

A Functional Data Analysis Approach to Looking at
Handwriting Data

The University of Michigan, Department of Statistics

Honors College, Class of 2016

Student： MA Tian-wen Advisor: Dr. EDWARD Rothman

[Abstract] Handwriting is a complicated and individual-oriented movement that involves

fingers, wrist and forearm; handwriting recognition has played an important role in text

recognition, writer identification, and forgery detection. Two major methods including shape

analysis and movement analysis were developed to handle such problem. This thesis applies the

latter method by reviewing the principal differential model developed by James Ramsay and uses

new data to justify the model. Proper curve registration technique has been applied to new data

before performing the principal differential method. The model captures the writing features well

and yields satisfactory categorizing results.

[Key Words] Writer identification; Functional data analysis; Curve registration; Principal

differential models

1

Table of Contents

Chapter 1: Problem and Background Information

Chapter 2: Introduction to Functional Data Analysis

Chapter 3: Theory of Principal Differential Analysis

Chapter 4: Curve Registration

Chapter 5: Handwriting Data Collection and Pre-processing

Chapter 6: Results and Discussions

Chapter 7: Challenges with Analysis

Chapter 8: Bibliography

Chapter 9: Acknowledgements

Chapter 10: Code Index

1. Problem and Background Information

1.1. What is the problem?

Handwriting is a very complicated movement that involves fingers, wrist, and forearm.

Handwriting results display variations not only among individuals, but also within individuals

(Ramasy, 2000). Since handwriting recognition plays an important role in improvement of text

recognition systems, PC-personalization, writer identification, and forgery detection, it has

gained increasing attention in research and application (Elarian, Abdel-Aal, Ahmad, Parvez, &

Zidouri, 2014). This thesis aims to review the principal differential model developed by James

Ramsay and apply it to the new data set to understand the classification mechanism. Proper

curve registration technique has been applied to new data before performing the principal

differential method.

1.2. Shape Analysis and Movement Analysis

Elarian et al. (2014) concluded that there are two major directions of handwriting analysis. One

direction looks at the outcome of the words, and characterizes words by their shapes and

thickness of strokes. This bottom-up approach is called handwriting shape analysis. The way we

handle the handwriting data is similar to signing your signature in the bank, and bank tellers

verify your identity by your current signature and past records. However, studying the difference

of shapes can sometimes be unreliable because shapes are static images, which means the

method only considers the trace after someone has finished the writing. Moreover, it is highly

possible for some well-trained criminals who are good at shape imitation to make a forgery.

Therefore, shape analysis method may fail to detect the minor difference between the true and

the forgery and yield unsatisfactory results.

The other direction of handling handwriting by recording the whole writing process can provide

plausible solutions to the above problem. This top-down approach is called handwriting

movement analysis. In fact, the motivation of the project is to improve the accuracy of signature

verification in the bank. Since most signatures are processed via electronic devices such as POS

machines and tablets, what if the machine is able to record the formation of a signature and

compare it with past records? The method takes more than the static shape into account.

Recording the whole process gives us the instantaneous feedback when the subject is writing,

and it enables us to calculate the velocity and acceleration. Ramsay and Silverman (2002)

proposed that these measurements can reflect the changes of their mental activities. For example,

3

although a person can show similar handwriting images under different mental circumstances,

the velocity or acceleration plots can show drastic differences. This would inspire researchers to

develop new methods to characterize individuals under different mental conditions by

handwriting, and perhaps the application will make handwriting forgery harder than it is now.

2. Introduction to Functional Data Analysis

This chapter is a brief summary of the functional data analysis developed by Ramsay (2009). He

created a new functional data object (I will call it FDA object for simplicity) in R for each

dataset by using the combination of basis functions and proper choice of roughness penalties.

Since handwriting is a very complicated movement, the coordinate plots for each data file

display significant variations. On one hand, the FDA objects that are used to estimate the

coordinate curves should capture features as much as possible. On the other hand, the number of

parameters in the FDA objects should be as few as possible to reduce computations and avoid

over-fitting.

2.1. The Spline Basis Functions

In order to fit successful FDA objects, spline basis functions are introduced. Splines are

constructed by dividing the interval of observation into sub-intervals. The points at boundaries

are called breaks. Splines can be regarded as piecewise polynomials that have fixed degrees over

any sub-intervals. The degree is the highest power in the polynomial, and the order is defined as

degree plus one. Splines can also be defined in terms of knots, which are related to breaks in the

sense that each knot should have the same value as the break point, but the values may be

different in the boundaries. In this setting, splines capture the complicated features of

handwriting locally.

One particular requirement of splines is that neighboring polynomials are constrained to have a

certain number of matching derivatives. The number depends on the choice of the degree (or the

order). This is important because it cannot only capture the local features with different

polynomials, but also guarantees the smoothness of the estimated curves to some degree. In this

case, the estimated curves are globally constructed and their derivatives can be extracted directly

from the curves.

2.2. Building Functional Data Object

After specifying the basis system, the next step is to define a functional data object by setting the

coefficients to the basis system. The coefficients are not the outcome of

interest, but the linear combination of basis functions with coefficients are. If one function is

defined, the coefficients are a vector of length . If one functional data object contains multiple

functions such as handwriting samples for one subject, the coefficients are a matrix of by .

Since the handwriting experiment uses multivariate functions for one trial of one subject, the

coefficient matrix will be generalized to , where . It will give me results

immediately after I have plugged in the raw data.

2.3. Smoothing Curves from Raw Data

The fitting curves can be very messy because the process simply interpolates these points with

lines. One of the solutions is to build a functional parameter data object with proper roughness

penalties, aiming to compromise between capturing important writing features and reduce

computations and over-fitting.

The roughness penalty is to minimize the following mathematical expression:

, where the first part on the right side is the ordinary sum of squared errors of residuals (SSE)

under the error model

The true errors or residuals are statistically independent and are assumed to follow a

Gaussian distribution with mean zero and constant variance. The second part is the measure of

roughness, and L can be derivative functions or differential operators. The smoothing parameter

 specifies the emphasis on the L relative to the goodness of fit in the SSE. takes values in

any non-negative real numbers. As approaches positive infinity, curves become less rough

and converge to a straight line. On the contrary, as goes to zero, roughness penalties have less

influence on the curvature, and the curves display more significant fluctuations. In the extreme

case, the curves simply interpolate each data observations. In practice, the is changed on a

logarithmic scale so that it is convenient to implement and interpret.

One of the quantatitive methods to determine is to calculate the generalized cross-validation

(GCV) with respect to the . The criterion has a mathematical expression that

The minimum of the GCV function exists and is unique once is given (controlling for other

5

factors), and the proper is chosen to minimize the GCV function. In particular, when subjects

are writing the words, their hands are also having involuntary physiological hand tremor due to

muscle contraction and relaxation (Marshall & Geoffery, 1956). The machine with high working

frequency record such variations, leading to the increasing roughness of the curve. Therefore, it

is practice to use significantly large such as to reduce the effect of the random noise.

3. Theory of Principal Differential Analysis

3.1. Template-based Feature Correspondence

The Template-based Feature Correspondence (Wang, Wu, Xu, Shum, & Ji, 2002) provides

theoretical support for the curve registration in Chapter 4. This writing style model assumes that

subjects usually generate their handwriting samples based on their inherent styles, known as

templates. If one subject is required to write the same word many times, the handwriting samples

will display similar features. The model is described in the following mathematical expression.

Suppose is the word to be written (The index refers to the handwriting sample),

is the template that the subject follows and is the writing process to generate the word .

Furthermore, each sample has its unique global style-independent parameters such as scale,

location and slant. Therefore, I have

, where is random noise, and represents affine transform parameters. This process

suggests that for the same word written by the same subject, the differences result from two

parts. One is the random noise from the hand tremors and the machine errors that are inevitable.

The other one is the affine transform, which include translation, expansion and contraction.

Curve registration reverses the above process by identifying for each subject with . In

particular, random noise can be modified by applying the roughness penalties to raw data, and

the unique global style-independent parameters are synthesized by data truncation and

normalization. Therefore, curve registration technique integrates affine transform to determine

the final template for each subject.

The concept of template can be generalized to coordinate, velocity and acceleration curves. They

are the dynamic criteria in categorizing handwriting across subjects. Since the acceleration is

associated with forces by muscle contraction, which determines the dynamic templates the most,

Ramsay (2000) argued that the magnitude of the acceleration was considered as the fundamental

criterion. It is the magnitude of the 3 dimensional vector defined as

Although coordinate curves are studied separately by decomposing the movement into three

dimensions, three-dimensional curves are actually subjected to the external forces at the same

time. Therefore, registering the magnitude of the acceleration vector is plausible to present the

idea.

3.2. Principal Differential Model

The FDA objects allow us to extract derivative curves, and the template theory suggests that

these derivatives serve as criteria in categorizing writing patterns of subjects. Based on Newton's

Second Law (), Ramsay and Silverman (1997) started with a second-order linear

differential model

which integrates three types of forces in one formula. The model is then generalized with time-

varying coefficients. Thus, given repeated measurements of sample processes, the linear

differential operator for each subject is defined as

, where is the highest order of derivative, and is the corresponding weight function of

order for the subject . The model has the following generic equation:

, where on the right is the forcing function. The forcing functions normally contain two

parts. One is external force , which represents the external force that cannot be explained

by the main differential equation itself. The other is the error function . The above model

with two forcing functions is to minimize the objective function with respect to coefficient

functions :

In the handwriting setting, the target functions are of dimension three. Therefore, Ramsay (2000)

modified the linear differential equation

, where is the observation index of a multivariate functional data. Here, I only take ,

coordinates into account because coordinate does not yield satisfactory registration result.

3.3. Idea of Subject Categorization

7

The coefficient functions based on a group of writing samples from the same subject should

be sensitive to samples written by other subjects. The idea of differentiating handwriting is as

follows: for each subject, I fit the above model for X and Y coordinates, and extract the residual

functions, separately. These are the residual functions generated by their own weight functions.

Then I apply data of one subject to the model of the other one and extract the residual functions

again. These are the residual functions generated by alternate weight functions. The former

residual functions are expected to display variation with white noise characteristics, indicating

that the differential operator succeeds in capturing most handwriting features, and the

handwriting samples match the subject. Meanwhile, the latter residual functions are expected to

display variations with drastic patterns, indicating that the differential operator fails to capture

the most handwriting features, and the handwriting samples do not match the subject (Ramsay &

Silverman, 2002).

There are several methods for model evaluations. One visual method examines whether the

model captures the variation well by co-plotting the mean residual function and the

average third derivative function . If the magnitude of is smaller than ,

then the model fits well. Otherwise, residual functions may contain mixed components of higher-

order derivatives, and further separation work needs finishing. A squared multiple correlation

measure of fit defined by

can also demonstrate the goodness of fit for the model (Ramsay & Silverman, 2002). The is

similar to the in linear regression, and takes values from . The closer the is to 1,

the better the goodness of fit is.

4. Curve Registration

Although I can obtain the derivative curves from smoothed curves directly, the variation of

curves within the same subject is too drastic to perform differential analysis. However, the

template-based feature correspondence suggests that samples within the same subject do share

certain characteristics. Ramsay and Silverman (1997) developed the curve registration method to

integrate affine transforms and retrieve the final template . Therefore, proper registration

methods have been applied before I perform the principal differential analysis.

4.1. Amplitude and Phase Variation

Figure 1: Curves witih only phase and amplitude variation

Phase variation and amplitude variation are two representations of differences from the affine

transforms. The top panel in Figure 1 displays curves with mere phase variation, where the red

one is the curve . Three curves achieve their maxima and minima at

different 's, but with the same values. Green and blue curves can be generated by right shifting

red curve with 1 and -1 unit. The bottom panel in Figure 1 displays curves with mere amplitude

variation. Although three curves have distinct maxima and minima, but they arrive at the values

at the same x. The red and green curves can be generated by multiplying the blue curve by 1.2

and 0.8.

4.2. Landmark Registration (LM) and Continuous Registration (CR)

The simplest curve alignment procedure is called landmark registration. A landmark is a

significant feature at a certain time location that is common to all curves. Landmarks may be the

location of minima, maxima or zero points. The alignment is achieved by transforming for

each curve so that each of them arrives at their landmark locations at the same time . Landmark

registration method can only yield satisfactory results when raw curves display drastic and

consistent changing patterns.

Landmark registration is usually a good start to remove phase variation, but a more sophisticated

9

method is needed to modify the existing curves if landmarks are not obvious to detect. James and

Silverman (1997) illustrated the method of continuous registration that can perform registration

automatically and reduce the magnitude of amplitude variation. The continuous registration

method assumes that the dominant difference between pre-registered curves and post-registered

curves is the amplitude variation, and their coordinate values will be almost proportional to each

other across the whole period. If the registered curve is plotted against template one, it is ideal to

see a straight line tending to pass through the origin. If this is true, each curve can be further

registered towards the template curve by minimizing the smallest eigenvalue of the cross-product

matrix.

[
∫{𝑥0(𝑡)}

2𝑑𝑡 ∫ 𝑥0(𝑡)𝑥[ℎ(𝑡)]𝑑𝑡

∫ 𝑥0(𝑡)𝑥[ℎ(𝑡)]𝑑𝑡 ∫{𝑥[ℎ(𝑡)]}2
]

If the curves are multivariate such as the handwriting example, then it is the sum of the smallest

eigenvalue across dimensions that are minimized.

One method that evaluates the registration method is to compute the mean squared error (MSE)

for amplitude and phase variation before and after the CR method. The phase MSE after

landmark registration is also computed if the CR method is done based on the LM result. If the

difference between two phase MSEs yields negative numbers, then the CR method shows poor

alignment. If the LM method is applied to raw curves first, the ratio of phase MSE by total MSE,

known as RSQR, also reflects how well the LM method has done to reduce phase variations. The

smaller percentage it achieves; the better result it has after applying the CR method.

4.3. Time-warping Functions

The time-warping function is a monotonically increasing function that maps the template writing

time to the actual writing time for each sample. In addition, the time-warping function should be

smooth enough to calculate derivatives. If the curves are observed over a common interval

, then the time-warping functions must satisfy the constraints and .

The registered coordinate functions are , where the aligning functions

and are inverse functions.

Here, the time-warping functions are defined over the interval since all the samples are

finished around 6 seconds and the machine frequency is set as 400 Hz. Take the small-break time

between “Ann” and “Arbor” as an example. Each subject stops at different time points across

samples relative to clock time. In terms of stopping time in the template, all samples should

arrive at their peaks at the same time. The time-warping function serves as a connection that

ensures all coordinate curves display certain characteristic (such as achieving peaks and crossing

zeros at the same time), so that the coordinate curves after transformation are comparable. Time-

warping functions can also tell whether the subject is writing faster than normal by calculating

the time lag . However, it is not the outcome of interest because the template is

achieved by minimizing the individual differences.

4.4. Cross-sectional Mean and Registered Mean

After obtaining registered curves from raw curves, the mean curve is extracted by taking the

average of coordinates at each time. Such registered mean curves are the writing template S.

Compared to cross-sectional mean curves, which only take the average of coordinates of the raw

curves, registered mean curves avoid obscuring the sharp acceleration peaks and troughs due to

the messy timing variation. The registered mean curves can reduce the unusual effect of certain

sample. Therefore, it is better to use registered mean curves than cross-sectional mean curves to

denote the template . Figure 7 in Chapter 6 shows the mean word plot "Ann Arbor" with LM

and CR methods.

5. Handwriting Data Collection and Data Pre-processing

5.1. Data Collection

The new data set is obtained from the handwriting experiment in the Biomechanic Research Lab,

University of Michigan. With the assistance of Sasha Kapshai, I set up the new coordinate

system, and five subjects (including myself) were required to write “Ann Arbor” for twenty

times, respectively. Among twenty writing samples, each subject was required to write in a non-

cursive way for the first ten times as opposed to last ten times in a cursive way. The data were

recorded by the Optotrak Certus machine, and subjects were holding a specially made pen with

six sensors connected to the computer. The machine recorded the handwriting based on

movements of six sensors and convert them to the movement of pen tip. The frequency of the

machine was set to 400 Hz and the time length was set to 7 seconds. The basic unit of

measurement for distance was millimeter.

Among five subjects, all writing samples were finished around 6 seconds, and it took five

subjects approximate 3.6 seconds to write “Arbor”. The computer produced one data file after

11

subjects finished one writing sample, and each data file contained 7 columns and 2800 rows.

There should be 100 data files in total. The first three columns were the radian differences

between the new coordinate system and its intrinsic coordinate system. The next three columns

were the values of three-dimensional coordinates under the new coordinate system, and the last

column was the pen error. Only “pen.x”, “pen.y” and “pen.z” were used to perform future

analysis.

pen Rz pen Ry pen Rx pen x pen y pen z pen error

0.3342025 0.3141596 -0.0929014 -86.900222 729.42852 119.91264 0.1340895

Table 1: The column names and sample data of subject 0 and 1

5.2. Data Selection and Normalization

Writing samples by the subject 3 and 4 were discarded due to the large amounts of missing data.

(Two subjects held the pen in the way that their hands blocked the sensors from being detected

by the machine, leading to lots of missing data in the raw data set.) The cursive samples of all

subjects were also discarded due to poor registration results.

Among “pen.x”, “pen.y”, and “pen.z”, I removed the minus sign of “pen.x” and switch “pen.y”

and “pen.z” columns in the data file to plot the proper word image. Since all the non-cursive

writing samples were finished around 6 seconds, each data file needed truncating to 2400 rows

with the help of the Z coordinate. When people are writing, they have to exert force on the pen to

leave the trace. In that case, Z coordinate will remain constant. When people finish writing one

part of the word, such as “Ann” of “Ann Arbor”, they will take a small break by raising their

hands. When they finish writing the whole word or phrases, the gesture of raising their hands

will be much more significant. Therefore, the extra Z coordinate plays an important role in

determining the starting point and ending point for each data file. Although my eyes cannot

detect them, the machine amplifies the variation by displaying significant jumps in the Z

dimension while the remaining points form a constant horizontal line. Normally, where the Z

coordinates have the first jump is the starting point, and where the Z coordinates have last (and

usually the greatest) jump is the ending point.

Figure 2: Distortion influence on individual sample due to consecutive missing data

Figure 3: Mean “Ann Arbor” plot

For curve registration part, I randomly picked 1000 rows from the total 2400 rows. It

compromised between capturing necessary writing features and avoiding over-fitting. For the

principal differential analysis part, to simplify the model, I kept the word “Arbor” by randomly

selecting 600 observations so that it corresponded to the fact that time was spent in writing

“Arbor”. After truncating the data file to 1000 rows, normalization was performed to reduce the

effect of magnitude. The mean and standard deviance for each column in all data file were

calculated by the following formula:

Missing data were universally set to 0 after scaling the data to minimize the difference between

the true shape and actual shape. The magnitude of scaled data ranges from -1 to 3. Although

missing data have an influence on each writing sample, the overall shape is relatively unchanged.

For example, the first “A” of “Ann Arbor” in Figure 2 has flatter top than the second “A” due to

the consecutive missing data in the raw data file. However, the average word plot in Figure 3

doesn't reflect this unusual local feature because taking the average minimizes the differences

across samples.

13

6. Results and Discussions

6.1. Registering the Coordinate Curves

Figure 4: Y and Z coordinate matplot of subject 0

Figure 4 shows the matplot of smoothing Y and Z coordinates for subject 0 prior to registration.

The Z coordinate plot on the right displays significant and consistent jumps around 2.5 second

(or 1000 in the plot), which is the small break between “Ann” and “Arbor”. Those ten samples

arrive at their peaks at different time points and different values, which demonstrates the effects

of phase variation and amplitude variation.

I choose local maximas of Y coordinates as landmarks by hand because Y coordinates show

more consistency than X and Z coordinates. I set one landmark when the curve reaches its local

maxima. Figure 5 shows landmarks of the first two samples by subject 0. There are 15 landmarks

for each sample of subject 0. The number of landmarks differ across subjects, but are generally

greater than 10. However, there are a few points that are not located at the peaks. For example,

the curves after the first peak as well as after four consecutive small peaks experience quite flat

sections. They happen at around 1 second and 3 second, respectively. Therefore, I fit two

landmarks at the boundaries of these sections to keep the flatness in the registration result.

Figure 5: Landmark selection of the first two Y coordinate plots of subject 0

In order to use landmarks to represent the curves accurately, they should themselves display

sharp but consistent curvatures. Fortunately, the handwriting curves fit the category well because

when each subject is required to write “Ann Arbor”, their intrinsic styles force subjects to control

their muscle to produce necessary variations so that people can identify the word correctly,

which leads to significant but consistent curvatures.

I apply the LM method first, and then apply the CR method to LM registered curves. I will use

subject 0 as an example to illustrate how the CR method improves the alignment of coordinate

curves. The MSEs of X and Y dimensions after the LM registration are 10.4, 4.5 and 93.7, 561,

with the first one for amplitude variation. The variation of X is quite satisfactory and only 30%

variation is produced by phase. But the variation of Y is much bigger than expected, and 85.7%

variation is produced by phase. The large phase variation for the Y coordinate implies that it is

necessary to perform the CR method on Y dimension to further reduce the variation. The MSEs

of X and Y coordinate curves after the CR registration are 5.45, 12.8 and 36.2, 59.1. Although

the variations for X increase, the CR method reduces the variation of Y coordinates significantly.

Therefore, in this case, the CR method does improve the alignment of LM registered curves. I

15

also perform the CR method directly to raw curves, but the registered curves display poor

alignment, compared to the former method. This is mainly because handwriting curves are too

complicated to handle automatically. The raw data contain both phase variation and amplitude

variation, which violates the assumption for performing the CR method. Either manual splitting

into sub-intervals or applying the LM method first should be done to substantially reduce phase

variation as much as possible before performing the CR method.

Figure 6: Registered X and Y coordinate plots with CR method of subject 0

Figure 6 shows the X and Y coordinate curves of subject 0 after the CR registration. X

coordinate curves for all three subjects display monotonically increasing trends with fewer

fluctuations, while Y coordinate curves display sharper fluctuations. This is because subjects are

used to writing words horizontally. During the writing process, they keep their elbows and wrists

as pivots. Subjects try to keep their forearms still to allow only hands to move from the left side

to the right side because the fixation of arms also prevents the paper from moving around. Since

the horizontal movement mainly involves continuous rotation, small amount of force is needed

to finish the movement. On the contrary, for Y coordinate, subjects need to rotate their wrists to

let the pen tip interact with the paper to write from the upper part to the lower part. Moreover,

when subjects finish one up-to-down cycle, they have to jump to the upper place on the right to

start a new one, making the movement have the zigzag shape. Therefore, extra forces are exerted

to finish the movement, which accounts for the sharp fluctuation of Y dimension.

6.2. Obtaining the Word Plot

The three word plots in Figure 7 are generated using templates of subject 0, 1, and 2. Results

produced by two methods are marked with different colors. (Note that CR results are based on

LM registered curves.) Differences across subjects are quite easy to tell, and for each subject,

two methods produce almost the same word plot, suggesting that either method works fine for

generating the shape template.

Figure 7: Template word plots for three subjects with LM and CR methods

6.3. Registering the Derivative Curves

17

Figure 8: Registered velocity and acceleration plots for subject 0

Figure 9: Mean velocity and accelerations of ten samples of subject 0

However, it is not adequate to analyze the template word plot because they only tell the shape

difference. The "fda" package enables me to extract the aligned velocity and acceleration curves

directly. The four plots in Figure 8 are the two-dimensional registered velocity and acceleration

curves of subject 0 using the time-warping function from registered coordinate curves. It is

shown that Y dimension yields more desirable results while X dimension plots have messy ones,

possibly because the CR method contributes to alignment of Y coordinate curves, and I select the

landmarks of the Y coordinate curves. The scale of curves is also different between two

dimensions. Figure 9 shows the mean velocity and acceleration curves against each sample. The

magnitude of Y dimension is 8 times as large as X dimension for velocity and acceleration,

suggesting that large force is applied on Y dimension.

Although the order of acceleration is from the plot, the real value can be as large as . It

is very counter-intuitive that handwriting movement requires very large amount of force. Two

reasons explain the enormous distinctions. First, scaling procedure is applied to raw data to

remove magnitude effect on registration, making the range of new data less than 1/10 of raw

data. Second, the time range is not represented in second, but second multiplied by 400 because

of the working frequency of the machine. The stretching effect on time also reduces the

magnitude of acceleration when the derivative is calculated.

It is also worth mentioning that the peaks of velocity and acceleration curves correspond to

different locations in word plots. When velocity arrives at local peaks, it is usually located in

points where the nearby strokes display small curvature, such as the straight-line portion of both

letter “A” in “Ann Arbor”. Subjects simply write along a straight line without external

interference, thus leading to increasing velocity at first; if there is a turn in the stroke, their

writing velocity decreases to change the direction later. When acceleration arrives at local peaks,

it is usually located in the points where the nearby strokes show sharp curvature such as the

connection between ”b” and “o” because external force has to be applied in order to have abrupt

direction changes. The pattern also explains why the number of peaks for velocity and

acceleration are the same, but they appear alternately.

Figure 10: Registered acceleration plots for subject 0

If I look at the magnitude of acceleration , there will be more fluctuations

due to the superimposition of X and Y dimensions. I exclude the Z coordinate because they yield

terrible registration results. The plot itself is too complicated to interpret. Nevertheless,

19

throughout the total 6 seconds, it is clear that there are more than 30 jumps in the plot. It

demonstrates handwriting is a movement of high frequency, which agrees with the earlier

argument that handwriting movement requires large amount of force. In other words,

handwriting is, to some extent, compromising between recognition and smoothness in a dynamic

sense. Since scripts are limited to space, they usually contain certain breaks and turns to

distinguish themselves from others. Certain amounts of forces have to be exerted on pens to

yield the desirable result; otherwise, it will be very difficult for people to recognize the scripts.

Notice that acceleration values are approaching zero around 400 (1s), 1000 (2.5s), and 1400

(3.5s). The second one lasts the longest because it is when subject 0 takes a small break between

“Ann” and “Arbor”. The only movement subject 0 makes is to lift his hand up, therefore, nothing

significant changes in X and Y dimensions make the magnitude of acceleration value around

zero. The other two reflect the flatness in the Y coordinate curves where I select two landmarks

at each boundary.

6.4. Extracting Forcing Functions

Figure 11: Forcing functions of X, Y dimensions for subject 0

Figure 11 shows forcing functions of X and Y dimensions for subject 0. To simplify the model, I

only use "Arbor" section, and the time ranges from 2.4 to 6 seconds (0 to 1440 in the plot). In the

linear differential model, forcing functions represent the external forces that cannot be explained

by the main part of the differential equation. For X dimension, forcing functions have significant

fluctuations around 360 (3.3s), 1000 (4.9s), and 1200 (5.4s). They correspond to the connection

between “A” and “n”, “b” and “o”, and “o” and “r”. These locations happen to have large

curvatures, making external force available to capture the writing pattern. Similarly, for Y

dimension, forcing functions have significant fluctuations around 480 (3.6s), 640-800 (4-4.4s),

and 1000-1200 (4.9-5.4s). They correspond to the lower part of first “r”, the connection between

“r” and “b”, and “b” and “r”. Figure 12 displays the third derivative and residual function of the

first two subjects. The linear differential model up to the third derivative successfully captures

the majority of variation, as the magnitude of residual function is much smaller than the third

derivative. Therefore, I have successfully obtained the coefficient function for subject 0 and

subject 1.

Figure 12: Third derivatives and residual functions of X, Y dimensions

6.5. Performing Principal Differential Analysis

After I apply the first two subjects' data to their models, residual functions are extracted for X

and Y dimensions. The upper-left and lower-right plots in Figure 13 and 14 are situations where

the models are applied to their own handwriting samples, while the other two are situations

where the models are applied to the alternate handwriting samples. The upper-left and lower-

right plots show small and messy residual functions. The remaining two plots show obvious and

large patterns, meaning that the coefficient functions do not match the identity of input data.

Applying the data of subject 1 to the model of subject 0 does not yield satisfactory result of X

dimension, possibly because the CR method reduces the alignment of registered curves,

obscuring the difference between two plots in the first row. Therefore, this linear differential

21

model with forcing functions captures the majority of writing features, and successfully

categorizes the samples of two subjects.

Figure 13: Residual plots of X dimensions between subject 0 and 1

Figure 14: Residual plots of Y dimensions between subject 0 and 1

7. Challenges with Analysis

The first drawback of this analysis is the smoothness of raw curves. Since I cannot attach sensors

to the ordinary pen, subjects have to replace it with the long stick. Unaccustomed to the writing

object and unable to see the actual writing outcome, subjects may produce slightly different

writing samples than usual, increasing the roughness of raw data. Such difference may become

more obvious when I perform principal differential analysis.

Secondly, the normalization method in the data pre-processing part is simply to let data points

minus their column means, and then divided by their standard deviations. Since the patterns of

cursive samples after the normalization are too insignificant for me to pick out the landmarks by

hand, all the cursive samples are discarded. If there is an advanced technique to normalize the

raw data and amplify the patterns, I can apply the previous analysis to cursive handwriting and

categorize cursive handwriting samples or to look at the difference between non-cursive and

cursive handwriting samples within the same subject.

Thirdly, since subjects may inevitably block the sensors from being detected by the machine,

missing data exist in the raw data. The way I handle the missing data is simply to assign them to

zero after normalization. If there exists a consecutive part of missing data, simply regarding them

as zero will distort the individual word plot, which may affect the registration process and

formation of template. However, one of the refinements is to fit a local linear regression or

kernel regression to fill in the gap so that the shape after fitting FDA object is more authentic.

Finally, manually selected landmarks may contain artificial errors in alignment, especially when

the local peaks have small curvatures. It is then very difficult for me to decide the number of

landmarks, let alone picking them out correctly. In addition, since I apply landmarks from Y

dimension to X dimension, the landmarks show poor fit with X coordinate curves, especially on

the boundaries. It will be very effective that certain technique is developed to evaluate the

location of landmarks, which can adjust their locations automatically to perform an optimal fit.

23

8. Bibliography

Elarian, Y., Abdel-Aal, R., Ahmad, I., Parvez, M., \& Zidouri, A. (2014). Handwriting synthesis:

Classifications and techniques. IJDAR International Journal on Document Analysis and

Recognition (IJDAR),17(4), 455-469.

Marshall, J., \& Geoffery, W. (1956). Physiological Tremor. Journal of Neurology, Neurosurgery,

and Psychiatry, 19(4), 260-267. doi:10.1136/jnnp.19.4.260

Ramsay, J. (2000). Functional Components of Variation in Handwriting. Journal of the American

Statistical Association, 95(449), 9-15. doi:10.1080/01621459.2000.10473894

Ramsay, J. O., & Silverman, B. W. (1997). Functional data analysis. New York: Springer.

Ramsay, J., \& Silverman, B. (2002). The Dynamics of Handwriting Printed Characters. In

Applied functional data analysis methods and case studies. New York, NY: Springer.

Ramsay, J. (2009). Functional data analysis with R and MATLAB. New York, NY: Springer-

Verlag New York.

Wang, J., Wu, C., Xu, Y., Shum, H., \& Ji, L. (2002). Learning-based cursive handwriting

synthesis. Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition,

157-162. doi:10.1109/IWFHR.2002.1030902

9. Acknowledgements

I would like to thank Dr. Edward Rothman for giving me the opportunity to explore this

handwriting project and providing me with valuable suggestions when I reach an impasse. I

would like to thank Dr. James Ashton-Miller and his research assistant Aliaksandra Sasha

Kapshai for allowing me to use the Optotrak Certus machine and helping me set up the

experiment. Finally, I would like to thank four volunteers for participating in the experiment

and record their handwriting.

10. Code Index

#sub0.R library(fda) #import dataset

#setwd("/Users/mtianwen/Downloads")

#s0r1<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_003_6d.csv", header=T)

#s0r2<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_004_6d.csv", header=T)

#s0r3<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_005_6d.csv", header=T)

#s0r4<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_006_6d.csv", header=T)

#s0r5<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_007_6d.csv", header=T)

#s0r6<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_008_6d.csv", header=T)

#s0r7<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_009_6d.csv", header=T)

#s0r8<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_010_6d.csv", header=T)

#s0r9<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_011_6d.csv", header=T)

#s0r10<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_012_6d.csv", header=T)

#s0r11<-read.csv("/Tianwen himself/6_12_15_2015_06_12_094112_013_6d.csv", header=T)

#x0<-data.frame(s0r1$pen.x, s0r2$pen.x, s0r3$pen.x, s0r4$pen.x, s0r5$pen.x, s0r6$pen.x,

s0r7$pen.x, s0r8$pen.x, s0r9$pen.x, s0r10$pen.x, s0r11$pen.x, s0r12$pen.x, s0r13$pen.x,

s0r14$pen.x, s0r15$pen.x, s0r16$pen.x, s0r17$pen.x, s0r18$pen.x, s0r19$pen.x, s0r20$pen.x,

s0r21$pen.x, s0r22$pen.x)

#x0<-(-x0)

#colnames(x0)<-c("rep1", "rep2", "rep3", "rep4", "rep5", "rep6", "rep7", "rep8", "rep9", "rep10",

#"rep11", "rep12", "rep13", "rep14", "rep15", "rep16", "rep17", "rep18", "rep19",

"rep20", "rep21", "rep22")

#y0<-data.frame(s0r1$pen.z, s0r2$pen.z, s0r3$pen.z, s0r4$pen.z, s0r5$pen.z, s0r6$pen.z,

s0r7$pen.z, s0r8$pen.z, s0r9$pen.z, s0r10$pen.z, s0r11$pen.z, s0r12$pen.z,

s0r13$pen.z, s0r14$pen.z, s0r15$pen.z, s0r16$pen.z, s0r17$pen.z, s0r18$pen.z,

s0r19$pen.z, s0r20$pen.z, s0r21$pen.z, s0r22$pen.z)

#colnames(y0)<-colnames(x0)

#z0<-data.frame(s0r1$pen.y, s0r2$pen.y, s0r3$pen.y, s0r4$pen.y, s0r5$pen.y, s0r6$pen.y,

s0r7$pen.y, s0r8$pen.y, s0r9$pen.y, s0r10$pen.y, s0r11$pen.y, s0r12$pen.y,

s0r13$pen.y, s0r14$pen.y, s0r15$pen.y, s0r16$pen.y, s0r17$pen.y, s0r18$pen.y,

s0r19$pen.y, s0r20$pen.y, s0r21$pen.y, s0r22$pen.y)

#colnames(z0)<-colnames(z0)

#for(i in 1:11) {

plot(x0[,i], y0[,i], type="l", main=paste("rep ", i, sep=""))

#}

25

#s0_eng_start<-c(30, 270, 330, 370, 500, 70, 300, 300, 380, 310, 200, #3rd 330

300, 250, 310, 260, 360, 200, 270, 210, 500, 370, 440)

#s0_eng_end<-c(1900, 2350, 2320, 2350, 2340, 1880, 2000, 2150, 2180, 1950, 1850, #3rd 2320

1600, 1620, 1800, 1560, 1650, 1580, 1640, 1720, 2030, 1820, 1960)

#par(mfrow=c(2,1))

#for(i in 1:11) {

plot(x0[s0_eng_start[i]:s0_eng_end[i],i], y0[s0_eng_start[i]:s0_eng_end[i],i], type="l",

main=paste("rep ", i, sep=""))

plot(rep(s0_eng_start[i]: s0_eng_end[i]), z0[s0_eng_start[i]:s0_eng_end[i],i], type="l",

main=paste("z of rep ", i, sep=""))

#}

Temp<-NULL; k<-1000

#for(i in 1:11) {

index<-sort(sample(s0_eng_start[i]:s0_eng_end[i], k, replace=F))

Temp<-cbind(Temp, x0[index,i], y0[index,i], z0[index,i])

#}

#colnames(Temp)<-rep(colnames(x0)[1:11], each=3)

#Temp<-scale(Temp, center = T, scale=T)

#Temp[is.na(Temp)]<-0

#write.csv(Temp, "/Users/mtianwen/Downloads/s0_eng_1.csv", row.names=F)

#import dataset

s0_eng_1<-read.csv("s0_eng_1.csv", header = T)

s0_eng_1<-s0_eng_1[,-c(7:9)] #3rd sample writes something wrong... ignore this part data

colnames(s0_eng_1)<-rep(c("rep1", "rep2", "rep3", "rep4", "rep5",

 "rep6", "rep7", "rep8", "rep9", "rep10"), each=3)

s0_eng_1<-as.matrix(s0_eng_1)

s0_eng_basis_1<-create.bspline.basis(rangeval=c(0,k), nbasis=floor(k/3), norder=6,

#dropind=NULL, quadvals=NULL,

#values=NULL, basisvalue=NULL, names="subject0_english bspline")

fdatime<-seq(0, 2400, length.out = 1000)

par(mfrow=c(3,1))

matplot(fdatime, s0_eng_1[,seq(1,30,3)], xlab="time", type="l",

main="x coordinate ", ylab="normalized x")

matplot(fdatime, s0_eng_1[,seq(2,30,3)], xlab="time", type="l",

main="y coordinate ", ylab="normalized y")

matplot(fdatime, s0_eng_1[,seq(3,30,3)], xlab="time", type="l",

main="z coordinate ", ylab="normalized z")

s0_eng_1_x<-Data2fd(argvals=fdatime, y=s0_eng_1[,seq(1,30,3)], basisobj=s0_eng_basis_1)

s0_eng_1_x_eval<-eval.fd(fdatime, s0_eng_1_x)

s0_eng_1_y<-Data2fd(argvals=fdatime, y=s0_eng_1[,seq(2,30,3)], basisobj=s0_eng_basis_1)

s0_eng_1_y_eval<-eval.fd(fdatime, s0_eng_1_y)

s0_eng_1_z<-Data2fd(argvals=fdatime, y=s0_eng_1[,seq(3,30,3)], basisobj=s0_eng_basis_1)

plot(s0_eng_1_x, main="x coordinate against time for first 10 rep")

plot(s0_eng_1_y, main="y coordinate against time for first 10 rep")

plot(s0_eng_1_z, main="z coordinate against time for first 10 rep")

par(mfrow=c(2,1))

for(i in 1:10) {

 plot(s0_eng_1_x_eval[,i], s0_eng_1_y_eval[,i], type="l", xlab="x", ylab="y",

 main=paste("Ann Arbor of rep ", i, sep=""))

 #plot(s0_eng_1_y[i], main=paste("z of rep ", i, sep=""))

}

###

#########

######## perform landmark registration for the first ten sample trials ########

i<-2

x<-fdatime; y<-s0_eng_1_y_eval[,i]

plot(x, y, type="l", main=paste("rep ", i, sep=""))

identify(x, y, labels=rep(1:k))

points(x[ximarks[i,]], y[ximarks[i,]], pty=1)

mark_data<-c(65, 152, 233, 280, 325, 378, 431, 515, 588, 633, 737, 805, 856, 898, 934,

 60, 124, 188, 234, 274, 319, 362, 481, 557, 603, 697, 760, 819, 880, 915,

 #61, 130, 186, 342, 389, 440, 480, 571, 641, 673, 754, 811, 870, 918, 938,

 64, 132, 174, 221, 255, 286, 336, 482, 549, 585, 682, 745, 804, 852, 908,

 70, 141, 188, 234, 281, 326, 375, 497, 567, 614, 714, 775, 828, 883, 923,

 59, 151, 184, 239, 286, 327, 388, 525, 597, 633, 734, 805, 857, 904, 933,

 92, 157, 200, 248, 291, 336, 387, 505, 588, 628, 721, 791, 853, 898, 930,

 123, 197, 243, 295, 326, 365, 420, 534, 617, 674, 783, 834, 881, 920, 943,

 59, 154, 181, 233, 280, 322, 378, 539, 628, 662, 752, 806, 854, 901, 929,

 88, 168, 189, 233, 269, 314, 353, 511, 588, 634, 736, 800, 863, 898, 920,

 121, 225, 257, 306, 343, 385, 432, 526, 613, 656, 750, 818, 873, 919, 940)

#mark_data<-mark_data/200

ximarks<-matrix(mark_data, 10, 15, byrow=T)

PGSctrmean=colMeans(ximarks)

27

wbasisLM<-create.bspline.basis(c(0,k), 18, 3, c(0, PGSctrmean, k))

WfdLM<-fd(matrix(0,18,1), wbasisLM)

WfdParLM<-fdPar(WfdLM, 1, 1e-5)

par(mfrow=c(2,1))

regListLM_z<-landmarkreg(fdobj=s0_eng_1_z, ximarks=ximarks, x0marks=PGSctrmean,

WfdPar=WfdParLM, monwrd = T)

plot(regListLM_z$regfd, main="registered z with LM", lwd=2)

plot(regListLM_z$warpfd, main="warp function for z", lwd=2)

regListLM_x<-landmarkreg(fdobj=s0_eng_1_x, ximarks=ximarks, x0marks=PGSctrmean,

WfdPar=WfdParLM, monwrd = T)

plot(regListLM_x$regfd, main="registered x with LM", lwd=2)

plot(regListLM_x$warpfd, main="warp function for x", lwd=2)

regListLM_y<-landmarkreg(fdobj=s0_eng_1_y, ximarks=ximarks, x0marks=PGSctrmean,

WfdPar=WfdParLM, monwrd = T)

plot(regListLM_y$regfd, main="registered y with LM", lwd=2)

plot(regListLM_y$warpfd, main="warp function for y", lwd=2)

for(i in 1:10) {

 #plot(regListLM_x$regfd[i], main=paste("x of rep ", i, sep=""))

 plot(regListLM_y$regfd[i], main=paste("y of rep ", i, sep=""))

 #plot(regListLM_z$regfd[i], main=paste("z of rep ", i, sep=""))

}

#warp deformation plots

par(mfrow=c(1,1))

matplot(rep(1:k), (eval.fd(rep(1:k), regListLM_y$warpfd)-matrix(rep(1:k), k, 10, byrow=F)),

ylab="h_i(t)-t", type="l", lty=1:2, col=1:9, lwd=2, main="coordinate warp deformation")

AmPhasList_1_x<-AmpPhaseDecomp(s0_eng_1_x, regListLM_x$regfd, regListLM_x$warpfd)

#10.4, 4.5, 0.302, 0.996;

AmPhasList_1_y<-AmpPhaseDecomp(s0_eng_1_y, regListLM_y$regfd, regListLM_y$warpfd)

#93.7, 561, 0.857, 0.995;

AmPhasList_1_z<-AmpPhaseDecomp(s0_eng_1_z, regListLM_z$regfd, regListLM_z$warpfd)

#107, 301, 0.737, 1.01;

reg_x_LM_eval<-eval.fd(rep(1:k), regListLM_x$regfd)

reg_y_LM_eval<-eval.fd(rep(1:k), regListLM_y$regfd)

#write.csv(reg_y_LM_eval, file="/Users/mtianwen/Downloads/s0_reg_y_LM_eval.csv",

row.names=F)

#plot each "Ann Arbor"

par(mfrow=c(2,1))

for(i in 1:10) {

 plot(reg_x_LM_eval[,i], reg_y_LM_eval[,i], type="l", xlab="x", ylab="y",

 main=paste("rep ", i, " with LM", sep=""))

}

x_mean_LM<-rowMeans(reg_x_LM_eval)

plot(rep(1:k), x_mean_LM, xlab="time", ylab="registered x", main="mean x with LM versus

time",

type="l", lwd=2)

y_mean_LM<-rowMeans(reg_y_LM_eval)

plot(rep(1:k), y_mean_LM, xlab="time", ylab="registered y", main="mean y with LM versus

time",

type="l", lwd=2)

plot(x_mean_LM, y_mean_LM, type="l", xlab="registered x", ylab="registered y",

main="Ann Arbor with LM registration", lwd=2)

plot.new()

#remove trend factor and retrieve residuals

s0_eng_1_x_residuals<-NULL

for(i in 1:10) {

 model<-lm(reg_x_LM_eval[,i] ~ rep(1:k))

 s0_eng_1_x_residuals<-cbind(s0_eng_1_x_residuals, model$residuals)

}

matplot(s0_eng_1_x_residuals, type="l", lwd=2, xlab="time", ylab="residuals of x",

main="residuals of registered x with LM")

abline(h=0, lty=2, lwd=2)

plot(regListLM_x$regfd, main="registered x with LM", lwd=2)

#write.csv(s0_eng_1_x_residuals, file="/s0_eng_1_x_residuals.csv", row.names=F)

#try continuous registration with Function register.fd based on the landmarker result.

wbasisCR<-create.bspline.basis(c(0,k), 20, 4)

Wfd0CR<-fd(matrix(0,20,10), wbasisCR)

WfdParCR<-fdPar(Wfd0CR, 2, 0.1)

regListCR_x<-register.fd(mean(regListLM_x$regfd), regListLM_x$regfd, WfdParCR)

plot(regListCR_x$regfd, main="registered x with CR", lwd=2)

regListCR_y<-register.fd(mean(regListLM_y$regfd), regListLM_y$regfd, WfdParCR)

plot(regListCR_y$regfd, main="registered y with CR", lwd=2)

regListCR_z<-register.fd(mean(regListLM_z$regfd), regListLM_z$regfd, WfdParCR)

plot(regListCR_z$regfd, main="registered z with CR", lwd=2)

29

AmPhasList_1_x_cf<-AmpPhaseDecomp(regListLM_x$regfd, regListCR_x$regfd,

regListCR_x$warpfd)

#5.45, 12.8, 0.702, 1;

AmPhasList_1_y_cf<-AmpPhaseDecomp(regListLM_y$regfd, regListCR_y$regfd,

regListCR_y$warpfd)

#36.2, 59.1, 0.62, 1; significant progress

AmPhasList_1_z_cf<-AmpPhaseDecomp(regListLM_z$regfd, regListCR_z$regfd,

regListCR_z$warpfd)

#72.3, 56.6, 0.439, 1.01;

#warp deformation plots

par(mfrow=c(1,1))

matplot(rep(1:k), (eval.fd(rep(1:k), regListCR_x$warpfd)-matrix(rep(1:k), k, 10, byrow=F)),

ylab="h_i(t)-t", type="l", lty=1:2, col=1:9, lwd=2, main="x coordinate warp deformation")

matplot(rep(1:k), (eval.fd(rep(1:k), regListCR_y$warpfd)-matrix(rep(1:k), k, 10, byrow=F)),

ylab="h_i(t)-t", type="l", lty=1:2, col=1:9, lwd=2, main="y coordinate warp deformation")

reg_x_CR_eval<-eval.fd(rep(1:k), regListCR_x$regfd)

reg_y_CR_eval<-eval.fd(rep(1:k), regListCR_y$regfd)

#plot each "Ann Arbor"

par(mfrow=c(2,1))

for(i in 1:10) {

 plot(reg_x_CR_eval[,i], reg_y_CR_eval[,i], type="l", lwd=2, xlab="x", ylab="y",

 main=paste("rep ", i, " with CR", sep=""))

}

x_mean_CR<-rowMeans(reg_x_CR_eval)

plot(rep(1:k), x_mean_CR, xlab="time", ylab="registered x", main="mean x with CR versus

time",

type="l", lwd=2)

y_mean_CR<-rowMeans(reg_y_CR_eval)

plot(rep(1:k), y_mean_CR, xlab="time", ylab="registered x", main="mean y with CR versus

time",

type="l", lwd=2)

plot(x_mean_CR, y_mean_CR, type="l", xlab="registered x", ylab="registered y",

main="Ann Arbor with CR registration", lwd=2)

#superimpose two plots together

plot(x_mean_CR, y_mean_CR, type="l", lwd=2, xlab="registered x",

ylab="registered y", main="regular Ann Arbor", col="red")

lines(x_mean_LM, y_mean_LM, col="blue", lwd=2)

legend(-1, 2.5, legend=c("CR", "LM"), fill=c("red", "blue"), cex=0.8)

#remove the trend factor, and retrieve the residuals

s0_eng_1_x_residuals<-NULL

for(i in 1:10) {

 model<-lm(reg_x_CR_eval[,i] ~ rep(1:k))

 s0_eng_1_x_residuals<-cbind(s0_eng_1_x_residuals, model$residuals)

}

matplot(s0_eng_1_x_residuals, type="l", xlab="time", ylab="residuals of x",

main="residuals of registered x with CR", lwd=2)

abline(h=0, lty=2)

plot(regListCR_x$regfd, main="registered x with CR", lwd=2)

#register velocity curves with LM method

D1_x_regfdLM<-register.newfd(deriv.fd(s0_eng_1_x, 1), regListLM_x$warpfd, type='direct')

D1_y_regfdLM<-register.newfd(deriv.fd(s0_eng_1_y, 1), regListLM_y$warpfd, type='direct')

matplot(eval.fd(rep(1:k), D1_x_regfdLM), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for LM"))

matplot(eval.fd(rep(1:k), D1_y_regfdLM), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("y for LM"))

#apply fdPar to smooth the velocity curves

lambda<-1e+1

D1_x_regfdPar<-fdPar(D1_x_regfdLM, 3, lambda)

D1_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_x_regfdLM), D1_x_regfdPar)

D1_y_regfdPar<-fdPar(D1_y_regfdLM, 3, lambda)

D1_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_y_regfdLM), D1_y_regfdPar)

#plotfit.fd(eval.fd(rep(1:k), D1_x_regfdLM), rep(1:k), D1_x_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D1_x_regfdLM), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for LM"))

matplot(eval.fd(rep(1:k), D1_x_smoothList$fd), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for LM with lambda ", lambda, sep=""))

#plotfit.fd(eval.fd(rep(1:k), D1_y_regfdLM), rep(1:k), D1_y_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D1_y_regfdLM), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("y for LM"))

matplot(eval.fd(rep(1:k), D1_y_smoothList$fd), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("y for LM with lambda ", lambda, sep=""))

#lambda<-seq(-8, -6, length.out=41)

#n<-length(lambda); gcv<-matrix(0, 2, n); sse<-matrix(0, 2, n)

#for(i in 1:n) {

if(!(i%%5)) print(i)

31

D1_x_regfdPar<-fdPar(D1_x_regfdLM, 3, exp(lambda[i]))

D1_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_x_regfdLM),

D1_x_regfdPar)

gcv[1,i]<-sum(D1_x_smoothList$gcv); sse[1,i]<-D1_x_smoothList$SSE

D1_y_regfdPar<-fdPar(D1_y_regfdLM, 3, exp(lambda[i]))

D1_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_y_regfdLM),

D1_y_regfdPar)

gcv[2,i]<-sum(D1_y_smoothList$gcv); sse[2,i]<-D1_y_smoothList$SSE

#}

#plot(lambda, gcv[1,], type="b")

#plot(lambda, gcv[2,], type="b")

#plot(lambda, sse[1,], type="b")

#plot(lambda, sse[2,], type="b")

#register acceleration curves with LM method

D2_x_regfdLM<-register.newfd(deriv.fd(s0_eng_1_x, 2), regListLM_x$warpfd, type='direct')

D2_y_regfdLM<-register.newfd(deriv.fd(s0_eng_1_y, 2), regListLM_y$warpfd, type='direct')

matplot(eval.fd(rep(1:k), D2_x_regfdLM), xlab="time", ylab="acce", type="l",

lwd=2, main="x for LM", ylim=c(-0.025, 0.025))

matplot(eval.fd(rep(1:k), D2_y_regfdLM), xlab="time", ylab="acce", type="l",

lwd=2, main="y for LM", ylim=c(-0.2, 0.2))

#apply fdPar to smooth the acceleration curves

lambda<- 5e+0

D2_x_regfdPar<-fdPar(D2_x_regfdLM, 2, lambda)

D2_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_x_regfdLM), D2_x_regfdPar)

D2_y_regfdPar<-fdPar(D2_y_regfdLM, 2, lambda)

D2_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_y_regfdLM), D2_y_regfdPar)

#plotfit.fd(eval.fd(rep(1:k), D2_x_regfdLM), rep(1:k), D2_x_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D2_x_regfdLM), xlab="time", ylab="acce", type="l",

lwd=2, main=paste("x for LM"), ylim=c(-0.02, 0.02))

matplot(eval.fd(rep(1:k), D2_x_smoothList$fd), xlab="time", ylab="acce", type="l",

lwd=2, main=paste("x for LM with lambda ", lambda, sep=""), ylim=c(-0.01, 0.01))

#plotfit.fd(eval.fd(rep(1:k), D2_y_regfdLM), rep(1:k), D2_y_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D2_y_regfdLM), xlab="time", ylab="acce", type="l",

lwd=2, main=paste("y for LM"), ylim=c(-0.16, 0.16))

matplot(eval.fd(rep(1:k), D2_y_smoothList$fd), xlab="time", ylab="acce", type="l",

lwd=2, main=paste("y for LM with lambda ", lambda, sep=""), ylim=c(-0.1, 0.1))

#calculate the third derivative known as "jerk"

#register tangent accleration curves

D2mag_s0<-sqrt(eval.fd(rep(1:k), D2_x_smoothList$fd)^2 + eval.fd(rep(1:k),

D2_y_smoothList$fd)^2)

matplot(D2mag_s0, type="l", xlab="time", ylab="acce", lwd=2,

ylim=c(0, 0.1), main="Tangent acceleration")

D2mag_mean_s0<-apply(D2mag_s0, 1, mean)

plot(rep(1:k), D2mag_mean_s0, type="l", xlab="time", ylab="tangent acce", ylim=c(0, 0.03),

lwd=2, main="Mean tangent acceleration")

###

########

#CR method sucks...

#register velocity curves with CR method

D1_x_regfdCR<-register.newfd(deriv.fd(fdafdX, 1), regListCR_x$Wfd, type='monotone')

D1_y_regfdCR<-register.newfd(deriv.fd(fdafdY, 1), regListCR_y$Wfd, type='monotone')

matplot(eval.fd(rep(1:k), D1_x_regfdCR), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for CR"))

matplot(eval.fd(rep(1:k), D1_y_regfdCR), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("y for CR"))

#register acceleration curves with CR method

D2_x_regfdCR<-register.newfd(deriv.fd(fdafdX, 2), regListCR_x$Wfd, type='monotone')

D2_y_regfdCR<-register.newfd(deriv.fd(fdafdY, 2), regListCR_y$Wfd, type='monotone')

matplot(eval.fd(rep(1:k), D2_x_regfdCR), xlab="time", ylab="acce", type="l",

lwd=2, main="x for CR")

matplot(eval.fd(rep(1:k), D2_y_regfdCR), xlab="time", ylab="acce", type="l",

lwd=2, main="y for CR")

mag_acce<-sqrt(eval.fd(rep(1:k), D2_x_regfdCR)^2 + eval.fd(rep(1:k), D2_y_regfdCR)^2)

matplot(rep(1:k), mag_acce, type="l", lwd=2, xlab="time", ylab="magnitude of acce",

main="subject 0 with CR")

par(mfrow=c(1,2))

v1<-abs(eval.fd(rep(1:k), D1_x_regfdCR))

v2<-abs(eval.fd(rep(1:k), D1_y_regfdCR))

plot(c(1,10), c(0, 0.025), type="n", xlab="sample", ylab="Velocity",

main="mean velocity for each sample")

lines(colMeans(v1), col="red")

lines(colMeans(v2), col="blue")

legend(1.5, 0.016, legend=c("X", "Y"), fill=c("red", "blue"))

a1<-abs(eval.fd(rep(1:k), D2_x_regfdCR))

a2<-abs(eval.fd(rep(1:k), D2_y_regfdCR))

33

plot(c(1,10), c(0, 0.00125), type="n", xlab="sample", ylab="Acce",

main="mean acce for sample")

lines(colMeans(a1), col="red")

lines(colMeans(a2), col="blue")

legend(1.5, 0.0008, legend=c("X", "Y"), fill=c("red", "blue"))

sub1.R

library(fda)

#import 40 observations of subject 1 and create array "ann arbor"

s1r1<-read.csv("/Subject1/Subject1_2015_06_12_132558_001_6d.csv", header=T)

s1r2<-read.csv("/Subject1/Subject1_2015_06_12_132558_002_6d.csv", header=T)

s1r3<-read.csv("/Subject1/Subject1_2015_06_12_132558_003_6d.csv", header=T)

s1r4<-read.csv("/Subject1/Subject1_2015_06_12_132558_004_6d.csv", header=T)

s1r5<-read.csv("/Subject1/Subject1_2015_06_12_132558_005_6d.csv", header=T)

s1r6<-read.csv("/Subject1/Subject1_2015_06_12_132558_006_6d.csv", header=T)

s1r7<-read.csv("/Subject1/Subject1_2015_06_12_132558_007_6d.csv", header=T)

s1r8<-read.csv("/Subject1/Subject1_2015_06_12_132558_008_6d.csv", header=T)

s1r9<-read.csv("/Subject1/Subject1_2015_06_12_132558_009_6d.csv", header=T)

s1r10<-read.csv("/Subject1/Subject1_2015_06_12_132558_010_6d.csv", header=T)

s1r11<-read.csv("/Subject1/Subject1_2015_06_12_132558_011_6d.csv", header=T)

s1r12<-read.csv("/Subject1/Subject1_2015_06_12_132558_012_6d.csv", header=T)

s1r13<-read.csv("/Subject1/Subject1_2015_06_12_132558_013_6d.csv", header=T)

s1r14<-read.csv("/Subject1/Subject1_2015_06_12_132558_014_6d.csv", header=T)

s1r15<-read.csv("/Subject1/Subject1_2015_06_12_132558_015_6d.csv", header=T)

s1r16<-read.csv("/Subject1/Subject1_2015_06_12_132558_016_6d.csv", header=T)

s1r17<-read.csv("/Subject1/Subject1_2015_06_12_132558_017_6d.csv", header=T)

s1r18<-read.csv("/Subject1/Subject1_2015_06_12_132558_018_6d.csv", header=T)

s1r19<-read.csv("/Subject1/Subject1_2015_06_12_132558_019_6d.csv", header=T)

s1r20<-read.csv("/Subject1/Subject1_2015_06_12_132558_020_6d.csv", header=T)

x1<-data.frame(s1r1$pen.x, s1r2$pen.x, s1r3$pen.x, s1r4$pen.x, s1r5$pen.x, s1r6$pen.x,

s1r7$pen.x,

s1r8$pen.x, s1r9$pen.x, s1r10$pen.x, s1r11$pen.x, s1r12$pen.x, s1r13$pen.x, s1r14$pen.x,

s1r15$pen.x, s1r16$pen.x, s1r17$pen.x, s1r18$pen.x, s1r19$pen.x, s1r20$pen.x)

x1<-(-x1)

#x1<-scale(x1, scale=T)

#x1[is.na(x1)]<-0

colnames(x1)<-c("rep1", "rep2", "rep3", "rep4", "rep5", "rep6", "rep7", "rep8", "rep9", "rep10",

"rep11", "rep12", "rep13", "rep14", "rep15", "rep16", "rep17", "rep18", "rep19", "rep20")

y1<-data.frame(s1r1$pen.z, s1r2$pen.z, s1r3$pen.z, s1r4$pen.z, s1r5$pen.z, s1r6$pen.z,

s1r7$pen.z,

s1r8$pen.z, s1r9$pen.z, s1r10$pen.z, s1r11$pen.z, s1r12$pen.z, s1r13$pen.z, s1r14$pen.z,

s1r15$pen.z, s1r16$pen.z, s1r17$pen.z, s1r18$pen.z, s1r19$pen.z, s1r20$pen.z)

colnames(y1)<-colnames(x1)

#y1<-scale(y1, scale=T)

#y1[is.na(y1)]<-0

z1<-data.frame(s1r1$pen.y, s1r2$pen.y, s1r3$pen.y, s1r4$pen.y, s1r5$pen.y, s1r6$pen.y,

s1r7$pen.y,

s1r8$pen.y, s1r9$pen.y, s1r10$pen.y, s1r11$pen.y, s1r12$pen.y, s1r13$pen.y, s1r14$pen.y,

s1r15$pen.y, s1r16$pen.y, s1r17$pen.y, s1r18$pen.y, s1r19$pen.y, s1r20$pen.y)

colnames(z1)<-colnames(z1)

#z1<-scale(z1, scale=T)

#z1[is.na(z1)]<-0

#find the beginning of "Arbor"

s1_eng_start<-c(1150, 1300, 1320, 890, 840, 930, 1300, 910, 900, 840,

 640, 940, 1150, 1000, 800, 960, 770, 840, 900, 900)

s1_eng_end<-c(2000, 2250, 2070, 1800, 1700, 1900, 2270, 1980, 2070, 1900,

 1500, 2130, 2140, 1960, 1650, 1800, 1600, 1850, 1830, 1780)

par(mfrow=c(2,1), ask=F)

for(i in 1:20) {

 plot(x1[s1_eng_start[i]:s1_eng_end[i],i], y1[s1_eng_start[i]:s1_eng_end[i],i], lwd=1,

 main=paste("rep ", i, sep=""))

 abline(h=0, lty=2)

 plot(rep(s1_eng_start[i]:s1_eng_end[i]), z1[s1_eng_start[i]:s1_eng_end[i], i],

 main=paste("z of rep ", i, sep=""))

}

Temp<-NULL; k<-600

for(i in 1:20) {

 index<-sort(sample(s1_eng_start[i]:s1_eng_end[i], k, replace=F))

 Temp<-cbind(Temp, x1[index, i], y1[index, i], z1[index, i])

}

colnames(Temp)<-rep(colnames(x1)[1:20], each=3)

Temp<-scale(Temp, center=T, scale=T)

Temp[is.na(Temp)]<-0

#output the data to .csv file and store it

write.csv(Temp, "/Users/mtianwen/Downloads/s1_eng_arbor.csv", row.names = F)

#import .csv data to R

35

s1_eng_arbor<-read.csv("/Users/mtianwen/Downloads/s1_eng_arbor.csv", header=T)

#extract subset of 11 to 20 repetitions

#s1_eng_2_arbor<-subset(s1_eng_arbor, select=c(1:30))

column_name<-c("rep1", "rep2", "rep3", "rep4", "rep5", "rep6", "rep7", "rep8", "rep9", "rep10",

"rep11", "rep12", "rep13", "rep14", "rep15", "rep16", "rep17", "rep18", "rep19", "rep20")

colnames(s1_eng_arbor)<-rep(column_name, each=3)

s1_eng_arbor<-as.matrix(s1_eng_arbor)

N<-600

par(mfrow=c(3,1), ask=F)

matplot(rep(1:N), s1_eng_arbor[,seq(1,60,3)], type="l", main="x coordinate plot",

ylab="normalized x")

matplot(rep(1:N), s1_eng_arbor[,seq(2,60,3)], type="l", main="y coordinate plot",

ylab="normalized y")

matplot(rep(1:N), s1_eng_arbor[,seq(3,60,3)], type="l", main="z coordinate plot",

ylab="normalized z")

###

#######

s1_reg_x_LM_eval<-read.csv("/Users/mtianwen/Downloads/s1_reg_x_LM_eval.csv", header =

T)

s1_reg_y_LM_eval<-read.csv("/Users/mtianwen/Downloads/s1_reg_y_LM_eval.csv", header =

T)

s1_reg_x_LM_eval<-as.matrix(s1_reg_x_LM_eval)

s1_reg_y_LM_eval<-as.matrix(s1_reg_y_LM_eval)

fdaarray<-array(0, dim=c(1000, 10, 2),

dimnames=list(rep(1:k),c("rep1", "rep2", "rep3", "rep4", "rep5",

"rep6", "rep7", "rep8", "rep9", "rep10"),

c("X", "Y")))

fdaarray[,,1]<-s1_reg_x_LM_eval

fdaarray[,,2]<-s1_reg_y_LM_eval

k<-2400

fdatime<-seq(0, 2400, len=1000)

fdarange <- c(0, k)

nbasis<-1005

norder<-7

fdabasis = create.bspline.basis(fdarange,nbasis, norder)

parameter object for coordinates

fdafd <- fd(array(0, c(nbasis,10,2)), fdabasis)

lambda <- 1e8

fdaPar <- fdPar(fdafd, 5, lambda)

fdafdX <- smooth.basis(fdatime, fdaarray[,,1], fdaPar)$fd

plot(fdafdX)

fdafdY <- smooth.basis(fdatime, fdaarray[,,2], fdaPar)$fd

plot(fdafdY)

s1_eng_1_x_eval<-eval.fd(fdatime, fdafdX)

s1_eng_1_y_eval<-eval.fd(fdatime, fdafdY)

s1_eng_start<-fdatime[c(490, 490, 495, 500, 510, 510, 500, 500, 500, 500)]

for(i in 1:10) {

 plot(s1_eng_1_x_eval[c(s1_eng_start[i]:1000),i], s1_eng_1_y_eval[c(s1_eng_start[i]:1000),i],

 type="l")

}

Temp<-matrix(0, 600, 20); k<-600

for(i in 1:10) {

 Index<-seq(s1_eng_start[i], 2400, len=k)

 Temp[,2*i-1]<-eval.fd(Index, fdafdX[i])

 Temp[,2*i]<-eval.fd(Index, fdafdY[i])

}

#output the data to .csv file and store it

write.csv(Temp, "/Users/mtianwen/Downloads/s1_eng_arbor.csv", row.names = F)

write.csv(Temp[,seq(1,20,2)], "/Users/mtianwen/Downloads/s1_reg_x_LM_arbor.csv",

row.names = F)

write.csv(Temp[,seq(2,20,2)], "/Users/mtianwen/Downloads/s1_reg_y_LM_arbor.csv",

row.names = F)

#import .csv data to R

s1_reg_x_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_x_LM_arbor.csv",

header=T)

s1_reg_y_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_y_LM_arbor.csv",

header=T)

matplot(s1_eng_arbor, type="l", main="matplot of arbor for subject 1")

######## The below code is applide for k=1000, try landmark with first ten repetitions

########

i<-10

x<-rep(1:k); y<-s1_eng_1_z_eval[,i]

plot(x, y, type="l", main=paste("rep ", i, sep=""))

37

identify(x, y, labels=rep(1:k))

points(x[ximarks[i,]], y[ximarks[i,]], pty=1)

mark_data<-c(80, 138, 282, 330, 408, 455, 515, 561, 584, 651, 731, 794, 855, 902, 930,

 97, 134, 247, 292, 390, 438, 516, 562, 574, 661, 756, 804, 850, 889, 921,

 97, 143, 235, 285, 350, 411, 525, 608, 625, 712, 786, 841, 890, 937, 957,

 68, 125, 217, 275, 354, 410, 464, 525, 542, 637, 713, 777, 834, 880, 915,

 54, 110, 198, 259, 333, 386, 449, 521, 539, 640, 745, 816, 882, 940, 965,

 86, 132, 223, 281, 352, 404, 470, 523, 540, 652, 742, 810, 877, 919, 940,

 65, 106, 208, 266, 329, 372, 434, 492, 512, 673, 758, 816, 873, 923, 950,

 33, 72, 191, 247, 317, 370, 433, 499, 515, 617, 690, 743, 797, 840, 875,

 85, 124, 201, 253, 306, 356, 419, 472, 483, 622, 702, 752, 792, 832, 858,

 12, 51, 160, 218, 294, 345, 408, 468, 486, 597, 697, 757, 838, 889, 930)

ximarks<-matrix(mark_data, 10, 15, byrow=T)

PGSctrmean=colMeans(ximarks)

wbasisLM<-create.bspline.basis(c(0,k), 18, 3, c(0, PGSctrmean, k))

WfdLM<-fd(matrix(0,18,1), wbasisLM)

WfdParLM<-fdPar(WfdLM, 1, 1e-5)

###

#######

par(mfrow=c(2,1))

regListLM_z<-landmarkreg(fdobj=fdafdZ, ximarks=ximarks, x0marks=PGSctrmean,

WfdPar=WfdParLM, monwrd = T)

plot(regListLM_z$regfd, main="registered z with LM", lwd=2)

plot(regListLM_z$warpfd, main="warp function for z", lwd=2)

regListLM_x<-landmarkreg(fdobj=fdafdX, ximarks=ximarks, x0marks=PGSctrmean,

WfdPar=WfdParLM, monwrd = T)

plot(regListLM_x$regfd, main="registered x with LM", lwd=2)

plot(regListLM_x$warpfd, main="warp function for x", lwd=2)

regListLM_y<-landmarkreg(fdobj=fdafdY, ximarks=ximarks, x0marks=PGSctrmean,

WfdPar=WfdParLM, monwrd = T)

plot(regListLM_y$regfd, main="registered y with LM", lwd=2)

plot(regListLM_y$warpfd, main="warp function for y", lwd=2)

for(i in 1:10) {

 plot(regListLM_y$regfd[i], main=paste("rep ", i, sep=""))

}

#warp deformation plots

par(mfrow=c(1,1))

matplot(rep(1:k), (eval.fd(rep(1:k), regListLM_x$warpfd)-matrix(rep(1:k), k, 10, byrow=F)),

ylab="h_i(t)-t", type="l", lty=1:2, col=1:9, lwd=2, main="coordinate warp deformation")

#independent of x,y,z

AmPhasList_1_x<-AmpPhaseDecomp(s1_eng_1_x, regListLM_x$regfd, regListLM_x$warpfd)

#11.9, -4.4, -0.59, 0.99

AmPhasList_1_y<-AmpPhaseDecomp(s1_eng_1_y, regListLM_y$regfd, regListLM_y$warpfd)

#277, 553, 0.666, 0.954

AmPhasList_1_z<-AmpPhaseDecomp(s1_eng_1_z, regListLM_z$regfd, regListLM_z$warpfd)

#222, 310, 0.583, 0.971

reg_x_LM_eval<-eval.fd(rep(1:k), regListLM_x$regfd)

reg_y_LM_eval<-eval.fd(rep(1:k), regListLM_y$regfd)

par(mfrow=c(2,1))

for(i in 1:10) {

 plot(reg_x_LM_eval[,i], reg_y_LM_eval[,i], type="l", xlab="x", ylab="y",

 main=paste("rep ", i, " with LM", sep=""))

}

x_mean_LM<-rowMeans(reg_x_LM_eval)

plot(rep(1:k), x_mean_LM, lwd=2, xlab="time", ylab="registered x",

main="registered x with LM versus time", type="l")

y_mean_LM<-rowMeans(reg_y_LM_eval)

plot(rep(1:k), y_mean_LM, lwd=2, xlab="time", ylab="registered y",

main="registered y with LM versus time", type="l")

plot(x_mean_LM, y_mean_LM, lwd=2, type="l", xlab="registered x",

ylab="registered y", main="Ann Arbor with LM registration")

plot.new()

#remove trend factor and retrieve residuals

s1_eng_1_x_residuals<-NULL

for(i in 1:10) {

 model<-lm(reg_x_LM_eval[,i] ~ rep(1:k))

 s1_eng_1_x_residuals<-cbind(s1_eng_1_x_residuals, model$residuals)

}

matplot(s1_eng_1_x_residuals, type="l", lwd=2, xlab="time", ylab="residuals of x",

main="residuals of registered x with LM")

abline(h=0, lty=2, lwd=2)

plot(regListLM_x$regfd, main="registered x with LM", lwd=2)

#Notice that maybe it is necessary to fit a functional data object to residual data.

#try continuous registration with Function register.fd based on the landmarker result.

39

wbasisCR<-create.bspline.basis(c(0,k), 20, 4)

Wfd0CR<-fd(matrix(0,20,10), wbasisCR)

WfdParCR<-fdPar(Wfd0CR, 2, 0.1)

regListCR_x<-register.fd(mean(regListLM_x$regfd), regListLM_x$regfd, WfdParCR)

plot(regListCR_x$regfd, main="registered x with CR", lwd=2)

regListCR_y<-register.fd(mean(regListLM_y$regfd), regListLM_y$regfd, WfdParCR)

plot(regListCR_y$regfd, main="registered y with CR", lwd=2)

AmPhasList_1_x_cf<-AmpPhaseDecomp(regListLM_x$regfd, regListCR_x$regfd,

regListCR_x$warpfd)

#6.9, 6.62, 0.49, 1.01

AmPhasList_1_y_cf<-AmpPhaseDecomp(regListLM_y$regfd, regListCR_y$regfd,

regListCR_y$warpfd)

#220, 76, 0.257, 1.03 significant progress!

reg_x_CR_eval<-eval.fd(rep(1:k), regListCR_x$regfd)

reg_y_CR_eval<-eval.fd(rep(1:k), regListCR_y$regfd)

#plot each "Ann Arbor"

for(i in 1:10) {

 plot(reg_x_CR_eval[,i], reg_y_CR_eval[,i], type="l", xlab="x", ylab="y",

 main=paste("rep ", i, " with CR", sep=""))

}

x_mean_CR<-rowMeans(reg_x_CR_eval)

plot(rep(1:k), x_mean_CR, xlab="time", ylab="registered x", main="registered x with CR versus

time",

type="l", lwd=2)

y_mean_CR<-rowMeans(reg_y_CR_eval)

plot(rep(1:k), y_mean_CR, xlab="time", ylab="registered x", main="registered y with CR versus

time",

type="l", lwd=2)

plot(x_mean_CR, y_mean_CR, type="l", xlab="registered x", ylab="registered y",

main="Ann Arbor with CR registration", lwd=2)

#superimpose two plots together

plot(x_mean_CR, y_mean_CR, type="l", lwd=2, xlab="registered x", ylab="registered y",

main="regular Ann Arbor", col="red")

lines(x_mean_LM, y_mean_LM, col="blue", lwd=2)

legend(-1, 2, legend=c("CR", "LM"), fill=c("red", "blue"), cex=0.8)

#remove the trend factor, and retrieve the residuals

s1_eng_1_x_residuals<-NULL

for(i in 1:10) {

 model<-lm(reg_x_CR_eval[,i] ~ rep(1:k))

 s1_eng_1_x_residuals<-cbind(s1_eng_1_x_residuals, model$residuals)

}

matplot(s1_eng_1_x_residuals, type="l", xlab="time", ylab="residuals of x",

main="residuals of registered x with CR", lwd=2)

abline(h=0, lty=2, lwd=2)

#register velocity curves with LM method

D1_x_regfdLM<-register.newfd(deriv.fd(s1_eng_1_x, 1), regListLM_x$warpfd, type='direct')

D1_y_regfdLM<-register.newfd(deriv.fd(s1_eng_1_y, 1), regListLM_y$warpfd, type='direct')

matplot(eval.fd(rep(1:k), D1_x_regfdLM), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for LM"), ylim=c(-0.05, 0.05))

matplot(eval.fd(rep(1:k), D1_y_regfdLM), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("y for LM"), ylim=c(-0.5, 0.5))

#apply fdPar to smooth the velocity curves

lambda<-1e+2

D1_x_regfdPar<-fdPar(D1_x_regfdLM, 2, lambda)

D1_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_x_regfdLM), D1_x_regfdPar)

D1_y_regfdPar<-fdPar(D1_y_regfdLM, 2, lambda)

D1_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_y_regfdLM), D1_y_regfdPar)

#plotfit.fd(eval.fd(rep(1:k), D1_x_regfdLM), rep(1:k), D1_x_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D1_x_regfdLM), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for LM"), ylim=c(-0.05, 0.05))

matplot(eval.fd(rep(1:k), D1_x_smoothList$fd), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for LM with lambda ", lambda, sep=""), ylim=c(-0.05, 0.05))

#plotfit.fd(eval.fd(rep(1:k), D1_y_regfdLM), rep(1:k), D1_y_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D1_y_regfdLM), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("y for LM"), ylim=c(-0.5, 0.5))

matplot(eval.fd(rep(1:k), D1_y_smoothList$fd), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("y for LM with lambda ", lambda, sep=""), ylim=c(-0.4, 0.4))

#register acceleration curves with LM method

D2_x_regfdLM<-register.newfd(deriv.fd(s1_eng_1_x, 2), regListLM_x$warpfd, type='direct')

D2_y_regfdLM<-register.newfd(deriv.fd(s1_eng_1_y, 2), regListLM_y$warpfd, type='direct')

matplot(eval.fd(rep(1:k), D2_x_regfdLM), xlab="time", ylab="acce", type="l",

lwd=2, main="x for LM", ylim=c(-0.025, 0.025))

matplot(eval.fd(rep(1:k), D2_y_regfdLM), xlab="time", ylab="acce", type="l",

lwd=2, main="y for LM", ylim=c(-0.2, 0.2))

#apply fdPar to smooth the acceleration curves

41

lambda<- 1e+2

D2_x_regfdPar<-fdPar(D2_x_regfdLM, 2, lambda)

D2_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_x_regfdLM), D2_x_regfdPar)

D2_y_regfdPar<-fdPar(D2_y_regfdLM, 2, lambda)

D2_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_y_regfdLM), D2_y_regfdPar)

#plotfit.fd(eval.fd(rep(1:k), D2_x_regfdLM), rep(1:k), D2_x_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D2_x_regfdLM), xlab="time", ylab="acce", type="l",

lwd=2, main=paste("x for LM"), ylim=c(-0.015, 0.015))

matplot(eval.fd(rep(1:k), D2_x_smoothList$fd), xlab="time", ylab="acce", type="l",

lwd=2, main=paste("x for LM with lambda ", lambda, sep=""), ylim=c(-0.006, 0.006))

#plotfit.fd(eval.fd(rep(1:k), D2_y_regfdLM), rep(1:k), D2_y_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D2_y_regfdLM), xlab="time", ylab="acce", type="l",

lwd=2, main=paste("y for LM"), ylim=c(-0.2, 0.2))

matplot(eval.fd(rep(1:k), D2_y_smoothList$fd), xlab="time", ylab="acce", type="l",

lwd=2, main=paste("y for LM with lambda ", lambda, sep=""), ylim=c(-0.05, 0.05))

#register tangent accleration curves

D2mag_s0<-sqrt(eval.fd(rep(1:k), D2_x_regfdLM)^2 + eval.fd(rep(1:k), D2_x_regfdLM)^2)

matplot(D2mag_s0, type="l", xlab="time", ylab="acce",

lwd=2, ylim=c(0, 0.05), main="Tangent acceleration for LM")

D2mag_mean_s0<-apply(D2mag_s0, 1, mean)

plot(rep(1:k), D2mag_mean_s0, type="l", xlab="time", ylab="tangent acce", ylim=c(0, 0.03),

lwd=2, main="Mean tangent acceleration for LM")

D2mag_s0_lambda<-sqrt(eval.fd(rep(1:k), D2_x_smoothList$fd)^2 + eval.fd(rep(1:k),

D2_y_smoothList$fd)^2)

matplot(D2mag_s0_lambda, type="l", xlab="time", ylab="acce", lwd=2,

ylim=c(0, 0.05), main=paste("Tangent acceleration for LM ", lambda, sep=""))

D2mag_mean_s0_lambda<-apply(D2mag_s0_lambda, 1, mean)

plot(rep(1:k), D2mag_mean_s0_lambda, type="l", xlab="time", ylab="tangent acce",

ylim=c(0, 0.03), lwd=2, main=paste("Mean tangent acceleration for LM ", lambda, sep=""))

###

############

#register velocity curves with CR method

D1_x_regfdCR<-register.newfd(deriv.fd(regListLM_x$regfd, 1), regListCR_x$Wfd,

type='periodic')

D1_y_regfdCR<-register.newfd(deriv.fd(regListLM_y$regfd, 1), regListCR_y$Wfd,

type='periodic')

matplot(eval.fd(rep(1:k), D1_x_regfdCR), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for CR"))

matplot(eval.fd(rep(1:k), D1_y_regfdCR), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("y for CR"))

#apply fdPar to smooth the velocity curves

lambda<-1e+2

D1_x_regfdPar<-fdPar(D1_x_regfdCR, 3, lambda)

D1_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_x_regfdCR), D1_x_regfdPar)

D1_y_regfdPar<-fdPar(D1_y_regfdCR, 3, lambda)

D1_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D1_y_regfdCR), D1_y_regfdPar)

#plotfit.fd(eval.fd(rep(1:k), D1_x_regfdCR), rep(1:k), D1_x_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D1_x_regfdCR), xlab="time", ylab="velocity", type="l",

lwd=2, main=paste("x for CR"), ylim=c(-0.05, 0.05))

matplot(eval.fd(rep(1:k), D1_x_smoothList$fd), type="l",

lwd=2, main=paste("x for CR with lambda ", lambda, sep=""), ylim=c(-0.05, 0.05))

#plotfit.fd(eval.fd(rep(1:k), D1_y_regfdCR), rep(1:k), D1_y_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D1_y_regfdCR), xlab="time", ylab="velocity",

type="l", lwd=2, main=paste("y for CR"), ylim=c(-0.5, 0.5))

matplot(eval.fd(rep(1:k), D1_y_smoothList$fd), type="l",

lwd=2, main=paste("y for CR with lambda ", lambda, sep=""), ylim=c(-0.4, 0.4))

#register acceleration curves with CR method

D2_x_regfdCR<-register.newfd(deriv.fd(s1_eng_1_x, 2), regListCR_x$Wfd, type='monotone')

D2_y_regfdCR<-register.newfd(deriv.fd(s1_eng_1_y, 2), regListCR_y$Wfd, type='monotone')

matplot(eval.fd(rep(1:k), D2_x_regfdCR), xlab="time", ylab="acce", type="l", lwd=2,

main="x for CR", ylim=c(-0.02, 0.02))

matplot(eval.fd(rep(1:k), D2_y_regfdCR), xlab="time", ylab="acce", type="l", lwd=2,

main="y for CR", ylim=c(-0.15, 0.15))

#apply fdPar to smooth the acceleration curves

lambda<- 1e+1

D2_x_regfdPar<-fdPar(D2_x_regfdCR, 2, lambda)

D2_x_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_x_regfdCR), D2_x_regfdPar)

D2_y_regfdPar<-fdPar(D2_y_regfdCR, 2, lambda)

D2_y_smoothList<-smooth.basis(rep(1:k), eval.fd(rep(1:k), D2_y_regfdCR), D2_y_regfdPar)

#plotfit.fd(eval.fd(rep(1:k), D2_x_regfdLM), rep(1:k), D2_x_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D2_x_regfdCR), xlab="time", ylab="acce", type="l", lwd=2,

main=paste("x for CR"), ylim=c(-0.02, 0.02))

matplot(eval.fd(rep(1:k), D2_x_smoothList$fd), xlab="time", ylab="acce", type="l", lwd=2,

main=paste("x for CR with lambda ", lambda, sep=""), ylim=c(-0.005, 0.005))

43

#plotfit.fd(eval.fd(rep(1:k), D2_y_regfdLM), rep(1:k), D2_y_smoothList$fd, type="l")

matplot(eval.fd(rep(1:k), D2_y_regfdCR), xlab="time", ylab="acce", type="l", lwd=2,

main=paste("y for CR"), ylim=c(-0.16, 0.16))

matplot(eval.fd(rep(1:k), D2_y_smoothList$fd), xlab="time", ylab="acce", type="l", lwd=2,

main=paste("y for CR with lambda ", lambda, sep=""), ylim=c(-0.05, 0.05))

classification to others.R

library(fda)

#import data

reg_x_CR_eval<-read.csv("/Users/mtianwen/Downloads/s0_reg_x_CR_eval_arbor.csv", header

= T)

reg_y_CR_eval<-read.csv("/Users/mtianwen/Downloads/s0_reg_y_CR_eval_arbor.csv", header

= T)

reg_x_CR_eval<-as.matrix(reg_x_CR_eval)*5

reg_y_CR_eval<-as.matrix(reg_y_CR_eval)*5

l<-11

fdaarray<-array(0, dim=c(600, l, 2),

dimnames=list(rep(1:600),c("rep1", "rep2", "rep3", "rep4", "rep5",

"rep6", "rep7", "rep8", "rep9", "rep10", "rep11"),

c("X", "Y")))

fdaarray[,,1]<-reg_x_CR_eval

fdaarray[,,2]<-reg_y_CR_eval

#set up the fda object for forcing function and its weight function

s1_reg_x_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_x_LM_arbor.csv",

header=T)

s1_reg_y_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_y_LM_arbor.csv",

header=T)

reg_x_LM_eval<-as.matrix(s1_reg_x_LM_arbor)*5

reg_y_LM_eval<-as.matrix(s1_reg_y_LM_arbor)*5

l<-10

fdaarray<-array(0, dim=c(600, l, 2),

dimnames=list(rep(1:k),c("rep1", "rep2", "rep3", "rep4", "rep5",

"rep6", "rep7", "rep8", "rep9", "rep10"),

c("X", "Y")))

fdaarray[,,1]<-reg_x_LM_eval

fdaarray[,,2]<-reg_y_LM_eval

#The below two lines are valid for psuedo data

fdaarray[,,1]<-X

fdaarray[,,2]<-Y

#Perfome pda.fd without forcing function

k<-1440

fdatime<-seq(0, k, len=600)

fdarange <- c(0, k)

nbasis<-605

norder<-7

fdabasis = create.bspline.basis(fdarange,nbasis, norder)

parameter object for coordinates

fdafd <- fd(array(0, c(nbasis,l,2)), fdabasis)

lambda <- 1e8

fdaPar <- fdPar(fdafd, 5, lambda)

set up the two forcing functions

ufdlist <- vector("list", 2)

constant forcing

constbasis <- create.constant.basis(fdarange)

constfd <- fd(matrix(1,1,l), constbasis)

ufdlist[[1]] <- constfd

time forcing

linbasis <- create.monomial.basis(fdarange, 2)

lincoef <- matrix(0,2,l)

lincoef[2,] <- 1

ufdlist[[2]] <- fd(lincoef, linbasis)

awtlist <- vector("list", 2)

constfd <- fd(1, constbasis)

constfdPar <- fdPar(constfd)

awtlist[[1]] <- constfdPar

awtlist[[2]] <- constfdPar

wbasis125 <- create.bspline.basis(fdarange, 125)

#pdf("092815_2.pdf")

#First apply the equation to the same writer

fdafdX <- smooth.basis(fdatime, fdaarray[,,1], fdaPar)$fd

xfdlist<-vector("list", 1)

xfdlist[[1]]<-fdafdX

plot(fdafdX)

#set the number of basis functions to 125

45

bfd <- fd(matrix(0,125,1), wbasis125)

bfdPar <- fdPar(bfd, 1, 0)

bwtlist <- vector("list", 2)

bwtlist[[1]] <- bfdPar

bwtlist[[2]] <- bfdPar

bwtlist[[3]] <- bfdPar

#carry out principal differential analysis

pdaList <- pda.fd(xfdlist, bwtlist, awtlist, ufdlist)

bestwtlist <- pdaList$bwtlist

aestwtlist <- pdaList$awtlist

resfdlist <- pdaList$resfdlist

par(mfrow=c(2,1), ask=F)

#evaluate forcing functions

resfdX <- resfdlist[[1]]

plot(resfdX, main="Forcing functions for subject 0 with 125 bspline basis")

resmeanfdX<-mean(resfdX)

resmeanfdX_eval<-eval.fd(fdatime, resmeanfdX)

#extract and plot the weight functions

beta_X<-matrix(0, 600, 3)

#par(mfrow=c(1,1), ask=F)

for(j in 1:3) {

 betafdPar<-bestwtlist[[j]]

 betafd<-betafdPar$fd

 betafd_eval<-eval.fd(fdatime, betafd)

 beta_X[,j]<-betafd_eval

 plot(fdatime, betafd_eval, type="l", main=paste("weight function for ", j, sep=""))

}

#extract and evaluate weight for forcing functions

w1_X<-aestwtlist[[1]]fdcoefs

w2_X<-aestwtlist[[2]]fdcoefs

fdafdY <- smooth.basis(fdatime, fdaarray[,,2], fdaPar)$fd

fdlist<-vector("list", 1)

xfdlist[[1]]<-fdafdY

plot(fdafdY)

#set the number of basis functions to 125

bfd <- fd(matrix(0,125,1), wbasis125)

bfdPar <- fdPar(bfd, 1, 0)

bwtlist <- vector("list", 2)

bwtlist[[1]] <- bfdPar

bwtlist[[2]] <- bfdPar

bwtlist[[3]] <- bfdPar

#carry out principal differential analysis

pdaList <- pda.fd(xfdlist, bwtlist, awtlist, ufdlist)

bestwtlist <- pdaList$bwtlist

aestwtlist <- pdaList$awtlist

resfdlist <- pdaList$resfdlist

par(mfrow=c(2,1))

#evaluate forcing functions

resfdY <- resfdlist[[1]]

plot(resfdY, main="Forcing functions for subject 0 with 125 bspline basis")

resmeanfdY<-mean(resfdY)

resmeanfdY_eval<-eval.fd(fdatime, resmeanfdY)

#extract and plot the weight functions

beta_Y<-matrix(0, 600, 3)

#par(mfrow=c(1,1), ask=F)

for(j in 1:3) {

 betafdPar<-bestwtlist[[j]]

 betafd<-betafdPar$fd

 betafd_eval<-eval.fd(fdatime, betafd)

 beta_Y[,j]<-betafd_eval

 plot(fdatime, betafd_eval, type="l", main=paste("weight function for ", j, sep=""))

}

#extract and evaluate weight for forcing functions

w1_Y<-aestwtlist[[1]]fdcoefs

w2_Y<-aestwtlist[[2]]fdcoefs

par(mfrow=c(2,1))

plot(resfdX)

plot(resfdY)

D3fdafdX<-eval.fd(fdatime, fdafdX, 3)

D3fdafdY<-eval.fd(fdatime, fdafdY, 3)

D3fdafdX_mean<-apply(D3fdafdX, 1, mean)

D3fdafdY_mean<-apply(D3fdafdY, 1, mean)

plot(fdatime, D3fdafdX_mean*1000000, type="l", col="blue", main="x coordinate")

47

lines(fdatime, resmeanfdX_eval*1000000, type="l", col="red")

abline(h=0, lty=2)

legend(50, -100, legend=c("3rd", "residual"), fill=c("blue", "red"), cex=0.7)

plot(fdatime, D3fdafdY_mean*1000000, type="l", col="blue", main="y coordinate")

lines(fdatime, resmeanfdY_eval*1000000, type="l", col="red")

abline(h=0, lty=2)

legend(10, 500, legend=c("3rd", "residual"), fill=c("blue", "red"), cex=0.7)

par(mfrow=c(1,2))

#calculate forcing function, which is the L(X(t)) and L(Y(t)), the linear differential operator

LX<-matrix(0, 600, 11)

D1_X<-eval.fd(fdatime, fdafdX, 1)

D2_X<-eval.fd(fdatime, fdafdX, 2)

LX<-beta_X[,1]*fdaarray[,,1] + beta_X[,2]*D1_X + beta_X[,3]*D2_X + matrix(-w1_X, 600,

11)

matplot(fdatime, LX*10^5, type="l", ylim=c(-50, 70), xlab="time", ylab="forcing function",

main="X dimension for subject 0")

abline(h=0, lty=2)

LY<-matrix(0, 600, 11)

D1_Y<-eval.fd(fdatime, fdafdY, 1)

D2_Y<-eval.fd(fdatime, fdafdY, 2)

LY<-beta_Y[,1]*fdaarray[,,2] + beta_Y[,2]*D1_Y + beta_Y[,3]*D2_Y + matrix(-w1_Y, 600,

11)

matplot(fdatime, LY*10^5, type="l", ylim=c(-150, 120), xlab="time", ylab="forcing function",

main="Y dimension for subject 0")

abline(h=0, lty=2)

classification to itself.R

library(fda)

#import data

reg_x_CR_eval<-read.csv("/Users/mtianwen/Downloads/s0_reg_x_CR_eval_arbor.csv", header

= T)

reg_y_CR_eval<-read.csv("/Users/mtianwen/Downloads/s0_reg_y_CR_eval_arbor.csv", header

= T)

reg_x_CR_eval<-as.matrix(reg_x_CR_eval)*5

reg_y_CR_eval<-as.matrix(reg_y_CR_eval)*5

l<-11

fdaarray<-array(0, dim=c(600, l, 2),

dimnames=list(rep(1:600),c("rep1", "rep2", "rep3", "rep4", "rep5",

"rep6", "rep7", "rep8", "rep9", "rep10", "rep11"),

c("X", "Y")))

fdaarray[,,1]<-reg_x_CR_eval

fdaarray[,,2]<-reg_y_CR_eval

#set up the fda object for forcing function and its weight function

s1_reg_x_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_x_LM_arbor.csv",

header=T)

s1_reg_y_LM_arbor<-read.csv("/Users/mtianwen/Downloads/s1_reg_y_LM_arbor.csv",

header=T)

reg_x_LM_eval<-as.matrix(s1_reg_x_LM_arbor)*5

reg_y_LM_eval<-as.matrix(s1_reg_y_LM_arbor)*5

l<-10

fdaarray<-array(0, dim=c(600, l, 2),

dimnames=list(rep(1:k),c("rep1", "rep2", "rep3", "rep4", "rep5",

"rep6", "rep7", "rep8", "rep9", "rep10"),

c("X", "Y")))

fdaarray[,,1]<-reg_x_LM_eval

fdaarray[,,2]<-reg_y_LM_eval

#The below two lines are valid for psuedo data

fdaarray[,,1]<-X

fdaarray[,,2]<-Y

#Perfome pda.fd without forcing function

k<-1440

fdatime<-seq(0, k, len=600)

fdarange <- c(0, k)

nbasis<-605

norder<-7

fdabasis = create.bspline.basis(fdarange,nbasis, norder)

parameter object for coordinates

fdafd <- fd(array(0, c(nbasis,l,2)), fdabasis)

lambda <- 1e8

fdaPar <- fdPar(fdafd, 5, lambda)

set up the two forcing functions

ufdlist <- vector("list", 2)

constant forcing

constbasis <- create.constant.basis(fdarange)

constfd <- fd(matrix(1,1,l), constbasis)

ufdlist[[1]] <- constfd

time forcing

49

linbasis <- create.monomial.basis(fdarange, 2)

lincoef <- matrix(0,2,l)

lincoef[2,] <- 1

ufdlist[[2]] <- fd(lincoef, linbasis)

awtlist <- vector("list", 2)

constfd <- fd(1, constbasis)

constfdPar <- fdPar(constfd)

awtlist[[1]] <- constfdPar

awtlist[[2]] <- constfdPar

wbasis125 <- create.bspline.basis(fdarange, 125)

#pdf("092815_2.pdf")

#First apply the equation to the same writer

fdafdX <- smooth.basis(fdatime, fdaarray[,,1], fdaPar)$fd

xfdlist<-vector("list", 1)

xfdlist[[1]]<-fdafdX

plot(fdafdX)

#set the number of basis functions to 125

bfd <- fd(matrix(0,125,1), wbasis125)

bfdPar <- fdPar(bfd, 1, 0)

bwtlist <- vector("list", 2)

bwtlist[[1]] <- bfdPar

bwtlist[[2]] <- bfdPar

bwtlist[[3]] <- bfdPar

#carry out principal differential analysis

pdaList <- pda.fd(xfdlist, bwtlist, awtlist, ufdlist)

bestwtlist <- pdaList$bwtlist

aestwtlist <- pdaList$awtlist

resfdlist <- pdaList$resfdlist

par(mfrow=c(2,1), ask=F)

#evaluate forcing functions

resfdX <- resfdlist[[1]]

plot(resfdX, main="Forcing functions for subject 0 with 125 bspline basis")

resmeanfdX<-mean(resfdX)

resmeanfdX_eval<-eval.fd(fdatime, resmeanfdX)

#extract and plot the weight functions

beta_X<-matrix(0, 600, 3)

#par(mfrow=c(1,1), ask=F)

for(j in 1:3) {

 betafdPar<-bestwtlist[[j]]

 betafd<-betafdPar$fd

 betafd_eval<-eval.fd(fdatime, betafd)

 beta_X[,j]<-betafd_eval

 plot(fdatime, betafd_eval, type="l", main=paste("weight function for ", j, sep=""))

}

#extract and evaluate weight for forcing functions

w1_X<-aestwtlist[[1]]fdcoefs

w2_X<-aestwtlist[[2]]fdcoefs

fdafdY <- smooth.basis(fdatime, fdaarray[,,2], fdaPar)$fd

fdlist<-vector("list", 1)

xfdlist[[1]]<-fdafdY

plot(fdafdY)

#set the number of basis functions to 125

bfd <- fd(matrix(0,125,1), wbasis125)

bfdPar <- fdPar(bfd, 1, 0)

bwtlist <- vector("list", 2)

bwtlist[[1]] <- bfdPar

bwtlist[[2]] <- bfdPar

bwtlist[[3]] <- bfdPar

#carry out principal differential analysis

pdaList <- pda.fd(xfdlist, bwtlist, awtlist, ufdlist)

bestwtlist <- pdaList$bwtlist

aestwtlist <- pdaList$awtlist

resfdlist <- pdaList$resfdlist

par(mfrow=c(2,1))

#evaluate forcing functions

resfdY <- resfdlist[[1]]

plot(resfdY, main="Forcing functions for subject 0 with 125 bspline basis")

resmeanfdY<-mean(resfdY)

resmeanfdY_eval<-eval.fd(fdatime, resmeanfdY)

#extract and plot the weight functions

beta_Y<-matrix(0, 600, 3)

#par(mfrow=c(1,1), ask=F)

for(j in 1:3) {

 betafdPar<-bestwtlist[[j]]

51

 betafd<-betafdPar$fd

 betafd_eval<-eval.fd(fdatime, betafd)

 beta_Y[,j]<-betafd_eval

 plot(fdatime, betafd_eval, type="l", main=paste("weight function for ", j, sep=""))

}

 #extract and evaluate weight for forcing functions

w1_Y<-aestwtlist[[1]]fdcoefs

w2_Y<-aestwtlist[[2]]fdcoefs

par(mfrow=c(2,1))

plot(resfdX)

plot(resfdY)

D3fdafdX<-eval.fd(fdatime, fdafdX, 3)

D3fdafdY<-eval.fd(fdatime, fdafdY, 3)

D3fdafdX_mean<-apply(D3fdafdX, 1, mean)

D3fdafdY_mean<-apply(D3fdafdY, 1, mean)

plot(fdatime, D3fdafdX_mean*1000000, type="l", col="blue", main="x coordinate")

lines(fdatime, resmeanfdX_eval*1000000, type="l", col="red")

abline(h=0, lty=2)

legend(50, -100, legend=c("3rd", "residual"), fill=c("blue", "red"), cex=0.7)

plot(fdatime, D3fdafdY_mean*1000000, type="l", col="blue", main="y coordinate")

lines(fdatime, resmeanfdY_eval*1000000, type="l", col="red")

abline(h=0, lty=2)

legend(10, 500, legend=c("3rd", "residual"), fill=c("blue", "red"), cex=0.7)

par(mfrow=c(1,2))

#calculate forcing function, which is the L(X(t)) and L(Y(t)), the linear differential operator

LX<-matrix(0, 600, 11)

D1_X<-eval.fd(fdatime, fdafdX, 1)

D2_X<-eval.fd(fdatime, fdafdX, 2)

LX<-beta_X[,1]*fdaarray[,,1] + beta_X[,2]*D1_X + beta_X[,3]*D2_X + matrix(-w1_X, 600,

11)

matplot(fdatime, LX*10^5, type="l", ylim=c(-50, 70), xlab="time", ylab="forcing function",

main="X dimension for subject 0")

abline(h=0, lty=2)

LY<-matrix(0, 600, 11)

D1_Y<-eval.fd(fdatime, fdafdY, 1)

D2_Y<-eval.fd(fdatime, fdafdY, 2)

LY<-beta_Y[,1]*fdaarray[,,2] + beta_Y[,2]*D1_Y + beta_Y[,3]*D2_Y + matrix(-w1_Y, 600,

11)

matplot(fdatime, LY*10^5, type="l", ylim=c(-150, 120), xlab="time", ylab="forcing function",

main="Y dimension for subject 0")

abline(h=0, lty=2)

