<-eval.fd(fdatime, fdafdX, 1) 

D2_X<-eval.fd(fdatime, fdafdX, 2) 

LX<-beta_X[,1]*fdaarray[,,1] + beta_X[,2]*D1_X + beta_X[,3]*D2_X + matrix(-w1_X, 600, 

11) 

matplot(fdatime, LX*10^5, type="l", ylim=c(-50, 70), xlab="time", ylab="forcing function", 

main="X dimension for subject 0") 

abline(h=0, lty=2) 

LY<-matrix(0, 600, 11) 

D1_Y<-eval.fd(fdatime, fdafdY, 1) 

D2_Y<-eval.fd(fdatime, fdafdY, 2) 

LY<-beta_Y[,1]*fdaarray[,,2] + beta_Y[,2]*D1_Y + beta_Y[,3]*D2_Y + matrix(-w1_Y, 600, 

11) 



matplot(fdatime, LY*10^5, type="l", ylim=c(-150, 120), xlab="time", ylab="forcing function", 

main="Y dimension for subject 0") 

abline(h=0, lty=2) 

 


