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ABSTRACT 

Loss of motor function in the upper-limb, whether through paralysis or through loss of 

the limb itself, is a profound disability which affects a large population worldwide. While 

lifelike, fully-articulated prosthetic hands exist and are commercially available, there is currently 

no satisfactory method of controlling all of the available degrees of freedom. In order to generate 

better control signals for this technology and help restore normal movement, it is necessary to 

interface directly with the nervous system. This thesis is intended to address several of the 

limitations of current neural interfaces and enable the long-term extraction of control signals for 

fine movements of the hand and fingers. 

The first study addresses the problems of low signal amplitudes and short implant 

lifetimes in peripheral nerve interfaces. In two rhesus macaques, we demonstrated the successful 

implantation of regenerative peripheral nerve interfaces (RPNI), which allowed us to record high 

amplitude, functionally-selective signals from peripheral nerves up to 20 months post-

implantation. These signals could be accurately decoded into intended movement, and used to 

enable monkeys to control a virtual hand prosthesis. 

The second study presents a novel experimental paradigm for intracortical neural 

interfaces, which enables detailed investigation of fine motor information contained in primary 

motor cortex. We used this paradigm to demonstrate accurate decoding of continuous fingertip 

position and enable a monkey to control a virtual hand in closed-loop. This is the first 

demonstration of volitional control of fine motor skill enabled by a cortical neural interface. 

The final study presents the design and testing of a wireless implantable neural recording 

system. By extracting signal power in a single, configurable frequency band onboard the device, 

this system achieves low power consumption while maintaining decode performance, and is 

applicable to cortical, peripheral, and myoelectric signals. This suggests a novel path to both 

clinical and commercial viability for fully-implanted neural interfaces. 

Taken together, these results represent a significant step towards clinical reality for neural 

interfaces, and towards restoration of full and dexterous movement for people with severe 

disabilities. 
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CHAPTER I 

Introduction 

Loss of motor function in the upper-limb, whether through paralysis or through loss of 

the limb itself, is a profound disability which affects a large population worldwide. In the United 

States, around 500,000 people are currently living with at least partial upper-limb loss (Ziegler-

Graham et al., 2008) and another 140,000 are living with tetraplegia resulting from spinal cord 

injury (National Spinal Cord Injury Statistical Center, 2012). Currently available clinical 

solutions to this problem are woefully inadequate. People living with paralysis have virtually no 

solutions available to them, and people with partial or total limb loss are limited to simple 

prostheses which restore only basic functionality. According to surveys of these populations, 

there is a pressing need to restore hand-level function (Anderson et al., 2008; Snoek et al., 2004), 

which would enable more normal interactions with the environment for the majority of people as 

well as restore basic self-sufficiency in the most extreme cases.  

The technology to address this need currently exists: lifelike, fully-articulated prosthetic 

hands have been developed, and several are commercially available. The fundamental issue with 

current prosthetic technology, however, is the lack of sufficient control signals. It is not possible, 

with available body-powered or myoelectric controllers, to naturally and effectively use all of the 

functions of advanced prostheses. Users are limited to unintuitive control of a single movement 

or simple grasp at a time (Lovely, 2004; Roche et al., 2014), which does not approach the 

functionality of the normal limb. 

In order to generate better control signals for this technology, and help restore normal 

movement, it is necessary to interface directly with the nervous system. In both amputation and 

paralysis, the volitional neural drive is still intact, whether in the peripheral or central nervous 

systems. Thus, useful information about intended movement can be extracted (Carmena et al., 

2003; Dhillon and Horch, 2005; Georgopoulos et al., 1986; Warren et al., 2016), and provide 

patients with functional control of advanced prostheses (Collinger et al., 2013; Kuiken et al., 

2009). 
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There is significant interest in neural interface technology among both amputees and 

spinal cord injury patients, even at higher levels of surgical invasiveness (Blabe et al., 2015; 

Engdahl et al., 2015), but there are still many challenges to solve before it is practical for clinical 

implementation. This thesis focuses on addressing several of these challenges for both peripheral 

and central neural interfaces: improving the stability and longevity of peripheral interfaces, 

demonstrating the functional efficacy of extracting finger-level movements directly from cortex, 

and developing a low-power implantable neural recording system for both peripheral and central 

signals. 

The following sections will discuss current and investigational approaches for restoring 

function after both amputation and spinal cord injury, and present opportunities for 

improvements which will form the basis of this work. 

1.1 Prosthesis Control for Amputation 

1.1.1 Myoelectric Interfaces 

Myoelectric prostheses record electromyographic (EMG) activity from muscles 

remaining after amputation and interpret that activity to actuate joints, or degrees of freedom 

(DoFs), on the prosthesis (e.g. wrist pronation, finger flexion, etc.). An ideal myoelectric 

controller would proportionally map activity recorded from each muscle onto the respective 

physiological movement on the prosthesis. This is known as “direct” control (Roche et al., 2014), 

and would, in theory, allow for the intuitive, independent control of all available joints on the 

prosthesis simultaneously. In current clinical practice, however, this type of control is severely 

limited. 

All commercially-available myoelectric prostheses use surface electrodes to record EMG 

through the skin. While simple to implement and maintain, these electrodes are heavily affected 

by signal cross-talk, in which activity from both the intended and nearby muscles appear on the 

same electrode, and signal attenuation of EMG from deeper muscles (Farina et al., 2014). This 

limits the number of truly independent signals which can be recorded. For this reason, clinical 

myoelectric prostheses typically use only one or two electrodes in order to control a single motor 

function on the prosthesis (e.g. power grasp, key pinch, etc.). This motor function can be 

actuated either discretely, in response to the EMG activity on a given channel crossing a pre-

defined threshold, or proportionally, in which the level of EMG activity is mapped continuously 
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to the velocity of the movement (Fougner et al., 2012). In order to control multiple functions 

with only one or two control signals, most prostheses implement mode switching, in which the 

user can change which function is currently being controlled by performing a particular EMG 

activation pattern (Lovely, 2004). While this allows prostheses to be somewhat more functional, 

it is cumbersome for the user and only roughly approximates normal function of the hand. 

In order to enable simpler and more natural control, many research groups have 

investigated pattern recognition techniques to replace direct control (Hudgins et al., 1993). In this 

paradigm, by using more electrodes placed on the limb, machine learning algorithms are trained 

to recognize natural patterns of EMG activity that correspond to particular movements. 

Movements can be selected by simply attempting that movement, instead of relying on 

independent activation of single electrodes, which is more intuitive for the user and obviates the 

need for mode switching. Currently, there is one commercially-available pattern recognition 

prosthesis controller (Coapt LLC, Chicago, IL), but it has been on the market for less than a year 

and it remains to be seen how successful or accepted it will be. The primary limitation of typical 

pattern recognition control is that it is necessarily discrete and sequential. That is, only one 

motion can be selected at a time and cannot be controlled proportionally. Several groups are 

actively researching methods of adding the ability to perform both proportional and simultaneous 

control (Scheme et al., 2014; Young et al., 2013), with promising results. 

While much progress has been made in increasing the functionality and usability of 

myoelectric interfaces, there is an inherent limit to this progress. As the level of amputation or 

paralysis gets higher, more control signals are needed to control all of the lost function. At the 

same time, recording sites which could provide natural, intuitive control are necessarily 

eliminated. In order to address this fundamental issue with myoelectric control, it becomes 

necessary to interface directly with the nervous system. 

1.1.2 Peripheral Nerve Interfaces 

Following amputation, even decades after the injury, peripheral nerves in the limb still 

carry volitional motor commands intended for the lost anatomy (Dhillon et al., 2004; Jia et al., 

2007). These signals can be recorded and potentially used to extract movement intent for 

intuitive prosthesis control in cases where myoelectric interfaces are not useful. Electrodes for 

interfacing with nerves can be classified into two broad categories: epineural, in which the 
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electrode contacts lie directly on the outside of the nerve, and intraneural, in which the electrode 

penetrates the nerve and the contacts lie in close proximity to the internal nerve fascicles. 

The most common type of epineural electrode is the nerve cuff  (Naples et al., 1988; 

Sahin and Durand, 1998), in which contacts are embedded in a flexible substrate and wrapped 

around the outside of the nerve. Cuff electrodes have been widely used for nerve stimulation, but 

recording nerve activity with these electrodes is limited. Signal amplitudes outside the nerve are 

very small (Popovic et al., 1993) and must compete with much larger EMG from neighboring 

muscle (Navarro et al., 2005; Sahin et al., 1997). 

To achieve higher amplitude signals, intraneural electrodes can be used to record from 

fascicles within the nerve. The two most commonly studied intraneural electrode variants are the 

longitudinal intrafascicular electrode (LIFE; [Lawrence et al., 2004]) and the Utah slant electrode 

array (USEA; [Branner et al., 2001]). Multiple studies have been performed with the LIFE array 

in humans, demonstrating offline classification of grasp types (Micera et al., 2011; Rossini et al., 

2010), object discrimination using sensory percepts evoked via stimulation (Horch et al., 2011), 

and real-time control of prosthesis grip force and elbow position (Dhillon and Horch, 2005). 

Compared to the LIFE, the USEA consists of many more electrodes which are distributed 

throughout the cross-section of the nerve, intended to enable better sampling of fascicles. The 

USEA has been implanted semi-chronically in several healthy and amputee human subjects, and 

has enabled simple proportional control of grip force (Gasson et al., 2005), continuous control of 

individual finger movement (Warren et al., 2016), and the restoration of sensory perception 

(Clark et al., 2014). 

The amplitude of volitional motor signals recorded by USEAs has been larger than is 

possible with cuff electrodes, but is still quite small compared to EMG signals which can appear 

on the same electrodes (Clark et al., 2011). This is a large confounding factor for direct nerve 

recordings and may limit the effectiveness of such interfaces, although some progress has been 

made in mitigating this noise source both in hardware (Clark et al., 2011) and signal processing 

(Warren et al., 2016). Perhaps the biggest unknown with intraneural electrodes is the expected 

longevity of the interface. By introducing foreign materials into the nerve, these arrays produce 

inflammatory responses and the accumulation of granulation tissue under and around the array in 

longer-term (>10 month) implantations (Christensen et al., 2014). In USEA human 

implantations, there have been no noted sensory or motor deficits (Warwick et al., 2003), though 
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the longest implant has been only 3 months (Gasson et al., 2005). Due to the short-term nature of 

these studies, it is unknown if the signal recording ability would remain stable over longer 

periods. 

A promising alternative to these direct electrode-nerve interfaces is targeted muscle 

reinnervation (TMR; [Kuiken et al., 2004]). After amputation, the nerves originally innervating 

the arm and hand are severed, and can be re-routed into the non-functional residual muscles 

proximal to the injury. Over the course of a few months, the muscles are reinnervated by the 

transplanted nerves, and subsequently contract normally in response to descending motor 

commands. The muscles thus act as biological amplifiers for nerve activity, converting low 

amplitude neural action potentials in high amplitude EMG. This creates new myoelectric 

recording sites for natural control of lost hand function. TMR has been successfully implemented 

in over 60 shoulder disarticulation and transhumeral amputees worldwide as of 2013 (Miller et 

al., 2013). In early studies, TMR enabled the simultaneous proportional control of elbow position 

and either hand aperture or wrist rotation (either function could be mode selected and locked in 

position), and the patient was able to perform functional tasks easier than with his previous 

touchpad-controlled prosthesis (Kuiken et al., 2004). The same patient was later able to use a 6 

DoF prosthetic limb and control up to three joints simultaneously, though two simultaneous 

movements were easier and more commonly used (Miller et al., 2008). Recent work has applied 

pattern recognition techniques to TMR (Zhou et al., 2007), classifying up to seven arm and hand 

movements to enable functional control of an advanced prosthetic arm (Kuiken et al., 2009).  

While TMR is a vast improvement over traditional myoelectric prosthesis control in very 

proximal amputees, the effectiveness of the technique is limited by using whole nerves to 

reinnervate whole muscles. This does not allow for spatial separation of each function of the 

nerve, as the fascicles controlling many different muscles are spatially disorganized, and not all 

functions of the nerve are guaranteed to be represented in the reinnervated muscle (Stubblefield 

et al., 2009). Using surface electrodes, this limits the number of independent control sites 

enabled by TMR to one site for each whole nerve, a maximum of three in the arm (Kuiken et al., 

2004; O’Shaughnessy et al., 2008). One additional issue with using surface electrodes is the 

inherent instability of the interface. Any change in either the position of the electrode in relation 

to the muscle, as seen during normal muscle contractions (O’Shaughnessy et al., 2008), or the 

condition of the skin-electrode interface (Farina et al., 2004) when, for example, sweating during 
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prosthesis use, will act to shift the pattern of EMG activity recorded by the electrode. The use of 

intramuscular electrodes, which are implanted directly into muscle tissue, would alleviate this 

issue. However, as the recording volume of typical intramuscular electrodes is small, the spatial 

distribution of signals within the reinnervated muscle may require an excessive number of 

electrodes to be implanted in order to ensure full signal coverage. 

These peripheral interface solutions, both direct and indirect, are huge improvements 

over current myoelectric control. However, further improvements must still be made in the 

stability and longevity of the interface, as well as increasing the number of available independent 

control signals.  

1.2 Movement Restoration for Spinal Cord Injury 

1.2.1 Functional Electrical Stimulation 

Unlike amputation, spinal cord injury (SCI) leaves the musculature and peripheral nerves 

intact, though useless to the patient. This provides the opportunity to restore limb movement 

through functional electrical stimulation (FES) instead of bypassing the limb in favor of a 

prosthesis. In FES, the peripheral nerves innervating the non-functional muscles in the limb are 

electrically stimulated in order to produce controlled movement (Peckham and Knutson, 2005). 

One fully-implanted FES system, the FreeHand (Hobby et al., 2001), was commercially 

available for a short time, but has since been taken off the market. 

While FES is an effective solution that does not require a prosthesis, which may be a 

more palatable option for SCI patients (Blabe et al., 2015), it still requires sufficient control 

signals. In typical FES systems, voluntary commands can be provided either by a physical switch 

(Peckham et al., 2001) or by myoelectric recording of a non-paralyzed muscle (Kilgore et al., 

2008). This provides mostly equivalent functionality to clinical myoelectric prostheses, 

controlling a single grasp type at a time (Peckham and Knutson, 2005). However, if the number 

of available functions increases, to make the system more capable, more control signals will be 

needed. Even in incomplete SCI, there is a severe limit to the number of available recording 

sites, and none will be intuitive for controlling multiple movements by the user. To remedy this, 

and also provide input for advanced prostheses, cortical interfaces may be necessary. 
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1.2.2 Cortical Neural Interfaces 

Extracting motor control signals directly from the brain has been extensively studied for 

decades (Carmena et al., 2003; Evarts, 1968; Georgopoulos et al., 1982; Kennedy et al., 2000). 

Currently, there are a number of cortical interface technologies which vary in the level of 

invasiveness and spatial specificity. At the lowest end of the invasiveness spectrum is 

electroencephalography (EEG), in which electrodes are placed on the scalp. EEG requires no 

surgery to implement, and has been investigated for assistive technology such as communication 

devices (Krusienski et al., 2006) for paralyzed individuals. More invasive is electrocorticography 

(ECoG), in which electrodes are placed directly on the surface of the brain, typically under the 

dura mater layer. ECoG has been successfully used to classify movements of the arm and hand 

(Chestek et al., 2013; Pistohl et al., 2012), control a computer cursor (Schalk et al., 2008), and 

even enable rudimentary control of a robotic hand (Hotson et al., 2016). However, these 

interfaces, while advantageous in implementation, are limited in effectiveness due to their 

distance from motor output neurons and susceptibility to noise. 

In order to access the most spatially specific signals, and thus extract the greatest amount 

of information, intracortical electrodes penetrate the brain to record directly from individual or 

small, local groups of neurons. Research into the practical application of intracortical interfaces 

has focused mostly on the control of computer cursors (Carmena et al., 2005; Fan et al., 2014; Li 

et al., 2009; Suminski et al., 2010), but several studies in the past decade have enabled the use of 

both simple and advanced prosthetic arms (Hochberg et al., 2012; Velliste et al., 2008). Initial 

studies enabled able-bodied monkeys to move a virtual cursor in 2D and 3D space to hit 

specified targets, using only neural activity recorded from primary motor cortex (Serruya et al., 

2002; Taylor et al., 2002). This work was soon translated to paralyzed human subjects 

(Hochberg et al., 2006) during the initial BrainGate clinical trial for the 96-channel "Utah" 

intracortical electrode array (Nordhausen et al., 1994). 

The control performance reported in these initial studies was relatively poor, possibly due 

to the simple decoding algorithms used to infer the subjects' movement intent. A key 

improvement in control signal extraction was the introduction of the Kalman filter to neural data 

(Wu et al., 2006), which enabled much higher performance in subsequent monkey (Wu et al., 

2004) and human (Kim et al., 2008; Simeral et al., 2011) studies. Further improvements in 

algorithm design, such as the ReFIT Kalman filter (Gilja et al., 2012), have enabled the human 
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use of cortical interfaces for self-paced typing with rates up to six words per minute (Gilja et al., 

2015) and a sustained rate of ~20 characters per minute over 42 days without user recalibration 

(Jarosiewicz et al., 2015). 

Beyond control of computer cursors, which has demonstrated the efficacy of control 

signal extraction directly from the brain as well as the application of those control signals for 

assistive technology, intracortical interfaces have also enabled the direct control of prosthetic and 

paralyzed limbs. Initially, monkeys and humans were able to control only the arm endpoint in 3D 

space, along with either discrete or proportional control of a 1 DoF gripper (Hochberg et al., 

2012; Velliste et al., 2008). More recent studies have extended this to also enable control of 3D 

hand orientation (Collinger et al., 2013), and hand shape (Wodlinger et al., 2015). Additionally, 

monkeys have been able to control several temporarily-paralyzed forearm muscles through FES 

to restore grasping in a functional task (Ethier et al., 2012; Moritz et al., 2008). 

These studies, both cursor and limb control, have mostly focused on decoding movement 

of the arm in space, with control of dexterous functions of the hand itself limited to coarse 

control of one or several grasp patterns (Klaes et al., 2015; Wodlinger et al., 2015). Offline 

decoding of finger-level function has been investigated by several groups in monkeys. Discrete 

movements of the wrist and individual fingers could be classified with high accuracy (Egan et 

al., 2012; Hamed et al., 2007), and the continuous motion of up to 27 joints in the arm and hand 

could be reconstructed following whole-arm reaching (Aggarwal et al., 2013; Menz et al., 2015; 

Vargas-Irwin et al., 2010). Reconstruction of isolated movements of individual fingers has also 

been demonstrated (Aggarwal et al., 2009), though these movements were limited to a couple of 

millimeters and not representative of the full range of finger motion. As of yet, no studies have 

enabled online control of dexterous hand function. 

1.3 Implantable Neural Recording Systems 

Both peripheral and cortical neural interfaces have shown significant potential for 

generating prosthetic control signals; however, current systems require a percutaneous 

connection from the interface to recording equipment outside the body. This introduces a serious 

risk of infection, as well as limiting user mobility and increasing the noise present in the 

recorded signal. In order to translate these interfaces into the clinic, it is necessary to develop 
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recording systems which can be implanted in the body and wirelessly transmit information 

through the skin.  

Many groups have developed and tested wireless and implantable systems for both neural 

and myoelectric interfaces (Farnsworth et al., 2009; Gosselin et al., 2009; Najafi and Wise, 1986; 

Sodagar et al., 2009; Weir et al., 2009). Myoelectric recording systems, in particular, have had 

the most clinical success thus far. Multiple fully-implanted FES systems have been tested in 

human subjects (Memberg et al., 2014), with one achieving FDA approval as a commercial 

system (Peckham et al., 2001). The IMES, a separate system intended to record intramuscular 

EMG for prosthetic control, is currently in clinical trials and has successfully been used to 

provide prosthesis control for the subject (Pasquina et al., 2015).  

Currently, no implantable device for peripheral or cortical neural interfaces has been 

tested in human subjects. One potential reason for this discrepancy between myoelectric and 

neural interfaces is the higher bandwidth necessary for recording neural signals. In order to 

resolve neural action potentials, typical recording systems sample the signal at rates of >20kHz 

(Yin et al., 2013), whereas myoelectric signals can be sampled much slower (<3kHz; [Morel et 

al., 2016]). This high sampling rate requires a large amount of power to process and wirelessly 

transmit, which is made worse when using a large number of channels as is typical with neural 

interfaces. High power consumption in turn causes several issues in designing implantable 

devices, including high device temperatures and a short battery life (Borton et al., 2013; Gosselin 

et al., 2009; Harrison et al., 2009; Miranda et al., 2010). 

Aside from new hardware architectures (Chae et al., 2009; Zou et al., 2013) and smaller 

fabrication process sizes (Gao et al., 2012), which complicate both the design and production of 

the device, significant power reduction can be achieved through data compression. By extracting 

and transmitting only the signal features actually used by the decoding algorithm, instead of the 

full broadband waveform, decode performance is unchanged while reducing wireless data rates 

by ~90% (Olsson and Wise, 2005). This compression has been used in both myoelectric devices, 

by extracting and transmitting the low bandwidth signal envelope (Hart et al., 2011; Weir et al., 

2009), and in cortical interfaces by detecting neural action potentials onboard the device and 

transmitting either individual detection times or detection rates over a specified time interval 

(Harrison et al., 2009; Rizk et al., 2009). While successful, this technique has two primary issues. 

First, particularly for cortical devices, there is still a large processing overhead on the front-end 
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in order to resolve relevant signal features, requiring high-bandwidth amplifiers and high 

sampling rates (Chestek et al., 2009; Patterson et al., 2004), which limit the potential power 

reduction. Second, by focusing the design of the device around the extraction of specific signal 

features, the device is necessarily restricted to a particular interface. This is limiting particularly 

for cortical devices, as the potential market size is much smaller than for myoelectric or 

peripheral devices, and may preclude commercial viability. 

1.4 Summary of Thesis 

This thesis is intended to address several of the limitations of neural interfaces described 

previously, and thus enable the long-term extraction of control signals for fine movements of the 

hand and fingers.  

First, in Chapter 2, we will address peripheral nerve interfaces, which are currently 

hampered by low signal amplitude, interface instability, and low functional resolution within the 

nerve. In two rhesus macaques, we demonstrate the successful implantation of a regenerative 

peripheral nerve interface (RPNI). The RPNI, which was developed and tested previously in a rat 

model (Kung et al., 2014; Ursu et al., 2016), consists of a small partial muscle graft which is 

reinnervated by a transected nerve, similar to targeted muscle reinnervation. By using small free 

grafts instead of whole muscles, as in TMR, the nerve can be subdivided into individual fascicles 

which reinnervate separate grafts, enabling the recording of high-amplitude, functionally-

selective EMG via stable intramuscular electrodes. In this study, RPNI signals were successfully 

recorded for up to 20 months post-implantation, and could be decoded to accurately classify 

finger movements and enable closed-loop control of a virtual hand prosthesis. This demonstrates 

that the RPNI technique is safe and effective in long-term extraction of fine motor information 

from peripheral nerves.  

In Chapter 3, we will present a novel experimental paradigm for intracortical interfaces 

which allows for the detailed investigation of fine motor information contained in primary motor 

cortex. Previous studies of intracortical decoding of finger movements have either been 

confounded by simultaneous upper-arm movement or have elicited only limited movement of the 

fingers. To address this, we use our novel behavioral task to demonstrate accurate offline 

decoding of isolated finger movements over the full range of motion in three rhesus macaques. 

Further, we apply this decode in real-time to enable one macaque to control a virtual hand 
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prosthesis, which represents the first demonstration of online, closed-loop control of fine motor 

skills using a cortical interface.  

Chapter 4 will present the design and testing of a novel implantable neural recording 

system which is both low power and applicable to cortical, peripheral, and myoelectric 

interfaces. This power reduction and multi-modality is achieved by the onboard extraction of the 

signal power in a single, configurable frequency band, a signal feature which is both low 

bandwidth and common to all three interfaces. This study demonstrates that, despite a massive 

reduction in power consumption, decode performance does not significantly drop when using 

this system architecture, indicating the potential viability of this approach for future clinical 

devices.  

Chapter 5 will discuss the results of each study and their implications for the future of 

prosthetic control as enabled by neural interface technology. 
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CHAPTER II 

Chronic Recording of Hand Prosthesis Control Signals via a Regenerative Peripheral 

Nerve Interface in a Rhesus Macaque 

A version of this chapter has been submitted for publication and is currently under peer review. 

2.1 Abstract 

Loss of even part of the upper limb is a devastating injury. In order to fully restore natural 

function when lacking sufficient residual musculature, it is necessary to record directly from 

peripheral nerves. However, current approaches must make trade-offs between signal quality and 

longevity which limit their clinical potential. To address this issue, we have developed the 

regenerative peripheral nerve interface (RPNI), which consists of a small, autologous partial 

muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft 

acts as a bioamplifier for descending motor commands in the nerve, enabling long-term 

recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) 

signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two 

rhesus macaques. No adverse events were noted in either monkey, and we recorded normal EMG 

with high SNR from the RPNIs for up to 20 months post-implantation. Using RPNI signals 

recorded during a behavioral task, we were able to classify each monkey's finger movements as 

flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic 

control, allowing the monkeys to perform the same behavioral task equally well with either 

physical finger movements or RPNI-based movement classifications. The RPNI signal strength, 

stability, and longevity demonstrated here represents a promising method for controlling 

advanced prosthetic limbs and fully restoring natural movement. 

2.2 Introduction 

Loss of even part of the upper limb is a devastating injury, and current available 

prostheses cannot fully restore natural function. An estimated 20-40% of upper-limb amputees 

reject using a prosthesis (Biddiss and Chau, 2007; Raichle et al., 2008) mostly citing the lack of 
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functionality (Biddiss and Chau, 2007; Wright et al., 1995). Fully-articulated myoelectric 

prostheses, which use voluntary activation of residual muscles as a control signal, promise the 

restoration of multiple naturally-controlled degrees of freedom. However, the rejection rate for 

this state-of-the-art technology is not significantly better than that of simple body-powered hooks 

(Biddiss and Chau, 2007; McFarland et al., 2010).  

The primary underlying issue with this technology is the scarcity of independent signals 

with which to control all of the available functions of the prosthesis. Direct prosthetic control, in 

which each recorded muscle is mapped to its corresponding physiological function on the 

prosthesis (Roche et al., 2014), would reduce the user’s cognitive burden while operating the 

prosthesis and allow for intuitive, simultaneous control of multiple degrees of freedom. 

However, this requires a separate, independent control signal for each degree of freedom, which 

is not possible for standard surface electromyography (EMG) on an amputee due to a 

combination of inadequate remaining musculature, signal cross-talk contamination, and 

attenuation of deep muscle signals at the skin surface. This leads to either a reduced set of 

functions available to the user or non-physiological control strategies which require long and 

tedious training periods, both of which may contribute to rejection of the prosthesis. 

An ideal solution to this problem is to record motor commands directly from peripheral 

nerves, which are still extant in the residual limb and carry information about the amputated 

musculature. However, this is difficult to accomplish in practice. Signals recorded by epineural 

electrodes are typically low amplitude and corrupted by much larger EMG activity from the 

surrounding muscles (Navarro et al., 2005; Sahin et al., 1997). More selective and higher 

amplitude signals can be recorded by penetrating intraneural electrodes (Clark et al., 2014), but 

damage to the nerve may result in shortened implant lifetime. 

Targeted muscle reinnervation (TMR) solves many of the issues with both myoelectric 

and direct nerve interfaces, and has been successfully demonstrated in several amputees 

(Dumanian et al., 2009; Kuiken et al., 2009). A hybrid approach, the TMR procedure reroutes 

transected nerves from the arm into sections of denervated muscles in the chest or residual limb. 

After the muscles are reinnervated by the rerouted nerves, they produce large amplitude EMG 

activity in response to voluntary motor commands. These biologically amplified signals are 

recorded by high-density surface electrodes, and serve to increase the number of available 

physiologically-relevant control sites. Through TMR, patients have been able to use advanced 
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multi-functional robotic limbs, controlling elbow and wrist movement along with up to four hand 

grasps with no mode selection required (Kuiken et al., 2009). 

The primary limitation of TMR, however, is that because whole nerves are attached to 

large sections of muscle, separate functional signals are not well isolated (Kuiken et al., 2004) 

and nerve fibers controlling any particular function are not guaranteed to reinnervate the new 

muscle (Stubblefield et al., 2009). This limits the number of independent control signals enabled 

by TMR. To overcome this, recent efforts have focused on pattern recognition algorithms to 

classify intended movement from a large number of electrodes covering the entire reinnervated 

area (Kuiken et al., 2009; Zhou et al., 2007). Though the user can select and initiate a large 

number of movements with this control scheme, they are largely limited to sequential 

movements in which one degree of freedom is activated at a time, increasing both the controller 

complexity and the required user training time. Additionally, the need to cover a large area may 

prohibit the use of implanted intramuscular electrodes, which would produce a much more 

stationary signal. This non-stationary signal in turn requires either frequent re-training of the 

controller or careful maintenance of the electrode interface, such as regularly taking off the 

prosthesis to dry accumulated sweat before continuing use (Kuiken et al., 2004). 

To address these issues, we have developed the regenerative peripheral nerve interface 

(RPNI), which consists of a small, autologous partial muscle graft which has been reinnervated 

by a transected peripheral nerve branch. Following initial implantation, the muscle graft 

temporarily degenerates due to lack of innervation and vascularization. During this time, stem 

cells in the graft periphery are sustained via diffusion from the surrounding tissue and vascular 

bed (Faulkner et al., 1976). Over the course of several months, the graft is revascularized, 

regenerates (creating new, healthy muscle fibers), and is reinnervated by the transplanted nerve 

through axonal sprouting and elongation within the graft (Carlson and Faulkner, 1983; Cedars 

and Miller, 1984). The mature, reinnervated RPNI then produces high-amplitude EMG activity 

in response to voluntary motor commands (Ursu et al., 2016). The muscle graft thus acts as both 

a stable housing for the nerve and a biological amplifier for descending action potentials in the 

nerve. 

Like TMR, the RPNI creates new physiologic EMG recording sites for natural control of 

multiple degrees of freedom. However, using small muscle grafts instead of large intact muscles 

enables several advantages. First, RPNIs can be placed directly at the distal end of the nerve 
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without re-routing the nerve into the large muscles of the chest or residual limb. This allows for 

the use of RPNIs with any level of amputation, and requires a less invasive surgical procedure. 

Second, RPNIs can be made more functionally selective by intraneural dissection of the residual 

nerve into fascicles and implanting separate RPNIs on each of these fascicles. By pairing each 

RPNI with an intramuscular EMG electrode, we can potentially record stable, independent 

signals from each fascicle in the nerve and implement more natural and effective prosthetic 

control schemes.  

The long-term viability of RPNIs has been previously reported in a rat model (Kung et 

al., 2014), demonstrating that RPNIs are successfully reinnervated and maintain health and 

electrical responsiveness up to 7 months post-implantation. A further study found that implanted 

RPNIs produced high-amplitude, physiologically-appropriate EMG activity in response to 

volitional movement during walking in rats (Ursu et al., 2016). In order to test the safety and 

performance of this technique in the context of voluntary finger movements, we implanted 

RPNIs in the forearms of two healthy rhesus macaques.  We recorded volitional EMG signals 

from the RPNIs during a finger movement task, and conducted a preliminary assessment of both 

the signal quality and the ability to extract functional information from the recorded signals in 

order to control a prosthetic hand. 

2.3 Methods 

All procedures were approved by the University of Michigan University Committee on 

the Use and Care of Animals. The author of this dissertation assisted with the described 

surgeries, designed and implemented all experimental procedures, and was primarily responsible 

for all data collection. 

2.3.1 Regenerative peripheral nerve interface (RPNI) construction and implantation 

The process of RPNI construction is demonstrated in figure 2.1 (a). First, the distal end of 

the target peripheral nerve is identified, isolated, and, if necessary, dissected into smaller 

branches or individual fascicles. For each resulting nerve, a small muscle graft, approximately 

1x3 cm, is harvested from a large native donor muscle. The distal end of each nerve is then 

placed centrally in its corresponding muscle graft and secured in place with sutures from 

epineurium to epimysium. The muscle graft is then folded around the nerve to create a stable 

housing and sutured together. A newly-constructed RPNI is shown in figure 2.1 (b). 
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Figure 2.1. (a) RPNI implantation procedure illustrated from top to bottom. (b) A newly implanted RPNI, 

with a branch of the median nerve sutured into the muscle belly. 

Implantation of multiple RPNIs is achieved by making small access incisions over the 

nerves of interest and the muscle for harvesting grafts. The above procedure is then simply 

repeated as necessary to create the desired number of RPNIs.  

Following these procedures, we implanted a total of nine RPNIs on separate branches of 

the median and radial nerves in the forearms of two rhesus macaques, referred to hereafter as L 

and R. These branches terminated on the extrinsic finger flexors and extensors, providing a basis 

for prosthetic hand control. To preserve motor function, we transected only minor, redundant 

terminal motor nerve branches (see table 2.1 in the Results for details of each RPNI), leaving 

intact several branches to the same muscles. 

2.3.2. Electrophysiology 

During the first RPNI implantation surgery, we implanted several bipolar epimysial EMG 

electrodes (Plastics One, Roanoke, VA). The electrodes consisted of insulated stainless steel 

leads attached to a silicone backing. The electrodes were placed on the surface of the RPNI 

muscle grafts and secured in place by wrapping small intestinal submucosa (SIS) around the 

muscle-electrode construct and suturing it together. The leads were then tunneled subcutaneously 
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along the arm and back to a connector on the animal’s headcap. Leads were looped at the RPNIs 

and at each joint for strain relief. 

Shortly after surgery, the animal was able to break the leads at the margin of the headcap, 

leaving no intact electrodes for recording. In a revision surgery, it was noted that the stiffness of 

the silicone patch had caused significant scar formation and presumably impeded RPNI 

regeneration, so the epimysial electrodes were extracted and not used further on either animal. 

Prior to chronic electrode implantation in both animals (during epimysial electrode 

extraction in the first animal and during the initial implantation surgery in the second animal), 

RPNIs were placed superficially in the subcutaneous plane in order to facilitate acute, 

percutaneous recording. During task behavior, we recorded EMG from the superficial RPNIs via 

fine-wire electrodes (Natus Medical, Pleasanton, CA). The RPNIs were located using surface 

landmarks and surgical photos. The wires were inserted into the RPNI muscle via hypodermic 

needle. As the RPNIs were located directly subcutaneously, the needle was inserted at a shallow 

angle and advanced just far enough to bury both contacts under the skin in order to avoid contact 

with the muscle within the deep compartments. Recording locations were verified in further 

revision surgeries. Percutaneous recordings of healthy, intact muscles were also obtained for 

comparison. 

To subsequently facilitate chronic recording of RPNI activity, we implanted bipolar 

intramuscular electrodes (IM-MES; Ardiem Medical, Indiana, PA). The IM-MES electrodes 

consist of two insulated stainless steel leads coiled in a double helix formation and potted in 

silicone tubing (Memberg et al., 2014). Contacts are formed by exposing the leads and wrapping 

them around the tubing, and a polypropylene anchor at the distal end secures the electrode in the 

muscle. In the first animal, the two contacts on the electrode were 4 mm long with a diameter of 

1.27 mm (the diameter of the silicone tubing), and were separated by 6 mm. After noting that, in 

some cases, this was too large to fit both contacts within the muscle belly of an RPNI, a reduced 

contact size of 1.5 mm and inter-contact spacing of 2.5 mm were used for the second animal. A 

single IM-MES electrode was placed in the muscle belly of each RPNI, as well as in a healthy 

control muscle, by making a small incision and manually feeding the electrode anchor-first into 

the muscle. Leads were tunneled subcutaneously to a transcutaneous port on the animal’s back 

and attached to a connector protected by a primate jacket. 
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During task performance, EMG signals from the RPNIs were input into either a DAM50 

differential EMG amplifier (WPI, Sarasota, FL), which filtered the signal between 10-1000 Hz 

with a gain of 1000x, or directly into a Cerebus neural signal processor (Blackrock 

Microsystems, Salt Lake City, UT), which filtered the signal between .3-7000 Hz (unity gain). 

For real-time signal analysis, the Cerebus was used to record from multiple electrodes 

simultaneously. The DAM50 was used for lower-noise recordings of a single electrode. In both 

cases, the processed signal was digitized and saved to disk by the Cerebus at 30ksps. The signal 

was further sent from the Cerebus to the behavioral rig via ethernet, where it could be processed 

in real-time. 

During several revision surgeries after RPNI maturation in both animals, we tested the 

mature RPNIs for reinnervation and tissue health by evoking compound muscle action potentials 

(CMAPs) via stimulation of the implanted nerve. Using a Teca Synergy evoked potential system 

(Viasys Healthcare, Conshohocken, PA), we either stimulated the nerve just proximal to the 

point of entry to the RPNI or stimulated the muscle of the RPNI itself while simultaneously 

recording from bipolar electrodes in the belly of the RPNI muscle. Stimulation parameters varied 

between surgeries, consisting primarily of a pulse width of 200 µs and current amplitude 

between 1-20 mA when stimulating the nerve directly and a pulse width of 20 µs or 200 µs and 

current amplitude between 30-60 mA when stimulating the nerve through the RPNI muscle.  

2.3.3 Behavioral task 

We trained both monkeys to perform a finger movement task, illustrated in figure 2.2. A 

flex sensor (Spectra Symbol, West Valley City, UT) was attached to the monkey’s index finger, 

which fed finger position data to a real-time computer running xPC Target (Mathworks, Natick, 

MA). A virtual model of a monkey hand was displayed in front of the monkey on a monitor, and 

mirrored the finger movements measured by the flex sensor. The monkeys both performed 

movements with all four fingers simultaneously, with the position of all four indicated by the 

index flex sensor. At the start of a trial, the xPC cued a spherical target to appear in the path of 

the virtual finger. The monkey was then required to move his fingers in order to hit the target on 

the screen. After holding the virtual finger in the target for a required hold time (usually set to 

500-700 ms), the monkey was given a juice reward. The virtual hand could also be controlled by 

decoding the RPNI signals in real-time into predicted movement. The monkey would receive a 
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reward only if the predicted movement was correct, and could act to correct the decode within 

the trial time limit in a closed-loop manner. 

 

 

Figure 2.2. Monkey behavioral task. The monkey was required to hit virtual targets by moving his four 

fingers simultaneously. The virtual hand could be controlled either by the monkey’s movements directly 

(as measured by flex sensors) or by EMG signals decoded into movement predictions in real-time, 

allowing either open-loop or closed-loop task performance. 

2.3.4 Signal Analysis and Decoding 

To isolate the EMG signal from motion and electrical artifacts, we filtered the data 

between 100-500 Hz using a second-order Butterworth filter. In offline analysis, the data were 

filtered forwards and backwards in order to eliminate phase shift. 

For each recorded RPNI and intact muscle, we calculated both the maximum voluntary 

contraction (MVC) and the signal to noise ratio (SNR). MVC was calculated by isolating periods 

of maximum agonist behavior, corresponding to either full finger flexion or full finger extension 

movements, depending on the function of the RPNI nerve. Movement periods were isolated and 

labeled by thresholding the finger position and velocity to ensure both maximum EMG 

activation and consistent behavior. The mean of the peak-to-peak amplitude during all such 

movements was taken as the MVC. SNR was calculated by simply dividing the MVC by the 

noise floor for that channel, which was extracted by manually selecting quiescent periods in the 

signal and calculating the mean peak-to-peak amplitude. 
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In order to directly assess the functional efficacy of the RPNI signals, we classified 

current finger movement state using a Naïve Bayes classifier. Linear discriminant analysis was 

also performed, but classification accuracy was similar to that of the Naïve Bayes. As the 

decoding features, we extracted four temporal characteristics of the EMG waveform (Hudgins et 

al., 1993; Zhou et al., 2007) in successive 50 ms time bins: (1) mean absolute value, (2) number 

of zero crossings, (3) number of slope changes, and (4) waveform line length. This was 

performed both offline and online in closed-loop. During closed-loop decoding, three targets 

were presented to the monkey, requiring flexion, extension, and no movement (i.e. maintaining a 

neutral, relaxed hand position), respectively. After training the classifier on the first ~200 trials 

of normal task performance, the virtual hand was switched to mirror the classifier output instead 

of the monkey’s actual finger position. To smooth the prediction, the final classifier output was 

updated only after four consecutive identical predictions. The virtual finger was automatically 

positioned in the target space associated with the current prediction, and the monkey was 

required to make the classifier output the correct state for the entire hold time (at least 10 

consecutive time bins) in order to complete the task.  

2.4 Results 

A total of nine RPNIs were implanted on separate branches of the median and radial 

nerves in the forearms of two rhesus macaques, L and R. Pictures of several of the implanted 

RPNIs for each monkey are shown in figure 2.3, and the anatomical details of each RPNI are 

shown in table 2.1. RPNI names are based on the muscle originally innervated by the transected 

nerve branch, with a letter differentiating RPNIs with the same function. 
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Table 2.1. Details of implanted RPNIs. 

Monkey RPNI name Nerve Nerve branch function Donor muscle 

L 

FDSa Median Flexion of digits 2-5 (PIP, MCP joints) FCR 

FDSb Median Flexion of digits 2-5 (PIP, MCP joints) FDS 

FDPa Median Flexion of digits 1-3* (DIP, PIP, MCP joints) FCR 

FDPb Median Flexion of digits 1-3* (DIP, PIP, MCP joints) FCR 

EDCa Radial Extension of digits 2-5 (DIP, PIP, MCP joints) EDC 

R 

FDSc Median Flexion of digits 2-5 (PIP, MCP joints) FCR 

FDPc Median Flexion of digits 1-3* (DIP, PIP, MCP joints) FCR 

FDPd Median Flexion of digits 1-3* (DIP, PIP, MCP joints) FCR 

EDCb Radial Extension of digits 2-5 (DIP, PIP, MCP joints) EDC 

* In the macaque, flexor pollicis longus does not exist and FDP has a tendon to thumb (Serlin and Schieber, 1993). 

FDS – flexor digitorum superficialis, FDP – flexor digitorum profundus, EDC – extensor digitorum communis, 

FCR – flexor carpi radialis, DIP –  distal interphalangeal joint, PIP – proximal interphalangeal joint, MCP – 

metacarpophalangeal joint. 

 

 

 

Figure 2.3. RPNIs implanted in the forearm of two monkeys (top – Monkey L, bottom – Monkey R), 

labeled as listed in table 2.1. All RPNIs in Monkey R and the FDSb RPNI in Monkey L are newly 

implanted, while the other RPNIs in Monkey L are mature and reinnervated. 

A timeline of surgical procedures and electrophysiology recordings is shown in figure 

2.4. In particular, note in Monkey L that EMG was recorded from the RPNIs up to 20 months 

post-implantation, and RPNIs were subsequently deemed healthy at the time of removal. 

Recordings were taken from Monkey R up to 14 months post-implantation, until experiments 

were completed. Monkey R’s RPNIs and IM-MES electrodes have not been removed in order to 

facilitate long-term investigation of electrode implantation effects 
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Figure 2.4. Timeline of RPNI surgeries, including both RPNI creation and chronic electrode 

implantation, and electrophysiology experiments. EMG was recorded from RPNIs in Monkey L up to 20 

months post-implantation and from RPNIs in Monkey R up to 14 months post-implantation. 

2.4.1 RPNIs caused no health issues 

No major health concerns were noted by laboratory or veterinary staff during a 10-day 

post-op monitoring period or afterwards. In order to minimally disrupt normal function of the 

limb, we transected only small terminal nerve branches (leaving intact several other branches of 

the median and radial nerves innervating the FDS, FDP, and EDC muscles in the arm), and 

harvested only small (approximately 1x3 cm) grafts from large native FCR, FDS, and EDC 

muscles for each RPNI. Generally, muscle grafts can be harvested from any location, but here 

were taken from the implanted arm to limit the number of surgical sites. Following veterinary 

recommendation, buprenorphine was administered during the first 24 hours following each 

surgery, and carprofen and cefazolin administered for the first week to control possible pain and 

prevent wound infection. Both monkeys had minor swelling of the limb and hand immediately 

after one surgery (the second of three surgeries in Monkey L and the first of two in Monkey R), 

but this was attributed to the compression bandage applied at the end of surgery and not to the 

RPNI procedure itself. Both monkeys regained full use of the hand and limb within three days 

after each surgery, except in the case of Monkey R’s swelling in which the animal recovered full 

use after one week, following fluid drainage by veterinary staff. 

2.4.2 RPNIs successfully reinnervated and regenerated 

All RPNIs appeared to regenerate and reinnervate successfully, producing healthy muscle 

tissue and an active neural connection. Visual inspection of RPNIs during revision surgeries 

indicated vascularized muscle grafts and integrated nerves. Because the EDCa RPNI in Monkey 

L was co-implanted with a chronic electrode upon initial implantation, it provided a clear 
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illustration of the regeneration process. The EDCa RPNI is shown in figure 2.5 (a), at the time of 

implantation and at the time of graft explantation four months later. As is typical, the mature 

muscle graft is somewhat smaller than the original graft, but is well vascularized and appears 

healthy. Histological staining (hematoxylin and eosin) of this RPNI, shown in figure 2.5 (b) 

indicates that the muscle fibers are somewhat smaller than in intact tissue, but the increased 

proportion of centrally-located nuclei and the more rounded shape of the RPNI fibers may also 

indicate that regeneration was still ongoing (Cedars et al., 1983). During the explantation surgery 

(at 4 months post-implantation, prior to tissue extraction), stimulation of the EDCa nerve 

produced compound muscle action potentials in the RPNI, indicating a healthy neuromuscular 

interface, as shown in figure 2.5 (d). Additionally, as a chronic intramuscular electrode was 

placed in the EDCa RPNI at implantation, we were able to track the degree of innervation over 

time, measured by the amplitude of the recorded signal during task performance. This is shown 

in figure 2.5 (c) as the signal amplitude during maximum voluntary contractions, compared to 

the equivalent signals recorded from an intact wrist muscle and a previously-matured RPNI. 

Note that only the EDCa RPNI shows an increasing trend in the signal amplitude, indicating 

reinnervation over a period of ~3 months, while the previously matured and reinnervated FDPb 

RPNI and the intact ECR (extensor carpi radialis) remain stable 
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Figure 2.5. (a) EDCa RPNI at implantation (top) and after 3 months of maturation (bottom). (b) EDCa 

RPNI histology (H&E staining) after maturation (left) and comparison to intact FDS muscle (right). (c) 

Signal amplitude over time for the recently-implanted EDCa RPNI (blue), the matured FDPb RPNI (red), 

and the intact ECR muscle (green). (d) Mean CMAP produced by the EDCa RPNI in response to intra-

operative stimulation. 

No RPNIs failed to reinnervate, however it appeared that some RPNIs, particularly in 

Monkey R, reintegrated somewhat with the surrounding tissue. This made it more difficult to 

isolate the RPNI to place electrodes, and likely increased the amount of cross-talk picked up 

from nearby musculature. This may have been due to the non-use of SIS for these RPNIs, a 

smaller nerve transplant, or the swelling after Monkey R’s initial implantation surgery. Even in 

these cases, however, the nerve was still intact and RPNI remained innervated as verified by 

intra-operative stimulation and visualization of healthy tissue. 

2.4.3 RPNIs produce normal, volitional EMG 

Signals recorded from RPNIs via both acute and chronically-implanted electrodes 

appeared similar to intact control muscles. EMG was correlated with the expected physical 

behavior of each nerve branch (either flexion or extension of the fingers), and single motor units 

could be discriminated from all RPNIs. Example IM-MES recordings are shown for several 
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RPNIs and intact muscles in figure 2.6, along with single unit action potentials extracted from 

each. In the bottom right trace of figure 2.6, the intact EDC signal was recorded from the IM-

MES electrode originally placed in the EDCb RPNI. However, as the signal amplitude was very 

high immediately after implantation (which could not be produced by a denervated muscle), the 

electrode was assumed to have slipped out of the RPNI and was recording from the surrounding 

EDC muscle. It is included here as a healthy control muscle for comparison. 

Though RPNI signal amplitudes varied, and were generally smaller in Monkey R, signal-

to-noise ratios were high. This indicates that even with smaller amplitude signals, selective 

information can still be easily extracted from the RPNIs. 

 

 

Figure 2.6. Example EMG recorded from chronic IM-MES electrodes in both monkeys (the bottom trace 

in each column is an intact muscle), with isolated single motor unit action potentials (to the right of each 

column - scale bars indicate 20 µV and 2 ms, respectively). 

Cross-talk injected from nearby intact muscles was seen on several RPNIs, most likely 

due to incomplete implantation of the electrode in the RPNI (in several RPNIs, the proximal 

contact on the lead was located at least partially outside the muscle graft). In the left column of 
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figure 2.6, the EDCa RPNI signal is correlated with finger extension (as expected) and at least 

somewhat with finger flexion, probably corrupted by the nearby wrist extensor ECR (also shown 

in figure 2.6). However, the majority of the initial EDCa bursts during flexion are actually 

caused by the short extension movement immediately preceding flexion onset, rather than by the 

ECR cross-talk.  

This cross-talk was not seen in percutaneous fine-wire recordings, indicating that, as 

expected, a smaller electrode would reveal more local activity. Accordingly, the amplitude of the 

signals obtained from acute, percutaneous electrodes varied widely across sessions.  Two 

example recordings are shown in figure 2.7. This variability could potentially be exploited in the 

future to obtain more information from each RPNI. It also indicates that higher amplitude signals 

could potentially be recorded by optimally placing smaller electrodes in the RPNI muscle belly, 

as the fine-wire recording of the FDPd RPNI in Monkey R in figure 2.7 displayed a higher 

amplitude than the IM-MES recording of the same RPNI shown in figure 2.6. Importantly, it was 

possible to miss the RPNIs when inserting the fine-wires, which resulted in no discernable EMG 

and confirms that the recorded signals, when successfully attained, were in fact coming from 

local sources within the RPNI and not volume conduction from distant muscles. 

 

 

Figure 2.7. Example EMG recorded from acute fine-wire electrodes in both monkeys, showing signals 

which are qualitatively similar to those of the IM-MES recordings (although the fine-wire electrodes 

recorded higher amplitudes from the FDPd RPNI in Monkey R). 
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2.4.4 RPNIs can provide functional prosthesis control signals 

Using a simple Naïve Bayes classifier, we were able to decode RPNI signals both offline 

and in real-time to allow the monkeys to control a virtual hand. In offline decodes of 280 and 

447 successful finger movement trials for Monkey L and Monkey R, shown in figure 2.8 (c), we 

classified hand posture as either extension, flexion, or rest with an accuracy of 97.9% correct and 

96.9% correct, respectively. We used leave-one-out cross-validation to minimize overfitting, and 

computed signal features using the whole trial (~1.5 s of activity, depending on the directness of 

the monkey’s movement to the target) to ensure the inclusion of the maximum amplitude EMG 

bursts during movement. Because we used the whole trial for classification, true posture labels 

were based on the target position for that trial, whether or not the monkey moved monotonically 

towards the target.  

Online classification was performed with both monkeys using 50 ms bins. To remove 

jitter on the output, we required four identical, consecutive decodes before changing the final 

classification. An example online decode is shown in figure 2.8 (a) for Monkey L.  The classifier 

accurately transitions between movement states, depending on the monkey’s current hand 

posture. Notably, the decode is relatively robust to noisy behavior, correctly classifying rest 

posture even when the monkey over- or under-shoots the neutral target (i.e. 50% flexion). This 

indicates that a deliberate attempt at movement was required for correct classification, 

minimizing the amount of false-positive detections, which may be a desirable trait in a final 

myoelectric controller.  

To quantify the ability of this classification to provide useful prosthetic control, we 

allowed the monkey to perform the behavioral task in both physical control (in which the virtual 

hand is controlled by the monkey’s actual movements) and closed-loop RPNI control (in which 

the virtual hand is controlled by the online classifier output).  Monkey L’s success rate and trial 

completion time (averaged over a 50-trial window) are shown in figure 2.8 (b), during physical 

and RPNI control. The required hold time for a successful target acquisition was 700 ms 

(equivalently, at least 14 consecutive correct classifications). Because the trial timeout (after 

which the trial was declared unsuccessful) was a relatively long 10 sec, the monkey’s success 

rate was generally near 100%. However, the average trial completion time during physical 

control was 1.5 sec and was 1.4 sec during RPNI control, indicating that the monkey was able to 

perform the task equally well with either controller. Note also that there is no obvious adjustment 
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period when first switching to RPNI control, demonstrating the natural, physiologic control 

provided by the RPNIs. Finally, the sharp decrease in performance at the end of the experiment 

is a result of the monkey losing motivation, and not due to the controller. 

 

 

Figure 2.8. Classification of finger movement state using IM-MES electrodes: (a) Online, open-loop 

during Monkey L task behavior – predicted movement state is overlaid as background on a trace of the 

monkey’s actual finger movements. (b) Monkey L’s task performance during physical control (white 

background) and closed-loop RPNI control (blue background). (c) For both monkeys, offline 

classification accuracy on the same day as the online experiment, using whole-trial data. 

2.5 Discussion 

We have provided compelling initial safety data for the RPNI technique in two non-

human primates, demonstrating that the implantation of nine RPNIs caused no health concerns 

and did not noticeably affect the normal function of un-modified anatomy. Further, we have 

shown that this approach produces healthy tissue which generates normal electromyographic 

signals with a high signal-to-noise ratio. These signals could be easily recorded using acute or 

chronically-implanted electrodes and decoded into functional prosthesis commands, showing 

promise as a capable, intuitive control source. The behavioral task and decodes presented here 
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are a single degree of freedom, making it substantially equivalent to commercial products which 

provide “open” and “close” signals. 

Though promising, further investigation is required to answer some remaining questions. 

Primarily, the number of independent signals produced by the RPNIs could not be verified due to 

the requirements of monkey behavioral training. Thus it remains to be seen whether fully 

independent signals can be obtained from each RPNI, and whether this would enable the 

simultaneous control of multiple degrees-of-freedom. Further, the RPNIs were implanted in able-

bodied monkeys and great care was taken to minimize any resulting motor deficits, limiting the 

placement of RPNIs onto small terminal nerve branches which were surrounded by intact 

muscles performing similar physiological functions. This made it difficult to quantify any 

potential cross-talk from neighboring muscles. We expect that this effect was minimal, due to the 

inherent selectivity of intramuscular electrodes, the verification of healthy regenerated RPNI 

tissue, and previous work in rats (Kung et al., 2014). However, this must be confirmed in future 

human studies by recording activity that could not be generated by residual anatomy. Finally, in 

these experiments, we could identify the function of each nerve branch prior to transection. In an 

actual amputation, nerve functions would be indistinguishable which may cause difficulties in 

both creation of independent RPNIs and the implementation of decoding algorithms. However, 

even if full functional separation is not possible, dissecting the nerve as much as possible should 

enable machine learning algorithms, such as the Naïve Bayes classifier used here, to extract 

movement intention from the combined activity. 

Despite these limitations, this is the first demonstration of prosthesis control via an 

interface capable of providing stable, long-term physiological control at any level of amputation. 

Decoding of finger movements and subsequent closed-loop control of prosthetic devices (or the 

virtual equivalent) has been previously demonstrated using both surface (Tenore et al., 2009) and 

intramuscular (Birdwell et al., 2015; Cipriani et al., 2014; Smith et al., 2014) electromyography. 

Though these interfaces have resulted in impressively high-performance control, the inherent 

instability of both surface and percutaneous fine-wire electrodes represents a significant 

challenge to their clinical implementation. Perhaps more importantly, however, providing 

intuitive prosthesis control via residual muscle electromyography is not possible for amputees 

with more proximal injuries. 
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Direct nerve interfaces, which could be used for any level of injury, have also been used 

to provide prosthesis control but face their own set of challenges. The two electrode types which 

have been the most studied in terms of direct nerve recording and subsequent prosthesis control 

are the longitudinal intra-fascicular electrode (LIFE; [Lawrence et al., 2004]) and the Utah 

electrode array (Branner and Normann, 2000). Both have been implanted in multiple amputees 

and used to provide control functionality similar to this study (Gasson et al., 2005; Rossini et al., 

2010). However, recorded signal amplitudes were generally small and corrupted by nearby EMG 

(Clark et al., 2014; Dhillon et al., 2004). Though these issues could be somewhat mitigated by 

further signal processing (Clark et al., 2014; Micera et al., 2011) or physical shielding of the 

array (Clark et al., 2011), successful recording and control have not been demonstrated for 

longer than one month, with questions remaining as to nerve health under longer-term 

implantation of these electrodes. 

Given these issues, the signal strength, stability, and longevity of the RPNI technique 

demonstrates promise as a clinically-viable technology. In the future, by combining 

intramuscular electromyography for any residual muscles (in order to utilize all possible signal 

sources), RPNI implantation for amputated nerves, and a wireless implantable recording device, 

we can potentially restore full, effective control of a lost limb for the lifetime of the patient. 
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CHAPTER III 

Cortical Decoding and Control of Precise Fingertip Position in a Rhesus Macaque 

A version of this work is currently in preparation to submit for review and publication. 

3.1 Abstract 

Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control 

signals for individuals with severe motor disabilities. Previous BMI studies have primarily 

focused on predicting and controlling whole-arm movements; restoration of hand movement, 

however, has been mostly limited to coarse binary control of simple grasps. In order to 

investigate the continuous decoding of isolated, precise finger movements, we have developed a 

novel behavioral task paradigm which requires the subject to acquire virtual fingertip position 

targets. During task performance, we recorded neural spikes from Utah electrode arrays in 

primary motor cortex. Using a standard Kalman filter, we could reconstruct continuous finger 

movement offline with an average correlation of ρ = 0.79 between actual and predicted position 

across three rhesus macaques. For one of the monkeys, this decode was performed in real-time to 

enable closed-loop neural control of the virtual hand. Compared to physical control, neural 

control performance was slightly degraded; however, the monkey was still able to successfully 

perform the task with a target acquisition rate of 79.3% across two sessions. BMI-enabled 

information throughput during closed-loop performance was 0.83 bits/s, which is similar to 

previous studies of whole-arm decoding using a standard Kalman filter. This is, to our 

knowledge, the first demonstration of closed-loop neural control of finger-level fine motor skills. 

We believe that these results represent an important step towards full and dexterous control of 

neural prosthetic devices. 

3.2 Introduction 

Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control 

signals for individuals with severe motor disabilities. By decoding neural activity into intended 

upper-limb movement, BMIs have enabled both able-bodied monkeys and humans with 
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tetraplegia to control computer cursors (Gilja et al., 2012; Jarosiewicz et al., 2015; Kim et al., 

2008) and high degree-of-freedom robotic arms (Hochberg et al., 2012; Velliste et al., 2008). 

However, these studies have primarily focused on predicting and controlling whole-arm 

movements; restoration of hand movement has been mostly limited to coarse binary control of 

one (Collinger et al., 2013; Velliste et al., 2008) or several (Wodlinger et al., 2015) grasp types. 

Though this type of binary grasp control is useful in the short term, providing the ability to 

interact with simple objects in the environment, true restoration of natural movement requires 

continuous, volitional control of hand and finger kinematics. One participant in an ongoing 

clinical trial has been able to use imagined and physical index and thumb movements to control a 

computer cursor (Gilja et al., 2015), but this was not performed in the context of prosthesis 

control and there was no discussion of the fidelity of finger movement reconstruction.  

Several groups have investigated offline decoding of continuous finger-level movements 

from primary motor cortex in monkeys. By recording neural activity during reach-to-grasp 

behavioral tasks, in which the monkey reaches for different objects using unique grasps, later 

reconstruction has been demonstrated of 18 (Aggarwal et al., 2013), 25 (Vargas-Irwin et al., 

2010), and 27 (Menz et al., 2015) joint angles of the arm and hand simultaneously. The ability to 

decode many degrees of freedom with relatively high accuracy is encouraging for future 

dexterous BMIs, but the inherently variable and imprecise movements generated by the reach-to-

grasp task make analysis of the potential controllability of the decode difficult. Further, 

movements of the hand and fingers during this task are not isolated, but rather are coincident 

with more proximal movements of the elbow and shoulder (Schaffelhofer et al., 2015). This 

simultaneous movement may be a confounding factor for decoding, making it unclear whether 

accuracy would be maintained in other behavioral contexts. 

To study isolated finger movements in the early 1990s, Schieber introduced a 

manipulandum allowing the measurement of individual finger flexion and extension over a range 

of a few millimeters by actuating force sensors and micro-switches (Schieber, 1991). This 

paradigm has been used successfully by several groups to classify multiple hand and wrist 

movements (Egan et al., 2012; Hamed et al., 2007), and continuously decode the instantaneous 

position of all five digits simultaneously offline (Aggarwal et al., 2009). However, as the range 

of movement measured by the manipulandum is severely limited, generalization to natural 

movement is not possible. 
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These studies have demonstrated the potential for extracting finger-level information 

from neural activity, but the extracted information has not been used to provide functional 

control to a subject. This requires a transition to closed-loop task performance, in which the task 

is completed using the decoded rather than physical movements and the subject can act to change 

and correct the decode in real time. However, it is not possible for the BMI decode to affect a 

task which depends solely on interactions with physical objects, whether grasping objects or 

closing switches. In order to address this issue, virtual reality simulators have been developed in 

which behavioral tasks can be performed through an avatar (Aggarwal et al., 2011; Putrino et al., 

2015). In these systems, avatars could be actuated via either physical movements or decoded 

movements, enabling both open-loop and closed-loop assessment of BMI performance. Though 

promising, these systems have not yet been used for this purpose. 

We have used this virtual reality paradigm to develop a novel finger-level behavioral task 

in which a monkey acquires fingertip position targets. Here, we used this task to investigate the 

continuous decoding of precise finger movements from primary motor cortex, isolated from 

confounding movements of the upper arm. We analyzed the resulting data in order to study the 

inherent kinematic tuning of motor cortex neurons during finger movements and identify the 

optimal parameters for decoding those movements. We used these results to present the first 

demonstration of closed-loop neural control of fingertip position. 

3.3 Methods 

All procedures were approved by the University of Michigan Institutional Animal Care 

and Use Committee. 

3.3.1 Behavioral task 

We trained three rhesus macaques, Monkeys S, P, and L, to perform simultaneous 

movements of all four fingers to hit fingertip position targets in a virtual environment, as 

illustrated in figure 3.1. The monkey sat in a shielded chamber with its right arm at its side, 

forearm flexed 90 degrees and resting on a table. The monkey’s palm was lightly restrained 

facing to the left, with the fingers free to move unimpeded. A flex sensor (Spectra Symbol, West 

Valley City, UT) was attached to the index finger, covering all three joints, in order to measure 

the finger position. Position data were read by a real-time computer running xPC Target 

(Mathworks, Natick, MA). A computer monitor directly in front of the monkey displayed a 
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virtual model of a monkey hand (MusculoSkeletal Modeling Software; MDDF, Los Angeles, 

CA), which was actuated by the xPC in order to mirror the monkey’s movements.  

 

 

Figure 3.1. Behavioral task illustration. The monkey performed simultaneous flexion and extension 

movements of the four fingers in order to hit virtual targets on a computer screen. The virtual hand could 

be controlled either through physical movements, measured via flex sensor, or through decoded 

movements based on the thresholded neural spikes. 

At the start of each trial, the xPC cued a spherical target to appear in the path of the 

virtual finger, and the monkey was required to move its fingers in order to hit the target and hold 

for a set period (100-500 ms, depending on the stage of training). Only the index finger was 

instrumented with a flex sensor, but the monkeys made movements with all four fingers 

simultaneously. Targets could be generated in one of two patterns, flex-extend or center-out. In 

the flex-extend pattern, which was the first task learned by each monkey, targets were presented 

in positions requiring either full flexion or full extension in alternating trials. In the center-out 

pattern, a target was initially presented in the neutral or rest position, half-way between flexed 

and extended. Once the monkey successfully acquired this target, a second target was 

pseudorandomly presented in one of six positions requiring differing degrees of flexion or 

extension. After this target was successfully acquired or the trial timed out, the neutral target was 

again presented until successful acquisition. 



35 

 

3.3.2 Electrophysiology 

We implanted each monkey with intracortical electrode arrays in the hand area of 

primary motor cortex, as identified by surface landmarks. The genu of the arcuate sulcus was 

identified in the craniotomy, and a line was traced posteriorly to central sulcus. Arrays were 

placed on this line just anterior to central sulcus, as allowed by vasculature. Diagrams of each 

implantation are shown in figure 3.2. Implantations (array types and locations) were determined 

by experimental need, resulting in variation between animals. Monkey S received two 96-

channel Utah arrays in motor cortex. Monkey P received one 96-channel Utah array and one 16-

channel FMA (MicroProbes) in motor cortex, and two 16-channel FMAs in sensory cortex. 

Monkey L received two 96-channel Utah arrays, one in primary motor and one in primary 

sensory cortex. 

 

 

Figure 3.2. Surgical photos of each monkey’s electrode array placement. Asterisks indicate arrays used 

for analysis. CS – central sulcus, A – anterior, L – lateral. 

During experimental sessions, we recorded broadband data at 30 kS/s using a Cerebus 

neural signal processor (Blackrock Microsystems). Neural spikes were detected by thresholding 

at -4 times the RMS voltage on each channel, after high-pass filtering the broadband data at 250 

Hz. Thresholded spikes were simultaneously recorded for offline analysis and streamed to the 

xPC for online decoding 

3.3.3 Decoding 

Offline, we used a linear Kalman filter (Wu et al., 2006) to decode continuous finger 

position from the thresholded neural spikes. Mean hand kinematics and neural firing rates were 

computed in consecutive, non-overlapping time bins. Hand kinematics at time bin t are 

collectively described by the hand state vector,  X t = [ p, v, 1 ]T, where p is the finger position as 

directly measured by the flex sensor and v is the finger velocity as calculated by the first 
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difference of position. Firing rates for each channel at time t are collected in the neural 

population activity Y t = [ y1, …, yn ]
T, where yk is the firing rate of the kth channel. In the Kalman 

framework, hand state is modeled as a linear dynamical system with neural activity modeled as a 

noisy transformation of the current hand state, as described by, 

 

X t = A*X t – 1 + wt  (1) 

Y t = C*X t + qt  (2) 

 

where A is the state transition matrix, wt is the process noise, C is the observation transformation 

matrix, and qt is the observation noise. Noise terms wt and qt are assumed to be drawn from 

individual Gaussian distributions with zero mean and covariance W and Q, respectively.  

In all cases, we used 10-fold cross-validation to avoid overfitting, training and testing the 

Kalman filter on separate sets of contiguous trials from the same day. For each monkey, one 

experimental day was set aside for optimizing decoding parameters. Optimal settings learned on 

this day were then applied to each testing day. The optimized parameters were the bin size, the 

time lag (the physiological delay between neural firing rate and kinematic measurements), and 

the kinematic tuning (whether modeling firing rates as being tuned to position only, velocity 

only, or both simultaneous resulted in a better decode).  

3.3.4 Closed-loop neural control 

To determine the functional utility of the offline finger decodes, we enabled one monkey 

to perform the behavioral task in closed-loop neural control, using a real-time decode of finger 

position. For each experimental session, Monkey L performed the center-out task using physical 

movements for ~200 trials. The algorithm was trained on this set of data, and was run in real-

time for the rest of the experiment. During closed-loop trial blocks, the virtual hand was 

controlled using the decoded finger position instead of the monkey’s actual finger movements. 

The task remained the same, with slightly larger targets to make the task slightly easier and 

provide motivation for the monkey to continue. 

For computational efficiency, we used the steady-state Kalman filter (Dethier et al., 2013; 

Malik et al., 2011) for online decoding. The only difference between the steady-state filter and 

the standard filter used offline is that the steady-state Kalman gain is pre-computed during 

training. In practice, the Kalman gain, though updated every timestep in the standard filter, 
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depends only on the constant matrices A, C, W, and Q, and quickly converges to its steady-state 

value. When compared to the standard filter both offline and online in closed-loop, both the gain 

matrices and the kinematic predictions generally converged within 5 s (Malik et al., 2011). Thus, 

to compute the gain matrix during training, the gain update step of the Kalman algorithm was 

iterated for the equivalent of 5 s, and the final matrix saved for online use. 

To evaluate the performance of the closed-loop decode, we computed several metrics 

including trial success rate, time to successful target acquisition, and bit rate via Fitts’s law 

(Thompson et al., 2014), and compared them to those computed during physical task control. 

3.4 Results 

3.4.1 Kinematic data and neural tuning 

Examples of kinematic and neural data recorded during task behavior are shown in figure 

3.3, for both the flex-extend and center-out tasks. Neural modulation can be seen in both tasks. 

The flex-extend task paradigm was used as an intermediate step in training, and thus the behavior 

is both simpler and generally performed faster than the center-out task.  

 

 

Figure 3.3. Task behavior and associated neural spikes from (a) Monkey P performing the flex-extend 

task and (b) Monkey L performing the center-out task. Each spike raster displays five separate channels, 

chosen to be exemplary of modulated activity in each monkey. 
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To examine the kinematic tuning of each channel, we computed the correlation 

coefficient (Pearson’s r) between the kinematic data (position, velocity, and speed) and each 

single neural channel binned at 100 ms. To account for the preferred time lag of each channel, 

we repeated the calculation with multiple lags, from 0 ms to 200 ms, for each kinematic variable 

and recorded the maximum correlation. Figure 3.4 shows the distribution of correlation values 

with each kinematic variable. 

Kinematic correlations with single channel firing rates were generally low, as expected 

due to the stochastic nature of the neural data. Though tuning was widely variable between 

monkeys, movement speed, rather than velocity, was the best represented parameter in each case. 

The relative tuning strengths of position and velocity were different in all three monkeys, with 

Monkey P’s neurons tuned more to position, Monkey S’s neurons tuned more to velocity, and 

Monkey L’s neurons having little tuning to either parameter individually. It is unknown if this 

represents true neural variability in primary motor cortex, or if it is mainly a result of variable 

array placements. Interestingly, the tuning distribution in Monkey L appeared to change between 

behavioral tasks (the data for Monkey L shown in figure 3.4 are taken from the same day), with 

more channels becoming tuned to speed rather than position or velocity in the center-out task.  

 

 

Figure 3.4. Distribution of kinematic tuning for each monkey, as a histogram of correlation values for all 

single neural channels. Monkeys P and L both performed the flex-extend task, while Monkey L 

performed both tasks. 
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3.4.2 Parameter optimization 

In order to optimize decoding parameters for each monkey, a grid search of bin size and 

time lag (from 10-200 ms for each parameter) was performed on an experimental day reserved 

for this purpose. Using each set of parameters, the Kalman filter was trained and tested with 10-

fold cross-validation. In general, performance tended to increase with larger bin size in all three 

monkeys. Time lags close to zero also tended to be better, but there was more variability between 

monkeys than for bin size. In each monkey, there was a wide range of “optimal” parameter 

settings in which the performance level was similar. One of these settings which was close to 

optimal for all monkeys was a bin size of 100 ms and zero time lag. These parameters are similar 

to those used previously for decoding of both arm (Cunningham et al., 2011; Kim et al., 2008) 

and hand (Aggarwal et al., 2013; Menz et al., 2015) movements, and were used for all further 

offline decoding. As optimal decoding parameters are typically different between offline and 

closed-loop decoding (Cunningham et al., 2011), closed-loop decoding parameters were 

optimized separately on each experimental day. 

We also investigated the impact of including each kinematic parameter in the Kalman 

filter model. That is, assuming neural firing rates are related to position only, velocity only, or 

both simultaneously. The velocity-only filter consistently outperformed the position-only filter; 

however we found that including both parameters significantly increased decode performance 

over either single-parameter model. Further, the addition of movement speed did not increase 

performance over the position-velocity filter, and therefore was not used for decoding. 

3.4.3 Offline decoding 

Using a standard Kalman filter with these optimal parameters, we decoded several days 

of experiments for each monkey with an average correlation coefficient of 0.803, 0.858, and 

0.709 (for Monkey S, P, and L, respectively) between true and predicted finger position. This 

performance level is very similar to that reported by previous studies during both reach-to-grasp 

tasks and limited isolated finger movement tasks (Aggarwal et al., 2009; Menz et al., 2015; 

Vargas-Irwin et al., 2010). Decode performance for each session is shown in table 3.1, and 

example traces are shown in figure 3.5 (a-c) for each monkey.  For these experimental sessions, 

Monkeys S and P performed the flex-extend task, while Monkey L performed the center-out 

task.  
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Table 3.1. Offline decoding performance. 

 S P L (center-out) L (flex-extend) 

Session ρ (RMSE) ρ (RMSE) ρ (RMSE) ρ (RMSE) 

1 0.827 (0.176) 0.868 (0.121) 0.659 (0.143) 0.795 (0.220) 

2 0.772 (0.209) 0.894 (0.119) 0.705 (0.135) - 

3 0.810 (0.182) 0.812 (0.161) 0.763 (0.123) - 

Mean 0.803 (0.189) 0.858 (0.134) 0.709 (0.134) - 

 

Performance was noticeably lower for Monkey L, which was likely due to the more 

complex behavioral task. To compare decoding performance between task types, we also 

decoded one session in which Monkey L performed the flex-extend task. Decode correlation 

increased relative to the center-out task performed on the same day (0.795 vs. 0.659 correlation), 

though RMSE also increased (0.220 vs. 0.143) due to the decode “overshooting” near the 

minimum and maximum finger positions. This change in performance was also seen in the held-

out parameter optimization session, though the differences were less dramatic (0.759 vs. 0.733 

correlation and 0.189 vs. 0.123 RMSE for the flex-extend vs. center-out tasks). A sample decode 

from the flex-extend task is shown in figure 3.5 (d). These differences indicate that care must be 

taken in the design of behavioral task so that the accuracy of movement prediction is not 

overstated. 

 

 

Figure 3.5. (a-c) Sample decodes for each monkey, with the blue trace indicating the true finger position 

and the red trace indicating the predicted position. (d) Sample decode of the flex-extend task for Monkey 

L for comparison. 
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3.4.4 Closed-loop decoding 

Following offline testing in Monkey L, we used a steady-state position/velocity Kalman 

filter to decode movements in real-time during task performance. The filter was optimized and 

trained on the first ~300 trials of behavior: a number of parameters were tested both offline and 

in closed-loop. In two days of experiments, 50 and 100 ms bins were used, with 50 and 0 ms of 

lag. In subsequent blocks of trials, the monkey used either physical movements or the predicted 

movements in order to perform the task. The required hold time for each target was 500 ms, with 

a trial timeout of 5 s. A sample of closed-loop task performance is shown in figure 3.6, with both 

the monkey’s actual movements and the predicted movements. The closed-loop decode appeared 

to be heavily influenced by the monkey’s finger velocity, often predicting a return to the rest 

position when the finger was actually held at a constant flexed or extended position. Despite the 

often large errors in decoded position, the monkey was able to successfully complete more than 

75% of trials, learning to compensate for the erroneous virtual finger motion. 

 

 

Figure 3.6. Closed-loop control of the behavioral task. The monkey was required to keep the decoded 

finger position (red trace) within the target zone (dashed boxes) for 500 ms, regardless of the true finger 

position (blue trace). Target background color indicates the trial success (green) or failure (red). 

Several performance metrics for both the open-loop and the closed-loop task are shown 

in table 3.2. As expected, performance was clearly lower during closed-loop behavior than open-

loop with physical control; however, the animal was still able to successfully complete the task, 

as the target success rate remained >76 % on both days. The average time to complete a trial was 

longer during closed-loop trials by <0.5 s, which was still well below the trial timeout of 5 s.  
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Table 3.2. Task performance metrics. 

 Success rate (%) Mean acquisition time (s) Bit rate (bits/s) 

Session Open loop Closed loop Open loop Closed loop Open loop Closed loop 

1 99.2 82.2 1.07 1.52 1.12 0.85 

2 98.0 76.4 1.12 1.60 1.09 0.81 

Mean 98.6 79.3 1.10 1.56 1.11 0.83 

 

An informative metric when performing continuous selection tasks is the Fitts’s law bit 

rate, which takes into account both the difficulty of the task (how hard the target is to acquire in 

space) and how quickly the target can be acquired. This metric is fairly robust to variations in 

tasks (Thompson et al., 2014), and therefore can be compared across algorithms and lab 

procedures. With a simple Kalman filter, we achieved an average bit rate of 0.83 bits/s, 

compared to 1.11 bits/s when using the physical hand. This compares well with bit rates reported 

in the literature for whole-arm BMI performance using the same simple algorithm (see [Gilja et 

al., 2012] Supplemental Materials for a comparison of estimated bit rates).  

3.5 Discussion 

Here, we have presented a novel behavioral task paradigm which is designed to enable 

the detailed investigation of isolated movements of the hand. We used this task to perform the 

first successful demonstration of continuous decoding of isolated finger movements over the full 

range of motion. Previous continuous decoding studies have either involved confounding 

simultaneous movement of the upper-arm or have shown only decoding of very limited 

movement of the fingers in isolation. Our offline decode performance was similar to these 

previous reports despite the lack of upper arm movement, confirming that robust information 

specifically concerning finger-level movements can be extracted from motor cortex. In addition, 

we have also demonstrated the first closed-loop neural control of finger-level fine motor skills, 

allowing a monkey to perform a demanding behavioral task using only data recorded from 

primary motor cortex. 

Though these results represent important steps towards restoration of normal upper-limb 

function, there are still many remaining challenges which can be addressed using our task 

paradigm. Most critically, the offline decoding accuracy and online task performance must be 

improved in order to better approximate the abilities of the normal hand. For online decoding, it 

is probable that using a state-of-the-art algorithm such as the ReFIT Kalman filter (Gilja et al., 
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2012) or the neural dynamical filter (Kao et al., 2015) would improve BMI performance. 

Additionally, even using simpler algorithms as reported here, it is likely the monkey could learn 

to improve his use of the BMI given sufficient practice (Carmena et al., 2003; Ganguly and 

Carmena, 2009).  

In both cases, however, it is currently unknown if such techniques will translate to finger-

level BMIs, and it is likely that some improvement in the underlying decode accuracy will be 

necessary. The offline reconstruction of finger position presented here appears to accurately 

capture periods of movement, but tends to overshoot the actual position at the extents of the 

movement. Further, during periods where the fingers are held in a flexed or extended position, 

the reconstruction tends to develop a constant offset. Along with our finding of variable 

kinematic tuning between and within monkeys, these relatively consistent errors may indicate 

that the assumption of a linear relationship between neural activity and kinematics is not 

realistic. Indeed, non-linear decoding algorithms relating neural activity to kinematics have 

generally performed better than equivalent linear models (Aggarwal et al., 2009; Li et al., 2009; 

Sussillo et al., 2012), and separate studies have indicated that motor cortex activity may 

fundamentally encode low-level muscle activity rather than extrinsic kinematics (Morrow et al., 

2007). 

Finally, the movements demonstrated here are simultaneous flexion and extension of all 

four fingers. This is equivalent to continuous control of a power grasp and is by itself a useful 

functionality, but it is unclear how this control would change when applied to different grasps or 

individuated finger movements. It is likely, due to the complex biomechanical constraints of the 

hand (Lang and Schieber, 2004), that difficulties will arise when directly translating simple 

linear algorithms to these movements. Modeling these constraints (Kim et al., 2007; 

Schaffelhofer et al., 2015) and incorporating them into the decoding process may be necessary. 

We believe that the results presented here represent an important early step towards full 

and dexterous control of neural prosthetic devices. 
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CHAPTER IV 

Enabling Low-power, Multi-modal Neural Interfaces through a Common, Low-bandwidth 

Feature Space 

A version of this work has been accepted to IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, and is currently published online (Irwin et al., 2015). 

4.1. Abstract  

Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic 

control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; 

however, current solutions have high power requirements which limit their usability.  Lowering 

this power consumption typically limits the system to a single neural modality, or signal type, 

and thus to a relatively small clinical market. Here, we address both of these issues by 

investigating the use of signal power in a single narrow frequency band as a decoding feature for 

extracting information from ECoG, EMG, and intracortical neural data. We have designed and 

tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which 

extracts and transmits signal power in a single, configurable frequency band. In pre-recorded 

datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff 

between power savings and decoding performance losses. When processing intracortical data, 

the MINI achieved a power consumption 89.7% less than a more typical system designed to 

extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved 

similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature 

extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in 

accuracy relative to using high-bandwidth, modality-specific signal features. We believe this 

system architecture can be used to produce a viable, cost-effective, clinical BMI. 

4.2 Introduction 

Brain-machine Interfaces (BMIs) have shown great promise for generating prosthetic 

control signals in both monkeys (Ethier et al., 2012; Gilja et al., 2012; Velliste et al., 2008) and 
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humans (Collinger et al., 2013; Hochberg et al., 2012). By decoding neural activity into intended 

movement, they offer potentially more accurate and natural control than conventional body-

powered or surface-myoelectric prostheses. BMIs also have the potential to restore function in 

cervical-level spinal cord injury, where conventional prostheses are not applicable. However, 

current BMIs require a percutaneous connection from indwelling electrodes to recording devices 

outside the body. This introduces several major problems, including potential infection risk and 

limited user mobility.  

To address these problems and move closer to a viable clinical BMI, many groups have 

designed and built wireless and implantable neural recording systems (Patterson et al., 2004; 

Rizk et al., 2009; Szuts et al., 2011; Yin et al., 2013). However, none of these systems have thus 

far been tested in humans or approved by the FDA for clinical use. One major challenge to 

translating research BMIs into the clinic is the high-bandwidth nature of typical systems, which 

grant access to the individual neural waveforms. The need to acquire, process, and wirelessly 

transmit data at rates up to and well beyond 24 Mbps (Borton et al., 2013; Chae et al., 2009) both 

increases the power requirements of the device and restricts the use of wireless bands like the  

medical-reserved MedRadio service (which currently limits bandwidth to 6 MHz [CFR Title 47, 

Part 95.663(d)]).  

The high power consumption of current systems results in unacceptably low battery life, 

unlike other implanted technologies, such as pacemakers, which can operate for years on a single 

battery (Mallela et al., 2004). Borton et al., for example, developed a fully implantable 100-

channel system which transmits broadband data at 24 Mbps and requires 90.6 mW. This device 

must be recharged every 7 h when using a medical-grade 200 mAh battery (Borton et al., 2013). 

Miranda et al. similarly built a system which consists primarily of off-the-shelf components and 

is capable of transmitting 32 channels of broadband data at 24 Mbps for 143 mW (Miranda et al., 

2010). Their system lasts for 33 h (Miranda et al., 2010), but requires two 1200 mAh batteries 

which may be impractical for an implanted device.  

One common method of saving power is to reduce the system bandwidth by focusing on 

only the BMI-relevant features of the input signal, which is typically specific to a particular 

neural signal type, or modality. For example, electrocorticography-based (ECoG) BMIs 

commonly use average signal power in particular frequency bands in order to classify intended 

movement (Chestek et al., 2013; Pistohl et al., 2012). Zhang et al. designed a neural processing 
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IC which uses this ECoG-specific feature space by extracting and transmitting only the signal 

power in four separate low-frequency bands, instead of the full broadband signal (Zhang et al., 

2011). This type of data compression, along with lowering the front-end bandwidth, resulted in a 

power consumption of only 6.4 μW for a single-channel system (Zhang et al., 2011).  

Commercial electromyography-based (EMG) BMIs use a similar signal feature by 

thresholding average waveform amplitude for on/off binary decodes (Farina et al., 2014). Hart et 

al. reported a system containing on-board circuitry to integrate the rectified EMG, allowing for a 

lower sampling rate and thus reducing the data rate for processing and transmission (Hart et al., 

2011). In research-oriented EMG BMIs, pattern recognition algorithms examine waveform 

temporal features, requiring high sampling rates (Farina et al., 2014; Zhou et al., 2007). 

However, even these types of BMIs can save power by limiting the analog pass-band to below 1 

kHz (Farnsworth et al., 2009; Weir et al., 2009). 

Intracortical BMIs typically analyze action potential (“spike”) timing. Spikes are detected 

in the broadband signal, and are binned at regular intervals to produce spike counts. These spike 

counts can then be used by various decoding algorithms to predict continuous movement 

(Hochberg et al., 2006; Serruya et al., 2002) or classify intended movement targets (Santhanam 

et al., 2006). This presents an opportunity for massive data compression, as a system need only 

transmit spike times instead of the full ~30 ksps waveform, reducing the required data rate by 

>90 % (Gosselin et al., 2009; Olsson and Wise, 2005; Sodagar et al., 2009). (Chestek et al., 

2009) built and tested in vivo a system based on the 100-channel Integrated Neural Interface 

chip, designed by (Harrison et al., 2009), which contains integrated comparators for on-board 

spike detection and consumes a total of 8 mW (Harrison et al., 2009). Cheney et al. further 

limited the outgoing data rate by transmitting spike counts, instead of single detections, at 100 

ms intervals (Cheney et al., 2007). 

Each of these systems is designed around a modality-specific signal feature, limiting the 

clinical use of the system to a fairly small market. A cost-effective solution might require a 

single, multi-modal system which could be applicable to all clinical areas. This paper describes a 

path to clinical viability by exploring a low-bandwidth feature space common to ECoG, EMG, 

and intracortical BMIs, which would allow for both low-power and multi-modal implantable 

systems. ECoG and EMG BMIs are both capable of using band power as the primary decoding 

feature, but few groups have investigated band power as an alternative to intracortical spikes. 
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Stark and Abeles found that most, if not all, of the decoding power of spikes could also be 

extracted from the signal power in a band from .3-6 kHz (Stark and Abeles, 2007). This implies 

that all three neural modalities can be decoded using individual, low-bandwidth frequency bands. 

However, there was no discussion in that study of whether the same intracortical information 

could be found in a narrower band. Also, assessment of the actual power savings of such an 

approach, and any potential tradeoff in BMI performance, requires a physical device. Dorman et 

al. designed an intracortical recording device around this feature, using a 1 kHz low-pass filter to 

pass spike timing information (Dorman et al., 1985), though to our knowledge the device output 

was never used for decoding.  

We have designed and built a low-power, multi-modal neural recording system which 

extracts the signal power in a single, configurable frequency band and wirelessly transmits that 

power at regular, BMI-relevant time intervals. We validated the system using novel datasets 

consisting of EMG and intracortical spikes from rhesus macaques, and ECoG recordings from 

human subjects. We explored the ability of this low-bandwidth feature space to accurately 

decode all three modalities, and compared the power requirements of the system to that of more 

typical high-bandwidth systems. 

4.3 Methods 

In order to fully explore this feature space, we designed and built the Multi-modal 

Implantable Neural Interface (MINI), shown in figure 4.1 along with a block diagram of the 

system. The MINI is designed to extract and transmit the average signal power on each channel 

at regular time intervals, and can be easily re-configured for a wide range of analog pass-bands, 

sampling rates, and wireless data rates, summarized in table 4.1. 
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Figure 4.1.  (a) Block diagram of the MINI. The average signal power on each channel is computed and 

wirelessly transmitted at regular intervals. (b) The assembled device with labeled components. 

Table 4.1. MINI system specifications. 

Parameter Value 

# channels 16 * 

ADC resolution 16 bits 

Amplifier input-referred noise 2.4 µVRMS 

MCU clock 8 MHz 

Low-pass filter 0.1 – 20 kHz * 

High-pass filter 0.1 – 500 Hz * 

Sampling rate 
< 5 ksps (16 channels), 

< 40 ksps (1 channel)* 

Wireless data rate < 250 kbps * 

Wireless packet rate 
< 500 packets/s (16 channels), 

< 7500 packets/s (1 channel) 

Supply voltage 3.3 V 

Typical power consumption 7.5 mW ** 
*   Configurable in software 

** Parameter settings: low pass filter – 100 Hz, high pass filter – 500 Hz, 

sampling rate – 2 ksps, wireless data rate – 4 kbps 

4.3.1. System Design 

The MINI consists entirely of commercial, off-the-shelf components. The front-end is an 

Intan RHD2216, a 16-channel bio-amplifier and 16-bit ADC. The amplifier settings and number 

of active channels can be easily configured by the central microcontroller (MCU) via a standard 

SPI bus to match the desired signal modality. The lower cutoff frequency of the amplifier bank is 

selectable from 0.1–500 Hz, while the upper cutoff range is 0.1–20 kHz. The ADC sampling rate 
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is determined by the MCU, up to a maximum of 5 ksps when using all 16 channels, or 40 ksps 

for a single channel. The power consumption of the Intan chip scales linearly with the configured 

filter upper cutoff frequency and the total sampling rate, permitting an analysis of the tradeoff 

between signal fidelity and MINI power.  

The Intan chip also internally computes the absolute value of each channel, which can be 

used as a simple measure of signal power. During initial decode tests in MATLAB, signal 

absolute value performed at least as well as more computationally complex algorithms such as 

mean squared value and root mean squared value for all modalities. The Intan absolute value 

function was thus used to save costly MCU computational time. 

The wireless transceiver is an Atmel AT86RF232, which is compliant with the IEEE 

802.15.4 wireless standard and has a maximum data rate of 250 kbps at 2.4 GHz. With 16 

channels and 16-bit ADC resolution, signal power can be binned and transmitted off-device 

roughly every 2 ms, though in typical use the transmission rate is set to ~50 ms. Data and 

configuration settings are exchanged with the MCU through a second SPI bus.  

An 8-bit Atmel ATMega328p MCU serves as the central controller and data processor, 

configuring the front-end and wireless, as well as controlling the dataflow from sampling to 

transmission. The MCU is clocked via an internal RC oscillator at 8 MHz, with a 32.768 kHz 

external crystal oscillator operating asynchronously from the main clock for sampling timing. 

The MCU itself is programmed from an external computer via a 6-pin in-system interface, and 

system configuration settings can be easily modified in the application code. Prior to clinical 

translation, this physical interface could be modified to accept programming via the wireless 

link. 

In typical use, the system is first configured for the desired modality by setting a few 

simple C macros in the MCU application code: changing the analog pass-band, ADC sampling 

rate, number of recorded channels, and wireless transmission rate. During operation, the MCU 

samples and buffers the absolute value of each channel. At the end of each bin period, it 

computes the average for each channel and passes the data to the wireless transceiver for 

transmission off-device. Outside the system, a remote recording system receives the data sent at 

each bin period, which can be stored or input into a decoding algorithm for prosthetic control.  
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4.3.2 Study Design and Device Validation 

We used the MINI to explore the relationship between power consumption and decoding 

performance, analyzing four datasets containing neural and hand kinematic data recorded during 

similar finger movement tasks. ECoG data were obtained from two human subjects undergoing 

invasive seizure-focus mapping, and EMG and intracortical data were obtained from two rhesus 

macaques performing a separate task. All neural data were recorded using a Cerebus/Neuroport 

amplifier (Blackrock Microsystems, Salt Lake City, UT) with a similar noise floor to the MINI. 

Human and monkey protocols were approved by the University of Michigan Institutional Review 

Board and the University Committee on Use and Care of Animals.  

For each modality, we first performed a high-bandwidth decode in MATLAB 

(Mathworks, Natick, MA) using a typical feature set specific to that modality, and estimated the 

power required to transmit and extract that feature set. We then, also in MATLAB and using 

different days’ datasets, searched the low-bandwidth feature space to determine the optimal 

frequency band and sampling rate for decoding each modality. Using that optimal configuration, 

we replayed the first set of neural data through the MINI, measured the power consumption, and 

performed a low-bandwidth decode using the output. Finally, we compared both the decode 

performance and the power difference between high-bandwidth and low-bandwidth approaches 

within each modality. 

4.3.3 Behavioral Tasks 

A human subject (P1) undergoing invasive ECoG seizure-focus mapping performed an 

isometric hand movement task as described in (Chestek et al., 2013). Briefly, in several 

consecutive trials, the subject was asked to perform and hold a fist grasp, pinch grasp, or flexion 

of an individual finger for four seconds, before returning to a neutral hand position for an 

additional four seconds. Hand kinematics were recorded via a DataGlove 5 Ultra (5DT, Irvine, 

CA) containing flex sensors on each of the fingers. A real-time computer running xPC Target 

(Mathworks, Natick, MA) coordinated the trial flow and synchronized the behavioral and neural 

data for offline analysis. A second human subject (P2) performed a passive sensory task, in 

which one fingertip per trial (thumb, index, or little) was brushed (in one experiment) or pressed 

(in a second experiment) by the experimenter for four seconds per trial. 

Two monkeys performed a continuous finger movement task, illustrated in figure 4.2. 

Each monkey’s index finger was instrumented with a flex sensor (Spectra Symbol, West Valley 
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City, UT), which fed finger position data to a real-time computer also running xPC Target. A 

virtual model of a monkey hand was displayed on a monitor in front of the monkey and mirrored 

the movements measured by the flex sensor. At the start of a trial, the xPC cued a spherical target 

to appear in the path of the virtual finger, and the monkey was required to flex or extend his 

finger to hit the target on the screen. After holding the target for ~100 ms, the monkey was given 

a juice reward. Two targets, respectively requiring full flexion and full extension, were presented 

to the monkey in alternating trials. 

 

 

Figure 4.2. Monkey finger movement task. The monkey was required to hit virtual targets by flexing or 

extending his fingers. Hand movements were measured via flex sensors, and recorded along with either 

intracortical or EMG data. 

4.3.4 Electrophysiology 

The two human subjects were implanted with clinical subdural ECoG macroelectrode 

grids (Ad-Tech Medical, Racine, WI) for seizure-focus mapping. Broadband neural data were 

recorded during task performance at 30 ksps using a Neuroport signal processor (Blackrock 

Microsystems, Salt Lake City, UT). Prior to analysis, the neural data were decimated to 10 ksps, 

and each channel was re-referenced to the common average of its corresponding 32-channel 

cable into the amplifier (Ludwig et al., 2009). Re-referencing was necessary to remove the noise 

introduced on the ~3 ft recording cables by the hospital room environment.  
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Finger flexion-related EMG was recorded from one monkey during task performance via 

a pair of percutaneous fine-wire electrodes. The differential signal from these electrodes was 

filtered by a DAM50 amplifier (WPI, Sarasota, FL) between 10–1000 Hz before it was digitized 

at 30 ksps by a Cerebus neural signal processor (NSP; Blackrock Microsystems, Salt Lake City, 

UT). 

A second monkey was implanted with two 96-channel intracortical Utah arrays in 

primary motor cortex, shown in figure 4.3, by two neurosurgeons experienced in this procedure. 

To locate the hand area of motor cortex, we first identified the genu of the arcuate sulcus within 

the craniotomy and projected a line posteriorly to central sulcus. The first array was placed on 

this line, just anterior to central sulcus, and the second was placed directly medial to the first. 

Broadband data were recorded at 30 ksps from the lateral array during task performance using 

the NSP. Neural spikes were detected by high-pass filtering the raw data at 250 Hz and 

thresholding the resulting signal at -4.5 times the RMS voltage on each channel. 

 

 

Figure 4.3. (a) Surgical photo of two Utah arrays implanted in motor cortex of a rhesus macaque, medial 

(‘M’) and lateral (‘L’) arrays, (b) representative spike panel from the lateral array, showing well isolated 

single units. 

4.3.5 High-bandwidth Decoding 

We analyzed datasets from two separate days for each modality. One was used as a 

feature selection set, to find the optimal decoding features for each modality, and the other was 

used as the testing set for both the high-bandwidth and low-bandwidth decodes. No feature 

selection was performed on the testing set, and each decode was trained and tested on the testing 

set using cross-validation. 

For the ECoG datasets, we classified either which grasp was performed (P1, fist vs. pinch 

vs. rest), or which finger was stimulated (P2, thumb vs. index vs. little) on each trial. 

Movement/stimulation onset for each trial was marked by visual inspection of the kinematic 

data. We used linear discriminant analysis (LDA) to perform the classification, and verified 
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performance with leave-one-out cross-validation. Our performance metric was percent correct, 

and we used an equal number of trials for each movement during decoding.  

Using the P1 ECoG feature selection dataset, we found grasp-relevant channels by 

comparing mean gamma (66-114 Hz) power on each channel during separate thumb and little 

finger flexion movements. We used the five channels with a significant difference between trial 

types that also corresponded to motor cortex as mapped by clinical microstimulation. To 

determine the best high-bandwidth feature for decoding, we performed LDA on the same dataset 

to classify fist vs. pinch grasps, using mean gamma power and beta power (10-30 Hz). We 

found, similar to several other studies (Chestek et al., 2013; Pistohl et al., 2012), that including 

beta band activity did not significantly increase classification performance. Similarly, with the 

P2 ECoG feature selection set, we found the two stimulation-relevant channels that also 

corresponded to sensory cortex, and confirmed that beta did not increase performance. Thus, our 

high-bandwidth decoding feature was simply mean gamma power from 0.5 s before to 1 s after 

movement/stimulation onset.  

All subsequent testing was performed on the testing day’s datasets. The P1 testing dataset 

contained 51 total trials. The P2 testing set contained 20 trials. The signal-to-noise ratio (SNR) of 

these datasets was taken as the ratio of mean gamma activity amplitude surrounding movement 

onset to that during rest periods. For P1 and P2, the mean SNR of all channels was 1.2 and 1.1, 

respectively. 

For the EMG datasets, we predicted finger flexion onset and offset during a contiguous 

set of movement trials. The testing dataset contained 95 trials (756 time bins). The SNR was 

taken as the ratio of mean EMG amplitude during finger flexion to that during extension and rest, 

resulting in an SNR of 5.8 for the testing set. True movement onset and offset times were marked 

via visual inspection of the kinematic data prior to decoding. Each trial was split into consecutive 

64 ms time bins, and we used LDA (with 10-fold cross-validation) to predict whether the 

monkey was flexing or not during each bin. The performance metric was again percent correct, 

where decode points were marked as correct if onset or offset was correctly detected within 150 

ms and the decode remained constant until the next onset or offset. For the high-bandwidth 

decode, we first filtered the broadband EMG between 100-500 Hz. We then extracted four 

temporal features of the EMG waveform (Hudgins et al., 1993; Zhou et al., 2007) at each time 
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bin: (1) Average absolute signal amplitude, (2) number of zero crossings, (3) number of slope 

changes, and (4) waveform line length. 

For the intracortical datasets, we used a linear Wiener filter (Chestek et al., 2011) to 

predict the monkey’s continuous finger position. The testing dataset contained 152 trials (1535 

time bins). The intracortical SNR was taken as the peak-to-peak amplitude of the largest single 

unit on each channel to twice the standard deviation of the broadband signal on that channel with 

isolated spikes removed. The mean SNR of all included channels in the testing set was 6.5. We 

first binned the neural and kinematic data at 64 ms intervals, and took ten lagged bins of neural 

data history for each channel. We then performed least squares linear regression to calculate the 

filter coefficients (Chestek et al., 2011). We performed 10-fold cross-validation for testing, and 

used the correlation coefficient and root-mean-square error as the performance metrics. Using 

the feature selection day’s dataset, we first determined the optimal set of 16 channels (currently, 

the maximum capability of the MINI) for decoding by performing backward elimination from 

the full set of 96 channels (Cecotti et al., 2011). This type of neuron selection has been shown 

previously to improve decoding performance (Wahnoun et al., 2006). For the high-bandwidth 

decode, we used binned spike counts on each of the 16 channels. The high-bandwidth feature for 

each modality is listed in table 4.2. 

Table 4.2. Decoding features. 

Modality 

High 

Bandwidth 

Feature 

System 

Configuration 
Data Rate 

Low 

Bandwidth 

Feature 

System 

Configuration 

Data 

Rate 

ECoG 
Gamma 

power 

< 1 kHz, 

2 ksps 
512 kbps 

Optimal 

band power 

75-150 Hz, 

500 sps 
4 kbps* 

EMG 
Temporal 

features 

100-500 Hz, 

5 ksps 
1.28 Mbps 

Optimal 

band power 

200-500 Hz, 

2 ksps 
4 kbps* 

Intracortical Spike counts 
< 7.5 kHz, 

20 ksps 

3.84 

Mbps** 

Optimal 

band power 

300-1000 Hz, 

2ksps 
4 kbps* 

* Transmitting a single 16-bit average per channel every 64 ms 

** 12 bit ADC resolution 

4.3.6 Low-bandwidth Decoding 

In MATLAB, using the feature selection datasets, we first found the best individual 

frequency band for decoding each modality by performing a grid search on the possible upper 

and lower cutoff frequencies. Using each pair of filter cutoffs, we filtered the broadband data and 

used the mean signal power on each channel as the decoding feature (using the same methods as 
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the high-bandwidth decode). After finding the optimal bands, we performed the same decodes 

again with a range of sampling rates to determine the effect, if any, of sampling over or under the 

Nyquist rate for each band.  

Using each modality’s testing dataset, we configured the MINI to use the optimal 

frequency band and sampling rate for that modality, and replayed the broadband neural data 

through the MINI using a National Instruments DAC. The DAC output was adjusted via a 

voltage divider to achieve the original signal amplitude. The MINI output was recorded by a 

remote wireless receiver and re-synchronized with the kinematics from the same dataset. Finally, 

the low-bandwidth decode was performed on this new dataset, using the same algorithm and 

cross-validation process as the high-bandwidth decode for each modality. 

4.3.7 Power Comparison 

In order to compare the power requirements of implantable systems designed for low-

bandwidth vs. high-bandwidth features, we estimated the power consumption of a system with a 

similar architecture to the MINI, but designed to transmit full broadband data for each modality. 

As the MINI was designed for low data rates, we estimated the full broadband power assuming 

an RF transceiver from the same family, the Atmel AT86RF233, with a maximum throughput of 

2 Mbps. We kept the assumed system specifications as close as possible to the MINI. Power was 

calculated based on numbers and equations drawn from each component’s datasheet, and 

depended primarily on the assumed analog filter cutoff, sampling rate, and wireless data rate. 

Details of the calculation are given in Appendix A. 

4.4 Results 

4.4.1 System Validation 

To validate the real-time performance of the MINI, we recorded in vivo EMG during task 

performance, while simultaneously recording the full broadband signal with the NSP. The MINI 

was powered by a single 3.7 V battery, and was configured to filter between 100-500 Hz, sample 

at 1 ksps, and transmit every 64 ms (250 bps for a single channel). The output of the MINI was 

wirelessly transmitted to a receiver located ~1 m away, which then sent the received data to the 

xPC for storage and task synchronization. The MINI output and associated broadband signal are 

shown in figure 4.4. 
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Figure 4.4. Real-time MINI recording of in vivo EMG during task performance. Top trace: monkey 

finger position (100 = fully flexed, 0 = fully extended). Middle trace: Broadband EMG recorded 

simultaneously. Bottom trace: MINI output received every 64 ms, representing mean signal power in 100-

500 Hz. 

We also explored the contribution of each configurable parameter to system power 

consumption by performing a sweep of the parameter space (amplifier upper cutoff frequency, 

per-channel sampling rate, and total wireless data rate). During each single parameter sweep, the 

remaining parameters were held constant at a cutoff of 500 Hz, a sampling rate of 1 ksps, and a 

wireless bit rate of 4 kbps (transmitting 16 channels of 16-bit data every 64 ms). The individual 

sweeps are shown in figure 4.5. A linear fit to each curve yields a slope of 0.43 mW/kHz, 2.31 

mW/ksps, and 0.29 mW/kbps, respectively.  
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Figure 4.5. MINI parameter sweeps showing the individual contribution of each configuration setting to 

the overall power consumption. The slope of a linear fit to each parameter is 0.43 mW/kHz, 2.31 

mW/ksps, and 0.29 mW/kbps, respectively, from top to bottom. 

As each slope is positive, the optimal setting for each parameter is the minimum value 

which does not significantly decrease decoding ability. In particular, sampling rate appears to be 

the main driver of power consumption in this system. However, it is primarily limited by the 

analog upper cutoff frequency, such that we can potentially reduce power consumption by 

minimizing the cutoff frequency and sampling at the Nyquist rate. Further, the wireless data rate 

is required to be fast enough that a clinical BMI could respond to neural commands with no 

noticeable lag, limiting the power optimization of this setting. Thus, the primary target of MINI 

optimization discussed here is upper cutoff frequency. 

4.4.2 Modality I - ECoG 

We used ECoG data to classify either which grasp (fist, pinch, or rest) a human subject 

(P1) performed on a given trial, or which finger (thumb, index, or little) of a second subject (P2) 

was stimulated. In order to find the optimal MINI filter cutoffs for decoding ECoG data, we 

performed these classifications in MATLAB using various pass-bands. Decode performance for 

each subject as a function of the lower and upper cutoff frequency is shown as a heatmap in 

figure 4.6 (a, d). Only performance values above the diagonal are shown, as by definition the 

upper cutoff is larger than the lower cutoff. As the sampling rate was shown in figure 4.5 to be 
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the main driver of power consumption, the optimal MINI configuration should minimize the 

upper cutoff frequency, allowing the required Nyquist sampling rate to decrease. Thus, the 

optimal setting can be found from the heatmaps in figure 4.6 as the cluster of high performance 

values nearest the lower left corner, ~60-120 Hz (black circles in figure 4.6 (a, d)). This 

identified optimal band did not change considerably when Gaussian white noise was added to the 

signal prior to decoding in MATLAB. 

 

 

Figure 4.6. (a, d) ECoG decoding performance for P1 and P2, respectively, as a function of the front-end 

pass-band (black circles mark the optimal pass-band), (b, e) High-bandwidth decode performance as a 

confusion matrix for P1 and P2 using gamma power (<1 kHz, 2 ksps) – percent correct (PC) = 86.4% for 

P1, PC = 77.3% for P2, (c, f) Low-bandwidth decode performance for P1 and P2 using the MINI (75-150 

Hz, 0.5 ksps) – PC = 83.3% for P1, PC = 72.7% for P2. 

Using this pass-band, we repeated the classification for P1 using a range of sampling 

rates, and found considerable performance decreases when sampling below 500 sps. To provide 

a decodable output at BMI-relevant timescales, we set the bin period to 64 ms. At 16 channels 

and 16-bit resolution, this results in a wireless data rate of 4 kbps. These settings are summarized 

in table 4.2, along with those for the EMG and intracortical modalities. 

Using these optimal parameters, we ran the neural data from the testing datasets through 

the MINI and recorded the output. In this configuration, the MINI consumed 5.9 mW of power. 

To estimate the power consumption of a system similar to the MINI, but designed to extract the 

high-bandwidth ECoG feature (gamma power extracted from the broadband data), we assumed 

an upper cutoff frequency of 1 kHz and a 2 ksps sampling rate. This configuration, listed in table 

4.2, would allow for the extraction of all commonly-used ECoG frequency bands (Pistohl et al., 

2012). At 16-bit resolution, transmitting 16 channels of broadband would result in a wireless data 

rate of 512 kbps. The estimated power for this system, using the datasheet from a high-
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bandwidth Atmel wireless transceiver from the same family as the MINI transceiver, was 15.8 

mW. In this case, the MINI reduced the necessary power by 62.7% of the high-bandwidth 

consumption. 

We decoded the MINI output, as shown in figure 4.6 (c, f), yielding a percent correct 

(PC) of 83.3% for P1 and 72.7% for P2. We decoded these same datasets in MATLAB using the 

high-bandwidth ECoG feature, yielding PC = 86.4% for P1 and PC = 77.3% for P2, as shown in 

figure 4.6 (b, e). Thus for a power reduction of 62.7%, the low-bandwidth MINI decodes 

represent losses of only 3.6% and 6.0% of the high-bandwidth performance for P1 and P2, 

respectively. These results are summarized in table 4.3 for each modality. 

Table 4.3. Summary of decoding performance and power consumption. 

Modality 

Full decoding 

performance 

[95% CI] 

MINI 

decoding 

performance 

[95% CI] 

Percent 

change 

from full 

decode 

Full power 

consumption 

MINI power 

consumption 

Percent 

change 

from full 

power 

ECoG 

(P1) 

PC = 86.4% 

[70.8, 95.5] 

PC = 83.3% 

[67.2, 93.6] 
-3.6% 15.8 mW 5.9 mW -62.7% 

ECoG 

(P2) 

PC = 77.3% 

[49.0, 94.4] 

PC = 72.7% 

[44.2, 91.8] 
-6.0% 15.8 mW 5.9 mW -62.7% 

EMG 
PC = 95.3% 

[93.6, 96.8] 

PC = 92.6% 

[90.2, 94.1] 
-2.8% 35.3 mW 7.5 mW -78.8% 

Intra-

cortical 

ρ = 0.82  

[0.81, 0.84],  

RMSE = 0.172 

ρ = 0.78  

[0.77, 0.80], 

RMSE = 0.186 

-4.9%, 

 

+8.1% 

105.9 mW 10.9 mW -89.7% 

 

4.4.3 Modality II - EMG 

We used EMG data to predict whether or not a monkey was flexing his fingers at a given 

time point. To find the optimal MINI filter cutoffs for decoding EMG, we performed this decode 

in MATLAB using various pass-bands. Decode performance is shown in figure 4.7 (a) as a 

function of the cutoff frequencies. The optimal pass-band was found to be ~200–400 Hz, and 

was robust to simulated signal white noise. Due to a limited number of filter configuration values 

on the Intan amplifier, we used a pass-band of 200-500 Hz to best represent this optimal band. 

Using this band with a range of sampling rates, the optimal setting was the Nyquist rate of 1 
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ksps. We also used the same wireless data rate as ECoG, transmitting 16 channels every 64 ms (4 

kbps). 

 

 

Figure 4.7. (a) EMG decoding performance as a function of the front-end pass-band (black circle marks 

the optimal pass-band), (b) High-bandwidth decode using temporal waveform features, pink indicates 

predicted flexion (200-500 Hz, 5 ksps) – percent correct = 95.3%, (c) Low-bandwidth decoding 

performance using the MINI (200-500 Hz, 1 ksps) – percent correct = 92.6%. 

 In this configuration, when processing a separate testing dataset, the MINI consumed 7.5 

mW of power. To estimate the high-bandwidth system power, we assumed a pass-band of 100-

500 Hz and sampling rate of 5 ksps to enable extraction of temporal waveform features. 

Transmitting 16 channels at 16-bit resolution requires a wireless data rate of 1.28 Mbps. The 

estimated power for this system was 35.3 mW, indicating that the MINI reduced the necessary 

power by 78.8%. 

Decoding the MINI output resulted in a PC = 92.6%, shown in figure 4.7 (c). Decoding 

the same dataset in MATLAB using the high-bandwidth EMG feature set yielded PC = 95.3%, 

as shown in figure 4.7 (b). Thus for a power reduction of 78.8%, the low-bandwidth MINI 

decode loses only 2.8% of the high-bandwidth performance. 

 4.4.4 Modality III - Intracortical 

Finally, we used intracortical data to predict a monkey’s continuous finger position via a 

linear Wiener filter (Chestek et al., 2011). To find the optimal MINI filter settings for decoding 

intracortical data, we repeated this decode in MATLAB using various pass-bands. Decode 
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performance (correlation coefficient) is shown in figure 4.8 (a) as a function of the cutoff 

frequencies. The optimal pass-band was found to be ~300–1000 Hz, and the optimal sampling 

rate to be the Nyquist rate of 2 ksps. This is consistent with a view that most of the information 

in intracortical data can be found in spikes with a ~1 ms sinusoidal waveform. This pass-band 

sacrifices some potential performance in order to reduce the required sampling rate, and 

therefore save power. It did not change considerably with simulated white noise conditions. We 

used the same wireless data rate as previously, 4 kbps when transmitting every 64 ms. 

 

 

Figure 4.8. (a) Intracortical decoding performance as a function of the front-end pass-band (black circle 

marks the optimal pass-band), (b) High-bandwidth decode using spike counts, blue trace is the actual 

finger position, red is the predicted position (<7.5 kHz, 20 ksps) – correlation (ρ) = 0.82 and root-mean-

square error (RMSE) = 0.172, (c) Low-bandwidth decoding performance using the MINI (0.3-1 kHz, 2 

ksps) – ρ = 0.78 and RMSE = 0.186. 

In this configuration, when processing the testing dataset, the MINI consumed 10.9 mW 

of power. To estimate the power consumed by a high-bandwidth system designed to extract 

neural spikes, we assumed a pass-band of .1–7500 Hz and a sampling rate of 20 ksps, similar to 

existing systems (Borton et al., 2013). The resulting data rate for this configuration was 3.84 

Mbps when using 12-bit resolution. As this data rate was beyond the 2 Mbps maximum of the 

assumed transceiver, we further assumed the system to have two identical transceivers, each 

transmitting the data from eight channels (a per-chip data rate of 1.92 Mbps). The estimated 

power for this system was 105.9 mW, indicating that the MINI reduced the necessary power by 

89.7%. 
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Decoding the low-bandwidth MINI output resulted in a correlation coefficient (ρ) of 0.78 

between actual and predicted finger position, and root mean squared error (RMSE) of 0.186, as 

shown in 4.8 (c). Using the high-bandwidth feature, spike counts detected in the broadband by 

thresholding, we decoded the same dataset with ρ = 0.82 and RMSE = 0.172, as shown in 4.8 

(b). Thus for a power reduction of 89.7%, the low-bandwidth MINI decode loses only 4.9% of 

the high-bandwidth correlation coefficient and increases the high-bandwidth RMSE by only 

8.1%. 

4.5 Discussion  

We have demonstrated that signal power within a narrow frequency band, sampled below 

2 ksps, can be used to accurately decode information from multiple, disparate neural sources. We 

designed and built a miniature neural recording system to extract this feature, and verified that 

decoding performance was similar to using high-bandwidth, modality-specific features. 

Performance decreased by less than 9% when decoding continuous finger movement from 

intracortical data or when classifying the target of sensory stimulation from ECoG data, and less 

than 5% when classifying grasp type from ECoG data or when predicting finger flexion from 

EMG recordings. Further, the decode performances and identified optimal frequency bands were 

robust to added signal noise. Decoding performance was similar to that reported by other groups 

using modality-specific features (Aggarwal et al., 2013; Chestek et al., 2013).  

In contrast, the power consumption saved when extracting our low-bandwidth feature on-

chip relative to a system designed to transmit the full broadband signal varied from 62.8% for 

ECoG to 89.7% for intracortical. This dramatic decrease in power enables not only longer-lasting 

devices, but also higher channel counts. Our system was designed to transmit 16 channels of 

neural data. Assuming linear scaling of power consumption, our system would require only 68.1 

mW to transmit 100 channels of intracortical data, ten times less than the 661.9 mW for a 

broadband design. It remains to be seen whether the information extracted via band power is 

sufficient for the ultimate restoration of natural movement, or whether neural or muscle action 

potentials themselves contain critical information, but it is likely that this potential 10-fold 

increase in channel count would more than offset the performance decrease while maintaining 

similar power requirements. 
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It could be argued that low-power ASIC-based systems are capable of enabling viable 

broadband designs without our approach. Chae et al., for example, designed a 128 channel 

intracortical system which draws only 6 mW to transmit broadband data below 20 kHz (sampled 

at 40 ksps) (Chae et al., 2009). Wattanapanitch and Sarpeshkar similarly designed a neural 

recording IC which digitized 32 channels of intracortical broadband for only 325 μW (a per-

channel cost of only 10.2 μW) (Wattanapanitch and Sarpeshkar, 2011). A comparison of these 

and several other ASIC-based systems to the MINI is presented in table 4.4, clearly showing that 

an ASIC can achieve much lower power than an off-the-shelf solution such as the MINI. 

Table 4.4. Comparison of MINI to intracortical ASIC-based systems. 

Reference 
No. 

channels 

Upper 

cutoff 

frequency 

(kHz) 

Sampling 

rate per 

channel 

(kSps) 

Total 

data 

rate 

(Mbps) 

Amplifier 

input-

referred 

noise 

(µVrms) 

Total 

power 

(mW) 

Power 

per 

channel 

(µW) 

(Chae et al., 2009) 128 10  40  90  4.9 6 46.8  

(Gosselin et al., 

2009) 
16 9.2  30  <1  5.4 2.21 138  

(Wattanapanitch 

and Sarpeshkar, 

2011) 

32 12  31.3  8  5.4 0.325 10.2  

(Borton et al., 

2013) 
100 7.8  20  24  8.6 90.6 906 

(Yin et al., 2013) 100 7.8  20  24  2.83 51 510 

This work 16 1  2  0.004  2.4  10.9 681 

 

However, these approaches are not mutually exclusive. If power reductions similar to 

those shown here for the MINI could be applied to the already low-power designs of (Chae et al., 

2009) and (Wattanapanitch and Sarpeshkar, 2011), for example, this would result in a total cost 

of only 618 μW and 33.5 μW, respectively. This puts such systems much closer to being able to 

operate for long periods on a battery, without inductive charging or with only rare recharges 

necessary, which would ease the transition into the clinical setting. If higher power consumption 

is still acceptable, the power savings can be used to increase channel counts and gather 

information from many more neural sources. 

Additionally, producing high-bandwidth data requires excessive hardware on the 

receiving end, in order to extract the necessary decoding features (a low-bandwidth signal in any 

case). Systems designed to record and decode neural data entirely inside the body (e.g. functional 
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electrical stimulation (Hobby et al., 2001)) would be required to either also implant fast, power-

hungry processors in order to deal with the added data load, further reducing battery life, or 

require the patient to use an unnecessary external processor. 

Our system demonstrates that accurate, clinically-useful information can be extracted 

from a feature space shared by the three most commonly used neural modalities, which also 

allows for a substantial reduction in power consumption. We believe that this represents a viable 

commercial device architecture by enabling long-lasting and high channel-count implantable 

systems for use in multiple clinical markets.  
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CHAPTER V 

Discussion 

5.1 Conclusion 

By tapping into the body’s communication pathway in order to generate intuitive control 

signals, neural interfaces can offer the unique potential of restoring normal hand function to 

people with severe motor disabilities. However, there are still many challenges left to solve 

before this technology is a robust and accepted treatment for restoring truly dexterous movement. 

This thesis attempts to address several of these challenges, in order to bring neural interfaces one 

step closer to clinical reality. 

First, Chapter 2 investigated the ability of a novel peripheral nerve interface, the 

regenerative peripheral nerve interface (RPNI), to enable the long-term extraction of control 

signals for hand-level movement. Stable EMG with high signal-to-noise ratio could be recorded 

from the RPNIs up to 20 months after initial implantation, with no sign of degradation. These 

signals could accurately detect the intended hand motion, which subsequently enabled the 

functional control of a virtual hand prosthesis with performance equal to that of the physical 

hand. The level of control provided by the RPNIs in this initial study is equivalent to current 

myoelectric prostheses, and demonstrates the potential of the interface as well as providing initial 

safety data for future human implementation. 

In order to provide similar control for paralyzed subjects, in whom the peripheral nervous 

system no longer contains functional motor signals, Chapter 3 evaluated the fine motor 

information contained in intracortical signals. Using neural data recorded from primary motor 

cortex during a novel behavioral task, continuous fingertip position could be accurately 

reconstructed offline. To our knowledge, this is the first demonstration of continuous neural 

decoding of isolated hand movement over the full range of motion. Further, this decode could be 

performed in real-time, and allow the monkey to control a virtual hand in closed-loop in order to 

move the fingers to arbitrary positions. Again, to our knowledge, this is the first demonstration of 

volitional control of fine motor skills enabled through a cortical neural interface. 
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The results presented in these two chapters are encouraging for the success of neural 

interfaces, but a large hurdle for translating this technology into clinical practice is the 

development of fully-implantable, wireless devices which can record and transmit neural signals 

through the skin. This would enable the long-term use of neural interfaces in everyday life, a 

critical milestone. To this end, Chapter 4 presented the design and testing of the Multi-modal 

Implantable Neural Interface, a wireless system which extracts and transmits the signal power in 

a single, configurable frequency band to enable low-power recording of cortical, peripheral, and 

myoelectric signals. Compared to more typical systems designed to extract and transmit high-

bandwidth broadband data, the MINI significantly reduced power consumption while 

maintaining decode performance for each signal modality. These results indicate that the MINI 

represents a viable device architecture which could enable clinical neural interfaces for a broad 

prosthetics market. 

5.2 Future Directions 

Building on the results presented in this and other works, there are still many questions to 

be answered and improvements to be made before these technologies are ready for clinical use. 

Answering these questions will require both human and animal studies. Here, I will attempt to 

lay out a potential path to clinical reality for peripheral and cortical interfaces, addressing some 

of the most critical challenges to be solved along the way. 

Peripheral nerve interfaces have shown great promise in recent pilot human trials (Clark 

et al., 2014), but there remain serious concerns about the longevity of current approaches. The 

RPNI technique as demonstrated in Chapter 2 appears to solve this issue. We have successfully 

recorded and decoded signals from RPNIs in monkeys up to 20 months after implantation, with 

no signs of signal degradation. RPNIs have also been implanted in humans for the purpose of 

neuroma control for more than 2.5 years, and we have recorded and decoded signals from two 

RPNIs in an amputee up to seven months after implantation. 

The primary challenge to be addressed in future human studies is determining the number 

of independent control signals which can be extracted using RPNIs. In order to maximally 

separate control signals, the RPNI implantation procedure must include intraoperatively 

dissecting residual nerves into individual fascicles and isolating them into separate muscle grafts. 

It remains to be seen whether this can be done to the extent of isolating a single function to each 
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RPNI, but seems likely at least for more distal amputations, in which the nerve fascicles are 

relatively segregated and somatotopic (Stewart, 2003). For more proximal amputations, where 

fascicle grouping is less clear, implanting multiple electrode contacts into each RPNI may be 

necessary for extracting intermingled functions. 

Secondly, in order to restore truly natural movement, it is necessary to provide 

simultaneous, continuous control of each degree of freedom of the prosthesis. Able-bodied 

subjects will be required in order to develop and evaluate the decoding algorithms to achieve 

this. This could be studied in monkeys with RPNI implants, but training limitations would 

restrict decoding to relatively simple movements. As the RPNIs produce normal EMG signals, 

however, decode studies on able-bodied human subjects with standard EMG techniques may be 

directly applicable to RPNI control. Initial work in this area has been done by several groups 

investigating regression algorithms for simultaneous control of 2D wrist movements in able-

bodied humans, with promising results (Hahne et al., 2014; Smith et al., 2015). Our initial efforts 

applying a linear Kalman filter to RPNI signals in monkeys have been similarly promising for 

finger control, albeit with relatively simple movements. 

If these challenges can be solved, providing simultaneous and continuous control of 

many degrees of freedom, then RPNIs may represent one integral part of the optimal solution for 

amputation at any level. With a large number of implanted RPNIs, and possibly multiple 

electrodes in each, an implanted recording system will likely require some form of data 

compression such as that proposed by the MINI architecture in Chapter 4. The system would 

then extract only relevant signal features from each channel and wirelessly transmit the data to 

decoding hardware located in the prosthesis socket. This would minimize power requirements, 

either extending implanted battery life or minimizing the necessary inductive power transfer, 

depending on implementation. 

Intracortical neural interfaces face a fundamentally different challenge than peripheral 

interfaces. Interface longevity seems to be less of an issue, with at least some Utah arrays 

recording useful signals over five years post-implantation (Hochberg et al., 2012; Jarosiewicz et 

al., 2015); however, the fundamental physiological mechanism by which neural activity produces 

movement is still unclear. In order to answer this question, it is necessary to record both neural 

activity and the resulting movement simultaneously, requiring further study using able-bodied 

monkeys. This is not to say that human studies should not continue or even expand further, as 
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important achievements are being made, for example, in cursor control for assistive technology 

(Gilja et al., 2015). Neural plasticity may also obviate the need for biomimetic prosthesis control 

(Ganguly and Carmena, 2009), in which case current human research in prosthesis control using 

standard linear algorithms may achieve sufficient performance simply by adding more 

controllable dimensions (Wodlinger et al., 2015). However, even with the relatively simple 

movements investigated in Chapter 3, it is unlikely that the reported decode accuracy represents 

the best performance possible. Rather, it may simply be approaching the limit of linear models to 

approximate the true relationship between neural firing rates and finger kinematics. Thus, there 

still may be a need for further research into physiological mechanisms in order to achieve 

adequate performance.  

There is currently no consensus about which aspect of movement is fundamentally 

encoded by primary motor cortex, with possibilities ranging from movement direction 

(Georgopoulos et al., 1982; Schwartz et al., 1988) to muscle activation level (Morrow and 

Miller, 2003; Scott and Kalaska, 1995). However, multiple studies have shown that decode 

performance better generalizes to new task contexts (e.g. reaching with a different arm posture or 

within a force field) when neural activity is modelled as relating to low-level parameters such as 

intended joint torque or muscle activity (Cherian et al., 2013; Oby et al., 2013). This indicates 

that certain non-linearities are present in the path from neural firing to ultimate kinematic output, 

whether caused by an inherent non-linear encoding in the neural activity itself (Pohlmeyer et al., 

2007) or caused by the musculoskeletal mechanics underlying physical movement (Park and 

Durand, 2008). It seems likely that including musculoskeletal dynamics in the decode path may 

be necessary for increasing accuracy in unrestricted environments (Kim et al., 2007). 

One final challenge for intracortical interfaces, which must also be addressed initially in 

animal models, is the fact that current electrode arrays sample activity from a tiny, sparse 

fraction of the neurons in motor cortex. In order to elucidate the true relationship between neural 

activity and movement, and more faithfully extract movement intention, it may be necessary to 

develop arrays with higher, denser channel counts. One promising method of increasing channel 

counts is to use single carbon fibers, which have a small enough diameter to avoid most of the 

glial scarring common to traditional silicon electrodes (Patel et al., 2015). Using both traditional 

electrode arrays and future ultra-high density carbon fiber arrays, the novel experimental 
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paradigm presented in Chapter 3 could enable some resolution of the neural representation 

debate, and thus allow truly accurate movement decoding. 

If high channel counts are indeed necessary for accurate intracortical interfaces, then an 

implantable system similar to the MINI architecture would be required to allow clinical 

translation. This system could be used for wireless data compression in order to transmit data 

outside the body to a prosthesis, or it could lower front-end processing power to enable fully-

implanted functional electrical stimulation. This would accommodate either patient preference, 

limb replacement or restoration. 

Both peripheral and intracortical neural interfaces still face a long path to widespread 

clinical reality, but significant progress has been made in the past decade and, combining this 

progress with the results of the future work described here, it may soon be possible to restore 

normal arm and hand function in cases of debilitating injury.  
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APPENDIX A 

Broadband System Power Calculation 

Broadband system power was estimated based on a system similar to the MINI, using an 

Intan RHD2216 amplifier, Atmel ATMega328p MCU, and an Atmel AT86RF233 wireless 

transceiver. In a simplified model of the system, the amplifier draws a constant current after 

being configured, the MCU draws a large current when actively retrieving data from the 

amplifier and is in low-power mode for the rest of the sampling period, and the transceiver draws 

a large current when actively transmitting and is in low-power mode otherwise. 

The amplifier current draw depends only on the configured filter upper cutoff frequency, 

fc, and the per-channel sampling rate, fs. With all 16 channels active, the current is 

𝐼𝑎𝑚𝑝 = 710 𝜇𝐴 + 121.6
𝜇𝐴

𝑘𝐻𝑧
∗ 𝑓𝑐 + 34.24

𝜇𝐴

𝑘𝑠𝑝𝑠
∗ 𝑓𝑠 .  (1) 

The MCU current draw depends both on the MCU clock rate, fmcu, and on fs to determine 

the active duty cycle. For the ECoG and EMG modalities, we assumed a clock of 8 MHz in order 

to achieve the same SPI clock rate (half the MCU clock) as the MINI. For this clock rate, the 

large active current, Ia, is 3 mA and the low-power mode current, Is, is 1 µA. The higher 

sampling rate of intracortical data required the assumption of a higher MCU clock of 12 MHz, 

increasing Ia to 4 mA. For 16 channels of 16-bit data, MCU current is: 

𝐼𝑚𝑐𝑢 = 𝐼𝑎 ∗
512∗𝑓𝑠

𝑓𝑚𝑐𝑢
+ 𝐼𝑠 ∗ (1 −

512∗𝑓𝑠

𝑓𝑚𝑐𝑢
) .       (2) 

Wireless current assumed it was transmitting at maximum power at 2 Mbps. When 

actively transmitting, it draws 13.8 mA and draws 0.4 µA for the rest of the sampling period. The 

time spent in each mode depends on the total amount of data transmitted, Nbits. For ECoG and 

EMG, Nbits was 256 bits at 16-bit resolution. For intracortical, the high sampling rate required a 

further assumption that the system have two identical RF transceivers, each transmitting the data 

from eight channels at 12-bit resolution. Thus, Nbits for intracortical was 96 bits, and the total 

wireless current draw was doubled. 

𝐼𝑟𝑓 = 13.8𝑚𝐴 ∗
𝑁𝑏𝑖𝑡𝑠∗𝑓𝑠

2 𝑀𝑏𝑝𝑠
+ 0.4𝜇𝐴 ∗ (1 −

𝑁𝑏𝑖𝑡𝑠∗𝑓𝑠

2 𝑀𝑏𝑝𝑠
)     (3) 
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The total broadband system power was then the sum of all component currents multiplied 

by the supply voltage: 

𝑃 = (𝐼𝑎𝑚𝑝 + 𝐼𝑚𝑐𝑢 + 𝐼𝑟𝑓) ∗ 3.3 𝑉.    (4) 
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