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Abstract

Volatile beliefs generate large and predictable carry trade returns. In a symmetric two country model

with power utility, risk aversion of 5, and constant gain learning about mean consumption growth, the

carry trade earns a Sharpe ratio of 0.21. I extend this basic model to accommodate correlated belief

updates and Epstein-Zin preferences. While certain extensions manage to replicate both large carry trade

and equity Sharpe ratios, they are unable to do so simultaneously with smooth exchange rates. My

model has the empirical implication that if a group of countries have similar true mean growth rates,

then a growth carry of sorting countries by recent consumption growth should earn excess returns on par

with the carry trade. I find support for this in a panel of 14 developed world countries.
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1 Introduction

Parameter learning has been successful in explaining many closed economy asset pricing puzzles, such as

the equity risk premium, return predictability, and excess volatility (Pastor and Veronesi, 2009; Lewellen

and Shanken, 2002; Collin-Dufresne et al., 2015). Whereas agents in traditional rational expectations

models know the true parameters governing the economy, agents in a learning model must use past data

to infer the values of said parameters. Asset prices reflect agents’ time varying and uncertain beliefs.

Learning models are therefore able to match the reality of large, predictable, and highly volatile equity

returns.

This paper explores how parameter learning can help resolve two open economy asset pricing puzzles:

the carry trade and exchange rate smoothness.

1. The carry trade puzzle refers to the failure of uncovered interest rate parity (UIP) to hold in the cross

section.1 Investing in high interest rate currencies by borrowing in low interest rate currencies earns

annual Sharpe ratios of around 0.50 after transaction costs (Lustig et al., 2011). Such a strategy

is known as the carry trade. Moreover, carry trade returns are predictable using interest rate dif-

ferentials. Backus et al. (2001) translate these facts into restrictions on stochastic discount factors

(SDFs) in each country. They show that under conditionally log normal SDFs, rational expectations,

and complete markets, carry trade conditional expected returns are equal to one-half the difference

in the conditional variances of SDFs.2 Therefore large and time varying carry trade returns imply

highly volatile and heteroskedastic SDFs. But given that observed consumption growth is smooth

and nearly homoskedastic, why are carry trade returns so large? Solutions to the equity premium

puzzle that increase the volatility of SDFs are not enough to resolve the carry trade puzzle. Instead,

one needs an explanation for large time varying differences in SDF volatilities across countries.

2. The exchange rate smoothness puzzle refers to the fact that exchange rates are smooth relative to the

level of equity market Sharpe ratios. This fact implies that SDFs across countries must be highly

correlated (Brandt et al., 2006). But given that consumption growth is nearly independent across

countries, what is the common risk factor that causes SDFs to be correlated? Smooth exchange rates

are also at odds with large carry trade returns. Intuitively, the SDFs that are volatile enough to

match carry trade returns also cause exchange rates to be too volatile (Lustig and Verdelhan, 2016).

Therefore it is important for models of the carry trade to also match smooth exchange rates.
1UIP fails in the time series as well. However, the asset pricing literature focuses on this cross sectional violation because it

is easy to implement without estimating parameters about the time series relationship between forward discounts and currency
depreciation.

2Under more general distributions for the SDFs, the carry trade premium becomes the difference in conditional entropies. The
fundamental insight that the carry trade is about differences in higher order moments.
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Rational expectations models resolve these puzzles by considering more sophisticated preferences and

economies. Verdelhan (2010) uses a symmetric two country model with habit formation to generate

the necessary heteroskedasticity in SDFs. However, his model fails to match exchange rate smoothness.

Bansal and Shaliastovich (2012) use a two country model with heteroskedastic, correlated, long run risks

to generate both heteroskedastic SDFs as well as smooth exchange rates. Farhi and Gabaix (2014) derive

another resolution of the carry trade through disaster risks.

Beliefs open up a third dimension for explaining foreign exchange puzzles. Instead of relying on

complicated preferences and consumption economies, I instead take a disciplined departure from rational

expectations in the form of constant gain learning about mean consumption growth. There certainly exist

rational expectations models that explain the carry trade and smooth exchange rates, but my goal is to

show how time varying beliefs can offer a more parsimonious explanation of these puzzles.

I start with a simple two country model with power utility and independent consumption growth to

outline the basic mechanisms for how beliefs can generate a carry trade. When agents have to learn about

mean consumption growth they will end up perceiving exchange rate drifts that do not show up in the

data, thereby leading to carry trade opportunities. Interest rate differentials then track the extent of these

belief errors, and thus interest rate differentials end up predicting carry trade returns. Volatile beliefs also

introduce a volatile common belief distortion term into the SDFs of different countries, thereby explaining

the exchange rate smoothness puzzle.

Ideally, a model of beliefs and the carry trade should also be able to price equity risk. Such a model

would demonstrate the essential unity of fluctuating beliefs as a way of explaining asset pricing anomalies.

Moreover, the exchange rate smoothness puzzle started based on arguments about what equity Sharpe

ratios implied about plausible levels of exchange rate smoothness. A model that can jointly match the

equity premium, the carry trade, as well as the smoothness of exchange rates would be a model that more

credibly addresses the exchange rate smoothness puzzle as well.

In order to generate large equity Sharpe ratios, I combine Epstein-Zin preferences with priced param-

eter uncertainty. A power utility model fails to generate large equity Sharpe ratios because the increase

in parameter uncertainty caused by learning does not have a substantial effect on valuations. In contrast,

Epstein-Zin preferences induce a preference for the early resolution of uncertainty. Uncertainty about

mean consumption growth lowers equity valuations and raises wealth returns (Collin-Dufresne et al.,

2015). The long run risks literature for international finance has made heavy use of correlated long run

risks.3 The analogous mechanism in a model of beliefs is to have correlated belief updates. Intuitively, one

3For example, Colacito and Croce (2011); Bansal and Shaliastovich (2012) use correlated long run risks in their models that
generate both smooth exchange rates and large equity premia.
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might imagine that the developed world shares a common fate when it comes to long run consumption

growth, but that the exact fate itself is undetermined. I derive novel tools for modeling multivariate con-

stant gain learning with arbitrary belief correlations and study the asset pricing implications. Although

my simple model is unable to simultaneously replicate large carry trade Sharpe ratios, equity Sharpe ra-

tios, and smooth exchange rates, understanding why sheds insight on the limitations of models of belief

formation in explaining anomalies in international finance.

I then evaluate the empirical predictions of my beliefs based story of the carry trade. My model predicts

that carry trade returns should be determined by differences in expected growth rates, where expected

growth rates come from an exponentially weighted averages of past consumption growth. I find support

for this hypothesis in a panel of 14 developed world countries. This stylized fact also distinguishes my

story of the carry trade from the existing long run risks and disasters explanations.

2 A Simple Model of Parameter Learning and the Carry Trade

A simple two country Lucas model most clearly illustrates the effect of learning. Let lower case letters

denote logs. Global consumption growth is iid and distributed

∆ct+1 =

∆ct+1

∆c∗t+1

 ∼ MVN


g

g

 , σ2 I

 (2.1)

Where stars denote foreign variables. Agents know the variance σ2 but not the true mean growth rates g.

Agents have power utility. This implies log SDFs of

mt+1 = log δ− γ∆ct+1 (2.2)

Because agents do not know the true growth rate g, they instead form beliefs g̃t about consumption

growth in the domestic country through constant gain learning:

g̃t = α∆ct + (1− α) g̃t−1 =
∞

∑
j=0

α (1− α)j ∆ct−j (2.3)

with gain parameter α. Symmetric equations hold for foreign preferences and beliefs.

To see where the name constant gain learning comes from, it is useful to compare equation 2.3 to the

full Bayesian benchmark. In that case, the belief at stage t is just the sample mean, and so the updating
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equation can be written as

g̃t =
1
t︸︷︷︸

Gain

∆ct +

(
1− 1

t

)
g̃t−1 (2.4)

In this case, the gain parameter at stage t is 1
t and decreasing over time. As t → ∞, g̃t → g almost surely

and learning stops.

In contrast, constant gain learning replaces the decreasing sequence 1
t by a small constant α. Therefore

agents never stop learning about the true growth rate. There are three reasons to focus on this case:

1. It is a sensible rule for learning if the agent is concerned about structural shifts in the true growth

rate g. In this case the agent will want to overweight recent data when forming expectations.

2. There is empirical support for this model of belief formation. In the macro literature, Milani (2007)

finds that constant gain learning is able to dramatically improve the fit of DSGE models to match

smooth inflation and consumption growth. Malmendier and Nagel (2015) use survey microdata and

find that respondents seem to form expectations in a fully Bayesian fashion but only over the events

they see in their own life time. Embedding this form of limited Bayesian learning in an overlapping

generations framework produces a learning process, when averaged over generations, that closely

approximates constant gain learning.

3. It is analytically useful. Beliefs evolve according to an AR(1) and therefore have a stationary, non-

degenerate distribution for all time periods t. Thus the trading opportunities caused by learning do

not fade away with time.

Given that consumption growth is independent, then the beliefs g̃t, g̃∗t are independent. Agents know that

they are learning from this process. So even though agents know that the true volatility of consumption

growth is σ2, they have a slightly wider predictive density because of the uncertainty induced by the

mean. In particular,

Var (g̃) =
∞

∑
j=0

α2 (1− α)2j Var
(
∆ct−j

)
=

∞

∑
j=0

α2 (1− α)2j σ2

=
α2

1− (1− α)2 σ2

=
α

2− α
σ2 (2.5)
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Therefore under the subjective distribution domestic and foreign consumption growth ∆ct+1 is distributed

∆ct+1 ∼ MVN


 g̃t

g̃∗t

 , Σ̃


Σ̃ =

ασ2

2− α

1

1

+ σ2

1

1


Define σ̃2 =

(
1 + α

2−α

)
σ2 to be the subjective variance of domestic consumption growth.

Agents price assets under the subjective Euler equation

1 = Ẽ [Mt+1Rt+1] =

ˆ
φ

(
∆ct+1 − g̃t

σ̃

)
× δ

(
Ct+1

Ct

)−γ

Rt+1 d (∆ct+1) (2.6)

where φ (·) is the density of a standard normal distribution. This pricing equation differs from the rational

expectations benchmark because agents price assets based on their subjective expectation g̃t for future

consumption growth instead of the true growth rate g.4 I use Ẽ to denote the expectation under the

agents’ subjective beliefs. Based on this Euler equation, the risk free rate reflects the subjectively expected

growth rate

r f
t+1 = − log δ + γg̃t+1 −

1
2

γ2σ̃2 (2.7)

The solutions for the price-consumption ratio also reflect subjective expectations:

PCt+1 =
k

1− k
(2.8)

k = δ exp
(
(1− γ) g̃t+1 +

1
2
(1− γ)2 σ̃2

)
(2.9)

rw
t+1 = log

PCt+1 + 1
PCt

+ ∆ct+1 (2.10)

I close by specifying foreign exchange markets. I assume complete markets.5 Therefore exchange rates

are determined by ratios of SDFs.6 Let St denote the time t spot exchange rate, expressed in units of

4In this simple model, agents also ignore the effects of future parameter revisions on price. Ignoring future parameter revisions is
a useful approximation in the case of power utility (Collin-Dufresne et al., 2015). Intuitively, because the power utility SDF depends
only on one period’s realized consumption growth, then parameter uncertainty does not make the SDF more volatile.

5One could also ask whether relaxing the complete markets assumption is a more productive way to resolve exchange rate
puzzles. Lustig and Verdelhan (2016), however, show that incorporating market incompleteness to existing complete markets models
is not sufficient to jointly produce smooth exchange rates, large carry trade premia, and exchange rates that are uncorrelated with
consumption growth. Therefore it is still necessary to consider various complete market benchmarks and to then figure out which
particular cases of market incompleteness can help bridge the remaining facts.

6For a short proof, note there are two candidate SDFs for pricing domestic returns: Mt+1 and St+1
St

M∗t+1. The second SDF

arises because St+1
St

converts domestic returns into foreign returns, and since the foreign agent also satisfies her first order conditions
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foreign currency per domestic currency. Then

∆st+1 = mt+1 −m∗t+1 (2.11)

Note that the foreign currency appreciates in bad times for the foreign investor and depreciates in good

times for the foreign investor. Therefore when foreign consumption growth is high relative to domestic

consumption growth, the foreign currency depreciates. Covered interest rate parity (CIP) governs the

forward rate. Let Ft→t+1 denote the forward rate at time t for a contract that expires at time t + 1. That is,

an agent, at time t, can lock in a contract to buy Ft→t+1 units of foreign currency per domestic currency in

period t + 1. The law of one price implies that

ft→t+1 = st + r f ,∗
t − r f

t (2.12)

This condition comes about from analyzing two options that the agent has for investing one unit of

domestic currency. In the first case, she can buy a forward contract, save the currency at home to have R f

in the home currency next period, and then convert into R f Ft→t+1 units of foreign currency. Alternatively,

she can convert today to get St units of foreign currency, and save that abroad at the interest rate of R f ,∗.

Since these two quantities can be locked in at period t, they must be equal, and so R f Ft→t+1 = StR f ,∗.

Taking logs yields equation 2.12, and these relationships are illustrated in the diagram below.

Home $1

��

// R f

��
Foreign St // R∗, f St = R f Ft→t+1

My endowment model is robust to the introduction of production and trade costs. Assuming agents

are optimizing their consumption, then the above equations are still first order conditions for the final

consumption choices after agents have produced the optimal amounts of consumption and engaged in

international trade. In fact, given that the exchange rate fluctuates, my model implicitly assumes that

there are trade costs; otherwise purchasing power parity would hold and the exchange rate would be

fixed at 1. But so long as agents optimize their consumption choices and financial markets are complete,

consumption growth, interest rates, and exchange rates will be consistent with my model.

My model does assume that there is only one type of consumption produced in the world that enters

St+1
St

M∗t+1 becomes a candidate SDF for pricing domestic returns. Since SDFs are unique in complete markets, then Mt+1 =
St+1

St
M∗t+1.

Equation 2.11 then follows from taking logs and rearranging terms. See Backus et al. (2001) for a more detailed explanation.
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into both home and foreign utility functions additively. The exchange rate is the relative price of this

consumption good at home versus consumption abroad .7 There is no home bias in consumption, nor any

special division between tradable and non-tradable goods. Rather, my model is a minimal one in which

the real exchange rate is just the relative price of a consumption good that both domestic and foreign

agents consume.8

2.1 Model Results

I simulate this model for 40,000 quarters. I calibrate consumption growth to the post 1980 developed

world per capita consumption growth data, with an annualized mean of 1.51% and standard deviation of

1.67%. I set δ = 0.995 and γ = 5. I calibrate the gain parameter α = 0.02 to match the empirical estimates

from Malmendier and Nagel (2015) and Milani (2007). Table 1 reports key moments from the simulation.

Three themes emerge from the results:

2.1.1 Persistent Excess Returns Do Not Imply Compensation for Risk

One argument for risk based explanations of the carry trade is that the well known historical performance

of the carry trade rules out stories of persistently biased agent expectations.9 But constant gain learning

means that even though beliefs about the growth rate of the economy are unconditionally unbiased, belief

errors and carry trade profits never go away.10 The returns section of table 1 reports large Sharpe ratios

of 0.16 for a simple strategy of just buying the high interest rate currency, and a higher Sharpe ratio of

0.21 when the strategy scales with the size of the interest rate differential.11 One way to conceptualize the

magnitude of a 0.21 Sharpe ratio is to compare to Sharpe ratios typically seen in a power utility model

with γ = 5. For example, my carry Sharpe ratio is more than twice the Sharpe ratio of the wealth return

7Equivalently, one unit of home consumption can be exchanged for St units of foreign consumption.
8Interpreting my model as story about two countries – the United States and the United Kingdom – can clarify my implicit

assumptions about production and trade. Agents in both the US and UK have their own apple trees. Agents are indifferent between
consuming American or British apples, and because it is costly to trade between the two countries, then the relative price of American
and British apples fluctuates.

9Lustig and Verdelhan (2008) write “The average log excess return after transaction costs has increased from 227 basis points in
the first part of the sample to 698 basis points per annum in the second part of the sample. Clearly, this is not a temporary anomaly
that is about to be arbitraged away, and understanding carry trade returns is a critical step toward a better understanding of exchange
rates.”

10My results that learning implies carry trade profits would also work in a fully Bayesian setting. So long as the beliefs are
somewhat volatile, carry trade profits will exist. However, in that Bayesian setting profits would eventually go to zero as learning
stops. Therefore constant gain learning allows me to more realistically model robust belief formation on the part of the agent as well
as allowing profits opportunities to exist over time.

11This carry trade Sharpe ratios is lower than the 0.40 Sharpe ratio for going long/short portfolios of developed country currencies
sorted by interest rates Lustig et al. (2011). They get larger Sharpe ratios because currency portfolios have lower volatility. But it is
hard to compare their results with my result for two countries directly. One way to make a comparison is to suppose I had access
to more currency pairs, thereby scaling expected returns by the number of additional countries and the exchange rate volatility at
rate
√

n. Then if I go from 2 countries to 14 countries, as I do in my empirical analysis, then, assuming independent consumption,
my Sharpe ratio would also be multiple by

√
13√
2
≈ 2.54. My Sharpe ratio would then be more comparable. However, this is a very

ad-hoc comparison, and I have a more thorough empirical test of my theory in section 4.
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(0.08). As such it is important to understand why such large returns exist in equilibrium.

Analytically solving the carry trade premium reveals why the agents leave carry trade profits on the

table. Buy the forward contract and sell it at the spot in the next period. The profits from this transaction

are:

ft→t+1 − st+1 = −∆st+1 + r f ,∗
t − r f

t (2.13)

= m∗t+1 −mt+1 − log Ẽt
[
exp

(
m∗t+1

)]
+ log Ẽt [exp (mt+1)] (2.14)

= m∗t+1 −mt+1 −
(

Ẽt
(
m∗t+1

)
+

1
2

Ṽart
(
m∗t+1

))
+

[
Ẽt (mt+1) +

1
2

Ṽart (mt+1)

]
(2.15)

=
[
m∗t+1 − Ẽt

(
m∗t+1

)]
−
[
mt+1 − Ẽt (mt+1)

]
(2.16)

Equation 2.13 uses CIP. Equation 2.14 expands the exchange rate using equation 2.11 and the risk free rate

using 2.7. Variance terms appear in equation 2.15 due to a Jensen inequality correction, and variances are

eliminated from the last line because consumption variances, and thus SDF variances, are equal in the two

countries.

To find the carry premium, I need to take expectations of equation 2.16. First, I take expectations under

subjective beliefs. In that case

Ẽ [ ft→t+1 − st+1] = Ẽ
{[

m∗t+1 − Ẽt
(
m∗t+1

)]
−
[
mt+1 − Ẽt (mt+1)

]}
= 0 (2.17)

This equation demonstrates that agents do not perceive any carry trade premium. On the other hand,

when the econometrician measures the excess returns from the carry trade, she takes expectations under

the objective distribution for consumption growth. In that case

Et [ ft→t+1 − st+1] = Etm∗t+1 − Ẽtm∗t+1 −
(
Etm∗t+1 − Ẽtm∗t+1

)
(2.18)

γ [(g̃∗t − g)− (g̃t − g)] (2.19)

= γ (g̃∗t − g̃t) (2.20)

= r f ,∗
t − r f

t (2.21)

Thus the econometrician identifies a carry trade premium equal to the entire interest rate differential.

Agents fail to enter the carry trade because uncovered interest rate parity holds under the agents’

subjective beliefs. High interest rate countries are those with high subjectively expected growth rates. But

because of the positive relationship between a currency’s strength and the value of the country’s SDF,

agents forecast currency depreciations for countries with high subjective growth rates. This forecasted
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depreciation is precisely equal to the interest rate differential. On the other hand, the econometrician

exploits the knowledge that consumption growth in the two countries share the same mean. Under

the objective measure, SDFs are symmetric, exchange rates are a random walk, and the econometrician

measures a carry trade premium that equals the interest rate differential. The carry trade exists not because

agents are too risk averse, but rather because agents do not believe the carry trade will earn excess returns

at all.

Another way to understand why agents are skeptical about carry trade profits comes from thinking

about the carry trade returns that they must have observed as the two countries’ interest rates r f , r f ,∗

pulled apart. Suppose that r f ,∗ > r f , so that there are large expected returns from investing in the

foreign currency. By the Euler equation foreign growth expectations must also be higher than domestic

growth rate expectations. For this to have occurred, it must have been that foreign growth consistently

came in above the subjective expectation in the recent past. Given the tight link between growth and

exchange rate depreciations imposed by equation 2.11, then it is also the case that foreign exchange rate

depreciations came in larger than the interest rate differential in the recent past. During this time, the

carry trade has consistently lost money. Constant gain learning then means this should affect the agents’

future expectations, thereby making the agent unable to perceive the carry trade premium. Formally,

we can decompose the current interest rate differential into past carry trade profits and past interest rate

differentials:

r f ,∗
t − r f

t = γ (g̃∗t − g̃t)

= γ
[
α (∆c∗t − ∆ct) + (1− α)

(
g̃∗t−1 − g̃t−1

)]
= −α

(
r f ,∗

t − r f
t − ∆st

)
+ r f ,∗

t−1 − r f
t−1 (2.22)

= −α
j−1

∑
i=0

(
r f ,∗

t−i − r f
t−i − ∆st−i

)
+ r f ,∗

t−j − r f
t−j (2.23)

Note that the term inside the parentheses is precisely the return from the carry trade. Therefore if the

interest rate differential increased from period t − j to t, the term ∑
j−1
i=0

(
r f ,∗

t−i − r f
t−i − ∆st−i

)
must be

negative, and so it must be that the carry trade lost money on average in periods t− j to t.

My explanation for the carry trade resembles Lewellen and Shanken’s learning based explanation of

the value premium (2002). In their model, agents learn about mean dividends in the cross section of stocks

with identical mean dividend levels. Value stocks are stocks that have paid low dividends in the recent

past, are perceived by agents to have low future dividends, and therefore have a low price. But because

actual mean dividends have not decreased, expectations eventually mean revert, thereby making value
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stocks appreciate in value. The value premium persists because agents cannot foresee this increase in

dividend expectations in their subjective predictive distributions, and the book to market ratio tracks the

difference between the agent’s subjective belief and objective dynamics. Analogously, agents in my model

would earn an excess return by buying currencies of countries with expected growth rates above the true

growth rate. But the carry trade premium persists because the agents cannot know what the true growth

rates are! Moreover, interest rate differentials track the magnitude of the difference between subjective

beliefs and objective dynamics, and therefore forecast expected returns.

True, if agents were fully Bayesian and consumption truly had a constant mean, then learning would

eventually stop and therefore no country would have a difference between the subjectively expected

growth rate and the true growth rate. But my model has the general implication that so long as the

agents’ learning process is not fast enough to pin down the growth rate with absolute certainty, then carry

trade premia can exist in the data without being compensation for risk.

2.1.2 Small Belief Distortions Can Look Like Large Risk Aversion

The carry trade Sharpe ratio is independent of risk aversion and linear in the difference in expected growth

rates. Dividing equation 2.18 by the volatility of the exchange rate yields a carry trade Sharpe ratio of

SRt [ ft→t+1 − st+1] =
g̃∗t − g̃t

σ
√

2
(2.24)

Applying the law of iterated expectations also gives that the unconditional Sharpe ratio is equal to12

SR [ ft→t+1 − st+1] =

√
2α√

π (2− α)
= Std (g̃t)×

1
σ

√
2
π

(2.25)

Therefore large Sharpe ratios come from volatile beliefs caused by large gain and consumption volatility,

not high risk aversion.

The closest rational expectations model that can generate a carry trade premium is an international

Lucas model with heteroskedastic consumption growth. At time t, let next period consumption volatility

at home and abroad equal σ2
t+1, σ∗2t+1, respectively. In that model the carry trade Sharpe ratio equals

SRt [ ft→t+1 − st+1] =
γ
(
σ2

t+1 − σ∗2t+1
)

2
√

σ2
t+1 + σ∗2t+1

(2.26)

12The conditional expected premium from going long the high interest rate currency is equal to |γ (g̃∗t − g̃t)|. Since g̃, g̃∗ are

independent and both normal with mean g and variance ασ2

2−α , then γ (g̃∗t − g̃t) ∼ N
(

0, 2γ2ασ2

2−α

)
. By general results on half normals,

E |γ (g̃∗t − g̃t)| = 2γσ
√

α√
π(2−α)

. Then because the volatility of the strategy is always equal to γσ
√

2, then the unconditional Sharpe ratio

becomes the reported result.
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A rational expectations econometrician facing a large unconditional carry trade premium, consumption

variances that do not differ substantially across countries, and equation 2.26 must conclude that γ is very

high.

On the other hand, under subjective beliefs I only need that the belief difference g̃∗t − g̃t to exhibit

mild volatility. In fact, in my calibration, g̃t is normally distributed with mean 1.51% and with standard

deviation 0.16%. The full Bayesian solution for beliefs gives a good benchmark for conceptualizing how

small belief fluctuations are in my model. The ratio between the volatility of beliefs and consumption

volatility is Std(g̃t)
σ =

√
α

2−α ≈ 0.10. Hence for a fully Bayesian agent to have comparable belief volatility

as the constant gain agent, the fully Bayesian agent would have to observe 25 years = 100 quarters of

consumption data. This is a long time for consumption growth parameters to stay stable. Second, one can

ask how quickly an agent with fully Bayesian belief formation would reject the constant gain belief. In

particular consider the likelihood ratio L defined by

L =
T

∏
t=1

p (∆ct|g̃t)

p (∆ct|ḡt)

= exp

{
− 1

2σ2

T

∑
t=1

[
(∆ct − g̃t)

2 − (∆ct − ḡt)
2
]}

Assume that the constant gain belief is initialized at g̃0 = g, and that beliefs evolve according to equation

2.3. Figure 1 shows the value of exp (EL), or the expected odds of the growth rate g equaling g̃t instead of

equaling the sample mean ḡt, as the number of observations t increases. This figure shows that the odds

decline slowly. Even after 50 years of data, the agent can only say that the likelihood of the constant gain

growth rate is 60% of the likelihood of the full Bayesian belief. This is not strong evidence for an agent

concerned about robustness to reject the constant gain belief. Nor is there definite evidence preferring the

sample mean over the constant gain learning belief even after 100 years, with odds only at 20%.

Subjective beliefs generate premia based on differences in expected first moments, whereas risk based

explanations must depend on second moments and therefore the risk aversion parameter. In that sense my

work is an extension of Abel (2002), who argued that one potential explanation of the equity risk premium

was persistent pessimism on the part of agents. In that case, every percentage point of pessimism about

consumption growth would raise the equity premium by an equal amount. Similarly, every percentage

point difference in relative expectations about consumption growth in my model raises the conditional

Sharpe ratio by an amount independent of γ. Ultimately, I can exploit mild volatility in beliefs in the place

of large volatility in SDFs to generate large carry trade Sharpe ratios.

12



2.1.3 Subjective Beliefs Can Make Exchange Rates Smooth and Objective SDFs Highly Correlated

Allowing agents to have time varying subjective beliefs can dramatically change the interpretation of stan-

dard non-parametric tools used to evaluate rational expectations asset pricing models. One implication

for international finance is that subjective beliefs can make measured SDFs based on Hansen and Jagan-

nathan (1991) bounds look far more correlated than what seems to be justified on the basis of consumption

growth. Equivalently, beliefs can explain how smooth exchange rates are consistent with large carry trade

Sharpe ratios.

Hansen and Jagannathan bounds are non-parametric tools used to connect the levels of risk premia

with the variance of marginal utility growth. Intuitively, for assets to earn large excess returns it must

mean that agents are highly risk averse. Concretely, what this means is that the maximal attainable Sharpe

ratio should be bounded above by the volatility of the agents’ SDFs. Yet my basic model seems to violate

this bound. The scaled carry trade earns a Sharpe ratio of 0.21 yet the volatility of the SDF is just γσ ≈ 0.08.

However, Hansen and Jagannathan bounds apply only to an SDF that prices returns under objective

probabilities, whereas agents in my model price returns under subjective beliefs. Define an objective SDF

M̂t+1

M̂t+1 =
f̃t+1

f
×Mt+1 (2.27)

Define the experienced marginal utility growth Mt+1 as the subjective SDF. Rewrite the subjective Euler

equation 2.6 under objective probabilities as:

1 = Ẽ [Mt+1Rt+1] = E

[
f̃t+1

f
Mt+1Rt+1

]
= E

[
M̂t+1Rt+1

]
(2.28)

Where f̃t+1/ f is the ratio of the subjective belief and objective probability density functions. Equation 2.28

shows how the objective SDF earns its name: it prices returns under the objective probability distribution

f . The objective SDF is the product of the belief distortion and the subjective SDF. Cogley and Sargent

(2008), in their paper on the equity risk premium, emphasize that Hansen and Jagannathan bounds apply

only to objective SDFs. Table 1 shows that while the Hansen and Jagannathan bound does not apply to

the subjective SDF, which has a volatility of 0.08, it does apply to the objective SDF, which has a volatility

of 0.30. Therefore high Sharpe ratios in a model with subjective beliefs indicate only that either beliefs or

marginal utility growth must be volatile.

Cogley and Sargent’s insight, when applied to international finance, can explain tightly correlated

international SDFs and smooth exchange rates. Note that the tight connection between exchange rates
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and SDFs in equation 2.11 implies

Var (∆s)︸ ︷︷ ︸
Small

= Var (mt+1)︸ ︷︷ ︸
Large

+Var
(
m∗t+1

)︸ ︷︷ ︸
Large

−2 Cov
(
mt+1, m∗t+1

)︸ ︷︷ ︸
Large?

(2.29)

Given annual Sharpe ratios above 0.40 on international stock markets, Hansen and Jagannathan bounds

imply that the stochastic discount factors within countries must have standard deviations of around 40%.

Yet changes in log exchange rates have an annual standard deviation of only 10%. Therefore log stochastic

discount factors must be highly correlated across countries.13 But observable risk factors, such as con-

sumption growth, have low correlations. These facts lead to the exchange rate smoothness puzzle: given

plausible levels of correlation between SDFs, exchange rates in the data are too smooth (Brandt et al., 2006)

But because equation 2.29 applies to objective SDFs, it only describes moment restrictions on the

combination of both the log subjective SDF and the belief distortion. Therefore the high covariation in

SDFs implied by equation 2.29 can actually just be an artefact of a common time varying belief distortion.

This belief distortion reflects the common deviation of beliefs shared by domestic and foreign agents from

objective dynamics.

Studying the prices of Arrow securities on domestic and foreign outcomes shows how this common

belief distortion has nothing to do with the relationship between shocks in the two countries. Let states

be discrete, and consider the price of an Arrow security that pays out 1 unit of domestic consump-

tion if a certain pair of domestic and foreign states (s, s∗) occurs. Domestic agents are willing to pay

f̃t+1 (s, s∗) Mt+1 (s). Such a security pays out St+1 units of foreign consumption, and therefore foreign

agents would be willing to pay St+1 f̃t+1 (s, s∗) M∗t+1 (s
∗). When the rational expectations econometrician

computes what values the SDF takes on in these states, she will divide by the objective probabilities and

payoffs to get that the foreign SDF takes on a value of f̃t+1
f M∗t+1 = M̂∗t+1 and that the domestic SDF takes

on a value of f̃t+1
f Mt+1 = M̂t+1. Both contain the common belief distortion f̃t+1

f . This proof relied on com-

plete markets and that domestic and foreign agents agree on the international distribution of consumption

growth. Even if agents believe that foreign and domestic states are independent, the rational expectations

econometrician will still recover SDFs that share a common belief distortion f̃t+1
f .

Fortunately, the foreign belief distortion does not affect the price of all assets. In the case of indepen-

dent shocks, the foreign belief distortion does not play a role in pricing assets based purely off of domestic

shocks; Terran assets do not depend on belief distortions about Martian consumption growth. When pric-

ing domestic payoffs under the objective measure, the foreign densities in the objective SDF decomposition

13Let m, m∗ denote the domestic and foreign log SDFs. Then Cov (m, m∗) = 1
2 [Var (m) + Var (m∗)−Var (m−m∗)] =

1
2

(
0.402 × 2− 0.102) = 0.155. Therefore Corr (m, m∗) = 0.155

(0.40)2 = 0.97.

14



2.27 will factor out and have expectation 1 by construction. In the general case of correlated shocks, I can

instead replace the ratio of foreign densities with the ratio of conditional distributions of foreign shocks, in

which case they will again factor out and have no effect on assets based on purely domestic shocks.14 For

purely domestic assets, foreign belief distortions only matter to the extent that they convey information

for domestic consumption shocks.

The common belief distortion term arises when one tries to find a pair of SDFs (M, M∗) that success-

fully prices international assets under the objective joint distribution represented by ft+1. In this case the

econometrician will instead pick up a common belief distortion about the joint distribution of shocks,

thereby making objective SDFs highly correlated even when subjective SDFs are independent. This anal-

ysis is borne out in my simulations. The SDF moments section of table 1 shows that while the subjective

SDFs are uncorrelated, the objective SDFs with the belief distortion term have a correlation of 0.92. Thus

subjective beliefs help explain why exchange rates can be so smooth by changing what it means for ob-

jective SDFs to be correlated. Correlated objective SDFs need not reflect shared risk, but rather shared

fluctuating beliefs.

3 Correlated Learning and Subjective Long Run Risks

I extend my model to include Epstein-Zin (EZ) preferences and correlated learning to find a way to match

high equity Sharpe ratios as well. Agents in my model price a "subjective" long run risk: namely the risk

that their beliefs about average consumption growth fluctuate over time. This extension to Epstein-Zin

preferences helps to illustrate the limits of models of subjective beliefs in solving open economy asset

pricing puzzles simultaneously with domestic asset pricing puzzles.

14Let s, s∗ denote the shock variables for home and domestic. Let g (s) denote the marginal distribution of the home shock and
g∗ (s∗|s) be the density of the foreign distribution conditional on the domestic shock. Therefore the joint distribution is g (s) · g∗ (s∗|s).
Let tildes denote subjective belief distributions. Then if the payoff Xt+1 depends only on s, then

E

[
g̃ (s)
g (s)

· g̃∗ (s∗|s)
g∗ (s∗|s) ·Mt+1Xt+1

]
=

ˆ
g̃ (s)
g (s)

· g̃∗ (s∗|s)
g∗ (s∗|s) ·Mt+1Xt+1P (ds× ds∗)

=

ˆ ˆ
g̃ (s)
g (s)

· g̃∗ (s∗|s)
g∗ (s∗|s) ·Mt+1Xt+1g∗ (s∗|s) g (s) ds∗ ds

=

ˆ
g̃ (s) Mt+1Xt+1

(ˆ
g̃∗ (s∗|s) ds∗

)
ds

=

ˆ
g̃ (s) Mt+1Xt+1ds = E

[
g̃
g

M̃t+1Xt+1

]
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3.1 A Model of Correlated Learning

I first derive formulas for correlated multivariate constant gain learning. My strategy is to show how the

one dimensional version of constant gain learning can be derived from Bayesian preliminaries, and to then

adapt this strategy for the multivariate case.

Let the agent have a normal prior for the mean growth rate g with a mean of µ and variance τ−2. She

samples consumption growth ∆ct from a normal distribution with unknown mean but known variance

σ2. The agent then forms a sequence of posterior means {g̃t} for the mean growth rate that can be defined

recursively:

g̃t =
1

t + σ2τ2 ∆ct +

(
1− 1

t + σ2τ2

)
g̃t−1 (3.1)

g̃0 = µ (3.2)

To arrive at the constant gain learning formula 2.3, I first change the sample size t to the effective

sample size α−1 implied by constant gain learning, and then let the precision τ → 0. This establishes a

model of constant gain learning that is independent of the prior.

I use the same strategy in the multivariate case. Impose a prior on the vector of mean growth rates

g with a mean of µ but with prior variance Υ = τ−2

1 φ

φ 1

. In the multivariate case, there is a new

parameter to specify – the correlation φ of beliefs in the prior. A value close to 1 communicates the idea

that the agent strongly believes the true means for consumption growth in the two countries are close

together and therefore induces correlated belief updates. The agent samples consumption growth ∆ct

drawn from the multivariate normal distribution with unknown mean but known variance Σ = σ2 I. The

full Bayesian solution implies that the posterior means {g̃t} for the mean growth rate evolve as follows:

g̃t = M∆ct + (I −M) g̃t−1 (3.3)

M =
(

ΣΥ−1 + tI
)−1

(3.4)

g̃0 = µ (3.5)

Replace t with α−1 and let the precision go to zero. Appendix C shows that for fixed values of φ < 1,

the updating equation reduces to independent learning.15 As precision τ → 0, the agent puts no weight on

15For φ = 1, the prior corresponds to a dogmatic belief that mean growth rates in the two countries are equal, and is thereby
successful at replicating perfectly correlated beliefs. However, since I want to be able to model beliefs with arbitrary correlation in
(0, 1), I develop further methods.
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the prior. Therefore φ does not matter as the known independence in realized consumption overwhelms

any motivation to update beliefs in a correlated fashion.

I resolve this problem by instead modeling the belief correlation φ with local to unity asymptotics

φ ∼ 1− cτ2 + o(τ2) for some c > 0, and then letting τ → 0. Intuitively, this allows me to impose a strong

prior that growth rates are correlated without also determining what each of the growth rates should

be. The particular value of the hyperparameter c can be chosen to match any arbitrary belief correlation

between 0 and 1. Appendix C outlines the derivations of the updating formulas and the theoretical

variances and correlations of beliefs. The resulting update equations take the form

g̃t = M∆cn + (I −M) g̃t−1 (3.6)

M =

σ2

2c

 1 −1

−1 1

+ α−1 I


−1

(3.7)

g̃0 = µ (3.8)

Although equation 3.6 indicates that the domestic agent will use realizations of foreign consumption

growth to update beliefs, she nonetheless perceives that her subjective beliefs will evolve as a martingale.

An important corollary is that future beliefs about domestic consumption, g̃t+1, are independent of current

beliefs about foreign consumption, g̃∗t . Therefore the pricing of the domestic consumption claim does not

depend on beliefs about foreign consumption growth.

To show that g̃t+1 ⊥ g̃∗t , observe that the future belief is a normal random variable. The variance is

already pinned down by known parameters, so to show that the two variables are independent, it suffices

to show that Et [g̃t+1] ⊥ g̃∗t . There are two ways to arrive at this result. First, the evolution of future beliefs

under current beliefs must be a martingale. Otherwise the agent would have revised her current period

belief. Therefore Et [g̃t+1] = g̃t, which is already determined and therefore does not depend on g̃∗t . I can

also verify directly with algebra. Write g̃t =

(
g̃t g̃∗t

)T
, where the star denotes the posterior mean for

the foreign consumption distribution. Let Mij denote the ij element of matrix M. Expanding equation 3.6

shows that the expected value of g̃t+1 under subjective beliefs is:

Ẽt
[
M11∆ct+1 + M12∆c∗t+1

]
+ (1−M11) g̃t −M12 g̃∗t (3.9)

= g̃t + M11
(
Ẽt [∆ct+1]− g̃t

)
+ M12

(
Ẽt
[
∆c∗t+1

]
− g̃∗t

)
(3.10)

= g̃t (3.11)
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Which does not depend on g̃∗t .

3.2 Model Description

I now apply the new learning process to a model of priced parameter uncertainty. Consumption is again

independent across countries and time. Agents now have Epstein-Zin preferences, and so the log SDF is:

log mt+1 = θ log δ− γ∆ct+1 + (θ − 1) log
PCt+1 + 1

PCt
(3.12)

where ψ is the elasticity of intertemporal substitution, γ is relative risk aversion over consumption growth,

θ = 1−γ
1−ψ−1 , and PCt is the price to consumption ratio at time t.

Again, agents price assets using the subjective Euler equation. Beliefs evolve according to the update

equations 3.6. Agents incorporate parameter uncertainty into prices. They are aware that their belief about

consumption growth may change in the future, and price this risk. Collin-Dufresne et al. (2015) show that

incorporating priced consumption risk can substantially raise Sharpe ratios when agents have Epstein-

Zin preferences. Exchange rates and forward contracts are determined by complete markets and covered

interest parity, just as in the power utility case. Appendix D details the numerical solution methodology.

3.3 Discussion of Results

I simulate the model for 40,000 quarters. I set time preference δ = 0.995 and α = 0.02 just as in the power

utility case. I set ψ = 1.5 to match parameterizations seen in the long run risks literature. I consider two

cases for risk aversion: γ = 5 and γ = 10, as well as three possibilities for the correlation between beliefs.

I choose to model zero correlation to match the power utility model, a perfect correlation in order to see

how much traction the model can get on exchange rate smoothness, as well as an intermediate correlation

of 0.77 to match the cross-country correlation in log dividend price ratios reported in Colacito and Croce

(2011).

Table 2 shows that Epstein-Zin preferences raise Sharpe ratios on the wealth claim. But the table also

illustrates the tensions that arise from trying to match other moments.

First, observe that carry trade Sharpe ratios are always highest in the case of uncorrelated beliefs and

lowest in the case of perfectly correlated beliefs. This is to be expected as the carry trade premium arises

in my model because of differences in beliefs about consumption growth. When belief updates become

correlated these differences become smaller, and so Sharpe ratios fall.

But focusing on the case of uncorrelated belief updates then makes exchange rates highly volatile. In

the Epstein-Zin model, both the subjective and objective SDFs are driven by volatile price consumption
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ratios, which are ultimately tied to fluctuating beliefs. Since exchange rates are determined by differences

in subjective SDFs, then exchange rates are inevitably volatile. In contrast, the power utility model had a

smooth subjective SDF and generated a volatile objective SDF through a belief distortion term. Since that

belief distortion term does not enter into the exchange rate, the power utility model was able to have large

carry trade Sharpe ratios alongside smooth exchange rates.

There is also a tension between exchange rate smoothness and large equity Sharpe ratios. If one would

like to get close to the large equity Sharpe ratios in the data, one would need to consider a risk aversion γ

of at least 10. But in those cases, the exchange rate is volatile even when the two countries have perfectly

correlated beliefs. The exchange rate volatility rises entirely from the consumption growth portion of the

Epstein-Zin SDF, and is sufficient to result in exchange rate volatility twice of that which we see in the

data.

Thus the exchange rate smoothness puzzle for models of subjective beliefs can be restated as:

Large equity Sharpe ratios tell us that beliefs must be highly volatile. But given the low cor-

relation in beliefs implied by large carry trade Sharpe ratios, exchange rates are puzzlingly

smooth.

The logic behind this statement can best be captured through re-interpreting the exchange rate smoothness

bound 2.29 as a set of moment restrictions on the subjective SDFs. This is possible because the relationship

between the exchange rate and SDFs applies to both subjective and objective SDFs. If I allow beliefs to

be uncorrelated, then the subjective SDFs are independent. In that case the variance in the exchange rate

is equal to the sums of the subjective SDF variances. If I insist that beliefs are unconditionally unbiased,

then to get large wealth Sharpe ratios the subjective SDF must be highly volatile. But that means exchange

rates are no longer smooth.

4 Empirical Test: Growth Carry

My models predict that sorting currencies by exponential moving averages of past consumption growth

rates should deliver comparable returns to the standard carry trade that sorts based on interest rates.

I investigate this prediction for a panel of 14 developed world countries. I focus on developed world

countries because my theory only applies to countries with relatively similar growth rates that do not

vary substantially over time. Appendix F contains further details of the data used for this analysis. I

initialize each country’s growth rate expectation at 2.32%, the pre-1980 average per capita consumption
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growth across all the developed countries in my sample.16 Then for each country, I recursively generate

beliefs according to the constant gain learning formula 2.3. This generates a sequence of growth rate

beliefs g̃i,t for country i = 1, . . . , N at time t. I also compute forward discounts f di,t = fi,t→t+1 − st that

correspond to interest rate differentials.

I define two kinds of carry trades. First is the standard interest rate carry, which enters into positions

f di,t − 1
N ∑N

i=1 f di,t in each currency i at time t. This strategy takes larger positions in currencies that have

high forward discounts relative to other currencies in the cross section, and corresponds to a continuous

version of the portfolio strategy specified in Lustig and Verdelhan (2007). Second, I define a growth carry,

which enters into positions g̃i,t− 1
N ∑N

i=1 g̃i,t in each currency i at time t. This strategy takes larger positions

in currencies of countries that have high expected growth rates relative to other currencies in the cross

section. If true growth rates were constant and growth rate expectations evolved exactly according to my

constant gain specification, then these sorts would be identical.

Figure 2 shows that these two strategies share similar periods of gains and losses. This suggests that

high interest rate currencies correspond to those with high expected growth rates. While the growth carry

earns a Sharpe ratio of 0.26, the interest rate carry earns a Sharpe ratio of 0.40. Given that estimates

based on macro data are inevitably noisier, and given that my constant gain learning process inevitably

suffers from misspecification, these the comparable Sharpe ratios indicate that differences in growth rate

expectations do a good job in explaining the dispersion of forward discounts and carry trade returns.

This growth carry is a novel empirical test that helps to distinguish competing stories of the carry trade.

For example, the long run risks model of Bansal and Shaliastovich (2012) and the rare disasters model of

Farhi and Gabaix (2014) do not feature expected returns that depend on long moving averages of past

consumption growth. In fact, in the domestic asset pricing literature, it is an advantage of the long run

risks model that past consumption growth does not forecast the state variable (the price to consumption

ratio) that forecasts expected returns. But this strength of the long run risks model in the domestic realm

is a weakness in resolving the carry trade. In the case of the carry trade, the state variable that forecasts

expected returns, the interest rate differential, is predictable on the basis of past consumption growth.

Therefore the growth carry is support for my beliefs based story as well as the habits based story of

Verdelhan (2010).

In table 3, I provide a summary of the empirical performance of rational expectations solutions to the

carry trade as well as a subset of my belief based stories. Overall, the beliefs model with power utility

is the only model to match all of the foreign exchange facts: large carry trade returns, smooth exchange

16The exact level of this belief is not very important because the carry trades that I study are all based on the cross section of
growth rates.
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rates, and a growth carry. However, it fails to match a large equity Sharpe ratio. When one imposes the

requirement that models must also match large equity Sharpe ratio, then the model of beliefs that matches

the most facts is the Epstein-Zin model with high risk aversion γ = 10. However, in that case exchange

rates are no longer smooth, and my model with Epstein-Zin preferences and priced parameter uncertainty

matches the same set of facts as the habits model.

5 Conclusion

I extend the modern asset pricing literature on parameter learning to the open economy and show how

errors in beliefs about mean consumption growth can provide a plausible account of persistent and large

carry trade premia. In my model, the carry trade is profitable not because of differences in conditional

SDF variances, but rather because of differences in beliefs about mean consumption growth in different

countries. I also show how incorporating subjective beliefs in open economy asset pricing models can

explain how smooth exchange rates are consistent with large carry trade Sharpe ratios. I then extend

the model to the case of Epstein-Zin preferences, and find that my simple model of international learning

cannot jointly match high equity Sharpe ratios, high carry trade Sharpe ratios, and smooth exchange rates.

My beliefs based stories predict that a growth carry that sorts countries based on expected growth rates

instead of interest rates should earn returns comparable to the interest rate carry, and I find support for

this in the data. I show how this test distinguishes my model relative to existing rational expectations

models.

A key extension of my model would be to incorporate how beliefs may interact with incomplete mar-

kets. Given that learning seems to have traction even in simple consumption environments, one could

extend the rational expectations analysis of Lustig and Verdelhan (2016) to see how incomplete market

wedges combined with beliefs can help match key moments of international asset returns. Another direc-

tion would be to find ways to model the non-linearities in carry trade returns. While existing explanations

of the skewness of currency returns focus on intermediary constraints (Brunnermeier et al., 2008), it is an

open question if and how learning might generate similar results.
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A Tables

Table 1: Moments from model simulations of the power utility model. I run quarterly sim-
ulations but annualize all moments. The subjective SDF refers to the experienced marginal
utility growth of the agent. The objective SDF refers to the subjective SDF plus the common
belief distortion. The carry trade refers to the strategy of buying the high interest rate cur-
rency and shorting the low interest rate currency. The scaled carry trade scales the carry
trade exposure according to the size of the forward discount r f ,∗

t − r f
t , and therefore takes

advantage of the higher conditional Sharpe ratio when the forward discount is large.

Moments

Consumption
Consumption
Growth (%)

g 1.51

Consumption
Volatility (%)

σ (∆c) 1.67

Returns +
Beliefs

Carry Trade SR
SR ([ ft→t+1 − st+1]×

sign
[
r f ,∗

t − r f ,∗
t

]) 0.16

Scaled Carry
Trade SR

SR ([ ft→t+1 − st+1]×[
r f ,∗

t − r f ,∗
t

]) 0.21

Wealth SR SR (rW) 0.05
Volatility of
Belief (%)

σ (g̃t) 0.16

SDF Moments
Subjective SDF

Volatility
σ (m) 0.08

Objective SDF
Volatility

σ (m̂) 0.30

Subjective SDF
Correlation

Corr (m, m∗) 0.00

Objective SDF
Correlation

Corr (m̂, m̂) 0.92

Exchange Rate
Volatility

σ (∆s) 0.12
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Table 2: Moments from model simulations of the Epstein-Zin model with priced parameter
uncertainty. I run quarterly simulations but annualize all moments. The carry trade refers
to the strategy of buying the high interest rate currency and shorting the low interest rate
currency. The scaled carry trade scales the carry trade exposure according to the size of the
forward discount r f ,∗

t − r f
t , and therefore takes advantage of the higher conditional Sharpe

ratio when the forward discount is large.

Risk Aversion γ = 5 γ = 10
Belief

Correlation ρ = 0 ρ = 0.77 ρ = 1 ρ = 0 ρ = 0.77 ρ = 1

Carry Trade SR 0.14 0.04 0.00 0.13 0.06 0.00
Scaled Carry SR 0.18 0.06 0.00 0.17 0.07 0.00

Wealth SR 0.19 0.13 0.13 0.36 0.28 0.27
Exchange Rate

Volatility 0.44 0.17 0.12 0.76 0.32 0.24
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Table 3: Summary of how models perform on replicating different features of exchange rates and the carry trade in the data. Carry
SR refers to the ability of a model to generate large carry trade SR. Smooth FX refers to the ability of the model to limit the standard
deviation of the real exchange rate to around 0.10. Growth carry refers to the ability of the model to link the cross sectional dispersion
in interest rates to recent levels of consumption growth. Wealth SR refers to the ability of a model to generate equity Sharpe ratios
near 0.40. The X’s mark the dimensions on which each model succeeds.

Data
Feature

Habits
(Verdelhan,

2010)

Long Run Risks
(Bansal and

Shaliastovich,
2012)

Rare Disasters
(Farhi and

Gabaix, 2014)

Beliefs + Power
Utility, γ = 5

Beliefs + EZ +
Independent

Beliefs, γ = 10

Carry SR X X X X X

Smooth
FX X X X

Growth
Carry X X X

Wealth
SR X X X X
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Figure 1: Average relative odds of data being generated from the constant gain belief g̃t
instead of the sample mean ḡt, for t = 1, . . . , T = 400 quarters. In each simulation trial
i = 1, . . . , N = 10, 000, I simulate a sequence of consumption growth ∆ci,t. Constant gain
beliefs g̃t,i are initialized with g̃0,i = g and evolve according to g̃t,i = α∆ct,i + (1− α) g̃t−1,i.
The full Bayesian belief is the sample mean g̃t,i = 1

t ∑t
j=1 ∆cj,i. In each simulation trial, I

compute the log likelihood ratio `t,i = − 1
2σ2 ∑t

j=1

[(
∆cj,i − g̃t,i

)2 −
(
∆cj,i − ḡt,i

)2
]
. The curve

above, at quarter t, is then exp
(

1
N ∑N

i=1 `t,i

)
. The quantity represents the relative likelihood

of the data being generated from a process of consumption growth with the mean g̃t versus
being generated from ḡt. Given that the sample mean is the maximum likelihood estimate,
this relative likelihood is always less than one, although it does decrease only slowly.
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Figure 2: Comparison of carry trade strategies on developed world countries. The growth
carry refers to the long short strategy sorting on model implied consumption growth beliefs,

entering in positions
(

g̃i,t − 1
N ∑N

i=1 g̃i,t

)
in currency i at time t, when the growth rate belief

for country i at time t is g̃i,t. The interest rate carry refers to the long short strategy sorting on

forward discounts, entering in positions
(

f di,t − 1
N ∑N

i=1 f di,t

)
in currency i at time t, when

the forward discount is defined as the log difference between the forward contract and the
spot f di,t = fi,t→t+1− si,t. Log returns to each strategy are scaled to have a standard deviation
of 1%.
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C Proofs of Multivariate Constant Gain Learning

Let consumption growth follow

∆ct+1 =

∆ct+1

∆c∗t+1

 ∼ MVN (g, Σ) , g =

 g

g∗

 , Σ = σ2 I

Impose the prior

p (g, g∗) ∼ MVN (g, Υ) , g =

 g

g∗

 , Υ = τ−2

1 φ

φ 1


I start with the full Bayesian solution. After t observations, the posterior for the means is a multivariate

normal with mean g̃t

g̃t =
(

Υ−1 + tΣ−1
)−1

(
Υ−1g + Σ−1

t

∑
s=1

∆cs

)

This can be written recursively as:

g̃t =
(

ΣΥ−1 + tI
)−1

∆cn +

(
I −

(
ΣΥ−1 + tI

)−1
)

g̃t−1

g̃0 = g

The first step to get to constant gain learning is to replace the true sample size t with the effective

sample size α−1. After doing so, expand out the multiplier matrix on consumption growth:

(
ΣΥ−1 + α−1 I

)−1
=

α−1 (1− φ2)+ σ2τ2 φσ2τ2

φσ2τ2 α−1 (1− φ2)+ σ2τ2

× 1
α−2 (1− φ2) + 2α−1σ2τ2 + σ2τ4

The general strategy involves sending τ → 0 and seeing what the resulting matrix implies for learning.

First consider the special case of φ = 1. In that case I get the symmetric matrix

σ2τ2

2α−1σ2τ2 + σ2τ4

1 1

1 1


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Let the precision τ → 0 to reflect a diffuse prior. The matrix then becomes

α

2

1 1

1 1


Concretely, what this means is that g̃t evolves according to

g̃t = α · ∆ct + ∆c∗t
2

+ (1− α) g̃t−1

Therefore the two countries’ beliefs are perfectly correlated because the new information incorporated at

each stage t is just the average of the two countries’ consumption growth at time t.

The case of φ = 0 also accords with the intuition that independent priors implies independent learning.

In that case,

(
ΣΥ−1 + α−1 I

)−1
=

α−1 + σ2τ2

α−1 + σ2τ2

× 1
α−2 + 2α−1σ2τ2 + σ2τ4

= I × α−1 + σ2τ2

α−2 + 2α−1σ2τ2 + σ2τ4

→ I × α−1

α−2 = αI

Which corresponds exactly to the intuition of just using each country’s past history of consumption

growth.

However, letting τ → 0 for intermediate levels of φ does not lead to intermediate solutions. Intuitively,

as τ → 0, the effect of Υ in the updating equation goes to zero, and so the influence of the independent

consumption growth overwhelms any effect of the prior in inducing correlations between beliefs. Formally,

one can take limits of the updating matrix
(
ΣΥ−1 + α−1 I

)−1 as τ → 0 to get:

(
ΣΥ−1 + α−1 I

)−1
→

α−1 (1− φ2)
α−1 (1− φ2)

× 1
α−2 (1− φ2)

= αI

Therefore to get arbitrarily correlated beliefs under diffuse priors, I model φ with local to unity asymp-
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totics. Let φ ∼ 1− cτ2 + o
(
τ2), and therefore φ2 ∼ 1− 2cτ2 + o

(
τ2). In that case as τ → 0

(
ΣΥ−1 + α−1 I

)−1

=

α−1 (1− φ2)+ σ2τ2 φσ2τ2

φσ2τ2 α−1 (1− φ2)+ σ2τ2

× 1
α−2 (1− φ2) + 2α−1σ2τ2 + σ2τ4

∼

α−12cτ2 + σ2τ2 (
1− cτ2) σ2τ2

(
1− cτ2) σ2τ2 α−12cτ2 + σ2τ2

× 1
α−22cτ2 + 2α−1σ2τ2 + σ2τ4

→

2α−1c + σ2 σ2

σ2 2α−1c + σ2

× 1
2cα−2 + 2α−1σ2

= α

2α−1c + σ2 σ2

σ2 2α−1c + σ2

× 1
2cα−1 + 2σ2

=

 σ2

2c + α−1 − σ2

2c

− σ2

2c
σ2

2c + α−1


−1

=

σ2

2c

 1 −1

−1 1

+ α−1 I


−1

In deriving this learning model I imposed a hyperparameter c. One way to calibrate c is to think about

the implied correlation between the two between the two beliefs g̃t, g̃∗t . Let M =

 σ2

2c

 1 −1

−1 1

+ α−1 I


−1

.

Because M is the inverse of a symmetric matrix, it too is symmetric. Iterating the recursion for g̃t back-

wards yields:

g̃t = M∆cn + (I −M) g̃t−1

= M∆cn + (I −M)
[
M∆cn−1 + (I −M) θ̄n−2

]
=

∞

∑
j=0

(I −M)j M∆cn−j
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Note that M, I −M commute, and that M = MT . Therefore

Var (g̃t) =
∞

∑
j=0

(I −M)j MΣMT
(

I −MT
)j

= σ2
∞

∑
j=0

(I −M)j M2 (I −M)j

= σ2M2
∞

∑
j=0

(I −M)2j

This provides both the parameter uncertainty matrix and as well as the correlation between beliefs. Figure

3 shows the relationship between the hyperparameter and the belief correlation, with the belief correlation

both computed analytically and checked by simulation.
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Figure 3: Relationship of hyperparameter c to the correlation of beliefs. Monte Carlo refers to
the correlation as computed from a Monte Carlo simulation of how the beliefs evolve. Matrix
sum refers to explicitly computing the infinite sum in the matrix expression.
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D Solving for the Price Consumption Ratio in the Epstein-Zin Case

Start with the Euler equation for the return on wealth

1 = Ẽ
[

Mt+1RW
t+1

]

Now note that the return on wealth can be expressed as

RW
t+1 =

PCt+1 + 1
PCt

Ct+1

Ct

Plugging this into the Epstein-Zin SDF 3.12 yields

1 = Ẽ

[
δθ

(
Ct+1

Ct

)−γ+1 (PCt+1 + 1
PCt

)θ
]

PCt = Ẽ
[
δθ exp ((−γ + 1)∆ct+1) (PCt+1 + 1)θ

]1/θ

Since agents price parameter uncertainty, they understand that PCt+1 will differ from today as a function of

what the subjective expected consumption growth rate will be tomorrow. Translate the expectation into an

integral over the subjective distribution p
(
∆ct+1; g̃t, Σ̃

)
, where p (s1, s2; µ, Σ) is the density of a multivariate

normal with mean µ and covariance Σ, g̃t is the time t belief about expected future consumption growth,

and Σ̃ = Σ + Var (g̃t) captures both parameter uncertainty (computed in Appendix C) and the physical

variance of consumption growth.

I show in the text that the pricing of the consumption claim is independent of beliefs about foreign

consumption. Define s =

(
s1 s2

)T
, ĝt =

(
g̃t 0

)T
. Let M be the multiplier matrix on consumption

growth in the belief formation process described in equation 3.6 and let Mij be the ij element of that matrix.

Then the price consumption ratio, as a function of the expected growth rate for domestic consumption g̃t,

can be expressed as,

PC (g̃t) =

[ˆ
p
(
s1, s2; ĝt, Σ̃

)
δθ · e(−γ+1)s1 · [PC (M11s1 + (1−M11) g̃t) + 1]θ ds1 ds2

]1/θ

(D.1)

Where s1, s2 are dummy variables for consumption growth. To get the risk free rate, note that R f =

Ẽ
[
M̃t+1

]−1. Therefore
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R f (g̃t) =

[ˆ
p
(
s1, s2; ĝt, Σ̃

)
δθ · e−γs1 ·

[
PC (M11s1 + (1−M11) g̃t) + 1

PC (g̃t)

]θ−1
ds1 ds2

]−1

(D.2)

To search for the proper function PC (g̃), I use cubic interpolation for log PC (g̃). That is, I assume

log PC (g̃) is locally cubic in g̃. Initialize a grid G for g̃ of 100 linearly spaced points between −0.01/4

and 0.05/4. It’s important to go far beyond plausible because truncation at the boundaries distort the

distribution of returns.17 Set F0 = 0. Then consider the functional recursion

Fk+1 (g̃t) =
1
θ

log
ˆ

p
(
s1, s2; ĝt, Σ̃

)
δθ · exp ((−γ + 1) s1) · [exp (Fk (M11s1 + (1−M11) g̃t)) + 1]θ ds1 ds2

Where Fk is evaluated using cubic interpolation over the grid G. If an input to Fk would go outside the

grid, use the nearest g ∈ G instead.

At each step, define ∆k+1 = maxg∈G |Fk+1 (g)− Fk (g)|. I want to converge until I am reasonably

confident that there is little distance left for each of the values to move. Since the ∆k+1 decay slowly, it

will be important to take into account the full decay. Therefore define the ratio ρk+1 = ∆k+1/∆k. In my

simulations ρk+1 < 1, with a value near 0.996. Then define εk+1 =
∆k+1

1−ρk+1
. The idea here is that εk+1

serves as an estimate on the further change in values of F assuming the changes keep on decaying at

rate ρk+1. Stop the convergence when εk+1 < εmax. In my simulations I set εmax = 0.005, so that the

price to consumption ratios are off by no more than 1%. Once this process converges to a function F, let

PC (g̃) = exp (F (g̃)). With this PC (g̃) function, I can also then compute the risk free rate function R (g̃)

using equation D.2.

For all of the integrations discussed, I integrate over the interval [g̃− 5σ̃, g̃ + 5σ̃]2 ⊂ R2, where σ̃ is the

standard deviation of the subjective predictive distribution for consumption growth.

Figures 4, 5 show how log PC and r f relate to the subjective expected growth rate g̃, and compare these

quantities to the values when the parameters are known with certainty. These are simulations under γ = 5

and with the correlation between beliefs in the two countries set at 0. In general, the price to consumption

ratio and risk free rate are increasing in the growth rate.

17For example, when you are at the bottom endpoint, then agents believe that expected consumption growth can only rise. This
imparts a positive bias to the wealth return and, because of Epstein-Zin preferences, distorts the risk free rate as well.

33



−0.01 0 0.01 0.02 0.03 0.04 0.05

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

g

P
/C

Log Price to Consumption Ratio as a Function of Expected Consumption Growth

 

 
Learning
Ratex

Figure 4: Annualized log price to consumption ratio under parameter learning and rational
expectations. Vertical dotted lines mark the points where the annual expected consumption
growth is 1 and 4%.
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Figure 5: Annualized log risk free rate in percent under parameter learning and rational
expectations. Vertical dotted lines mark the points where the annual expected consumption
growth is 1 and 4%.
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E Simulation Methodology

For t = 1, initialize g̃t =

(
g g

)T
. Since both models provide formulas relating price to consumption

and the risk free rate to subjective expected consumption growth, use R f (g̃t) , PC (g̃t) to initialize the risk

free rate and price to consumption ratio. Define g =

(
g g

)T
, g̃ =

(
g̃t g̃∗t

)T
, and Σ = σ2

1

1

.

Define the subjective variance matrices Σ̃ = Σ + Var (g̃t), where Var (g̃t) is computed by equation 2.5 for

the power utility case and computed from the analytical formulas in Appendix C for the Epstein-Zin case.

Define σ̃2 as the 1, 1 entry of Var (g̃t).

Then for stages t = 2, . . . , T:

Step Description Power Utility Epstein-Zin

1 Draw
consumption

shocks

(
∆ct ∆c∗t

)T
∼ N (g, Σ)

2 Update
beliefs

g̃t = (1− α) g̃t−1 + ∆ct+1

g̃∗t = (1− α) g̃∗t−1 + ∆c∗t+1
Follow equations 3.6

3 Get PC ratios,
risk free rates

k = δ exp
(
(1− γ) g̃ + 1

2 (1− γ)2 σ̃2
)

PCt =
k

1−k

r f
t = − log δ + γg̃t − 1

2 γ2σ̃2

Use the numerical solution techniques detailed in
appendix D and plug in PC (g̃t) , R (g̃t).

4 Get belief
distortions

f̃t
f =

p(∆ct ,∆c∗t ;g̃,Σ̃)
p(∆ct ,∆c∗t ;g,Σ)

, where p (·; µ, Σ) is the pdf of a multivariate normal with mean

µ and covariance matrix Σ.

5 Get log SDF
realizations

(m)

mt+1 = log δ− γ∆ct log mt+1 = θ log δ− γ∆ct+1 + (θ − 1) log PCt+1+1
PCt

When equations are reported only for one country the natural generalization with foreign variables

applies. Given these values for both models, the process for computing the remaining moments is model

free:

∆st+1 = mt+1 −m∗t+1

m̂t+1 = mt+1 +
f̃t+1

f

rw
t+1 = log

PCt+1 + 1
PCt

+ ∆ct+1

ft→t+1 − st+1 = r f ,∗
t − r f

t − ∆st+1
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F Data

Data for quarterly real consumption come from the OECD, accessed through FRED. Annual population

data come from the World Bank’s World Development Indicators. I construct quarterly per capita con-

sumption in country i at time t by

∆ci,t = ci,t − ci,t−1 − ∆pi,t

Where ∆pi,t is the five year moving average of annual population changes, divided by 4 to get a quar-

terly approximation, for the five years including the consumption observation. Therefore the per capita

consumption data for Australia in the second quarter of 1985 uses population data from 1980 to 1985. I

do this because quarterly consumption series are not uniform across countries, and population growth is

sufficiently smooth so that the moving average approximation should not induce significant errors while

also minimizing the effect of idiosyncratic population measurement errors in any given year.

Exchange rate data comes from Barclays and Reuters series, accessed through Datastream.

Table 4: Countries used in analysis

Merged Consumption and Exchange Rate Data

Country First
Consumption
Observation

First Combined
Observation

Last Combined
Observation

Australia 1964.2 1984.4 2014.4
Canada 1964.2 1984.4 2014.4

Denmark 1995.2 1995.2 2014.4
Europe 1995.2 1999.2 2011.4
France 1964.2 1983.4 1998.4

Germany 1970.2 1983.4 1998.3
Italy 1981.2 1984.2 1998.3

Japan 1994.2 1994.2 2014.4
Netherlands 1988.2 1988.2 1998.3

New Zealand 1988.2 1988.2 2014.4
Norway 1978.2 1984.4 2014.4
Sweden 1964.2 1984.4 2014.4

Switzerland 1980.2 1983.4 2014.4
United Kingdom 1964.2 1983.4 2014.4

Only Consumption Data

Country First Consumption Observation Last
Observation

United States 1964.2 2014.4
Belgium 1995.2 2014.4
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